WO2018193923A1 - 成形体及びその製造方法 - Google Patents

成形体及びその製造方法 Download PDF

Info

Publication number
WO2018193923A1
WO2018193923A1 PCT/JP2018/015148 JP2018015148W WO2018193923A1 WO 2018193923 A1 WO2018193923 A1 WO 2018193923A1 JP 2018015148 W JP2018015148 W JP 2018015148W WO 2018193923 A1 WO2018193923 A1 WO 2018193923A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
polyamide resin
polyamide
phase
modified elastomer
Prior art date
Application number
PCT/JP2018/015148
Other languages
English (en)
French (fr)
Inventor
雅征 鬼頭
広介 下方
慎貴 酒向
吾朗 高橋
Original Assignee
トヨタ紡織株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ紡織株式会社 filed Critical トヨタ紡織株式会社
Priority to BR112019018345-0A priority Critical patent/BR112019018345A2/pt
Priority to RU2019134575A priority patent/RU2740671C1/ru
Priority to KR1020197029950A priority patent/KR20190126132A/ko
Priority to SG11201909020T priority patent/SG11201909020TA/en
Priority to US16/604,339 priority patent/US20200157291A1/en
Priority to EP18787566.1A priority patent/EP3613795A4/en
Priority to CN201880024381.3A priority patent/CN110494474A/zh
Publication of WO2018193923A1 publication Critical patent/WO2018193923A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/02Direct processing of dispersions, e.g. latex, to articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/26Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/02Heterophasic composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment

Definitions

  • the present invention relates to a molded body and a manufacturing method thereof. More specifically, the present invention relates to a molded body having repetitively movable parts and a manufacturing method thereof.
  • Patent Documents 1-4 are known as a mixed resin containing a polyolefin resin and a polyamide resin.
  • the polyolefin resin that can be hinge-molded as described above has excellent fluidity when melted, and can be made to flow well into a hinge cavity space that is extremely narrow compared to a container or a lid.
  • the high fluidity polyolefin resin has a low molecular weight and is difficult to obtain mechanical strength.
  • the device which ensures mechanical strength is made by giving thickness to a container and a lid.
  • securing the strength by increasing the thickness increases the amount of raw materials used, leading to an increase in cost.
  • the automobile parts and the like have problems of weight increase and installation space, and cannot meet the demands for low fuel consumption and space saving.
  • a polyolefin resin having a large molecular weight can be selected.
  • a high molecular weight resin has a relatively low moldability, and it is difficult to mold the hinge itself with a decrease in fatigue resistance.
  • the resin selection range becomes narrower in consideration of molding conditions, and it is difficult to achieve both fatigue resistance and mechanical strength. There is.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a molded body having a repetitively movable portion that achieves both fatigue resistance and mechanical strength. Furthermore, it aims at providing the manufacturing method of the molded object which can improve the design freedom of a metal mold
  • the present invention is as follows.
  • the molded body according to claim 1 has a repeatedly movable portion that can be bent or bent repeatedly,
  • the repetitive movable portion is made of a thermoplastic resin composition including a polyolefin resin, a polyamide resin, and a modified elastomer having a reactive group for the polyamide resin.
  • a molded body according to the first aspect wherein the repeated movable portion is molded integrally with the other portion.
  • the repetitively movable portion is a hinge portion, an accordion-shaped portion, or a spring plate.
  • the molded body according to claim 4 is the molded body according to any one of claims 1 to 3, wherein the polyamide resin is a hydrocarbon group sandwiched between adjacent amide bonds in the main chain.
  • the gist is to have a structure having 6 or more linear carbon atoms.
  • the molded article according to claim 5 is the molded article according to any one of claims 1 to 4, wherein the modified elastomer is a copolymer of ethylene or propylene and an ⁇ -olefin having 3 to 8 carbon atoms.
  • the gist is that it is an olefin thermoplastic elastomer having a skeleton or a styrene thermoplastic elastomer having a styrene skeleton.
  • the molded body according to claim 6 is the molded body according to any one of claims 1 to 5, and a continuous phase (A) formed of the polyolefin resin
  • the gist of the invention is to have a dispersed phase (B) dispersed in the continuous phase (A) and formed of the polyamide resin and the modified elastomer.
  • the molded body according to claim 7 is the molded body according to claim 6, wherein the dispersed phase (B) is in a continuous phase (B 1 ) containing the polyamide resin and in the continuous phase (B 1 ). And a finely dispersed phase (B 2 ) containing the modified elastomer dispersed in the composition.
  • the method for producing a molded article according to claim 8 is a method for producing a molded article having a repeatedly movable portion that can be repeatedly bent or curved,
  • the gist is to use a thermoplastic resin composition containing a polyolefin resin, a polyamide resin, and a modified elastomer having a reactive group for the polyamide resin as a molding material for the repetitively movable portion.
  • this molded object it can be set as the molded object which has the repetition movable part which made fatigue resistance and mechanical strength compatible.
  • the method for producing a molded body in the production of a molded body, the degree of freedom in designing a mold and the shape of a molded body can be improved, and the number of man-hours can be reduced.
  • thermoplastic resin composition which makes this molded object. It is a schematic diagram explaining the other example of the phase structure of the thermoplastic resin composition which makes this molded object. It is a graph which shows fatigue resistance using this molded object.
  • the molded body of the present invention has a repeatedly movable portion that can be bent or bent repeatedly.
  • this repeating movable part consists of a thermoplastic resin composition containing polyolefin resin, polyamide resin, and the modified elastomer which has a reactive group with respect to the said polyamide resin.
  • the repeated movable part means a part that can be bent repeatedly, a part that can be bent repeatedly, and a part that can be bent and bent repeatedly.
  • Examples of the repeatedly movable portion include a hinge, a bellows-shaped portion, and a spring plate.
  • the thermoplastic resin composition that forms such a repeatedly movable part has high fatigue resistance, it is possible to impart high bending durability and high bending resistance to these repeatedly movable parts.
  • the thermoplastic resin composition excellent in fatigue resistance as described above generally cannot obtain excellent mechanical properties (for example, high elastic modulus, high impact resistance, etc.). That is, it is usually difficult to achieve both fatigue resistance and mechanical strength.
  • few thermoplastic resin compositions are known that are excellent in fluidity at the time of melting and have good moldability.
  • thermoplastic resin composition containing a polyolefin resin, a polyamide resin, and a modified elastomer having a reactive group with respect to the polyamide resin can provide excellent mechanical strength in Patent Documents 1 to 4 described above. It was shown that. However, it was not known what kind of performance it could have in other properties. As a result of further studies on the above-described thermoplastic resin composition, the present inventors have obtained high fatigue resistance and excellent moldability in addition to having the mechanical strength shown in Patent Documents 1 to 4. It was found that it can be done.
  • thermoplastic resin composition if the above-mentioned thermoplastic resin composition is used, a molded body having repeated movable parts can be formed, and high bending durability and high bending resistance can be imparted to the repeated movable parts.
  • high mechanical strength can be given to these other parts, and in addition, excellent flow can be molded integrally with other parts and repeatedly movable parts. Therefore, the present inventors have found that it is possible to cope with even a complicated molded body shape and have obtained this molded body. Furthermore, the reason is not clear, but when molding an injection molded hinge, the injection direction is not restricted, it may be injected parallel to the bending line of the hinge, or it may be injected directly to the bending line. I knew it was okay.
  • examples of the repeatedly movable portion include a hinge, a bellows-shaped portion, and a spring plate. More specifically, the following repetitive movable parts are mentioned.
  • the hinge portion is a repeatedly movable portion that can be repeatedly bent or curved.
  • a hinge part may be called an integral hinge, a living hinge, a permanent hinge, etc., for example.
  • the hinge part may be formed integrally with the other part, or may be formed separately.
  • the integrally formed hinge portion includes a hinge portion that is interposed between the first portion and the second portion and connects them. Examples of the molded body having such a hinge part include a folded opening / closing lid 1A (FIG. 1) and a container 1B having a lid part (FIGS. 2 and 3).
  • the folding lid 1A (FIG. 1) is a molded body having a front lid portion 11 (first portion) and a rear lid portion 13 (second portion), and a hinge portion 15 connecting them. As shown in the arrow R in FIG. 1, the folding lid 1 ⁇ / b> A has a swingable lid 1 ⁇ / b> A so that the front lid 11 swings with respect to the rear lid 13 about the hinge 15. It can be moved or rotated (the front lid portion 11 includes a handle portion 111).
  • the container 1B (FIGS. 2 and 3) is a molded body having a lid part 11 (first part) and a storage part 13 (second part), and a hinge part 15 connecting them. Since the hinge portion 15 is movable, the container 1B has the lid portion 11 with respect to the accommodating portion 13 around the hinge portion 15 as shown by an arrow R in FIG. 2 or an arrow R in FIG. , Swingable or rotatable. Among these, in the container 1 ⁇ / b> B of FIG. 2, the hinge portion 15 is formed wide along the boundary between the lid portion 11 and the accommodating portion 13. On the other hand, in the container 1B of FIG. 3, the lid part 11 and the accommodating part 13 are formed apart from each other, and are connected by two narrow hinge parts 15 so as to connect them from the outside of the container.
  • the hinge part 1 ⁇ / b> C substantially has a form (FIG. 4) in which the entire part becomes a repeatedly movable part that can be repeatedly bent or curved. That is, in the hinge part 1C, the entire molded body is repeatedly movable. Specifically, it can have two base parts 151 and 155 and an interposition part 153 disposed between them. As illustrated in FIG. 4, the base 151 can be fixed to the lid 91 using a screw 95 or the like, and the base 155 can be fixed to the housing 93 using the screw 95 or the like.
  • the hinge part 1C has a lid 91 with respect to the containing body 93 around the interposition part 153 as indicated by an arrow R in FIG. 4 because the hinge part 1C itself is movable. It can be swung or rotated.
  • the bellows-shaped portion usually has a continuous uneven appearance. That is, examples of the bellows-shaped portion include a portion (FIG. 5) that has an external appearance such as stacked floating rings, and a portion that has a folded shape (FIG. 6). For example, it can be used with bellows hoses and boot products. Again bellows portion, similarly to the hinge portion, repeated bending (arrow R 1 in FIG. 5, the arrow R 1 in FIG. 6, etc.), or an arrow R 2 in repeated bending (Fig. 5, the arrow R in FIG. 6 2 ) and so on.
  • the bellows tube 2A (FIG. 5) is mentioned.
  • the bellows tube 2A (FIG. 5) is a molded body having a straight tube portion 21 (first portion) and a curved tube portion 23 (second portion), and a bellows-shaped portion 25 connecting them.
  • the bellows tube 2A, by accordion-shaped portion 25 is movable, as indicated by arrow R 1 in FIG.
  • bellows portion 25 by bellows portion 25 is extendable in the longitudinal direction, the straight tube portion 21 and the song The positional relationship with the tube portion 23 is also movable accordingly. Similarly, as shown in an arrow R 2 in FIG. 5, by bellows portion 25 is extendable asymmetrically in the width direction, the positional relationship between the straight pipe portion 21 and the curved pipe portion 23 brought with it the movable It becomes. Due to these mobilities, it is possible to obtain effects of shock absorption and vibration absorption.
  • the bellows-shaped portion 25 is formed as one molded body, and is interposed between the straight pipe portion 21 and the curved pipe portion 23 formed separately, and is inserted into each other by insertion or the like. It can also be connected to form the bellows tube 2A (FIG. 5).
  • the bellows-shaped part 25 in this case is a bellows-shaped part molded separately from the other parts.
  • a bellows plate 2B (FIG. 6) can be cited.
  • the bellows plate 2B (FIG. 6) is a molded body in which the plate-like bodies 251 to 256 are integrally joined in a folded manner.
  • the bellows plate 2B as indicated by arrow R 1 in FIG. 6, by stretching in the direction in which each plate-like body of the bellows portion 25 overlap, it is possible to vary the length of the entire hairpin turn.
  • the plate-like body 251 may be shaped so as to swing the plate-like body 256 side to the right and left variable. Due to these mobilities, it is possible to obtain effects of shock absorption and vibration absorption.
  • the spring plate body usually has a plate-like appearance or a loosely shaped substantially plate-like appearance. That is, for example, a plate-like spring plate body 3A (FIG. 7) can be mentioned.
  • the spring plate body as a whole is a repeatedly movable portion that can be repeatedly bent. Specifically, it can be used as a lumbar support, a contour mat or the like.
  • the spring plate 3A (FIG. 7) is in a no-load state and has a plate shape as in the state S (see FIG. 7).
  • the spring plate body 3 A can be curved as indicated by an arrow R.
  • the end portions of the spring plate body 3A can be fixed to other portions (not shown) using screws 95 or the like as the base portions 31 and 35.
  • the thickness of the repetitively movable part of the present molded body is not limited, but can be, for example, 1 ⁇ m or more and 20 mm or less. Further, it can be 5 ⁇ m or more and 10 mm or less, further can be 10 ⁇ m or more and 5 mm or less, and further can be 50 ⁇ m or more and 3 mm or less.
  • the thermoplastic resin composition constituting the molded article includes a polyolefin resin, a polyamide resin, and a modified elastomer having a reactive group for the polyamide resin.
  • a polyolefin resin an olefin homopolymer and / or an olefin copolymer can be used as the polyolefin resin.
  • the olefin is not particularly limited, and examples thereof include ethylene, propylene, and ⁇ -olefin having 4 to 8 carbon atoms.
  • Examples of the ⁇ -olefin having 4 to 8 carbon atoms include 1-butene, 3-methyl-1-butene, 1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1-hexene, 1-hexene, Examples include octene. These may use only 1 type and may use 2 or more types together.
  • examples of the polyolefin resin include polyethylene resin, polypropylene resin, poly 1-butene, poly 1-hexene, poly 4-methyl-1-pentene, and the like. These polymers may be used alone or in combination of two or more. That is, the polyolefin resin may be a mixture of the above polymers.
  • polyethylene resin examples include ethylene homopolymers and copolymers of ethylene and other olefins (other olefins do not contain ethylene).
  • examples of the latter include ethylene / 1-butene copolymer, ethylene / 1-hexene copolymer, ethylene / 1-octene copolymer, ethylene / 4-methyl-1-pentene copolymer, etc. 50% or more of the total number of structural units is a unit derived from ethylene).
  • polypropylene resin examples include propylene homopolymers and copolymers of propylene and other olefins (other olefins do not contain propylene). Examples of the latter include propylene / ethylene copolymers and propylene / 1-butene copolymers (provided that 50% or more of all structural units are units derived from propylene). Further, the copolymer of propylene and other olefins may be a random copolymer or a block copolymer. Among these, a block copolymer is preferable from the viewpoint of excellent fatigue resistance and mechanical strength.
  • a propylene / ethylene block copolymer in which the other olefin is ethylene is preferable.
  • This propylene / ethylene block copolymer is also referred to as, for example, an impact copolymer, a polypropylene impact copolymer, a heterophasic polypropylene, a heterophasic block polypropylene, or the like.
  • the weight average molecular weight (standard polystyrene conversion) by the gel permeation chromatography (GPC) of polyolefin resin is also not specifically limited, For example, it can be 10,000 or more and 500,000 or less, and is 100,000 or more and 450,000 or less. Preferably, 200,000 or more and 400,000 or less are more preferable.
  • the polyolefin resin is a polyolefin that does not have an affinity for a polyamide resin, which will be described later, and does not have a reactive group that can react with the polyamide resin. In this respect, it differs from the olefinic component as the modified elastomer described later.
  • the polyamide resin is a polymer obtained by polymerizing a plurality of monomers via an amide bond (—NH—CO—).
  • Monomers constituting the polyamide resin include amino acids such as 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid, paraaminomethylbenzoic acid, and lactams such as ⁇ -caprolactam, undecane lactam, and ⁇ -lauryllactam. Etc. These may use only 1 type and may use 2 or more types together.
  • the polyamide resin can also be obtained by copolymerization of a diamine and a dicarboxylic acid.
  • the diamine as a monomer includes ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, , 9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane, 1,13-diaminotridecane, 1,14-diaminotetradecane, 1,15-diaminopentadecane, 1, 16-diaminohexadecane, 1,17-diaminoheptadecane, 1,18-diaminooctadecane, 1,19-dia
  • dicarboxylic acids as monomers include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, brassic acid, Aliphatic dicarboxylic acids such as tetradecanedioic acid, pentadecanedioic acid, octadecanedioic acid, alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid, aromatic dicarboxylic acids such as phthalic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid Etc. These may use only 1 type and may use 2 or more types together.
  • polyamide resin polyamide 6, polyamide 66, polyamide 11, polyamide 610, polyamide 612, polyamide 614, polyamide 12, polyamide 6T, polyamide 6I, polyamide 9T, polyamide M5T, polyamide 1010, polyamide 1012, polyamide 10T, polyamide MXD6, polyamide 6T / 66, polyamide 6T / 6I, polyamide 6T / 6I / 66, polyamide 6T / 2M-5T, polyamide 9T / 2M-8T, and the like.
  • These polyamides may be used alone or in combination of two or more.
  • a structure in which the hydrocarbon group sandwiched between adjacent amide bonds in the main chain is 6 or more (usually 16 or less) (the present invention)
  • a polyamide resin having a simple “long chain structure” can be used. That is, it is a polyamide resin having a long chain structure.
  • a long chain structure it is preferable to have 50% or more of the long chain structure among all the structural units of the polyamide resin, and may be 100%.
  • Specific examples include polyamide 11, polyamide 610, polyamide 612, polyamide 614, polyamide 12, polyamide 6T, polyamide 6I, polyamide 9T, polyamide 1010, polyamide 1012, polyamide 10T, polyamide 9T / 2M-8T. These polyamides may be used alone or in combination of two or more.
  • a polyamide resin having such a long-chain structure a thermoplastic resin composition having superior fatigue resistance and impact resistance can be obtained.
  • plant-derived polyamide resin can be used among the above-mentioned various polyamide resins.
  • the plant-derived polyamide resin is a resin that uses a monomer obtained from a plant-derived component such as vegetable oil, and is therefore desirable from the viewpoint of environmental protection (particularly from the viewpoint of carbon neutral).
  • Examples of plant-derived polyamide resins include polyamide 11 (hereinafter also simply referred to as “PA11”), polyamide 610 (hereinafter also simply referred to as “PA610”), polyamide 612 (hereinafter also simply referred to as “PA612”), polyamide 614 (hereinafter referred to as “PA612”).
  • PA614 Polyamide 1010
  • PA1012 polyamide 1012
  • PA10T polyamide 10T
  • PA11 is superior to other plant-derived polyamide resins in terms of low water absorption, low specific gravity, and high degree of planting.
  • Polyamide 610 is inferior to PA 11 in terms of water absorption, chemical resistance, and impact strength, but is excellent in terms of heat resistance (melting point) and strength.
  • Polyamide 1010 is superior to PA11 in terms of heat resistance and strength.
  • the degree of planting is equivalent to PA11, and it can be used for parts that require more durability. Since polyamide 10T includes an aromatic ring in the molecular skeleton, it has a higher melting point and higher strength than polyamide 1010. Therefore, it can be used in more severe environments.
  • the weight average molecular weight (standard polystyrene conversion) by the gel permeation chromatography (GPC) of a polyamide resin is not specifically limited, For example, it can be 5,000 or more and 100,000 or less, and is 7,500 or more and 50,000 or less. Preferably, it is 10,000 or more and 50,000 or less.
  • the modified elastomer is an elastomer having a reactive group for the polyamide resin.
  • This modified elastomer is preferably a component having affinity for the polyolefin resin. That is, it is preferably a component having a compatibilizing effect on the polyamide resin and the polyolefin resin. In other words, it is preferably a compatibilizer between a polyamide resin and a polyolefin resin.
  • the reactive group includes an acid anhydride group (—CO—O—OC—), a carboxyl group (—COOH), and an epoxy group ⁇ —C 2 O (a three-membered ring comprising two carbon atoms and one oxygen atom). Structure) ⁇ , an oxazoline group (—C 3 H 4 NO), an isocyanate group (—NCO), and the like. These may use only 1 type and may use 2 or more types together.
  • the amount of modification of the modified elastomer is not limited, and the modified elastomer may have one or more reactive groups in one molecule. Further, the modified elastomer preferably has 1 or more and 50 or less reactive groups in one molecule, more preferably 3 or more and 30 or less, and particularly preferably 5 or more and 20 or less.
  • modified elastomers polymers using various monomers capable of introducing reactive groups (modified elastomers obtained by polymerization using monomers capable of introducing reactive groups), and oxidative degradation products of various polymers (oxidation)
  • Modified elastomers in which reactive groups have been formed by decomposition) and graft polymers of organic acids to various polymers Modified elastomers in which reactive groups have been introduced by graft polymerization of organic acids.
  • These may use only 1 type and may use 2 or more types together. These may use only 1 type and may use 2 or more types together.
  • Examples of the monomer capable of introducing a reactive group include a monomer having a polymerizable unsaturated bond and an acid anhydride group, a monomer having a polymerizable unsaturated bond and a carboxyl group, and a polymerizable unsaturated bond.
  • Examples thereof include monomers having an epoxy group.
  • acid anhydrides such as maleic anhydride, itaconic anhydride, succinic anhydride, glutaric anhydride, adipic anhydride, citraconic anhydride, tetrahydrophthalic anhydride, butenyl succinic anhydride, and maleic acid, itaconic acid And carboxylic acids such as fumaric acid, acrylic acid and methacrylic acid. These may be used alone or in combination of two or more. Of these compounds, acid anhydrides are preferred, maleic anhydride and itaconic anhydride are more preferred, and maleic anhydride is particularly preferred.
  • skeleton resin the type of resin constituting the skeleton of the modified elastomer
  • various thermoplastic resins can be used.
  • this skeleton resin one kind or two or more kinds of various resins exemplified above as the polyolefin resin can be used.
  • an olefin-based thermoplastic elastomer and a styrene-based thermoplastic elastomer can be used as the skeleton resin. These may use only 1 type and may use 2 or more types together.
  • the olefin-based thermoplastic elastomer examples include a copolymer obtained by copolymerizing two or more olefins.
  • the olefin one or more of the various olefins exemplified above as the olefin constituting the polyolefin resin can be used.
  • the olefin-based thermoplastic elastomer a copolymer of ethylene and an ⁇ -olefin having 3 to 8 carbon atoms and a copolymer of propylene and an ⁇ -olefin having 4 to 8 carbon atoms are preferable.
  • copolymers of ethylene and ⁇ -olefin having 3 to 8 carbon atoms include ethylene / propylene copolymer (EPR), ethylene / 1-butene copolymer (EBR), ethylene / 1-pentene copolymer. And ethylene / 1-octene copolymer (EOR).
  • EPR ethylene / propylene copolymer
  • EBR ethylene / 1-butene copolymer
  • EOR ethylene / 1-octene copolymer
  • Examples of the copolymer of propylene and ⁇ -olefin having 4 to 8 carbon atoms include propylene / 1-butene copolymer (PBR), propylene / 1-pentene copolymer, propylene / 1-octene copolymer. (POR). These may use only 1 type and may use 2 or more types together.
  • examples of the styrenic thermoplastic elastomer include a block copolymer of a styrene compound and a conjugated diene compound, and a hydrogenated product thereof.
  • examples of the styrene compound include styrene, ⁇ -methyl styrene, p-methyl styrene, alkyl styrene such as pt-butyl styrene, p-methoxy styrene, vinyl naphthalene, and the like. These may use only 1 type and may use 2 or more types together.
  • conjugated diene compound examples include butadiene, isoprene, piperylene, methylpentadiene, phenylbutadiene, 3,4-dimethyl-1,3-hexadiene, 4,5-diethyl-1,3-octadiene, and the like. These may use only 1 type and may use 2 or more types together.
  • styrene-based thermoplastic elastomers include styrene-butadiene-styrene copolymer (SBS), styrene-isoprene-styrene copolymer (SIS), styrene-ethylene / butylene-styrene copolymer (SEBS), styrene- And ethylene / propylene-styrene copolymer (SEPS). These may use only 1 type and may use 2 or more types together. Of these, SEBS is preferred.
  • the weight average molecular weight (standard polystyrene conversion) by the gel permeation chromatography (GPC) of a modified elastomer is not specifically limited, For example, it can be 10,000 or more and 500,000 or less, for example, 35,000 or more and 500,000 or less. Preferably, 35,000 or more and 300,000 or less are more preferable.
  • thermoplastic resin composition which comprises this molded object can contain another component other than polyolefin resin, a polyamide resin, and a modified elastomer.
  • Other components include fillers (reinforcing fillers), nucleating agents, antioxidants, heat stabilizers, weathering agents, light stabilizers, plasticizers, UV absorbers, antistatic agents, flame retardants, and flame retardant aids. , Slip agent, anti-blocking agent, anti-fogging agent, lubricant, antibacterial agent, colorant (pigment, dye), dispersant, copper damage inhibitor, neutralizer, anti-bubble agent, weld strength improver, natural oil, synthetic An oil, a wax, etc. are mentioned. These may use only 1 type and may use 2 or more types together.
  • thermoplastic resins include polyester resins (polybutylene terephthalate, polyethylene terephthalate, polycarbonate, polybutylene succinate, polyethylene succinate, polylactic acid) and the like. These may use only 1 type and may use 2 or more types together.
  • Fillers include glass components (glass fibers, glass beads, glass flakes, etc.), silica, inorganic fibers (glass fibers, alumina fibers, carbon fibers), graphite, silicate compounds (calcium silicate, aluminum silicate, montmorillonite, kaolin, talc) , Clay, etc.), metal oxides (iron oxide, titanium oxide, zinc oxide, antimony oxide, alumina, etc.), carbonates and sulfates of metals such as lithium, calcium, magnesium, zinc, metals (aluminum, iron, silver, Copper, etc.), hydroxides (aluminum hydroxide, magnesium hydroxide, etc.), sulfides (barium sulfate, etc.), carbides (charcoal, bamboo charcoal, etc.), titanates (potassium titanate, barium titanate, etc.), organic fibers ( Aromatic polyester fiber, aromatic polyamide fiber, fluororesin fiber, polyimide fiber, vegetable fiber, etc. , Celluloses (cellulose microfibril
  • Phase structure taken by the thermoplastic resin composition forming the molded article is not limited, and examples thereof include the following phase structures (1) to (3).
  • Phase structure (1) Phase structure having a continuous phase (A) containing a polyolefin resin and a dispersed phase (B) containing a polyamide resin and a modified elastomer dispersed in the continuous phase (A) (FIG. 8).
  • Phase structure (2) A phase structure having a continuous phase containing a polyamide resin and a dispersed phase containing a polyolefin resin dispersed in the continuous phase.
  • Phase structure (3) a continuous phase (A 1 ) containing a polyolefin resin, a dispersed phase (B A1 ) containing a polyamide resin and a modified elastomer dispersed in the continuous phase (A 1 ), and a polyamide resin phase structure having the inclusive continuous phase (a 2), dispersed in a continuous phase (a 2), the dispersed phase containing the modified elastomer and (B A2), (see Figure 9).
  • the phase structure (1) or the phase structure (3) is preferable.
  • the dispersed phase (B) in the phase structure (1) is a continuous phase in the dispersed phase (B), and a continuous phase (B 1 ) containing a polyamide resin, A finely dispersed phase dispersed in the continuous phase (B 1 ) and containing a modified elastomer (B 2 ) (see FIG. 8).
  • the phase structure (1) exhibits a multiphase structure having a finely dispersed phase (B 1 ) in the dispersed phase (B).
  • the modified elastomer may be an unreacted modified elastomer, a reaction product with a polyamide resin, or a mixture thereof.
  • the phase structure (3) can exhibit a co-continuous phase structure in which two continuous phases of the continuous phase (A 1 ) and the continuous phase (A 2 ) coexist.
  • the dispersed phase in the continuous phase (A 1) (B A1) is a continuous phase within the dispersed phase (B A1), the continuous phase comprising a polyamide resin and (B A11), the continuous phase (B A11 ) and a finely dispersed phase (B A12 ) containing a modified elastomer.
  • the phase structure (3) exhibits a multiphase structure having a finely dispersed phase (B A12 ) in the dispersed phase (B A1 ).
  • the modified elastomer may be an unreacted modified elastomer, a reaction product with a polyamide resin, or a mixture thereof.
  • the continuous phase (A) contains a polyolefin resin.
  • the polyolefin resin is a main component of the continuous phase (A) (generally 70% by mass or more and may be 100% by mass with respect to the entire continuous phase A).
  • the dispersed phase (B) contains a polyamide resin and a modified elastomer.
  • the polyamide resin (when the dispersed phase (B) contains a modified elastomer, the polyamide resin and the modified elastomer) is the main component of the dispersed phase (B) (generally 70% by mass or more with respect to the entire dispersed phase B, and 100% by mass). %).
  • the continuous phase (B 1 ) contains a polyamide resin.
  • the polyamide resin is a main component of the continuous phase (B 1 ) (typically 70% by mass or more and may be 100% by mass with respect to the entire continuous phase B 1 ).
  • the finely dispersed phase (B 2 ) contains a modified elastomer.
  • the modified elastomer is a main component of the finely dispersed phase (B 2 ) (typically 70% by mass or more and may be 100% by mass with respect to the entire finely dispersed phase B 2 ).
  • the continuous phase (A 1 ) contains a polyolefin resin.
  • the polyolefin resin is a main component of the continuous phase (A 1 ) (typically 70% by mass or more and may be 100% by mass with respect to the entire continuous phase A 1 ).
  • the dispersed phase (B A1 ) contains a polyamide resin and a modified elastomer.
  • the polyamide resin and the modified elastomer are the main components of the dispersed phase (B A1 ) (generally 70% by mass or more and may be 100% by mass with respect to the entire dispersed phase B A1 ).
  • the continuous phase (B A11 ) contains a polyamide resin.
  • the polyamide resin is the main component of the continuous phase (B A11 ) (typically 70% by mass or more and may be 100% by mass with respect to the entire continuous phase B A11 ).
  • the finely dispersed phase (B A12 ) contains a modified elastomer.
  • the modified elastomer is a main component of the finely dispersed phase (B A12 ) (generally 70% by mass or more and may be 100% by mass with respect to the entire finely dispersed phase B A12 ).
  • the continuous phase (A 2 ) includes a polyamide resin.
  • the polyamide resin is a main component of the continuous phase (A 2 ) (typically 70% by mass or more and may be 100% by mass with respect to the entire continuous phase A 2 ).
  • the dispersed phase (B A2 ) with respect to the continuous phase (A 2 ) contains a modified elastomer.
  • the modified elastomer is a main component of the dispersed phase (B A2 ) (typically 70% by mass or more and may be 100% by mass with respect to the entire dispersed phase B A2 ).
  • phase structures can be changed depending on the blending ratio of the polyolefin resin, the polyamide resin, and the modified elastomer.
  • the reactive group of the modified elastomer can be a reaction product obtained by reacting with the polyamide resin.
  • the reactant is, for example, an interface between the continuous phase (A) and the dispersed phase (B) and / or a continuous phase (B 1 ) and a finely dispersed phase (B 2 ). Can exist at the interface.
  • phase structure (3) for example, the interface between the continuous phase (A 1 ) and the continuous phase (A 2 ), the interface between the continuous phase (A 1 ) and the dispersed phase (B A1 ), the continuous phase (B A11 ) and the finely dispersed phase (B A12 ), etc.
  • the various phase structures can be observed with a field emission scanning electron microscope (FE-SEM) after the oxygen plasma etching treatment and further on the treated surface of the osmium-coated specimen (molded specimen).
  • FE-SEM field emission scanning electron microscope
  • the dispersed phase and the finely dispersed phase can be observed by an image magnified 1000 times or more (usually 10,000 times or less) in this method.
  • the components constituting each phase can be specified by performing energy dispersive X-ray analysis (EDS) during observation using a field emission scanning electron microscope (FE-SEM).
  • the size of the dispersed phase (dispersed phase B in FIG. 8, dispersed phase B A1 in FIG. 9) of the thermoplastic resin composition forming the molded body is not particularly limited, but the dispersed diameter (average dispersed diameter) is 10,000 nm or less. More preferably, it is 50 nm or more and 8000 nm or less, More preferably, it is 100 nm or more and 4000 nm or less.
  • the dispersion diameter of the dispersed phase can be measured in an enlarged image of 1000 times or more obtained using an electron microscope. That is, the longest diameter of each of the 20 dispersed phases randomly selected from a predetermined region in the image is measured, and the average value of the longest diameters obtained is set as the first average value. And the further average value of the 1st average value measured in five different area
  • the size of the finely dispersed phase B A12 ) is not particularly limited, but the dispersion diameter (average dispersion diameter) is preferably 5 nm to 1000 nm, more preferably 5 nm to 600 nm, and still more preferably 10 nm to 400 nm. Particularly preferably, it is 15 nm or more and 350 nm or less.
  • the dispersion diameter of the finely dispersed phase can be measured in an enlarged image of 1000 times or more obtained using an electron microscope. That is, the longest diameter of each of the 20 finely dispersed phases randomly selected from a predetermined region in the image is measured, and the average value of the obtained longest diameters is set as the first average value. And the further average value of the 1st average value measured in five different area
  • the ratio of the polyolefin resin is 2% by mass or more and 90% by mass. It can be as follows. This proportion is preferably 5% by mass to 85% by mass, more preferably 10% by mass to 83% by mass, further preferably 15% by mass to 80% by mass, and further preferably 20% by mass to 78% by mass. Furthermore, 25 mass% or more and 75 mass% or less are preferable, 30 mass% or more and 73 mass% or less are more preferable, and 35 mass% or more and 70 mass% or less are more preferable. In the said range, it can be set as the molded object which made fatigue resistance and mechanical strength compatible.
  • thermoplastic resin composition forming the molded body when the total of the polyolefin resin, the polyamide resin, and the modified elastomer is 100% by mass, the polyamide resin and the modified elastomer (some or all of them are reacted with each other). May be 10% by mass or more and 98% by mass or less. This ratio is preferably 15% by mass to 95% by mass, more preferably 17% by mass to 90% by mass, further preferably 20% by mass to 85% by mass, and further preferably 22% by mass to 80% by mass. Furthermore, 25 mass% or more and 75 mass% or less are preferable, 27 mass% or more and 70 mass% or less are more preferable, and 30 mass% or more and 65 mass% or less are more preferable. In the said range, it can be set as the molded object which made fatigue resistance and mechanical strength compatible.
  • the ratio of the polyamide resin may be 1% by mass to 75% by mass. it can. This proportion is preferably 2% by mass or more and 70% by mass or less, more preferably 4% by mass or more and 65% by mass or less, further preferably 6% by mass or more and 60% by mass or less, and further preferably 8% by mass or more and 55% by mass or less. Furthermore, 10 mass% or more and 50 mass% or less are preferable, 12 mass% or more and 45 mass% or less are more preferable, and 15 mass% or more and 40 mass% or less are more preferable. In the said range, it can be set as the molded object which made fatigue resistance and mechanical strength compatible.
  • the ratio of the modified elastomer may be 1% by mass to 60% by mass. it can. This proportion is preferably 2% to 55% by mass, more preferably 4% to 45% by mass, further preferably 6% to 40% by mass, and further preferably 8% to 38% by mass. Furthermore, 10 mass% or more and 37 mass% or less are preferable, 12 mass% or more and 36 mass% or less are preferable, and 15 mass% or more and 35 mass% or less are more preferable. In the said range, it can be set as the molded object which made fatigue resistance and mechanical strength compatible.
  • the ratio of the polyamide resin can be 1.5% by mass or more and 88% by mass or less. This ratio is preferably 3% by mass or more and 75% by mass or less, more preferably 5% by mass or more and 70% by mass or less, further preferably 10% by mass or more and 65% by mass or less, and further preferably 15% by mass or more and 60% by mass or less. Furthermore, 18 mass% or more and 55 mass% or less are preferable, 20 mass% or more and 50 mass% or less are more preferable, and 25 mass% or more and 45 mass% or less are more preferable. In the said range, it can be set as the molded object which made fatigue resistance and mechanical strength compatible.
  • the ratio of the modified elastomer can be 20% by mass or more and 90% by mass or less. This ratio is preferably 22% by mass or more and 88% by mass or less, more preferably 25% by mass or more and 86% by mass or less, further preferably 27% by mass or more and 75% by mass or less, and preferably 29% by mass or more and 70% by mass or less. Furthermore, 32 mass% or more and 66 mass% or less are preferable, and also 36 mass% or more and 60 mass% or less are preferable. In the said range, it can be set as the molded object which made fatigue resistance and mechanical strength compatible.
  • the ratio of the polyolefin resin when the total of the above-mentioned polyolefin resin, polyamide resin and modified elastomer is 100% by mass is usually the whole phase. Is equal to the proportion of the continuous phase (A) in the case of 100 mass%.
  • the phase structure (3) it is usually equal to the ratio of the continuous phase (A 1 ) when the entire phase is 100% by mass.
  • the ratio here is a volume ratio, but is usually equal to an area ratio in which the volume ratio is reflected (the same applies hereinafter).
  • the ratio of the polyamide resin and the modified elastomer when the total of the polyolefin resin, the polyamide resin, and the modified elastomer is 100% by mass is usually It is equal to the proportion of the dispersed phase (B) when the total phase is 100% by mass.
  • the ratio of the polyamide resin when the total of the above-mentioned polyolefin resin, polyamide resin and modified elastomer is 100% by mass is generally 100 for the entire phase. It is equal to the ratio of the continuous phase (B 1 ) in the case of mass%.
  • the ratio of the modified elastomer when the total of the above-mentioned polyolefin resin, polyamide resin and modified elastomer is 100% by mass is usually 100 for the entire phase. It is equal to the proportion of the finely dispersed phase (B 2 ) in the case of mass%.
  • the phase structure (3) in the case of the phase structure (3) (see FIG. 9), it is usually equal to the total ratio of the finely dispersed phase (B A12 ) and the dispersed phase (B A2 ) when the entire phase is 100% by mass. .
  • the mechanical strength can be further set to a Charpy impact strength of 50 kJ / m 2 or more and 150 kJ / m 2 or less and a flexural modulus of 450 MPa or more and 1300 MPa or less, and a Charpy impact strength of 60 kJ / m 2 or more and 140 kJ / m 2 or less.
  • the flexural modulus can be 500 MPa or more and 1200 MPa or less
  • the Charpy impact strength can be 70 kJ / m 2 or more and 130 kJ / m 2 or less
  • the flexural modulus can be 550 MPa or more and 1100 MPa or less.
  • the value of the Charpy impact strength is a value when measured according to JIS K7111-1 (type A notch, temperature 23 ° C., edgewise test method).
  • the value of the flexural modulus was measured in accordance with JIS K7171 (supported by two fulcrums with a distance between fulcrums of 64 mm and a radius of curvature of 5 mm, using an action point with a radius of curvature of 5 mm, load load speed of 2 mm / min). Is the case value.
  • thermoplastic resin composition constituting the molded article
  • the method for producing the thermoplastic resin composition constituting the molded article is not limited and can be produced by a conventionally known method.
  • it can be obtained by melt-kneading a melt-kneaded product of a polyamide resin and a modified elastomer and a polyolefin resin.
  • any melt-kneading apparatus may be used for the preparation of the above-mentioned melt-kneaded product and the melt-kneading of the melt-kneaded product and the polyolefin resin.
  • an extruder single screw extruder, twin screw kneading extruder, etc.
  • a kneader a mixer (high-speed flow mixer, paddle mixer, ribbon mixer, etc.), etc.
  • the melt kneading temperature of the polyamide resin and the modified elastomer is not limited, but can be, for example, 190 ° C. or higher and 350 ° C. or lower, preferably 200 ° C. or higher and 330 ° C. or lower, and more preferably 205 ° C. or higher and 310 ° C. or lower.
  • the melt kneading temperature of the obtained melt-kneaded product and the polyolefin resin is not limited, but can be, for example, 190 ° C or higher and 350 ° C or lower, preferably 200 ° C or higher and 300 ° C or lower, and 205 ° C or higher and 260 ° C or lower. Is more preferable.
  • the shape, size, thickness and other dimensions of the molded body are not particularly limited, and the use is not particularly limited.
  • This molded body can be used as, for example, exterior materials such as automobiles, railway vehicles, ships and airplanes, interior materials, structural materials, and shock absorbers.
  • examples of the automobile article include an automotive exterior material, an automotive interior material, an automotive structural material, an automotive shock absorber, and an engine room component.
  • console boxes console box with lid, console box formed integrally with lid
  • console box lid cigar socket, sun visor, airbag lid, package Tray, fender, instrument panel, assist grip, luggage hinge, shock absorbing member,
  • Various intake hoses, intake manifolds, air ducts, air cleaner housings, oil filter housings, oil pans, fuel tank covers Various boots, fuel tubes,
  • interior materials such as buildings and furniture, exterior materials, structural materials, and cushioning materials may be mentioned. That is, an impact absorbing member, a pillar hinge, a door knob, a door (door), a window, and the like can be given.
  • Other packaging packaging containers, containers with lids (wet tissue containers, beverage bottles, etc.)), containers (small items, multi-parts small items, pill cases, medicine cases, tool boxes, their hinges) It can also be used as a component.
  • it can be set as hinges and hinge structures, such as a housing
  • the manufacturing method of the molded body of the present invention is a manufacturing method of a molded body having a repetitively movable portion that can be repeatedly bent or curved,
  • a thermoplastic resin composition containing a polyolefin resin, a polyamide resin, and a modified elastomer having a reactive group for the polyamide resin is used as a molding material for the repetitively movable part.
  • the repetitively movable portion is as described above.
  • the polyolefin resin, polyamide resin, modified elastomer, and thermoplastic resin composition are also as described above.
  • the repetitively movable part may be formed using a predetermined thermoplastic resin composition, and other points are not limited.
  • molding methods that can be used in this method include injection molding, extrusion molding (sheet extrusion, profile extrusion), T-die molding, blow molding, inflation molding, hollow molding, vacuum molding, compression molding, press molding, Examples include stamping mold molding, transfer molding, and foam molding. These may use only 1 type and may use 2 or more types together.
  • the obtained molded body may be a solid molded body (solid molded body / hollow molded body) or a foam molded body.
  • thermoplastic resin composition (1) Thermoplastic resin composition of Example 1 The following polyamide resin pellets and the following modified elastomer pellets were dry blended and then charged into a twin-screw melt kneading extruder. Then, melt-kneading was performed at a kneading temperature of 210 ° C., and pellets made of a melt-kneaded product of polyamide resin and modified elastomer were obtained via a pelletizer.
  • pellets made of a melt-kneaded product of polyamide resin and modified elastomer are put into a biaxial melt-kneading extruder and melt-kneaded at a kneading temperature of 210 ° C.
  • the pellet which consists of a thermoplastic resin composition was obtained through the pelletizer.
  • thermoplastic resin composition the blending ratio of the polyolefin resin, the polyamide resin, and the modified elastomer is 55:25:20 in terms of mass ratio.
  • the thermoplastic resin composition having this mass ratio exhibits a phase structure (1) (see FIG. 8).
  • Polyolefin resin Polypropylene resin, homopolymer, manufactured by Nippon Polypro Co., Ltd., product name “Novatech MA1B”, weight average molecular weight 312,000, melting point 165 ° C.
  • Polyamide resin Nylon 11 resin, manufactured by Arkema Co., Ltd., product name “Rilsan BMN O”, weight average molecular weight 18,000, melting point 190 ° C.
  • Modified elastomer maleic anhydride modified ethylene / butene copolymer (modified EBR), manufactured by Mitsui Chemicals, Inc., product name “Toughmer MH7020”
  • Example 2 Thermoplastic resin composition of Example 2 By the same procedure as in Example 1, pellets (Example 2) made of the thermoplastic resin composition were obtained.
  • the blending ratio of the polyolefin resin, the polyamide resin, and the modified elastomer is 32.5: 42.5: 25 by mass ratio.
  • the thermoplastic resin composition having this mass ratio exhibits a phase structure (3) (see FIG. 9).
  • the polyolefin resin, polyamide resin, and modified elastomer used are all the same as in Example 1.
  • hinge part Molding having a hinge part (thickness 0.5 mm) parallel to the width side at the center in the longitudinal direction of a plate body of length 100 mm x width 30 mm x thickness 2.3 mm by injection molding. Got the body. At this time, injection was performed by providing a gate in a direction parallel to the hinge portion. As a result, a molded body was obtained in which no weld was observed in the vicinity of the hinge portion, and the hinge portion that did not cause bending breakage was formed even if the injection direction was not perpendicular to the hinge portion. Furthermore, after the mold was opened, the hinge part could be formed without performing preliminary bending.
  • the molded article of the present invention can achieve both high fatigue resistance and excellent mechanical strength.
  • the molded body of Example 2 does not break regardless of the stress value (6.7 to 11.9 MPa) and has extremely high fatigue resistance. This is considered to be an effect resulting from exhibiting a co-continuous phase structure. That is, it can be seen that the molded article of Example 2 can achieve both fatigue resistance and mechanical strength at a very high level.
  • this method is a production method that can improve the degree of freedom in designing the mold and the shape of the molded body, and can reduce the number of steps.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

耐疲労性及び機械的強度を両立させた繰返し可動部を有する成形体、金型の設計自由度、成形体の形状自由度を向上させることができ、工数削減することができる成形体の製造方法を提供することを目的とし、本成形体は、繰り返して屈曲又は湾曲させることを可能とした繰返し可動部15を有し、繰返し可動部15が、ポリオレフィン樹脂と、ポリアミド樹脂と、前記ポリアミド樹脂に対する反応性基を有する変性エラストマーと、を含む熱可塑性樹脂組成物からなる。本方法は、繰り返して屈曲又は湾曲させることを可能とした繰返し可動部を有する成形体の製造方法であって、繰返し可動部の成形材料として、ポリオレフィン樹脂と、ポリアミド樹脂と、前記ポリアミド樹脂に対する反応性基を有する変性エラストマーと、を含んだ熱可塑性樹脂組成物を用いることを特徴とする。

Description

成形体及びその製造方法
 本発明は、成形体及びその製造方法に関する。更に詳しくは、繰返し可動部を有する成形体及びその製造方法に関する。
 近年、例えば、ヒンジと他部とが一体成形された樹脂製品が知られている。具体的には、容器と蓋とを繋ぐヒンジを有し、このヒンジが容器及び蓋と一体に成形された樹脂製品が挙げられる。このような樹脂製品には、耐疲労性と成形性とが比較的よくバランスされたヒンジ成形が可能なグレードのポリオレフィン樹脂が多く利用される。
 尚、ポリオレフィン樹脂とポリアミド樹脂とを含んだ混合樹脂としては、下記特許文献1-4が知られている。
特開2013-147645号公報 特開2013-147646号公報 特開2013-147647号公報 特開2013-147648号公報
 上述のようなヒンジ成形が可能なポリオレフィン樹脂は、溶融時の流動性に優れ、容器や蓋に比べて極端に狭くなるヒンジキャビティ空間へもうまく流動させることができる。その一方、高流動性のポリオレフィン樹脂は、分子量が小さく抑えられており、機械的強度を得難い。このため、容器及び蓋に厚みを持たせることで機械的強度を確保する工夫がなされる。ところが、厚み増しによる強度確保では、使用原料が多くなりコスト増に繋がるとともに、自動車用品等では重量増加や設置スペース増大の問題をきたし、低燃費化や省スペース化という要望に応えることができない。他方、機械的強度を得ようとすれば、分子量の大きなポリオレフィン樹脂を選択できるが、高分子量樹脂は成形性が相対的に落ち、耐疲労性の低下とともに、ヒンジ自体の成形が困難となる。このようなに繰返し可動が可能な部位を有した成形体を得ようとすると、成形条件との兼ね合いから樹脂選択幅が狭くなり、耐疲労性と機械的強度とを両立させることが難しいという問題がある。
 更に、ヒンジ成形グレードのポリオレフィン樹脂であっても、ヒンジを形成しようとすると、射出成形時の射出方向が規制される問題がある。即ち、ヒンジの屈曲線に対して平行するように材料を流すと屈曲によりヒンジが割けやすくなるため、ヒンジを成形する際には、屈曲線に対して直行して材料を流すよう金型設計する必要があり、得られる成形体の形状や金型設計に制約を受けてしまうという問題がある。更に、このようなヒンジに対して多用されるランダムポリプロピレンでは、上述のような数々の問題をクリアして成形できたとしても、射出成形した直後、樹脂製品が放冷され切る前に、ヒンジを予備的に人手で屈曲させてクセ付けすることが行われる。このような予備作業により、ヒンジの耐白化性や耐疲労性が向上されるが、上記作業は人手で行われるのが実際であり、工数やコスト増加の原因の一つとなっているという問題がある。
 本発明は、上記実情に鑑みてなされたものであり、耐疲労性及び機械的強度を両立させた繰返し可動部を有する成形体を提供することを目的とする。更に、金型の設計自由度、成形体の形状自由度を向上させることができ、工数削減することができる成形体の製造方法を提供することを目的とする。
 即ち、本発明は以下の通りである。
 請求項1に記載の成形体は、繰り返して屈曲又は湾曲させることを可能とした繰返し可動部を有し、
 前記繰返し可動部が、ポリオレフィン樹脂と、ポリアミド樹脂と、前記ポリアミド樹脂に対する反応性基を有する変性エラストマーと、を含む熱可塑性樹脂組成物からなることを特徴とする。
 請求項2に記載の成形体は、請求項1に記載の成形体において、前記繰返し可動部が、他部と一体に成形されていることを要旨とする。
 請求項3に記載の成形体は、請求項1又は2に記載の成形体において、前記繰返し可動部が、ヒンジ部、蛇腹形状部、又は、バネ板体であることを要旨とする。
 請求項4に記載の成形体は、請求項1乃至3のうちのいずれかに記載の成形体において、前記ポリアミド樹脂は、主鎖中の隣り合ったアミド結合同士に挟まれた炭化水素基の直鎖炭素数が6以上である構造を有することを要旨とする。
 請求項5に記載の成形体は、請求項1乃至4のうちのいずれかに記載の成形体において、前記変性エラストマーは、エチレン若しくはプロピレンと炭素数3~8のα-オレフィンとの共重合体を骨格としたオレフィン系熱可塑性エラストマー、又は、スチレン骨格を有するスチレン系熱可塑性エラストマーであることを要旨とする。
 請求項6に記載の成形体は、請求項1乃至5のうちのいずれかに記載の成形体において、前記ポリオレフィン樹脂により形成された連続相(A)と、
 前記連続相(A)中に分散され、前記ポリアミド樹脂及び前記変性エラストマーにより形成された分散相(B)と、を有することを要旨とする。
 請求項7に記載の成形体は、請求項6に記載の成形体において、前記分散相(B)が、前記ポリアミド樹脂を含んだ連続相(B)と、前記連続相(B)中に分散された前記変性エラストマーを含んだ微分散相(B)と、を有することを要旨とする。
 請求項8に記載の成形体の製造方法は、繰り返して屈曲又は湾曲させることを可能とした繰返し可動部を有する成形体の製造方法であって、
 前記繰返し可動部の成形材料として、ポリオレフィン樹脂と、ポリアミド樹脂と、前記ポリアミド樹脂に対する反応性基を有する変性エラストマーと、を含んだ熱可塑性樹脂組成物を用いることを要旨とする。
 本成形体によれば、耐疲労性及び機械的強度を両立させた繰返し可動部を有する成形体とすることができる。
 本成形体の製造方法によれば、成形体の製造において、金型の設計自由度、及び、成形体の形状自由度を向上させることができ、更には、工数削減することができる。
本成形体の一例(コンソールボックス蓋体)を説明する斜視図である。 本成形体の一例(一体成形ヒンジ部を有する容器)を説明する斜視図である。 本成形体の一例(一体成形ヒンジ部を有する容器)を説明する斜視図である。 本成形体の一例(ヒンジ用部品)を説明する斜視図である。 本成形体の一例(一体成形された蛇腹形状部を有した管状体)を説明する斜視図である。 本成形体の一例(蛇腹形状部品)を説明する斜視図である。 本成形体の一例(バネ板状部品)を説明する斜視図である。 本成形体をなす熱可塑性樹脂組成物の相構造の一例を説明する模式図である。 本成形体をなす熱可塑性樹脂組成物の相構造の他例を説明する模式図である。 本成形体を用いた耐疲労性を示すグラフである。
 ここで示される事項は例示的なもの及び本発明の実施形態を例示的に説明するためのものであり、本発明の原理と概念的な特徴とを最も有効に且つ難なく理解できる説明であると思われるものを提供する目的で述べたものである。この点で、本発明の根本的な理解のために必要である程度以上に本発明の構造的な詳細を示すことを意図してはおらず、図面と合わせた説明によって本発明の幾つかの形態が実際にどのように具現化されるかを当業者に明らかにするものである。
 本発明の成形体は、繰り返して屈曲又は湾曲させることを可能とした繰返し可動部を有する。そして、この繰返し可動部が、ポリオレフィン樹脂と、ポリアミド樹脂と、前記ポリアミド樹脂に対する反応性基を有する変性エラストマーと、を含む熱可塑性樹脂組成物からなることを特徴とする。
 上記繰返し可動部とは、繰り返して屈曲させることを可能とした部分、又は、繰り返して湾曲させることを可能とした部分、更に、繰り返して屈曲及び繰り返して湾曲させることを可能とした部分、を意味する。繰返し可動部としては、例えば、ヒンジ、蛇腹形状部、バネ板等が挙げられる。このような繰返し可動部をなす熱可塑性樹脂組成物が、高い耐疲労性を有する場合には、これらの繰返し可動部に、高い屈曲耐久性や、高い耐湾曲耐久性を付与することができる。
 一方、このように耐疲労性に優れた熱可塑性樹脂組成物は、一般に、優れた機械的特性(例えば、高い弾性率、高い耐衝撃性等)を得ることができない。即ち、耐疲労性と機械的強度との両立は、通常、困難である。加えて、溶融時の流動性に優れ、成形性が良い熱可塑性樹脂組成物はほとんど知られていない。
 この点、ポリオレフィン樹脂と、ポリアミド樹脂と、前記ポリアミド樹脂に対する反応性基を有する変性エラストマーと、を含む熱可塑性樹脂組成物は、前述の特許文献1~4において、優れた機械的強度が得られることが示された。しかしながら、その他の特性においてどのような性能を有し得るかは知られていなかった。
 本発明者らは、上述の熱可塑性樹脂組成物について、更に、検討を重ねるうち、特許文献1~4で示された機械的強度を有する以外に、高い耐疲労性及び優れた成形性が得られ得ることを知見した。これにより、上述の熱可塑性樹脂組成物を用いれば、繰返し可動部を有した成形体を成形することができること、その繰返し可動部に対しては高い屈曲耐久性及び高い耐湾曲耐久を与えることができること、更に、他部と一体に成形した場合には、これら他部に対して高い機械的強度を与えることができること、加えて、他部と繰返し可動部とを一体的に成形できる優れた流動性有し、複雑な成形体形状に対しても対応できることを見出し、本成形体を得るに至った。
 更に、その理由は定かではないが、射出成形ヒンジの成形に際しては、射出方向が規制されず、ヒンジの屈曲線に対して平行に射出してもよいし、屈曲線に対して直行して射出してもよいことが分かった。このため、本成形体を製造する際には、金型設計の自由度が高いというメリットがある。加えて、予備屈曲をしなくとも耐白化性や耐疲労性が高いということも分かった。このため、本成形体を製造する際には、工数削減することができるというメリットがある。
 上述のように、繰返し可動部として、例えば、ヒンジ、蛇腹形状部、バネ板等が挙げられる。より具体的には、以下の繰返し可動部が挙げられる。
 (1)ヒンジ部(他部と共に一体に成形されたヒンジ部)
 ヒンジ部は、繰返して屈曲又は湾曲させることができる繰返し可動部である。このようなヒンジ部は、例えば、インテグラルヒンジ、リビングヒンジ、永久ヒンジ等と称される場合がある。ヒンジ部は、他部と一体に成形されてもよいし、別体に成形されてもよい。このうち、一体に成形されたヒンジ部としては、第1部及び第2部の間に介在され、これらを繋ぐヒンジ部が挙げられる。このようなヒンジ部を有した成形体としては、折曲り開閉蓋1A(図1)や、蓋部を備えた容器1B(図2及び図3)が挙げられる。
 折曲り開閉蓋1A(図1)は、前蓋部11(第1部)及び後蓋部13(第2部)と、これらを繋ぐヒンジ部15と、を有する成形体である。この折曲り開閉蓋1Aは、ヒンジ部15が可動であることにより、図1内の矢印Rに示すように、ヒンジ部15を中心として、後蓋部13に対して前蓋部11が、揺動可能又は回転可能とされる(前蓋部11は取手部111を備える)。
 容器1B(図2及び図3)は、蓋部11(第1部)及び収容部13(第2部)と、これらを繋ぐヒンジ部15と、を有する成形体である。この容器1Bは、ヒンジ部15が可動であることにより、図2内の矢印Rや図3内の矢印Rに示すように、ヒンジ部15を中心として、収容部13に対して蓋部11が、揺動可能又は回転可能とされている。このうち、図2の容器1Bでは、ヒンジ部15は、蓋部11と収容部13との境界に沿って幅広に形成される。一方、図3の容器1Bでは、蓋部11と収容部13とが離間して形成されており、これらを容器外側から繋ぐように2本の幅狭なヒンジ部15により接続される。
 (2)ヒンジ用部品(他部とは別体に成形されたヒンジ用部品)
 ヒンジ用部品1Cは、実質的に、その全体が繰返し屈曲又は湾曲させることができる繰返し可動部となった形態(図4)である。即ち、ヒンジ用部品1Cは、成形体全体が繰返し可動部となる。具体的には、2つのベース部151及び155と、それらの間に挟まれて配置された介在部153とを有することができる。図4に例示するように、ベース部151は蓋体91に螺子95等を利用して固定され、ベース部155は収容体93に螺子95等を利用して固定され得る。この場合、ヒンジ用部品1Cは、ヒンジ用部品1C自体が可動であることにより、図4内の矢印Rに示すように、介在部153を中心として、収容体93に対して蓋体91が、揺動可能又は回転可能とされる。
 (3)蛇腹形状部
 蛇腹形状部は、通常、連続した凹凸形状の外観を有する。即ち、蛇腹形状部は、例えば、浮輪を積み重ねたような外観形状となった部位(図5)や、つづら折れ形状となった部位(図6)等が挙げられる。例えば、蛇腹ホースやブーツ製品と利用され得る。この蛇腹形状部も、ヒンジ部と同様に、繰返して屈曲(図5の矢印R、図6の矢印R等)、又は、繰返して湾曲(図5の矢印R、図6の矢印R等)させることができる繰返し可動部である。
 繰返し可動部として蛇腹形状部を有する成形体としては、第1部及び第2部の間に介在され、これらを繋ぐ蛇腹形状部を有した成形体が挙げられる。具体的には、蛇腹管2A(図5)が挙げられる。
 蛇腹管2A(図5)は、直管部21(第1部)及び曲管部23(第2部)と、これらを繋ぐ蛇腹形状部25と、を有する成形体である。この蛇腹管2Aは、蛇腹形状部25が可動であることにより、図5内の矢印Rに示すように、蛇腹形状部25が長手方向へ伸縮可能であることにより、直管部21と曲管部23との位置関係もそれに連れて可動となる。同様に、図5内の矢印Rに示すように、蛇腹形状部25が幅方向に非対称に伸縮可能であることにより、直管部21と曲管部23との位置関係もそれに連れて可動となる。これらの可動性により、衝撃吸収や振動吸収の作用を得ることができる。
 尚、図示はされないが、例えば、蛇腹形状部25のみを1つの成形体として成形し、別体に成形した直管部21と曲管部23との間に介在させて、嵌挿等により互いに接続して、上記の蛇腹管2A(図5)を形成することもできる。この場合の蛇腹形状部25は、他部と別体に成形された蛇腹形状部品である。
 更に、蛇腹形状部としては、蛇腹板2B(図6)が挙げられる。蛇腹板2B(図6)は、板状体251~256がつづら折れ状に一体に連なった成形体である。この蛇腹板2Bは、図6内の矢印Rに示すように、蛇腹形状部25の各板状体が重なる方向へ伸縮することで、つづら折れ全体の長さを可変することができる。また、図6内の矢印Rに示すように、例えば、板状体251を固定した場合には、板状体256側を左右に振るように形状を可変にすることができる。これらの可動性により衝撃吸収や振動吸収の作用を得ることができる。
 (4)バネ板体
 バネ板体は、通常、板状の外観や、緩く賦形された略板状の外観を有する。即ち、例えば、板状のバネ板体3A(図7)が挙げられる。このバネ板体は、その全体が、繰返して湾曲させることができる繰返し可動部となっている。具体的には、ランバーサポート、コンターマット等として利用され得る。
 例えば、バネ板体3A(図7)は、無負荷状態で、状態S(図7参照)のように、板状である。この板状のバネ板体3Aに対し、応力Tを付加することで、矢印Rに示すように、バネ板体3Aを湾曲させることができる。同様に、応力Tを付加することによっても、矢印Rに示すように、バネ板体3Aを湾曲させることができる。これらの可動性により衝撃吸収や振動吸収の作用を得ることができる。
 バネ板体3Aは、例えば、その端部を、ベース部31及び35として、図示されない他部に螺子95等を利用して固定することもできる。
 本成形体(上述の(1)~(4)等の形態であるか否かを問わない)の繰り返し可動部の厚さは限定されないが、例えば、1μm以上20mm以下とすることができる。更に5μm以上10mm以下とすることができ、更に10μm以上5mm以下とすることができ、更に50μm以上3mm以下とすることができる。
 本成形体に構成する熱可塑性樹脂組成物は、ポリオレフィン樹脂と、ポリアミド樹脂と、前記ポリアミド樹脂に対する反応性基を有する変性エラストマーと、を含む。
〈1〉ポリオレフィン樹脂
 このうちポリオレフィン樹脂としては、オレフィンの単独重合体、及び/又は、オレフィンの共重合体を用いることができる。
 上記オレフィンは特に限定されないが、エチレン、プロピレン及び炭素数4~8のα-オレフィン等が挙げられる。炭素数4~8のα-オレフィンとしては、1-ブテン、3-メチル-1-ブテン、1-ペンテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 具体的には、ポリオレフィン樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ1-ブテン、ポリ1-ヘキセン、ポリ4-メチル-1-ペンテン等が挙げられる。これら重合体は1種のみで用いてもよく、2種以上を併用してもよい。即ち、ポリオレフィン樹脂は上記重合体の混合物であっても良い。
 上記ポリエチレン樹脂としては、エチレン単独重合体、及び、エチレンと他のオレフィン(他のオレフィンにエチレンは含まれない)との共重合体が挙げられる。後者としては、エチレン・1-ブテン共重合体、エチレン・1-へキセン共重合体、エチレン・1-オクテン共重合体、エチレン・4-メチル-1-ペンテン共重合体等が挙げられる(但し、全構成単位数のうちの50%以上がエチレンに由来する単位である)。
 上記ポリプロピレン樹脂としては、プロピレン単独重合体、及び、プロピレンと他のオレフィン(他のオレフィンにプロピレンは含まれない)との共重合体が挙げられる。後者としては、プロピレン・エチレン共重合体、プロピレン・1-ブテン共重合体等が挙げられる(但し、全構成単位数のうちの50%以上がプロピレンに由来する単位である)。
 また、プロピレンと他のオレフィンとの共重合体は、ランダム共重合体であってもよく、ブロック共重合体であってもよい。これらのうちでは、耐疲労性及び機械的強度に優れるという観点からブロック共重合体が好ましい。とりわけ、他のオレフィンがエチレンであるプロピレン・エチレンブロック共重合体であることが好ましい。このプロピレン・エチレンブロック共重合体は、例えば、インパクトコポリマー、ポリプロピレンインパクトコポリマー、ヘテロファジックポリプロピレン、ヘテロファジックブロックポリプロピレン等とも称される。
 ポリオレフィン樹脂のゲルパーミエーションクロマトグラフィ(GPC)による重量平均分子量(標準ポリスチレン換算)も特に限定されないが、例えば、10,000以上500,000以下とすることができ、100,000以上450,000以下が好ましく、200,000以上400,000以下がより好ましい。
 尚、ポリオレフィン樹脂は、後述するポリアミド樹脂に対して親和性を有さないポリオレフィンであり、且つ、ポリアミド樹脂に対して反応し得る反応性基も有さないポリオレフィンである。この点において、後述する変性エラストマーとしてのオレフィン系成分とは異なる。
〈2〉ポリアミド樹脂
 ポリアミド樹脂は、アミド結合(-NH-CO-)を介して複数の単量体が重合されてなる重合体である。
 ポリアミド樹脂を構成する単量体としては、6-アミノカプロン酸、11-アミノウンデカン酸、12-アミノドデカン酸、パラアミノメチル安息香酸などのアミノ酸、ε-カプロラクタム、ウンデカンラクタム、ω-ラウリルラクタムなどのラクタムなどが挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 更に、ポリアミド樹脂は、ジアミンとジカルボン酸との共重合により得ることもできる。この場合、単量体としてのジアミンには、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカン、1,13-ジアミノトリデカン、1,14-ジアミノテトラデカン、1,15-ジアミノペンタデカン、1,16-ジアミノヘキサデカン、1,17-ジアミノヘプタデカン、1,18-ジアミノオクタデカン、1,19-ジアミノノナデカン、1,20-ジアミノエイコサン、2-メチル-1,5-ジアミノペンタン、2-メチル-1,8-ジアミノオクタン等の脂肪族ジアミン、シクロヘキサンジアミン、ビス-(4-アミノシクロヘキシル)メタン等の脂環式ジアミン、キシリレンジアミン(p-フェニレンジアミン及びm-フェニレンジアミンなど)等の芳香族ジアミンなどが挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 更に、単量体としてのジカルボン酸には、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、ブラシリン酸、テトラデカン二酸、ペンタデカン二酸、オクタデカン二酸のような脂肪族ジカルボン酸、シクロヘキサンジカルボン酸のような脂環式ジカルボン酸、フタル酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸のような芳香族ジカルボン酸などが挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 即ち、ポリアミド樹脂としては、ポリアミド6、ポリアミド66、ポリアミド11、ポリアミド610、ポリアミド612、ポリアミド614、ポリアミド12、ポリアミド6T、ポリアミド6I、ポリアミド9T、ポリアミドM5T、ポリアミド1010、ポリアミド1012、ポリアミド10T、ポリアミドMXD6、ポリアミド6T/66、ポリアミド6T/6I、ポリアミド6T/6I/66、ポリアミド6T/2M-5T、ポリアミド9T/2M-8T等が挙げられる。これらのポリアミドは、1種のみを用いてもよいし2種以上を併用してもよい。
 また、本発明では、上述の各種ポリアミド樹脂のうち、主鎖中の隣り合ったアミド結合同士に挟まれた炭化水素基の直鎖炭素数が6以上(通常16以下)である構造(本発明では、単に「長鎖構造」ともいう)を有するポリアミド樹脂を用いることができる。即ち、長鎖構造を有するポリアミド樹脂である。長鎖構造を用いる場合、ポリアミド樹脂の全構成単位のうち、長鎖構造を50%以上有することが好ましく、100%であってもよい。具体的には、ポリアミド11、ポリアミド610、ポリアミド612、ポリアミド614、ポリアミド12、ポリアミド6T、ポリアミド6I、ポリアミド9T、ポリアミド1010、ポリアミド1012、ポリアミド10T、ポリアミド9T/2M-8T等が挙げられる。これらのポリアミドは、1種のみを用いてもよいし2種以上を併用してもよい。このような長鎖構造を有するポリアミド樹脂を用いることで、耐疲労性及び耐衝撃性により優れた熱可塑性樹脂組成物とすることができる。
 更に、本発明では、上述の各種ポリアミド樹脂のうち、植物由来ポリアミド樹脂を用いることができる。植物由来ポリアミド樹脂は、植物油等の植物に由来する成分から得られた単量体を用いる樹脂であるため、環境保護の観点(特にカーボンニュートラルの観点)から望ましい。
 植物由来ポリアミド樹脂としては、ポリアミド11(以下、単に「PA11」ともいう)、ポリアミド610(以下、単に「PA610」ともいう)、ポリアミド612(以下、単に「PA612」ともいう)、ポリアミド614(以下、単に「PA614」ともいう)、ポリアミド1010(以下、単に「PA1010」ともいう)、ポリアミド1012(以下、単に「PA1012」ともいう)、ポリアミド10T(以下、単に「PA10T」ともいう)等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 上記植物由来ポリアミド樹脂のなかでも、PA11は、他の植物由来ポリアミド樹脂に対し、低吸水性、低比重及び植物化度の高さの観点においてより優れる。また、ポリアミド610は、吸水率、耐薬品性、及び衝撃強度の点でPA11よりも劣るが、耐熱性(融点)及び強度の観点において優れる。更には、ポリアミド6やポリアミド66と比べ、低吸水性で寸法安定性が良いため、ポリアミド6やポリアミド66の代替材として使用できる。ポリアミド1010は、PA11に比べて、耐熱性及び強度の観点において優れる。更に、植物化度もPA11と同等であり、より耐久性の必要な部位に使用できる。ポリアミド10Tは、分子骨格に芳香環を含むため、ポリアミド1010に比べて、より融点が高く高強度である。そのため、より過酷な環境での使用を可能にする。
 ポリアミド樹脂のゲルパーミエーションクロマトグラフィ(GPC)による重量平均分子量(標準ポリスチレン換算)は特に限定されないが、例えば、5,000以上100,000以下とすることができ、7,500以上50,000以下が好ましく、10,000以上50,000以下がより好ましい。
〈3〉変性エラストマー
 変性エラストマーは、ポリアミド樹脂に対する反応性基を有するエラストマーである。この変性エラストマーは、ポリオレフィン樹脂に対して親和性を有する成分であることが好ましい。即ち、ポリアミド樹脂とポリオレフィン樹脂とに対する相容化作用を有する成分であることが好ましい。更に換言すれば、ポリアミド樹脂とポリオレフィン樹脂との相容化剤であることが好ましい。
 反応性基としては、酸無水物基(-CO-O-OC-)、カルボキシル基(-COOH)及びエポキシ基{-CO(2つの炭素原子と1つの酸素原子とからなる三員環構造)}、オキサゾリン基(-CNO)及びイソシアネート基(-NCO)等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 変性エラストマーの変性量は限定されず、変性エラストマーは1分子中に1以上の反応性基を有すればよい。更に、変性エラストマーは1分子中に1以上50以下の反応性基を有することが好ましく、3以上30以下がより好ましく、5以上20以下が特に好ましい。
 変性エラストマーとして、反応性基を導入できる各種単量体を用いた重合体(反応性基を導入できる単量体を用いた重合により得られた変性エラストマー)、各種重合体の酸化分解物(酸化分解により反応性基が形成された変性エラストマー)、各種重合体に対する有機酸のグラフト重合物(有機酸のグラフト重合により反応性基が導入された変性エラストマー)などが挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。これらは1種のみを用いてもよく2種以上を併用してもよい。
 反応性基を導入できる単量体としては、重合性不飽和結合と酸無水物基とを有する単量体、重合性不飽和結合とカルボキシル基とを有する単量体、重合性不飽和結合とエポキシ基とを有する単量体などが挙げられる。
 具体的には、無水マレイン酸、無水イタコン酸、無水コハク酸、無水グルタル酸、無水アジピン酸、無水シトラコン酸、テトラヒドロ無水フタル酸、ブテニル無水コハク酸等の酸無水物、及びマレイン酸、イタコン酸、フマル酸、アクリル酸、メタクリル酸等のカルボン酸が挙げられる。これらは1種のみ用いてもよく2種以上を併用してもよい。これらの化合物のうちでは、酸無水物が好ましく、無水マレイン酸及び無水イタコン酸がより好ましく、無水マレイン酸が特に好ましい。
 更に、変性エラストマーの骨格を構成する樹脂(以下、「骨格樹脂」という。)の種類は特に限定されず、種々の熱可塑性樹脂を用いることができる。この骨格樹脂としては、ポリオレフィン樹脂として先に例示した各種の樹脂の1種又は2種以上を用いることができる。加えて、骨格樹脂としては、オレフィン系熱可塑性エラストマー、及び、スチレン系熱可塑性エラストマーを用いることができる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 オレフィン系熱可塑性エラストマーとしては、2種以上のオレフィンを共重合してなる共重合体が挙げられる。
 オレフィンとしては、ポリオレフィン樹脂を構成するオレフィンとして先に例示した各種のオレフィンの1種又は2種以上を用いることができる。このなかでも、オレフィン系熱可塑性エラストマーとしては、エチレンと炭素数3~8のα-オレフィンとの共重合体、及び、プロピレンと炭素数4~8のα-オレフィンとの共重合体が好ましい。
 即ち、エチレンと炭素数3~8のα-オレフィンとの共重合体としては、エチレン・プロピレン共重合体(EPR)、エチレン・1-ブテン共重合体(EBR)、エチレン・1-ペンテン共重合体、エチレン・1-オクテン共重合体(EOR)が挙げられる。
 また、プロピレンと炭素数4~8のα-オレフィンとの共重合体としては、プロピレン・1-ブテン共重合体(PBR)、プロピレン・1-ペンテン共重合体、プロピレン・1-オクテン共重合体(POR)等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 一方、スチレン系熱可塑性エラストマーとしては、スチレン系化合物と共役ジエン化合物とのブロック共重合体、及びその水添体が挙げられる。
 上記スチレン系化合物としては、例えば、スチレン、α-メチルスチレン、p-メチルスチレン、p-t-ブチルスチレン等のアルキルスチレン、p-メトキシスチレン、ビニルナフタレン等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 上記共役ジエン化合物としては、ブタジエン、イソプレン、ピペリレン、メチルペンタジエン、フェニルブタジエン、3,4-ジメチル-1,3-ヘキサジエン、4,5-ジエチル-1,3-オクタジエン等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 即ち、スチレン系熱可塑性エラストマーとしては、スチレン-ブタジエン-スチレン共重合体(SBS)、スチレン-イソプレン-スチレン共重合体(SIS)、スチレン-エチレン/ブチレン-スチレン共重合体(SEBS)、スチレン-エチレン/プロピレン-スチレン共重合体(SEPS)等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。これらのなかでも、SEBSが好ましい。
 変性エラストマーのゲルパーミエーションクロマトグラフィ(GPC)による重量平均分子量(標準ポリスチレン換算)は特に限定されないが、例えば、10,000以上500,000以下とすることができ、35,000以上500,000以下が好ましく、35,000以上300,000以下がより好ましい。
〈4〉その他の成分
 本成形体をなす熱可塑性樹脂組成物は、ポリオレフィン樹脂、ポリアミド樹脂及び変性エラストマー以外に、他の成分を含むことができる。他の成分としては、充填剤(補強フィラー)、造核剤、酸化防止剤、熱安定剤、耐候剤、光安定剤、可塑剤、紫外線吸収剤、帯電防止剤、難燃剤、難燃助剤、スリップ剤、アンチブロッキング剤、防曇剤、滑剤、抗菌剤、着色剤(顔料、染料)、分散剤、銅害防止剤、中和剤、気泡防止剤、ウェルド強度改良剤、天然油、合成油、ワックス等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 上記のうち、他の熱可塑性樹脂としては、ポリエステル系樹脂(ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリカーボネート、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリ乳酸)等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 充填剤としては、ガラス成分(ガラス繊維、ガラスビーズ、ガラスフレーク等)、シリカ、無機繊維(ガラス繊維、アルミナ繊維、カーボン繊維)、黒鉛、珪酸化合物(珪酸カルシウム、珪酸アルミニウム、モンモリロナイト、カオリン、タルク、クレー等)、金属酸化物(酸化鉄、酸化チタン、酸化亜鉛、酸化アンチモン、アルミナ等)、リチウム、カルシウム、マグネシウム、亜鉛等の金属の炭酸塩及び硫酸塩、金属(アルミニウム、鉄、銀、銅等)、水酸化物(水酸化アルミニウム、水酸化マグネシウム等)、硫化物(硫酸バリウム等)、炭化物(木炭、竹炭等)、チタン化物(チタン酸カリウム、チタン酸バリウム等)、有機繊維(芳香族ポリエステル繊維、芳香族ポリアミド繊維、フッ素樹脂繊維、ポリイミド繊維、植物性繊維等)、セルロース類(セルロースミクロフィブリル、酢酸セルロース等)などが挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。これらは、造核剤としても利用できる。
〈5〉相構造について
 本成形体をなす熱可塑性樹脂組成物がとる相構造は限定されないが、下記相構造(1)~(3)が挙げられる。
 相構造(1):ポリオレフィン樹脂を含んだ連続相(A)と、連続相(A)中に分散された、ポリアミド樹脂及び変性エラストマーを含んだ分散相(B)と、を有する相構造(図8参照)。但し、ポリアミド樹脂を含んだ連続相、及び、この連続相中に分散された分散相、を有する他の相構造は共存されない。
 相構造(2):ポリアミド樹脂を含んだ連続相と、この連続相中に分散された、ポリオレフィン樹脂を含んだ分散相と、を有する相構造。但し、ポリオレフィン樹脂を含んだ連続相、及び、この連続相中に分散された分散相、を有する他の相構造は共存されない。
 相構造(3):ポリオレフィン樹脂を含んだ連続相(A)と、連続相(A)中に分散された、ポリアミド樹脂及び変性エラストマーを含んだ分散相(BA1)と、ポリアミド樹脂を含んだ連続相(A)と、連続相(A)中に分散された、変性エラストマーを含んだ分散相(BA2)と、を有する相構造(図9参照)。
 これらの相構造のなかでは、相構造(1)又は相構造(3)が好ましい。
 相構造(1)では、更に、相構造(1)中の分散相(B)が、この分散相(B)内における連続相であって、ポリアミド樹脂を含む連続相(B)と、この連続相(B)内で分散された微分散相であって、変性エラストマーを含む微分散相(B)と、を有することができる(図8参照)。この場合、相構造(1)は、分散相(B)内に更に微分散相(B)を有する多重相構造を呈することになる。
 尚、相構造(1)において変性エラストマーは、未反応の変性エラストマーであってもよく、ポリアミド樹脂との反応物であってもよく、これらの混合物であってもよい。
 相構造(3)は、連続相(A)と連続相(A)との2つの連続相が共存された共連続相構造を呈することができる。また、連続相(A)内の分散相(BA1)は、この分散相(BA1)内における連続相であって、ポリアミド樹脂を含む連続相(BA11)と、この連続相(BA11)内で分散された微分散相であって、変性エラストマーを含む微分散相(BA12)と、を有することができる。この場合、相構造(3)は、分散相(BA1)内に更に微分散相(BA12)を有する多重相構造を呈することになる。
 尚、相構造(3)において変性エラストマーは、未反応の変性エラストマーであってもよく、ポリアミド樹脂との反応物であってもよく、これらの混合物であってもよい。
 また、相構造(1)の場合、連続相(A)は、ポリオレフィン樹脂を含む。ポリオレフィン樹脂は連続相(A)の主成分(連続相A全体に対し、通常70質量%以上であり、100質量%であってもよい)である。また、分散相(B)は、ポリアミド樹脂及び変性エラストマーを含む。ポリアミド樹脂(分散相(B)に変性エラストマーを含む場合には、ポリアミド樹脂及び変性エラストマー)は分散相(B)の主成分(分散相B全体に対し、通常70質量%以上であり、100質量%であってもよい)である。
 更に、相構造(1)において前述の多重相構造を呈する場合、連続相(B)は、ポリアミド樹脂を含む。ポリアミド樹脂は連続相(B)の主成分(連続相B全体に対し、通常70質量%以上であり、100質量%であってもよい)である。また、微分散相(B)は、変性エラストマーを含む。変性エラストマーは微分散相(B)の主成分(微分散相B全体に対し、通常70質量%以上であり、100質量%であってもよい)である。
 上記相構造(3)の場合、連続相(A)は、ポリオレフィン樹脂を含む。ポリオレフィン樹脂は連続相(A)の主成分(連続相A全体に対し、通常70質量%以上であり、100質量%であってもよい)である。また、分散相(BA1)は、ポリアミド樹脂及び変性エラストマーを含む。ポリアミド樹脂及び変性エラストマーは分散相(BA1)の主成分(分散相BA1全体に対し、通常70質量%以上であり、100質量%であってもよい)である。
 更に、相構造(3)において前述の多重相構造を呈する場合、連続相(BA11)は、ポリアミド樹脂を含む。ポリアミド樹脂は連続相(BA11)の主成分(連続相BA11全体に対し、通常70質量%以上であり、100質量%であってもよい)である。また、微分散相(BA12)は、変性エラストマーを含む。変性エラストマーは微分散相(BA12)の主成分(微分散相BA12全体に対し、通常70質量%以上であり、100質量%であってもよい)である。
 また、連続相(A)は、ポリアミド樹脂を含む。ポリアミド樹脂は連続相(A)の主成分(連続相A全体に対し、通常70質量%以上であり、100質量%であってもよい)である。また、連続相(A)に対する分散相(BA2)は、変性エラストマーを含む。変性エラストマーは分散相(BA2)の主成分(分散相BA2全体に対し、通常70質量%以上であり、100質量%であってもよい)である。
 これらの相構造は、後述するように、ポリオレフィン樹脂、ポリアミド樹脂、変性エラストマーの各配合割合により、変化させることができる。
 尚、前述のように、本熱可塑性樹脂組成物では、変性エラストマーが有する反応性基がポリアミド樹脂に対して反応された反応物となることができる。この場合、反応物は、相構造(1)では、例えば、連続相(A)と分散相(B)との界面、及び/又は、連続相(B)と微分散相(B)との界面、に存在できる。同様に、相構造(3)では、例えば、連続相(A)と連続相(A)との界面、連続相(A)と分散相(BA1)との界面、連続相(BA11)と微分散相(BA12)との界面、等に存在できる。
 各種相構造は、酸素プラズマエッチング処理した後、更に、オスミウムコート処理を施した試験片(成形体の試験片)の処理面を電界放出形走査型電子顕微鏡(FE-SEM)で観察できる。特に、分散相及び微分散相は、この方法において1000倍以上(通常10,000倍以下)に拡大した画像で観察できる。また、各相を構成する成分は、電界放射型走査電子顕微鏡(FE-SEM)を用いた観察時にエネルギー分散型X線分析(EDS)を行うことで特定できる。
 本成形体をなす熱可塑性樹脂組成物の分散相(図8における分散相B、図9における分散相BA1)の大きさは特に限定されないが、その分散径(平均分散径)は、10000nm以下であることが好ましく、より好ましくは50nm以上8000nm以下、更に好ましくは100nm以上4000nm以下である。
 この分散相の分散径は、電子顕微鏡を用いて得られる1000倍以上の拡大画像において測定できる。即ち、画像内の所定の領域内から無作為に選択された20個の分散相の各々の最長径を測定し、得られた最長径の平均値を第1平均値とする。そして、画像内の異なる5つの領域において測定された第1平均値の更なる平均値が、分散相の平均分散径(長軸平均分散径)である。
 本成形体をなす熱可塑性樹脂組成物の分散相(図8における分散相B、図9における分散相BA1)内に含まれた微分散相(図8における微分散相B、図9における微分散相BA12)の大きさは特に限定されないが、その分散径(平均分散径)は、5nm以上1000nm以下であることが好ましく、より好ましくは5nm以上600nm以下、更に好ましくは10nm以上400nm以下、特に好ましくは15nm以上350nm以下である。
 この微分散相の分散径は、電子顕微鏡を用いて得られる1000倍以上の拡大画像において測定できる。即ち、画像内の所定の領域内から無作為に選択された20個の微分散相の各々の最長径を測定し、得られた最長径の平均値を第1平均値とする。そして、画像内の異なる5つの領域において測定された第1平均値の更なる平均値が、微分散相の平均分散径(長軸平均分散径)である。
 〈6〉配合について
 本成形体をなす熱可塑性樹脂組成物において、ポリオレフィン樹脂とポリアミド樹脂と変性エラストマーとの合計を100質量%とした場合に、ポリオレフィン樹脂の割合は、2質量%以上90質量%以下とすることができる。この割合は、5質量%以上85質量%以下が好ましく、更に10質量%以上83質量%以下が好ましく、更に15質量%以上80質量%以下が好ましく、更に20質量%以上78質量%以下が好ましく、更に25質量%以上75質量%以下が好ましく、更に30質量%以上73質量%以下が好ましく、更に35質量%以上70質量%以下が好ましい。上記範囲では、耐疲労性及び機械的強度を両立させた成形体とすることができる。
 本成形体をなす熱可塑性樹脂組成物において、ポリオレフィン樹脂とポリアミド樹脂と変性エラストマーとの合計を100質量%とした場合に、ポリアミド樹脂及び変性エラストマー(これらの一部又は全部は互いに反応されていてもよい)の割合は、10質量%以上98質量%以下とすることができる。この割合は、15質量%以上95質量%以下が好ましく、更に17質量%以上90質量%以下が好ましく、更に20質量%以上85質量%以下が好ましく、更に22質量%以上80質量%以下が好ましく、更に25質量%以上75質量%以下が好ましく、更に27質量%以上70質量%以下が好ましく、更に30質量%以上65質量%以下が好ましい。上記範囲では、耐疲労性及び機械的強度を両立させた成形体とすることができる。
 本成形体をなす熱可塑性樹脂組成物において、ポリオレフィン樹脂とポリアミド樹脂と変性エラストマーとの合計を100質量%とした場合に、ポリアミド樹脂の割合は、1質量%以上75質量%以下とすることができる。この割合は、2質量%以上70質量%以下が好ましく、更に4質量%以上65質量%以下が好ましく、更に6質量%以上60質量%以下が好ましく、更に8質量%以上55質量%以下が好ましく、更に10質量%以上50質量%以下が好ましく、更に12質量%以上45質量%以下が好ましく、更に15質量%以上40質量%以下が好ましい。上記範囲では、耐疲労性及び機械的強度を両立させた成形体とすることができる。
 本成形体をなす熱可塑性樹脂組成物において、ポリオレフィン樹脂とポリアミド樹脂と変性エラストマーとの合計を100質量%とした場合に、変性エラストマーの割合は、1質量%以上60質量%以下とすることができる。この割合は、2質量%以上55質量%以下が好ましく、更に4質量%以上45質量%以下が好ましく、更に6質量%以上40質量%以下が好ましく、更に8質量%以上38質量%以下が好ましく、更に10質量%以上37質量%以下が好ましく、更に12質量%以上36質量%以下が好ましく、更に15質量%以上35質量%以下が好ましい。上記範囲では、耐疲労性及び機械的強度を両立させた成形体とすることができる。
 本成形体をなす熱可塑性樹脂組成物において、ポリオレフィン樹脂とポリアミド樹脂との合計を100質量%とした場合、ポリアミド樹脂の割合は、1.5質量%以上88質量%以下とすることができる。この割合は、3質量%以上75質量%以下が好ましく、更に5質量%以上70質量%以下が好ましく、更に10質量%以上65質量%以下が好ましく、更に15質量%以上60質量%以下が好ましく、更に18質量%以上55質量%以下が好ましく、更に20質量%以上50質量%以下が好ましく、更に25質量%以上45質量%以下が好ましい。上記範囲では、耐疲労性及び機械的強度を両立させた成形体とすることができる。
 本成形体をなす熱可塑性樹脂組成物において、ポリアミド樹脂と変性エラストマーとの合計を100質量%とした場合に、変性エラストマーの割合は、20質量%以上90質量%以下とすることができる。この割合は、22質量%以上88質量%以下が好ましく、更に25質量%以上86質量%以下が好ましく、更に27質量%以上75質量%以下が好ましく、29質量%以上70質量%以下が好ましく、更に32質量%以上66質量%以下が好ましく、更に36質量%以上60質量%以下が好ましい。上記範囲では、耐疲労性及び機械的強度を両立させた成形体とすることができる。
 尚、前述したポリオレフィン樹脂とポリアミド樹脂と変性エラストマーとの合計を100質量%とした場合のポリオレフィン樹脂の割合は、前述した相構造(1)(図8参照)の場合には、通常、相全体を100質量%とした場合の連続相(A)の割合に等しい。一方、相構造(3)(図9参照)の場合には、通常、相全体を100質量%とした場合の連続相(A)の割合に等しい。ここでいう割合は、体積割合であるが、通常、この体積割合が反映される面積割合とも等しい(以下、同様である)。
 前述したポリオレフィン樹脂とポリアミド樹脂と変性エラストマーとの合計を100質量%とした場合の、ポリアミド樹脂及び変性エラストマーの割合は、前述した相構造(1)(図8参照)の場合には、通常、相全体を100質量%とした場合の分散相(B)の割合に等しい。一方、相構造(3)(図9参照)の場合には、通常、相全体を100質量%とした場合の、分散相(BA1)と連続相(A)と分散相(BA2)との合計割合に等しい。
 前述したポリオレフィン樹脂とポリアミド樹脂と変性エラストマーとの合計を100質量%とした場合のポリアミド樹脂の割合は、前述した相構造(1)(図8参照)の場合には、通常、相全体を100質量%とした場合の連続相(B)の割合に等しい。一方、相構造(3)(図9参照)の場合には、通常、相全体を100質量%とした場合の、連続相(A)と分散相内連続相(BA11)との合計割合に等しい。
 前述したポリオレフィン樹脂とポリアミド樹脂と変性エラストマーとの合計を100質量%とした場合の変性エラストマーの割合は、前述した相構造(1)(図8参照)の場合には、通常、相全体を100質量%とした場合の微分散相(B)の割合に等しい。一方、相構造(3)(図9参照)の場合には、通常、相全体を100質量%とした場合の、微分散相(BA12)と分散相(BA2)との合計割合に等しい。
 〈7〉物性について
 本成形体では、耐疲労性と機械的強度とを両立させることができる。具体的には、後述する実施例の振動疲労試験(ASTM D671に準拠)において、負荷応力6.6MPaで1×10回以上の繰返し回数でも破断しない成形体とすることができる。そのうえで、シャルピー衝撃強度40kJ/m以上160kJ/m以下、且つ、曲げ弾性率400MPa以上1500MPa以下の機械的強度を付与することができる。
 上記機械的強度は、更に、シャルピー衝撃強度50kJ/m以上150kJ/m以下、且つ、曲げ弾性率450MPa以上1300MPa以下にでき、更に、シャルピー衝撃強度60kJ/m以上140kJ/m以下、且つ、曲げ弾性率500MPa以上1200MPa以下にでき、更に、シャルピー衝撃強度70kJ/m以上130kJ/m以下、且つ、曲げ弾性率550MPa以上1100MPa以下にできる。
 尚、上記シャルピー衝撃強度の値は、JIS K7111-1に準拠して測定(タイプAノッチ、温度23℃、エッジワイズ試験法)した場合の値である。また、上記曲げ弾性率の値は、JIS K7171に準拠して測定(支点間距離64mm、曲率半径5mmの支点2つで支持、曲率半径5mmの作用点を使用、荷重負荷速度2mm/分)した場合の値である。
 〈8〉熱可塑性樹脂組成物の製造
 本成形体をなす熱可塑性樹脂組成物を製造する方法は限定されず、従来公知の方法で製造できる。例えば、ポリアミド樹脂及び変性エラストマーの溶融混練物と、ポリオレフィン樹脂と、を溶融混練することで得ることができる。この際、上述の溶融混練物の調製、及び、この溶融混練物とポリオレフィン樹脂との溶融混練では、いずれもどのような溶融混練装置を用いてもよい。例えば、押出機(一軸スクリュー押出機、二軸混練押出機等)、ニーダー、ミキサー(高速流動式ミキサー、バドルミキサー、リボンミキサー等)等を用いることができる。
 尚、ポリアミド樹脂と変性エラストマーとの溶融混練温度は限定されないが、例えば、190℃以上350℃以下とすることができ、200℃以上330℃以下が好ましく、205℃以上310℃以下がより好ましい。また、得られた溶融混練物とポリオレフィン樹脂との溶融混練温度は限定されないが、例えば、190℃以上350℃以下とすることができ、200℃以上300℃以下が好ましく、205℃以上260℃以下がより好ましい。
 〈9〉成形体の形態及び用途
 本成形体の形状、大きさ及び厚さ等の寸法も特に限定されず、その用途も特に限定されない。この成形体は、例えば、自動車、鉄道車両、船舶及び飛行機等の外装材、内装材、構造材及び衝撃吸収材等として用いることができる。これらのうち自動車用品としては、自動車用外装材、自動車用内装材、自動車用構造材、自動車用衝撃吸収材、エンジンルーム内部品等が挙げられる。
 具体的には、各種の内装用ボックス類、コンソールボックス(蓋付きのコンソールボックス、蓋と一体に成形されたコンソールボックス)、コンソールボックスの蓋体、シガーソケット、サンバイザ、エアバッグの蓋体、パッケージトレイ、フェンダ、インストルメントパネル、アシストグリップ、ラゲージヒンジ、衝撃吸収部材、
 各種の吸気系ホース、インテークマニホールド、エアダクト、エアクリーナのハウジング、オイルフィルタのハウジング、オイルパン、燃料タンクカバー、
 各種のブーツ類、燃料チューブ、
 各種のシート用部品、ランバーサポート、コンターマット、衝撃吸収部材、バネ部材、樹脂フレーム、オットマン駆動エアダクト、オットマン駆動袋体、表皮(表皮端末)固定具、クランプ、ブラケット、車両用ペダル(ブレーキ、アクセル)などが挙げられる。
 更に、例えば、建築物及び家具等の内装材、外装材、構造材及び緩衝材等が挙げられる。即ち、衝撃吸収部材、柱用ヒンジ、ドアノブ、ドア(扉)、窓などが挙げられる。その他、包装体(包装容器、蓋体付容器(ウェットティッシュ容器、飲料ボトルなど)等)、収容体(小物入れ、多仕切型の小物入れ、ピル入れ、薬入れ、道具箱、それらのヒンジ用部品等)などとして用いることもできる。また、家電製品(薄型TV、冷蔵庫、洗濯機、掃除機、携帯電話、携帯ゲーム機、ノート型パソコン等)の筐体及び構造体などのヒンジ及びヒンジ構造とすることができる。
[2]成形体の製造方法
 本発明の成形体の製造方法は、繰り返して屈曲又は湾曲させることを可能とした繰返し可動部を有する成形体の製造方法であって、
 繰返し可動部の成形材料として、ポリオレフィン樹脂と、ポリアミド樹脂と、前記ポリアミド樹脂に対する反応性基を有する変性エラストマーと、を含んだ熱可塑性樹脂組成物を用いることを特徴とする。
 本方法において、繰返し可動部については、前述の通りである。また、ポリオレフィン樹脂、ポリアミド樹脂、変性エラストマー、及び、熱可塑性樹脂組成物についても、前述の通りである。
 本方法では、上述の通り、繰返し可動部を所定の熱可塑性樹脂組成物を利用して成形すればよく、その他の点については限定されない。本方法で利用することができる成形方法としては、例えば、射出成形、押出成形(シート押出、異形押出)、Tダイ成形、ブロー成形、インフレーション成形、中空成形、真空成形、圧縮成形、プレス成形、スタンピングモールド成形、トランスファ成形、発泡成形等が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
 また、得られる成形体は、ソリッド成形体(中実成形体・中空成形体)であってもよいし、発泡成形体などであってもよい。
 以下、実施例により本発明を具体的に説明する。
[1]熱可塑性樹脂組成物の作製
(1)実施例1の熱可塑性樹脂組成物
 下記ポリアミド樹脂のペレットと、下記変性エラストマーのペレットとをドライブレンドした後、二軸溶融混練押出機に投入し、混練温度210℃で溶融混練を行い、ペレタイザーを介して、ポリアミド樹脂及び変性エラストマーの溶融混練物からなるペレットを得た。更に、上記ペレット(ポリアミド樹脂及び変性エラストマーの溶融混練物からなるペレット)と、下記ポリオレフィン樹脂のペレットと、をドライブレンドした後、二軸溶融混練押出機に投入し、混練温度210℃で溶融混練を行い、ペレタイザーを介して、熱可塑性樹脂組成物からなるペレットを得た。
 得られた熱可塑性樹脂組成物は、ポリオレフィン樹脂とポリアミド樹脂と変性エラストマーとの配合割合は、質量比で、55:25:20である。この質量比の熱可塑性樹脂組成物は、相構造(1)(図8参照)を呈する。
 ・ポリオレフィン樹脂:ポリプロピレン樹脂、ホモポリマー、日本ポリプロ株式会社製、品名「ノバテック MA1B」、重量平均分子量312,000、融点165℃)
 ・ポリアミド樹脂:ナイロン11樹脂、アルケマ株式会社製、品名「Rilsan BMN O」、重量平均分子量18,000、融点190℃
 ・変性エラストマー:無水マレイン酸変性エチレン・ブテン共重合体(変性EBR)、三井化学株式会社製、品名「タフマー MH7020」
(2)実施例2の熱可塑性樹脂組成物
 上記実施例1と同様の手順により、熱可塑性樹脂組成物製のペレット(実施例2)を得た。実施例2の熱可塑性樹脂組成物は、ポリオレフィン樹脂とポリアミド樹脂と変性エラストマーとの配合割合が、質量比で、32.5:42.5:25である。この質量比の熱可塑性樹脂組成物は、相構造(3)(図9参照)を呈する。尚、使用したポリオレフィン樹脂、ポリアミド樹脂、及び、変性エラストマーは、いずれも実施例1と同じである。
[2]曲げ疲労試験(耐疲労性評価)
 上記[1]で得られた熱可塑性樹脂組成物からなるペレットを用いて、ASTM D671に規定されたTypeA(t=5mm)の試験片を作製した。
 得られた試験片を用いて、ASTM D671に準じて、曲げ疲労による破断の有無及びその回数を測定した。その結果を、表1(実施例1)及び表2(実施例2)に示した。更に、繰り返し回数と応力との相関をグラフとして図10に示した。
 尚、上記測定に係る測定条件は以下の通りである。
 試験機:繰返し振動疲労試験機(株式会社東洋精機製、型式「B50TL型」)
 試験温度:25℃
 試験片形状:ASTM D671 Type-A(t=5mm)
 試験周波数:30Hz
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
[3]機械的強度試験(機械的強度評価)
 (1)測定用試験片の作成
 上記[1]で得られた熱可塑性樹脂組成物からなるペレットを用いて、各測定に必要な測定用試験片(成形体)を射出成形した。
 (2)シャルピー衝撃強度の測定
 上記[3](1)で得られた測定用試験片を用い、JIS K7111-1に準拠してシャルピー衝撃強度の測定を行った。その結果、実施例1の熱可塑性樹脂組成物を用いた成形体のシャルピー衝撃強度は83kJ/mであった。一方、実施例2の熱可塑性樹脂組成物を用いた成形体のシャルピー衝撃強度は120kJ/mであった。
 尚、このシャルピー衝撃強度の測定では、ノッチ(タイプA)を有する測定用試験片を用い、温度23℃において、エッジワイズ試験法により衝撃測定を行った。
 (3)曲げ弾性率の測定
 上記[3](1)で得られた測定用試験片を用いて、JIS K7171に準拠して曲げ弾性率の測定を行った。その結果、実施例2の熱可塑性樹脂組成物を用いた成形体の曲げ弾性率は885MPaであった。一方、実施例2の熱可塑性樹脂組成物を用いた成形体の曲げ弾性率は779MPaであった。
 尚、この曲げ弾性率の測定では、測定用試験片を支点間距離(L)64mmとした2つの支点(曲率半径5mm)で支持しつつ、支点間中心に配置した作用点(曲率半径5mm)から速度2mm/分にて荷重の負荷を行った。
[4]ヒンジ部の作製
 射出成形により、長さ100mm×幅30mm×厚さ2.3mmの板体の長手方向の中央に、幅辺に平行なヒンジ部(厚さ0.5mm)を有する成形体を得た。また、この際、ヒンジ部に対して平行な方向にゲートを設けて射出を行った。その結果、ヒンジ部付近には、ウェルドが認められず、射出方向をヒンジ部に対して垂直にせずとも、屈曲割けを生じないヒンジ部が一体に成形された成形体が得られた。更に、型開け後、予備屈曲を行わなくともヒンジ部の形成を行うことができた。
[5]実施例の効果
 上記[3]の機械的強度評価の結果から、本成形体は、シャルピー衝撃強度83~120kJ/m、且つ、曲げ弾性率779~885MPaという優れた機械強度を有し得ることが分かる。一方で、上記[2]耐疲労性評価の結果から、本成形体は、応力7.4MPa以下で優れた耐疲労性を発揮できることが分かる(実施例1の1-4及び1-5は白化したものの破壊せず)。更に、応力6.7MPa以下であれば、1×10回を超える耐疲労性を有し得ることが分かる。即ち、本発明の成形体では、高い耐疲労性と優れた機械的強度を両立させることができることが分かる。とりわけ、実施例2の成形体は、応力値(6.7~11.9MPa)に関わらず破断に至っておらず、極めて高い耐疲労性を有していることが分かる。これは、共連続相構造を呈することに起因する効果と考えられる。即ち、実施例2の成形体では、耐疲労性及び機械的強度を極めて高いレベルで両立させることができることが分かる。
 更に、上記[4]の結果から、本方法は、金型の設計自由度、成形体の形状自由度を向上させることができ、工数削減することができる製造方法であることが分かる。
 前述の例は単に説明を目的とするものでしかなく、本発明を限定するものと解釈されるものではない。本発明を典型的な実施形態の例を挙げて説明したが、本発明の記述及び図示において使用された文言は、限定的な文言ではなく説明的及び例示的なものであると理解される。ここで詳述したように、その形態において本発明の範囲又は精神から逸脱することなく、添付の請求の範囲内で変更が可能である。ここでは、本発明の詳述に特定の構造、材料及び実施例を参照したが、本発明をここに掲げる開示事項に限定することを意図するものではなく、むしろ、本発明は添付の請求の範囲内における、機能的に同等の構造、方法、使用の全てに及ぶものとする。
 15;ヒンジ部、
 1A;開閉蓋(コンソールボックス蓋体)、
 1B;容器(一体成形ヒンジ部を有する容器)、
 1C;ヒンジ用部品、
 2A;蛇腹管(蛇腹形状部品)、
 2B;蛇腹板(蛇腹形状部品)、
 3A;バネ板体(バネ板状部品)
 A;連続相、
 B;分散相、
 B;連続相(分散相B内の連続相)、
 B;微分散相(分散相B内の分散相)、
 A、A;連続相、
 BA1、BA2;分散相、
 BA11;連続相(分散相BA1内の連続相)、
 BA12;微分散相(分散相BA1内の分散相)。

Claims (8)

  1.  繰り返して屈曲又は湾曲させることを可能とした繰返し可動部を有し、
     前記繰返し可動部が、ポリオレフィン樹脂と、ポリアミド樹脂と、前記ポリアミド樹脂に対する反応性基を有する変性エラストマーと、を含む熱可塑性樹脂組成物からなることを特徴とする成形体。
  2.  前記繰返し可動部が、他部と一体に成形されている請求項1に記載の成形体。
  3.  前記繰返し可動部が、ヒンジ部、蛇腹形状部、又は、バネ板体である請求項1又は2に記載の成形体。
  4.  前記ポリアミド樹脂は、主鎖中の隣り合ったアミド結合同士に挟まれた炭化水素基の直鎖炭素数が6以上である構造を有する請求項1乃至3のうちのいずれかに記載の成形体。
  5.  前記変性エラストマーは、エチレン若しくはプロピレンと炭素数3~8のα-オレフィンとの共重合体を骨格としたオレフィン系熱可塑性エラストマー、又は、スチレン骨格を有するスチレン系熱可塑性エラストマーである請求項1乃至4のうちのいずれかに記載の成形体。
  6.  前記ポリオレフィン樹脂により形成された連続相(A)と、
     前記連続相(A)中に分散され、前記ポリアミド樹脂及び前記変性エラストマーにより形成された分散相(B)と、を有する請求項1乃至5のうちのいずれかに記載の成形体。
  7.  前記分散相(B)が、前記ポリアミド樹脂を含んだ連続相(B)と、前記連続相(B)中に分散された前記変性エラストマーを含んだ微分散相(B)と、を有する請求項6に記載の成形体。
  8.  繰り返して屈曲又は湾曲させることを可能とした繰返し可動部を有する成形体の製造方法であって、
     前記繰返し可動部の成形材料として、ポリオレフィン樹脂と、ポリアミド樹脂と、前記ポリアミド樹脂に対する反応性基を有する変性エラストマーと、を含んだ熱可塑性樹脂組成物を用いることを特徴とする成形体の製造方法。
PCT/JP2018/015148 2017-04-19 2018-04-10 成形体及びその製造方法 WO2018193923A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112019018345-0A BR112019018345A2 (pt) 2017-04-19 2018-04-10 Artigo moldado e método para produzir o mesmo
RU2019134575A RU2740671C1 (ru) 2017-04-19 2018-04-10 Формованное изделие и способ для его изготовления
KR1020197029950A KR20190126132A (ko) 2017-04-19 2018-04-10 성형체 및 그 제조 방법
SG11201909020T SG11201909020TA (en) 2017-04-19 2018-04-10 Molded article and method for producing same
US16/604,339 US20200157291A1 (en) 2017-04-19 2018-04-10 Molded article and method for producing same
EP18787566.1A EP3613795A4 (en) 2017-04-19 2018-04-10 MOLDED ARTICLE AND PROCESS FOR ITS PRODUCTION
CN201880024381.3A CN110494474A (zh) 2017-04-19 2018-04-10 成型体和其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017083213A JP6897269B2 (ja) 2017-04-19 2017-04-19 成形体及びその製造方法
JP2017-083213 2017-04-19

Publications (1)

Publication Number Publication Date
WO2018193923A1 true WO2018193923A1 (ja) 2018-10-25

Family

ID=63856486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015148 WO2018193923A1 (ja) 2017-04-19 2018-04-10 成形体及びその製造方法

Country Status (9)

Country Link
US (1) US20200157291A1 (ja)
EP (1) EP3613795A4 (ja)
JP (1) JP6897269B2 (ja)
KR (1) KR20190126132A (ja)
CN (1) CN110494474A (ja)
BR (1) BR112019018345A2 (ja)
RU (1) RU2740671C1 (ja)
SG (1) SG11201909020TA (ja)
WO (1) WO2018193923A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112019006611T5 (de) 2019-01-09 2021-09-23 Toyota Boshoku Kabushiki Kaisha Schwingungsabsorbierendes Material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243587A1 (ja) * 2022-06-14 2023-12-21 三井化学株式会社 フィラー含有ポリプロピレン樹脂組成物

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09124934A (ja) * 1995-11-01 1997-05-13 Toray Ind Inc ポリアミド樹脂組成物
JPH09249808A (ja) * 1996-03-19 1997-09-22 Toray Ind Inc 樹脂組成物
JP2005232353A (ja) * 2004-02-20 2005-09-02 Asahi Kasei Chemicals Corp 改良された熱可塑性樹脂成形体
JP2013147647A (ja) 2011-12-22 2013-08-01 Toyota Boshoku Corp 熱可塑性樹脂組成物及びその製造方法
JP2013147645A (ja) 2011-12-22 2013-08-01 Toyota Boshoku Corp 熱可塑性樹脂組成物及びその製造方法
JP2013147646A (ja) 2011-12-22 2013-08-01 Toyota Boshoku Corp 植物由来ポリアミド樹脂を用いた熱可塑性樹脂組成物及び成形体
JP2013147648A (ja) 2011-12-22 2013-08-01 Toyota Boshoku Corp 熱可塑性樹脂組成物の製造方法
WO2014073219A1 (ja) * 2012-11-12 2014-05-15 三井化学株式会社 半芳香族ポリアミド、半芳香族ポリアミド樹脂組成物、および成形品
JP2016029290A (ja) * 2014-07-25 2016-03-03 東レ株式会社 螺旋状蛇腹衝撃吸収部材

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008038099A (ja) * 2006-08-09 2008-02-21 Toyoda Gosei Co Ltd 自動車用ウォーターパイプ
JP6436273B1 (ja) * 2017-01-23 2018-12-12 トヨタ紡織株式会社 熱可塑性樹脂組成物、その製造方法及び成形体

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09124934A (ja) * 1995-11-01 1997-05-13 Toray Ind Inc ポリアミド樹脂組成物
JPH09249808A (ja) * 1996-03-19 1997-09-22 Toray Ind Inc 樹脂組成物
JP2005232353A (ja) * 2004-02-20 2005-09-02 Asahi Kasei Chemicals Corp 改良された熱可塑性樹脂成形体
JP2013147647A (ja) 2011-12-22 2013-08-01 Toyota Boshoku Corp 熱可塑性樹脂組成物及びその製造方法
JP2013147645A (ja) 2011-12-22 2013-08-01 Toyota Boshoku Corp 熱可塑性樹脂組成物及びその製造方法
JP2013147646A (ja) 2011-12-22 2013-08-01 Toyota Boshoku Corp 植物由来ポリアミド樹脂を用いた熱可塑性樹脂組成物及び成形体
JP2013147648A (ja) 2011-12-22 2013-08-01 Toyota Boshoku Corp 熱可塑性樹脂組成物の製造方法
WO2014073219A1 (ja) * 2012-11-12 2014-05-15 三井化学株式会社 半芳香族ポリアミド、半芳香族ポリアミド樹脂組成物、および成形品
JP2016029290A (ja) * 2014-07-25 2016-03-03 東レ株式会社 螺旋状蛇腹衝撃吸収部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3613795A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112019006611T5 (de) 2019-01-09 2021-09-23 Toyota Boshoku Kabushiki Kaisha Schwingungsabsorbierendes Material
US20220106473A1 (en) * 2019-01-09 2022-04-07 Toyota Boshoku Kabushiki Kaisha Vibration absorbing material

Also Published As

Publication number Publication date
SG11201909020TA (en) 2019-11-28
BR112019018345A2 (pt) 2020-03-31
KR20190126132A (ko) 2019-11-08
EP3613795A4 (en) 2020-12-23
RU2740671C1 (ru) 2021-01-19
JP2018178036A (ja) 2018-11-15
EP3613795A1 (en) 2020-02-26
JP6897269B2 (ja) 2021-06-30
CN110494474A (zh) 2019-11-22
US20200157291A1 (en) 2020-05-21

Similar Documents

Publication Publication Date Title
JP6266715B2 (ja) 熱可塑性樹脂組成物及びその製造方法
WO2013094764A1 (ja) 熱可塑性樹脂組成物及びその製造方法
WO2013094763A1 (ja) 熱可塑性樹脂組成物及びその製造方法並びに成形体
JP5798595B2 (ja) 樹脂組成物
WO2018168720A1 (ja) 熱可塑性樹脂シート、積層シート及び成形体
WO2018135648A1 (ja) 熱可塑性樹脂組成物、その製造方法及び成形体
JP6361845B2 (ja) 熱可塑性樹脂組成物、その製造方法及び成形体
JP2013147646A (ja) 植物由来ポリアミド樹脂を用いた熱可塑性樹脂組成物及び成形体
JP2013147645A5 (ja)
WO2017169813A1 (ja) 分散径の調整方法及び熱可塑性樹脂組成物
WO2018193923A1 (ja) 成形体及びその製造方法
JPWO2018221388A1 (ja) 車両ドア用トリムボード及びドアトリム
JP7250254B2 (ja) 熱可塑性樹脂組成物
WO2020145013A1 (ja) 振動吸収材
WO2018193922A1 (ja) 熱可塑性樹脂組成物、成形体及びその製造方法
WO2017169814A1 (ja) 熱可塑性樹脂組成物、その製造方法及び成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787566

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019018345

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197029950

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018787566

Country of ref document: EP

Effective date: 20191119

ENP Entry into the national phase

Ref document number: 112019018345

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190904