WO2018194082A1 - 運動器具、制御装置、およびプログラム - Google Patents

運動器具、制御装置、およびプログラム Download PDF

Info

Publication number
WO2018194082A1
WO2018194082A1 PCT/JP2018/015975 JP2018015975W WO2018194082A1 WO 2018194082 A1 WO2018194082 A1 WO 2018194082A1 JP 2018015975 W JP2018015975 W JP 2018015975W WO 2018194082 A1 WO2018194082 A1 WO 2018194082A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
exercise
load
characteristic
information
Prior art date
Application number
PCT/JP2018/015975
Other languages
English (en)
French (fr)
Inventor
松本 整
Original Assignee
クラブコング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クラブコング株式会社 filed Critical クラブコング株式会社
Priority to CN201880026023.6A priority Critical patent/CN110536721B/zh
Publication of WO2018194082A1 publication Critical patent/WO2018194082A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports

Definitions

  • the present invention relates to an exercise apparatus.
  • Document 1 discloses setting the type of exercise to be performed, the number of repetitions, and the intensity according to the needs of each user.
  • a training device For repeatedly performing a series of exercises of extending a leg from a bent state.
  • Some leg press machines have a function of adjusting a load (exercise intensity) applied to a user by incorporating a spring, a weight, a control circuit, and the like in order to enhance a training effect.
  • a load exercise intensity
  • the load amount can be adjusted in a series of movements. This point may vary depending on, for example, the user's physical and functional characteristics (skeleton and muscles).
  • the above points may be affected by the user's psychological state (for example, as a result of feeling pain due to injury or the like, it becomes difficult to exert power).
  • the above points may differ depending on the purpose of training (diet, rehabilitation, improvement of competitiveness for a specific competition, etc.).
  • the purpose of training diet, rehabilitation, improvement of competitiveness for a specific competition, etc.
  • An object of the present invention is to adjust the load amount in a series of movements according to the individual circumstances of the user.
  • a first exercise characteristic that represents a characteristic of a force that a user applies to the exercise device during exercise is obtained.
  • the second acquisition means for acquiring the attribute information of the user, the exercise characteristics of the one user who performed training using the exercise equipment, and the attribute information of the one user, the one user Determining means for determining a load characteristic which is a characteristic of the load when exercising using the exercise equipment, and output means for outputting a load setting instruction based on the determined load characteristics to the exercise equipment;
  • a control device is provided.
  • a computer in a series of exercises performed using an exercise device with adjustable load, obtains an exercise characteristic representing a force characteristic that a user applies to the exercise apparatus during exercise. And the step of acquiring the attribute information of the user, the exercise characteristic of the one user who performed training using the exercise equipment, and the attribute information of the one user, A step of determining a load characteristic which is a characteristic of the load when exercising using an apparatus, and a step of outputting an instruction of load setting based on the determined load characteristic to the exercise apparatus Provide a program.
  • the present invention provides a movable part whose load can be adjusted, a first acquisition means for acquiring a motion characteristic representing a characteristic of a force applied to the movable part, and a second part for acquiring user attribute information.
  • an exercise device having adjustment means for adjusting the movable load based on the determined load characteristic.
  • the load amount in a series of movements can be adjusted according to the individual circumstances of the user.
  • summary of the control system The figure which shows the function structure of the exercise equipment.
  • FIG. The enlarged view of the other example of the exercise equipment 200.
  • FIG. The figure which shows the function structure of the server.
  • Example of load characteristic curve (part 3).
  • movement characteristic data (the 1).
  • the schematic diagram which shows the process which determines the similarity degree with other person's exercise
  • movement characteristic data (the 2).
  • FIG. 1 shows an overview of the control system 100.
  • the control system 100 includes exercise equipment 200-1, 200-2, 200-3, and a server 300.
  • Each exercise device 200 is an exercise device including at least a movable part whose load is adjusted, and is, for example, a pedaling machine, a leg press, a bench press, or the like.
  • the content and type of exercise realized by the exercise device 200 and the body part mainly used are not particularly limited. In short, it is a device that applies a load to muscles by causing a user to repeatedly perform a series of motions (units of motion defined by motion start points and motion end points of a movable part).
  • each exercise device 200 has a function of adjusting parameters related to training in addition to the load amount (magnitude of force). Specifically, in addition to the function of adjusting the direction and timing of applying force, the function of setting and changing the number of times of repeating a series of exercises and the length of time of one training.
  • each exercise device 200 determines a function (training mode) that allows the user to perform training in a state in which the load characteristic based on information instructed from the server 300 is set, and the load characteristic. And a function (referred to as a measurement mode) for generating the user's motion characteristic data used for the server 300 and providing it to the server 300.
  • a function referred to as a measurement mode
  • the measurement mode for example, under the control that constant load (constant load applied to the user in a series of exercises) or constant velocity (movement of the movable part, rotation, torsion, etc.) is constant. This is done by having the user exercise.
  • a user who uses the exercise apparatus 200 for the first time exercises in the measurement mode first, acquires a load characteristic reflecting his / her exercise ability, etc., and trains for a predetermined period (eg, three months) in the acquired load characteristic training mode. Then, the measurement is again performed using the measurement mode, and the load characteristic is acquired (updated). By repeating the training mode and the measurement mode in this way, the user aims for the desired physical state.
  • a predetermined period eg, three months
  • each exercise equipment 200 may be the same, and may differ.
  • the number of the exercise equipment 200 illustrated is merely an example, and it is sufficient that at least one exercise apparatus 200 exists in the control system 100.
  • Each exercise apparatus 200 may be installed in the same facility so that it can be used by the same user, or may be installed in a remote place.
  • the server 300 is realized as a general-purpose server device or computer, and is managed by the operator of the control system 100.
  • the exercise apparatus 200 and the server 300 are connected via a network 900.
  • the network 900 includes, for example, the Internet, a LAN, a base station, a wireless access point, and the like.
  • FIG. 2 shows a functional configuration of the exercise apparatus 200.
  • the exercise apparatus 200 includes a movable mechanism 210, a control unit 220, a communication unit 230, a user specifying unit 240, an input unit 250, a storage unit 260, and a notification unit 270.
  • the notification unit 270 is an output unit such as a liquid crystal display or a speaker, and notifies the user of the information determined by the adjustment unit 223 with characters, images, sounds, and the like.
  • the storage unit 260 is a storage device such as a semiconductor memory, and includes information for authenticating a training target user, information acquired by the sensor 211, and setting information necessary for controlling the load on the movable mechanism 210 ( Parameters and algorithms), and a program for causing the exercise apparatus 200 to realize the functions described later.
  • the movable mechanism 210 includes a displacement mechanism such as a spring, a shaft, and a crank, and a motor, a control circuit, and the like for setting a load (drag) applied to the mechanism based on a control signal supplied from the load setting unit 221. .
  • the user applies a force to the displacement mechanism against the load, so that the displacement mechanism moves and the user can perform a predetermined motion.
  • the movement realized by the displacement mechanism is, for example, a rotational movement or a parallel movement.
  • the type of exercise realized by the exercise device 200, the displaceable direction (degree of freedom of movement), the variable amount, and the body part to be trained are not particularly limited.
  • the movable mechanism 210 includes a sensor 211 and detects the result of the exercise performed by the user. Specifically, the sensor 211 measures a displacement amount (movement amount, rotation amount, etc.) of the movable mechanism 210 by a mechanical, electrical, or magnetic method, and a force received from the user at the displacement. Sensors to be measured (acceleration sensor, angular velocity sensor, strain sensor, capacitance sensor, etc.).
  • the timing at which the sensor 211 acquires measurement may be every predetermined sampling timing (for example, every 10 milliseconds), or a predetermined change amount of the movable portion (position change amount 1 cm, angle change amount 1 °, etc.) ) May be detected.
  • a predetermined change amount of the movable portion position change amount 1 cm, angle change amount 1 °, etc.
  • a point for measurement by the sensor 211 may be set by equally dividing the amount of displacement by a predetermined method.
  • Measured information is sequentially stored in the storage unit 260 and read out by the analysis unit 222 as necessary.
  • the detected displacement amount and momentum may be one-dimensional values (scalar amounts) or multi-dimensional values (vector amounts).
  • the input unit 250 is an input device such as a touch panel, and is used to input information for identifying a user who uses the exercise apparatus 200, such as an ID or a password.
  • the input unit 250 may be used to input attribute information of the user.
  • the attribute information includes basic and numerical objective information related to age / sex, physical characteristics, and motor function, as well as current body parts related to a series of exercises performed by the exercise device 200. Or information about past failures (injuries and illnesses), information about the purpose of exercise, information about the user's senses felt during exercise, situations specific to the user, situations where the user is placed, background of training, etc. Information about can be included.
  • the above information may be input by a user who performs training or a staff member of a facility that manages the exercise equipment 200.
  • a staff member inputs information obtained by hearing from a user using a computer (not shown) connected to the server 300, and transmits the input information to the server 300.
  • the server 300 receives information related to a user that is given to each user, the server 300 functions as an identifier of the user and issues information (such as a QR code (registered trademark)) for accessing the information related to the user.
  • it may be transmitted to the exercise equipment 200 or a portable terminal (not shown) owned by the user.
  • the server 300 may acquire attribute information from a terminal carried by the user or an external server (such as a database that manages the user's past history).
  • the purpose of exercise is, for example, enhancement of muscle strength, improvement of exercise performance, improvement of sports technique, diet (fat burning), recovery of muscle strength reduced with aging or failure (so-called rehabilitation), and the like.
  • Information related to sensation relates to, for example, pain and discomfort associated with exercise.
  • the input unit 250 may be mounted as a device for performing voice input instead of the touch panel, or may be mounted as a device that reads information stored in an ID card carried by the user.
  • the control unit 220 is implemented as one or more general-purpose or dedicated processors, processors, or control circuits, and includes a load setting unit 221, an analysis unit 222, and an adjustment unit 223.
  • the control unit 220 switches between the training mode and the measurement mode. It executes by referring to the setting information provided from the server 300 at the time of user authentication, or according to the setting information stored in the storage unit 260.
  • the analysis unit 222 acquires exercise characteristic data representing the characteristic of the force exerted in the user's exercise performed using the exercise device 200.
  • the movement characteristic data is defined as a relationship between a force (at least one of magnitude and direction) applied to the movable part of the movable mechanism 210 and a displacement amount of the movable part in a series of movements performed by the user. Can do. Specifically, if the horizontal axis is defined as the displacement and the vertical axis is defined as the force exerted by the user, the motion characteristic can be expressed as a curve (characteristic curve).
  • the method of expressing the motion characteristics is an example, and for example, a relationship between the timing (time point) during a series of motions and the force exerted at that time point may be shown.
  • motion characteristics are not expressed by force (for example, the unit is Newton), but by using force, distance traveled, and the period during which the force is applied (work (for example, watt unit) or work rate (for example, joule unit)).
  • work for example, watt unit
  • work rate for example, joule unit
  • the acquired exercise characteristic data is transmitted to the server 300 via the communication unit 230 and supplied to the adjustment unit 223.
  • a direct measurement value for example, voltage value / current value
  • the server 300 may perform a predetermined conversion process in order to determine a load characteristic described later, or may determine the load characteristic without performing the conversion process.
  • the timing of transmitting the exercise characteristic data may be, for example, every time one cycle of exercise is completed, or may be when a predetermined number of exercise cycles are completed, or a predetermined time has elapsed since the start of training. It may be a point in time.
  • predetermined statistical processing is performed on the exercise characteristic data obtained for each exercise cycle, and the result is transmitted to the server 300 as one exercise characteristic data.
  • the predetermined statistical processing includes, for example, processing for extracting a part of averaged and measured data.
  • the extraction process is, for example, a process of extracting feature values such as a maximum value and a minimum value from data.
  • the load setting unit 221 generates a signal for controlling load characteristics realized by the movable mechanism 210 and supplies the signal to the movable mechanism 210 in the measurement mode.
  • the load setting unit 221 sets a load based on the load characteristic data at a predetermined timing.
  • An instruction is supplied to the movable mechanism 210.
  • the timing for outputting the load instruction may be during the training (for example, every time one cycle of exercise is performed, or may be the time when a predetermined number of exercise cycles are completed, or a predetermined time from the start of training. Or may be set so that the training is always started.
  • the adjustment unit 223 controls parameters related to training other than load characteristics. Specifically, based on the information output from the analysis unit 222, the adjustment unit 223 follows the predetermined algorithm to determine the position, orientation (posture), and speed (the pedal of the pedaling machine in the pedaling machine). Set the angle, the height of the seat in the leg press machine, etc.). The set information is output to the movable mechanism 210. Note that this parameter may affect the load amount, but excludes what defines the load characteristics (how the load is changed during one cycle of exercise).
  • the adjustment unit 223 sets parameters relating to the content of training (such as time and the number of repetitions) based on the information stored in the storage unit 260 and the exercise characteristics output from the analysis unit 222 and outputs the parameters to the notification unit 270. To do.
  • the timing for executing the setting of this parameter may be after the end of one cycle of exercise, may be after the end of one training consisting of a predetermined exercise cycle, or may be freely determined.
  • Parameters other than the load characteristics may be generated by the server 300 in the same manner as the load characteristics, and the adjustment unit 223 may acquire the information from the server 300.
  • the adjustment unit 223 may set the above parameters in consideration of information related to the user input to the exercise equipment 200 or acquired from the server 300. .
  • the user specifying unit 240 is realized as a processor or a data reading device, and collates information input from the input unit 250 or information read from an ID card presented by the user with information stored in the storage unit 260. Etc., to identify a user who is training (or is about to do).
  • the user specifying unit 240 is realized as an information reading device such as an IC card reader or a bar code reader, and the identification information such as a QR code issued by the server is sent to the user specifying unit 240 before the training starts.
  • the user may be specified (authenticated), and information used for generating information to be set in the exercise device 200 for the user may be acquired from the server 300.
  • the input unit 250 can be omitted.
  • the communication unit 230 is a communication interface for exchanging information with the server 300 in accordance with a predetermined communication standard. Specifically, the communication unit 230 transmits the exercise characteristic data supplied from the analysis unit 222 to the server 300 together with identification information for specifying the exercise equipment 200 and identification information for specifying the user. In addition to the exercise characteristics of the training target user, the communication unit 230 includes load characteristic data determined based on at least one of the user attributes of the training target user and the exercise characteristics of users other than the user, and this When the accompanying information associated with is acquired from the server 300, it is supplied to the load setting unit 221.
  • the communication unit 230 transmits user attribute information input by the input unit 250 to the server 300 or receives user attributes and setting information from the server 300 as necessary.
  • FIG. 3A shows an example of the appearance of the exercise apparatus 200.
  • the exercise apparatus 200 is a so-called leg press machine, and includes a user specifying unit 240 and a movable mechanism 210.
  • the exercise device 200 is mainly composed of a footrest and a seat surface and a backrest joined to a movable mechanism 210 that can move in parallel, and is mainly intended to reinforce leg muscle strength.
  • the distance d from the footrest to the seat surface is changed by the force exerted on the footrest.
  • the movable mechanism 210 includes a servo mechanism or the like, and can freely control the resistance force for moving the frame in accordance with the position of the seating surface. That is, it is possible to control the amount of load to be generated according to how the legs are bent.
  • the distance d is minimum when the foot is bent most, and the distance d is maximum when the foot is extended most. Starting from the state where the foot is bent most and the state where the foot is extended most, one cycle of exercise is completed.
  • FIG. 3B shows another example of the appearance of the exercise apparatus 200.
  • the exercise apparatus 200 is a pedaling machine that includes a user specifying unit 240 and a movable mechanism 210 and mainly aims at strengthening leg muscle strength by repeatedly rowing the movable mechanism 210.
  • FIG. 3C is an enlarged view of the pedal portion.
  • the movable mechanism 210 includes a crank 215 and a pedal 216.
  • the movable mechanism 210 has a built-in drive mechanism that can adjust the load according to the rotation angle of the crank 215 (the position of the pedal 216).
  • One rotation of the pedal 216 (0 ⁇ ⁇ ⁇ 360 °) corresponds to one cycle of movement.
  • FIG. 4 shows a functional configuration of the server 300.
  • the server 300 has a function as a general information processing apparatus having information input / output and arithmetic processing, and includes a determination unit 310, a communication unit 330, and a storage unit 320.
  • the determination unit 310 is implemented as one or more general-purpose or dedicated processors, and determines load characteristics to be set in the exercise equipment 200 based at least on attribute information about a certain user provided from the exercise equipment 200. For example, the determining unit 310, according to a predetermined algorithm, the position of the local maximum value, the position of the inflection point, the position of the local minimum value, the position of the local minimum value, the value of the local maximum value, the value of the local minimum value, the inflection point The load characteristic is determined such that at least one of the values in is changed. In a preferred aspect, the determination unit 310 determines the load characteristic using the exercise characteristic measured for the certain user and the user attribute of the user.
  • the determination unit 310 may determine the load characteristics in consideration of attribute information other than that user. Furthermore, the determination unit 310 may determine the load characteristics in consideration of the exercise characteristics of users other than the user. A specific example of determining the load characteristics based on the self attribute information and the self or other person's exercise data will be described later.
  • the determination unit 310 may further determine the load characteristic based on the result of comparing the first exercise characteristic and the second exercise characteristic acquired at different times for the same user. For example, in order to determine a load characteristic, the exercise characteristic acquired for a user is compared with the exercise characteristic already acquired for the user in the past (for example, three months ago) and stored in the storage unit 320. The load characteristic is determined in consideration of the exercise characteristic acquired now and the result of the comparison. Specifically, the determination unit 310 uses a result obtained by analyzing a predetermined algorithm or a change in other person's motion characteristics, a change in other user's user attributes, or the like stored in the storage unit 320 to change the user's motion characteristics. Estimate the cause of Then, the load characteristic is determined according to the estimated cause.
  • a load characteristic curve that increases the overall load is determined.
  • a load characteristic curve that reduces the load is determined.
  • the past motion characteristics to be compared may be data at a past point in time (at the time when the measurement was performed a predetermined period before or last from the present), or measured at two or more past points in time. May be used.
  • the load characteristic to be set can be determined by taking into account the transition of the exercise characteristic from the start of training to the present. Comparing one's current motor characteristics with past motor characteristics can be said to be an indicator of the effects of training accumulated in the past or the willingness to work. Therefore, it is possible to provide training that takes into account the user's motivation and potential ability / function, which is difficult to estimate only from the currently obtained exercise characteristics and the user attributes indicating the current user state.
  • the timing for determining the load characteristic may be every time when the exercise characteristic data is received from the exercise apparatus 200, or at a predetermined timing (at the time when a predetermined number of exercise cycles is achieved, the elapsed time from the start of one workout). , The number of times training has been performed, or a predetermined elapsed time (20 days, 3 months, etc.).
  • the communication unit 330 is a communication interface for exchanging information with each exercise equipment 200 according to a predetermined communication standard. Information for specifying the exercise equipment 200 from each exercise equipment 200, training with the exercise equipment 200 The information for specifying the user performing exercise, exercise characteristic data, and attribute information are acquired. In addition, the communication unit 330 transmits the load characteristic data generated by the server 300 to the exercise equipment 200.
  • the storage unit 320 is a storage device such as a hard disk or a semiconductor memory, and stores a user DB 321, an exercise history DB 322, and a machine DB 323 in addition to the programs for realizing the functions of the server 300 described above.
  • the user DB 321 and the machine DB 323 are referred to when the determination unit 310 generates load characteristic data.
  • the exercise history DB 322 is referred to when the determination unit 310 generates load characteristic data with reference to the training history.
  • FIG. 5 shows an example of information stored in the user DB 321.
  • the user DB 321 stores setting information and user attributes (basic attributes and situation information (information other than training content such as background and circumstances of training)) for each user.
  • the setting information stores information related to training other than information related to load characteristics such as the position, angle, and speed of the movable part, in addition to the training plan, schedule, contents, and policy.
  • the setting information and attribute information may be registered in advance by the user, or may be input to the exercise equipment 200 at the start of each training and transmitted to the server 300 together with the exercise characteristic data. Note that either one of the basic attribute and the situation information may be omitted.
  • FIG. 6 shows an example of information stored in the machine DB 323.
  • FIG. 7 shows an example of information stored in the exercise history DB 322.
  • the exercise history DB 322 stores information representing the content of training performed in the past using the exercise device 200 for each user. Specifically, a record is generated every time training is performed. In one record, the date and time when the training was executed, the machine ID for identifying the exercise equipment 200 that performed the training, the content of the training (applied load characteristics), the total exercise time, and the feedback (user's impression) are recorded.
  • the exercise history DB 322 stores information representing the content of training performed in the past using the exercise device 200 for each user. Specifically, a record is generated every time training is performed. In one record, the date and time when the training was executed, the machine ID for identifying the exercise equipment 200 that performed the training, the content of the training (applied load characteristics), the total exercise time, and the feedback (user's impression) are recorded.
  • the feedback user's impression
  • the exercise to which the load characteristic curve q1 is applied is performed for 10 minutes, the exercise characteristic is measured on another day to obtain the exercise characteristic curve p2, and the load characteristic curve is obtained based on this result. q2 is updated, and the updated load characteristic curve q2 is applied to indicate that the exercise is performed for 30 minutes.
  • the applied load characteristics and the measured movement characteristics do not need to be expressed as a movement characteristic curve or a load characteristic curve (continuous function). It may be a set of combinations of discrete positions (or changes) and forces (loads applied) exerted at the positions.
  • information representing the load characteristic applied by the exercise apparatus 200 and information representing the result of the user's exercise acquired when the load characteristic is updated are recorded.
  • FIG. 8 is a specific example of an exercise characteristic curve acquired for a certain user.
  • p1 shows the characteristic of the force exhibited when the user exercised with the leg press machine in the measurement mode.
  • the horizontal axis represents the amount of displacement (distance), and the vertical axis represents the magnitude of the user's exerted force or the force applied to the user.
  • FIG. 9 shows an example of a load characteristic curve q1 that is generated in consideration of the user's attribute information, training purpose, etc., and is applied in the subsequent training mode, corresponding to the movement characteristic curve p1.
  • the load characteristic curve q1 shows that the load applied at the initial movement point d1 and the operation end point d3 is not changed, the peak position remains d2, and the peak load is compared with p1 in order to exert a greater force near the peak position d2.
  • FIG. 10 is an example of another load characteristic curve q2 generated for the movement characteristic curve p1.
  • the point of the overall shape that is convex upward does not change, but in the load characteristic curve q2, the peak position is shifted to d2, while the peak value does not change.
  • the load characteristic curve q2 employs an algorithm for urging the user to exert the strongest force at d2 ′ (that is, at an earlier timing in a series of exercises).
  • this user is aimed at improving the competitiveness, and for a normal person, it is ideal for increasing the strength to exert a force like the load characteristic curve q1.
  • the load characteristic that is uniquely determined with respect to the detected exercise characteristic is not determined, but the load characteristic is determined in consideration of the user attribute, the training purpose, and the like.
  • the load characteristics that are set will change if the basic attributes such as age and gender, the purpose of the training, and the background to tackle the training are different. obtain.
  • FIG. 11 is another example of the acquired motion characteristic curve.
  • the motion characteristic curve p2 has a minimum value at the displacement amount d4 and has a maximum value at the displacement amounts d5 and d6.
  • the motion characteristic shows an upwardly convex shape having one peak as shown in FIG. 8, but a shape like p2 is not normal. Therefore, by continuing to apply the load currently set for the exercise apparatus 200 as it is or simply increasing or decreasing the load uniformly (regardless of the amount of displacement), at least for this user, preferable training is realized. It's hard to say.
  • FIG. 12 is an example of a load characteristic curve generated corresponding to this motion characteristic curve p2.
  • the value Fmin at the initial movement point d1 is the same as that in the movement characteristic curve p2, but has an upwardly convex shape having one peak in the displacement d4.
  • a load characteristic curve is determined. If it is presumed to be caused by pain or failure, the muscles may be damaged. Therefore, when a characteristic such as the exercise characteristic curve p2 is measured, it is ideal without applying a load rather than strengthening the muscle strength. It is considered preferable to set a characteristic such as a load characteristic curve q3 in order to remember the movement.
  • a load characteristic curve such as q4 is determined. This aims to improve at the same time both exercise strength (strengthening of muscle strength) and exercise characteristics (how to use muscles).
  • the exercise intensity (corresponding to the area surrounded by the curve and two axes) is the exercise characteristic curve p2 as shown in q5.
  • the load characteristic may be set so that the curve shape is corrected to be close to the ideal state.
  • the determination unit 310 may set a load characteristic such as q6 shown in FIG. 13 for the motion characteristic curve p2. The purpose of this is to train so that more power can be exerted in a position where power is applied, while training can be performed without applying much power in a position where power is not applied.
  • FIG. 14 is a schematic diagram for explaining an example in which the server 300 determines a load characteristic curve using information on another person.
  • an exercise characteristic curve p2 shown in the upper diagram of the figure is obtained for the target user (here, Mr. A).
  • the determination unit 310 searches the exercise history DB 322 and determines exercise characteristic data having the closest similarity to p2 using a predetermined pattern matching algorithm.
  • Mr. C's motion characteristic data has the highest similarity.
  • the determination part 310 produces
  • the load characteristic data generated for Mr. C may be used as it is as the load characteristic data for Mr. A, or the difference between Mr. A's movement characteristic data and Mr. C's movement characteristic data. Based on this, the load characteristic data generated for Mr. C may be corrected.
  • the predetermined pattern matching algorithm is not limited to a fixed one.
  • a technique related to so-called AI (artificial intelligence) such as machine learning is applied to the motion characteristics and attribute information accumulated in the server 300. May be obtained.
  • AI artificial intelligence
  • a deep learning method can be employed as the machine learning.
  • the calculation of the load characteristic data does not necessarily need to use the load characteristic data itself generated for another person as long as it is based on other motion characteristics.
  • the server 300 analyzes the accumulated user attributes and exercise characteristics for a large number of people, and updates the load characteristics update pattern applied in the exercise apparatus 200 in the past and the attributes of the user who applied the pattern. Is stored in the storage unit 320. And according to the request
  • the server 300 creates a database 324 as shown in FIG. 15 based on the accumulated exercise characteristics and user attributes.
  • This database 324 is associated with each update pattern (combination of load characteristics before and after update), information indicating user attributes of a plurality of users to which the pattern is applied, the frequency with which each update pattern was applied, and the application
  • the history of the user's training at the time (the frequency of training, the total time of training, information on other training results and schedules), and the effects brought about by this change in load characteristics are described.
  • the effect in the figure may be subjective information input by a user or a trainer, or data analysis of two motion characteristics measured at two time points before and after the update of the load characteristics.
  • This effect may be described for each user attribute. That is, an effect that appears specifically for a user having a predetermined user attribute may be described.
  • the ratio of users who subsequently changed to the load characteristic q5 is the largest, 50% of the total, and half of the users who changed to the load characteristic q5 are for the purpose of dieting. This means that the user's response that the training was continued for less than a month has been received.
  • the determination unit 310 determines load characteristics by referring to the database 324. For example, the determination unit 310 determines an update pattern having the highest degree of fitness regarding the user attribute and training period of the target user. For example, if it is a female user for a diet purpose, the load characteristic q5 is selected.
  • the load characteristic (for example, q5) determined in this way may be information depending on the movement characteristic, or may be defined independently of the movement characteristic (for example, data representing the load curve itself). Also good. In the former case, for example, the shape of the load curve is an ideal shape, and the load characteristic is intended to increase the peak value of the current motion characteristic data by 5%. In the latter case, it is not necessary to measure the movement characteristics in order to determine the load characteristics, and only the user attributes need be determined. Therefore, in this case, the above-described measurement mode may be omitted in the exercise apparatus 200.
  • the motion characteristic data and the load characteristic data corresponding thereto have a large amount of data, there are cases where a large amount of calculation is required for data analysis such as matching processing of the motion characteristic data.
  • the load characteristic is determined by using, it is only necessary to determine one update pattern that matches the user attribute among a plurality of predetermined update patterns, so that the amount of calculation when determining the load characteristic is suppressed. Can do.
  • the determination unit 310 may determine an update pattern to be selected based on information about an effect when applied to another person instead of the other person's user attribute or together with the other person's user attribute. For example, for the user currently applying the current load characteristic q5, an update pattern having the largest index value representing the effect is determined among the update patterns q1 ⁇ q5, q1 ⁇ q6, q1 ⁇ q7,. . Or you may determine an update pattern in consideration of the similarity of a user attribute, and the grade of an effect. For example, a user with a general attribute can expect a high effect (in other words, a high universality) update pattern, but if the user attribute is far from the general public, such an effect cannot be expected much. Therefore, for a user having such an attribute, it can be determined that other update patterns are selected with priority given to the similarity of the user attribute.
  • the reliability is increased as compared with the case where the load characteristic is calculated based only on the theory.
  • This reliability is expected to increase as the number of exercise characteristic data and load characteristic data stored in the server 300 increases, in other words, as more exercise equipment is connected to the server 300.
  • Load characteristic data may be generated based on the current or past attribute information of the person, the current or attribute information of the other person, and the current or movement characteristic of the other person.
  • the determination unit 310 individually determines the similarity of the exercise characteristic and the similarity of the user attribute, and comprehensively determines the similarity of the exercise characteristic and the similarity of the user attribute according to a predetermined algorithm. The similarity is calculated, and the load characteristic is determined based on the movement characteristic data having the highest overall similarity.
  • the movement characteristic data of Mr. D is selected.
  • one or more users having attribute information having a certain degree of similarity with the attribute information of a certain user are first extracted, and the degree of similarity is the highest among the exercise characteristic data generated for the extracted one or more users.
  • High exercise characteristic data may be specified, and load characteristic data for the certain user may be generated based on the load characteristic data generated for the specified exercise characteristic data.
  • the determination unit 310 further refers to the user DB 321 to acquire attribute information of the user (in this case, Mr. C) used for generation, and generates information based on the attribute information as accompanying information. Also good. For example, if the attribute information of Mr. C is described as having knee pain, “Mr. A may not be able to demonstrate his power well due to knee pain.” Generate text information. The accompanying information generated in this way is transmitted to the exercise equipment 200 together with the load characteristic data. Alternatively, for example, when it is estimated from the user attributes that the user is an athlete, a message such as “How to use your muscles is better than others” may be generated.
  • Such a message may be registered in advance in association with attribute information and exercise characteristics, or obtained by applying a reinforcement learning method to a large number of accumulated exercise characteristics and attribute information. May be generated on the basis of an event or knowledge (correlation or causal relationship between load characteristic data and user attributes). In this way, by using the user attribute of another person, it is possible to provide the user with a cause that the user is not aware of and a solution / advice for the cause.
  • the accompanying information generated by the determination unit 310 information on health status or information on the possibility of a disease may be included.
  • the accompanying information includes information indicating that the movement characteristic of the one user is different from the reference movement characteristic by a predetermined degree or more.
  • the determination unit 310 stores characteristic movement characteristic data for each disease, calculates the degree of coincidence between the acquired movement characteristic and the stored movement and characteristic, and the degree of coincidence is greater than or equal to a predetermined value. If it generates a message that indicates a possible serious disease.
  • the motion characteristic data characteristic of the disease may be calculated by 310 by analyzing the correlation between the information related to the disease among a plurality of user attribute information and a large number of motion characteristic data.
  • FIG. 17 shows an operation example of the control system 100.
  • the exercise device 200 transmits the user ID to the server 300.
  • the server 300 authenticates whether the user is registered based on the user ID (S102).
  • the exercise device 200 determines whether to apply the training mode or the measurement mode to this user. For example, when this is the first user and there is no load characteristic data to be applied to this user, or when a predetermined period has passed since the last time load characteristic data was set and the load characteristic data needs to be updated
  • the measurement mode is applied (S104: YES), otherwise the training mode is applied (S104: NO).
  • the exercise device 200 displays a guidance message that prompts the user to exercise, and acquires exercise characteristic data based on the user's exercise (S106).
  • the acquired data is transmitted to the server 300 at a predetermined timing together with information for identifying the user and information for identifying the exercise equipment 200 (S108).
  • the server 300 generates load characteristic data using this exercise characteristic (S110) and transmits it to the exercise apparatus 200 (S112).
  • the exercise device 200 that has received the load characteristic data applies the training mode and performs load setting based on the load characteristic data (S114).
  • the load information includes the above-described accompanying information
  • the accompanying information is supplied to the notification unit 270 and provided to the user.
  • the exercise device 200 acquires the load characteristic data corresponding to the user from the server 300 and applies it (S111, S114).
  • the exercise device 200 shifts to the measurement mode and updates the exercise characteristic data (S116, S108, S110, S112, S114).
  • the user's training is completed (S116: YES)
  • information representing the content (actual result) of the training is generated (S118) and transmitted to the server 300 (S120).
  • the end point of the training may be instructed by the user, or the point in time when the time described in the setting information applied at the start of the training has elapsed may be determined as the end of the training.
  • the server 300 updates the exercise history DB 322 based on the received information (S122).
  • the load characteristic generation function of the server 300 may be provided in each exercise equipment 200, or may be provided in a control device built in the exercise equipment or attached afterwards. That is, according to the present invention, for a plurality of users, in a series of exercises performed using an exercise device including a movable part whose load can be adjusted, a force applied to the movable part and a displacement amount of the movable part A load on the one user based on an acquisition means for acquiring an exercise characteristic representing a relationship, an exercise characteristic of one user who performed training using the exercise apparatus, and an exercise characteristic of a user other than the one user; And a control unit including a determining unit that determines a characteristic, and an output unit that outputs a load setting instruction based on the determined load characteristic to the exercise equipment.
  • the step of obtaining the representing exercise characteristic the step of obtaining the attribute information of the user, the exercise characteristic of the one user who performed training using the exercise equipment, and the attribute information of the one user.
  • a step of determining a load characteristic for the user and a step of outputting a load setting instruction based on the determined load characteristic to the exercise apparatus may be executed.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rehabilitation Tools (AREA)

Abstract

本発明に係るシステム(100)は、負荷が調整可能な運動器具を用いて行われる運動において、ユーザが運動中に前記運動器具(200)に対して与える力の特性を表す運動特性を取得する第1取得手段(211、222)と、ユーザの属性情報を取得する第2取得手段(240、250)と、前記運動器具を用いてトレーニングを実施した一のユーザの運動特性と当該一のユーザの属性情報とに基づいて、当該一のユーザが前記運動器具を用いて運動する際の前記負荷の特性である負荷特性を決定する決定手段(310)と、該決定された負荷特性に基づいた負荷設定の指示を、前記運動器具に出力する出力手段(221、330)とを有する。

Description

運動器具、制御装置、およびプログラム
 本発明は、運動器具に関する。
 筋力トレーニングを行うための機器が種々存在する。これらの機器を用いて行うトレーニングの内容は、トレーニングを行う者の身体的特徴、運動機能、トレーニングを行う目的や目標などに応じて設定されることが好ましい。この点に関連し、文献1には、各ユーザのニーズに応じて、行うべき運動の種類、反復回数、強度を設定することが開示されている。
特開2015-83105号公報
 トレーニング機器の一例として、脚を曲げた状態から伸ばすという一連の運動を反復して行うためのレッグプレスマシンについて考える。レッグプレスマシンの中には、トレーニング効果を高めるため、ばねや重りや制御回路等を内蔵しており、ユーザに与える負荷(運動強度)を調節する機能を有しているものがある。
 一般的に、一連の動きの中で、力が入りやすい(負荷を増やしたほうがよい)ポイントや、力が入りにくい(多くの負荷を与えるべきでない)ポイントが存在するため、トレーニングの効果を最大化するためには、一連の動きの中で負荷量を調節できることが好ましい。そして、このポイントは、例えばユーザの身体的・機能的特徴(骨格や筋肉)によって異なりうる。上記ポイントが不適切に調整された機器を用いてトレーニングを行った場合、所望の効果が得られないばかりか、筋肉を傷める虞もある。
 さらに、上記ポイントは、ユーザの心理状態(例えば、怪我などによって痛みを感じる結果、力が発揮しにくくなっているなど)にも影響される場合がある。加えて、上記ポイントは、トレーニングを行う目的(ダイエット、リハビリ、特定の競技についての競技力向上等)によっても異なり得る。このように、トレーニングを行うユーザ側の事情はさまざまであり、例えば文献1の発明では、各ユーザの個別的事情に対応して、一連の動きの中における負荷量を適切に調整することが困難である。
 本発明は、一連の動きの中における負荷量をユーザの個別的事情に対応して調整することを目的とする。
 本発明は、一の態様において、負荷が調整可能な運動器具を用いて行われる一連の運動において、ユーザが運動中に前記運動器具に対して与える力の特性を表す運動特性を取得する第1取得手段と、ユーザの属性情報を取得する第2取得手段と、前記運動器具を用いてトレーニングを実施した一のユーザの運動特性と当該一のユーザの属性情報とに基づいて、当該一のユーザが前記運動器具を用いて運動する際の前記負荷の特性である負荷特性を決定する決定手段と、該決定された負荷特性に基づいた負荷設定の指示を、前記運動器具に出力する出力手段とを有する制御装置を提供する。
 本発明は、他の観点において、コンピュータに、負荷が調整可能な運動器具を用いて行われる一連の運動において、ユーザが運動中に前記運動器具に対して与える力の特性を表す運動特性を取得するステップと、ユーザの属性情報を取得するステップと、前記運動器具を用いてトレーニングを実施した一のユーザの運動特性と当該一のユーザの属性情報とに基づいて、当該一のユーザが前記運動器具を用いて運動する際の前記負荷の特性である負荷特性を決定するステップと、該決定された負荷特性に基づいた負荷設定の指示を、前記運動器具に出力するステップとを実行させるためのプログラムを提供する。
 本発明は、他の観点において、負荷が調整可能な可動部と、前記可動部に作用された力の特性を表す運動特性を取得する第1取得手段と、ユーザの属性情報を取得する第2取得手段と、トレーニングを実施した一のユーザの運動特性と当該一のユーザの属性情報とに基づいて、当該一のユーザが運動する際の前記負荷の特性である負荷特性を決定する決定手段と、該決定された負荷特性に基づいて前記可動の負荷を調整する調整手段とを有する運動器具を提供する。
 本発明によれば、一連の動きの中における負荷量をユーザの個別的事情に応じて調整することができる。
制御システム100の概要を示す図。 運動器具200の機能構成を示す図。 運動器具200の例を示す図。 運動器具200の他の例を示す図。 運動器具200の他の例の拡大図。 サーバ300の機能構成を示す図。 ユーザDB321に記憶される情報の例を示す図。 マシンDB323に記憶される情報の例を示す図。 運動履歴DB322に記憶される情報の例を示す図。 トレーニング開始時に取得した運動特性曲線の例(その1)。 負荷特性曲線の例(その1)。 負荷特性曲線の例(その2)。 トレーニング開始時に取得した運動特性曲線の例(その2)。 負荷特性曲線の例(その3)。 負荷特性曲線の例(その4)。 他人の運動特性データとの類似度を決定する処理を示す模式図(その1)。 他人の運動特性データとの類似度を決定する処理を示す模式図(その2)。 サーバ300に記憶されるデータベース324の例。 制御システム100の動作例。
 図1は制御システム100の概要を示す。制御システム100は、運動器具200-1、200-2、200-3、およびサーバ300を含む。
 各運動器具200は、負荷が調整な可動部を少なくとも備えた運動器具であって、例えば、ペダリングマシン、レッグプレス、ベンチプレス等である。運動器具200にて実現される運動の内容、種類、主に使用する体の部位は特に限定されない。要は、一連の運動(可動部の動作開始点と動作終了点とで定義される動作の単位)を繰り返してユーザに行わせることによって、筋肉に負荷を与える装置である。動作の単位とは、典型的に、脚や腕を最も曲げた状態から最も伸ばした状態にするまで(あるいはその逆方向)の動作であるが、伸ばした状態からさらに曲げた状態に戻るまでを一単位と捉えてもよい。あるいは、ペダルを一回転だけ漕ぐ動作も一連の動作といえる。
 加えて、各運動器具200は、負荷量(力の大きさ)以外に、トレーニングに関係するパラメータを調節する機能を有する。具体的には、力を入れさせる方向やタイミングの調節機能のほか、一連の運動を繰り返す回数や一回のトレーニングの時間の長さを設定および変更する機能を有する。
 負荷の設定に関し、各運動器具200は、サーバ300から指示された情報に基づいた負荷特性が設定された状態でユーザにトレーニングを行わせる機能(トレーニングモードという)と、上記負荷特性を決定するために用いられるユーザの運動特性データを生成してサーバ300に提供する機能(計測モードという)とを有する。計測モードにおいては、例えば、等負荷(一連の運動においてユーザに与える負荷量が一定)、あるいは等速度(可動部の移動・回転、ねじれ等の運動)の速度が一定となるような制御の下、ユーザに運動をさせることにより行われる。
 初めて運動器具200を利用するユーザは、まずは計測モードで運動し、自身の運動能力等が反映された負荷特性を取得し、該取得した負荷特性のトレーニングモードで所定期間(例えば3か月)トレーニングを重ねたのち、再び計測モードを用いて計測をし直し、負荷特性を取得(更新)する。このようにトレーニングモードと計測モードとを繰り返していくことで、ユーザは目的の肉体的状態を目指すことになる。
 なお、各運動器具200の機能(実現される運動の内容)は同一であってもよいし異なっていてもよい。また、図示された運動器具200の数は、例示に過ぎず、制御システム100に少なくとも1台以上存在すればよい。各運動器具200は同一の施設内に設置されて同一のユーザが利用できるようになっていてもよいし、離れた場所に設置されてもよい。
 サーバ300は、汎用のサーバ装置やコンピュータとして実現され、制御システム100の運営者によって管理される。
 運動器具200およびサーバ300は、ネットワーク900を介して接続される。ネットワーク900は、例えばインターネット、LAN、基地局や無線アクセスポイントなどによって構成される。
 図2は運動器具200の機能構成を示す。運動器具200は、可動機構210と、制御部220と、通信部230と、ユーザ特定部240と、入力部250と、記憶部260と、報知部270とを含む。
 報知部270は、液晶ディスプレイやスピーカ等の出力手段であって、調整部223にて決定された情報をユーザに文字、画像、音声等によって報知する。
 記憶部260は、半導体メモリ等の記憶装置であって、トレーニング対象のユーザを認証するための情報、センサ211にて取得された情報、可動機構210の負荷を制御するために必要な設定情報(パラメータやアルゴリズム)、後述する機能を運動器具200に実現させるためのプログラムを記憶する。
 可動機構210は、ばね、シャフト、クランク等の変位機構と、負荷設定部221から供給される制御信号に基づいて、機構に与える負荷(抗力)を設定するためのモータや制御回路等などを含む。ユーザはこの負荷に抗って力を変位機構に作用させることで、変位機構が動き、ユーザは所定の運動を行うことができる。変位機構によって実現される運動は、例えば、回転運動や平行移動である。本実施例において、運動器具200によって実現される運動の種類、変位可能な方向(運動の自由度)や可変量、トレーニング対象の体の部位については、特に限定されない。
 可動機構210は、センサ211を含み、ユーザによって行われた運動の結果を検知する。具体的には、センサ211は、機械的、電気的、または磁気的方法によって、可動機構210の変位量(移動量や回転量等)を計測するセンサと、当該変位においてユーザから受けた力を計測するセンサ(加速度センサ、角速度センサ、歪みセンサ、静電容量センサ等)とを含む。
 センサ211が計測を取得するタイミングは、予め定められたサンプリングタイミング(例えば10ミリ秒ごと)ごとであってもよいし、可動部の所定の変化量(位置変化量1cm、角度変化量1°など)を検知するごとであってもよい。後者の場合、ユーザの体格等に応じて、一連の運動に係る変位量(運動開始点から運動終了点まで距離)が異なる場合、例えば予めユーザごとに一連の運動に係る変位量を計測ないし登録しておき、この変位量を所定の方法で等分することにより、センサ211による計測を行うポイントを設定してもよい。
 計測された情報は、逐次、記憶部260に記憶され、必要に応じて解析部222によって読み出される。なお、検知する変位量や運動量は、一次元の値(スカラー量)であってもよいし多次元の値(ベクトル量)であってもよい。
 入力部250は、タッチパネル等の入力デバイスであって、IDやパスワードなど、運動器具200を使用するユーザを識別するための情報を入力するために用いられる。加えて、入力部250は、当該ユーザの属性情報を入力するために使用されてもよい。属性情報とは、年齢・性別、身体的特徴や運動機能に関係する基本的ないし数値化可能な客観的な情報のほか、運動器具200にて行われる一連の運動に関係する体の部位における現在または過去の故障(怪我や病気)に関する情報、運動を行う目的に関する情報、運動中において感じたユーザの感覚に関する情報など、ユーザに特有の事情、ユーザが置かれている状況、トレーニングを行う背景等に関する情報を含むことができる。
 なお、上記の情報を入力するのは、トレーニングを行うユーザであってもよいし、運動器具200を管理する施設の職員であってもよい。後者の場合、例えば、職員が、ユーザからヒアリングを行って得た情報を、サーバ300に接続されるコンピュータ(図示せず)を用いて入力し、入力された情報をサーバ300に送信してもよい。この場合、サーバ300は、ユーザごとに付与され、ユーザに関する情報を受信すると、当該ユーザの識別子として機能し、そのユーザに関する情報にアクセスするための情報(QRコード(登録商標)等)を発行し、運動器具200またはユーザの保有する携帯端末(図示せず)へ送信してもよい。あるいは、サーバ300が、ユーザの携帯する端末や、外部のサーバ(ユーザの既往歴を管理するデータベースなど)から、属性情報を取得してもよい。
 なお、運動を行う目的とは、例えば、筋力増強、運動動作の改善、スポーツ技術の向上、ダイエット(脂肪燃焼)、加齢や故障に伴って低下した筋力の回復(いわゆるリハビリ)等である。感覚に関する情報とは、例えば運動に伴う痛み、不快感などに関するものである。
 なお、入力部250は、タッチパネルに替えて、音声入力を行うためのデバイスとして実装されてもよいし、ユーザが携帯するIDカードに記憶された情報を読取る装置として実装されてもよい。
 制御部220は、1以上の汎用または専用プロセッサやプロセッサあるいは制御回路として実装され、負荷設定部221と解析部222と、調整部223とを含む。制御部220は、トレーニングモードと計測モードの切替えを行う。ユーザ認証時にサーバ300から提供される設定情報を参照して実行し、または記憶部260に記憶されている設定情報に従って実行する。
 解析部222は、運動器具200を用いて行われるユーザの運動において発揮された力の特性を表す運動特性データを取得する。運動特性データは、例えば、ユーザが行う一連の運動において、可動機構210の可動部に作用された力(大きさおよび向きの少なくともいずれか)と当該可動部の変位量との関係として定義することができる。具体的には、横軸を変位、縦軸をユーザによって及ぼされた力と規定すると、運動特性は曲線(特性曲線)として表わすことができる。運動特性の表現方法は一例であって、例えば一連の運動中のタイミング(時点)とその時点において発揮された力との関係を示すものであってもよい。例えば、運動特性は力(例えば単位はニュートン)自体ではなく、力と移動距離や力が作用された期間(仕事量(例えばワット単位)や仕事率(例えばジュール単位))を用いて表現されてもよい。
 取得した運動特性データは、通信部230を介してサーバ300に送信されるとともに、調整部223に供給される。
 また、センサ211における直接的な計測値(例えば電圧値・電流値)を、力を表す量に変換せずそのままサーバ300に出力してもよい。この場合、サーバ300においては後述の負荷特性を決定するために所定の変換処理を行ってもよいし、変換処理を行わずに負荷特性を決定してもよい。
 なお、運動特性データを送信するタイミングは、例えば1サイクルの運動が完了するごとであってもよいし、所定回数の運動サイクルが完了した時点であってもよいし、トレーニング開始から所定時間が経過した時点であってもよい。複数回のサイクルを経て運動特性データを送信する場合、例えば各運動サイクルについて得られた運動特性データに対して所定の統計処理を行い、一つの運動特性データとしてサーバ300に送信する。所定の統計処理とは、例えば平均化、計測したデータの一部を抜粋する処理を含む。抜粋処理とは、例えば、データのうち極大値、極小値などの特徴量を抽出する処理である。
 負荷設定部221は、計測モードにおいて、可動機構210にて実現させる負荷特性を制御する信号を生成して可動機構210に供給する。負荷設定部221は、通信部230を介してサーバ300から取得した、負荷特性データが負荷設定部221に供給されると、予め定められたタイミングで、当該負荷特性データに基づいて負荷を設定する指示が可動機構210に供給される。負荷の指示を出力するタイミングは、トレーニングの途中(例えば1サイクルの運動が行われるごとであってもよいし、所定回数の運動サイクルが完了した時点であってもよいし、トレーニング開始から所定時間が経過した時点など)であってもよいし、常にトレーニング開始時となるように設定してもよい。
 調整部223は、負荷特性以外の、トレーニングに関するパラメータを制御する。具体的には、調整部223は、解析部222から出力された情報に基づいて、所定のアルゴリズムに従って、可動機構210を構成する可動部の位置や向き(姿勢)、速度(ペダリングマシンにおけるペダルの角度、レッグプレスマシンにおける座椅子の高さ等)を設定する。設定された情報は、可動機構210に出力される。なお、このパラメータは負荷量に影響を与えるものであっても構わないが、負荷特性(一サイクルの運動中に負荷をどのような変化させるか)を規定するものは除かれる。
 また、調整部223は、記憶部260に記憶される情報および解析部222から出力された運動特性に基づいて、トレーニングの内容(時間や反復回数等)に関するパラメータを設定し、報知部270に出力する。このパラメータの設定を実行するタイミングは、一サイクルの運動終了後であってもよいし、所定の運動サイクルからなる一回のトレーニング終了後であってもよいし、自由に定めることができる。
 なお、負荷特性以外のパラメータも負荷特性と同様にサーバ300にて生成し、調整部223はサーバ300から当該情報を取得してもよい。
 また、調整部223は、解析部222から出力される情報に加えて、運動器具200に入力されまたはサーバ300から取得された、ユーザに関連する情報を加味して上記パラメータを設定してもよい。
 ユーザ特定部240は、プロセッサやデータ読取装置として実現され、入力部250にて入力された情報やユーザが提示したIDカードから読み出された情報を、記憶部260に記憶された情報と照合するなどして、トレーニングを行っている(またはこれから行おうとしている)ユーザを特定する。
 他の態様として、ユーザ特定部240はICカードリーダやバーコードリーダなどの情報読み取り装置として実現され、サーバにて発行されたQRコード等の識別情報をユーザがトレーニング開始前にユーザ特定部240にかざすと、そのユーザの特定(認証)を行うとともに、そのユーザに対して運動器具200に設定すべき情報を生成するために用いられる情報をサーバ300から取得してもよい。この場合は、入力部250は省略することが可能である。
 通信部230は、所定の通信規格に従ってサーバ300と情報の授受を行うための通信インタフェースである。具体的には、通信部230は、解析部222から供給される運動特性データを、運動器具200を特定するための識別情報とユーザを特定するための識別情報とともに、サーバ300に送信する。また、通信部230は、トレーニング対象のユーザの運動特性に加えて、当該トレーニング対象のユーザのユーザ属性および当該ユーザ以外のユーザの運動特性の少なくともいずれかに基づいて決定された負荷特性データおよびこれに付随する付随情報をサーバ300から取得すると、負荷設定部221に供給する。
 また、トレーニング完了時に、当該トレーニングの内容を示す情報をサーバ300に送信する。加えて、通信部230は、必要に応じて、入力部250にて入力されたユーザの属性情報をサーバ300に送信し、またはユーザ属性や設定情報をサーバ300から受信する。
 図3(a)は運動器具200の外観の例を示す。この例において、運動器具200は、いわゆるレッグプレスマシンであり、ユーザ特定部240と可動機構210とを含む。
 運動器具200は、足置き台と、平行移動が可能な可動機構210に接合された座面および背凭れとで構成された、主に脚の筋力を強化させることを目的とするものである。足置き台に及ぼされた力によって足置き台から座面までの距離dが変化するようになっている。可動機構210にはサーボ機構等が内蔵され、座面の位置に応じて、フレームを移動させるための抵抗力を自由に制御できるようになっている。すなわち、脚の曲げ具合に応じて、発生させる負荷量を制御することができる。距離dが最小となるのは足を最も屈曲させた状態であり、距離dが最大となるのは足を最も伸ばした状態である。足を最も屈曲させた状態から開始して足を最も伸ばした状態となると、1サイクルの運動が完了する。
 図3(b)は運動器具200の外観の他の例を示す。この例において、運動器具200は、ユーザ特定部240と可動機構210とを含み、可動機構210を繰り返し漕ぐことによって主に足の筋力強化を目的とするペダリングマシンである。
 図3(c)は、ペダル部を拡大したものである。可動機構210は、クランク215とペダル216とを含む。可動機構210にはクランク215の回転角(ペダル216の位置)に応じて負荷量を調整することができる駆動機構が内蔵されている。ペダル216の1回転(0≦θ≦360°)が、1サイクルの運動に相当する。なお、初動位置(θ=0)の適宜は任意である。
 図4はサーバ300の機能構成を示す。サーバ300は、情報の入出力および演算処理を有する一般的な情報処理装置としての機能を有し、決定部310と、通信部330と、記憶部320とを含む。
 決定部310は、1以上の汎用または専用のプロセッサとして実現され、運動器具200から提供された、あるユーザについての属性情報に少なくとも基づいて、運動器具200にて設定すべき負荷特性を決定する。例えば、決定部310は、所定のアルゴリズムに従って、該運動特性曲線において現れる極大値の位置、変曲点の位置、極小値の位置、当該極大値の値、当該極小値の値、当該変曲点における値のうち少なくともいずれか一つが変更されるように、負荷特性を決定する。
 好ましい態様において、決定部310は、当該あるユーザについて計測された運動特性と当該ユーザのユーザ属性とを用いて負荷特性を決定する。
 また、決定部310は、当該ユーザ以外の属性情報をさらに考慮して負荷特性を決定してもよい。さらに、決定部310は、および当該ユーザ以外のユーザの運動特性をさらに考慮して負荷特性を決定してもよい。
 自己の属性情報や自己または他人の運動データに基づいて負荷特性を決定する具体例については後述する。
 決定部310は、さらに、同一のユーザについて互いに異なる時点において取得された第1の運動特性および第2の運動特性を比較した結果に基づいて、負荷特性を決定してもよい。
 例えば、負荷特性を決定すべく、あるユーザについて今取得した運動特性と、そのユーザについて過去(例えば3か月前)に既に取得され記憶部320に記憶されている運動特性とを比較し、当該今取得した運動特性と該比較の結果とを加味して負荷特性を決定する。具体的には、決定部310は、所定のアルゴリズムまたは記憶部320に蓄積された他人の運動特性の変化や他人のユーザ属性の変化等を解析した結果を用いて、そのユーザの運動特性の変化の原因を推定する。そして、推定した原因に応じて負荷特性を決定する。
 例えば、原因が筋力の向上であると推定した場合、全体的な負荷を上げるような負荷特性曲線を決定する。あるいは、そのユーザについて怪我など体調の不備が疑われる場合は、負荷を下げるような負荷特性曲線を決定する。なお、対比すべき過去の運動特性は過去の一時点(現在から所定期間前あるいは最後に計測が行われたされた時点)にのデータであってもよいし、2以上の過去の時点に計測された運動特性を用いてもよい。後者の場合、トレーニングを始めてから現在までの運動特性の推移を加味して、いま設定すべき負荷特性を決定することができる。
 自己の現在の運動特性と過去の運動特性との比較は、過去に積み重ねたトレーニングの効果あるいはトレーニングへの意欲を示す一つの指標といえる。よって、現在得られている運動特性や現状のユーザの状態を示すユーザ属性からだけは推し量ることが困難な、ユーザの意欲や潜在的能力・機能を加味した内容のトレーニングを提供することができる。
 負荷特性を決定するタイミングは、運動器具200から運動特性データを受信するごとであってもよいし、予め定められたタイミング(所定の運動サイクル数を達成した時点、一つのトレーニング開始からの経過時間、トレーニングが行われた回数、所定の経過時間(20日、3か月など))であってもよい。
 通信部330は、所定の通信規格に従って各運動器具200と情報の授受を行うための通信インタフェースであり、各運動器具200から、運動器具200を特定するための情報、当該運動器具200にてトレーニングを行うユーザを特定するための情報、運動特性データ、属性情報を取得する。また、通信部330は、サーバ300にて生成された負荷特性データを運動器具200へ送信する。
 記憶部320は、ハードディスクや半導体メモリ等の記憶装置であって、上述したサーバ300の機能を実現させるためのプログラムのほか、ユーザDB321、運動履歴DB322、およびマシンDB323を格納している。ユーザDB321およびマシンDB323は、決定部310が負荷特性データを生成する際に参照される。運動履歴DB322は、決定部310がトレーニング履歴を参照して負荷特性データを生成する場合に参照される。
 図5はユーザDB321に記憶される情報の例を示す。ユーザDB321には、各ユーザについての、設定情報およびユーザ属性(基本的属性および状況情報(トレーニングを行う背景、事情など、トレーニング内容以外の情報など))が記憶される。設定情報とは、トレーニングの計画、スケジュール、内容、方針のほか、可動部の位置、角度、速度等、負荷特性に関する情報以外のトレーニングに関する情報が記憶される。
 なお、設定情報および属性情報は、ユーザによって予め登録されていてもよいし、毎回のトレーニング開始時に運動器具200にて入力されて運動特性データとともにサーバ300に送信されてもよい。なお、基本属性と状況情報のうちいずれか一方が省略されてもよい。
 図6は、マシンDB323に記憶される情報の例を示す。マシンDB323は、各運動器具200を特定するための識別情報に対応付けて、その運動器具200の負荷を調整するためのパラメータを記憶する。
 このパラメータは、運動器具200にて実現可能な運動の自由度に依存する。例えば、001のマシンの場合、設定可能する負荷量は抗力(スカラー量)であり、デフォルトの設定で、負荷量PはP0(d)という関数形で表わされる。002のマシンの場合は、X軸についての回転とY軸についての回転の、2つの自由度が存在し、回転の状態(θ、φ)において発生させる負荷力WはW=W0(θ、φ)という関数形で表わされている。
 図7は、運動履歴DB322に記憶される情報の例を示す。運動履歴DB322には、ユーザごとに、運動器具200を用いて過去に行ったトレーニングの内容を表す情報が記憶される。具体的には、トレーニングが行われる度にレコードが生成される。一つのレコードには、トレーニングが実行された日時、トレーニングを行った運動器具200を識別するマシンID、トレーニングの内容(適用された負荷特性)、総運動時間、フィードバック(ユーザの感想)が記録される。
 この例では、Aさんの場合、負荷特性曲線q1が適用された運動が10分間行われ、別の日に運動特性を計測して運動特性曲線p2を取得し、この結果に基づいて負荷特性曲線q2が更新され、該更新された負荷特性曲線q2が適用されて30分間運動を行ったことを示している。
 なお、適用する負荷特性や計測する運動特性は、運動特性曲線や負荷特性曲線(連続関数)として表現されている必要はない。離散的な位置(あるいは変化量)と当該位置において発揮された力(与える負荷)の組合わせの集合であってもよい。要するに、この項目には、運動器具200にて適用された負荷特性を表す情報と、負荷特性を更新する際に取得された、ユーザが運動した結果を表す情報とが記録される。
 <1.自己の属性情報に基づいて負荷特性曲線を決定する例>
 図8は、あるユーザについて取得された運動特性曲線の具体例である。p1は、計測モードにおいて、ユーザがレッグプレスマシンにて運動した際に発揮された力の特性を示す。横軸は変位量(距離)であり、縦軸は発揮されたユーザの力またはユーザに与えた力の大きさである。初動点d1において力は最小値Fminであり、dが大きくなるにつれて(すなわち脚が徐々に伸ばされるにつれて)大きな力が発揮され、力は変位量d=d2において最大値Fmaxを取る。すなわち、このユーザはd=d2において最も力が発揮されたことを示す。ここからさらにdが大きくなる(脚が伸ばされる)と、発揮された力は徐々に小さくなり、動作終了点d3(例えば脚が完全に伸びきった状態)で1サイクルの運動が終了する。
 図9は、この運動特性曲線p1に対応して、当該ユーザの属性情報,トレーニング目的等を加味して生成され、以後のトレーニングモードにて適用される負荷特性曲線q1の例を示す。負荷特性曲線q1は、初動点d1および動作終了点d3において与える負荷は変化させず、ピーク位置はd2のまま、ピーク位置d2付近おいてユーザにより大きな力を発揮させるべく、p1と比べてピーク負荷量をΔ=F'max-Fmaxだけ増大する設定となっている。すなわち、この例では、得られた運動特性に対し、ピーク位置を保ったままピーク強度を変化させるように矯正することを目的とするアルゴリズムが採用されている。
 図10は、運動特性曲線p1に対して生成された他の負荷特性曲線q2の例である。この例では、上に凸である全体的な形状である点は変わらないものの、負荷特性曲線q2においては、ピーク位置がd2にシフトしている一方、ピーク値は変わらない。すなわち、負荷特性曲線q2は、d2´において(すなわち一連の運動においてより早いタイミングで)最も強い力を発揮するようにユーザに促すことを目的としたアルゴリズムが採用されている。このような設定を行う場面としては、例えば、このユーザが競技力向上を目的としており、通常の人にとっては負荷特性曲線q1のような力の発揮させ方が筋力アップには理想的である一方、このユーザが行う競技を行う上では負荷特性曲線q2に従った力の発揮のさせ方が競技力向上に寄与することが研究によって明らかになっているような場合が考えられる。なお、ピークのシフト方向は逆(ゆっくり力が発揮される報告)であってもよい。
 このように、トレーニングの目的等に応じたトレーニング対象の部位の筋力の理想的な使い方をユーザの体に覚え込ませることができる。
 このように、検出した運動特性に対して唯一定まる負荷特性が決定されるのではなく、ユーザの属性,トレーニング目的等を加味して負荷特性が決定される。この結果、仮に似たような運動特性を発揮するユーザがいたとしても、年齢や性別などの基本的属性、トレーニングの目的、トレーニングに取り組む背景などの事情が異なれば、設定される負荷特性も変わり得る。
 図11は、取得された運動特性曲線の他の例である。同図に示すように、運動特性曲線p2は、変位量d4において極小値をとり、変位量d5とd6とにおいて極大値をとる。一般的な運動においては、運動特性は、図8のような1つのピークを有する上に凸な形状を示すが、p2のような形状は通常とはいえない。よって、現状運動器具200に設定されている負荷をこのまま適用し続けたり、負荷を一様に(変位量に関係なく)増減させるだけでは、少なくともこのユーザにとっては、好ましいトレーニングが実現されるとは言い難い。
 図12は、この運動特性曲線p2に対応して生成された負荷特性曲線の例である。負荷特性曲線q3において、初動点d1における値Fminは運動特性曲線p2と同じであるが、変位量d4において一つのピークを有する、上に凸な形状となっている。そして、ピーク値は等しい(F=q3(d4)=p2(d4))。すなわち、負荷特性曲線q3は、全体としては運動強度を下げつつ、理想的な運動特性(体の使い方)をするようにユーザを促すことを目的としている。
 例えば、ユーザ属性から、ユーザが痛みを感じていると推定される場合、あるいは過去に怪我をしたことがあると推定される場合に、このような負荷特性曲線が決定される。痛みや故障が原因であると推定される場合は筋肉を傷めてしまう可能性があるので、運動特性曲線p2のような特徴が計測された場合、筋力強化よりも負荷をかけずに理想的な動きを覚えさせるべく、負荷特性曲線q3のような特性を設定したほうが好ましいと考えられる。
 属性情報からは痛みや故障の事実が推認できない場合などは、q4のような負荷特性曲線が決定される。これは運動強度(筋力強化)についても運動特性(筋肉の使い方)についても、同時に改善を目指すことを目的としている。
 あるいは、筋肉の使い方の癖のみを強制するという目的が属性情報に記述されている場合は、q5に示すように、運動強度(曲線と2つの軸で囲まれる面積に相当)が運動特性曲線p2とほぼ同一となるように、且つ曲線形状を理想的な状態に近いものに矯正するような負荷特性を設定してもよい。
 あるいは、痛みの発生や故障の事実が窺えず、例えば筋力アップ重視を望んでいることが属性情報に記述されているような場合は、曲線形状はこのままで維持する(矯正しない)という考え方もあり得る。このような場合は、決定部310は、運動特性曲線p2に対し、図13に示すq6のような負荷特性を設定してもよい。これは、力が入るポジションにおいてより力が発揮されるように鍛える一方、力があまり入らないポジションにおいては力をあまり入れなくてもトレーニングができるようにすることを目的としている。
 上記実施例によれば、ユーザが行った運動の特性に加えて、各ユーザに固有の、運動特性以外の要素を加味して運動器具200における負荷特性を設定できる。
 <2.他人の運動特性を加味して負荷特性曲線を決定する例>
 図14は、サーバ300が、他人の情報を用いて負荷特性曲線を決定する例を説明するための模式図である。ここでは、対象のユーザ(ここではAさんとする)について、同図の上の図に示す運動特性曲線p2を得たとする。すると、決定部310は、運動履歴DB322内を検索し、所定のパターンマッチングアルゴリズムを用いて、p2と最も類似度が近い運動特性データを決定する。
 この例では、Cさんの運動特性データと最も類似度が高かったとする。すると、決定部310は、このCさんの運動特性データに対して生成された負荷特性データに基づいて、Aさん用の負荷特性データを生成する。具体的には、Cさんに対して生成された負荷特性データをそのままAさん用の負荷特性データとして採用してもよいし、Aさんの運動特性データとCさんの運動特性データとの差分に基づいて、Cさん用に生成された負荷特性データを補正してもよい。
 なお、所定のパターンマッチングアルゴリズムとは、固定的なものに限らず、例えば、機械学習などのいわゆるAI(人工知能)に関する技術を、サーバ300にて蓄積された運動特性や属性情報に適用することによって得られるものであってもよい。機械学習として、例えばディープラーニングの手法を採用することができる。
 また、負荷特性データの算出は、他の運動特性に基づいていれば、他人のために生成された負荷特性データ自体を必ずしも用いる必要はない。例えば、サーバ300は、多数の人について、蓄積されたユーザ属性と運動特性とを解析して、過去に運動器具200にて適用された負荷特性の更新パターンと該パターンを適用したユーザの属性とを記憶部320に記憶しておく。そして、運動器具200からの要求に応じて、予め定められたパターンのうち、そのユーザの属性およびまたは過去のトレーニング内容に対応する一の更新パターンを決定する。
 例えば、サーバ300は、蓄積した運動特性やユーザ属性に基づいて、図15に示すようなデータベース324を作成する。このデータベース324には、各更新パターン(更新前後の負荷特性の組み合わせ)に対応付けて、そのパターンを適用した複数のユーザのユーザ属性を表す情報、各更新パターンが適用された頻度、適用された時点のユーザのトレーニングの履歴(トレーニングを行った頻度、トレーニングを行った総時間、その他のトレーニングの実績やスケジュールに関する情報)、この負荷特性の変更によってもたらされた効果が記述されている。
 ここで、同図における効果とは、ユーザやトレーナーによって入力される主観的な情報であってもよいし、負荷特性の更新前後の2つの時点において測定それぞれされた2つの運動特性をデータ解析して得られる、その負荷特性を用いて行ったトレーニングによる運動能力または肉体的変化を表す指標を用いて表現されてもよい。また、この効果はユーザ属性ごとに記述してもよい。すなわち、所定のユーザ属性を有するユーザに特有に表れる効果を記述してもよい。
 この例では、負荷特性q1を適用したユーザ中、その後負荷特性q5に変更したユーザの割合が全体の50%と最も多いこと、負荷特性q5へ変更したユーザの半数はダイエット目的であり、そのユーザを平均するとトレーニングを始めてか1か月未満であり、無理なく続けられたというユーザの反応が多く寄せられた、ことを示している。
 決定部310は、このデータベース324を参照することで、負荷特性を決定する。例えば、決定部310は、対象のユーザのユーザ属性やトレーニング期間に関する適合度が最も高い更新パターンを決定する。例えば、ダイエット目的で女性のユーザであれば、負荷特性q5が選択される。
 このようにして決定される負荷特性(例えばq5)は、運動特性に依存した情報であってもよいし、運動特性とは無関係に定義されるもの(例えば負荷曲線自体を表すデータ)であってもよい。前者の場合、例えば、負荷曲線の形状は理想的な形状としつつ、現在の運動特性データのピーク値を5%だけ上昇させることを目的とした負荷特性である。後者の場合、負荷特性を決定するために運動特性の測定を行う必要がなく、ユーザ属性のみ決定できればよい。従って、この場合、運動器具200において上述の測定モードは省略してもよい。
 一般に、運動特性データやこれに対応する負荷特性データはデータ量が多いため、運動特性データのマッチング処理等のデータ解析には少なくない演算量が必要とされる場合があるが、このデータベース324を用いて負荷特性を決定する態様によれば、予め定められた複数の更新パターンのうちユーザ属性等に適合する一つの更新パターンを決定すればよいので、負荷特性決定の際の演算量を抑えることができる。
 あるいは、決定部310は、他人のユーザ属性に替えてまたは他人のユーザ属性とともに、他人に適用した際の効果に関する情報に基づいて、選択すべき更新パターンを決定していてもよい。例えば、現在負荷特性q5を現在適用しているユーザに対して、更新パターンq1→q5、q1→q6、q1→q7、・・・のうち、効果を表す指標値が最も大きい更新パターンを決定する。あるいは、ユーザ属性の類似度と効果の程度とを加味して更新パターンを決定してもよい。例えば、一般的な属性のユーザには高い効果が期待できる(換言すると、普遍性が高い)更新パターンであったとしても、ユーザ属性が一般からかけ離れている場合はそのような効果があまり期待できないので、そのような属性のユーザについては、ユーザ属性の類似度を優先して他の更新パターンを選択する、といった判定を行うことができる。
 このように他人に実際に適用した実績に基づいて負荷特性データを生成することで、理論のみに基づいて負荷特性を計算する場合よりも信頼性が増す可能性がある。この信頼性は、サーバ300に記憶される運動特性データと負荷特性データの数が多くなるほど、換言すると、多数の運動器具がサーバ300と接続されるほど、増すと期待される。
 なお、自己の属性情報と他人の運動特性の両方を加味してもよい。例えば、自己の属性情報として、ダイエット目的という情報が記述されている場合に、当該目的に沿って理論的に得られる負荷特性データを生成し、運動特性の類似度が高い他人について生成された負荷特性曲線データとの差異に基づいて補正する。
 自己の現在または過去の属性情報、他人の現在または属性情報、および他人の現在または運動特性に基づいて、負荷特性データを生成してもよい。例えば、決定部310は、図16に示すように、運動特性の類似度とユーザ属性の類似度とを個別に決定し、運動特性の類似度とユーザ属性の類似度から所定のアルゴリズムに従って総合的な類似度を算出し、総合的な類似度が最も高い運動特性データに基づいて負荷特性を決定する。同図においては、運動特性の類似度とユーザ属性の類似度を総合的に評価した結果、Dさんの運動特性データが選択されることを表している。
 あるいは、あるユーザの属性情報と一定の類似度を有する属性情報を有する1以上のユーザをまず抽出し、抽出された1以上のユーザに対して生成された運動特性データの中から類似度が最も高い運動特性データを特定し、該特定された運動特性データに対して生成された負荷特性データに基づいて、当該あるユーザに対する負荷特性データを生成してもよい。
 このように他人の属性との共通性を加味することで、負荷特性の妥当性が向上することが期待される。
 この場合、決定部310は、さらに、ユーザDB321を参照して、生成に用いられたユーザ(この場合はCさん)の属性情報を取得し、属性情報に基づいた情報を付随情報として生成してもよい。例えば、Cさんの属性情報として、ひざの痛みを抱えていることが記述されていた場合、「Aさんは、ひざの痛みが原因で、うまく力が発揮できていない可能性があります」とのテキスト情報を生成する。このようにして生成された付随情報は、負荷特性データとともに運動器具200に送信される。あるいは、例えばユーザ属性からそのユーザがアスリートであると推定される場合、「あなたの筋肉の使い方は他人よりも優れている」といったメッセージを生成してもよい。
 このようなメッセージは、予め属性情報および運動特性に対応付けて登録されたものであってもよいし、蓄積された多数の運動特性や属性情報に対して強化学習の手法を適用することによって得られる事象や知見(負荷特性データとユーザ属性との相関関係や因果関係など)に基づいて生成されてもよい。
 このように他人のユーザ属性を利用することで、ユーザが気が付いていない原因やその原因に対する解決策・アドバイスをユーザに提供することができる。
 加えて、他人の運動特性や当該他人用に生成された負荷特性データを付随情報に内包させてもよい。他人のトレーニングについての情報を提供することで、トレーニングの励みになることが期待される。
 決定部310が生成する付随情報として、健康状態の情報ないし疾患の可能性に関する情報が内包されてもよい。例えば、前記付随情報は、当該一のユーザの運動特性が基準の運動特性から所定程度以上異なっていることを示す情報を含む。具体的には、決定部310は、疾患ごとに特徴的な運動特性データを記憶しておき、取得した運動特性と記憶された運動と特性の一致度を算出し、一致度が所定以上である場合は、深刻な疾患の可能性があることを示すメッセージを生成する。ここで、疾患に特徴的な運動特性データは、複数のユーザの属性情報のうち疾患に関係する情報と多数の運動特性データの相関関係を解析することによって310が算出してもよい。
 図17は制御システム100の動作例を示す。トレーニング開始にあたり、ユーザがユーザIDの入力またはユーザID情報を含むQRコードをかざすなどのログイン操作を行うと(S101)、運動器具200は、ユーザIDをサーバ300に送信する。サーバ300は、このユーザIDに基づいて、ユーザが登録されているかどうかを認証する(S102)。
 続いて、運動器具200は、このユーザに対して、トレーニングモードを適用するか計測モードを適用するかを判定する。例えば、初めてのユーザであってこのユーザに適用すべき負荷特性データが存在しない場合や、前回、負荷特性データを設定してから所定期間が経過しており、負荷特性データの更新が必要な場合は計測モードが適用され(S104:YES)、そうでない場合はトレーニングモードが適用される(S104:NO)。
 計測モードが適用された場合、運動器具200は、ユーザに運動を行うように促す案内メッセージなどを表示し、ユーザの運動に基づいて運動特性データを取得する(S106)。取得されたデータは、所定のタイミングで、ユーザを識別する情報と運動器具200を識別する情報とともに、サーバ300に送信される(S108)。
 サーバ300は、この運動特性を用いて負荷特性データを生成し(S110)、運動器具200に送信する(S112)。負荷特性データを受信した運動器具200は、トレーニングモードを適用し、当該負荷特性データに基づいて負荷設定を行う(S114)。なお、負荷特性データに上述した付随情報が含まれる場合、当該付随情報は報知部270へ供給され、ユーザに提供される。
 一方、トレーニングモードが適用された場合、運動器具200は、そのユーザに対応する負荷特性データをサーバ300から取得し、適用する(S111、S114)。
 以後、そのトレーニング期間中に、負荷特性データの更新時期が到来すると(S115:YES)、運動器具200は計測モードに移行して運動特性データを更新する(S116、S108、S110、S112、S114)。そのユーザのトレーニングが終了すると(S116:YES)、そのトレーニングの内容(実績)を表す情報を生成し(S118)、サーバ300に送信する(S120)。なお、トレーニングの終了時点はユーザにより指示されてもよいし、トレーニング開始時に適用した設定情報に記述された時間が経過した時点をトレーニング終了と判定してもよい。サーバ300は、受信した情報に基づいて運動履歴DB322を更新する(S122)。
 サーバ300の負荷特性生成機能を各運動器具200に持たせてもよいし、運動器具に内蔵または事後的に取り付けられる制御装置に持たせてもよい。すなわち、本発明は、複数のユーザについて、負荷が調整可能な可動部を備えた運動器具を用いて行われる一連の運動において、当該可動部に作用された力と当該可動部の変位量との関係を表す運動特性を取得する取得手段と、前記運動器具を用いてトレーニングを実施した一のユーザの運動特性と当該一のユーザ以外のユーザの運動特性とに基づいて、前記一のユーザに対する負荷特性を決定する決定手段と、該決定された負荷特性に基づいた負荷設定の指示を、前記運動器具に出力する出力手段とを有する制御装置を含む。
 要するに、本発明に係るシステムにおいて、負荷が調整可能な可動部を備えた運動器具を用いて行われる一連の運動において、当該可動部に作用された力と当該可動部の変位量との関係を表す運動特性を取得するステップと、ユーザの属性情報を取得するステップと、前記運動器具を用いてトレーニングを実施した一のユーザの運動特性と当該一のユーザの属性情報とに基づいて、当該一のユーザに対する負荷特性を決定するステップと、該決定された負荷特性に基づいた負荷設定の指示を、前記運動器具に出力するステップとが実行されればよい。
100・・・制御システム、200・・・運動器具、300・・・サーバ、900・・・ネットワーク、210・・・可動機構、240・・・ユーザ特定部、215・・・クランク、216・・・ペダル、211・・・センサ、220・・・制御部、230・・・通信部、250・・・入力部、260・・・記憶部、270・・・報知部、221・・・負荷設定部、222・・・解析部、223・・・調整部、320・・・記憶部、310・・・決定部、330・・・通信部、321・・・ユーザDB、322・・・運動履歴DB、323・・・マシンDB

Claims (12)

  1.  負荷が調整可能な運動器具を用いて行われる運動において、ユーザが運動中に前記運動器具に対して与える力の特性を表す運動特性を取得する第1取得手段と、
     ユーザの属性情報を取得する第2取得手段と、
     前記運動器具を用いてトレーニングを実施した一のユーザの運動特性と当該一のユーザの属性情報とに基づいて、当該一のユーザが前記運動器具を用いて運動する際の前記負荷の特性である負荷特性を決定する決定手段と、
     該決定された負荷特性に基づいた負荷設定の指示を、前記運動器具に出力する出力手段と
     を有する制御装置。
  2.  前記第1取得手段は、前記一のユーザについて、複数の時点において運動特性を取得し、
     前記決定手段は、前記一のユーザについての、第1の時点において測定された運動特性と第2の時点において測定された運動特性とに基づいて、当該一のユーザに対する負荷特性を決定する
     ことを特徴とする請求項1に記載の制御装置。
  3.  前記第1取得手段は、複数のユーザについて運動特性を取得し、
     前記決定手段は、前記一のユーザの運動特性と当該一のユーザ以外のユーザの運動特性とに基づいて、前記一のユーザに対する負荷特性を決定する
     ことを特徴とする請求項1または2に記載の制御装置。
  4.  前記決定手段は、前記一のユーザ以外の属性情報にさらに基づいて前記負荷特性を決定する
     ことを特徴とする請求項1ないし3のいずれか1項に記載の制御装置。
  5.  前記決定手段は、さらに、前記一のユーザ以外のユーザの運動特性に基づいて生成される付随情報を生成し、
     前記出力手段は、該決定された付随情報を更に出力する
     ことを特徴とする請求項3または4に記載の制御装置。
  6.  前記付随情報は、前記一のユーザ以外のユーザの属性情報にさらに基づいて生成されることを特徴とする請求項5に記載の制御装置。
  7.  前記付随情報は、当該一のユーザの運動特性が基準の運動特性から所定程度以上異なっていることを示す
     ことを特徴とする請求項5または6に記載の制御装置。
  8.  前記属性情報は、前記運動に関係する体の部位における現在または過去の故障に関する情報を含む
     ことを特徴とする請求項1ないし7のいずれか一つ記載の制御装置。
  9.  前記属性情報は、前記ユーザにとっての前記運動を行う目的に関する情報を含む
     ことを特徴とする請求項1ないし8のいずれか一つに記載の制御装置。
  10.  前記属性情報は、前記運動の最中において前記ユーザが感じた感覚に関する情報を含む
     ことを特徴とする請求項1ないし9のいずれか一つに記載の制御装置。
  11.  コンピュータに、
     負荷が調整可能な運動器具を用いて行われる運動において、ユーザが運動中に前記運動器具に対して与える力の特性を表す運動特性を取得するステップと、
     ユーザの属性情報を取得するステップと、
     前記運動器具を用いてトレーニングを実施した一のユーザの運動特性と当該一のユーザの属性情報とに基づいて、当該一のユーザが前記運動器具を用いて運動する際の前記負荷の特性である負荷特性を決定するステップと、
     該決定された負荷特性に基づいた負荷設定の指示を、前記運動器具に出力するステップと
     を実行させるためのプログラム。
  12.  負荷が調整可能な可動部と、
     前記可動部に作用された力の特性を表す運動特性を取得する第1取得手段と、
     ユーザの属性情報を取得する第2取得手段と、
     トレーニングを実施した一のユーザの運動特性と当該一のユーザの属性情報とに基づいて、当該一のユーザが運動する際の前記負荷の特性である負荷特性を決定する決定手段と、
     該決定された負荷特性に基づいて前記可動部の負荷を調整する調整手段と
     を有する運動器具。
PCT/JP2018/015975 2017-04-19 2018-04-18 運動器具、制御装置、およびプログラム WO2018194082A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880026023.6A CN110536721B (zh) 2017-04-19 2018-04-18 运动器具、控制装置以及记录介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-083178 2017-04-19
JP2017083178A JP6980249B2 (ja) 2017-04-19 2017-04-19 運動器具、制御装置、およびプログラム

Publications (1)

Publication Number Publication Date
WO2018194082A1 true WO2018194082A1 (ja) 2018-10-25

Family

ID=63856673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015975 WO2018194082A1 (ja) 2017-04-19 2018-04-18 運動器具、制御装置、およびプログラム

Country Status (3)

Country Link
JP (1) JP6980249B2 (ja)
CN (1) CN110536721B (ja)
WO (1) WO2018194082A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7527290B2 (ja) * 2018-12-12 2024-08-02 ペロトン インタラクティブ インコーポレイテッド エクササイズマシンのコントロール
WO2020129162A1 (ja) 2018-12-18 2020-06-25 株式会社Calada Lab. トレーニングマシンの制御方法
JP6644290B1 (ja) * 2019-06-27 2020-02-12 株式会社ジ・アイ 情報処理装置、及び、プログラム
CN112426660A (zh) * 2020-08-13 2021-03-02 沈阳瑞海一诺智能科技有限公司 运动反馈装置及等速训练方法
JP2022097249A (ja) * 2020-12-18 2022-06-30 オムロン株式会社 推奨負荷決定装置、能力パラメータ推定モデル学習装置、方法、及びプログラム
KR102635170B1 (ko) * 2022-11-29 2024-02-07 안찬우 전동식 운동기구 및 그를 이용한 운동방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006122343A (ja) * 2004-10-28 2006-05-18 Combi Corp ウェイトスタック式トレーニングマシーンを備えたトレーニングシステム、そのシステムで用いられるトレーニング支援装置、最大挙上重量の推定方法及びトレーニングメニューの作成方法
JP2007307107A (ja) * 2006-05-18 2007-11-29 Konami Sports & Life Co Ltd トレーニングシステム、操作端末、及びトレーニング支援プログラムを記録したコンピュータ読み取り可能な記録媒体
JP2008237798A (ja) * 2007-03-29 2008-10-09 Konami Sports & Life Co Ltd トレーニング装置及びトレーニング装置管理システム
US20100076278A1 (en) * 2006-09-06 2010-03-25 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno System for training optimisation
JP2014512231A (ja) * 2011-04-20 2014-05-22 ペルフオルマンセ ヘアルトフ システムス,エルエルシー 運動プログラムを管理するためのシステムおよび方法
WO2016132668A1 (ja) * 2015-02-16 2016-08-25 セイコーエプソン株式会社 トレーニング管理システム、トレーニング管理方法、トレーニング管理プログラム、およびトレーニング管理装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001276275A (ja) * 2000-03-31 2001-10-09 Mitsubishi Electric Engineering Co Ltd 運動療法装置
JP2007307402A (ja) * 2007-07-30 2007-11-29 Hitoshi Matsumoto 筋力強化装置及びこれを用いた筋力の強化方法
US9144709B2 (en) * 2008-08-22 2015-09-29 Alton Reich Adaptive motor resistance video game exercise apparatus and method of use thereof
JP5785716B2 (ja) * 2011-01-13 2015-09-30 クラブコング株式会社 トレーニング装置及びトレーニング方法
JP5263799B2 (ja) * 2011-03-24 2013-08-14 独立行政法人産業技術総合研究所 体性感覚運動統合評価訓練システム
JP2014113388A (ja) * 2012-12-11 2014-06-26 Medimo World Co Ltd トレーニングシステム
US9713738B2 (en) * 2013-03-20 2017-07-25 Blbw Ag Apparatus for exercising the muscles
US9545535B2 (en) * 2013-08-26 2017-01-17 Lagree Technologies, Inc. Exercise machine inclination device
US9072936B1 (en) * 2014-12-02 2015-07-07 Larry D. Miller Trust Elliptical exercise device
JP6052235B2 (ja) * 2014-05-27 2016-12-27 トヨタ自動車株式会社 歩行訓練装置
US20160023081A1 (en) * 2014-07-16 2016-01-28 Liviu Popa-Simil Method and accessories to enhance riding experience on vehicles with human propulsion

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006122343A (ja) * 2004-10-28 2006-05-18 Combi Corp ウェイトスタック式トレーニングマシーンを備えたトレーニングシステム、そのシステムで用いられるトレーニング支援装置、最大挙上重量の推定方法及びトレーニングメニューの作成方法
JP2007307107A (ja) * 2006-05-18 2007-11-29 Konami Sports & Life Co Ltd トレーニングシステム、操作端末、及びトレーニング支援プログラムを記録したコンピュータ読み取り可能な記録媒体
US20100076278A1 (en) * 2006-09-06 2010-03-25 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno System for training optimisation
JP2008237798A (ja) * 2007-03-29 2008-10-09 Konami Sports & Life Co Ltd トレーニング装置及びトレーニング装置管理システム
JP2014512231A (ja) * 2011-04-20 2014-05-22 ペルフオルマンセ ヘアルトフ システムス,エルエルシー 運動プログラムを管理するためのシステムおよび方法
WO2016132668A1 (ja) * 2015-02-16 2016-08-25 セイコーエプソン株式会社 トレーニング管理システム、トレーニング管理方法、トレーニング管理プログラム、およびトレーニング管理装置

Also Published As

Publication number Publication date
CN110536721B (zh) 2022-02-15
CN110536721A (zh) 2019-12-03
JP2018175670A (ja) 2018-11-15
JP6980249B2 (ja) 2021-12-15

Similar Documents

Publication Publication Date Title
WO2018194082A1 (ja) 運動器具、制御装置、およびプログラム
US12102878B2 (en) Method and system for using artificial intelligence to determine a user's progress during interval training
US20200151595A1 (en) Automated training and exercise adjustments based on sensor-detected exercise form and physiological activation
US9213803B2 (en) System and method for collecting, analyzing and reporting fitness activity data
CN111477297B (zh) 个人计算设备
US6626800B1 (en) Method of exercise prescription and evaluation
US8827870B2 (en) Exercise guidance system
US20220016484A1 (en) Method and System for Using Artificial Intelligence to Interact with a User of an Exercise Device During an Exercise Session
US20160158603A1 (en) Assembly for applying a force
WO2019008771A1 (ja) 治療及び/又は運動の指導プロセス管理システム、治療及び/又は運動の指導プロセス管理のためのプログラム、コンピュータ装置、並びに方法
KR100775929B1 (ko) 재활운동 프로그램 제공 시스템
JP2014512231A (ja) 運動プログラムを管理するためのシステムおよび方法
US20210387054A1 (en) Apparatus and method for resistance calibration and digitization for exercise equipment
JP2006309627A (ja) 健康運動処方システム
Treff et al. Computer-aided stroke-by-stroke visualization of actual and target power allows for continuously increasing ramp tests on wind-braked rowing ergometers
KR20140002110A (ko) 네트워크에 기반하여 운동 처방을 제공하는 방법 및 그 시스템
KR20200133458A (ko) 전기적 근육 자극 트레이닝 시스템
Borisov et al. Application of Computer Vision Technologies to Reduce Injuries in the Athletes’ Training
KR20130122483A (ko) 맞춤형 무인 건강 관리방법
JP4735951B2 (ja) 体性感覚運動統合評価訓練システム
CN108852585A (zh) 一种异常姿态矫正评估训练系统
JP2002095773A (ja) ネットワーク対応型健康機器システム
JP6995737B2 (ja) 支援装置
JP6970480B1 (ja) 情報処理システム、サーバ、情報処理方法及びプログラム
US20230398031A1 (en) Wearable device and electronic device for providing exercise posture evaluation information of user and operation methods thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18787127

Country of ref document: EP

Kind code of ref document: A1