WO2018193751A1 - 無機粒子複合繊維、その製造方法、及び成形体 - Google Patents

無機粒子複合繊維、その製造方法、及び成形体 Download PDF

Info

Publication number
WO2018193751A1
WO2018193751A1 PCT/JP2018/009495 JP2018009495W WO2018193751A1 WO 2018193751 A1 WO2018193751 A1 WO 2018193751A1 JP 2018009495 W JP2018009495 W JP 2018009495W WO 2018193751 A1 WO2018193751 A1 WO 2018193751A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
inorganic particle
composite fiber
inorganic particles
particle composite
Prior art date
Application number
PCT/JP2018/009495
Other languages
English (en)
French (fr)
Inventor
萌 福岡
後藤 至誠
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Priority to JP2019513264A priority Critical patent/JP7138095B2/ja
Priority to CN201880026068.3A priority patent/CN110637120A/zh
Priority to EP18788187.5A priority patent/EP3613896A4/en
Priority to EP19210396.8A priority patent/EP3663459A1/en
Priority to US16/606,732 priority patent/US11555270B2/en
Publication of WO2018193751A1 publication Critical patent/WO2018193751A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/70Inorganic compounds forming new compounds in situ, e.g. within the pulp or paper, by chemical reaction with other substances added separately
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/24Magnesium carbonates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/44Oxides or hydroxides of elements of Groups 2 or 12 of the Periodic Table; Zincates; Cadmates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/45Oxides or hydroxides of elements of Groups 3 or 13 of the Periodic Table; Aluminates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/46Oxides or hydroxides of elements of Groups 4 or 14 of the Periodic Table; Titanates; Zirconates; Stannates; Plumbates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/49Oxides or hydroxides of elements of Groups 8, 9,10 or 18 of the Periodic Table; Ferrates; Cobaltates; Nickelates; Ruthenates; Osmates; Rhodates; Iridates; Palladates; Platinates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/76Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon oxides or carbonates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/79Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • D06M15/267Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof of unsaturated carboxylic esters having amino or quaternary ammonium groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • D06M15/273Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof of unsaturated carboxylic esters having epoxy groups
    • D06M15/2735Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof of unsaturated carboxylic esters having epoxy groups of unsaturated carboxylic esters having mercapto groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/61Polyamines polyimines
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/08Processes in which the treating agent is applied in powder or granular form
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • D21H17/42Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups anionic
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • D21H17/42Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups anionic
    • D21H17/43Carboxyl groups or derivatives thereof
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/54Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen
    • D21H17/56Polyamines; Polyimines; Polyester-imides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/675Oxides, hydroxides or carbonates
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/68Water-insoluble compounds, e.g. fillers, pigments siliceous, e.g. clays
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/18Reinforcing agents
    • D21H21/20Wet strength agents
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • D06M2101/06Vegetal fibres cellulosic

Definitions

  • the present invention relates to an inorganic particle composite fiber, a production method thereof, and a molded body.
  • Fibers can exhibit various characteristics by attaching inorganic particles to the surface.
  • a method for producing a composite of inorganic particles and fibers by synthesizing an inorganic substance in the presence of fibers has been developed.
  • Patent Document 1 describes an inorganic particle composite fiber of calcium carbonate and lyocell fiber or polyolefin fiber.
  • an alternating adsorption film having a multilayer structure is manufactured by alternately immersing a film forming material in a solution containing positive charged particles and a solution containing negative charged particles a plurality of times. A method is described.
  • Patent Document 3 discloses that a positively charged substance-containing liquid containing a positively charged substance and a negatively charged substance containing liquid containing a negatively charged substance are alternately formed so as to form a liquid film on the surface of the film forming material. A method for producing an alternating adsorption film by applying to the substrate is described.
  • an object of one embodiment of the present invention is to provide a composite fiber to which more inorganic particles are attached and a method for manufacturing the same.
  • the present invention includes, but is not limited to, the following inventions.
  • An inorganic fiber comprising fibers and inorganic particles fixed to the fibers, wherein the fiber has a thread form, and the inorganic particles are fixed to the fibers via an ionic polymer. Particle composite fiber.
  • FIG. 1 is a schematic diagram of a reactor used in the synthesis of inorganic particles in Examples.
  • FIG. 2 is an electron micrograph of samples 1 to 3 after being immersed once in a magnesium carbonate dispersion (upper: sample 1, lower left: sample 2, lower right: sample 3).
  • FIG. 3 is an electron micrograph of samples 1 to 3 after being immersed twice in a magnesium carbonate dispersion (upper: sample 1, lower left: sample 2, lower right: sample 3).
  • FIG. 4 is an electron micrograph of samples 1 to 3 after three immersion treatments in a magnesium carbonate dispersion (upper: sample 1, lower left: sample 2, lower right: sample 3).
  • FIG. 2 is an electron micrograph of samples 1 to 3 after being immersed once in a magnesium carbonate dispersion (upper: sample 1, lower left: sample 2, lower right: sample 3).
  • FIG. 3 is an electron micrograph of samples 1 to 3 after being immersed twice in a magnesium carbonate dispersion (upper: sample 1, lower left: sample 2, lower right: sample 3).
  • FIG. 1
  • FIG. 5 is an electron micrograph of samples 4 to 7 after a single immersion treatment in a calcium carbonate dispersion (upper left: sample 4, lower left: sample 5, lower right: sample 6, upper left: sample 7).
  • FIG. 6 is an electron micrograph of samples 4 to 7 after being immersed twice in a calcium carbonate dispersion (upper left: sample 4, lower left: sample 5, lower right: sample 6, upper left: sample 7).
  • FIG. 7 is an electron micrograph of Samples 4 to 7 after three immersion treatments in a calcium carbonate dispersion (upper left: sample 4, lower left: sample 5, lower right: sample 6, upper left: sample 7).
  • FIG. 8 is an electron micrograph of Sample 8 after being immersed in a dispersion of magnesium carbonate (upper left: immersed once, upper right: immersed twice, lower right: immersed three times).
  • FIG. 9 is an electron micrograph of an untreated lyocell.
  • the present invention relates to a composite fiber comprising fibers and inorganic particles fixed to the fibers, and the inorganic particles are fixed to the fibers through an ionic polymer.
  • the composite fiber With much adhesion amount of an inorganic particle (that is, ash yield is high) can be obtained.
  • the inorganic particle composite fiber can exhibit the function which the inorganic particle has more significantly.
  • the “inorganic particle composite fiber” may be simply referred to as “composite fiber”.
  • fibers are used as a base material for fixing inorganic particles.
  • the form of the fiber is not particularly limited, but by fixing inorganic particles on the fiber in the form of pulp, yarn, etc., for example, more than when attaching the inorganic particles to the fiber formed into a sheet shape Inorganic particles can be fixed on the surface of the fiber. Therefore, it is possible to obtain a composite fiber in which the adhesion amount of inorganic particles is increased.
  • it can be used as a composite fiber that can suitably function as a filler as well as a molding material for forming a molded body such as a sheet.
  • pulp is an aggregate or aggregate of fibers, or a cotton-like material, and the fibers are formed into a desired shape such as a sheet by making paper, for example. It refers to a fiber material in a non-formed state (that is, unformed).
  • the “filamentous” form means an elongated form.
  • the fibers for example, natural cellulose fibers as well as regenerated fibers (semi-synthetic fibers) such as rayon and lyocell, synthetic fibers, and the like can be used without limitation.
  • the raw material for cellulose fiber include wood pulp, non-wood pulp, cellulose nanofiber, bacterial cellulose, seaweed and other animal-derived cellulose, and algae. Wood pulp may be produced by pulping wood raw material.
  • Wood raw materials include red pine, black pine, todomatsu, spruce, beech pine, larch, fir, tsuga, cedar, hinoki, larch, shirabe, spruce, hiba, douglas fir, hemlock, white fur, spruce, balsam fur, cedar, pine, Conifers such as Merck pine and Radiata pine, and mixed materials thereof, and broad-leaved trees such as beech, birch, alder tree, oak, tab, shii, birch, boxwood, poplar, tamo, dragonfly, eucalyptus, mangrove, lawan, and acacia And a mixture thereof.
  • wood raw materials wood raw materials
  • wood raw materials wood raw materials
  • wood pulp can be classified by pulping method, for example, chemical pulp digested by methods such as kraft method, sulfite method, soda method, and polysulfide method; mechanical pulp obtained by pulping by mechanical force such as refiner or grinder; Examples include semi-chemical pulp obtained by pre-treatment with chemicals and pulping with mechanical force; waste paper pulp; deinked pulp and the like.
  • Wood pulp may be unbleached (before bleaching) or bleached (after bleaching). Further, for example, a fibrous material recovered from the wastewater of a paper mill may be used in the present invention.
  • non-wood-derived pulp examples include cotton, hemp, sisal hemp, manila hemp, flax, straw, bamboo, bagasse, kenaf, sugar cane, corn, rice straw, cocoon, and mitsumata.
  • fibers other than the above include synthetic fibers, such as polyamides such as polyester, nylon and aramid, polyolefins, polyurethane fibers, acrylic fibers, vinylon, vinylidene, polyvinyl chloride, glass fibers, carbon fibers, and various types. A metal fiber etc. are mentioned, In this invention, these synthetic fibers can also be used as a composite fiber with a cellulose fiber.
  • the polyolefin include polyethylene and polypropylene.
  • the polyethylene include high density polyethylene, low density polyethylene, ultra low density polyethylene, linear low density polyethylene, and ultra high molecular weight polyethylene.
  • the fibers shown above may be used alone or in combination. Further, for example, a fibrous material recovered from the wastewater of a paper mill may be used as a base material.
  • the fiber may be either unbeaten or beaten, and may be selected according to the physical properties of the composite fiber, but it is preferable to beaten. Thereby, improvement of sheet strength and promotion of fixing of inorganic particles can be expected.
  • the fiber that is the base material of the composite fiber of the present invention is a semi-synthetic fiber or a synthetic fiber.
  • the fiber length of the fiber serving as the substrate is not particularly limited.
  • the average fiber length may be about 0.1 ⁇ m to 15 mm, and may be 1 ⁇ m to 12 mm, 100 ⁇ m to 10 mm, 500 ⁇ m to 8 mm, or the like.
  • the fiber to be combined is preferably used in such an amount that 15% or more of the fiber surface is covered with inorganic particles.
  • the weight ratio of the fiber to the inorganic particles is 5/95 to 95/5. 10/90 to 90/10, 20/80 to 80/20, 30/70 to 70/30, or 40/60 to 60/40.
  • Such a weight ratio of the fiber to the inorganic particles can be obtained from the ash content of the composite fiber.
  • the inorganic particle composite fiber according to the present invention has 15% or more of the fiber surface coated with inorganic particles, and if the fiber surface is coated with such an area ratio, the characteristics resulting from the inorganic particles are increased. be able to.
  • the ratio of the fibers covered with inorganic particles can be confirmed by microscopic observation including electron microscopic observation.
  • an increase in surface area can be mentioned.
  • the BET specific surface area of the fiber alone the value is often about 1 to 2, but when this value becomes 3 or more due to the composite, a certain amount or more of inorganic particles are fixed on the fiber surface. It is possible to think.
  • the Blaine method, the Fisher method, the Langmuir method, and the like can be suitably used.
  • the ionic polymer exists as a base for fixing the inorganic particles to the fiber and as a binder (binder) between the inorganic particles.
  • a binder binder
  • the state where the inorganic particles are attached to the surface of the base is expressed as “fixed” to the base. Further, the inorganic particles are expressed as “bound” by referring to a state in which the inorganic particles adhere to each other through an ionic polymer to form one layer.
  • the base may be formed of at least one ionic polymer, but may be a plurality of layers containing the ionic polymer.
  • the plurality of layers are a plurality of layers in which a cationic polymer and an anionic polymer are alternately stacked.
  • an ionic polymer layer that directly covers the surface of a fiber, and a plurality of layers formed from a plurality of ionic polymers, including the ionic polymer layer.
  • underlayer or simply “underground”.
  • Cationic polymers include, for example, modified polyethylenimine, polyethylenimine, polyalkylenimine, dicyandiamide polymer, polyamine, polyamine / epichlorohydrin polymer, and polyallylamine hydrochloride containing tertiary and / or quaternary ammonium groups; And polymers of acrylamide with dialkyldiallyl quaternary ammonium monomers, dialkylaminoalkyl acrylates, dialkylaminoalkyl methacrylates, dialkylaminoalkyl acrylamides and / or dialkylaminoalkyl methacrylamides; and monoamines and epihalohydrins And a cationic polymer such as a polymer having a polyvinylamine and a vinylamine moiety or a mixture thereof; and a cation In addition to cationic polymers such as starch, phosphate esterified starch, and cationized cellulose nanofibers, cations obtained by
  • the weight average molecular weight of the cationic polymer is not particularly limited as long as inorganic particles can be fixed on the fiber, but is preferably 1000 to 5000000, and more preferably 10,000 to 1000000. If the weight average molecular weight of the cationic polymer is 10,000 to 1,000,000, the phenomenon of the cationic polymer adsorbing to the substrate can be easily controlled. That is, the cationic polymer can be suitably adsorbed on the surface of the laminated film formed of the fiber as the base material or the anionic polymer. Moreover, when manufacturing a composite fiber, it can prevent that the cationic polymer adsorb
  • anionic polymer examples include polymers such as unsaturated carboxylic acids and unsaturated sulfonic acids, and copolymers.
  • unsaturated carboxylic acids include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, (anhydrous) citraconic acid, and salts thereof
  • unsaturated sulfonic acids include Examples thereof include vinyl sulfonic acid, allyl sulfonic acid, styrene sulfonic acid, sulfopropyl acrylate, 2-acrylamido-2-methylpropane sulfonic acid, and salts thereof.
  • anionic polymers include, for example, the above unsaturated carboxylic acids, unsaturated sulfonic acids, and salts thereof, esters of these unsaturated carboxylic acids, esters of unsaturated sulfonic acids, olefins such as ethylene, and styrene. It may be a copolymer with a nonionic monomer such as. Such polymers or copolymers such as unsaturated carboxylic acids and unsaturated sulfonic acids are anionic polymers known to have chelating ability. In the present invention, such an anionic polymer is preferable because the amount of the inorganic particles attached to the fibers can be increased regardless of whether the inorganic particles have a counter charge with the anionic polymer. .
  • anionic polymer examples include starches introduced with carboxyl groups, sulfate groups or sulfonate groups, alginic acids, celluloses such as cellulose nanofibers, gums, and the like, and carboxymethyl celluloses (CMC). , Alginic acids (alginic acid and its salts), xanthan gum, carboxymethyl guar gum, phosphorylated guar gum, carboxymethyl starch, phosphate starch and the like.
  • the weight average molecular weight of the anionic polymer is not particularly limited as long as inorganic particles can be fixed on the fiber, but is preferably 1000 to 5000000, and more preferably 10,000 to 1000000.
  • the weight average molecular weight of the anionic polymer is 10,000 to 1,000,000, the phenomenon of the anionic polymer adsorbing to the substrate can be easily controlled. That is, the anionic polymer can be suitably adsorbed on the surface of the laminated film formed of the base fiber or cationic polymer.
  • when manufacturing a composite fiber it can prevent that the anionic polymer adsorb
  • amphoteric ones can be used, for example, those having an amino group and a carboxyl group.
  • cationic polymer or anionic polymer chemicals generally used as a retention agent, a coagulant, a dry paper strength agent, a wet strength paper strength agent and the like in papermaking applications can be suitably used.
  • the layer containing the inorganic particles is fixed on the surface of the fiber through the ionic polymer as a base.
  • the inorganic particles are bound to each other through an ionic polymer that is a binder to form a layer containing inorganic particles.
  • the same ionic polymer as illustrated as an ionic polymer used for the above-mentioned base can be used for the ionic polymer which is a binder.
  • the kind of inorganic particle can be suitably selected according to the objective.
  • the inorganic particles may be synthesized in an aqueous system, and the composite fiber may be used in an aqueous system. Therefore, the inorganic particles are preferably insoluble or hardly soluble in water.
  • An inorganic particle refers to the particle
  • the metal compound is a metal cation (for example, Na + , Ca 2+ , Mg 2+ , Al 3+ , and Ba 2+ ) and an anion (for example, O 2 ⁇ , OH ⁇ , CO 3 2 ⁇ , PO 4 3).
  • - , SO 4 2 ⁇ , NO 3 ⁇ , Si 2 O 3 2 ⁇ , SiO 3 2 ⁇ , Cl ⁇ , F ⁇ , S 2 ⁇ , etc.) are generally called inorganic salts. Say things.
  • the inorganic particles include compounds containing at least one metal selected from the group consisting of gold, silver, titanium, copper, platinum, iron, zinc, palladium, zirconium, and aluminum.
  • calcium carbonate light calcium carbonate, heavy calcium carbonate
  • magnesium carbonate barium carbonate, aluminum hydroxide, calcium hydroxide, barium sulfate, magnesium hydroxide, zinc hydroxide, calcium phosphate, zinc oxide, zinc stearate, dioxide dioxide
  • Examples include silica (white carbon, silica / calcium carbonate composite, and silica / titanium dioxide composite) produced from titanium, sodium silicate, and mineral acid, and calcium sulfate, zeolite, and hydrotalcite.
  • amorphous silica such as white carbon may be used together with calcium carbonate and / or light calcium carbonate-silica composite.
  • the inorganic particles exemplified above may be used alone or in combination of two or more in the solution containing fibers as long as they do not inhibit the reactions that synthesize each other.
  • the inorganic particles in the composite fiber are hydrotalcite, it is more preferable that at least one of magnesium and zinc is contained in an ash content of the composite fiber of hydrotalcite and nonpolar chemical fiber by 10% by weight or more. .
  • the inorganic particles may contain at least one compound selected from the group consisting of calcium carbonate, magnesium carbonate, barium sulfate and hydrotalcite.
  • the outermost layer may be an ionic polymer layer.
  • the outermost layer of the inorganic particle composite fiber may be a cationic polymer layer. It may be an anionic polymer layer.
  • the outermost layer of the inorganic particle composite fiber may be a layer of inorganic particles fixed to the ionic polymer. That is, according to the function provided by the inorganic particles, the inorganic particles may be exposed on the surface of the inorganic particle composite fiber.
  • the inorganic particle composite fiber according to the present invention can be used for various applications regardless of whether it is formed into a sheet or the like, for example.
  • a fiber is immersed or applied in a solution containing an ionic polymer, and the fiber immersed in or applied to the ionic polymer is used as the inorganic particle.
  • the inorganic particles are fixed to the fibers by immersing or coating in a dispersion containing Thereby, even if the fiber used as a base material is a synthetic fiber, for example, an inorganic particle composite fiber having a large amount of inorganic particles attached (that is, having a high ash yield) can be produced. For this reason, the inorganic particle composite fiber which can exhibit the function resulting from an inorganic particle more notably can be manufactured.
  • the method for producing an inorganic particle composite fiber is any of (1) formation of a base for fixing inorganic particles on the fiber, and (2) formation of a layer containing inorganic particles. Either or both are performed by an alternating layering method (Layer by Layer) method.
  • the fiber which is a base material performs surface treatment with respect to the surface of the said fiber, before forming the layer containing an ionic polymer by an alternating lamination method.
  • the fiber as a base material is subjected to a surface treatment to modify the surface of the fiber before being immersed in or applied to a solution containing an ionic polymer.
  • a surface treatment to modify the surface of the fiber before being immersed in or applied to a solution containing an ionic polymer.
  • examples of such surface treatment methods include UV-ozone treatment, flame surface treatment, plasma discharge treatment, glow discharge treatment, corona discharge treatment, and alkali hydrolysis treatment, acid treatment, silane coupling agent treatment, and Examples include primer treatment.
  • an oxidizing agent is used in the presence of a compound selected from the group consisting of an N-oxyl compound and bromide, iodide, or a mixture thereof, and the base fiber is oxidized in water. You can get it.
  • the polar group present on the surface of the fiber substrate can be charged, or a new polar group can be formed.
  • the polar group may be, for example, a hydroxyl group, a carbonyl group, a carboxyl group, an aldehyde group, a phosphate group, a urea group, a sulfo group, a nitro group, an amide group, and a cyano group. Therefore, the affinity between the ionic polymer and the fiber surface can be increased, and the fiber surface can be suitably coated with the ionic polymer.
  • these surface treatments may be one embodiment of a hydrophilic treatment.
  • Whether or not the surface of the fiber has been modified may be determined from the absorbance or transmittance of a polar group such as a hydroxyl group measured by infrared spectroscopy (IR), for example, contact with water You may evaluate by a measurement of a corner, a wetting tension test, and X-ray photoelectron spectroscopy.
  • a polar group such as a hydroxyl group measured by infrared spectroscopy (IR)
  • IR infrared spectroscopy
  • the base is formed by immersing or applying a fiber as a base material in a solution containing the above ionic polymer.
  • the base fiber is a fiber that has many hydroxyl and carboxyl groups on the surface, such as cellulose, and is easily negatively charged
  • the first layer is a layer containing a cationic polymer.
  • the base of the first layer is an anionic high
  • it contains molecules.
  • the formation of the base may be performed at least once, but it is preferably performed a plurality of times from the viewpoint that the amount of inorganic particles fixed can be increased.
  • the plurality of layers may be 2 to 7 layers of ionic polymer.
  • the plurality of layers are formed by alternately immersing or applying the base fiber in a solution containing a cationic polymer and a solution containing an anionic polymer. May be formed (alternate lamination method).
  • a plurality of ionic polymer layers are formed as a base, between the step of immersing or applying in the solution containing the cationic polymer and the step of immersing or applying in the solution containing the anionic polymer It is more preferable to wash the fiber with water. Such a cleaning process is also called a rinse process.
  • the cationic polymer attached to the fiber is It can prevent mixing with the solution containing an anionic polymer. Further, the cationic polymer can be suitably fixed to the fiber before being immersed in or applied to the anionic polymer solution.
  • the water used in the rinsing process can be, for example, deionized water and distilled water. Moreover, in the range which does not impair the effect of this invention, the pH adjuster etc. may be included, for example.
  • alternating layers of a layer containing a cationic polymer and a layer containing an anionic polymer are dried before the layer containing the cationic polymer is dried or the layer containing the anionic polymer is dried.
  • a rinsing process as the next step may be performed. That is, in one aspect, the alternate stacking can be performed wet-on-wet.
  • a device generally used for coating a solution or dispersion on the sheet surface can be suitably used.
  • a spray coater, a curtain coater, a pound type size press, a lot metering size press, a gate roll coater, and the like can be given.
  • the ionic polymer solution is a cationic polymer solution or an anionic polymer solution, and is typically an aqueous solution of these ionic polymers.
  • the amount of the ionic polymer contained in the aqueous solution is the same as that in each of the cationic polymer solution and the anionic polymer solution.
  • the concentration of the monomer unit is preferably in the range of 1 ⁇ 10 ⁇ 3 to 5 ⁇ 10 ⁇ 2 M. If the concentration of monomer units of each polymer is in the range of 1 ⁇ 10 ⁇ 3 to 5 ⁇ 10 ⁇ 2 M in the ionic polymer solution, the polymer is preferably laminated on the fiber surface. Can be controlled.
  • the solution containing the ionic polymer may be adjusted to a pH at which these ionic polymers are dissolved depending on the type of the cationic polymer or the anionic polymer.
  • a solution containing a cationic polymer may contain a plurality of types of cationic polymers, and a solution containing an anionic polymer similarly contains a plurality of types of anionic polymers. You may go out.
  • prepare a plurality of solutions containing different types of anionic polymers and alternately immerse or apply the solutions containing the cationic polymers to form a base layer containing a plurality of types of anionic polymers. Also good.
  • the ionic polymer solution may contain a pH adjuster and an antifoaming agent depending on the purpose. Moreover, it is preferable that the ionic polymer used before and after laminating the inorganic particles has a counter charge with the surface charge of the inorganic particles in the solution of the ionic polymer.
  • the layer of inorganic particles is formed by fixing the inorganic particles on the base by immersing or coating the fiber on which the base is formed at least once in a dispersion containing the inorganic particles.
  • the inorganic particle layer may be formed at least once by immersing or coating the fiber on which the base is formed in a dispersion containing inorganic particles, but the viewpoint of increasing the amount of inorganic particles attached to the fiber. Is preferably formed by immersing or coating the fiber on which the base is formed in a dispersion containing inorganic particles a plurality of times.
  • the layer of the inorganic particles is performed by immersing or applying fibers having a base formed alternately in a dispersion containing inorganic particles and a solution containing an ionic polymer (alternate lamination method).
  • the formation of the inorganic particle layer is not particularly limited.
  • the immersion or coating in the dispersion containing the inorganic particles and the immersion or coating in the solution containing the ionic polymer are 1 As a set, it is preferable to perform 1 to 10 sets.
  • the solution containing the ionic polymer used in the formation of the inorganic particle layer a solution similar to the solution containing the ionic polymer used for forming the base on the surface of the fiber can be used. Therefore, the description of the solution containing the ionic polymer is omitted.
  • the dispersion containing inorganic particles is a dispersion in which inorganic particles are dispersed, and is typically an aqueous dispersion of inorganic particles.
  • the concentration of the inorganic particles contained in the dispersion is preferably 0.005 to 1%, and more preferably 0.01 to 0.5%. If the concentration of the inorganic particles contained in the dispersion is 0.005 to 1%, the inorganic particles are suitably fixed to the ionic polymer layer by an alternate lamination method with a solution containing the ionic polymer. Can do.
  • the inorganic particle dispersion may contain, for example, a known additive such as a dispersant and a pH adjuster as long as the effects of the present invention are not impaired.
  • the average primary particle size of the inorganic particles contained in the dispersion is preferably 1 nm to 50 ⁇ m, more preferably 10 nm to 30 ⁇ m, and particularly preferably 20 nm to 10 ⁇ m.
  • the average primary particle diameter of the inorganic particles can be 3 ⁇ m or less, but the inorganic particles have an average primary particle diameter of 1.5 ⁇ m or less, the inorganic particles have an average primary particle diameter of 1 ⁇ m or less, and the average primary particle diameter is 800 nm.
  • inorganic particles having an average primary particle size of 500 nm or less, inorganic particles having an average primary particle size of 200 nm or less, inorganic particles having an average primary particle size of 100 nm or less, or inorganic particles having an average primary particle size of 50 nm or less Can be used.
  • the average primary particle diameter of the inorganic particles can be 10 nm or more.
  • the average primary particle diameter can be calculated from an electron micrograph.
  • the surface of the inorganic particles contained in the dispersion is paired with an ionic portion of an ionic polymer used to form a layer of inorganic particles. It preferably has a charge. Thereby, inorganic particles can be firmly bound to each other by the ionic polymer. Note that the surface charge of the inorganic particles can be determined by a zeta potential, and the surface potential of the inorganic particles may be adjusted by adjusting the pH of the dispersion.
  • the dispersion liquid containing inorganic particles can be prepared by a known method as one embodiment.
  • the dispersion of inorganic particles can be a dispersion of inorganic particles produced by a gas-liquid method and a liquid-liquid method.
  • An example of the gas-liquid method is a carbon dioxide gas method.
  • magnesium carbonate can be synthesized by reacting magnesium hydroxide and carbon dioxide gas.
  • calcium carbonate can be synthesized by a carbon dioxide method in which calcium hydroxide and carbon dioxide are reacted.
  • calcium carbonate may be synthesized by a soluble salt reaction method, a lime / soda method, or a soda method.
  • Magnesium carbonate can also be synthesized by adding sodium carbonate or potassium carbonate to an aqueous magnesium salt solution.
  • liquid-liquid methods include reacting acids (hydrochloric acid, sulfuric acid, etc.) and bases (sodium hydroxide, potassium hydroxide, etc.) by neutralization, reacting inorganic salts with acids or bases, And a method of reacting the
  • barium sulfate can be obtained by reacting barium hydroxide with sulfuric acid.
  • aluminum sulfate sulfate band
  • Aluminum hydroxide can be obtained by reacting aluminum chloride or aluminum sulfate with sodium hydroxide. By reacting calcium carbonate and aluminum sulfate, inorganic particles in which calcium and aluminum are combined can be obtained. In addition, when synthesizing inorganic particles in this manner, any metal or metal compound can be allowed to coexist in the reaction solution. In this case, these metals or metal compounds are efficiently incorporated into the inorganic particles and are combined.
  • phosphoric acid is added to calcium carbonate to synthesize calcium phosphate
  • composite particles of calcium phosphate and titanium can be obtained by allowing titanium dioxide to coexist in the reaction solution.
  • the synthesis reaction is stopped to synthesize another type of inorganic particle. Reactions may be performed, and when a plurality of types of target inorganic particles are synthesized in one reaction, two or more types of inorganic particles may be synthesized simultaneously.
  • the inorganic particle composite fiber can be suitably used as a molding material for forming a molded body such as a sheet, for example.
  • the inorganic particle composite fiber has inorganic particles fixed on the surface of the fiber in an unformed state.
  • the molded body molded from the inorganic particle composite fiber according to one aspect has inorganic particles on the surface of the molded body. Is a molded body in which inorganic particles are fixed to the inside of the molded body. Therefore, the molded object which shape
  • the present invention includes, but is not limited to, the following inventions.
  • An inorganic fiber comprising fibers and inorganic particles fixed to the fibers, wherein the fiber has a thread form, and the inorganic particles are fixed to the fibers via an ionic polymer. Particle composite fiber.
  • the layer containing the ionic polymer interposed between the fibers and the inorganic particles includes a plurality of layers, and the plurality of layers include a layer containing a cationic polymer and an anionic polymer.
  • a dispersion of inorganic particles was obtained by generating cavitation bubbles in the reaction vessel by circulating the reaction solution and injecting it into the reaction vessel as shown in FIG. Specifically, it was produced by generating cavitation bubbles by spraying the reaction solution at a high pressure through a nozzle (nozzle diameter: 1.5 mm).
  • the reaction was performed by circulating the reaction solution and injecting it into the reaction vessel as shown in FIG. Specifically, in the synthesis of calcium carbonate particles, the jet velocity was about 70 m / s, the inlet pressure (upstream pressure) was 3 MPa, and the outlet pressure (downstream pressure) was 0.3 MPa. The obtained calcium carbonate dispersion was filtered through a 325 mesh sieve.
  • an aqueous suspension 14 L containing 140 g of magnesium hydroxide (Wako Pure Chemical Industries, Ltd.) is prepared, and this aqueous suspension is put into a 45 L volume cavitation apparatus.
  • Magnesium carbonate fine particles were synthesized by blowing gas (carbon dioxide method). The reaction temperature was about 36 ° C., the carbon dioxide gas was supplied from a commercially available liquefied gas, and the amount of carbon dioxide blown was 4 L / min. The reaction was stopped when the pH of the aqueous suspension reached about 8, and then generation of cavitation and circulation of the slurry in the apparatus were continued for 30 minutes to obtain basic magnesium carbonate. The pH of the magnesium hydroxide suspension before the reaction was about 9.5.
  • the jet velocity of the reaction solution was about 70 m / s
  • the inlet pressure (upstream pressure) was 7 MPa
  • the outlet pressure (downstream pressure) was 0.3 MPa.
  • the reagents (solutions) used for each sample are as shown in Table 1 below.
  • Fibers were immersed in any of the reagents shown in Table 1 and the above-described dispersion of inorganic particles.
  • the immersion time was 120 seconds and the number of immersions was one.
  • the immersion process was performed on the same conditions except having replaced the said reagent with the dispersion liquid.
  • Sample 1 In sample 1, the fibers subjected to UV ozone treatment were immersed in a PEI solution and then immersed in a PSS solution in this order so that the total number of PEI layers and PSS layers was 5 layers. A stratum was formed. Subsequently, the fiber on which the base layer was formed was subjected to a dipping treatment in a magnesium carbonate dispersion and a dipping treatment in a PEI solution three times in this order to form a magnesium carbonate layer.
  • Sample 2 In sample 2, a total of one underlayer was formed by immersing the fibers subjected to UV ozone treatment in a PEI solution. Subsequently, the fiber on which the base layer was formed was subjected to a dipping treatment in a magnesium carbonate dispersion and a dipping treatment in a PEI solution three times in this order to form a magnesium carbonate layer.
  • Sample 3 In sample 3, the fibers subjected to UV ozone treatment were subjected to immersion treatment in a PEI solution and immersion treatment in a PSS solution in this order to form a total of two underlayers. Subsequently, the fiber on which the base layer was formed was subjected to a dipping treatment in a magnesium carbonate dispersion and a dipping treatment in a PEI solution three times in this order, thereby forming a magnesium carbonate layer. Next, a layer of PEI was formed by immersing the fibers in which the layer of magnesium carbonate was formed in a PEI solution.
  • Sample 4 Sample 4 was prepared under the same conditions as Sample 1 except that the magnesium carbonate dispersion was replaced with a calcium carbonate dispersion.
  • Sample 5 was prepared under the same conditions as Sample 2, except that the magnesium carbonate dispersion was replaced with a calcium carbonate dispersion.
  • Sample 6 Sample 6 was prepared under the same conditions as Sample 3, except that the magnesium carbonate dispersion was replaced with a calcium carbonate dispersion.
  • Sample 7 the fiber subjected to UV ozone treatment was subjected to immersion treatment in a PEI solution and immersion treatment in a PSS solution in this order to form five layers of PEI and PSS layers. By performing the dipping treatment, six underlayers were formed. Subsequently, the fiber on which the base layer was formed was subjected to an immersion treatment in a dispersion of calcium carbonate in a PEI solution and an immersion treatment in a PAA solution to form a magnesium carbonate layer. Subsequently, the fiber in which the magnesium carbonate layer was formed was immersed in the PEI solution to form a PEI layer.
  • Sample 8 Sample 8 was prepared under the same conditions as Sample 1 except that the experiment was performed without performing UV ozone treatment.
  • samples 6 and 7 are more inorganic particles than the samples 4 and 5. Although this layer was thick, it showed a tendency to form unevenly.
  • One embodiment of the present invention can be suitably used in various fields using fibers imparted with inorganic particle functions (flame retardant, deodorant / antibacterial properties, radiation shielding properties, etc.).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

高い無機粒子の付着量を有している新規な無機粒子複合繊維を提供する。無機粒子複合繊維は、繊維と、上記繊維に定着している無機粒子とを備え、上記繊維の形態が、糸状であり、上記無機粒子は、上記繊維にイオン性高分子を介して定着している。

Description

無機粒子複合繊維、その製造方法、及び成形体
 本発明は、無機粒子複合繊維、その製造方法、及び成形体に関する。
 繊維は、その表面に無機粒子を付着させることによって、様々な特性を発揮させることができる。これついて、繊維の存在下で無機物を合成することにより、無機粒子と繊維との複合体を製造する方法が開発されてきている。
 例えば、特許文献1には、炭酸カルシウムと、リヨセル繊維又はポリオレフィン繊維との無機粒子複合繊維が記載されている。
 また、例えば、特許文献2には、正の荷電粒子を含む溶液と負の荷電粒子を含む溶液とに被成膜材料を交互に複数回浸すことにより、多層構造を有する交互吸着膜を製造する方法が記載されている。
 また、特許文献3には、正電荷物質を含有する正電荷物質含有液と、負電荷物質を含有する負電荷物質含有液とを、被成膜材料の表面に液膜を形成するように交互に塗布することにより、交互吸着膜を製造する方法が記載されている。
日本国公開特許公報「特開2015-199655号公報(2015年11月12日公開)」 日本国公開特許公報「特開2001-062286号公報(2001年3月13日公開)」 日本国公開特許公報「特開2003-300274号公報(2003年10月21日公開)」
 ここで、より多くの無機粒子を繊維に付着させることができれば、無機粒子に由来する高い機能を複合繊維にもたらすことができる。このため、高い無機粒子の付着量を有している、新規な無機粒子複合繊維は有用である。また、複合繊維は、その形状によらず、無機粒子に由来する高い機能を利用できることが求められている。そこで、本発明の一態様は、より多くの無機粒子を付着させた複合繊維及びその製造方法を提供することを目的とする。
 本発明は、これに制限されるものでないが、以下の発明を包含する。
 (1)繊維と、上記繊維に定着している無機粒子とを備え、上記繊維の形態が、糸状であり、上記無機粒子は、上記繊維にイオン性高分子を介して定着している、無機粒子複合繊維。
 本発明の一態様によれば、無機粒子の高い付着量を有している新規な無機粒子複合繊維、及びその関連技術を提供することができるという効果を奏する。
図1は、実施例において、無機粒子の合成に用いた反応装置の模式図である。 図2は、炭酸マグネシウムの分散液に1回浸漬処理した後におけるサンプル1~3の電子顕微鏡写真である(上:サンプル1、左下:サンプル2、右下:サンプル3)。 図3は、炭酸マグネシウムの分散液に2回浸漬処理した後におけるサンプル1~3の電子顕微鏡写真である(上:サンプル1、左下:サンプル2、右下:サンプル3)。 図4は、炭酸マグネシウムの分散液に3回浸漬処理した後におけるサンプル1~3の電子顕微鏡写真である(上:サンプル1、左下:サンプル2、右下:サンプル3)。 図5は、炭酸カルシウムの分散液に1回浸漬処理した後におけるサンプル4~7の電子顕微鏡写真である(左上:サンプル4、左下:サンプル5、右下:サンプル6、左上:サンプル7)。 図6は、炭酸カルシウムの分散液に2回浸漬処理した後におけるサンプル4~7の電子顕微鏡写真である(左上:サンプル4、左下:サンプル5、右下:サンプル6、左上:サンプル7)。 図7は、炭酸カルシウムの分散液に3回浸漬処理した後におけるサンプル4~7の電子顕微鏡写真である(左上:サンプル4、左下:サンプル5、右下:サンプル6、左上:サンプル7)。 図8は、炭酸マグネシウムの分散液に浸漬処理した後におけるサンプル8の電子顕微鏡写真である(左上:1回浸漬、右上:2回浸漬、右下:3回浸漬)。 図9は、未処理のリヨセルの電子顕微鏡写真である。
 本発明は、繊維と繊維に定着している無機粒子とを備え、無機粒子は繊維にイオン性高分子を介して定着している複合繊維に関する。上記構成とすることによって、無機粒子の付着量が多い(つまり、灰分歩留が高い)複合繊維を得ることができる。このため、無機粒子複合繊維は、無機粒子が有している機能をより顕著に発揮することができる。尚、本明細書中では、「無機粒子複合繊維」を単に「複合繊維」と称する場合がある。
 本発明の一態様においては、繊維を、無機粒子を定着させる基材として使用する。また、繊維の形態は特に制限されないが、パルプ、糸等の形態の繊維上に無機粒子を定着させることによって、例えば、シート状に成形した繊維に無機粒子を付着させる場合よりも、より多くの無機粒子を繊維の表面に定着させることができる。よって、無機粒子の付着量が高められた複合繊維を得ることができる。また、例えば、シート等の成形体を形成するための成形材料としてのみならず、充填材としても好適に機能を発揮することができる複合繊維として利用することができる。
 なお、本明細書中において「パルプ」とは、繊維の凝集体又は集合体、若しくは綿状物であり、当該繊維が、例えば、抄紙すること等によってシート状等の所望の形状に成形されていない状態(つまり、未成形である)の繊維材料のことを指す。
 また、本明細書中において「糸状」の形態とは、細長い形態のことをいう。
 繊維としては、例えば、天然のセルロース繊維はもちろん、レーヨンやリヨセル等の再生繊維(半合成繊維)や合成繊維等を制限なく使用することができる。セルロース繊維の原料としては、木材パルプや非木材パルプ、セルロースナノファイバー、バクテリアセルロース、ホヤ等の動物由来セルロース、及び藻類等が例示され、木材パルプは、木材原料をパルプ化して製造すればよい。木材原料としては、アカマツ、クロマツ、トドマツ、エゾマツ、ベニマツ、カラマツ、モミ、ツガ、スギ、ヒノキ、カラマツ、シラベ、トウヒ、ヒバ、ダグラスファー、ヘムロック、ホワイトファー、スプルース、バルサムファー、シーダ、パイン、メルクシマツ、及びラジアータパイン等の針葉樹、及びこれらの混合材、並びに、ブナ、カバ、ハンノキ、ナラ、タブ、シイ、シラカバ、ハコヤナギ、ポプラ、タモ、ドロヤナギ、ユーカリ、マングローブ、ラワン、及びアカシア等の広葉樹及びこれらの混合材が例示される。
 木材原料(木質原料)等の天然材料をパルプ化する方法は、特に限定されず、製紙業界で一般に用いられるパルプ化法が例示される。木材パルプはパルプ化法により分類でき、例えば、クラフト法、サルファイト法、ソーダ法、及びポリサルファイド法等の方法により蒸解した化学パルプ;リファイナーやグラインダー等の機械力によってパルプ化して得られる機械パルプ;薬品による前処理の後、機械力によるパルプ化を行って得られるセミケミカルパルプ;古紙パルプ;脱墨パルプ等が挙げられる。木材パルプは、未晒(漂白前)の状態であってもよいし、晒(漂白後)の状態であってもよい。また、例えば、製紙工場の排水から回収された繊維状物質を本発明に用いてもよい。
 非木材由来のパルプとしては、綿、ヘンプ、サイザル麻、マニラ麻、亜麻、藁、竹、バガス、ケナフ、サトウキビ、トウモロコシ、稲わら、楮(こうぞ)、及びみつまた等が例示される。
 また上記以外の繊維として、例えば、合成繊維が挙げられ、例えば、ポリエステル、ナイロンやアラミド等のポリアミド、ポリオレフィン、ポリウレタン繊維、アクリル繊維、ビニロン、ビニリデン、ポリ塩化ビニル、ガラス繊維、炭素繊維、及び各種金属繊維等が挙げられ、本発明では、これら合成繊維を、セルロース繊維との複合繊維として使用することもできる。なお、ポリオレフィンは、例えば、ポリエチレン、ポリプロピレン等が挙げられ、ポリエチレンには、高密度ポリエチレン、低密度ポリエチレン、超低密度ポリエチレン、直鎖状低密度ポリエチレン、及び超高分子量ポリエチレン等が挙げられる。
 以上に示した繊維は単独で用いても良いし、複数を混合しても良い。また、例えば、製紙工場の排水から回収された繊維状物質を基材として使用してもよい。
 上記繊維は、未叩解及び叩解のいずれでもよく、複合繊維の物性に応じて選択すればよいが、叩解を行う方が好ましい。これにより、シート強度の向上並びに無機粒子の定着促進が期待できる。
 好ましい態様において、本発明の複合繊維の基材となる繊維は、半合成繊維、又は合成繊維である。
 基材となる繊維の繊維長は特に制限されないが、例えば、平均繊維長が0.1μm~15mm程度とすることができ、1μm~12mm、100μm~10mm、又は500μm~8mm等としてもよい。
 複合化する繊維は、繊維表面の15%以上が無機粒子で被覆されるような量で使用することが好ましいが、例えば、繊維と無機粒子の重量比を、5/95~95/5とすることができ、10/90~90/10、20/80~80/20、30/70~70/30、又は40/60~60/40としてもよい。このような、繊維と無機粒子の重量比は、複合繊維の灰分から求められ得る。
 また、本発明に係る無機粒子複合繊維は、繊維表面の15%以上が無機粒子で被覆されており、このような面積率で繊維表面が被覆されていると無機粒子に起因する特徴を大きくすることができる。繊維が無機粒子で被覆されている割合については、電子顕微鏡観察を始めとした顕微鏡観察により確認することが可能である。
 また、繊維表面が無機粒子に被覆されたことを確認する一つの指標として、表面積の増大が挙げられる。例えば、繊維単独でBET比表面積を測定するとその値は1~2程度であることが多いが、複合化によってこの値が3以上になれば、一定量以上の無機粒子が繊維表面に定着したと考えることが可能である。比表面積を測定する方法としては、上記BET法の他に、ブレーン法、フィッシャー法、ラングミュア法などを好適に用いることができる。
 〔イオン性高分子〕
 イオン性高分子は、繊維に無機粒子を定着させるための下地として、及び無機粒子同士の間においてはバインダー(結着剤)として存在する。この構成によって、様々な種類の基材に高い付着量で無機粒子を付着させることができる。換言すれば、この構成を採用することによって、選択可能な繊維の種類が多くなる。
 なお、本明細書中において、下地の表面に無機粒子が付着している状態を指して無機粒子が下地に「定着している」と表現する。また、無機粒子同士が、イオン性高分子を介して互いに付着し、1つの層を形成している状態を指して無機粒子が「結着している」と表現する。
 (下地)
 本発明に係る複合繊維は、一態様において、下地は、少なくとも1層のイオン性高分子によって形成されていればよいが、イオン性高分子を含む複数の層であってもよい。ここで、複数の層は、カチオン性高分子とアニオン性高分子とが交互に積層されてなる複数の層である。このように、下地が複数の層から形成されている場合、複合繊維は、カチオン性高分子が有している繊維の表面に対する高い親和性と、アニオン性高分子が有している無機粒子の高い定着性との両方の性能により、無機粒子の付着量が高められている。
 なお、本明細書において、繊維に表面を直接的に被覆するイオン性高分子の層、及び当該イオン性高分子の層を含む、複数のイオン性高分子から形成される複数の層のことを「下地層」、又は単に「下地」と称することがある。
 カチオン性高分子には、例えば、第三級及び/又は四級アンモニウム基を含む改質ポリエチレンイミン、ポリエチレンイミン、ポリアルキレンイミン、ジシアンジアミドポリマー、ポリアミン、ポリアミン/エピクロヒドリン重合体、及びポリアリルアミン塩酸塩;、並びにジアルキルジアリル第四級アンモニウムモノマー、ジアルキルアミノアルキルアクリレート、ジアルキルアミノアルキルメタクリレート、ジアルキルアミノアルキルアクリルアミド、及び/又はジアルキルアミノアルキルメタクリルアミドと、アクリルアミドとの重合体;、並びに、モノアミン類とエピハロヒドリンとからなる重合体;、並びに、ポリビニルアミン及びビニルアミン部を持つ重合体やこれらの混合物等のカチオン性のポリマー;、並びに、カチオン化澱粉、リン酸エステル化澱粉、及びカチオン化セルロースナノファイバー等のカチオン性高分子に加え、これらカチオン性高分子である上記ポリマーの分子内にカルボキシル基やスルホン基等のアニオン基を共重合したカチオンリッチな両イオン性ポリマー、カチオン性ポリマーとアニオン性又は両イオン性ポリマーとの混合物等が挙げられ、より好ましくは、ポリエチレンイミン、ジアリルジメチルアンモニウムクロリド等が挙げられる。カチオン性高分子は、例えば、水酸基等の極性基を有している繊維の表面に対する親和性が高いという観点から、好ましいイオン性高分子である。
 カチオン性高分子の重量平均分子量は、繊維上において無機粒子を定着することができれば、特に限定されるものではないが、1000~5000000であることが好ましく、10000~1000000であることがより好ましい。カチオン性高分子の重量平均分子量が、10000~1000000であれば、カチオン性高分子が基材に吸着する現象をコントロールしやすくすることができる。つまり、カチオン性高分子を基材である繊維やアニオン性高分子で形成された積層膜の表面に好適に吸着させることができる。また、複合繊維を製造するときにおいて、例えば、後述するリンス処理に使用される水等に繊維の表面に吸着したカチオン性高分子が溶解し当該繊維から脱離することを防止することができる。
 アニオン性高分子には、例えば、不飽和カルボン酸類、不飽和スルホン酸類等の重合体、又は共重合体が挙げられる。ここで、不飽和カルボン酸類には、例えば、アクリル酸、メタアクリル酸、マレイン酸、フマル酸、イタコン酸、(無水)シトラコン酸、及びこれらの塩等が挙げられ、不飽和スルホン酸類には、ビニルスルホン酸、アリルスルホン酸、スチレンスルホン酸、スルホプロピルアクリレート、2-アクリルアミド-2-メチルプロパンスルホン酸、及びこれらの塩等が挙げられる。これらアニオン性高分子は、例えば、上述の不飽和カルボン酸類、不飽和スルホン酸、及びこれらの塩と、これらの不飽和カルボン酸類のエステル、不飽和スルホン酸のエステル、エチレン等のオレフィン、及びスチレン等の非イオン性モノマーとの共重合体であってもよい。このような、不飽和カルボン酸類、不飽和スルホン酸類等の重合体、又は共重合体は、キレート能を有していることで知られるアニオン性高分子である。本発明において、このようなアニオン性高分子は、無機粒子が当該アニオン性高分子との対電荷を有しているか否かによらず、繊維に対する無機粒子の付着量を高めることができることから好ましい。なお、アニオン性高分子には、例えば、カルボキシル基、スルフェート基又はスルホネート基が導入されたデンプン類、アルギン酸類、セルロースナノファイバーなどのセルロース類、ガム類等が挙げられ、カルボキシメチルセルロース類(CMC)、アルギン酸類(アルギン酸及びその塩)、キサンタンガム、カルボキシメチルグアーガム、リン酸化グアーガム、カルボキシメチルデンプン、リン酸デンプン等が挙げられる。
 アニオン性高分子の重量平均分子量は、繊維上において無機粒子を定着することができれば、特に限定されるものではないが、1000~5000000であることが好ましく、10000~1000000であることがより好ましい。アニオン性高分子の重量平均分子量が、10000~1000000であれば、アニオン性高分子が基材に吸着する現象をコントロールしやすくすることができる。つまり、アニオン性高分子を基材である繊維やカチオン性高分子で形成された積層膜の表面に好適に吸着させることができる。また、複合繊維を製造するときにおいて、例えば、後述するリンス処理に使用される水等に繊維の表面に吸着したアニオン性高分子が溶解し当該繊維から脱離することを防止することができる。
 イオン性高分子としては、両性のものを用いることもでき、例えばアミノ基とカルボキシル基を有するものなどを用いることもできる。
 上記、カチオン性高分子やアニオン性高分子としては、一般に製紙用途で歩留剤、凝結剤、乾燥紙力剤、湿潤紙力剤などとして用いられる薬品を好適に用いることもできる。
 (無機粒子を含む層)
 無機粒子を含む層は、下地であるイオン性高分子を介して繊維の表面に定着している。また、無機粒子は、バインダーであるイオン性高分子を介して互いに結着し、無機粒子を含む層を形成している。ここで、バインダーであるイオン性高分子には、上述の下地に使用されるイオン性高分子として例示されているものと同じイオン性高分子を使用することができる。
 なお、無機粒子の種類は、目的に応じて適宜選択することができる。複合繊維を製造するときにおいて無機粒子の合成を水系で行う場合があり、また、複合繊維を水系で使用することもあるため、無機粒子は水に不溶性又は難溶性であることが好ましい。
 無機粒子とは、無機化合物の粒子を指し、例えば金属化合物が挙げられる。金属化合物とは、金属の陽イオン(例えば、Na、Ca2+、Mg2+、Al3+、及びBa2+等)と陰イオン(例えば、O2-、OH、CO 2-、PO 3-、SO 2-、NO-、Si 2-、SiO 2-、Cl、F、及びS2-等)がイオン結合によって結合してできた、一般に無機塩と呼ばれるものをいう。無機粒子の具体例としては、例えば、金、銀、チタン、銅、白金、鉄、亜鉛、パラジウム、ジルコニウム及び、アルミニウムからなる群より選ばれる少なくとも1つの金属を含む化合物が挙げられる。また、炭酸カルシウム(軽質炭酸カルシウム、重質炭酸カルシウム)、炭酸マグネシウム、炭酸バリウム、水酸化アルミニウム、水酸化カルシウム、硫酸バリウム、水酸化マグネシウム、水酸化亜鉛、リン酸カルシウム、酸化亜鉛、ステアリン酸亜鉛、二酸化チタン、ケイ酸ナトリウムと鉱酸とから製造されるシリカ(ホワイトカーボン、シリカ/炭酸カルシウム複合物、及びシリカ/二酸化チタン複合物等)、並びに、硫酸カルシウム、ゼオライト、及びハイドロタルサイトが挙げられる。炭酸カルシウム-シリカ複合物としては、炭酸カルシウム及び/又は軽質炭酸カルシウム-シリカ複合物以外に、ホワイトカーボンのような非晶質シリカを併用してもよい。以上に例示した無機粒子については、繊維を含む溶液中で、互いに合成する反応を阻害しない限り、単独でも2種類以上の組み合わせで用いてもよい。
 また、複合繊維中の無機粒子がハイドロタルサイトである場合、ハイドロタルサイトと非極性化学繊維との複合繊維の灰分中、マグネシウム及び亜鉛のうち少なくとも一つを10重量%以上含むことがより好ましい。
 本発明の一実施形態において、無機粒子は、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム及びハイドロタルサイトからなる群より選ばれる少なくとも一種の化合物を含み得る。
 なお、無機粒子複合繊維において、最外部に位置する層は、イオン性高分子の層であってもよく、ここで、無機粒子複合繊維の最外層は、カチオン性高分子の層であってもよく、アニオン性高分子の層であってもよい。また、無機粒子複合繊維の最外層は、イオン性高分子に定着した無機粒子の層であってもよい。つまり、無機粒子によってもたらされる機能に応じて、当該無機粒子複合繊維の表面では無機粒子が露出していてもよい。
 〔用途〕
 本発明に係る無機粒子複合繊維は、例えば、シート等に成形されているか否かによらず、種々の用途に用いることができる。例えば、紙、不織布、繊維、セルロース系複合材料、フィルター材料、塗料、プラスチック、その他の樹脂、ゴム、エラストマー、セラミック、ガラス、タイヤ、建築材料(アスファルト、アスベスト、セメント、ボード、コンクリート、れんが、タイル、合板、及び繊維板等)、各種担体(触媒担体、医薬担体、農薬担体、微生物担体等)、吸着剤(不純物除去、消臭、及び除湿等)、しわ防止剤、粘土、研磨材、改質剤、補修材、断熱材、防湿材、撥水材、耐水材、遮光材、シーラント、シールド材、防虫剤、接着剤、インキ、化粧料、医用材料、ペースト材料、変色防止剤、食品添加剤、錠剤賦形剤、分散剤、保形剤、保水剤、濾過助材、精油材、油処理剤、油改質剤、電波吸収材、絶縁材、遮音材、防振材、半導体封止材、放射線遮断材、化粧品、肥料、飼料、香料、塗料・接着剤用添加剤、難燃材料、及び衛生用品(使い捨ておむつ、生理用ナプキン、失禁者用パッド、及び母乳パッド等、並びにウェットワイパー類(ウェットティシュー等))等のあらゆる用途に広く使用することができる。また、上記用途における各種充填剤、コーティング剤等の物品に用いることができる。
 <無機粒子複合繊維の製造方法>
 本発明の一態様に係る無機粒子複合繊維の製造方法は、繊維を、イオン性高分子を含む溶液に浸漬、若しくは塗布し、当該イオン性高分子に浸漬、若しくは塗布した繊維を、上記無機粒子を含む分散液に浸漬、若しくは塗布することにより、上記繊維に上記無機粒子を定着する。これによって、基材となる繊維が、例えば合成繊維であっても無機粒子の付着量が多い(つまり、灰分歩留が高い)無機粒子複合繊維を製造することができる。このため、無機粒子に起因する機能をより顕著に発揮することができる無機粒子複合繊維を製造することができる。
 一態様において無機粒子複合繊維の製造方法は、無機粒子複合繊維の製造方法は、(1)繊維に無機粒子を定着させるための下地の形成、及び(2)無機粒子を含む層の形成の何れか一方又は両方を、交互積層法(Layer by Layer)法によって行なう。また、一態様において、基材である繊維は、交互積層法によってイオン性高分子を含む層を形成する前に、当該繊維の表面に対して表面処理を行なうことがより好ましい。
 〔表面処理〕
 一態様において、複合繊維の製造方法では、基材である繊維は、イオン性高分子を含む溶液に浸漬、若しくは塗布する前において、当該繊維の表面を改質するために表面処理が行なわれていることが好ましい。このような表面処理の方法としては、例えば、UV-オゾン処理、フレーム表面処理、プラズマ放電処理、グロー放電処理、コロナ放電処理、及びアルカリによる加水分解処理、酸処理、シランカップリング剤処理、及びプライマー処理等が挙げられる。また、表面処理は、例えば、N-オキシル化合物、及び、臭化物、ヨウ化物、若しくはこれらの混合物からなる群から選択される化合物の存在下で酸化剤を用い、基材である繊維を水中で酸化することで得ることができる。このような表面処理によって、繊維基材の表面に存在する極性基を帯電させたり、新に極性基を形成したりすることができる。ここで、極性基は、例えば、水酸基、カルボニル基、カルボキシル基、アルデヒド基、及びリン酸基、ウレア基、スルホ基、ニトロ基、アミド基、及びシアノ基等であり得る。よって、イオン性高分子と、繊維表面との親和性を高め、イオン性高分子によって繊維表面を好適に被覆することができる。なお、これら表面処理は親水化処理の一態様であり得る。
 繊維の表面が、改質できているか否かについては、例えば、赤外線分光分析法(IR)によって測定される水酸基等の極性基の吸光度又は透過率から定量してもよく、例えば、対水接触角の測定、ぬれ張力試験、及びX線光電子分光分析等によって評価してもよい。
 〔下地の形成〕
 複合繊維の製造方法では、繊維の表面上に無機粒子を定着させるための下地を少なくとも1層形成する。ここで、下地は、上述のイオン性高分子を含む溶液に基材である繊維を浸漬、若しくは塗布することによって形成する。例えば、基材である繊維が、セルロース等のように表面に水酸基及びカルボキシル基等が多く存在し、マイナスに帯電しやすい繊維である場合、1層目の下地は、カチオン性高分子を含む層であることが好ましい。また、基材である繊維が、カチオン性ポリマー等によって改質されていたり、酸処理されていたりすることにより、その表面がプラスに帯電しやすい繊維である場合、1層目の下地はアニオン性高分子を含むことが好ましい。
 下地の形成は、少なくとも1回行えばよいが、無機粒子の定着する量を高めることができるという点において、複数回行なうことが好ましい。下地を、複数の層から形成する場合、当該複数の層は、2~7層のイオン性高分子の層であり得る。
 なお、複数の層を下地として形成する場合、カチオン性高分子を含む溶液と、アニオン性高分子を含む溶液とに、基材である繊維を交互に浸漬、若しくは塗布することによって当該複数の層を形成すればよい(交互積層法)。ここで、下地として複数のイオン性高分子の層を形成する場合、カチオン性高分子を含む溶液に浸漬、若しくは塗布する工程、及びアニオン性高分子を含む溶液に浸漬、若しくは塗布する工程の間において、繊維を水によって洗浄することがより好ましい。このような洗浄処理をリンス処理とも称する。リンス処理を行なうことによって、例えば、カチオン性高分子を含む溶液に浸漬、若しくは塗布した繊維を、アニオン性高分子を含む溶液に浸漬、若しくは塗布したときにおいて、繊維に付着したカチオン性高分子がアニオン性高分子を含む溶液に混入することを防止することができる。また、アニオン性高分子の溶液に浸漬、若しくは塗布する前に、カチオン性高分子を繊維に好適に定着させることができる。なお、リンス処理にて使用する水は、例えば、脱イオン水、及び蒸留水等であり得る。また、本発明の効果を損なわない範囲において、例えば、pH調整剤等を含んでいてもよい。
 リンス処理を行なう場合、カチオン性高分子を含む層と、アニオン性高分子を含む層との交互積層は、カチオン性高分子を含む層が乾燥する前又はアニオン性高分子を含む層が乾燥する前に、次工程であるリンス処理を行なってもよい。つまり、一態様において、交互積層は、ウエット・オン・ウエットにて行なわれ得る。
 塗布に用いられる装置としては、一般的にシート表面に溶液や分散液を塗布するのに使用されるものを好適に使用することができる。例えば、スプレーコーター、カーテンコーター、ポンド式サイズプレス、ロットメタリングサイズプレス、及びゲートロールコーターなどが挙げられる。
 (イオン性高分子の溶液)
 イオン性高分子の溶液は、カチオン性高分子の溶液、又はアニオン性高分子の溶液であり、典型的にこれらイオン性高分子の水溶液である。ここで、特に限定されるものではないが、水溶液に含まれるイオン性高分子の量は、カチオン性高分子の溶液、及びアニオン性高分子の溶液の何れの場合においても、各高分子における単量体単位の濃度が、1×10-3~5×10-2Mの範囲内であることが好ましい。イオン性高分子の溶液において、各高分子の単量体単位の濃度が、1×10-3~5×10-2Mの範囲内であれば、高分子の繊維表面への積層を好適に制御することができる。
 また、イオン性高分子を含む溶液は、カチオン性高分子、又はアニオン性高分子の種類に応じて、これらイオン性高分子が溶解するようなpHに調整されていればよい。なお、例えば、カチオン性高分子を含む溶液は、複数の種類のカチオン性高分子を含んでいてもよく、アニオン性高分子を含む溶液においても同様に、複数の種類のアニオン性高分子を含んでいてもよい。また、異なる種類のアニオン性高分子を含む溶液を複数用意して、カチオン性高分子を含む溶液と交互に浸漬、若しくは塗布し、複数の種類のアニオン性高分子を含む下地層を形成してもよい。同様に、異なる種類のカチオン性高分子を含む溶液を複数用意して、アニオン性高分子を含む溶液と交互に浸漬、若しくは塗布し、複数の種類のカチオン性高分子を含む下地層を形成してもよい。
 なお、イオン性高分子の溶液は、目的に応じて、pH調整剤、及び消泡剤を含んでいてもよい。また、無機粒子を積層させる前後に使用するイオン性高分子は、イオン性高分子の溶液中において、無機粒子が有している表面電荷との対電荷を有していることが好ましい。
 〔無機粒子の層の形成〕
 無機粒子の層は、少なくとも1回、下地を形成した繊維を、無機粒子を含む分散液に浸漬、若しくは塗布することによって当該下地の上に無機粒子を定着させることによって形成する。なお、無機粒子の層は、少なくとも1回、無機粒子を含む分散液に下地を形成した繊維を浸漬、若しくは塗布することによって形成すればよいが、繊維への無機粒子の付着量を高めるという観点からは、下地を形成した繊維を、複数回、無機粒子を含む分散液に浸漬、若しくは塗布することによって形成することが好ましい。ここで、無機粒子の層は、無機粒子を含む分散液とイオン性高分子を含む溶液とに交互に下地を形成した繊維を浸漬、若しくは塗布することによって行なう(交互積層法)。なお、無機粒子の層の形成は、特に限定されるものではないが、例えば、無機粒子を含む分散液への浸漬、若しくは塗布、及びイオン性高分子を含む溶液への浸漬、若しくは塗布を1セットとして、1~10セット行なうことが好ましい。
 無機粒子の層の形成において使用するイオン性高分子を含む溶液には、繊維の表面に下地を形成するために使用されるイオン性高分子を含む溶液と同様の溶液を使用することができる。よって、イオン性高分子を含む溶液についてはその説明を省略する。
 (無機粒子を含む分散液)
 無機粒子を含む分散液は、無機粒子を分散した分散液であり、典型的には、無機粒子の水分散液である。ここで、分散液に含まれる無機粒子の濃度は、0.005~1%であることが好ましく、0.01~0.5%であることがより好ましい。分散液に含まれる無機粒子の濃度が、0.005~1%であれば、イオン性高分子を含む溶液との交互積層法によって、イオン性高分子の層に好適に無機粒子を定着させることができる。なお、無機粒子の分散液には、本発明の効果を阻害しない範囲において、例えば、分散剤、及びpH調整剤等の公知の添加剤が含まれていてもよい。
 分散液に含まれる無機粒子の平均一次粒子径は、1nm~50μmが好ましく、10nm~30μmがより好ましく、20nm~10μmが特に好ましい。特に、無機粒子の平均一次粒子径は、3μm以下とすることができるが、平均一次粒子径が1.5μm以下の無機粒子、平均一次粒子径が1μm以下の無機粒子、平均一次粒子径が800nm以下の無機粒子、平均一次粒子径が500nm以下の無機粒子、平均一次粒子径が200nm以下の無機粒子、平均一次粒子径が100nm以下の無機粒子、又は平均一次粒子径が50nm以下の無機粒子を用いることができる。また、無機粒子の平均一次粒子径は10nm以上とすることも可能である。尚、平均一次粒子径は電子顕微鏡写真から算出することができる。
 本発明の一態様として、分散液中に含まれている無機粒子の表面は、無機粒子の層を形成するために使用されるイオン性高分子が有しているイオン部分との対をなす対電荷を有していることが好ましい。これによって、イオン性高分子によって、無機粒子同士を強固に結着させることができる。なお、無機粒子の表面電荷は、ゼータ電位により求めることができ、無機粒子の表面電位は、分散液のpHを調整することによって調整するとよい。
 なお、無機粒子を含む分散液は、一態様として、公知の方法により調製することができる。例えば、無機粒子の分散液は、気液法及び液液法によって製造された無機粒子の分散液であり得る。気液法の一例としては炭酸ガス法があり、例えば、水酸化マグネシウムと炭酸ガスを反応させることで、炭酸マグネシウムを合成することができる。また、水酸化カルシウムと炭酸ガスとを反応させる炭酸ガス法により、炭酸カルシウムを合成することができる。例えば、炭酸カルシウムは、可溶性塩反応法、石灰・ソーダ法、ソーダ法により合成してもよい。また、炭酸マグネシウムは、マグネシウム塩水溶液に炭酸ナトリウム又は炭酸カリウムを加える方法で合成することもできる。液液法の例としては、酸(塩酸、硫酸等)と塩基(水酸化ナトリウムや水酸化カリウム等)とを中和によって反応させたり、無機塩と酸もしくは塩基を反応させたり、無機塩同士を反応させたりする方法が挙げられる。例えば、水酸化バリウムと硫酸とを反応させることで硫酸バリウムを得ることができる。水酸化バリウムと硫酸アルミニウム(硫酸バンド)とを反応させることで、硫酸バリウムだけでなく水酸化アルミニウム等のアルミニウム化合物も得ることができる。塩化アルミニウム又は硫酸アルミニウムと水酸化ナトリウムとを反応させることで、水酸化アルミニウムを得ることができる。炭酸カルシウムと硫酸アルミニウムとを反応させることでカルシウムとアルミニウムとが複合化した無機粒子を得ることができる。また、このようにして無機粒子を合成する際、反応液中に任意の金属や金属化合物を共存させることもでき、この場合はそれらの金属もしくは金属化合物が無機粒子中に効率よく取り込まれ、複合化できる。例えば、炭酸カルシウムにリン酸を添加してリン酸カルシウムを合成する際に、二酸化チタンを反応液中に共存させることで、リン酸カルシウムとチタンとの複合粒子を得ることができる。
 また、2種類以上の無機粒子を繊維に複合化させる場合には、繊維の存在下で1種類の無機粒子の合成反応を行なった後、当該合成反応を止めて別の種類の無機粒子の合成反応を行なってもよく、互いに反応を邪魔しなかったり、一つの反応で目的の無機粒子が複数種類合成されたりする場合には2種類以上の無機粒子を同時に合成してもよい。
 〔成形体〕
 無機粒子複合繊維は、例えば、シート等の成形体を形成するための成形材料として好適に使用することができる。また、無機粒子複合繊維は未成形の状態において繊維の表面に無機粒子が定着している。このため、例えば、シート状の成形体の表面に無機粒子を定着させた繊維材料等と比較して、一態様に係る無機粒子複合繊維から成形した成形体は、当該成形体の表面に無機粒子が偏在化することを回避することができ、成形体の内部にまで無機粒子が定着している成形体である。よって、一態様に係る無機粒子複合繊維を成形した成形体も、本発明の範疇である。
 〔まとめ〕
 本発明は、これに制限されるものでないが、以下の発明を包含する。
 (1)繊維と、上記繊維に定着している無機粒子とを備え、上記繊維の形態が、糸状であり、上記無機粒子は、上記繊維にイオン性高分子を介して定着している、無機粒子複合繊維。
 (2)上記無機粒子が、上記イオン性高分子を介して互いに結着していることによって、上記無機粒子を含む層が形成されている、(1)に記載の無機粒子複合繊維。
 (3)上記イオン性高分子は、無機粒子との対電荷を有する高分子である、(1)又は(2)に記載の無機粒子複合繊維。
 (4)上記イオン性高分子は、アニオン性高分子であり、当該アニオン性高分子はキレート能を有している、(1)又は(2)に記載の無機粒子複合繊維。
 (5)上記繊維と上記無機粒子との間に介在する上記イオン性高分子を含む層は、複数の層かならなり、当該複数の層は、カチオン性高分子を含む層とアニオン性高分子を含む層とが積層されてなる層である、(1)~(4)の何れかに記載の無機粒子複合繊維。
 (6)上記繊維の表面に極性基を有している、(1)~(5)の何れかに記載の無機粒子複合繊維。
 (7)(1)~(6)の何れかに記載の無機粒子複合繊維の製造方法であって、上記繊維を、上記イオン性高分子を含む溶液に浸漬、若しくは塗布することにより、当該イオン性高分子に浸漬、若しくは塗布した繊維を、上記無機粒子を含む分散液に浸漬、若しくは塗布することにより、上記繊維に上記無機粒子を定着する、無機粒子複合繊維の製造方法。
 (8)(2)に記載の無機粒子複合繊維の製造方法であって、上記繊維を、上記イオン性高分子を含む溶液と、上記無機粒子を含む分散液とに交互に浸漬、若しくは塗布することによって、上記無機粒子の層を形成する、無機粒子複合繊維の製造方法。
 (9)(5)に記載の無機粒子複合繊維の製造方法であって、上記無機粒子の層を形成する前に、上記繊維を、上記イオン性高分子を含む溶液であるカチオン性高分子を含む溶液とアニオン性高分子を含む溶液とに浸漬、若しくは塗布することによって、上記複数の層を形成する、複合繊維の製造方法。
 (10)無機粒子複合繊維であって、セルロース繊維表面の15%以上が無機粒子によって被覆されている(1)~(6)の記載の無機粒子複合繊維。
 (11)
 無機粒子の平均一次粒子径が3μm以下である、(1)~(6)、(10)の何れかに記載の無機粒子複合繊維。
 (12)無機粒子の少なくとも一部に、カルシウム、ケイ酸、マグネシウム、バリウムまたはアルミニウム、チタン、銅、銀、亜鉛、白金、鉄、パラジウムもしくはジルコニウムを含む、(1)~(6)、(10)、(11)の何れかに記載の無機粒子複合繊維。
 (13)上記繊維が、化学繊維である、(1)~(6)、(10)~(12)の何れかに記載の無機粒子複合繊維。
 (14)上記繊維を、上記イオン性高分子の溶液に浸漬する前に、上記繊維の表面に極性基を形成する処理を行なう、(7)~(9)の何れかに記載の無機粒子複合繊維の製造方法。
 (15)(1)~(6)、(10)~(13)の何れかに記載の無機粒子複合繊維を成形してなる、成形体。
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明はかかる実施例に限定されるものではない。また、本明細書において特に記載しない限り、濃度や部等は重量基準であり、数値範囲はその端点を含むものとして記載される。
 <無機粒子と化学繊維との無機粒子複合繊維の合成>
 交互積層(Layer-by-Layer(LbL))法によって、化学繊維の表面に無機粒子を定着させた。各サンプルに使用した繊維、及び無機粒子の分散液は、以下に示す通りである。
化学繊維:
リヨセル(LENZING社製、平均繊維長4mm)
無機粒子の分散液:
炭酸カルシウムの分散液(平均粒子径90nm、0.1%水溶液、pH7.5)
炭酸マグネシウムの分散液(平均粒子径1.5μm、0.1%水溶液、pH9.0)
 無機粒子の分散液は、図1に示すように反応溶液を循環させて反応容器内に噴射することよって、反応容器内にキャビテーション気泡を発生させることによって得た。具体的には、ノズル(ノズル径:1.5mm)を介し、反応溶液を高圧で噴射することによりキャビテーション気泡を発生させることで製造した。
 炭酸カルシウムの分散液は、消石灰(水酸化カルシウム:Ca(OH))の水性懸濁液(2%)9.5Lを、45L容の圧力装置に入れ、当該懸濁液に炭酸ガスを吹き込むことによって炭酸カルシウム粒子を合成した(炭酸ガス法)。反応温度は約25℃であり、純度100%の炭酸ガスを、3L/minの吹き込み量にて消石灰の水性懸濁液に吹き込み、当該水性懸濁液のpHが約7になった段階で反応を停止した。なお、反応前における消石灰の水性懸濁液のpHは約12.8であった。合成においては、図1に示すように反応溶液を循環させて反応容器内に噴射することよって反応を行った。具体的には、炭酸カルシウム粒子を合成では、噴流速度は約70m/sであり、入口圧力(上流圧)は3MPa、出口圧力(下流圧)は0.3MPaだった。なお、得られた炭酸カルシウムの分散液については、325meshの篩にてろ過を行なった。
 炭酸マグネシウムの分散液は、水酸化マグネシウム140g(和光純薬)を含む水性懸濁液(14L)を準備し、この水性懸濁液を、45L容のキャビテーション装置に入れ、当該懸濁液に炭酸ガスを吹き込むことによって炭酸マグネシウム微粒子を合成した(炭酸ガス法)。反応温度は約36℃であり、炭酸ガスは市販の液化ガスを供給源とし、炭酸ガスの吹き込み量は4L/minとした。水性懸濁液のpHが約8になった段階で反応を停止し、その後30分間、キャビテーションの発生と装置内でのスラリーの循環とを続け、塩基性炭酸マグネシウムを得た。なお、反応前における水酸化マグネシウムの懸濁液のpHは約9.5であった。また、炭酸マグネシウム微粒子を合成では、反応溶液の噴流速度は約70m/sであり、入口圧力(上流圧)は7MPa、出口圧力(下流圧)は0.3MPaだった。
 得られた炭酸カルシウム及び炭酸マグネシウムのゼータ電位を測定したところ、炭酸カルシウムが-5mV、炭酸マグネシムが-15mVといずれもアニオン性であった。
 各サンプルに使用した試薬(溶液)は、以下の表1に示す通りである。
Figure JPOXMLDOC01-appb-T000001
 (1)表面処理
 0.1gのリヨセルを手でほぐし、薬包紙の略全面に広げ、UV-Oクリーナー(Bioforce nanosciences 社製)にて3分間、UV-オゾン処理を行なった。
 (2)各ポリマー及び無機粒子の交互積層
 UVオゾン処理を行なった繊維を用いて、ポリマー溶液及び分散液への浸漬処理、並びリンス処理を行なった。
 表1に示す試薬及び上述の無機粒子の分散液、並びに蒸留水を個別に1Lのポリカップに、約200mL蓄えた。次いで、篩(ステンレス製)にUV-オゾン処理を行なった繊維を載せ、当該篩ごとポリカップに蓄えた試薬(又は分散液)に浸漬することにより浸漬処理を行なった。また、同じ手順にて、試薬に浸漬した繊維を、蒸留水にて洗浄するリンス処理を行なった。浸漬処理及びリンス処理の手順は、以下に示す通りである。
 (浸漬処理)
 表1に示す試薬、及び上述の無機粒子の分散液の何れかに繊維を浸漬した。何れの試薬に浸漬するときにおいても、浸漬時間は120秒であり、浸漬回数は1回であった。なお、無機粒子の分散液に浸漬するときにおいても、上記試薬を分散液に代えた以外は、同じ条件にて浸漬処理を行なった。
 (リンス処理)
 以下に示すサンプル1~7の作成においては、上記浸漬処理と、その後に続く浸漬処理との間において、試薬(又は分散液)に浸漬した繊維に対してリンス処理を行なった。各浸漬処理の間に行なうリンス処理の回数は2回であり、1回のリンス処理を60秒間行った。また、各サンプルは、最後の浸漬処理を行なった後においても、同じ条件にてリンス処理を行なった。
 サンプル1
 サンプル1は、UVオゾン処理を行なった繊維を、PEI溶液への浸漬処理、PSS溶液への浸漬処理をこの順にて行ない、PEIの層とPSSの層とが合計5層になるようにして下地層を形成した。続いて、下地層を形成した繊維を、炭酸マグネシウムの分散液への浸漬処理及びPEI溶液への浸漬処理をこの順にて計3回行ない、炭酸マグネシウムの層を形成した。
 サンプル2
 サンプル2は、UVオゾン処理を行なった繊維を、PEI溶液への浸漬処理を行なうことによって合計1層の下地層を形成した。続いて、下地層を形成した繊維を、炭酸マグネシウムの分散液への浸漬処理、及びPEI溶液への浸漬処理をこの順にて計3回行ない、炭酸マグネシウムの層を形成した。
 サンプル3
 サンプル3は、UVオゾン処理を行なった繊維を、PEI溶液への浸漬処理、PSS溶液への浸漬処理をこの順にて行ない、合計2層の下地層を形成した。続いて、下地層を形成した繊維を、炭酸マグネシウムの分散液への浸漬処理及びPEI溶液への浸漬処理をこの順にて計3回行なうことによって、炭酸マグネシウムの層を形成した。次いで、炭酸マグネシウムの層を形成した繊維をPEI溶液に浸漬することによってPEIの層を形成した。
 サンプル4
 サンプル4は、炭酸マグネシウムの分散液を炭酸カルシウムの分散液に置き換えた以外はサンプル1と同じ条件にて作成した。
 サンプル5
 サンプル5は、炭酸マグネシウムの分散液を炭酸カルシウムの分散液に置き換えた以外はサンプル2と同じ条件にて作成した。
 サンプル6
 サンプル6は、炭酸マグネシウムの分散液を炭酸カルシウムの分散液に置き換えた以外はサンプル3と同じ条件にて作成した。
 サンプル7
 サンプル7は、UVオゾン処理を行なった繊維を、PEI溶液への浸漬処理及びPSS溶液への浸漬処理をこの順に行ない、PEIの層とPSSの層とを5層形成し、さらにPAA溶液への浸漬処理を行なうことで、6層の下地層を形成した。続いて、下地層を形成した繊維に、PEI溶液への炭酸カルシウムの分散液への浸漬処理及びPAA溶液への浸漬処理を行ない、炭酸マグネシウムの層を形成した。次いで、炭酸マグネシウムの層を形成した繊維をPEI溶液に浸漬することによって、PEIの層を形成した。
 サンプル8
 サンプル8は、UVオゾン処理を行なわずに実験を行った以外はサンプル1と同じ条件にて作成した。
 サンプル1~7の複合繊維の作成の手順は、以下の表2に示す通りである。
Figure JPOXMLDOC01-appb-T000002
 (3)SEM観察
 サンプル1~7について、無機粒子の分散液にて浸漬処理した後の繊維を、各浸漬処理後ごとに電界放出形走査電子顕微鏡(FE-SEM)にて観察した。図2~9に示すFE-SEM画像の倍率は、3000倍である。図9は、無処理のリヨセルを撮影した画像である。
 図2~4の各図における上側の画像(サンプル1)と左下側の画像(サンプル2)とを比較すると、1~3回目の何れの段階においても、下地層が5層であるサンプル1の方が、下地層が1層であるサンプル2よりも、炭酸マグネシウムの付着量が多い傾向を示していた。また、図2~4の各図の左下側の画像(サンプル1)と各図の右下側の画像(サンプル3)とを比較すると、1~3回目の何れの段階においても、サンプル3の方が、炭酸マグネシウムの付着量が多い傾向を示していた。
 図5~7の各図における左上側の画像(サンプル4)と左下側の画像(サンプル5)とを比較すると、1~3回目の何れの段階においても、下地層が5層であるサンプル4の方が、下地層が1層であるサンプル5よりも、炭酸カルシウムの付着量が多い傾向を示していた。これに対して、図5~7の各図の右下側の画像(サンプル6)と各図の右上側の画像(サンプル7)とを比較すると、下地層が多層であるか否かによらず、炭酸カルシウムの付着量が多い傾向を示していた。
 また、図5~7の左側上下の画像(サンプル4及び5)と右側上下の画像(サンプル6及び7)とを比較すると、サンプル6及び7の方が、サンプル4及び5よりも、無機粒子の層が厚いものの、不均一に形成される傾向を示していた。
 また、図2~4の左上の画像(サンプル1)と、図8(サンプル8)とを比較すると、リヨセルを繊維として使用した場合においては、UV-オゾン照射による前処理の有無に関わらず、いずれも炭酸マグネシウムが繊維表面を被覆していた。
 以上のサンプル1~8すべてにおいて、炭酸マグネシウムもしくは炭酸カルシウムを2回もしくは3回積層した時の無機粒子の繊維表面の被覆率は、15%以上であった。
 本発明の一態様は、無機粒子の機能(難燃性、消臭・抗菌性、放射線遮蔽性等)を付与した繊維を用いる各種分野に好適に利用することができる。

Claims (15)

  1.  繊維と、
     上記繊維に定着している無機粒子とを備え、
     上記繊維の形態が、糸状であり、
     上記無機粒子は、上記繊維にイオン性高分子を介して定着している、無機粒子複合繊維。
  2.  上記無機粒子が、上記イオン性高分子を介して互いに結着していることによって、上記無機粒子を含む層が形成されている、請求項1に記載の無機粒子複合繊維。
  3.  上記イオン性高分子は、上記無機粒子との対電荷を有する高分子である、請求項1又は2に記載の無機粒子複合繊維。
  4.  上記イオン性高分子は、アニオン性高分子であり、当該アニオン性高分子はキレート能を有している、請求項1又は2に記載の無機粒子複合繊維。
  5.  上記繊維と上記無機粒子との間に介在する上記イオン性高分子を含む層は、複数の層かならなり、
     当該複数の層は、カチオン性高分子を含む層とアニオン性高分子を含む層とが積層されてなる層である、請求項1~4の何れか1項に記載の無機粒子複合繊維。
  6.  上記繊維の表面に極性基を有している、請求項1~5の何れか1項に記載の無機粒子複合繊維。
  7.  請求項1~6の何れか1項に記載の無機粒子複合繊維の製造方法であって、
     上記繊維を、上記イオン性高分子を含む溶液に浸漬、若しくは塗布することにより、当該イオン性高分子に浸漬した繊維を、上記無機粒子を含む分散液に浸漬、若しくは塗布することにより、上記繊維に上記無機粒子を定着する、無機粒子複合繊維の製造方法。
  8.  請求項2に記載の無機粒子複合繊維の製造方法であって、
     上記繊維を、上記イオン性高分子を含む溶液と、上記無機粒子を含む分散液とに交互に浸漬、若しくは塗布することによって、上記無機粒子の層を形成する、無機粒子複合繊維の製造方法。
  9.  請求項5に記載の無機粒子複合繊維の製造方法であって、
     上記無機粒子の層を形成する前に、上記繊維を、上記イオン性高分子を含む溶液であるカチオン性高分子を含む溶液とアニオン性高分子を含む溶液とに浸漬、若しくは塗布することによって、上記複数の層を形成する、無機粒子複合繊維の製造方法。
  10.  無機粒子複合繊維であって、セルロース繊維表面の15%以上が無機粒子によって被覆されている請求項1~6の何れか1項に記載の無機粒子複合繊維。
  11.  無機粒子の平均一次粒子径が3μm以下である、請求項1~6、10の何れか1項に記載の無機粒子複合繊維。
  12.  無機粒子の少なくとも一部に、カルシウム、ケイ酸、マグネシウム、バリウムまたはアルミニウム、チタン、銅、銀、亜鉛、白金、鉄、パラジウム、若しくはジルコニウムを含む、請求項1~6、10、11の何れか1項に記載の無機粒子複合繊維。
  13.  上記繊維が、化学繊維である、請求項1~6、10~12の何れか1項に記載の無機粒子複合繊維。
  14.  上記繊維を、上記イオン性高分子の溶液に浸漬する前に、上記繊維の表面に極性基を形成する処理を行なう、請求項7~9の何れか1項に記載の無機粒子複合繊維の製造方法。
  15.  請求項1~6、10~13の何れか1項に記載の無機粒子複合繊維を成形してなる、成形体。
PCT/JP2018/009495 2017-04-21 2018-03-12 無機粒子複合繊維、その製造方法、及び成形体 WO2018193751A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019513264A JP7138095B2 (ja) 2017-04-21 2018-03-12 無機粒子複合繊維、その製造方法、及び成形体
CN201880026068.3A CN110637120A (zh) 2017-04-21 2018-03-12 无机粒子复合纤维、其制造方法和成型体
EP18788187.5A EP3613896A4 (en) 2017-04-21 2018-03-12 COMPOSITE FIBER WITH INORGANIC PARTICLES, METHOD FOR THE PRODUCTION THEREOF AND MOLDED BODY
EP19210396.8A EP3663459A1 (en) 2017-04-21 2018-03-12 Inorganic particle composite fiber, method for manufacturing same, and molded article
US16/606,732 US11555270B2 (en) 2017-04-21 2018-03-12 Inorganic particle composite fiber, method for manufacturing same, and molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017084823 2017-04-21
JP2017-084823 2017-04-21

Publications (1)

Publication Number Publication Date
WO2018193751A1 true WO2018193751A1 (ja) 2018-10-25

Family

ID=63856625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009495 WO2018193751A1 (ja) 2017-04-21 2018-03-12 無機粒子複合繊維、その製造方法、及び成形体

Country Status (5)

Country Link
US (1) US11555270B2 (ja)
EP (2) EP3663459A1 (ja)
JP (1) JP7138095B2 (ja)
CN (1) CN110637120A (ja)
WO (1) WO2018193751A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114929964A (zh) * 2020-01-14 2022-08-19 日本制纸株式会社 纤维与无机粒子的集合物
CN112516685A (zh) * 2020-11-17 2021-03-19 华东师范大学重庆研究院 一种可见光光催化空气净化玻璃纤维滤芯及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001062286A (ja) 1999-08-30 2001-03-13 Keiogijuku 交互吸着膜の製造方法および製造装置
JP2003300274A (ja) 2002-04-10 2003-10-21 Dainippon Printing Co Ltd 交互吸着膜の製造方法および製造装置
JP2009191396A (ja) * 2008-02-14 2009-08-27 Kurosawa Lace:Kk 消臭カーテン及びその製造方法
JP2011506789A (ja) * 2007-12-12 2011-03-03 オムヤ ディベロプメント アーゲー 表面無機化有機繊維
JP2011094252A (ja) * 2009-10-28 2011-05-12 Toshiba Materials Co Ltd 繊維表面への光触媒粒子の固着方法
US20150232647A1 (en) * 2012-08-22 2015-08-20 Korea Institute Of Ceramic Engineering And Technology Carbon fiber composite coated with silicon carbide and production method for same
JP2015199655A (ja) 2014-03-31 2015-11-12 日本製紙株式会社 炭酸カルシウム微粒子と繊維との複合体、および、その製造方法
JP2016513182A (ja) * 2013-02-25 2016-05-12 ザ セクレタリー オブ ステイト フォー ビジネス イノベーション アンド スキルズ 導電性繊維
WO2017043580A1 (ja) * 2015-09-08 2017-03-16 日本製紙株式会社 炭酸マグネシウム微粒子と繊維との複合体、および、その製造方法
JP2017057538A (ja) * 2015-09-18 2017-03-23 国立大学法人 東京大学 複合繊維とその製造方法、並びに、複合材とその製造方法
WO2017057154A1 (ja) * 2015-09-30 2017-04-06 日本製紙株式会社 セルロース繊維と無機粒子の複合体

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007038966A1 (en) * 2005-10-05 2007-04-12 Sca Hygiene Products Ab Absorbent article comprising a thin film including an active agent
US8778140B2 (en) 2007-09-12 2014-07-15 Nalco Company Preflocculation of fillers used in papermaking
JP4973569B2 (ja) 2008-03-28 2012-07-11 株式会社豊田中央研究所 繊維状炭素系材料絶縁物、それを含む樹脂複合材、および繊維状炭素系材料絶縁物の製造方法
EP2492391A1 (en) * 2011-02-26 2012-08-29 Clariant International Ltd. Optimized layer-by-layer assemblies for indoor photo-catalytical pollutants removal
JP6411266B2 (ja) * 2014-03-31 2018-10-24 日本製紙株式会社 炭酸カルシウムの製造方法
EP3127868B1 (en) 2014-03-31 2021-06-16 Nippon Paper Industries Co., Ltd. Calcium-carbonate-microparticle/fiber composite and manufacturing method therefor
JP6345111B2 (ja) * 2014-12-26 2018-06-20 ユニ・チャーム株式会社 複合化材料及びこれを用いた吸収性物品
CN105484017A (zh) * 2015-11-23 2016-04-13 浙江理工大学 一种织物用静电自组装增深方法
CN105542275B (zh) 2015-12-22 2017-11-14 温州德泰塑业有限公司 一种造纸用无机纤维柔性化的方法
GB201621494D0 (en) * 2016-12-16 2017-02-01 Imp Innovations Ltd Composite material
JP2019123657A (ja) 2018-01-19 2019-07-25 太平洋セメント株式会社 けい酸苦土肥料の製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001062286A (ja) 1999-08-30 2001-03-13 Keiogijuku 交互吸着膜の製造方法および製造装置
JP2003300274A (ja) 2002-04-10 2003-10-21 Dainippon Printing Co Ltd 交互吸着膜の製造方法および製造装置
JP2011506789A (ja) * 2007-12-12 2011-03-03 オムヤ ディベロプメント アーゲー 表面無機化有機繊維
JP2009191396A (ja) * 2008-02-14 2009-08-27 Kurosawa Lace:Kk 消臭カーテン及びその製造方法
JP2011094252A (ja) * 2009-10-28 2011-05-12 Toshiba Materials Co Ltd 繊維表面への光触媒粒子の固着方法
US20150232647A1 (en) * 2012-08-22 2015-08-20 Korea Institute Of Ceramic Engineering And Technology Carbon fiber composite coated with silicon carbide and production method for same
JP2016513182A (ja) * 2013-02-25 2016-05-12 ザ セクレタリー オブ ステイト フォー ビジネス イノベーション アンド スキルズ 導電性繊維
JP2015199655A (ja) 2014-03-31 2015-11-12 日本製紙株式会社 炭酸カルシウム微粒子と繊維との複合体、および、その製造方法
WO2017043580A1 (ja) * 2015-09-08 2017-03-16 日本製紙株式会社 炭酸マグネシウム微粒子と繊維との複合体、および、その製造方法
JP2017057538A (ja) * 2015-09-18 2017-03-23 国立大学法人 東京大学 複合繊維とその製造方法、並びに、複合材とその製造方法
WO2017057154A1 (ja) * 2015-09-30 2017-04-06 日本製紙株式会社 セルロース繊維と無機粒子の複合体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3613896A4

Also Published As

Publication number Publication date
EP3663459A1 (en) 2020-06-10
EP3613896A4 (en) 2020-04-29
EP3613896A1 (en) 2020-02-26
JPWO2018193751A1 (ja) 2020-03-12
CN110637120A (zh) 2019-12-31
US20200056325A1 (en) 2020-02-20
US11555270B2 (en) 2023-01-17
JP7138095B2 (ja) 2022-09-15

Similar Documents

Publication Publication Date Title
US20210338547A1 (en) Complexes of hydrotalcites and fibers
JP6516854B2 (ja) セルロース繊維と無機粒子の複合体
JP7101493B2 (ja) 湿式不織布
WO2017135413A1 (ja) 樹脂複合体及び樹脂複合体の製造方法
JP2013536329A (ja) 炭酸カルシウムの沈殿のための方法およびシステムならびに炭酸カルシウムを含む製品
KR20180083915A (ko) 시트 및 시트의 제조 방법
JP7034936B2 (ja) 繊維と無機粒子の複合体の製造方法、および、繊維と無機粒子の複合体を含有する積層体
JP2018119220A (ja) 加工紙
WO2018193751A1 (ja) 無機粒子複合繊維、その製造方法、及び成形体
JP7129812B2 (ja) ハイドロタルサイトと繊維の複合繊維
JP2018132387A (ja) 放射線遮断材
JP2022133416A (ja) セルロース繊維と無機粒子の複合繊維およびその製造方法
JP2021123840A (ja) 抗アレルゲン繊維製品
JP2021181654A (ja) ハイドロタルサイトと繊維の複合繊維およびそれを含む製品
Korhonen et al. Strengthening wood fiber networks by adsorption of complexes of chitosan with dialdehyde starch
JP7034864B2 (ja) 機能性材料及びその利用
JPWO2019065270A1 (ja) 多層シート及びその製造方法
JP2022156677A (ja) 繊維と無機粒子の複合繊維の保管方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18788187

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019513264

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018788187

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018788187

Country of ref document: EP

Effective date: 20191121