JP2003065042A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine

Info

Publication number
JP2003065042A
JP2003065042A JP2001261955A JP2001261955A JP2003065042A JP 2003065042 A JP2003065042 A JP 2003065042A JP 2001261955 A JP2001261955 A JP 2001261955A JP 2001261955 A JP2001261955 A JP 2001261955A JP 2003065042 A JP2003065042 A JP 2003065042A
Authority
JP
Japan
Prior art keywords
nox
exhaust gas
exhaust
control
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001261955A
Other languages
Japanese (ja)
Inventor
Kotaro Hayashi
孝太郎 林
Hisashi Oki
久 大木
Hisafumi Magata
尚史 曲田
Masaaki Kobayashi
正明 小林
Daisuke Shibata
大介 柴田
Shinobu Ishiyama
忍 石山
Akihiko Negami
秋彦 根上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001261955A priority Critical patent/JP2003065042A/en
Priority to DE10239872A priority patent/DE10239872A1/en
Priority to FR0210725A priority patent/FR2829181B1/en
Publication of JP2003065042A publication Critical patent/JP2003065042A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • F01N3/0885Regeneration of deteriorated absorbents or adsorbents, e.g. desulfurization of NOx traps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/02Combinations of different methods of purification filtering and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/12Combinations of different methods of purification absorption or adsorption, and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/14Combinations of different methods of purification absorption or adsorption, and filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/04Exhaust treating devices having provisions not otherwise provided for for regeneration or reactivation, e.g. of catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/08Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying ignition or injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/08Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying ignition or injection timing
    • F01N2430/085Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying ignition or injection timing at least a part of the injection taking place during expansion or exhaust stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/04Sulfur or sulfur oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/16Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0821Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2033Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using a fuel burner or introducing fuel into exhaust duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/36Arrangements for supply of additional fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B7/00Engines characterised by the fuel-air charge being ignited by compression ignition of an additional fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • F02D41/028Desulfurisation of NOx traps or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PROBLEM TO BE SOLVED: To provide a technology capable of increasing opportunities to carry out the control for regeneration of an NOx catalyst poisoned by sulfur and also suppressing the deterioration of the catalyst caused by sulfur poisoning. SOLUTION: This exhaust emission control device is provided with an NOx absorbent which absorbs NOx in an exhaust gas when the air/fuel ratio of the inflowing exhaust gas is lean and releases the absorbed NOx when the above air/fuel ratio is theoretical or rich, and a control means for carrying out the temperature elevation control of the NOx absorbent and the control of regenerating the catalyst poisoned by sulfur. Since the control means releases oxygen (O2 ) stored in the NOx absorbent by lowering the air/fuel ratio in the exhaust gas when the temperature elevation control is carried out before the start of regeneration control of the poisoned NOx absorbent, the delay thereof is eliminated. The NOx absorbent may be carried on a filter capable of temporarily capturing particulates.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の排気浄
化装置に関し、特にNOx吸収剤の硫黄被毒回復を短時
間で実行できるようにしたものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purification device for an internal combustion engine, and more particularly to an exhaust gas purification device capable of recovering sulfur poisoning of a NOx absorbent in a short time.

【0002】[0002]

【従来の技術】自動車等に搭載される内燃機関、特に酸
素過剰状態の混合気(所謂、リーン空燃比の混合気)を
燃焼可能とするディーゼル機関やリーンバーン・ガソリ
ン機関では、この内燃機関の排気中に含まれる窒素酸化
物(NOx)を浄化する技術が望まれている。
2. Description of the Related Art In an internal combustion engine mounted on an automobile or the like, particularly a diesel engine or a lean burn gasoline engine capable of burning an air-fuel mixture in an oxygen excess state (so-called lean air-fuel mixture), A technique for purifying nitrogen oxides (NOx) contained in exhaust gas is desired.

【0003】このような要求に対し、内燃機関の排気系
にNOx吸収剤を配置する技術が提案されている。この
NOx吸収剤の一つとして、流入する排気の酸素濃度が
高いときは排気中の窒素酸化物(NOx)を吸収し、流
入する排気の酸素濃度が低下し且つ還元剤が存在すると
きは吸収していた窒素酸化物(NOx)を放出しつつ窒
素(N2)に還元する吸蔵還元型NOx触媒が知られてい
る。
In response to such demands, a technique for arranging a NOx absorbent in the exhaust system of an internal combustion engine has been proposed. As one of the NOx absorbents, it absorbs nitrogen oxides (NOx) in the exhaust when the oxygen concentration of the inflowing exhaust gas is high, and absorbs when the oxygen concentration of the inflowing exhaust gas is low and a reducing agent is present. An occlusion reduction type NOx catalyst is known that reduces nitrogen oxide (NOx) to nitrogen (N 2 ) while releasing it.

【0004】吸蔵還元型NOx触媒が内燃機関の排気系
に配置されると、内燃機関が希薄燃焼運転されて排気の
空燃比が高くなるときは排気中の窒素酸化物(NOx)
が吸蔵還元型NOx触媒に吸収され、吸蔵還元型NOx触
媒に流入する排気の空燃比が低くなったときは吸蔵還元
型NOx触媒に吸収されていた窒素酸化物(NOx)が放
出されつつ窒素(N2)に還元される。
When the NOx storage reduction catalyst is arranged in the exhaust system of the internal combustion engine, nitrogen oxide (NOx) in the exhaust gas is generated when the internal combustion engine is operated in lean combustion and the air-fuel ratio of the exhaust gas becomes high.
Is absorbed by the NOx storage reduction catalyst, and when the air-fuel ratio of the exhaust gas flowing into the NOx storage reduction catalyst becomes low, the nitrogen oxide (NOx) absorbed by the NOx storage reduction catalyst is released and nitrogen ( N 2 ).

【0005】ところで、吸蔵還元型NOx触媒には燃料
に含まれる硫黄分が燃焼して生成される硫黄酸化物(S
Ox)もNOxと同じメカニズムで吸収される。この硫黄
酸化物(SOx)は通常の窒素酸化物(NOx)の放出還
元時には放出されないので、その蓄積が所定量以上にな
ると飽和状態を招来してNOx触媒がNOxを吸収できな
い状態となる。これを硫黄被毒(SOx被毒)といい、
NOx浄化率が低下するため、適切な時期にNOx触媒を
SOx被毒から回復させる被毒回復処理を施す必要があ
る。この被毒回復処理は、NOx触媒を高温(例えば6
00乃至650℃程度)にしつつ、酸素濃度を低下させ
た排気をNOx触媒に流通させて行われている。
By the way, the NOx storage reduction catalyst is a sulfur oxide (S) produced by combustion of sulfur contained in fuel.
Ox) is also absorbed by the same mechanism as NOx. Since this sulfur oxide (SOx) is not released during normal release and reduction of nitrogen oxide (NOx), when its accumulation exceeds a predetermined amount, a saturated state is brought about and the NOx catalyst becomes unable to absorb NOx. This is called sulfur poisoning (SOx poisoning),
Since the NOx purification rate decreases, it is necessary to perform a poisoning recovery process for recovering the NOx catalyst from SOx poisoning at an appropriate time. In this poisoning recovery process, the NOx catalyst is heated to a high temperature (for example, 6
The temperature is set to about 00 to 650 ° C.) and the exhaust gas having a reduced oxygen concentration is passed through the NOx catalyst.

【0006】ところが希薄燃焼運転時の排気は上述した
温度より低いので、通常の運転状態では硫黄被毒の回復
に必要とされる温度までNOx触媒の床温を昇温するこ
とは困難である。このようなときは、排気路へ燃料の添
加を行うことにより上記触媒の温度を上昇させつつ排気
の酸素濃度を低下させることができる。
However, since the exhaust gas during lean burn operation is lower than the above-mentioned temperature, it is difficult to raise the bed temperature of the NOx catalyst to a temperature required for recovery of sulfur poisoning under normal operating conditions. In such a case, by adding fuel to the exhaust passage, the temperature of the catalyst can be raised and the oxygen concentration of the exhaust can be lowered.

【0007】かかるNOx触媒の温度を上昇させる方法
として、特許第2845056号公報に記載された内燃
機関の排気浄化装置が提案されている。この公報に記載
された内燃機関の排気浄化装置は、吸蔵還元型NOx触
媒において排気中の酸素と反応して消費される還元剤の
量と吸蔵還元型NOx触媒に吸収されている窒素酸化物
(NOx)を還元するために必要となる還元剤の量とを
考慮して、還元剤の添加量を決定することにより、還元
剤の過剰供給や供給不足を防止し、還元剤や窒素酸化物
(NOx)の大気中への放出による排気エミッションの
悪化を抑制しようとするものである。
As a method for raising the temperature of the NOx catalyst, an exhaust gas purifying apparatus for an internal combustion engine is proposed in Japanese Patent No. 2845056. In the exhaust gas purification device for an internal combustion engine described in this publication, the amount of the reducing agent consumed by reacting with oxygen in the exhaust gas in the NOx storage reduction catalyst and the nitrogen oxides absorbed in the NOx storage reduction catalyst ( By determining the addition amount of the reducing agent in consideration of the amount of the reducing agent necessary for reducing NOx), it is possible to prevent the excessive supply or the insufficient supply of the reducing agent, and to reduce the reducing agent or the nitrogen oxide ( It is intended to suppress the deterioration of exhaust emission due to the release of (NOx) into the atmosphere.

【0008】[0008]

【発明が解決しようとする課題】上述のように硫黄被毒
回復は排気中の酸素濃度を低下させて実行されるが、内
燃機関の高負荷運転時に還元剤を添加すると、還元剤が
吸蔵還元型NOx触媒で燃焼してこの吸蔵還元型NOx触
媒の温度が上昇するため、吸蔵還元型NOx触媒の熱劣
化を誘発する虞がある。したがって、硫黄被毒回復は軽
負荷領域で実行することが好ましい。
As described above, the sulfur poisoning recovery is executed by lowering the oxygen concentration in the exhaust gas. However, if the reducing agent is added during high load operation of the internal combustion engine, the reducing agent will occlude and reduce. The NOx catalyst burns and the temperature of the NOx storage reduction catalyst rises, which may cause thermal deterioration of the NOx storage reduction catalyst. Therefore, it is preferable to perform the sulfur poisoning recovery in the light load region.

【0009】一方、吸蔵還元型NOx触媒には、NOx吸
収時には排気中の酸素(O2)をNOxと共に吸収しこれ
を蓄積させるいわゆるO2ストレージ能があるので、 吸
蔵還元型NOx触媒は排気がリーンで運転されている際
に、NOxの吸収とともに酸素(O2)を吸蔵している。
On the other hand, since the NOx storage reduction catalyst has a so-called O 2 storage capacity that absorbs oxygen (O 2 ) in the exhaust gas together with NOx and accumulates the NOx when it absorbs NOx, the NOx storage reduction catalyst cannot discharge the exhaust gas. When operating lean, it absorbs NOx and stores oxygen (O 2 ).

【0010】そこで硫黄被毒再生の実行のため、NOx
触媒を所定の温度に昇温させて、NOx触媒に流入する
排気の空燃比をリッチに調整してもすぐには硫黄被毒回
復は開始されない。すなわち、図8に示すように、リッ
チの排気がNOx触媒に流入すると、しばらくはこの触
媒に吸蔵されていた酸素(O2)の排気中に放出がされ
るので、排気の空燃比がすぐにはリッチにならず理論空
燃比付近に留まり、このような酸素(O2)の放出が終
了してからリッチに移行する。これに伴ってNOx触媒
中の硫黄酸化物(SOx)の放出もリッチになるまで開
始されないことになる。
Therefore, in order to execute the sulfur poisoning regeneration, NOx
Even if the temperature of the catalyst is raised to a predetermined temperature and the air-fuel ratio of the exhaust flowing into the NOx catalyst is adjusted to be rich, the sulfur poisoning recovery does not start immediately. That is, as shown in FIG. 8, when rich exhaust gas flows into the NOx catalyst, oxygen (O 2 ) stored in the NOx catalyst is released into the exhaust gas for a while, so that the air-fuel ratio of the exhaust gas immediately increases. Does not become rich and remains near the stoichiometric air-fuel ratio, and shifts to rich after such release of oxygen (O 2 ) is completed. Along with this, the release of sulfur oxide (SOx) in the NOx catalyst is not started until it becomes rich.

【0011】そのため軽負荷状態になって昇温制御を開
始し、吸蔵還元型NOx触媒の昇温後に排気の空燃比を
リッチにするために燃料を排気路に添加するリッチスパ
イクを行った場合、硫黄の放出時間、すなわち硫黄被毒
再生の実行時間が十分に長ければよいが、運転状況によ
っては軽負荷状態が長く持続しない等、硫黄被毒再生の
実行時間が短い場合を繰り返すことがあり得る。このよ
うな場合は、上述したO2ストレージによってNOx触媒
の硫黄被毒再生が不可能となり、NOxの吸収ができず
に排気の浄化が十分でなくなる虞がある。
Therefore, when the temperature rise control is started in a light load state, and after the temperature rise of the NOx storage reduction catalyst, a rich spike for adding fuel to the exhaust passage to make the air-fuel ratio of the exhaust rich is performed, It suffices if the sulfur release time, that is, the execution time of sulfur poisoning regeneration is sufficiently long, but depending on the operating conditions, the case where the execution time of sulfur poisoning regeneration is short, such as the light load state does not last long, may be repeated. . In such a case, sulfur poisoning regeneration of the NOx catalyst becomes impossible due to the above-mentioned O 2 storage, NOx cannot be absorbed, and the exhaust gas may not be sufficiently purified.

【0012】本発明は以上の問題を解決するためになさ
れたものであり、NOx触媒の硫黄被毒再生制御を実行
できる機会を増加させ、NOx触媒の硫黄被毒劣化を抑
制することができる技術を提供することを目的とする。
The present invention has been made to solve the above problems, and it is possible to increase the chances of executing the sulfur poisoning regeneration control of the NOx catalyst and suppress the sulfur poisoning deterioration of the NOx catalyst. The purpose is to provide.

【0013】[0013]

【課題を解決するための手段】上記課題を達成するため
に本発明の内燃機関の排気浄化装置は、以下の手段を採
用した。即ち、流入する排気の空燃比がリーンのときに
は排気中のNOxを吸収し流入する排気の空燃比が理論
空燃比又はリッチになると吸収したNOxを放出するN
Ox吸収剤と、前記NOx吸収剤の昇温制御及び硫黄被毒
回復制御を実行する硫黄被毒回復制御手段と、を備え、
前記硫黄被毒回復制御手段は、前記NOx吸収剤の硫黄
被毒回復制御開始前の昇温制御を実行した際に、排気の
空燃比を低下させてNOx吸収剤に吸蔵された酸素を放
出させることを特徴とする。
In order to achieve the above object, the exhaust gas purifying apparatus for an internal combustion engine of the present invention employs the following means. That is, when the air-fuel ratio of the inflowing exhaust gas is lean, the NOx in the exhaust gas is absorbed, and when the air-fuel ratio of the inflowing exhaust gas becomes the theoretical air-fuel ratio or rich, the absorbed NOx is released N.
An Ox absorbent, and sulfur poisoning recovery control means for executing temperature rise control and sulfur poisoning recovery control of the NOx absorbent,
The sulfur poisoning recovery control means reduces the air-fuel ratio of the exhaust gas to release the oxygen stored in the NOx absorbent when executing the temperature increase control before starting the sulfur poisoning recovery control of the NOx absorbent. It is characterized by

【0014】本発明の最大の特徴は、NOx吸収剤の硫
黄被毒回復制御開始前の昇温制御時を実行した際に、空
燃比を低下させ、前もってNOx吸収剤に吸蔵された酸
素(O2)を放出させることで、硫黄被毒回復制御時の硫
黄放出に要する時間を短縮することである。ここで昇温
制御を実行した際とは、昇温制御中及び硫黄被毒回復制
御開始前の昇温制御終了直後までを含む。
The most important feature of the present invention is that when the temperature rising control before the start of the sulfur poisoning recovery control of the NOx absorbent is executed, the air-fuel ratio is reduced and the oxygen (O 2) stored in the NOx absorbent in advance is reduced. By releasing 2 ), the time required for sulfur release during sulfur poisoning recovery control is shortened. Here, the execution of the temperature increase control includes during the temperature increase control and immediately after the temperature increase control is completed before the sulfur poisoning recovery control is started.

【0015】このように構成された内燃機関の排気浄化
装置では、NOx吸収剤に吸収されて蓄積された硫黄酸
化物(SOx)を放出させる硫黄被毒回復制御が実施さ
れるが、この制御は、排気をリッチにすることによるN
Ox吸収剤の過度な温度上昇を回避するため、内燃機関
の軽負荷領域のときに行うのが好ましい。
In the exhaust gas purifying apparatus for an internal combustion engine configured as described above, sulfur poisoning recovery control for releasing the sulfur oxide (SOx) absorbed and accumulated in the NOx absorbent is carried out. , N by making the exhaust rich
In order to avoid an excessive temperature rise of the Ox absorbent, it is preferable to perform it in the light load region of the internal combustion engine.

【0016】また本発明においては、前記内燃機関の排
気浄化装置は、排気中の微粒子を一時捕獲可能なフィル
タを備え、前記NOx吸収剤はこのフィルタに担持され
ていてもよい。
Further, in the present invention, the exhaust gas purification apparatus for an internal combustion engine may include a filter capable of temporarily trapping fine particles in exhaust gas, and the NOx absorbent may be carried by this filter.

【0017】このように構成された内燃機関の排気浄化
装置では、NOx吸収剤の昇温中に排気系に燃料添加を
する等の方法により、排気の空燃比を理論空燃比または
リッチとする。前記昇温制御は、例えば内燃機関の燃焼
室での燃料噴射時期を圧縮上死点以降まで遅角させる
か、主噴射の他に膨張行程中または排気行程中において
副噴射をするか、または排気路に燃料を噴射する等の方
法により実施する。これらの制御によって排気温が上昇
し、NOx吸収剤またはこれを担持したフィルタの温度
を上昇させることができる。
In the exhaust gas purifying apparatus for an internal combustion engine configured as described above, the air-fuel ratio of the exhaust gas is set to the stoichiometric air-fuel ratio or rich by a method such as adding fuel to the exhaust system while the temperature of the NOx absorbent is rising. The temperature raising control may be performed, for example, by delaying the fuel injection timing in the combustion chamber of the internal combustion engine until after compression top dead center, by performing auxiliary injection during the expansion stroke or exhaust stroke in addition to the main injection, or by exhausting It is implemented by injecting fuel into the road. By these controls, the exhaust temperature rises, and the temperature of the NOx absorbent or the filter carrying the NOx absorbent can be raised.

【0018】前記の排気の空燃比を低下させるには、排
気路に燃料を噴射する方法、特に排気中の酸素濃度を短
い周期でスパイク的(短時間)に低くする、所謂リッチ
スパイク制御により実行することができる。このリッチ
スパイクは、例えば前記昇温制御中に複数回に分けて実
行することが可能である。
In order to reduce the air-fuel ratio of the exhaust gas, a method of injecting fuel into the exhaust passage, in particular, a so-called rich spike control for reducing the oxygen concentration in the exhaust gas in a short cycle in a spike-like (short time) manner is executed. can do. This rich spike can be executed, for example, a plurality of times during the temperature increase control.

【0019】次に硫黄被毒回復可能な状態になったとき
に空燃比をリッチにすると、NOx吸収剤からの硫黄の
放出がすぐに開始される。これは排気系に内燃機関の燃
料を添加することにより実施することができる。
Next, when the air-fuel ratio is made rich when it becomes possible to recover from sulfur poisoning, the release of sulfur from the NOx absorbent is immediately started. This can be done by adding internal combustion engine fuel to the exhaust system.

【0020】この内燃機関の排気浄化装置では、硫黄被
毒回復制御のために排気系に燃料添加等をしたにもかか
わらず、NOx吸収剤から放出される酸素(O2)により
空燃比がリッチに至らない時間が存在することをほとん
ど解消できる。よって、短時間でのNOx吸収剤の硫黄
被毒回復が可能となる。また短時間での回復が可能なた
め硫黄被毒回復制御を実施できる機会が大幅に増えるこ
とになる。したがって硫黄被毒の程度を減少させること
で、NOx吸収剤の硫黄被毒劣化を抑制できる。
In this exhaust gas purification apparatus for an internal combustion engine, although air is added to the exhaust system for sulfur poisoning recovery control, the air-fuel ratio is rich due to oxygen (O 2 ) released from the NOx absorbent. Most of the time that is not reached can be eliminated. Therefore, it is possible to recover the sulfur poisoning of the NOx absorbent in a short time. In addition, since recovery can be performed in a short time, the chances of implementing sulfur poisoning recovery control will increase significantly. Therefore, by reducing the degree of sulfur poisoning, the sulfur poisoning deterioration of the NOx absorbent can be suppressed.

【0021】[0021]

【発明の実施の形態】以下、本発明に係る内燃機関の排
気浄化装置の具体的な実施態様について図面に基づいて
説明する。ここでは、本発明に係る内燃機関の排気浄化
装置を車両駆動用のディーゼル機関に適用した場合を例
に挙げて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Specific embodiments of an exhaust gas purification apparatus for an internal combustion engine according to the present invention will be described below with reference to the drawings. Here, the case where the exhaust gas purification apparatus for an internal combustion engine according to the present invention is applied to a diesel engine for driving a vehicle will be described as an example.

【0022】図1は、本実施の形態に係る排気浄化装置
を適用するエンジン1とその吸排気系の概略構成を示す
図である。
FIG. 1 is a diagram showing a schematic configuration of an engine 1 and an intake / exhaust system for the engine 1 to which an exhaust purification system according to the present embodiment is applied.

【0023】図1に示すエンジン1は、4つの気筒2を
有する水冷式の4サイクル・ディーゼル機関である。
The engine 1 shown in FIG. 1 is a water-cooled four-cycle diesel engine having four cylinders 2.

【0024】エンジン1は、各気筒2の燃焼室に直接燃
料を噴射する燃料噴射弁3を備えている。各燃料噴射弁
3は、燃料を所定圧まで蓄圧する蓄圧室(コモンレー
ル)4と接続されている。このコモンレール4には、こ
のコモンレール4内の燃料の圧力に対応した電気信号を
出力するコモンレール圧センサ4aが取り付けられてい
る。
The engine 1 has a fuel injection valve 3 for injecting fuel directly into the combustion chamber of each cylinder 2. Each fuel injection valve 3 is connected to a pressure accumulator (common rail) 4 that accumulates fuel to a predetermined pressure. A common rail pressure sensor 4a that outputs an electric signal corresponding to the pressure of the fuel in the common rail 4 is attached to the common rail 4.

【0025】前記コモンレール4は、燃料供給管5を介
して燃料ポンプ6と連通している。この燃料ポンプ6
は、エンジン1の出力軸(クランクシャフト)の回転ト
ルクを駆動源として作動するポンプであり、この燃料ポ
ンプ6の入力軸に取り付けられたポンププーリ6aがエ
ンジン1の出力軸(クランクシャフト)に取り付けられ
たクランクプーリ1aとベルト7を介して連結されてい
る。
The common rail 4 communicates with a fuel pump 6 via a fuel supply pipe 5. This fuel pump 6
Is a pump that operates using the rotational torque of the output shaft (crankshaft) of the engine 1 as a drive source. A pump pulley 6a attached to the input shaft of the fuel pump 6 is attached to the output shaft (crankshaft) of the engine 1. The crank pulley 1a is connected to the crank pulley 1a via a belt 7.

【0026】このように構成された燃料噴射系では、ク
ランクシャフトの回転トルクが燃料ポンプ6の入力軸へ
伝達されると、燃料ポンプ6は、クランクシャフトから
この燃料ポンプ6の入力軸へ伝達された回転トルクに応
じた圧力で燃料を吐出する。
In the fuel injection system thus constructed, when the rotational torque of the crankshaft is transmitted to the input shaft of the fuel pump 6, the fuel pump 6 is transmitted from the crankshaft to the input shaft of the fuel pump 6. The fuel is discharged at a pressure according to the rotating torque.

【0027】前記燃料ポンプ6から吐出された燃料は、
燃料供給管5を介してコモンレール4へ供給され、コモ
ンレール4にて所定圧まで蓄圧されて各気筒2の燃料噴
射弁3へ分配される。そして、燃料噴射弁3に駆動電流
が印加されると、燃料噴射弁3が開弁し、その結果、燃
料噴射弁3から気筒2内へ燃料が噴射される。
The fuel discharged from the fuel pump 6 is
It is supplied to the common rail 4 through the fuel supply pipe 5, accumulated in the common rail 4 up to a predetermined pressure, and distributed to the fuel injection valve 3 of each cylinder 2. When a drive current is applied to the fuel injection valve 3, the fuel injection valve 3 opens, and as a result, fuel is injected from the fuel injection valve 3 into the cylinder 2.

【0028】次に、エンジン1には、吸気枝管8が接続
されており、吸気枝管8の各枝管は、各気筒2の燃焼室
と吸気ポート(図示省略)を介して連通している。
Next, an intake branch pipe 8 is connected to the engine 1, and each branch pipe of the intake branch pipe 8 communicates with a combustion chamber of each cylinder 2 through an intake port (not shown). There is.

【0029】前記吸気枝管8は、吸気管9に接続され、
この吸気管9は、エアクリーナボックス10に接続され
ている。前記エアクリーナボックス10より下流の吸気
管9には、この吸気管9内を流通する吸気の質量に対応
した電気信号を出力するエアフローメータ11と、この
吸気管9内を流通する吸気の温度に対応した電気信号を
出力する吸気温度センサ12とが取り付けられている。
The intake branch pipe 8 is connected to the intake pipe 9,
The intake pipe 9 is connected to the air cleaner box 10. An air flow meter 11 that outputs an electric signal corresponding to the mass of the intake air flowing through the intake pipe 9 to the intake pipe 9 downstream of the air cleaner box 10 and a temperature of the intake air flowing through the intake pipe 9 are provided. The intake air temperature sensor 12 that outputs the electric signal is attached.

【0030】前記吸気管9における吸気枝管8の直上流
に位置する部位には、この吸気管9内を流通する吸気の
流量を調節する吸気絞り弁13が設けられている。この
吸気絞り弁13には、ステップモータ等で構成されてこ
の吸気絞り弁13を開閉駆動する吸気絞り用アクチュエ
ータ14が取り付けられている。
An intake throttle valve 13 for adjusting the flow rate of intake air flowing through the intake pipe 9 is provided at a portion of the intake pipe 9 located immediately upstream of the intake branch pipe 8. The intake throttle valve 13 is provided with an intake throttle actuator 14 configured by a step motor or the like to open and close the intake throttle valve 13.

【0031】前記エアフローメータ11と前記吸気絞り
弁13との間に位置する吸気管9には、排気の熱エネル
ギを駆動源として作動する遠心過給機(ターボチャージ
ャ)15のコンプレッサハウジング15aが設けられ、
コンプレッサハウジング15aより下流の吸気管9に
は、前記コンプレッサハウジング15a内で圧縮されて
高温となった吸気を冷却するためのインタークーラ16
が設けられている。
The intake pipe 9 located between the air flow meter 11 and the intake throttle valve 13 is provided with a compressor housing 15a of a centrifugal supercharger (turbocharger) 15 which operates by using heat energy of exhaust gas as a drive source. The
An intercooler 16 for cooling the intake air that has become hot due to being compressed in the compressor housing 15a is provided in the intake pipe 9 downstream of the compressor housing 15a.
Is provided.

【0032】このように構成された吸気系では、エアク
リーナボックス10に流入した吸気は、このエアクリー
ナボックス10内のエアクリーナ(図示省略)によって
吸気中の塵や埃等が除去された後、吸気管9を介してコ
ンプレッサハウジング15aに流入する。
In the intake system configured as described above, the intake air flowing into the air cleaner box 10 is cleaned by the air cleaner (not shown) in the air cleaner box 10 to remove dust and dirt from the intake air, and then the intake pipe 9 Through the compressor housing 15a.

【0033】コンプレッサハウジング15aに流入した
吸気は、このコンプレッサハウジング15aに内装され
たコンプレッサホイールの回転によって圧縮される。前
記コンプレッサハウジング15a内で圧縮されて高温と
なった吸気は、インタークーラ16にて冷却された後、
必要に応じて吸気絞り弁13によって流量を調節されて
吸気枝管8に流入する。吸気枝管8に流入した吸気は、
各枝管を介して各気筒2の燃焼室へ分配され、各気筒2
の燃料噴射弁3から噴射された燃料を着火源として燃焼
される。
The intake air flowing into the compressor housing 15a is compressed by the rotation of the compressor wheel installed in the compressor housing 15a. The intake air that has been compressed in the compressor housing 15a and has a high temperature is cooled by the intercooler 16,
If necessary, the flow rate is adjusted by the intake throttle valve 13 and flows into the intake branch pipe 8. The intake air flowing into the intake branch pipe 8 is
It is distributed to the combustion chamber of each cylinder 2 via each branch pipe,
The fuel injected from the fuel injection valve 3 is used as an ignition source for combustion.

【0034】一方、エンジン1には、排気枝管18が接
続され、排気枝管18の各枝管が排気ポート(図示省
略)を介して各気筒2の燃焼室と連通している。
On the other hand, an exhaust branch pipe 18 is connected to the engine 1, and each branch pipe of the exhaust branch pipe 18 communicates with a combustion chamber of each cylinder 2 through an exhaust port (not shown).

【0035】前記排気枝管18は、前記遠心過給機15
のタービンハウジング15bと接続されている。前記タ
ービンハウジング15bは、排気管19と接続され、こ
の排気管19は、下流にてマフラー(図示省略)に接続
されている。
The exhaust branch pipe 18 serves as the centrifugal supercharger 15.
Is connected to the turbine housing 15b. The turbine housing 15b is connected to an exhaust pipe 19, and the exhaust pipe 19 is connected downstream to a muffler (not shown).

【0036】前記排気管19の途中には、吸蔵還元型N
Ox触媒を担持したパティキュレートフィルタ(以下、
単にフィルタという。)20が設けられている。フィル
タ20より上流の排気管19には、この排気管19内を
流通する排気の温度に対応した電気信号を出力する排気
温度センサ24が取り付けられている。
An occlusion reduction type N is provided in the middle of the exhaust pipe 19.
A particulate filter carrying an Ox catalyst (hereinafter,
Simply called a filter. ) 20 are provided. An exhaust temperature sensor 24 that outputs an electric signal corresponding to the temperature of the exhaust gas flowing through the exhaust pipe 19 is attached to the exhaust pipe 19 upstream of the filter 20.

【0037】前記したフィルタ20より下流の排気管1
9には、この排気管19内を流通する排気の流量を調節
する排気絞り弁21が設けられている。この排気絞り弁
21には、ステップモータ等で構成されてこの排気絞り
弁21を開閉駆動する排気絞り用アクチュエータ22が
取り付けられている。
Exhaust pipe 1 downstream of the above-mentioned filter 20
An exhaust throttle valve 21 that adjusts the flow rate of the exhaust gas flowing through the exhaust pipe 19 is provided in the valve 9. The exhaust throttle valve 21 is provided with an exhaust throttle actuator 22 configured by a step motor or the like for opening and closing the exhaust throttle valve 21.

【0038】このように構成された排気系では、エンジ
ン1の各気筒2で燃焼された混合気(既燃ガス)が排気
ポートを介して排気枝管18へ排出され、次いで排気枝
管18から遠心過給機15のタービンハウジング15b
へ流入する。タービンハウジング15bに流入した排気
は、この排気が持つ熱エネルギを利用してタービンハウ
ジング15b内に回転自在に支持されたタービンホイー
ルを回転させる。その際、タービンホイールの回転トル
クは、前述したコンプレッサハウジング15aのコンプ
レッサホイールへ伝達される。
In the exhaust system configured as described above, the air-fuel mixture (burnt gas) burned in each cylinder 2 of the engine 1 is discharged to the exhaust branch pipe 18 through the exhaust port, and then from the exhaust branch pipe 18. Turbine housing 15b of centrifugal supercharger 15
Flow into. The exhaust gas flowing into the turbine housing 15b uses the thermal energy of the exhaust gas to rotate the turbine wheel rotatably supported in the turbine housing 15b. At that time, the rotational torque of the turbine wheel is transmitted to the compressor wheel of the compressor housing 15a described above.

【0039】前記タービンハウジング15bから排出さ
れた排気は、排気管19を介してフィルタ20へ流入
し、排気中のPMが捕集され、かつ有害ガス成分が除去
または浄化される。フィルタ20にてPMを捕集され、
かつ有害ガス成分を除去または浄化された排気は、必要
に応じて排気絞り弁21によって流量を調節された後に
マフラーを介して大気中に放出される。
The exhaust gas discharged from the turbine housing 15b flows into the filter 20 through the exhaust pipe 19, PM in the exhaust gas is collected, and harmful gas components are removed or purified. PM is collected by the filter 20,
The exhaust gas from which harmful gas components have been removed or purified is discharged into the atmosphere via the muffler after the flow rate is adjusted by the exhaust throttle valve 21 as necessary.

【0040】また、排気枝管18と吸気枝管8とは、排
気枝管18内を流通する排気の一部を吸気枝管8へ再循
環させる排気再循環通路(以下、EGR通路とする。)
25を介して連通されている。このEGR通路25の途
中には、電磁弁などで構成され、印加電力の大きさに応
じて前記EGR通路25内を流通する排気(以下、EG
Rガスとする。)の流量を変更する流量調整弁(以下、
EGR弁とする。)26が設けられている。
The exhaust branch pipe 18 and the intake branch pipe 8 are exhaust gas recirculation passages (hereinafter referred to as EGR passages) for recirculating a part of the exhaust gas flowing in the exhaust branch pipe 18 to the intake branch pipe 8. )
25 are communicated with each other. In the middle of the EGR passage 25, an exhaust valve (hereinafter, referred to as EG, which is composed of a solenoid valve or the like, flows through the EGR passage 25 according to the magnitude of the applied power.
R gas. ) Flow rate adjustment valve (hereinafter,
Use EGR valve. ) 26 are provided.

【0041】前記EGR通路25の途中でEGR弁26
より上流には、このEGR通路25内を流通するEGR
ガスを冷却するEGRクーラ27が設けられている。前
記EGRクーラ27には、冷却水通路(図示省略)が設
けられエンジン1を冷却するための冷却水の一部が循環
する。
In the middle of the EGR passage 25, the EGR valve 26
Further upstream, the EGR flowing in the EGR passage 25
An EGR cooler 27 that cools the gas is provided. A cooling water passage (not shown) is provided in the EGR cooler 27, and a part of the cooling water for cooling the engine 1 circulates.

【0042】このように構成された排気再循環機構で
は、EGR弁26が開弁されると、EGR通路25が導
通状態となり、排気枝管18内を流通する排気の一部が
前記EGR通路25へ流入し、EGRクーラ27を経て
吸気枝管8へ導かれる。
In the exhaust gas recirculation mechanism thus constructed, when the EGR valve 26 is opened, the EGR passage 25 becomes conductive, and a part of the exhaust gas flowing through the exhaust branch pipe 18 is part of the EGR passage 25. To the intake branch pipe 8 via the EGR cooler 27.

【0043】その際、EGRクーラ27では、EGR通
路25内を流通するEGRガスとエンジン1の冷却水と
の間で熱交換が行われ、EGRガスが冷却される。
At this time, in the EGR cooler 27, heat exchange is performed between the EGR gas flowing in the EGR passage 25 and the cooling water of the engine 1 to cool the EGR gas.

【0044】EGR通路25を介して排気枝管18から
吸気枝管8へ還流されたEGRガスは、吸気枝管8の上
流から流れてきた新気と混ざり合いつつ各気筒2の燃焼
室へ導かれる。
The EGR gas recirculated from the exhaust branch pipe 18 to the intake branch pipe 8 through the EGR passage 25 is introduced into the combustion chamber of each cylinder 2 while being mixed with the fresh air flowing from the upstream side of the intake branch pipe 8. Get burned.

【0045】ここで、EGRガスには、水(H2O)や
二酸化炭素(CO2)などのように、自らが燃焼するこ
とがなく、且つ、熱容量が高い不活性ガス成分が含まれ
ているため、EGRガスが混合気中に含有されると、混
合気の燃焼温度が低められ、以て窒素酸化物(NOx)
の発生量が抑制される。
Here, the EGR gas contains an inert gas component such as water (H 2 O) and carbon dioxide (CO 2 ) that does not burn by itself and has a high heat capacity. Therefore, when EGR gas is contained in the air-fuel mixture, the combustion temperature of the air-fuel mixture is lowered, and thus nitrogen oxide (NOx)
Is suppressed.

【0046】更に、EGRクーラ27においてEGRガ
スが冷却されると、EGRガス自体の温度が低下すると
ともにEGRガスの体積が縮小されるため、EGRガス
が燃焼室内に供給されたときにこの燃焼室内の雰囲気温
度が不要に上昇することがなくなるとともに、燃焼室内
に供給される新気の量(新気の体積)が不要に減少する
こともない。
Further, when the EGR gas is cooled in the EGR cooler 27, the temperature of the EGR gas itself is lowered and the volume of the EGR gas is reduced, so that when the EGR gas is supplied into the combustion chamber, the EGR gas is reduced. The ambient temperature of 1 is not unnecessarily increased, and the amount of fresh air (volume of fresh air) supplied into the combustion chamber is not unnecessarily reduced.

【0047】次に、本実施の形態に係るフィルタ20に
ついて説明する。
Next, the filter 20 according to this embodiment will be described.

【0048】図2は、フィルタ20の断面図である。図
2(A)は、フィルタ20の横方向断面を示す図であ
る。図2(B)は、フィルタ20の縦方向断面を示す図
である。
FIG. 2 is a sectional view of the filter 20. FIG. 2A is a view showing a cross section in the lateral direction of the filter 20. FIG. 2B is a diagram showing a vertical cross section of the filter 20.

【0049】図2(A)及び(B)に示されるようにフ
ィルタ20は、互いに平行をなして延びる複数個の排気
流通路50、51を具備するいわゆるウォールフロー型
である。これら排気流通路は下流端が栓52により閉塞
された排気流入通路50と、上流端が栓53により閉塞
された排気流出通路51とにより構成される。なお、図
2(A)においてハッチングを付した部分は栓53を示
している。従って、排気流入通路50および排気流出通
路51は薄肉の隔壁54を介して交互に配置される。換
言すると排気流入通路50および排気流出通路51は各
排気流入通路50が4つの排気流出通路51によって包
囲され、各排気流出通路51が4つの排気流入通路50
によって包囲されるように配置される。
As shown in FIGS. 2A and 2B, the filter 20 is of a so-called wall flow type having a plurality of exhaust flow passages 50 and 51 extending in parallel with each other. These exhaust flow passages are composed of an exhaust inflow passage 50 whose downstream end is closed by a plug 52 and an exhaust outflow passage 51 whose upstream end is closed by a plug 53. The hatched portion in FIG. 2A indicates the plug 53. Therefore, the exhaust inflow passages 50 and the exhaust outflow passages 51 are alternately arranged via the thin partition walls 54. In other words, in the exhaust inflow passage 50 and the exhaust outflow passage 51, each exhaust inflow passage 50 is surrounded by four exhaust outflow passages 51, and each exhaust outflow passage 51 includes four exhaust inflow passages 50.
It is arranged to be surrounded by.

【0050】フィルタ20は例えばコージェライトのよ
うな多孔質材料から形成されており、従って排気流入通
路50内に流入した排気は図2(B)において矢印で示
されるように周囲の隔壁54内を通って隣接する排気流
出通路51内に流出する。
The filter 20 is made of, for example, a porous material such as cordierite, so that the exhaust gas flowing into the exhaust gas inflow passage 50 flows in the surrounding partition wall 54 as shown by the arrow in FIG. 2B. It flows out into the adjacent exhaust outflow passage 51.

【0051】本発明による実施例では各排気流入通路5
0および各排気流出通路51の周壁面、即ち各隔壁54
の両側表面上および隔壁54内の細孔内壁面上には例え
ばアルミナからなる担体の層が形成されており、この担
体上に吸蔵還元型NOx触媒が坦持されている。
In the embodiment according to the present invention, each exhaust inflow passage 5
0 and the peripheral wall surface of each exhaust outflow passage 51, that is, each partition wall 54
A carrier layer made of, for example, alumina is formed on both side surfaces of the above and on the inner wall surface of the pores in the partition wall 54, and the occlusion reduction type NOx catalyst is carried on this carrier.

【0052】次に、本実施の形態に係るフィルタ20に
担持された吸蔵還元型NOx触媒の機能について説明す
る。
Next, the function of the NOx storage reduction catalyst carried by the filter 20 according to this embodiment will be described.

【0053】フィルタ20は、例えば、アルミナを担体
とし、その担体上に、カリウム(K)、ナトリウム(N
a)、リチウム(Li)、もしくはセシウム(Cs)等
のアルカリ金属と、バリウム(Ba)もしくはカルシウ
ム(Ca)等のアルカリ土類と、ランタン(La)もし
くはイットリウム(Y)等の希土類とから選択された少
なくとも1つと、白金(Pt)等の貴金属とを担持して
構成されている。尚、本実施の形態では、アルミナから
なる担体上にバリウム(Ba)と白金(Pt)を担持
し、これにO2ストレージ能力のあるセリア(Ce
23)を添加して構成される吸蔵還元型NOx触媒が採
用されている。
The filter 20 uses, for example, alumina as a carrier, and potassium (K) and sodium (N) are deposited on the carrier.
a), an alkali metal such as lithium (Li) or cesium (Cs), an alkaline earth such as barium (Ba) or calcium (Ca), and a rare earth such as lanthanum (La) or yttrium (Y). And at least one of them is carried and a noble metal such as platinum (Pt). In the present embodiment, barium (Ba) and platinum (Pt) are supported on a carrier made of alumina, and ceria (Ce) having an O 2 storage capacity is supported on the carrier.
A NOx storage reduction catalyst formed by adding 2 O 3 ) is used.

【0054】このようなNOx触媒は、このNOx触媒に
流入する排気の酸素濃度が高いときは排気中の窒素酸化
物(NOx)を吸収する。
Such a NOx catalyst absorbs nitrogen oxides (NOx) in the exhaust gas when the oxygen concentration of the exhaust gas flowing into the NOx catalyst is high.

【0055】一方、NOx触媒は、このNOx触媒に流入
する排気の酸素濃度が低下したときは吸収していた窒素
酸化物(NOx)を放出する。その際、排気中に炭化水
素(HC)や一酸化炭素(CO)等の還元成分が存在し
ていれば、NOx触媒は、このNOx触媒から放出された
窒素酸化物(NOx)を窒素(N2)に還元せしめること
ができる。
On the other hand, the NOx catalyst releases the nitrogen oxide (NOx) absorbed when the oxygen concentration of the exhaust gas flowing into the NOx catalyst decreases. At that time, if a reducing component such as hydrocarbon (HC) or carbon monoxide (CO) exists in the exhaust gas, the NOx catalyst converts the nitrogen oxide (NOx) released from the NOx catalyst into nitrogen (N). It can be reduced to 2 ).

【0056】ところで、エンジン1が希薄燃焼運転され
ている場合は、エンジン1から排出される排気の空燃比
がリーン雰囲気となり排気の酸素濃度が高くなるため、
排気中に含まれる窒素酸化物(NOx)がNOx触媒に吸
収されることになるが、エンジン1の希薄燃焼運転が長
期間継続されると、NOx触媒のNOx吸収能力が飽和
し、排気中の窒素酸化物(NOx)がNOx触媒にて除去
されずに排気中に残存する。
By the way, when the engine 1 is in the lean burn operation, the air-fuel ratio of the exhaust gas discharged from the engine 1 becomes a lean atmosphere and the oxygen concentration of the exhaust gas becomes high.
Nitrogen oxides (NOx) contained in the exhaust gas will be absorbed by the NOx catalyst, but if the lean burn operation of the engine 1 is continued for a long period of time, the NOx absorption capacity of the NOx catalyst will be saturated, and Nitrogen oxides (NOx) remain in the exhaust gas without being removed by the NOx catalyst.

【0057】特に、ディーゼル機関であるエンジン1で
は、大部分の運転領域においてリーン空燃比の混合気が
燃焼され、それに応じて大部分の運転領域において排気
の空燃比がリーン空燃比となるため、NOx触媒のNOx
吸収能力が飽和し易い。
In particular, in the engine 1 which is a diesel engine, the lean air-fuel ratio mixture is burned in most operating regions, and the air-fuel ratio of the exhaust gas becomes lean air-fuel ratio in most operating regions accordingly. NOx of NOx catalyst
Absorption capacity is easily saturated.

【0058】従って、エンジン1が希薄燃焼運転されて
いる場合は、NOx触媒のNOx吸収能力が飽和する前に
NOx触媒に流入する排気中の酸素濃度を低下させると
ともに還元剤の濃度を高め、NOx触媒に吸収された窒
素酸化物(NOx)を放出及び還元させる必要がある。
Therefore, when the engine 1 is in the lean burn operation, the concentration of oxygen in the exhaust flowing into the NOx catalyst is reduced and the concentration of the reducing agent is increased before the NOx absorption capacity of the NOx catalyst is saturated, and the NOx concentration is increased. It is necessary to release and reduce nitrogen oxides (NOx) absorbed by the catalyst.

【0059】このように酸素濃度を低下させる方法とし
ては、排気中の燃料添加や、前記した低温燃焼、気筒2
内への燃料噴射時期や回数の変更等の方法が考えられる
が、本実施の形態では、フィルタ20より上流の排気管
19を流通する排気中に還元剤たる燃料(軽油)を添加
する還元剤供給機構を備え、この還元剤供給機構から排
気中へ燃料を添加することにより、フィルタ20に流入
する排気の酸素濃度を低下させるとともに還元剤の濃度
を高めるようにしている。
As a method of lowering the oxygen concentration in this way, fuel addition in the exhaust gas, low temperature combustion as described above, and the cylinder 2
A method of changing the fuel injection timing into the inside or the number of times may be considered, but in the present embodiment, a reducing agent that adds fuel (light oil) as a reducing agent to the exhaust gas flowing through the exhaust pipe 19 upstream of the filter 20. A supply mechanism is provided, and by adding fuel from the reducing agent supply mechanism into the exhaust gas, the oxygen concentration of the exhaust gas flowing into the filter 20 is reduced and the concentration of the reducing agent is increased.

【0060】還元剤供給機構は、図1に示されるよう
に、その噴孔が排気枝管18内に臨むように取り付けら
れ、ECU35からの信号により開弁して燃料を噴射す
る還元剤噴射弁28と、前述した燃料ポンプ6から吐出
された燃料を前記還元剤噴射弁28へ導く還元剤供給路
29と、還元剤供給路29に設けられてこの還元剤供給
路29内の燃料の流通を遮断する遮断弁31と、を備え
ている。
As shown in FIG. 1, the reducing agent supply mechanism is installed so that its injection hole faces the inside of the exhaust branch pipe 18, and is opened by a signal from the ECU 35 to inject fuel. 28, a reducing agent supply path 29 for guiding the fuel discharged from the fuel pump 6 to the reducing agent injection valve 28, and a distribution of the fuel in the reducing agent supply path 29 provided in the reducing agent supply path 29. And a shutoff valve 31 for shutting off.

【0061】このような還元剤供給機構では、燃料ポン
プ6から吐出された高圧の燃料が還元剤供給路29を介
して還元剤噴射弁28へ印加される。そして、ECU3
5からの信号によりこの還元剤噴射弁28が開弁して排
気枝管18内へ還元剤としての燃料が噴射される。
In such a reducing agent supply mechanism, the high-pressure fuel discharged from the fuel pump 6 is applied to the reducing agent injection valve 28 via the reducing agent supply passage 29. And ECU3
The reducing agent injection valve 28 is opened by a signal from 5 and fuel as a reducing agent is injected into the exhaust branch pipe 18.

【0062】還元剤噴射弁28から排気枝管18内へ噴
射された還元剤は、排気枝管18の上流から流れてきた
排気の酸素濃度を低下させる。
The reducing agent injected from the reducing agent injection valve 28 into the exhaust branch pipe 18 reduces the oxygen concentration of the exhaust gas flowing from the upstream side of the exhaust branch pipe 18.

【0063】このようにして形成された酸素濃度の低い
排気はフィルタ20に流入し、フィルタ20に吸収され
ていた窒素酸化物(NOx)を放出させつつ窒素(N2
に還元することになる。
The exhaust gas having a low oxygen concentration formed in this way flows into the filter 20 and releases nitrogen oxides (NOx) absorbed by the filter 20 while releasing nitrogen (N 2 ).
Will be reduced to.

【0064】その後、ECU35からの信号により還元
剤噴射弁28が閉弁し、排気枝管18内への還元剤の添
加が停止されることになる。
After that, the reducing agent injection valve 28 is closed by a signal from the ECU 35, and the addition of the reducing agent into the exhaust branch pipe 18 is stopped.

【0065】尚、本実施の形態では、排気中に燃料を噴
射して燃料添加を行っているが、これに替えて、再循環
するEGRガス量を増大させて煤の発生量が増加して最
大となった後に、更にEGRガス量を増大させる低温燃
焼を行っても良く、また、エンジン1の膨張行程や排気
行程等に燃料噴射弁3から燃料を噴射させても良い。
In the present embodiment, the fuel is injected into the exhaust gas to add the fuel, but instead of this, the amount of recirculated EGR gas is increased to increase the amount of soot generated. After reaching the maximum, low temperature combustion may be performed to further increase the EGR gas amount, and fuel may be injected from the fuel injection valve 3 in the expansion stroke, exhaust stroke, etc. of the engine 1.

【0066】以上述べたように構成されたエンジン1に
は、このエンジン1を制御するための電子制御ユニット
(ECU:Electronic Control Unit)35が併設され
ている。このECU35は、エンジン1の運転条件や運
転者の要求に応じてエンジン1の運転状態を制御するユ
ニットである。
The engine 1 configured as described above is provided with an electronic control unit (ECU: Electronic Control Unit) 35 for controlling the engine 1. The ECU 35 is a unit that controls the operating state of the engine 1 in accordance with the operating conditions of the engine 1 and the driver's request.

【0067】ECU35には、コモンレール圧センサ4
a、エアフローメータ11、吸気温度センサ12、吸気
管圧力センサ17、排気温度センサ24、クランクポジ
ションセンサ33、水温センサ34、アクセル開度セン
サ36等の各種センサが電気配線を介して接続され、上
記した各種センサの出力信号がECU35に入力される
ようになっている。
The ECU 35 includes the common rail pressure sensor 4
a, an air flow meter 11, an intake air temperature sensor 12, an intake pipe pressure sensor 17, an exhaust gas temperature sensor 24, a crank position sensor 33, a water temperature sensor 34, an accelerator opening sensor 36, and other various sensors are connected via electrical wiring. Output signals of the various sensors are input to the ECU 35.

【0068】一方、ECU35には、燃料噴射弁3、吸
気絞り用アクチュエータ14、排気絞り用アクチュエー
タ22、還元剤噴射弁28、EGR弁26、遮断弁31
等が電気配線を介して接続され、上記した各部をECU
35が制御することが可能になっている。
On the other hand, the ECU 35 has a fuel injection valve 3, an intake throttle actuator 14, an exhaust throttle actuator 22, a reducing agent injection valve 28, an EGR valve 26, and a shutoff valve 31.
Etc. are connected via electrical wiring, and the above-mentioned parts are connected to the ECU.
35 can be controlled.

【0069】ここで、ECU35は、図3に示すよう
に、双方向性バス350によって相互に接続された、C
PU351と、ROM352と、RAM353と、バッ
クアップRAM354と、入力ポート356と、出力ポ
ート357とを備えるとともに、前記入力ポート356
に接続されたA/Dコンバータ(A/D)355を備え
ている。
Here, the ECU 35, as shown in FIG. 3, is connected to each other by a bidirectional bus 350, C,
The input port 356 includes a PU 351, a ROM 352, a RAM 353, a backup RAM 354, an input port 356, and an output port 357.
And an A / D converter (A / D) 355 connected to.

【0070】前記入力ポート356は、クランクポジシ
ョンセンサ33のようにデジタル信号形式の信号を出力
するセンサの出力信号を入力し、それらの出力信号をC
PU351やRAM353へ送信する。
The input port 356 inputs the output signals of a sensor that outputs a digital signal format signal such as the crank position sensor 33, and outputs those output signals to C
It is transmitted to the PU 351 and the RAM 353.

【0071】前記入力ポート356は、コモンレール圧
センサ4a、エアフローメータ11、吸気温度センサ1
2、吸気管圧力センサ17、排気温度センサ24、水温
センサ34、アクセル開度センサ36等のように、アナ
ログ信号形式の信号を出力するセンサのA/D355を
介して入力し、それらの出力信号をCPU351やRA
M353へ送信する。
The input port 356 is used for the common rail pressure sensor 4a, the air flow meter 11, and the intake air temperature sensor 1.
2, such as the intake pipe pressure sensor 17, the exhaust gas temperature sensor 24, the water temperature sensor 34, the accelerator opening sensor 36, etc., which are input through the A / D 355 of a sensor that outputs a signal in an analog signal format, and output signals thereof CPU351 and RA
Send to M353.

【0072】前記出力ポート357は、燃料噴射弁3、
吸気絞り用アクチュエータ14、排気絞り用アクチュエ
ータ22、EGR弁26、還元剤噴射弁28、遮断弁3
1等と電気配線を介して接続され、CPU351から出
力される制御信号を、前記した燃料噴射弁3、吸気絞り
用アクチュエータ14、排気絞り用アクチュエータ2
2、EGR弁26、還元剤噴射弁28、あるいは遮断弁
31へ送信する。
The output port 357 is connected to the fuel injection valve 3,
Intake throttle actuator 14, exhaust throttle actuator 22, EGR valve 26, reducing agent injection valve 28, shutoff valve 3
1 and the like via electric wiring, and outputs control signals output from the CPU 351 to the fuel injection valve 3, the intake throttle actuator 14, the exhaust throttle actuator 2 described above.
2, to the EGR valve 26, the reducing agent injection valve 28, or the shutoff valve 31.

【0073】前記ROM352は燃料噴射弁3を制御す
るための燃料噴射制御ルーチン、吸気絞り弁13を制御
するための吸気絞り制御ルーチン、排気絞り弁21を制
御するための排気絞り制御ルーチン、EGR弁26を制
御するためのEGR制御ルーチン、フィルタ20に還元
剤を添加して吸収されたNOxを放出させるNOx浄化制
御ルーチン、フィルタ20のSOx被毒を解消する被毒
解消制御ルーチン、フィルタ20に捕集されたPMを燃
焼除去するためのPM燃焼制御ルーチン等のアプリケー
ションプログラムを記憶している。
The ROM 352 includes a fuel injection control routine for controlling the fuel injection valve 3, an intake throttle control routine for controlling the intake throttle valve 13, an exhaust throttle control routine for controlling the exhaust throttle valve 21, and an EGR valve. 26, an EGR control routine for controlling 26, a NOx purification control routine for adding a reducing agent to the filter 20 to release the absorbed NOx, a poisoning elimination control routine for eliminating SOx poisoning of the filter 20, and a trap for the filter 20. An application program such as a PM combustion control routine for burning and removing the collected PM is stored.

【0074】前記ROM352は、上記したアプリケー
ションプログラムに加え、各種の制御マップを記憶して
いる。前記制御マップは、例えば、エンジン1の運転状
態と基本燃料噴射量(基本燃料噴射時間)との関係を示
す燃料噴射量制御マップ、エンジン1の運転状態と基本
燃料噴射時期との関係を示す燃料噴射時期制御マップ、
エンジン1の運転状態と吸気絞り弁13の目標開度との
関係を示す吸気絞り弁開度制御マップ、エンジン1の運
転状態と排気絞り弁21の目標開度との関係を示す排気
絞り弁開度制御マップ、エンジン1の運転状態とEGR
弁26の目標開度との関係を示すEGR弁開度制御マッ
プ、エンジン1の運転状態と還元剤の目標添加量(若し
くは排気の目標空燃比)との関係を示す還元剤添加量制
御マップ、還元剤の目標添加量と還元剤噴射弁28の開
弁時間との関係を示す還元剤噴射弁制御マップ等であ
る。
The ROM 352 stores various control maps in addition to the above application programs. The control map is, for example, a fuel injection amount control map showing the relationship between the operating state of the engine 1 and the basic fuel injection amount (basic fuel injection time), and the fuel showing the relationship between the operating state of the engine 1 and the basic fuel injection timing. Injection timing control map,
An intake throttle valve opening control map showing the relationship between the operating state of the engine 1 and the target opening degree of the intake throttle valve 13, and an exhaust throttle valve opening map showing the relationship between the operating state of the engine 1 and the target opening degree of the exhaust throttle valve 21. Control map, engine 1 operating status and EGR
An EGR valve opening control map showing the relationship with the target opening of the valve 26, a reducing agent addition control map showing the relationship between the operating state of the engine 1 and the target addition of the reducing agent (or the target air-fuel ratio of the exhaust gas), It is a reducing agent injection valve control map and the like showing the relationship between the target addition amount of the reducing agent and the valve opening time of the reducing agent injection valve 28.

【0075】前記RAM353は、各センサからの出力
信号やCPU351の演算結果等を格納する。前記演算
結果は、例えば、クランクポジションセンサ33がパル
ス信号を出力する時間的な間隔に基づいて算出される機
関回転数である。これらのデータは、クランクポジショ
ンセンサ33がパルス信号を出力する都度、最新のデー
タに書き換えられる。
The RAM 353 stores the output signal from each sensor, the calculation result of the CPU 351 and the like. The calculation result is, for example, the engine speed calculated based on the time interval at which the crank position sensor 33 outputs a pulse signal. These data are rewritten to the latest data each time the crank position sensor 33 outputs a pulse signal.

【0076】前記バックアップRAM354は、エンジ
ン1の運転停止後もデータを記憶可能な不揮発性のメモ
リである。
The backup RAM 354 is a non-volatile memory capable of storing data even after the operation of the engine 1 is stopped.

【0077】前記CPU351は、前記ROM352に
記憶されたアプリケーションプログラムに従って動作し
て、燃料噴射弁制御、吸気絞り制御、排気絞り制御、E
GR制御、NOx浄化制御、被毒解消制御、PM燃焼制
御等を実行する。
The CPU 351 operates according to the application program stored in the ROM 352 to control the fuel injection valve, the intake throttle control, the exhaust throttle control, and the E throttle control.
GR control, NOx purification control, poisoning elimination control, PM combustion control, etc. are executed.

【0078】例えば、NOx浄化制御では、CPU35
1は、フィルタ20に流入する排気中の酸素濃度を比較
的に短い周期でスパイク的(短時間)に低くする、所謂
リッチスパイク制御を実行する。
For example, in the NOx purification control, the CPU 35
1 executes so-called rich spike control in which the oxygen concentration in the exhaust gas flowing into the filter 20 is reduced in a spike-like (short time) manner in a relatively short cycle.

【0079】リッチスパイク制御では、CPU351
は、所定の周期毎にリッチスパイク制御実行条件が成立
しているか否かを判別する。このリッチスパイク制御実
行条件としては、例えば、フィルタ20が活性状態にあ
る、排気温度センサ24の出力信号値(排気温度)が所
定の上限値以下である、被毒解消制御が実行されていな
い、等の条件を例示することができる。
In the rich spike control, the CPU 351
Determines whether the rich spike control execution condition is satisfied every predetermined period. As the rich spike control execution condition, for example, the filter 20 is in an active state, the output signal value (exhaust temperature) of the exhaust temperature sensor 24 is equal to or lower than a predetermined upper limit value, poisoning elimination control is not executed, Examples of such conditions are as follows.

【0080】上記したようなリッチスパイク制御実行条
件が成立していると判定された場合は、CPU351
は、還元剤噴射弁28からスパイク的に還元剤たる燃料
を噴射させるべく当該還元剤噴射弁28を制御すること
により、フィルタ20に流入する排気の空燃比を一時的
に所定の目標リッチ空燃比とする。
When it is determined that the rich spike control execution condition as described above is satisfied, the CPU 351
Controls the reducing agent injection valve 28 so that the reducing agent injection valve 28 injects fuel as the reducing agent in a spike manner to temporarily change the air-fuel ratio of the exhaust gas flowing into the filter 20 to a predetermined target rich air-fuel ratio. And

【0081】具体的には、CPU351は、RAM35
3に記憶されている機関回転数、アクセル開度センサ3
6の出力信号(アクセル開度)、エアフローメータ11
の出力信号値(吸入空気量)、空燃比センサの出力信
号、燃料噴射量等を読み出す。
Specifically, the CPU 351 has the RAM 35.
Engine speed, accelerator opening sensor 3 stored in 3
6 output signal (accelerator opening), air flow meter 11
Output signal value (intake air amount), output signal of the air-fuel ratio sensor, fuel injection amount, and the like.

【0082】CPU351は、前記した機関回転数とア
クセル開度と吸入空気量と燃料噴射量とをパラメータと
してROM352の還元剤添加量制御マップへアクセス
し、排気の空燃比を予め設定された目標空燃比とする上
で必要となる還元剤の添加量(目標添加量)を算出す
る。
The CPU 351 accesses the reducing agent addition amount control map of the ROM 352 by using the engine speed, the accelerator opening, the intake air amount and the fuel injection amount as parameters, and sets the exhaust air-fuel ratio to a preset target air-fuel ratio. The amount of addition of the reducing agent (target amount of addition) required to obtain the fuel ratio is calculated.

【0083】続いて、CPU351は、前記目標添加量
をパラメータとしてROM352の還元剤噴射弁制御マ
ップへアクセスし、還元剤噴射弁28から目標添加量の
還元剤を噴射させる上で必要となる還元剤噴射弁28の
開弁時間(目標開弁時間)を算出する。
Subsequently, the CPU 351 accesses the reducing agent injection valve control map of the ROM 352 using the target addition amount as a parameter, and reduces the reducing agent required to inject the target addition amount of the reducing agent from the reducing agent injection valve 28. The valve opening time (target valve opening time) of the injection valve 28 is calculated.

【0084】還元剤噴射弁28の目標開弁時間が算出さ
れると、CPU351は、還元剤噴射弁28を開弁させ
る。
When the target valve opening time of the reducing agent injection valve 28 is calculated, the CPU 351 opens the reducing agent injection valve 28.

【0085】CPU351は、還元剤噴射弁28を開弁
させた時点から前記目標開弁時間が経過すると、還元剤
噴射弁28を閉弁させる。
The CPU 351 closes the reducing agent injection valve 28 when the target opening time elapses from the time when the reducing agent injection valve 28 is opened.

【0086】このように還元剤噴射弁28が目標開弁時
間だけ開弁されると、目標添加量の燃料が還元剤噴射弁
28から排気枝管18内へ噴射されることになる。そし
て、還元剤噴射弁28から噴射された還元剤は、排気枝
管18の上流から流れてきた排気と混ざり合って目標空
燃比の混合気を形成してフィルタ20に流入する。
When the reducing agent injection valve 28 is opened for the target opening time in this way, the target addition amount of fuel is injected from the reducing agent injection valve 28 into the exhaust branch pipe 18. Then, the reducing agent injected from the reducing agent injection valve 28 mixes with the exhaust gas that has flowed from the upstream side of the exhaust branch pipe 18 to form an air-fuel mixture having a target air-fuel ratio, and then flows into the filter 20.

【0087】この結果、フィルタ20に流入する排気の
空燃比は、比較的に短い周期で酸素濃度が変化すること
になり、以て、フィルタ20が窒素酸化物(NOx)の
吸収と放出・還元とを交互に短周期的に繰り返すことに
なる。
As a result, the air-fuel ratio of the exhaust gas flowing into the filter 20 is such that the oxygen concentration changes in a relatively short cycle, so that the filter 20 absorbs and releases / reduces nitrogen oxides (NOx). And will be repeated alternately in a short cycle.

【0088】次に、被毒解消制御では、CPU351
は、フィルタ20の酸化物による被毒を解消すべく被毒
解消処理を実行することになる。
Next, in the poisoning elimination control, the CPU 351
Performs the poisoning elimination processing to eliminate the poisoning caused by the oxide of the filter 20.

【0089】ここで、エンジン1の燃料には硫黄(S)
が含まれている場合があり、そのような燃料がエンジン
1で燃焼すると、二酸化硫黄(SO2)や三酸化硫黄
(SO3)などの硫黄酸化物(SOx)が生成される。
Here, sulfur (S) is used as the fuel for the engine 1.
When such fuel is burned in the engine 1, sulfur oxides (SOx) such as sulfur dioxide (SO 2 ) and sulfur trioxide (SO 3 ) are generated.

【0090】硫黄酸化物(SOx)は、排気とともにフ
ィルタ20に流入し、窒素酸化物(NOx)と同様のメ
カニズムによってフィルタ20に吸収される。
Sulfur oxide (SOx) flows into the filter 20 together with the exhaust gas and is absorbed by the filter 20 by the same mechanism as nitrogen oxide (NOx).

【0091】具体的には、フィルタ20に流入する排気
の酸素濃度が高いときには、流入排気ガス中の二酸化硫
黄(SO2)や三酸化硫黄(SO3)等の硫黄酸化物(S
Ox)が白金(Pt)の表面上で酸化され、硫酸イオン
(SO4 2-)の形でフィルタ20に吸収される。更に、
フィルタ20に吸収された硫酸イオン(SO4 2-)は、
酸化バリウム(BaO)と結合して硫酸塩(BaS
4)を形成する。
Specifically, when the oxygen concentration of the exhaust gas flowing into the filter 20 is high, the sulfur oxides (S) such as sulfur dioxide (SO 2 ) and sulfur trioxide (SO 3 ) in the inflowing exhaust gas are included.
Ox) is oxidized on the surface of platinum (Pt) and absorbed by the filter 20 in the form of sulfate ions (SO 4 2− ). Furthermore,
The sulfate ions (SO 4 2- ) absorbed by the filter 20 are
Sulfate (BaS) combined with barium oxide (BaO)
O 4 ) is formed.

【0092】ところで、硫酸塩(BaSO4)は、硝酸
バリウム(Ba(NO32)に比して安定していて分解
し難く、フィルタ20に流入する排気の酸素濃度が低く
なっても分解されずにフィルタ20内に残留してしま
う。
By the way, the sulfate (BaSO 4 ) is more stable than barium nitrate (Ba (NO 3 ) 2 ) and hard to decompose, and is decomposed even when the oxygen concentration of the exhaust gas flowing into the filter 20 becomes low. Instead, they remain in the filter 20.

【0093】フィルタ20における硫酸塩(BaS
4)の量が増加すると、それに応じて窒素酸化物(N
Ox)の吸収に関与することができる酸化バリウム(B
aO)の量が減少するため、フィルタ20のNOx吸収
能力が低下する、いわゆる硫黄被毒が発生する。
Sulfate in the filter 20 (BaS
As the amount of O 4 ) increases, the nitrogen oxides (N
Barium oxide (B) which can participate in the absorption of Ox)
Since the amount of aO) decreases, so-called sulfur poisoning occurs in which the NOx absorption capacity of the filter 20 decreases.

【0094】フィルタ20の硫黄被毒を解消する方法と
しては、フィルタ20の雰囲気温度をおよそ600乃至
650℃の高温域まで昇温させるとともに、フィルタ2
0に流入する排気の酸素濃度を低くすることにより、フ
ィルタ20に吸収されている硫酸バリウム(BaS
4)をSO3 -やSO4 -に熱分解し、次いでSO3 -やS
4 -を排気中の炭化水素(HC)や一酸化炭素(CO)
と反応させて気体状のSO2 -に還元する方法を例示する
ことができる。
A method for eliminating sulfur poisoning of the filter 20 and
The ambient temperature of the filter 20 is about 600 to
While raising the temperature to a high temperature range of 650 ° C, the filter 2
By reducing the oxygen concentration of the exhaust gas flowing into
Barium sulfate (BaS) absorbed in the filter 20
OFour) SO3 -And SOFour -Pyrolyzes into SO and then SO3 -And S
OFour -Hydrocarbons (HC) and carbon monoxide (CO) in the exhaust
Gaseous SO by reacting with2 -Exemplifies how to reduce to
be able to.

【0095】そこで、本実施の形態に係る被毒解消処理
では、CPU351は、先ずフィルタ20の床温を高め
る触媒昇温制御を実行した上で、フィルタ20に流入す
る排気の酸素濃度を低くするようにした。
Therefore, in the poisoning elimination process according to the present embodiment, the CPU 351 first executes the catalyst temperature raising control for raising the bed temperature of the filter 20, and then lowers the oxygen concentration of the exhaust gas flowing into the filter 20. I did it.

【0096】触媒昇温制御では、CPU351は、例え
ば、各気筒2の膨張行程時に燃料噴射弁3から副次的に
燃料を噴射させるとともに還元剤噴射弁28から排気中
へ燃料を添加させることにより、それらの未燃燃料成分
をフィルタ20において酸化させ、酸化の際に発生する
熱によってフィルタ20の床温を高めるようにしてもよ
い。
In the catalyst temperature raising control, the CPU 351 may, for example, inject fuel secondarily from the fuel injection valve 3 and add fuel from the reducing agent injection valve 28 to the exhaust during the expansion stroke of each cylinder 2. Alternatively, those unburned fuel components may be oxidized in the filter 20, and the heat generated during the oxidation may raise the bed temperature of the filter 20.

【0097】但し、フィルタ20が過剰に昇温すると、
フィルタ20の熱劣化が誘発される虞があるため、排気
温度センサ24の出力信号値に基づいて副次的な噴射燃
料量及び添加燃料量がフィードバック制御されるように
することが好ましい。
However, if the temperature of the filter 20 rises excessively,
Since the heat deterioration of the filter 20 may be induced, it is preferable that the secondary injection fuel amount and the additional fuel amount be feedback-controlled based on the output signal value of the exhaust temperature sensor 24.

【0098】上記したような触媒昇温処理によりフィル
タ20の床温が600℃乃至650℃程度の高温域まで
上昇すると、CPU351は、フィルタ20に流入する
排気の酸素濃度を低下させるべく還元剤噴射弁28から
燃料を噴射させる。
When the bed temperature of the filter 20 rises to a high temperature range of about 600 ° C. to 650 ° C. by the catalyst temperature raising process as described above, the CPU 351 causes the reducing agent injection to reduce the oxygen concentration of the exhaust gas flowing into the filter 20. Fuel is injected from the valve 28.

【0099】尚、還元剤噴射弁28から過剰な燃料が噴
射されると、それらの燃料がフィルタ20で急激に燃焼
してフィルタ20が過熱し、或いは還元剤噴射弁28か
ら噴射された過剰な燃料によってフィルタ20が不要に
冷却される虞があるため、CPU351は、空燃比セン
サ(図示省略)の出力信号に基づいて還元剤噴射弁28
からの燃料噴射量をフィードバック制御するようにする
ことが好ましい。
When excessive fuel is injected from the reducing agent injection valve 28, those fuels burn rapidly in the filter 20 and the filter 20 overheats, or excessive fuel injected from the reducing agent injection valve 28 is injected. Since the filter 20 may be unnecessarily cooled by the fuel, the CPU 351 controls the reducing agent injection valve 28 based on the output signal of the air-fuel ratio sensor (not shown).
It is preferable to feedback control the fuel injection amount from.

【0100】このように被毒解消処理が実行されると、
フィルタ20の床温が高い状況下で、フィルタ20に流
入する排気の酸素濃度が低くなる。すると、フィルタ2
0に吸収されている硫酸バリウム(BaSO4)がSO3
-やSO4 -に熱分解され、これらSO3 -やSO4 -が排気
中の炭化水素(HC)や一酸化炭素(CO)と反応して
還元されるので、フィルタ20の硫黄被毒が解消され
る。
When the poisoning elimination processing is executed in this way,
When the bed temperature of the filter 20 is high, the oxygen concentration of the exhaust gas flowing into the filter 20 becomes low. Then filter 2
Barium sulphate (BaSO 4 ) absorbed at 0 is SO 3
- and SO 4 - are thermally decomposed, these SO 3 - and SO 4 - so is reduced by reacting with hydrocarbons (HC) and carbon monoxide in the exhaust gas (CO), the filter 20 sulfur poisoning Will be resolved.

【0101】一方、上述したようにフィルタ20には、
2ストレージ能力のあるセリア(Ce23)が含まれ
ており、これはエンジン1の排気中に含まれる微粒子で
あるPM(Particulate Matter)を酸化して浄化するた
めの活性酸素を放出する。しかしながら、排気の酸素濃
度が低下すると上記のセリア(Ce23)等から吸蔵し
ていた酸素(O2)が放出され始めるので、この放出が
継続している間は排気の空燃比をリッチ側になるように
排気系に燃料添加をしても、実際には空燃比がリッチに
なりにくくなる。
On the other hand, as described above, the filter 20 has
It contains ceria (Ce 2 O 3 ) having an O 2 storage capacity, which releases active oxygen for oxidizing and purifying particulate matter PM (Particulate Matter) contained in the exhaust gas of the engine 1. . However, when the oxygen concentration of the exhaust gas decreases, the stored oxygen (O 2 ) begins to be released from the above-mentioned ceria (Ce 2 O 3 ), etc. Therefore, while the release continues, the air-fuel ratio of the exhaust gas becomes Even if fuel is added to the exhaust system so that it is on the side, the air-fuel ratio actually does not easily become rich.

【0102】これは図4に示すように、排気がリーンの
運転状態から、突然にリッチにする制御(燃料添加等)
を実施しても、数十秒間は空燃比が理論空燃比付近に留
まり、直ぐにはリッチに移行しない。そのためNOx触
媒の硫黄被毒回復が十分に行われない場合があるばかり
でなく、図4では、空燃比がリッチに移行し始めるころ
にはフィルタ20の床温が600℃から下降し始めるこ
とになり、さらに硫黄被毒回復が十分でなくなる虞があ
る。
As shown in FIG. 4, this is a control in which the exhaust gas is suddenly made rich from a lean operating state (fuel addition, etc.).
Even if is performed, the air-fuel ratio stays near the stoichiometric air-fuel ratio for several tens of seconds, and does not immediately shift to rich. Therefore, not only may the sulfur poisoning of the NOx catalyst not be sufficiently recovered, but in FIG. 4, the bed temperature of the filter 20 starts to drop from 600 ° C. when the air-fuel ratio starts to shift to rich. Furthermore, there is a possibility that the sulfur poisoning recovery may not be sufficient.

【0103】本実施の形態に係る硫黄被毒回復制御で
は、この制御の実行前に予め次のような制御を実行する
ことで排気の空燃比が素早くリッチに移行するようにし
た。
In the sulfur poisoning recovery control according to the present embodiment, the air-fuel ratio of the exhaust gas is quickly changed to rich by executing the following control before executing this control.

【0104】図5に例示する硫黄被毒回復制御では、フ
ィルタ20の床温を高める触媒昇温制御の実行中にリッ
チスパイクを行っている。リッチスパイクは数回に分け
て実行されるが、このリッチスパイクによって空燃比が
触媒昇温制御中に低下するので、排気が空気過剰なリー
ン空燃比の間にNOx触媒が吸蔵した酸素(O2)が放出
される。したがって硫黄被毒回復制御時には放出される
酸素(O2)がほとんどなくなる。ここでリッチスパイク
の間隔は数秒毎、例えば2.5秒間隔で実行することが
できるが、リッチスパイクの実行形態は特に限定される
ものではない。
In the sulfur poisoning recovery control illustrated in FIG. 5, rich spike is performed during the catalyst temperature raising control for raising the bed temperature of the filter 20. The rich spike is executed several times, but since the air-fuel ratio is lowered during the catalyst temperature increase control by this rich spike, the oxygen (O 2) stored in the NOx catalyst while the exhaust gas is in the lean air-fuel ratio with excess air is used. ) Is released. Therefore, during the sulfur poisoning recovery control, almost no oxygen (O 2 ) is released. Here, the rich spike interval can be executed every few seconds, for example, every 2.5 seconds, but the execution mode of the rich spike is not particularly limited.

【0105】図5の例では、リッチスパイクの実行によ
ってNOx触媒の床温も600℃を下回ることなく保持
されている。またA/Fセンサの出力も排気系への燃料
添加によって素早くリッチ側に移行しており、O2スト
レージ状態はほとんど解消されている。
In the example shown in FIG. 5, the bed temperature of the NOx catalyst is kept below 600 ° C. by executing the rich spike. Further, the output of the A / F sensor also quickly shifts to the rich side by the addition of fuel to the exhaust system, and the O 2 storage state is almost eliminated.

【0106】図6は、フィルタに担時した触媒中に所定
量のセリア(Ce23)を含む場合であって、そのフィ
ルタがリーン雰囲気中にある場合でも、リッチスパイク
を実行することでO2ストレージ時間が短縮されること
を示すものである。
FIG. 6 shows a case in which a predetermined amount of ceria (Ce 2 O 3 ) is contained in the catalyst carried on the filter, and the rich spike is executed even when the filter is in a lean atmosphere. This shows that the O 2 storage time is shortened.

【0107】ここでは触媒1リットルあたりに含まれる
セリア(Ce23)の量により、Ce20g/L(20
g含有)のフィルタ、及びCe6g/L(6g含有)の
フィルタの例が示されている。
Here, depending on the amount of ceria (Ce 2 O 3 ) contained in 1 liter of the catalyst, Ce 20 g / L (20
Examples of filters containing g) and Ce6g / L (containing 6g) are shown.

【0108】横軸は、排気の空燃比がリーンである状態
の継続時間をあらわし、縦軸はO2ストレージ時間、す
なわち排気の酸素濃度が低下した際に、フィルタから酸
素(O2 )が継続的に放出される時間を示す。
The horizontal axis represents the duration of the state where the air-fuel ratio of the exhaust gas is lean, and the vertical axis represents the O 2 storage time, that is, oxygen (O 2 ) continued from the filter when the oxygen concentration of the exhaust gas decreased. The time is shown for a specific release.

【0109】また図中、四角(□)はCe20g/Lの
フィルタの時間経過に伴うO2ストレージ時間の変化を
示し、三角(△)は、同様にCe6g/Lのフィルタの
場合の変化を示している。また、細線はCe20g/L
のフィルタ、太線はCe6g/Lのフィルタのそれぞれ
のO2ストレージ時間の推移の平均をあらわす。
Further, in the figure, a square (□) shows a change in O 2 storage time with the passage of time of the Ce 20 g / L filter, and a triangle (△) shows a change in the case of the Ce 6 g / L filter as well. ing. Also, the thin wire is Ce 20 g / L
, The thick line represents the average of the transition of the O 2 storage time of each of the Ce 6 g / L filters.

【0110】図6に示す例によれば、リッチスパイクを
2.5秒に一回行うことで、Ce20g/Lのフィルタ
では、空気過剰なリーン時間が60秒継続した場合でも
2ストレージ時間が10秒以下に減少している。また
Ce6g/Lのフィルタでは、同様にO2ストレージ時
間が5秒程度に減少している。
According to the example shown in FIG. 6, by performing the rich spike once every 2.5 seconds, the Ce 20 g / L filter can reduce the O 2 storage time even when the excess air lean time continues for 60 seconds. It is reduced to 10 seconds or less. Similarly, in the Ce6g / L filter, the O 2 storage time is reduced to about 5 seconds.

【0111】ここでは、リッチスパイクを所定の間隔
(2.5秒)で実行した場合を示すが実行の間隔を長く
して一回のリッチスパイクにおける燃料の添加量を増大
させてもよい。
Here, the case where the rich spike is executed at a predetermined interval (2.5 seconds) is shown, but the execution interval may be lengthened to increase the amount of fuel added in one rich spike.

【0112】なお、リッチスパイクは昇温制御中に上記
のように数回に分けて実行するか、または昇温制御の最
終段階、もしくは昇温制御の終了直後であって車両の減
速が開始されたときに集中的に添加量を多くして実行す
ることもできる。
It should be noted that the rich spike is executed several times as described above during the temperature rise control, or the deceleration of the vehicle is started at the final stage of the temperature rise control or immediately after the end of the temperature rise control. It is also possible to intensively increase the addition amount when executing.

【0113】このようにしてリッチスパイクを昇温制御
中またはその直後に実行した場合は、硫黄被毒制御によ
りNOx触媒に流入する排気の空燃比は、素早くリッチ
側に移行する。すなわち、CPU351は、フィルタ2
0に流入する排気の酸素濃度を低下させるべく還元剤噴
射弁28から燃料を噴射させるが、硫黄被毒回復がこの
燃料の噴射から遅滞なく開始される。
In this way, when the rich spike is executed during the temperature rise control or immediately after that, the air-fuel ratio of the exhaust gas flowing into the NOx catalyst quickly shifts to the rich side by the sulfur poisoning control. That is, the CPU 351 uses the filter 2
Fuel is injected from the reducing agent injection valve 28 in order to reduce the oxygen concentration of the exhaust gas flowing into 0, but the sulfur poisoning recovery is started without delay from the injection of this fuel.

【0114】図7はリッチスパイクを昇温制御中に実行
した場合の例を示す。Aに示すように、昇温制御中にA
/Fセンサ出力で示される空燃比(フィルタ20に流入
する排気の空燃比)が間隔をおいて一時的にリッチ側に
変化しており、このような複数回にわたるリッチスパイ
クの実行によって昇温制御中に空燃比が低下している。
この状態においてはNOx触媒から酸素(O2)が徐々に放
出されるので、Bに示すように、O2ストレージ効果に
よって硫黄被毒回復制御の際に空燃比の変化が停滞する
ことがなくなり、車速が低下して硫黄回復制御が開始さ
れる際には、空燃比はすぐにリッチとなる。これに伴
い、Cに示すように、NOx触媒からの硫黄の放出が素
早く開始される。
FIG. 7 shows an example in which the rich spike is executed during the temperature raising control. As shown in FIG.
The air-fuel ratio (air-fuel ratio of the exhaust gas flowing into the filter 20) indicated by the / F sensor output temporarily changes to the rich side with an interval, and the temperature rise control is performed by performing such rich spikes a plurality of times. The air-fuel ratio is falling inside.
In this state, oxygen (O 2 ) is gradually released from the NOx catalyst, so that the change in the air-fuel ratio does not become stagnant during the sulfur poisoning recovery control due to the O 2 storage effect, as shown in B. When the vehicle speed decreases and the sulfur recovery control is started, the air-fuel ratio becomes rich immediately. Along with this, as shown by C, the release of sulfur from the NOx catalyst is started quickly.

【0115】次に、比較例として従来の方法による場合
を図8に示す。このようにリッチスパイクを行わずに、
通常の昇温制御から硫黄被毒回復制御に移行した場合
は、空燃比が数十秒間にわたり理論空燃比付近に留ま
り、その後リッチに移行するので硫黄の放出のタイミン
グが遅れる。したがって、このような従来の方法では、
町中の信号待ち等の短い時間、例えば30秒から1分程
度の時間では、硫黄被毒回復が実施できない可能性が高
い。
Next, as a comparative example, a case of the conventional method is shown in FIG. Without rich spikes like this,
When the normal temperature increase control is shifted to the sulfur poisoning recovery control, the air-fuel ratio remains near the stoichiometric air-fuel ratio for several tens of seconds and then shifts to rich, so the timing of sulfur release is delayed. Therefore, in such a conventional method,
It is highly possible that the sulfur poisoning recovery cannot be carried out during a short time such as waiting for a traffic light in the town, for example, a time of about 30 seconds to 1 minute.

【0116】しかし本実施の形態の制御によれば、1分
間程度の短い時間であっても硫黄被毒回復制御の実行が
されて硫黄の放出が可能となる。特に、数回にわたって
信号待ちをするような場合に、硫黄被毒回復を少しずつ
行うことができるので、NOx触媒への硫黄酸化物の蓄
積を解消する機会がきわめて多くなる。これに伴ってN
Ox触媒の硫黄被毒劣化を抑制することができる。
However, according to the control of the present embodiment, the sulfur poisoning recovery control is executed and the sulfur can be released even in a short time of about 1 minute. In particular, when waiting for a signal several times, the sulfur poisoning recovery can be performed little by little, so that the opportunity to eliminate the accumulation of sulfur oxides on the NOx catalyst becomes extremely large. Along with this
The sulfur poisoning deterioration of the Ox catalyst can be suppressed.

【0117】次に、本実施の形態に係る昇温制御及び硫
黄被毒回復制御のフローについて説明する。
Next, the flow of temperature raising control and sulfur poisoning recovery control according to this embodiment will be described.

【0118】図9は、本実施の形態に係る昇温制御のフ
ローを示すフローチャート図である。
FIG. 9 is a flow chart showing the flow of temperature raising control according to this embodiment.

【0119】ステップS101では、硫黄被毒回復制御
を行う必要があるか否か判定される。判定条件として
は、燃料の添加量やNOxセンサ(図示省略)からの出
力信号、車両走行距離等により判定することができる。
ここで、燃料中の硫黄成分によりフィルタ20に担持さ
れた吸蔵還元型NOx触媒が被毒するので、燃料の添加
量をRAM353に記憶させ、この燃料の添加量が所定
量に達したときを硫黄被毒回復制御の開始条件としても
良い。また、硫黄被毒が進行すると吸蔵還元型NOx触
媒のNOxの吸収量が減少し、フィルタ20下流に流通
するNOxの量が増大する。従って、フィルタ20の下
流にNOxセンサ(図示省略)を設け、この出力信号を
監視し、NOxの流通量が所定量以上になったときを硫
黄被毒回復制御の開始条件としてもよい。更に、車両走
行距離が所定値以上になった場合には、硫黄被毒の回復
が必要であるとしてこのときを硫黄被毒回復制御の開始
条件としてもよい。
In step S101, it is determined whether or not the sulfur poisoning recovery control needs to be performed. The determination condition can be determined based on the amount of fuel added, an output signal from a NOx sensor (not shown), the traveling distance of the vehicle, and the like.
Here, since the NOx storage reduction catalyst carried on the filter 20 is poisoned by the sulfur component in the fuel, the addition amount of the fuel is stored in the RAM 353, and when the addition amount of the fuel reaches the predetermined amount, the sulfur is stored. It may be used as a start condition for poisoning recovery control. Further, when sulfur poisoning progresses, the amount of NOx absorbed by the NOx storage reduction catalyst decreases, and the amount of NOx flowing downstream of the filter 20 increases. Therefore, a NOx sensor (not shown) may be provided downstream of the filter 20, the output signal thereof may be monitored, and the condition for starting the sulfur poisoning recovery control may be set when the NOx flow amount exceeds a predetermined amount. Furthermore, when the vehicle travel distance becomes equal to or greater than a predetermined value, it is necessary to recover from sulfur poisoning, and this time may be set as the start condition for the sulfur poisoning recovery control.

【0120】ステップS101で肯定判定がなされた場
合にはステップS102へ進み、一方、否定判定がなさ
れた場合には本ルーチンを終了する。
When the affirmative judgment is made in step S101, the routine proceeds to step S102, while when the negative judgment is made, this routine is ended.

【0121】ステップS102では、フィルタ20の昇
温制御を開始するか否か判定される。昇温制御は内燃機
関が軽負荷領域にあるときに開始される。
In step S102, it is determined whether or not the temperature raising control of the filter 20 is started. The temperature rise control is started when the internal combustion engine is in the light load region.

【0122】ステップS102で肯定判定がなされた場
合にはステップS103へ進む。
If an affirmative decision is made in step S102, the operation proceeds to step S103.

【0123】また、軽負荷領域になくステップS102
で否定判定がなされときは、その後に軽負荷運転に移行
したときにステップS103に進む。
If the load is not in the light load area, step S102
When the negative determination is made in step S <b> 103, the process proceeds to step S <b> 103 when the light load operation is performed.

【0124】ステップS103ではフィルタ20の昇温
のために、排気系への燃料添加とリッチスパイクが併せ
て実行される。
In step S103, the addition of fuel to the exhaust system and the rich spike are executed together to raise the temperature of the filter 20.

【0125】次に、ステップS104ではフィルタ20
の床温が600℃以上であるか否かが判定される。これ
が600℃以上であればステップS105に進む。
Next, in step S104, the filter 20
It is determined whether or not the bed temperature of is above 600 ° C. If this is 600 ° C. or higher, the process proceeds to step S105.

【0126】また、フィルタ20の床温が600℃未満
であればステップS103に戻り昇温制御を続行し、フ
ィルタ20の床温が600℃以上になればステップS1
05に進む。
If the bed temperature of the filter 20 is lower than 600 ° C., the process returns to step S103 to continue the temperature raising control, and if the bed temperature of the filter 20 is 600 ° C. or higher, step S1.
Go to 05.

【0127】ステップS105では、内燃機関が軽負荷
領域にあるか否かが判定される。
In step S105, it is determined whether the internal combustion engine is in the light load region.

【0128】ここで、軽負荷領域にあればステップS1
06に進み、硫黄被毒回復制御が実行される。
If it is in the light load region, step S1
In 06, the sulfur poisoning recovery control is executed.

【0129】また、軽負荷領域にないときは、その後に
軽負荷運転に移行したときにステップS106に進み、
硫黄被毒回復制御が行われる。
When the vehicle is not in the light load region, the process proceeds to step S106 when the operation is shifted to the light load operation thereafter.
Sulfur poisoning recovery control is performed.

【0130】以上説明したように、本実施の形態に係る
内燃機関の排気浄化装置では、硫黄被毒回復制御のため
に排気系に燃料添加したにもかかわらず、NOx吸収剤
から放出される酸素(O2)により空燃比がリッチに至
らない時間が存在することをほとんど解消できる。よっ
て、短時間でのNOx吸収剤の硫黄被毒回復が可能とな
る。
As described above, in the exhaust emission control system for the internal combustion engine according to the present embodiment, the oxygen released from the NOx absorbent is added even though the fuel is added to the exhaust system for the sulfur poisoning recovery control. (O 2 ) can almost eliminate the existence of the time when the air-fuel ratio does not reach rich. Therefore, it is possible to recover the sulfur poisoning of the NOx absorbent in a short time.

【0131】また短時間での硫黄被毒回復が可能なた
め、硫黄被毒回復制御を実施できる機会が大幅に増える
ことになる。したがって硫黄被毒の程度を減少させるこ
とで、NOx吸収剤の硫黄被毒劣化を抑制できる。
Further, since the sulfur poisoning recovery can be carried out in a short time, the opportunity for carrying out the sulfur poisoning recovery control will be greatly increased. Therefore, by reducing the degree of sulfur poisoning, the sulfur poisoning deterioration of the NOx absorbent can be suppressed.

【0132】[0132]

【発明の効果】本発明に係る内燃機関の排気浄化装置で
は、NOx触媒の硫黄被毒再生制御の開始前に、予めN
Ox吸収剤に吸蔵されている酸素(O2)を放出させること
ができるのでO2ストレージによる硫黄被毒回復制御の
遅れがなくなり、硫黄被毒回復の時間が短縮される。し
たがって硫黄被毒回復制御が実行できる機会が増加し、
排気中のNOxがNOx触媒に吸収されなくなる状態を
効果的に回避できるとともに、NOx触媒の硫黄被毒劣
化を抑制することができる効果がある。
In the exhaust gas purification apparatus for an internal combustion engine according to the present invention, before the start of the sulfur poisoning regeneration control of the NOx catalyst, N
Since the oxygen (O 2 ) stored in the Ox absorbent can be released, the sulfur poisoning recovery control delay due to the O 2 storage is eliminated, and the sulfur poisoning recovery time is shortened. Therefore, the chance of executing sulfur poisoning recovery control increases,
It is possible to effectively avoid the state where NOx in the exhaust gas is not absorbed by the NOx catalyst, and to suppress the sulfur poisoning deterioration of the NOx catalyst.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施の形態に係る内燃機関の排気浄
化装置を適用するエンジンとその吸排気系とを併せ示す
概略構成図である。
FIG. 1 is a schematic configuration diagram showing an engine to which an exhaust gas purification apparatus for an internal combustion engine according to an embodiment of the present invention is applied and an intake / exhaust system thereof.

【図2】 パテキュレートフィルタの概要を示す図であ
り、(A)は、パティキュレートフィルタの横方向断面
を示す図である。(B)は、パティキュレートフィルタ
の縦方向断面を示す図である。
FIG. 2 is a diagram showing an outline of a particulate filter, and FIG. 2 (A) is a diagram showing a lateral cross section of the particulate filter. (B) is a figure which shows the longitudinal cross section of a particulate filter.

【図3】 ECUの内部構成を示すブロック図である。FIG. 3 is a block diagram showing an internal configuration of an ECU.

【図4】 硫黄被毒回復制御において、排気空燃比がリ
ーンの状態からリッチの状態に移行する際のO2ストレ
ージによる影響を示す図である。
FIG. 4 is a diagram showing the influence of O 2 storage when the exhaust air-fuel ratio shifts from a lean state to a rich state in the sulfur poisoning recovery control.

【図5】 硫黄被毒回復制御前に予めリッチスパイクを
実行した場合の排気空燃比の変化を示す図である。
FIG. 5 is a diagram showing a change in exhaust air-fuel ratio when rich spike is executed in advance before sulfur poisoning recovery control.

【図6】 リッチスパイクの実行によって、吸蔵されて
いる酸素が放出されO2ストレージ時間が短縮されるこ
とを示す図である。
FIG. 6 is a diagram showing that the stored oxygen is released and the O 2 storage time is shortened by performing a rich spike.

【図7】 予め昇温制御の際にリッチスパイクを実行し
た場合の空燃比の変化と硫黄の放出のタイミングを示す
図である。
FIG. 7 is a diagram showing a change in air-fuel ratio and a timing of releasing sulfur when a rich spike is executed in advance during temperature increase control.

【図8】 従来の方法による昇温制御の場合の空燃比の
変化と硫黄の放出のタイミングを示す図である。
FIG. 8 is a diagram showing changes in the air-fuel ratio and the timing of sulfur release in the case of temperature increase control by a conventional method.

【図9】 本発明の実施の形態に係る昇温制御実行フロ
ーを示すフローチャート図である。
FIG. 9 is a flowchart showing a temperature increase control execution flow according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1・・・・エンジン 1a・・・クランクプーリ 2・・・・気筒 3・・・・燃料噴射弁 4・・・・コモンレール 4a・・・コモンレール圧センサ 5・・・・燃料供給管 6・・・・燃料ポンプ 6a・・・ポンププーリ 8・・・・吸気枝管 9・・・・吸気管 18・・・排気枝管 19・・・排気管 20・・・パティキュレートフィルタ 21・・・排気絞り弁 24・・・排気温度センサ 25・・・EGR通路 26・・・EGR弁 27・・・EGRクーラ 28・・・還元剤噴射弁 29・・・還元剤供給路 31・・・遮断弁 33・・・クランクポジションセンサ 34・・・水温センサ 35・・・ECU 36・・・アクセル開度センサ 1 ... Engine 1a: Crank pulley 2 ... Cylinder 3 ... Fuel injection valve 4 ... Common rail 4a ... Common rail pressure sensor 5 ... Fuel supply pipe 6 ... Fuel pump 6a ... Pump pulley 8 ... Intake branch pipe 9 ... Intake pipe 18 ... Exhaust branch pipe 19 ... Exhaust pipe 20 ... Particulate filter 21 ... Exhaust throttle valve 24 ... Exhaust gas temperature sensor 25 ... EGR passage 26 ... EGR valve 27 ... EGR cooler 28 ... Reducing agent injection valve 29 ... Reductant supply path 31 ... Shut-off valve 33 ... Crank position sensor 34 ... Water temperature sensor 35 ... ECU 36 ... Accelerator opening sensor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/02 F01N 3/08 A 3/08 G 3/24 E 3/24 R 3/28 301C 3/28 301 3/36 C 3/36 F02D 41/04 355 F02D 41/04 355 43/00 301E 43/00 301 301K 301N 301T 45/00 314Z 45/00 314 B01D 53/36 103C 103B (72)発明者 曲田 尚史 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 小林 正明 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 柴田 大介 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 石山 忍 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 根上 秋彦 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 3G084 AA01 AA03 AA04 BA05 BA08 BA09 BA13 BA15 BA19 BA20 BA24 DA27 DA28 DA31 DA37 EA11 EB01 EB22 FA02 FA05 FA07 FA11 FA12 FA20 FA27 FA33 FA38 3G090 AA03 BA01 CA01 CA04 CB25 DA01 DA09 DA10 DA12 DA15 DA18 DA19 DA20 EA05 EA06 EA07 3G091 AA02 AA10 AA11 AA12 AA18 AA28 AB06 AB13 BA00 BA04 BA11 BA14 BA33 CA13 CA18 CB02 CB03 CB07 CB08 DA01 DA02 DA04 DB06 DB10 DC01 DC03 EA00 EA01 EA05 EA07 EA15 EA16 EA17 EA30 EA31 EA33 EA38 FA12 FA13 FB10 FB11 FB12 FC04 FC05 GA06 GA20 GA24 GB01X GB02W GB03W GB04W GB04Y GB05W GB06W GB10X GB10Y GB16X GB17X HA14 HA18 HA36 HB03 HB05 HB06 3G301 HA02 HA04 HA06 HA11 HA13 JA15 JA21 JA24 JA25 JB09 LA03 LB11 MA01 MA11 MA18 MA23 MA26 NA07 NA08 NE02 NE13 PA01B PA01Z PA07B PA07Z PA10B PA10Z PB08B PB08Z PD01B PD01Z PD11B PD11Z PE01B PE01Z PE03B PE03Z PE08B PE08Z PF01B PF01Z PF03B PF03Z 4D048 AA06 AA14 AB01 AB02 BA02Y BA03X BA10X BA14Y BA15X BA17Y BA18X BA30X BA41X BB02 BB14 BC01 BD03 CC27 CD05 DA01 DA02 DA03 DA06 DA10 DA13 DA20 EA04 ─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification Code FI Theme Coat (Reference) F01N 3/02 F01N 3/08 A 3/08 G 3/24 E 3/24 R 3/28 301C 3 / 28 301 3/36 C 3/36 F02D 41/04 355 F02D 41/04 355 43/00 301E 43/00 301 301K 301N 301T 45/00 314Z 45/00 314 B01D 53/36 103C 103B (72) Inventor's song Naofumi Tada 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Co., Ltd. (72) Inventor Masaaki Kobayashi 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Co., Ltd. (72) Inventor Daisuke Shibata Toyota City, Aichi Prefecture Toyota City No. 1 Toyota Motor Co., Ltd. (72) Inventor Shinobu Ishiyama No. 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Co., Ltd. (72) Inventor Akihiko Negami 1 Toyota Town, Toyota-shi, Aichi F-term in Toyota Motor Corporation (reference) 3G084 AA01 AA03 AA04 BA05 BA08 BA09 BA13 BA15 BA19 BA20 BA24 DA27 DA28 DA31 DA37 EA11 EB01 EB22 FA02 FA05 FA07 FA11 FA12 FA20 FA27 FA33 FA38 3G090 AA03 BA01 CA01 CA04 CB25 DA01 DA09 DA10 DA12 DA15 DA18 DA19 DA20 EA05 EA06 EA07 3G091 AA02 AA10 AA11 AA12 AA18 AA28 AB06 AB13 BA00 BA04 BA11 BA14 BA33 CA13 EA18 EA07 EA15 EA01 CB17 DC01 DB01 DA01 DA01 DA02 DA04 DB04 DB04 EA30 EA31 EA33 EA38 FA12 FA13 FB10 FB11 FB12 FC04 FC05 GA06 GA20 GA24 GB01X GB02W GB03W GB04W GB04Y GB05W GB06W GB10X GB10Y GB16X GB17X HA14 HA18 HA36 HB03 HB05 HB06 3G301 HA02 HA04 HA06 HA11 HA13 JA15 JA21 JA24 JA25 JB09 LA03 LB11 MA01 MA11 MA18 MA23 MA26 NA07 NA08 NE02 NE13 PA01B PA01Z PA07B PA07Z PA10B PA10Z PB08B PB08Z PD01B PD01Z PD11B PD11Z PE01B PE01Z PE03B PE03Z PE08B PE08Z PF01B PF01Z PF03B PF03Z 4D048 AA06 AA14 AB01 BA18 BAX BA17 BAX BAX BAD B02 BB14 BC01 BD03 CC27 CD05 DA01 DA02 DA03 DA06 DA10 DA13 DA20 EA04

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 流入する排気の空燃比がリーンのときに
は排気中のNOxを吸収し流入する排気の空燃比が理論
空燃比又はリッチになると吸収したNOxを放出するN
Ox吸収剤と、 前記NOx吸収剤の昇温制御及び硫黄被毒回復制御を実
行する硫黄被毒回復制御手段と、を備え、 前記硫黄被毒回復制御手段は、前記NOx吸収剤の硫黄
被毒回復制御開始前の昇温制御を実行した際に、排気の
空燃比を低下させてNOx吸収剤に吸蔵されている酸素
を放出させることを特徴とする内燃機関の排気浄化装
置。
1. When the air-fuel ratio of the inflowing exhaust gas is lean, the NOx in the exhaust gas is absorbed, and when the air-fuel ratio of the inflowing exhaust gas becomes the stoichiometric air-fuel ratio or rich, the absorbed NOx is released N
An NOx absorbent and a sulfur poisoning recovery control means for executing temperature rise control and sulfur poisoning recovery control of the NOx absorbent, wherein the sulfur poisoning recovery control means is sulfur poisoning of the NOx absorbent. An exhaust emission control device for an internal combustion engine, which reduces an air-fuel ratio of exhaust gas to release oxygen stored in a NOx absorbent when a temperature rise control before starting recovery control is executed.
【請求項2】 前記内燃機関の排気浄化装置は、排気中
の微粒子を一時捕獲可能なフィルタを備え、このフィル
タには前記NOx吸収剤が担持されていることを特徴と
する請求項1に記載の内燃機関の排気浄化装置。
2. The exhaust emission control device for an internal combustion engine comprises a filter capable of temporarily trapping fine particles in exhaust gas, and the filter carries the NOx absorbent. Exhaust gas purification device for internal combustion engine.
【請求項3】 前記硫黄被毒回復制御は、内燃機関の軽
負荷運転時に排気系に内燃機関の燃料を添加して実施す
ることを特徴とする請求項1または2に記載の内燃機関
の排気浄化装置。
3. The exhaust gas of an internal combustion engine according to claim 1, wherein the sulfur poisoning recovery control is performed by adding fuel of the internal combustion engine to an exhaust system during light load operation of the internal combustion engine. Purification device.
JP2001261955A 2001-08-30 2001-08-30 Exhaust emission control device for internal combustion engine Withdrawn JP2003065042A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001261955A JP2003065042A (en) 2001-08-30 2001-08-30 Exhaust emission control device for internal combustion engine
DE10239872A DE10239872A1 (en) 2001-08-30 2002-08-29 Exhaust gas purification device and method for an internal combustion engine
FR0210725A FR2829181B1 (en) 2001-08-30 2002-08-29 DEVICE AND METHOD FOR PURIFYING EXHAUST GAS FOR AN INTERNAL COMBUSTION ENGINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001261955A JP2003065042A (en) 2001-08-30 2001-08-30 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2003065042A true JP2003065042A (en) 2003-03-05

Family

ID=19088920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001261955A Withdrawn JP2003065042A (en) 2001-08-30 2001-08-30 Exhaust emission control device for internal combustion engine

Country Status (3)

Country Link
JP (1) JP2003065042A (en)
DE (1) DE10239872A1 (en)
FR (1) FR2829181B1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7111456B2 (en) 2002-12-10 2006-09-26 Toyota Jidosha Kabushiki Kaisha Exhaust emission control apparatus for internal combustion engine
JP2008101575A (en) * 2006-10-20 2008-05-01 Honda Motor Co Ltd Exhaust emission control device for internal combustion engine
WO2009082035A1 (en) * 2007-12-26 2009-07-02 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine
JP2009156165A (en) * 2007-12-26 2009-07-16 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2009156167A (en) * 2007-12-26 2009-07-16 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2009156168A (en) * 2007-12-26 2009-07-16 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2009156164A (en) * 2007-12-26 2009-07-16 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2011021581A (en) * 2009-07-21 2011-02-03 Hino Motors Ltd Exhaust emission control device
JP2018105156A (en) * 2016-12-22 2018-07-05 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
WO2018194160A1 (en) * 2017-04-21 2018-10-25 いすゞ自動車株式会社 Filter regeneration control device and filter regeneration control method
CN112065540A (en) * 2020-09-09 2020-12-11 安徽江淮汽车集团股份有限公司 NSC desulfurization method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4291650B2 (en) * 2003-09-03 2009-07-08 トヨタ自動車株式会社 Exhaust purification equipment
JP4095979B2 (en) * 2004-07-20 2008-06-04 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2845056B2 (en) 1992-10-14 1999-01-13 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
DE59712848D1 (en) * 1996-08-19 2007-07-05 Volkswagen Ag Third-party internal combustion engine with a NOx absorber
GB2324052A (en) * 1997-04-11 1998-10-14 Ford Motor Co Heating of a storage trap
GB2330089A (en) * 1997-09-13 1999-04-14 Ford Global Tech Inc Purging of an NOx trap
DE19847875A1 (en) * 1998-10-16 2000-04-20 Volkswagen Ag De-sulfation of nitrogen oxide storage catalyst following lean-burn common-rail engine comprises checking for exhaustion of capacity and reliability-critical component defects, before initiation
SE519240C2 (en) * 1998-11-20 2003-02-04 Volvo Personvagnar Ab Combustion engine arrangements included a heat exchanger to adjust the temperature of exhaust gases to pass a NOx adsorbing catalyst
CA2309309A1 (en) * 1999-05-28 2000-11-28 Ford Global Technologies, Inc. Nox trap and particulate filter system for an internal combustion engine

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7111456B2 (en) 2002-12-10 2006-09-26 Toyota Jidosha Kabushiki Kaisha Exhaust emission control apparatus for internal combustion engine
JP2008101575A (en) * 2006-10-20 2008-05-01 Honda Motor Co Ltd Exhaust emission control device for internal combustion engine
JP4699331B2 (en) * 2006-10-20 2011-06-08 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
JP2009156164A (en) * 2007-12-26 2009-07-16 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2009156167A (en) * 2007-12-26 2009-07-16 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2009156168A (en) * 2007-12-26 2009-07-16 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2009156165A (en) * 2007-12-26 2009-07-16 Toyota Motor Corp Exhaust emission control device for internal combustion engine
WO2009082035A1 (en) * 2007-12-26 2009-07-02 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine
US8534051B2 (en) 2007-12-26 2013-09-17 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of internal combustion engine
JP2011021581A (en) * 2009-07-21 2011-02-03 Hino Motors Ltd Exhaust emission control device
JP2018105156A (en) * 2016-12-22 2018-07-05 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
WO2018194160A1 (en) * 2017-04-21 2018-10-25 いすゞ自動車株式会社 Filter regeneration control device and filter regeneration control method
CN112065540A (en) * 2020-09-09 2020-12-11 安徽江淮汽车集团股份有限公司 NSC desulfurization method
CN112065540B (en) * 2020-09-09 2021-09-21 安徽江淮汽车集团股份有限公司 NSC desulfurization method

Also Published As

Publication number Publication date
DE10239872A1 (en) 2003-05-22
FR2829181B1 (en) 2010-08-20
FR2829181A1 (en) 2003-03-07

Similar Documents

Publication Publication Date Title
JP3835241B2 (en) Exhaust gas purification device for internal combustion engine
JP3599012B2 (en) Exhaust gas purification device for internal combustion engine
JP3617450B2 (en) Exhaust gas purification device for internal combustion engine
JP2005030380A (en) Exhaust emission control device and exhaust emission control method of internal combustion engine
KR100441481B1 (en) Exhaust gas purification device for internal combustion engine
JP3896870B2 (en) Exhaust gas purification device for internal combustion engine
JP2003065042A (en) Exhaust emission control device for internal combustion engine
JP3757860B2 (en) Exhaust gas purification device for internal combustion engine
JP2003020930A (en) Exhaust emission control device for internal combustion engine
JP3897621B2 (en) Exhaust gas purification device for internal combustion engine
JP2002155737A (en) Exhaust emission control device of internal combustion engine
JP4639565B2 (en) Exhaust gas purification device for internal combustion engine
JP2010159727A (en) Exhaust emission purifying apparatus for internal-combustion engine
JP2003041929A (en) Exhaust emission control device for internal combustion engine
JP2003269230A (en) Internal combustion engine
JP3800065B2 (en) Exhaust gas purification device for internal combustion engine
JP2003286878A (en) Device and method for exhaust-emission control of internal combustion engine
JP2002180816A (en) Exhaust emission control device of internal combustion engine
JP4032760B2 (en) Exhaust gas purification device for internal combustion engine
JP4586321B2 (en) Exhaust gas purification device for internal combustion engine
JP2004076684A (en) Exhaust emission control device for internal combustion engine
JP2003049629A (en) Exhaust emission control device of internal combustion engine
JP4327584B2 (en) Exhaust gas purification device for internal combustion engine
JP2003184593A (en) Fuel injection amount control apparatus for internal combustion engine
JP4496615B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080704

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091130