WO2018193738A1 - Position detection device and method for manufacturing same - Google Patents

Position detection device and method for manufacturing same Download PDF

Info

Publication number
WO2018193738A1
WO2018193738A1 PCT/JP2018/008731 JP2018008731W WO2018193738A1 WO 2018193738 A1 WO2018193738 A1 WO 2018193738A1 JP 2018008731 W JP2018008731 W JP 2018008731W WO 2018193738 A1 WO2018193738 A1 WO 2018193738A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic field
detection element
magnet
detection device
Prior art date
Application number
PCT/JP2018/008731
Other languages
French (fr)
Japanese (ja)
Inventor
隆博 馬籠
一郎 徳永
拓 齊藤
命 福井
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Publication of WO2018193738A1 publication Critical patent/WO2018193738A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/18Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying effective impedance of discharge tubes or semiconductor devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/48EGR valve position sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage

Definitions

  • the present invention relates to a position detection apparatus that detects the position of an object to which a magnet is attached using a change in a magnetic field detected by a magnetic detection element, and a method for manufacturing the position detection apparatus.
  • a magnetic sensor incorporated in a flow control valve detects opening / closing of a valve (valve) using a change in a magnetic field accompanying a change in position of a shaft driven by an actuator along a straight line.
  • Patent Document 1 discloses a magnetic field detected by a Hall element provided to face a permanent magnet in response to a change in position of a permanent magnet attached to an end of a drive shaft that drives an intake / exhaust valve.
  • An electromagnetic intake / exhaust valve drive system that detects the position of an intake / exhaust valve using a change in strength is described.
  • the electromagnetic intake / exhaust valve drive system described in Patent Document 1 specifies the position of the permanent magnet at the end of the drive shaft based on the change in the strength of the magnetic field detected by the Hall element, thereby opening and closing the valve. Is detected.
  • a leakage magnetic field generated by the electromagnetic actuator that drives the drive shaft becomes noise and a detection error tends to occur in the Hall element.
  • the present invention solves the above-described conventional problems, and is a non-contact type position detection device capable of accurately detecting the position of a movable part interlocked with a drive shaft of a solenoid actuator by detecting a change in a magnetic field, and It aims at providing the manufacturing method.
  • a position detection device includes a movable portion interlocking with a drive shaft of a solenoid actuator, a magnet, and a magnetic detection element capable of detecting a magnetic field generated by the magnet, and the magnet and the magnetic detection element
  • the position detection device one is provided in the movable part and the other is provided in the fixed part, and the position of the movable part interlocked with the drive shaft is detected based on the magnetic field detected by the magnetic detection element.
  • the magnetic sensing direction in which a magnetic field can be detected by the magnetic detection element is different from the direction of a leakage magnetic field generated by the solenoid actuator.
  • the magnetic detection element divides the leakage magnetic field into a magnetosensitive direction component parallel to the magnetosensitive direction and a vertical component perpendicular to the magnetosensitive direction, the vertical component is more than the magnetosensitive direction component. It is good also as a structure provided in the position provided in the position which becomes large, or the position where the direction of the said leakage magnetic field is orthogonal to the said magnetosensitive direction.
  • the magnetic detection element detects noise as the magnetic detection element, and the vertical component is not detected by the magnetic detection element. For this reason, the influence of the leakage magnetic field from a solenoid actuator can be suppressed by arrange
  • the magnetic sensitive direction has a first magnetic sensitive direction and a second magnetic sensitive direction perpendicular to the first magnetic sensitive direction, and the first magnetic sensitive direction and the second magnetic sensitive direction. All may be configured to be orthogonal to the leakage magnetic field direction.
  • the magnetic detection element detects a magnetic field generated by the magnet and parallel to the drive direction of the drive shaft, and a position where a leakage magnetic field of the solenoid actuator is formed in a direction orthogonal to the drive direction of the drive shaft Is preferably provided. With this configuration, the leakage magnetic field is prevented from being detected as noise, and the detection accuracy is improved.
  • the one provided in the movable part is provided at a position shifted (offset) from the extension line of the drive shaft in a direction perpendicular to the extension line. Also good.
  • the magnet or magnetic detection element provided in the movable part is provided at a position shifted in the direction perpendicular to the extension line of the drive shaft, the magnetic field of the leakage magnetic field is more sensitive than that provided with the magnetic detection element on the extension line.
  • the direction component can be reduced and the vertical direction component can be increased.
  • the magnetic detection element can be configured using a magnetoresistive element that detects the magnetic field by changing an electric resistance value, or a Hall element having a detection surface that can detect a magnetic component.
  • the manufacturing method of the position detection device of the present invention includes a calculation step of calculating a leakage magnetic field of a solenoid actuator, and an arrangement step of installing a magnetic detection element based on the leakage magnetic field calculated in the calculation step. It is characterized by being.
  • the position detection device has an arrangement in which the direction of the leakage magnetic field generated by the solenoid actuator is different from the direction in which the magnetic detection element can detect the magnetic field.
  • the influence of the leakage magnetic field on the magnet detected by can be suppressed. Therefore, based on the relative position between the magnetism detection element and the magnet, the position of the movable part linked to the drive shaft can be detected with high accuracy, and the position detection device can detect the position of the detection target with high accuracy.
  • the magnetic detection element is installed at a position where the influence of the leakage magnetic field on the detection result is small by calculating the leakage magnetic field of the solenoid actuator in advance in the calculation step. can do. Therefore, it is possible to easily manufacture a position detection device with good detection accuracy in which the influence of the leakage magnetic field from the solenoid actuator is suppressed.
  • FIG. 1A is a perspective explanatory view illustrating the positional relationship between a magnet and a magnetic detection element included in the position detection device of FIG.
  • FIG. 3A is an explanatory perspective view illustrating the positional relationship between the magnet and the magnetic detection element included in the position detection device of FIG.
  • FIGS. 6A and 6B are schematic diagrams for explaining a magnetic sensing direction component and a vertical direction component of a leakage magnetic field, where (A) an installation position 13A in FIG. 5, (B) an installation position 13B in FIG. 5, and (C) an installation position 13C in FIG.
  • an exhaust gas recirculation valve (hereinafter also referred to as “EGR valve” as appropriate) has been used for the purpose of removing harmful components contained in the exhaust gas of an internal combustion engine.
  • EGR valves use a solenoid actuator to control the open / close state of the valve, and the valve is opened / closed by linear movement of the drive shaft of the solenoid actuator. For this reason, the open / closed state of the valve can be detected by detecting the position of the drive shaft of the solenoid actuator.
  • FIG. 3A is an explanatory diagram conceptually showing the configuration of a position detection device that detects the position of the drive shaft of the solenoid actuator
  • FIG. 3B is a diagram illustrating a magnet and a magnetic detection element in FIG. It is an enlarged view which shows the surrounding magnetic field
  • FIG. 4 is an explanatory perspective view for explaining the positional relationship between the magnet and the magnetic detection element provided in the position detection device of FIG.
  • the shaft (movable part) 11 of the position detection device 100 is attached to the drive shaft 22 so as to be interlocked with the drive shaft 22 of the solenoid actuator 2. Along with the change in the position of the drive shaft 22, the relative position between the magnet 12 attached to the shaft 11 and the magnetic detection element 13 disposed in the fixed portion 14 facing the vicinity of the magnet 12 changes.
  • the position detection device 100 detects the position of the drive shaft 22 of the solenoid actuator 2 when the magnetic detection element 13 detects a change in the magnetic field M due to a change in the relative position between the magnetic detection element 13 and the magnet 12.
  • a magnet 12 and a magnetic detection element 13 are disposed in the vicinity of the center line (extension line) C of the drive shaft 22 of the solenoid actuator 2.
  • the direction of the leakage magnetic field L (leakage magnetic field direction) generated by the body 21 of the solenoid actuator 2 is the magnetic field M of the magnet 12 and the sensitivity of the magnetic detection element 13. It coincides with the magnetic direction S. For this reason, there is a problem that an error is likely to occur due to the leakage magnetic field L generated by the solenoid actuator 2 being detected by the magnetic detection element 13 as noise of the magnetic field M of the magnet 12.
  • the position detection apparatus 1 of the present invention prevents the leakage magnetic field L from being detected as noise so that the magnetic field M and the magnetic sensing direction S do not coincide with the direction of the leakage magnetic field L of the solenoid actuator 2.
  • a magnet 12 and a magnetic detection element 13 are arranged (see FIG. 1A).
  • FIG. 1A is an explanatory diagram conceptually showing the configuration of the position detection device of the present embodiment
  • FIG. 1B is a view of the periphery of the magnet and the magnetic detection element provided in the position detection device of FIG. It is an enlarged view which shows a magnetic field etc.
  • FIG. 2 is a perspective explanatory view for explaining the positional relationship between the magnet and the magnetic detection element provided in the position detection device of FIG.
  • the position detection device 1 of this embodiment includes a shaft 11, a magnet 12, and a magnet 12 that are linked to the drive shaft 22 of the solenoid actuator 2. And a magnetic detection element 13 capable of detecting the generated magnetic field M.
  • the shaft 11 is connected to one end 22 ⁇ / b> A of the drive shaft 22 of the solenoid actuator 2, and has a main body 111 extending along the center line C of the drive shaft 22, and the main body 111 opposite to the drive shaft 22. And an offset portion 112 extending from the end portion 111A in a direction orthogonal to the center line C.
  • a magnet 12 is attached to the tip 112 ⁇ / b> A of the offset portion 112.
  • the magnet 12 is provided so that the leakage magnetic field L from the solenoid actuator 2 is orthogonal to the direction of the magnetic field M generated by the magnet 12. Further, the magnetic detection element 13 is also provided in the fixed portion 14 surrounding the shaft 11 so that the magnetic sensing direction S is orthogonal to the leakage magnetic field L.
  • the position detection device 1 accurately detects the position of the shaft 11 linked to the drive shaft 22 from the change in the relative position between the magnet 12 and the magnetic detection element 13 due to the displacement of the drive shaft 22 of the solenoid actuator 2. It is possible.
  • the magnet 12 generates a magnetic field M in the X1 direction of FIG. 1A, and the magnetic detection element 13 similarly has a magnetosensitive direction S in the X1 direction.
  • the magnet 12 is linked to the drive shaft 22 via the shaft 11, whereas the magnetic detection element 13 is provided on the fixed portion 14 that is not linked to the drive shaft 22. For this reason, when the drive shaft 22 moving linearly moves, the relative position between the magnet 12 and the magnetic detection element 13 changes, and the magnetic field M of the magnet 12 detected by the magnetic detection element 13 also changes. Since the change of the magnetic field M is due to the movement of the drive shaft 22, the position of the drive shaft 22 can be detected based on the magnetic field M detected by the magnetic detection element 13.
  • the position detection device 1 By detecting the position of the drive shaft 22, the state of the object connected to the other end 22B of the drive shaft 22 can be detected. For example, when an EGR valve is joined to the other end 22B of the drive shaft 22, the position detection device 1 functions as a sensor that detects the open / closed state of the EGR valve.
  • the magnetic detection element 13 has two perpendicular magnetic sensing directions Sx1 and Sy. For this reason, when the relative position between the magnet 12 and the magnetic detection element 13 changes, the magnetic field M from the magnet 12 detected by the magnetic detection element 13 changes, and thus the magnet 12 in the magnetic sensitive direction Sx1 and the magnetic sensitive direction Sy. Can be detected.
  • the magnetic sensing surface formed (specified) by the magnetic sensing direction Sx1 and the magnetic sensing direction Sy by arranging the magnetic detection element 13 so that the leakage magnetic field L is orthogonal to both the magnetic sensing direction Sx1 and the magnetic sensing direction Sy.
  • the magnetic sensing direction S of the magnetic detection element 13 shown in FIG. 1B is a magnetic sensing direction (first magnetic sensing direction) Sx1 and a magnetic sensing direction (second magnetic sensing direction) Sy. It consists of two directions.
  • the magnetic sensing direction Sx1 and the magnetic sensing direction Sy are both orthogonal to the leakage magnetic field L from the solenoid actuator 2. Therefore, the leakage magnetic field L can be prevented from being detected by the magnetic detection element 13 as noise when the magnetic field M from the magnet 12 is detected.
  • FIG. 1A and 1B show a mode in which the magnet 12 is provided on the shaft 11 and the magnetic detection element 13 is provided on the fixed portion 14.
  • the magnetic field M of the magnet 12 detected by the magnetic detection element 13 may be changed by a change in the relative position between the magnet 12 and the magnetic detection element 13. For this reason, it is good also as a structure which provided the magnetism detection element 13 in the shaft 11, and the magnet 12 in the fixing
  • the magnetic detection element 13 can be configured using a magnetoresistive effect element that detects the magnetic field M by a change in electric resistance value.
  • the magnetoresistive effect element include a giant magnetoresistive effect element (GMR element).
  • GMR element giant magnetoresistive effect element
  • the magnetic detection element 13 having two magnetosensitive directions S is used as the magnetic detection element.
  • the magnetic detection element is not limited to this, and for example, a Hall element having a detection surface capable of detecting a magnetic component can be used. Even when the Hall element is used, the leakage magnetic field L can be prevented from being detected as noise by arranging the magnetic sensing direction to be different from the direction of the leakage magnetic field L generated by the solenoid actuator 2.
  • FIG. 5 is an explanatory diagram showing a simulation result of the magnetic field generated by the solenoid actuator.
  • the solenoid actuator 2 (see FIG. 1A) includes a coil 23 inside the main body 21, and drives the drive shaft 22 (see FIG. 1A) by a magnetic force generated by passing a current through the coil 23. .
  • a part of the magnetic field generated when the drive shaft 22 is driven by the coil 23 becomes the leakage magnetic field L.
  • the arrow in the figure indicates the direction of the leakage magnetic field L.
  • the coil 23 of the solenoid actuator 2 is supplied with a current having a predetermined value corresponding to the position of the drive shaft 22 (see FIGS. 1A and 3A). Although the intensity of the above-described leakage magnetic field L changes depending on the magnitude of the current flowing through the coil 23, the direction is substantially constant.
  • the simulation result of FIG. 5 schematically shows the direction of the leakage magnetic field L.
  • the direction of the leakage magnetic field L varies greatly depending on the distance from the center line C of the drive shaft 22.
  • 5A is an installation position of the magnetic detection element 13 in the position detection apparatus 1 (see FIGS. 1A and 2)
  • 13B is an installation position of the magnetic detection element 13 in the position detection apparatus 100 (see FIG. 5).
  • 3 (A), see FIG. 4) Differences in the direction of the leakage magnetic field L depending on the installation position of the magnetic detection element 13 will be described for 13A, 13B, and 13C between them.
  • FIG. 6A and 6B are schematic diagrams for explaining the magnetic sensing direction component and the vertical direction component of the leakage magnetic field.
  • FIG. 6A shows the leakage magnetic field L at the installation position 13A in FIG. 5
  • FIG. 6B shows the installation in FIG.
  • the leakage magnetic field L at the position 13B and FIG. 6C show the leakage magnetic field L at the installation position 13C in FIG.
  • the leakage magnetic field L when the leakage magnetic field L is composed only of the vertical direction component Lz1 orthogonal to the magnetic sensing direction Sx1 of the magnetic detection element 13, the leakage magnetic field L becomes noise in the detection of the magnetic detection element 13. Can be suppressed.
  • the position detection device 1 in which the magnetic detection element 13 is provided at the installation position 13A accurately detects a change in the magnetic field caused by a change in the relative position with respect to the magnet 12. be able to.
  • the position detection device 100 in which the magnetic detection element 13 is provided at the installation position 13 ⁇ / b> B has a leakage magnetic field in detecting a change in the magnetic field caused by a change in the relative position with respect to the magnet 12. L becomes noise and accuracy decreases.
  • the magnetic detection element 13 is installed at a position where the magnetic sensitive direction component Lx1 parallel to the magnetic sensitive direction Sx1 is as small as possible. Is preferred.
  • the installation position of the magnetic detection element 13 is most preferably the installation position 13A where the magnetic sensing direction component Lx1 of the leakage magnetic field L is eliminated.
  • the magnetic sensing direction component Lx1 (noise component) of the leakage magnetic field L at the installation position 13C of the magnetic detection element 13 is larger than the installation position 13A and smaller than the installation position 13B. As it moves from the installation position 13A to the installation position 13B, the magnetic sensing direction component Lx1 (noise component) of the leakage magnetic field L increases and the vertical direction component Lz1 (non-noise component) decreases. In the region where the vertical direction component Lz1 of the leakage magnetic field L is larger than the magnetosensitive direction component Lx1, it can be said that the ratio of the noise component in the leakage magnetic field L is relatively small. For this reason, the magnetic detection element 13 is preferably installed at a position where the vertical direction component Lz1 of the leakage magnetic field L is larger than the magnetosensitive direction component Lx1.
  • the magnetic sensing direction component Lx1 of the leakage magnetic field L By reducing the magnetic sensing direction component Lx1 of the leakage magnetic field L, it is possible to reduce noise when the magnetic detection element 13 detects the magnetic field M of the magnet 12 and to suppress a decrease in detection accuracy. That is, by making the magnetic sensing direction S in which the magnetic field M can be detected by the magnetic detection element 13 different from the direction of the leakage magnetic field L, compared with the case where the magnetic sensing direction S and the direction of the leakage magnetic field L match, The influence of the leakage magnetic field L can be suppressed. For this reason, the direction of the leakage magnetic field L does not have to be completely orthogonal to the magnetic field M and the magnetic sensing direction S.
  • the magnetic field M, the magnetic sensing direction S, and the direction of the leakage magnetic field L may be set according to the required detection accuracy.
  • the present invention includes a calculation step for calculating the leakage magnetic field L generated by the solenoid actuator 2 and a placement step for providing the magnetic detection element 13 based on the direction of the leakage magnetic field L calculated in the calculation step. It can implement as a manufacturing method of the detection apparatus 1 (refer FIG. 1 (A) and FIG. 1 (B)).
  • the leakage magnetic field generated by the solenoid actuator 2 is calculated in advance, and in the placement step, the direction of the leakage magnetic field L generated by the solenoid actuator 2 based on the direction of the leakage magnetic field L calculated in the calculation step;
  • the magnetic detection element 13 By arranging the magnetic detection element 13 at a position where the direction of the magnetic field M detected by the magnetic detection element 13 is different, the detection error due to the noise of the leakage magnetic field L generated by the solenoid actuator 2 is suppressed, and the detection accuracy is improved. It becomes easy to manufacture a good position detection apparatus 1.
  • the position detection in which the magnetic detection element 13 is installed by changing the offset distance O from the center line C of the drive shaft 22 to the end 12E of the magnet 12.
  • the apparatus 1 was manufactured (refer FIG. 1 (A)), and the linearity of the output voltage from the magnetic detection element 13 of the position detection apparatus 1 by the position of the shaft 11 was investigated.
  • the position detection device 1 provided with the magnetic detection element 13 at a position where the leakage magnetic field L is perpendicular to the magnetic sensing direction S was manufactured, and the output voltage linearity was evaluated by changing the position of the shaft 11.
  • the magnetic detection element 13 was installed at a position where the offset distance O from the center line C of the drive shaft 22 was 25 mm using a coil 23 having a diameter of 40 mm.
  • the position detection device 1 provided with the magnetic detection element 13 at a position where the leakage magnetic field L is parallel to the magnetic sensing direction S was manufactured, and the output voltage linearity was evaluated by changing the position of the shaft 11.
  • the magnetic detection element 13 was installed at a position where the offset distance O from the center line C of the drive shaft 22 was 6 mm using a coil 23 having a diameter of 40 mm.
  • FIG. 7 is a graph showing linearity between the shaft position and the output voltage of the position detection device according to the example of the present invention and the comparative example.
  • the linearity of the output voltage decreased as the displacement of the shaft position increased.
  • the position detection device of the example the linearity of the output voltage did not decrease even when the change in the shaft position became large. From this result, it was found that by installing the magnetic detection element 13 at a position perpendicular to the magnetic sensing direction S, a position detection device with high accuracy can be obtained.
  • Position detection device 11 Shaft (movable part) 111 Body portion 111A Opposite end 112 Offset portion 112A Tip 12 Magnet 12E Magnet end 13 Detection element (magnetoresistance effect element) 13A, 13B, 13C Detection element installation position 14 Fixed portion 2 Solenoid actuator 21 Main body 22 Drive shaft, 22A One end, 22B Other end 23 Coil M Magnet magnetic field L Leakage magnetic field, Lx1 Leakage magnetic field direction component, Lz1 Leakage magnetic field Vertical component S of magnetic field, Sx1 Magnetic direction (first magnetic direction) Sy Magnetic direction (second magnetic direction) R Drive shaft drive direction C Drive shaft centerline (extension of drive shaft) line) O Offset distance

Abstract

This position detection device 1 is provided with a movable part 11 that moves in conjunction with a drive shaft 22 of a solenoid actuator 2, a magnet 12, and a magnetic detection element 13 that is capable of detecting the magnetic field generated by the magnet 12. The magnet 12 is provided on the movable part 11. The magnetic detection element 13 is provided on a fixed part 14. The position detection device 1 detects the position of the movable part 11, which moves in conjunction with the drive shaft 22, on the basis of the magnetic field M detected by the magnetic detection element 13. Because the magnetism sensing direction S of the magnetic detection element 13 and the direction of the leakage magnetic field L generated by the solenoid actuator 2 are different, it is possible to accurately detect the position of the movable part, which moves in conjunction with the drive shaft of the solenoid actuator, through the detection of magnetic field variation.

Description

位置検出装置およびその製造方法Position detecting apparatus and manufacturing method thereof
 本発明は、磁気検出素子により検知された磁場の変化を用いて、磁石が取り付けられた対象物の位置を検出する位置検出装置およびその製造方法に関する。 The present invention relates to a position detection apparatus that detects the position of an object to which a magnet is attached using a change in a magnetic field detected by a magnetic detection element, and a method for manufacturing the position detection apparatus.
 磁場の変化を用いて対象物の位置を検出する従来の位置検出装置として、例えば、流量制御弁に組み込まれた磁気式センサが挙げられる。磁気センサは、直線に沿ってアクチュエータより駆動されるシャフトの位置変化に伴う磁場の変化を用いて、弁(バルブ)の開閉を検知する。 As a conventional position detection device that detects the position of an object using a change in a magnetic field, for example, a magnetic sensor incorporated in a flow control valve can be cited. The magnetic sensor detects opening / closing of a valve (valve) using a change in a magnetic field accompanying a change in position of a shaft driven by an actuator along a straight line.
 特許文献1には、吸排気弁を駆動する駆動軸の端部に取り付けられた永久磁石の位置の変化に対応して、永久磁石に対向するように設けられたホール素子に検知される磁界の強度が変化することを用いて、吸排気弁の位置を検出する電磁式吸排気弁駆動システムが記載されている。 Patent Document 1 discloses a magnetic field detected by a Hall element provided to face a permanent magnet in response to a change in position of a permanent magnet attached to an end of a drive shaft that drives an intake / exhaust valve. An electromagnetic intake / exhaust valve drive system that detects the position of an intake / exhaust valve using a change in strength is described.
特開2001-263319号公報JP 2001-263319 A
 特許文献1に記載された電磁式吸排気弁駆動システムは、ホール素子によって検知される磁界の強度変化に基づいて、駆動軸の端部の永久磁石の位置を特定することにより、弁の開閉状態を検知する。しかし、駆動軸を駆動する電磁アクチュエータが発生する漏れ磁界がノイズとなり、ホール素子に検出誤差が生じやすいという問題があった。 The electromagnetic intake / exhaust valve drive system described in Patent Document 1 specifies the position of the permanent magnet at the end of the drive shaft based on the change in the strength of the magnetic field detected by the Hall element, thereby opening and closing the valve. Is detected. However, there is a problem that a leakage magnetic field generated by the electromagnetic actuator that drives the drive shaft becomes noise and a detection error tends to occur in the Hall element.
 本発明は、上記従来の課題を解決するものであって、磁場の変化を検出することにより、ソレノイドアクチュエータの駆動軸と連動する可動部の位置を精度よく検出できる非接触式の位置検出装置およびその製造方法を提供することを目的としている。 The present invention solves the above-described conventional problems, and is a non-contact type position detection device capable of accurately detecting the position of a movable part interlocked with a drive shaft of a solenoid actuator by detecting a change in a magnetic field, and It aims at providing the manufacturing method.
 本発明の位置検出装置は、ソレノイドアクチュエータの駆動軸と連動する可動部と、磁石と、前記磁石が生成する磁界を検知可能な磁気検出素子と、を備え、前記磁石と前記磁気検出素子のうち、一方が前記可動部に設けられ、他方が固定部に設けられており、前記磁気検出素子が検知した磁界に基づいて、前記駆動軸に連動した前記可動部の位置を検知する位置検出装置において、前記磁気検出素子により磁界を検知可能な感磁方向が、前記ソレノイドアクチュエータによって生成される漏れ磁界の方向と異なることを特徴とする。 A position detection device according to the present invention includes a movable portion interlocking with a drive shaft of a solenoid actuator, a magnet, and a magnetic detection element capable of detecting a magnetic field generated by the magnet, and the magnet and the magnetic detection element In the position detection device, one is provided in the movable part and the other is provided in the fixed part, and the position of the movable part interlocked with the drive shaft is detected based on the magnetic field detected by the magnetic detection element. The magnetic sensing direction in which a magnetic field can be detected by the magnetic detection element is different from the direction of a leakage magnetic field generated by the solenoid actuator.
 前記磁気検出素子は、前記漏れ磁界を前記感磁方向に平行な感磁方向成分と前記感磁方向に垂直な垂直方向成分とに分けた場合、前記垂直方向成分が前記感磁方向成分よりも大きくなる位置に設けられている構成、または、前記漏れ磁界の方向が、前記感磁方向と直交する位置に設けられている構成としてもよい。漏れ磁界の成分のうち、磁気検出素子にノイズとして検出されるのは感磁方向成分であり、垂直方向成分は磁気検出素子に検出されない。このため、磁気検出素子を上記のように配置することにより、ソレノイドアクチュエータからの漏れ磁界の影響を抑制することができる。 When the magnetic detection element divides the leakage magnetic field into a magnetosensitive direction component parallel to the magnetosensitive direction and a vertical component perpendicular to the magnetosensitive direction, the vertical component is more than the magnetosensitive direction component. It is good also as a structure provided in the position provided in the position which becomes large, or the position where the direction of the said leakage magnetic field is orthogonal to the said magnetosensitive direction. Of the leakage magnetic field components, the magnetic detection element detects noise as the magnetic detection element, and the vertical component is not detected by the magnetic detection element. For this reason, the influence of the leakage magnetic field from a solenoid actuator can be suppressed by arrange | positioning a magnetic detection element as mentioned above.
 前記感磁方向は、第1の感磁方向および前記第1の感磁方向に直交する第2の感磁方向を有しており、前記第1の感磁方向および前記第2の感磁方向はいずれも、前記漏れ磁界方向と直交している構成としてもよい。この構成により、第1の感磁方向と第2の感磁方向により形成される感磁面上の磁界を測定する場合、ソレノイドアクチュエータに生成される漏れ磁界がノイズとして検出されることを抑制できる。 The magnetic sensitive direction has a first magnetic sensitive direction and a second magnetic sensitive direction perpendicular to the first magnetic sensitive direction, and the first magnetic sensitive direction and the second magnetic sensitive direction. All may be configured to be orthogonal to the leakage magnetic field direction. With this configuration, when measuring the magnetic field on the magnetic sensitive surface formed by the first magnetic sensitive direction and the second magnetic sensitive direction, it is possible to suppress the leakage magnetic field generated in the solenoid actuator from being detected as noise. .
 前記磁気検出素子は、前記磁石が生成した前記駆動軸の駆動方向に平行な磁界を検出するものであり、前記ソレノイドアクチュエータの漏れ磁界が前記駆動軸の駆動方向と直交する方向に形成された位置に設けられていることが好ましい。この構成により、漏れ磁界がノイズとして検出されることを抑制し、検出精度が良好になる。 The magnetic detection element detects a magnetic field generated by the magnet and parallel to the drive direction of the drive shaft, and a position where a leakage magnetic field of the solenoid actuator is formed in a direction orthogonal to the drive direction of the drive shaft Is preferably provided. With this configuration, the leakage magnetic field is prevented from being detected as noise, and the detection accuracy is improved.
 前記磁石と前記磁気検出素子のうち、前記可動部に設けられているものは、前記駆動軸の延長線から、当該延長線に直交する方向にずれた(オフセット)位置に設けられている構成としてもよい。可動部に設けられる磁石または磁気検出素子を、駆動軸の延長線に対して直交する方向にずれた位置に設けることにより、延長線上に磁気検出素子が設けられたものよりも漏れ磁界の感磁方向成分を小さくし、垂直方向成分を大きくすることができる。 Among the magnet and the magnetic detection element, the one provided in the movable part is provided at a position shifted (offset) from the extension line of the drive shaft in a direction perpendicular to the extension line. Also good. By providing the magnet or magnetic detection element provided in the movable part at a position shifted in the direction perpendicular to the extension line of the drive shaft, the magnetic field of the leakage magnetic field is more sensitive than that provided with the magnetic detection element on the extension line. The direction component can be reduced and the vertical direction component can be increased.
 前記磁気検出素子は、電気抵抗値が変化することにより、前記磁界を検知する磁気抵抗効果素子や、磁気成分を検出可能な検知面を備えたホール素子を用いて構成することができる。 The magnetic detection element can be configured using a magnetoresistive element that detects the magnetic field by changing an electric resistance value, or a Hall element having a detection surface that can detect a magnetic component.
 本発明の位置検出装置の製造方法は、ソレノイドアクチュエータの漏れ磁界を算出する算出ステップと、前記算出ステップにおいて算出された前記漏れ磁界に基づいて、磁気検出素子を設置する配置ステップと、を備えていることを特徴とする。 The manufacturing method of the position detection device of the present invention includes a calculation step of calculating a leakage magnetic field of a solenoid actuator, and an arrangement step of installing a magnetic detection element based on the leakage magnetic field calculated in the calculation step. It is characterized by being.
 本発明の位置検出装置は、ソレノイドアクチュエータが生成する漏れ磁界の方向と、磁気検出素子が磁界を検知可能な方向とが異なる配置とすることにより、両者が一致する場合に比べて、磁気検出素子が検知する磁石に対する漏れ磁界の影響を抑制することができる。したがって、磁気検出素子と磁石との相対位置に基づいて、駆動軸に連動した前記可動部の位置を精度よく検出し、検知対象物の位置を精度よく検知できる位置検出装置とすることができる。 The position detection device according to the present invention has an arrangement in which the direction of the leakage magnetic field generated by the solenoid actuator is different from the direction in which the magnetic detection element can detect the magnetic field. The influence of the leakage magnetic field on the magnet detected by can be suppressed. Therefore, based on the relative position between the magnetism detection element and the magnet, the position of the movable part linked to the drive shaft can be detected with high accuracy, and the position detection device can detect the position of the detection target with high accuracy.
 本発明の位置検出装置の製造方法は、算出ステップにおいて、あらかじめソレノイドアクチュエータの漏れ磁界を算出しておくことにより、設置ステップにより、漏れ磁界による検出結果への影響が小さい位置に磁気検出素子を設置することができる。したがって、ソレノイドアクチュエータからの漏れ磁界の影響が抑制された、検出精度の良好な位置検出装置を容易に製造することができる。 In the manufacturing method of the position detection device of the present invention, the magnetic detection element is installed at a position where the influence of the leakage magnetic field on the detection result is small by calculating the leakage magnetic field of the solenoid actuator in advance in the calculation step. can do. Therefore, it is possible to easily manufacture a position detection device with good detection accuracy in which the influence of the leakage magnetic field from the solenoid actuator is suppressed.
(A)本発明の実施形態の位置検出装置の構成を概念的に示す説明図、(B)図1(A)における、磁石および磁気検出素子周辺の磁界等を示す拡大図(A) Explanatory drawing which shows notionally the structure of the position detection apparatus of embodiment of this invention, (B) The enlarged view which shows the magnetic field etc. around a magnet and a magnetic detection element in FIG. 1 (A) 図1(A)の位置検出装置が備える磁石および磁気検出素子の位置関係を説明する斜視説明図FIG. 1A is a perspective explanatory view illustrating the positional relationship between a magnet and a magnetic detection element included in the position detection device of FIG. (A)ソレノイドアクチュエータの駆動軸の位置を検出する位置検出装置の構成を概念的に示す説明図、(B)図3(A)における、磁石および磁気検出素子周辺の磁界等を示す拡大図(A) Explanatory drawing which shows notionally the structure of the position detection apparatus which detects the position of the drive shaft of a solenoid actuator, (B) The enlarged view which shows the magnetic field etc. around a magnet and a magnetic detection element in FIG. 3 (A) 図3(A)の位置検出装置が備える磁石および磁気検出素子の位置関係を説明する斜視説明図FIG. 3A is an explanatory perspective view illustrating the positional relationship between the magnet and the magnetic detection element included in the position detection device of FIG. ソレノイドアクチュエータが生成する漏れ磁界のシミュレーション結果を示す説明図Explanatory drawing which shows the simulation result of the leakage magnetic field which a solenoid actuator generates 漏れ磁界の感磁方向成分と垂直方向成分とを説明する模式図であり、(A)図5の設置位置13A、(B)図5の設置位置13B、(C)図5の設置位置13C、における漏れ磁界を模式的に示す説明図FIGS. 6A and 6B are schematic diagrams for explaining a magnetic sensing direction component and a vertical direction component of a leakage magnetic field, where (A) an installation position 13A in FIG. 5, (B) an installation position 13B in FIG. 5, and (C) an installation position 13C in FIG. Explanatory diagram schematically showing the leakage magnetic field in 本発明の実施例および比較例に係る位置検出装置のシャフト位置と出力電圧の直線性とを示すグラフThe graph which shows the shaft position and linearity of an output voltage of the position detection apparatus which concerns on the Example and comparative example of this invention
 以下、本発明の実施の形態について、図面を参照して説明する。なお、同じ部材については同じ番号を用いて示し、適宜、説明を省略する。
 従来、内燃機関の排気ガスに含まれる有害成分を除去する目的で、排気再循環バルブ(Exhaust Gas Recirculation valve、以下、適宜、「EGRバルブ」ともいう。)が用い
られている。EGRバルブには、バルブの開閉状態を制御するためにソレノイドアクチュエータを用いたものがあり、ソレノイドアクチュエータの駆動軸の直線動作によってバルブを開閉する。このため、ソレノイドアクチュエータの駆動軸の位置を検出することによって、バルブの開閉状態を検出することができる。
Embodiments of the present invention will be described below with reference to the drawings. In addition, about the same member, it shows using the same number, and abbreviate | omits description suitably.
Conventionally, an exhaust gas recirculation valve (hereinafter also referred to as “EGR valve” as appropriate) has been used for the purpose of removing harmful components contained in the exhaust gas of an internal combustion engine. Some EGR valves use a solenoid actuator to control the open / close state of the valve, and the valve is opened / closed by linear movement of the drive shaft of the solenoid actuator. For this reason, the open / closed state of the valve can be detected by detecting the position of the drive shaft of the solenoid actuator.
 図3(A)は、ソレノイドアクチュエータの駆動軸の位置を検出する位置検出装置の構成を概念的に示す説明図であり、図3(B)は、図3(A)における磁石および磁気検出素子周辺の磁界等を示す拡大図である。図4は、図3(A)の位置検出装置が備える磁石および磁気検出素子の位置関係を説明する斜視説明図である。 FIG. 3A is an explanatory diagram conceptually showing the configuration of a position detection device that detects the position of the drive shaft of the solenoid actuator, and FIG. 3B is a diagram illustrating a magnet and a magnetic detection element in FIG. It is an enlarged view which shows the surrounding magnetic field. FIG. 4 is an explanatory perspective view for explaining the positional relationship between the magnet and the magnetic detection element provided in the position detection device of FIG.
 位置検出装置100のシャフト(可動部)11は、ソレノイドアクチュエータ2の駆動軸22と連動するように駆動軸22に取り付けられている。駆動軸22の位置の変化に伴い、シャフト11に取り付けられた磁石12と、磁石12の近傍に対向して固定部14に配置された磁気検出素子13との相対位置が変化する。位置検出装置100は、磁気検出素子13と磁石12との相対位置の変化による磁界Mの変化を磁気検出素子13が検出することにより、ソレノイドアクチュエータ2の駆動軸22の位置を検出する。 The shaft (movable part) 11 of the position detection device 100 is attached to the drive shaft 22 so as to be interlocked with the drive shaft 22 of the solenoid actuator 2. Along with the change in the position of the drive shaft 22, the relative position between the magnet 12 attached to the shaft 11 and the magnetic detection element 13 disposed in the fixed portion 14 facing the vicinity of the magnet 12 changes. The position detection device 100 detects the position of the drive shaft 22 of the solenoid actuator 2 when the magnetic detection element 13 detects a change in the magnetic field M due to a change in the relative position between the magnetic detection element 13 and the magnet 12.
 位置検出装置100は、ソレノイドアクチュエータ2の駆動軸22の中心線(延長線)Cの近傍に、磁石12および磁気検出素子13が配置されている。しかし、このような配置では、図3(B)に示すように、ソレノイドアクチュエータ2の本体21が生成する漏れ磁界Lの方向(漏れ磁界方向)が磁石12の磁界Mおよび磁気検出素子13の感磁方向Sと一致する。このため、ソレノイドアクチュエータ2が発生する漏れ磁界Lが、磁石12の磁界Mのノイズとして磁気検出素子13に検出されることによって、誤差が発生しやすいという問題があった。 In the position detection device 100, a magnet 12 and a magnetic detection element 13 are disposed in the vicinity of the center line (extension line) C of the drive shaft 22 of the solenoid actuator 2. However, in such an arrangement, as shown in FIG. 3B, the direction of the leakage magnetic field L (leakage magnetic field direction) generated by the body 21 of the solenoid actuator 2 is the magnetic field M of the magnet 12 and the sensitivity of the magnetic detection element 13. It coincides with the magnetic direction S. For this reason, there is a problem that an error is likely to occur due to the leakage magnetic field L generated by the solenoid actuator 2 being detected by the magnetic detection element 13 as noise of the magnetic field M of the magnet 12.
 そこで、本発明の位置検出装置1は、漏れ磁界Lがノイズとして検出されることを抑制するために、磁界Mおよび感磁方向Sがソレノイドアクチュエータ2の漏れ磁界Lの方向と一致しないように、磁石12および磁気検出素子13を配置している(図1(A)参照)。 Therefore, the position detection apparatus 1 of the present invention prevents the leakage magnetic field L from being detected as noise so that the magnetic field M and the magnetic sensing direction S do not coincide with the direction of the leakage magnetic field L of the solenoid actuator 2. A magnet 12 and a magnetic detection element 13 are arranged (see FIG. 1A).
 図1(A)は、本実施形態の位置検出装置の構成を概念的に示す説明図であり、図1(B)は図1(A)の位置検出装置が備える磁石および磁気検出素子周辺の磁界等を示す拡大図である。図2は、図1(A)の位置検出装置が備える磁石および磁気検出素子の位置関係を説明する斜視説明図である。 FIG. 1A is an explanatory diagram conceptually showing the configuration of the position detection device of the present embodiment, and FIG. 1B is a view of the periphery of the magnet and the magnetic detection element provided in the position detection device of FIG. It is an enlarged view which shows a magnetic field etc. FIG. 2 is a perspective explanatory view for explaining the positional relationship between the magnet and the magnetic detection element provided in the position detection device of FIG.
 図1(A)、図1(B)および図2に示すように、本実施形態の位置検出装置1は、ソレノイドアクチュエータ2の駆動軸22と連動するシャフト11と、磁石12と、磁石12が生成する磁界Mを検知可能な磁気検出素子13と、を備えている。 As shown in FIG. 1A, FIG. 1B, and FIG. 2, the position detection device 1 of this embodiment includes a shaft 11, a magnet 12, and a magnet 12 that are linked to the drive shaft 22 of the solenoid actuator 2. And a magnetic detection element 13 capable of detecting the generated magnetic field M.
 シャフト11は、ソレノイドアクチュエータ2の駆動軸22の一端22Aに連なって設けられており、駆動軸22の中心線Cに沿って伸長する本体部111と、本体部111の駆動軸22と反対側の端部111Aから中心線Cに直交する方向に伸長するオフセット部112とを備えている。オフセット部112の先端112Aには、磁石12が取り付けられている。 The shaft 11 is connected to one end 22 </ b> A of the drive shaft 22 of the solenoid actuator 2, and has a main body 111 extending along the center line C of the drive shaft 22, and the main body 111 opposite to the drive shaft 22. And an offset portion 112 extending from the end portion 111A in a direction orthogonal to the center line C. A magnet 12 is attached to the tip 112 </ b> A of the offset portion 112.
 位置検出装置1では、ソレノイドアクチュエータ2からの漏れ磁界Lが、磁石12の発生する磁界Mの方向と直交するように、磁石12が設けられている。また、磁気検出素子13も、その感磁方向Sが漏れ磁界Lと直交するように、シャフト11を取り囲む固定部14に設けられている。 In the position detection device 1, the magnet 12 is provided so that the leakage magnetic field L from the solenoid actuator 2 is orthogonal to the direction of the magnetic field M generated by the magnet 12. Further, the magnetic detection element 13 is also provided in the fixed portion 14 surrounding the shaft 11 so that the magnetic sensing direction S is orthogonal to the leakage magnetic field L.
 ソレノイドアクチュエータ2の本体21が生成する漏れ磁界Lの方向が磁界Mおよび感磁方向Sと直交するように、磁石12と磁気検出素子13とを設けることにより、漏れ磁界Lがノイズとして検出されることを防止または抑制できる。したがって、位置検出装置1は、ソレノイドアクチュエータ2の駆動軸22の変位に伴う、磁石12と磁気検出素子13との相対位置の変化から、駆動軸22に連動したシャフト11の位置を精度よく検出することが可能である。 By providing the magnet 12 and the magnetic detection element 13 so that the direction of the leakage magnetic field L generated by the main body 21 of the solenoid actuator 2 is orthogonal to the magnetic field M and the magnetic sensing direction S, the leakage magnetic field L is detected as noise. This can be prevented or suppressed. Therefore, the position detection device 1 accurately detects the position of the shaft 11 linked to the drive shaft 22 from the change in the relative position between the magnet 12 and the magnetic detection element 13 due to the displacement of the drive shaft 22 of the solenoid actuator 2. It is possible.
 磁石12は、図1(A)のX1方向に磁界Mを発生するものであり、磁気検出素子13は、同様にX1方向に感磁方向Sを有している。磁石12は、シャフト11を介して駆動軸22と連動するのに対し、磁気検出素子13は、駆動軸22と連動しない固定部14に設けられている。このため、直線状に運動する駆動軸22が移動すると、磁石12と磁気検出素子13との相対位置が変化し、磁気検出素子13により検出される磁石12の磁界Mも変化する。この磁界Mの変化は、駆動軸22が移動したことによるものであるから、磁気検出素子13により検知された磁界Mに基づいて、駆動軸22の位置を検知することができる。 The magnet 12 generates a magnetic field M in the X1 direction of FIG. 1A, and the magnetic detection element 13 similarly has a magnetosensitive direction S in the X1 direction. The magnet 12 is linked to the drive shaft 22 via the shaft 11, whereas the magnetic detection element 13 is provided on the fixed portion 14 that is not linked to the drive shaft 22. For this reason, when the drive shaft 22 moving linearly moves, the relative position between the magnet 12 and the magnetic detection element 13 changes, and the magnetic field M of the magnet 12 detected by the magnetic detection element 13 also changes. Since the change of the magnetic field M is due to the movement of the drive shaft 22, the position of the drive shaft 22 can be detected based on the magnetic field M detected by the magnetic detection element 13.
 駆動軸22の位置を検知することにより、駆動軸22の他端22Bに接続された対象物の状態を検知することができる。例えば、駆動軸22の他端22BにEGRバルブが接合されている場合、位置検出装置1は、EGRバルブの開閉状態を検出するセンサとして機能する。 By detecting the position of the drive shaft 22, the state of the object connected to the other end 22B of the drive shaft 22 can be detected. For example, when an EGR valve is joined to the other end 22B of the drive shaft 22, the position detection device 1 functions as a sensor that detects the open / closed state of the EGR valve.
 図2に示すように、磁気検出素子13は直交する2つの感磁方向Sx1および感磁方向Syを有する。このため、磁石12と磁気検出素子13との相対位置が変化すると、磁気検出素子13によって検知される磁石12からの磁界Mが変化するから、感磁方向Sx1および感磁方向Syへの磁石12の移動を検知することができる。漏れ磁界Lが感磁方向Sx1および感磁方向Syのいずれとも直交するように、磁気検出素子13を配置することにより、感磁方向Sx1および感磁方向Syにより形成(特定)される感磁面上で磁石12が移動することを検知する際に、漏れ磁界Lがノイズとして検出されることを防止または抑制して、検出精度を向上させることができる。 As shown in FIG. 2, the magnetic detection element 13 has two perpendicular magnetic sensing directions Sx1 and Sy. For this reason, when the relative position between the magnet 12 and the magnetic detection element 13 changes, the magnetic field M from the magnet 12 detected by the magnetic detection element 13 changes, and thus the magnet 12 in the magnetic sensitive direction Sx1 and the magnetic sensitive direction Sy. Can be detected. The magnetic sensing surface formed (specified) by the magnetic sensing direction Sx1 and the magnetic sensing direction Sy by arranging the magnetic detection element 13 so that the leakage magnetic field L is orthogonal to both the magnetic sensing direction Sx1 and the magnetic sensing direction Sy. When detecting that the magnet 12 moves above, the detection accuracy can be improved by preventing or suppressing the leakage magnetic field L from being detected as noise.
 本実施形態の位置検出装置1は、磁気検出素子13が検出する磁石12の磁界Mと、図1(A)中に両側矢印で示した駆動軸22の駆動方向Rとが平行である。また、磁気検出素子13の感磁方向Sと駆動軸22の駆動方向Rも平行である。図1(B)に示す磁気検出素子13の感磁方向Sは、図2に示すように感磁方向(第1の感磁方向)Sx1および感磁方向(第2の感磁方向)Syの2方向からなっている。感磁方向Sx1および感磁方向Syはいずれも、ソレノイドアクチュエータ2からの漏れ磁界Lと直交している。したがって、漏れ磁界Lは、磁石12からの磁界Mを検出する際のノイズとして、磁気検出素子13に検出されることを防止できる。 In the position detection device 1 of the present embodiment, the magnetic field M of the magnet 12 detected by the magnetic detection element 13 and the drive direction R of the drive shaft 22 indicated by the double-sided arrow in FIG. Further, the magnetic sensing direction S of the magnetic detection element 13 and the drive direction R of the drive shaft 22 are also parallel. As shown in FIG. 2, the magnetic sensing direction S of the magnetic detection element 13 shown in FIG. 1B is a magnetic sensing direction (first magnetic sensing direction) Sx1 and a magnetic sensing direction (second magnetic sensing direction) Sy. It consists of two directions. The magnetic sensing direction Sx1 and the magnetic sensing direction Sy are both orthogonal to the leakage magnetic field L from the solenoid actuator 2. Therefore, the leakage magnetic field L can be prevented from being detected by the magnetic detection element 13 as noise when the magnetic field M from the magnet 12 is detected.
 なお、図1(A)および図1(B)には、シャフト11に磁石12を、固定部14に磁気検出素子13をそれぞれ設けた態様を示した。しかし、磁石12と磁気検出素子13との相対位置の変化により磁気検出素子13によって検出される磁石12の磁界Mが変化すればよい。このため、シャフト11に磁気検出素子13を、固定部14に磁石12をそれぞれ設けた構成としてもよい。 1A and 1B show a mode in which the magnet 12 is provided on the shaft 11 and the magnetic detection element 13 is provided on the fixed portion 14. However, the magnetic field M of the magnet 12 detected by the magnetic detection element 13 may be changed by a change in the relative position between the magnet 12 and the magnetic detection element 13. For this reason, it is good also as a structure which provided the magnetism detection element 13 in the shaft 11, and the magnet 12 in the fixing | fixed part 14, respectively.
<磁気検出素子>
 磁気検出素子13は、電気抵抗値の変化により、磁界Mを検知する磁気抵抗効果素子を用いて構成することができる。磁気抵抗効果素子としては、巨大磁気抵抗効果素子(GMR素子)などが挙げられる。例えば、ブリッジ接続された4個のGMR素子を用いることにより、磁界Mを電気抵抗値の変化として検知する磁気検出素子を構成することができる。
<Magnetic detection element>
The magnetic detection element 13 can be configured using a magnetoresistive effect element that detects the magnetic field M by a change in electric resistance value. Examples of the magnetoresistive effect element include a giant magnetoresistive effect element (GMR element). For example, by using four GMR elements that are bridge-connected, it is possible to configure a magnetic detection element that detects the magnetic field M as a change in electric resistance value.
 本実施形態では、磁気検出素子として2つの感磁方向Sを有する磁気検出素子13を用いた場合について説明した。しかし、磁気検出素子はこれに限られるものではなく、例えば、磁気成分を検出可能な検知面を備えたホール素子を用いることもできる。ホール素子を用いる場合も、感磁方向がソレノイドアクチュエータ2により生成された漏れ磁界Lの向きと異なるように配置することで、漏れ磁界Lがノイズとして検出されることを抑制できる。 In the present embodiment, the case where the magnetic detection element 13 having two magnetosensitive directions S is used as the magnetic detection element has been described. However, the magnetic detection element is not limited to this, and for example, a Hall element having a detection surface capable of detecting a magnetic component can be used. Even when the Hall element is used, the leakage magnetic field L can be prevented from being detected as noise by arranging the magnetic sensing direction to be different from the direction of the leakage magnetic field L generated by the solenoid actuator 2.
 図5は、ソレノイドアクチュエータが生成する磁界のシミュレーション結果を示す説明図である。ソレノイドアクチュエータ2(図1(A)参照)は本体21の内部にコイル23を備えており、コイル23に電流を流すことで発生する磁力によって駆動軸22(図1(A)参照)を駆動する。このコイル23により駆動軸22を駆動する際に発生する磁界の一部が漏れ磁界Lとなる。図中の矢印は漏れ磁界Lの方向を示している。 FIG. 5 is an explanatory diagram showing a simulation result of the magnetic field generated by the solenoid actuator. The solenoid actuator 2 (see FIG. 1A) includes a coil 23 inside the main body 21, and drives the drive shaft 22 (see FIG. 1A) by a magnetic force generated by passing a current through the coil 23. . A part of the magnetic field generated when the drive shaft 22 is driven by the coil 23 becomes the leakage magnetic field L. The arrow in the figure indicates the direction of the leakage magnetic field L.
 ソレノイドアクチュエータ2のコイル23には、駆動軸22(図1(A)、図3(A)参照)の位置に対応した所定値の電流が供給される。上述した漏れ磁界Lは、コイル23に流れる電流の大きさによって強度が変化するものの、方向は略一定である。図5のシミュレーション結果は、漏れ磁界Lの方向を模式的に示したものである。 The coil 23 of the solenoid actuator 2 is supplied with a current having a predetermined value corresponding to the position of the drive shaft 22 (see FIGS. 1A and 3A). Although the intensity of the above-described leakage magnetic field L changes depending on the magnitude of the current flowing through the coil 23, the direction is substantially constant. The simulation result of FIG. 5 schematically shows the direction of the leakage magnetic field L.
 漏れ磁界Lの方向は、駆動軸22の中心線Cからの距離によって大きく異なる。図5中の13Aは位置検出装置1における磁気検出素子13の設置位置であり(図1(A)、図2参照)、13Bは位置検出装置100における磁気検出素子13の設置位置である(図3(A)、図4参照)。13A、13B、および両者間の13Cについて、磁気検出素子13の設置位置による漏れ磁界Lの方向の違いを説明する。 The direction of the leakage magnetic field L varies greatly depending on the distance from the center line C of the drive shaft 22. 5A is an installation position of the magnetic detection element 13 in the position detection apparatus 1 (see FIGS. 1A and 2), and 13B is an installation position of the magnetic detection element 13 in the position detection apparatus 100 (see FIG. 5). 3 (A), see FIG. 4). Differences in the direction of the leakage magnetic field L depending on the installation position of the magnetic detection element 13 will be described for 13A, 13B, and 13C between them.
 図6は漏れ磁界の感磁方向成分と垂直方向成分とを説明する模式図であり、図6(A)が図5の設置位置13Aの漏れ磁界L、図6(B)が図5の設置位置13Bの位置の漏れ磁界L、図6(C)が図5の設置位置13Cの位置の漏れ磁界Lをそれぞれ示している。 6A and 6B are schematic diagrams for explaining the magnetic sensing direction component and the vertical direction component of the leakage magnetic field. FIG. 6A shows the leakage magnetic field L at the installation position 13A in FIG. 5, and FIG. 6B shows the installation in FIG. The leakage magnetic field L at the position 13B and FIG. 6C show the leakage magnetic field L at the installation position 13C in FIG.
 図6(A)に示すように、漏れ磁界Lが磁気検出素子13の感磁方向Sx1と直交する垂直方向成分Lz1のみからなる場合、漏れ磁界Lが磁気検出素子13の検出においてノイズとなることを抑制できる。このため、設置位置13Aに磁気検出素子13が設けられた位置検出装置1(図1(A)、図2参照)は、磁石12との相対位置の変化によって生じる磁界の変化を精度よく検出することができる。 As shown in FIG. 6A, when the leakage magnetic field L is composed only of the vertical direction component Lz1 orthogonal to the magnetic sensing direction Sx1 of the magnetic detection element 13, the leakage magnetic field L becomes noise in the detection of the magnetic detection element 13. Can be suppressed. For this reason, the position detection device 1 (see FIGS. 1A and 2) in which the magnetic detection element 13 is provided at the installation position 13A accurately detects a change in the magnetic field caused by a change in the relative position with respect to the magnet 12. be able to.
 対して、図6(B)に示すように、漏れ磁界Lが磁気検出素子13の感磁方向Sx1と平行な感磁方向成分Lx1のみからなる場合、漏れ磁界Lの全成分が磁気検出素子13にノイズとして検出される。したがって、設置位置13Bに磁気検出素子13が設けられた位置検出装置100(図3(A)、図4参照)は、磁石12との相対位置の変化によって生じる磁界の変化の検出において、漏れ磁界Lがノイズとなり精度が低下する。 On the other hand, as shown in FIG. 6B, when the leakage magnetic field L is composed of only the magnetic sensing direction component Lx1 parallel to the magnetic sensing direction Sx1 of the magnetic detection element 13, all components of the leakage magnetic field L are included in the magnetic detection element 13. Detected as noise. Therefore, the position detection device 100 (see FIGS. 3A and 4) in which the magnetic detection element 13 is provided at the installation position 13 </ b> B has a leakage magnetic field in detecting a change in the magnetic field caused by a change in the relative position with respect to the magnet 12. L becomes noise and accuracy decreases.
 図6(C)に示すように、漏れ磁界Lが磁気検出素子13の垂直方向成分Lz1および感磁方向成分Lx1からなる場合、ノイズとして検出されるのは感磁方向成分Lx1である。磁気検出素子13よる検出において、漏れ磁界Lがノイズとなることを抑制するためには、感磁方向Sx1と平行な感磁方向成分Lx1が、できるだけ小さくなる位置に磁気検出素子13を設置することが好ましい。 As shown in FIG. 6C, when the leakage magnetic field L is composed of the vertical direction component Lz1 and the magnetic direction component Lx1 of the magnetic detection element 13, it is the magnetic direction component Lx1 that is detected as noise. In order to prevent the leakage magnetic field L from becoming a noise in the detection by the magnetic detection element 13, the magnetic detection element 13 is installed at a position where the magnetic sensitive direction component Lx1 parallel to the magnetic sensitive direction Sx1 is as small as possible. Is preferred.
 したがって、設置位置13A~13Cのうち、磁気検出素子13の設置位置は、漏れ磁界Lの感磁方向成分Lx1がなくなる設置位置13Aが最も好ましい。 Therefore, among the installation positions 13A to 13C, the installation position of the magnetic detection element 13 is most preferably the installation position 13A where the magnetic sensing direction component Lx1 of the leakage magnetic field L is eliminated.
 磁気検出素子13の設置位置13Cにおける漏れ磁界Lの感磁方向成分Lx1(ノイズ成分)は、設置位置13Aよりも大きく、設置位置13Bよりも小さい。設置位置13Aから設置位置13Bへ移動するにしたがって、漏れ磁界Lの感磁方向成分Lx1(ノイズ成分)が増加し、垂直方向成分Lz1(非ノイズ成分)が減少する。漏れ磁界Lの垂直方向成分Lz1が感磁方向成分Lx1よりも大きくなる領域では、漏れ磁界Lにおけるノイズ成分の割合が相対的に小さいといえる。このため、磁気検出素子13は、漏れ磁界Lの垂直方向成分Lz1が感磁方向成分Lx1よりも大きくなる位置に設置されることが好ましい。 The magnetic sensing direction component Lx1 (noise component) of the leakage magnetic field L at the installation position 13C of the magnetic detection element 13 is larger than the installation position 13A and smaller than the installation position 13B. As it moves from the installation position 13A to the installation position 13B, the magnetic sensing direction component Lx1 (noise component) of the leakage magnetic field L increases and the vertical direction component Lz1 (non-noise component) decreases. In the region where the vertical direction component Lz1 of the leakage magnetic field L is larger than the magnetosensitive direction component Lx1, it can be said that the ratio of the noise component in the leakage magnetic field L is relatively small. For this reason, the magnetic detection element 13 is preferably installed at a position where the vertical direction component Lz1 of the leakage magnetic field L is larger than the magnetosensitive direction component Lx1.
 漏れ磁界Lの感磁方向成分Lx1を小さくすることにより、磁気検出素子13が磁石12の磁界Mを検知する際のノイズを低減させて、検出精度が低下することを抑制できる。すなわち、磁気検出素子13により磁界Mを検知可能な感磁方向Sと漏れ磁界Lの方向とを異ならせることにより、感磁方向Sと漏れ磁界Lの方向とが一致する場合と比較して、漏れ磁界Lによる影響を抑制することができる。このため、漏れ磁界Lの方向は、磁界Mおよび感磁方向Sとは、完全に直交している必要はない。求められる検出精度に応じて、磁界Mおよび感磁方向Sと、漏れ磁界Lの方向とを設定すればよい。 By reducing the magnetic sensing direction component Lx1 of the leakage magnetic field L, it is possible to reduce noise when the magnetic detection element 13 detects the magnetic field M of the magnet 12 and to suppress a decrease in detection accuracy. That is, by making the magnetic sensing direction S in which the magnetic field M can be detected by the magnetic detection element 13 different from the direction of the leakage magnetic field L, compared with the case where the magnetic sensing direction S and the direction of the leakage magnetic field L match, The influence of the leakage magnetic field L can be suppressed. For this reason, the direction of the leakage magnetic field L does not have to be completely orthogonal to the magnetic field M and the magnetic sensing direction S. The magnetic field M, the magnetic sensing direction S, and the direction of the leakage magnetic field L may be set according to the required detection accuracy.
<製造方法>
 本発明は、ソレノイドアクチュエータ2により生成される漏れ磁界Lを算出する算出ステップと、算出ステップにおいて算出された漏れ磁界Lの方向に基づいて、磁気検出素子13を設ける配置ステップと、を備えた位置検出装置1の製造方法として実施することができる(図1(A)、図1(B)参照)。
<Manufacturing method>
The present invention includes a calculation step for calculating the leakage magnetic field L generated by the solenoid actuator 2 and a placement step for providing the magnetic detection element 13 based on the direction of the leakage magnetic field L calculated in the calculation step. It can implement as a manufacturing method of the detection apparatus 1 (refer FIG. 1 (A) and FIG. 1 (B)).
 算出ステップにおいて、ソレノイドアクチュエータ2により生成される漏れ磁界をあらかじめ算出し、配置ステップにおいて、算出ステップで算出された漏れ磁界Lの方向に基づいて、ソレノイドアクチュエータ2が発生する漏れ磁界Lの向きと、磁気検出素子13が検出する磁界Mの向きとが異なる位置に磁気検出素子13を配置することにより、ソレノイドアクチュエータ2が発生する漏れ磁界Lのノイズに起因する検出誤差が抑制された、検出精度が良い位置検出装置1を製造することが容易になる。 In the calculation step, the leakage magnetic field generated by the solenoid actuator 2 is calculated in advance, and in the placement step, the direction of the leakage magnetic field L generated by the solenoid actuator 2 based on the direction of the leakage magnetic field L calculated in the calculation step; By arranging the magnetic detection element 13 at a position where the direction of the magnetic field M detected by the magnetic detection element 13 is different, the detection error due to the noise of the leakage magnetic field L generated by the solenoid actuator 2 is suppressed, and the detection accuracy is improved. It becomes easy to manufacture a good position detection apparatus 1.
 磁気検出素子13の設置位置が検出精度に与える影響を調べるため、駆動軸22の中心線Cから磁石12の端部12Eまでのオフセット距離Oを変化させて、磁気検出素子13を設置した位置検出装置1を製造し(図1(A)参照)、シャフト11の位置による、位置検出装置1の磁気検出素子13からの出力電圧の直線性を調べた。 In order to investigate the influence of the installation position of the magnetic detection element 13 on the detection accuracy, the position detection in which the magnetic detection element 13 is installed by changing the offset distance O from the center line C of the drive shaft 22 to the end 12E of the magnet 12. The apparatus 1 was manufactured (refer FIG. 1 (A)), and the linearity of the output voltage from the magnetic detection element 13 of the position detection apparatus 1 by the position of the shaft 11 was investigated.
<実施例>
 漏れ磁界Lが、感磁方向Sに対して垂直になる位置に磁気検出素子13を設けた位置検出装置1を製造し、シャフト11の位置を変化させて出力電圧直線性を評価した。直径40mmのコイル23を用い、駆動軸22の中心線Cからのオフセット距離Oが25mmの位置に磁気検出素子13を設置した。
<Example>
The position detection device 1 provided with the magnetic detection element 13 at a position where the leakage magnetic field L is perpendicular to the magnetic sensing direction S was manufactured, and the output voltage linearity was evaluated by changing the position of the shaft 11. The magnetic detection element 13 was installed at a position where the offset distance O from the center line C of the drive shaft 22 was 25 mm using a coil 23 having a diameter of 40 mm.
<比較例>
 漏れ磁界Lが、感磁方向Sと平行になる位置に磁気検出素子13を設けた位置検出装置1を製造し、シャフト11の位置を変化させて出力電圧直線性を評価した。直径40mmのコイル23を用い、駆動軸22の中心線Cからのオフセット距離Oが6mmの位置に磁気検出素子13を設置した。
<Comparative example>
The position detection device 1 provided with the magnetic detection element 13 at a position where the leakage magnetic field L is parallel to the magnetic sensing direction S was manufactured, and the output voltage linearity was evaluated by changing the position of the shaft 11. The magnetic detection element 13 was installed at a position where the offset distance O from the center line C of the drive shaft 22 was 6 mm using a coil 23 having a diameter of 40 mm.
 図7は、本発明の実施例および比較例に係る位置検出装置のシャフト位置と出力電圧との直線性を示すグラフである。同図に示すように、比較例の位置検出装置は、シャフト位置の変位が大きくなるにつれて出力電圧の直線性が低下した。対して、実施例の位置検出装置は、シャフト位置の変化が大きくなった場合にも、出力電圧の直線性が低下することがなかった。この結果から、感磁方向Sに対して垂直になる位置に磁気検出素子13を設置することにより、精度が良い位置検出装置となることが分かった。 FIG. 7 is a graph showing linearity between the shaft position and the output voltage of the position detection device according to the example of the present invention and the comparative example. As shown in the figure, in the position detection device of the comparative example, the linearity of the output voltage decreased as the displacement of the shaft position increased. On the other hand, in the position detection device of the example, the linearity of the output voltage did not decrease even when the change in the shaft position became large. From this result, it was found that by installing the magnetic detection element 13 at a position perpendicular to the magnetic sensing direction S, a position detection device with high accuracy can be obtained.
1,100 位置検出装置
11 シャフト(可動部)
111 本体部
111A 反対側の端部
112 オフセット部
112A 先端
12 磁石
12E 磁石の端部
13 検出素子(磁気抵抗効果素子)
13A、13B、13C 検出素子の設置位置
14 固定部
2 ソレノイドアクチュエータ
21 本体
22 駆動軸、22A 一端、22B 他端
23 コイル
M 磁石の磁界
L 漏れ磁界、Lx1 漏れ磁界の感磁方向成分、Lz1 漏れ磁界の垂直方向成分
S 感磁方向、Sx1 感磁方向(第1の感磁方向)Sy 感磁方向(第2の感磁方向)R 駆動軸の駆動方向
C 駆動軸の中心線(駆動軸の延長線)
O オフセット距離
1,100 Position detection device 11 Shaft (movable part)
111 Body portion 111A Opposite end 112 Offset portion 112A Tip 12 Magnet 12E Magnet end 13 Detection element (magnetoresistance effect element)
13A, 13B, 13C Detection element installation position 14 Fixed portion 2 Solenoid actuator 21 Main body 22 Drive shaft, 22A One end, 22B Other end 23 Coil M Magnet magnetic field L Leakage magnetic field, Lx1 Leakage magnetic field direction component, Lz1 Leakage magnetic field Vertical component S of magnetic field, Sx1 Magnetic direction (first magnetic direction) Sy Magnetic direction (second magnetic direction) R Drive shaft drive direction C Drive shaft centerline (extension of drive shaft) line)
O Offset distance

Claims (8)

  1.  ソレノイドアクチュエータの駆動軸と連動する可動部と、磁石と、前記磁石が生成する磁界を検知可能な磁気検出素子と、を備え、
     前記磁石と前記磁気検出素子のうち、一方が前記可動部に設けられ、他方が固定部に設けられており、
     前記磁気検出素子が検知した磁界に基づいて、前記駆動軸に連動した前記可動部の位置を検知する位置検出装置において、
     前記磁気検出素子により磁界を検知可能な感磁方向が、前記ソレノイドアクチュエータによって生成される漏れ磁界の方向と異なることを特徴とする位置検出装置。
    A movable part interlocked with a drive shaft of a solenoid actuator, a magnet, and a magnetic detection element capable of detecting a magnetic field generated by the magnet,
    One of the magnet and the magnetic detection element is provided in the movable part, and the other is provided in the fixed part.
    In the position detection device that detects the position of the movable part interlocked with the drive shaft based on the magnetic field detected by the magnetic detection element,
    A position detecting device, wherein a magnetic sensing direction in which a magnetic field can be detected by the magnetic detection element is different from a direction of a leakage magnetic field generated by the solenoid actuator.
  2.  前記磁気検出素子は、前記漏れ磁界を前記感磁方向に平行な感磁方向成分と前記感磁方向と垂直な垂直方向成分とに分けた場合、前記垂直方向成分が前記感磁方向成分よりも大きくなる位置に設けられている請求項1に記載の位置検出装置。 When the magnetic detection element divides the leakage magnetic field into a magnetic sensitive direction component parallel to the magnetic sensitive direction and a vertical direction component perpendicular to the magnetic sensitive direction, the vertical direction component is more than the magnetic sensitive direction component. The position detection device according to claim 1, wherein the position detection device is provided at a larger position.
  3.  前記磁気検出素子は、前記漏れ磁界の方向が、前記感磁方向と直交する位置に設けられている請求項1に記載の位置検出装置。 The position detection device according to claim 1, wherein the magnetic detection element is provided at a position where a direction of the leakage magnetic field is orthogonal to the magnetic sensing direction.
  4.  前記感磁方向は、第1の感磁方向および前記第1の感磁方向に直交する第2の感磁方向を有しており、
     前記第1の感磁方向および前記第2の感磁方向はいずれも、前記漏れ磁界方向と直交している請求項1に記載の位置検出装置。
    The magnetic sensitive direction has a first magnetic sensitive direction and a second magnetic sensitive direction orthogonal to the first magnetic sensitive direction,
    The position detection device according to claim 1, wherein both the first magnetic sensing direction and the second magnetic sensing direction are orthogonal to the leakage magnetic field direction.
  5.  前記磁気検出素子は、前記磁石が生成した前記駆動軸の駆動方向に平行な磁界を検出するものであり、前記ソレノイドアクチュエータの漏れ磁界が前記駆動軸の駆動方向と直交する方向に形成された位置に設けられている請求項1に記載の位置検出装置。 The magnetic detection element detects a magnetic field generated by the magnet and parallel to the drive direction of the drive shaft, and a position where a leakage magnetic field of the solenoid actuator is formed in a direction orthogonal to the drive direction of the drive shaft The position detection device according to claim 1, wherein the position detection device is provided.
  6.  前記磁石と前記磁気検出素子のうち、前記可動部に設けられているものは、前記駆動軸の延長線から当該延長線に直交する方向にずれた位置に設けられている請求項1に記載の位置検出装置。 2. The magnet according to claim 1, wherein one of the magnet and the magnetic detection element provided in the movable portion is provided at a position shifted from an extension line of the drive shaft in a direction perpendicular to the extension line. Position detection device.
  7.  前記磁気検出素子は、電気抵抗値が変化することにより前記磁界を検知する磁気抵抗効果素子である請求項1~6のいずれか一項に記載の位置検出装置。 The position detection device according to any one of claims 1 to 6, wherein the magnetic detection element is a magnetoresistive effect element that detects the magnetic field by changing an electric resistance value.
  8.  ソレノイドアクチュエータの漏れ磁界を算出する算出ステップと、
     前記算出ステップにおいて算出された前記漏れ磁界に基づいて、磁気検出素子を設置する配置ステップと、を備えていることを特徴とする位置検出装置の製造方法。
    A calculation step for calculating a leakage magnetic field of the solenoid actuator;
    An arrangement step for installing a magnetic detection element based on the leakage magnetic field calculated in the calculation step.
PCT/JP2018/008731 2017-04-17 2018-03-07 Position detection device and method for manufacturing same WO2018193738A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-081320 2017-04-17
JP2017081320A JP2020106269A (en) 2017-04-17 2017-04-17 Position detecting device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2018193738A1 true WO2018193738A1 (en) 2018-10-25

Family

ID=63856268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008731 WO2018193738A1 (en) 2017-04-17 2018-03-07 Position detection device and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP2020106269A (en)
WO (1) WO2018193738A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014407A (en) * 2001-06-29 2003-01-15 Sony Precision Technology Inc Position detector
JP2010060338A (en) * 2008-09-02 2010-03-18 Alps Electric Co Ltd Movement detection device using magnet
JP2011017598A (en) * 2009-07-08 2011-01-27 Alps Electric Co Ltd Movement detection device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014407A (en) * 2001-06-29 2003-01-15 Sony Precision Technology Inc Position detector
JP2010060338A (en) * 2008-09-02 2010-03-18 Alps Electric Co Ltd Movement detection device using magnet
JP2011017598A (en) * 2009-07-08 2011-01-27 Alps Electric Co Ltd Movement detection device

Also Published As

Publication number Publication date
JP2020106269A (en) 2020-07-09

Similar Documents

Publication Publication Date Title
KR101388043B1 (en) Displacement measurement device
KR102185620B1 (en) Magnetic field sensor and method for sensing relative location of the magnetic field sensor and a target object along a movement line
JP4824023B2 (en) Magnetic position sensor
JP5680287B2 (en) Current sensor
TWI392856B (en) Origin position signal detector
US7302940B2 (en) Variable reluctance position sensor
JP2001221653A (en) Displacement detector
US11609284B2 (en) Magnetic sensor
US20110133728A1 (en) Angle sensor
JP2018072299A (en) Current sensor
JP4045230B2 (en) Non-contact rotation angle detector
Rohrmann et al. A novel methodology for stray field insensitive xmr angular position sensors
TWI612319B (en) Relative position detecting device, acceleration position sensor and vehicle
WO2018193738A1 (en) Position detection device and method for manufacturing same
JP6387788B2 (en) Magnetic medium for magnetic encoder, magnetic encoder, and method for manufacturing magnetic medium
US10247790B2 (en) Magnetic sensor
JP5409972B2 (en) Position detection device
JP2002228405A (en) Displacement detection apparatus
JP6157850B2 (en) Throttle valve device
AU5520000A (en) Distance measuring device
JP2017090337A (en) Displacement detector and egr sensor
WO2014073055A1 (en) Position detection device
JP2019167975A (en) Fluid control valve and shutoff device using the same
Daga Added value of spintronics for sensing solutions
JP2004157775A (en) Solenoid actuator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18787295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP