JP2019167975A - Fluid control valve and shutoff device using the same - Google Patents

Fluid control valve and shutoff device using the same Download PDF

Info

Publication number
JP2019167975A
JP2019167975A JP2018054015A JP2018054015A JP2019167975A JP 2019167975 A JP2019167975 A JP 2019167975A JP 2018054015 A JP2018054015 A JP 2018054015A JP 2018054015 A JP2018054015 A JP 2018054015A JP 2019167975 A JP2019167975 A JP 2019167975A
Authority
JP
Japan
Prior art keywords
sensor
magnet
valve
valve body
fluid control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018054015A
Other languages
Japanese (ja)
Inventor
富田 英夫
Hideo Tomita
英夫 富田
杉山 正樹
Masaki Sugiyama
正樹 杉山
永沼 直人
Naoto Naganuma
直人 永沼
博昭 片瀬
Hiroaki Katase
博昭 片瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2018054015A priority Critical patent/JP2019167975A/en
Publication of JP2019167975A publication Critical patent/JP2019167975A/en
Pending legal-status Critical Current

Links

Landscapes

  • Indication Of The Valve Opening Or Closing Status (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

To provide a fluid control valve performing position detection by slanting MR sensors in a circumferential direction of a magnet.SOLUTION: A fluid control valve includes: a valve body 13 opening or closing a flow path; a magnet 23 fixed to the valve body 13 so that an S pole 24 and an N pole 25 may be in a moving direction of the valve body 13; a two-pole detection type hole IC 30 for the S pole and the N pole which is located on a side in the moving direction of the magnet 23; and an actuator 2 driving the valve body 13. When magneto-sensitive parts of MR sensors 31, 30 are disposed so as to apply a magnet flux density in an axial direction of the magnet 23 and to be slant in the circumferential direction of the magnet 23, and the MR sensor 31 or an MR sensor 32 detects an operation magnetic flux density or more, the MR sensor 31 or the MR sensor 32 is close to the magnet 23 and thereby the position of the valve body 13 can be determined and recognized.SELECTED DRAWING: Figure 3

Description

本発明は、流体制御弁に関する。より詳しくは、弁体の位置を検出可能な流体制御弁に関する。   The present invention relates to a fluid control valve. More specifically, the present invention relates to a fluid control valve capable of detecting the position of a valve body.

特許文献1は、流体制御弁を開示する。同流体制御弁は、電動機であるステッピングモータと、ステッピングモータの回転軸に係止され回転軸の回転を直動に変換する変換手段と、変換手段に係止され流路を開閉する弁体と、弁体の位置検出手段とを備えている。弁体の位置検出手段としては、弁体の一端に設けられた磁石と、流路の外面に配置した弁体の開状態を検出する弁開用磁気検出素子及び弁体の閉状態を検出する弁閉用磁気検出素子との構成が開示されている。   Patent Document 1 discloses a fluid control valve. The fluid control valve includes a stepping motor that is an electric motor, a conversion unit that is locked to the rotation shaft of the stepping motor and converts rotation of the rotation shaft into a linear motion, and a valve body that is locked to the conversion unit and opens and closes the flow path. And a valve body position detecting means. As the valve body position detecting means, a magnet provided at one end of the valve body, a valve-opening magnetic detection element for detecting an open state of the valve body disposed on the outer surface of the flow path, and a closed state of the valve body are detected. A configuration with a magnetic detection element for valve closing is disclosed.

特開2001−141094号公報JP 2001-141094 A

しかしながら、前記従来の構成では、ステッピングモータの回転軸の回転を直動に変換する変換手段により弁体が移動して流路を開閉する。しかし、磁石のN極とS極の向き、その配置、磁気検出素子の特性やその具体例が開示されていない。   However, in the conventional configuration, the valve body is moved by the converting means for converting the rotation of the rotation shaft of the stepping motor into the linear motion to open and close the flow path. However, the orientation of the N pole and the S pole of the magnet, their arrangement, the characteristics of the magnetic detection element, and specific examples thereof are not disclosed.

一般に、磁気検出素子は磁気抵抗効果を利用したMRセンサがよく使われ、磁石に近接して流路の外面(磁石の周方向に平行)に、かつMRセンサ内部で上面に平行に配置された感磁部の動作磁界方向に軸(磁石移動)方向磁束密度が印加するように配置されている。   In general, an MR sensor using a magnetoresistive effect is often used as the magnetic detection element, and is arranged in the vicinity of the magnet on the outer surface of the flow path (parallel to the circumferential direction of the magnet) and in parallel with the upper surface inside the MR sensor. It arrange | positions so that an axial (magnet movement) direction magnetic flux density may be applied to the operating magnetic field direction of a magnetic sensing part.

また、磁石はS極とN極とが弁体の移動方向となるように弁体に固定されている。図12は、MRセンサの感磁部を基準に磁石を上下8mm程度移動した時の軸方向磁束密度をガウスメータで測定した結果を示す。例えば、MRセンサは2.5mT以上を動作磁束密度と検知し、0.5mT未満では動作磁束密度と検知しない。ただし、MRセンサは0.5mT〜2.5mTの範囲では動作磁束密度と検知する、または検知しない、どちらにもなりうる。さらに、MRセンサは磁束密度が正でも負(S極及びN極の磁束密度)でも検知する。   Further, the magnet is fixed to the valve body so that the S pole and the N pole are in the moving direction of the valve body. FIG. 12 shows the result of measuring the magnetic flux density in the axial direction with a gauss meter when the magnet is moved up and down about 8 mm with reference to the magnetic sensing part of the MR sensor. For example, the MR sensor detects an operating magnetic flux density of 2.5 mT or more, and does not detect an operating magnetic flux density below 0.5 mT. However, the MR sensor may or may not detect the operating magnetic flux density in the range of 0.5 mT to 2.5 mT. Furthermore, the MR sensor detects whether the magnetic flux density is positive or negative (magnetic flux densities of the S pole and the N pole).

これらのことから、図12に示されているように、MRセンサの真横から磁石が4mm以上移動すると磁界方向が逆転し、再びMRセンサが−0.5mT以下を動作磁束密度と検知する場合がある。したがって、MRセンサは、磁石が近接時と離れた時の2度も動作磁束密度と検知するという課題を有していた。すなわち、MRセンサが動作磁束密度と検知しても、磁石が近接しているか、または離れているか判断できない。従って、MRセンサは数ミリ程度の位置検知に使うには難しい。   For these reasons, as shown in FIG. 12, when the magnet moves 4 mm or more from the side of the MR sensor, the magnetic field direction is reversed, and the MR sensor again detects -0.5 mT or less as the operating magnetic flux density. is there. Therefore, the MR sensor has a problem that the magnetic flux density is detected twice when the magnet is close and when it is separated. That is, even if the MR sensor detects the operating magnetic flux density, it cannot be determined whether the magnet is close or separated. Therefore, the MR sensor is difficult to use for position detection of several millimeters.

本発明は、前記従来の課題を解決するもので、磁石の周方向に対して傾斜させてMRセンサを取付けることで、弁体の位置を検知できる流体制御弁を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object of the present invention is to provide a fluid control valve that can detect the position of a valve body by attaching an MR sensor so as to be inclined with respect to the circumferential direction of a magnet.

前記従来の課題を解決するために、本発明の流路を開閉する弁体と、S極とN極とが弁体の移動方向となるように弁体に固定された磁石と、弁体の移動後に磁石へ近接した磁気抵抗効果を利用したMRセンサと、弁体を駆動するアクチュエータと、を備え、MRセンサの感磁部を磁石の軸方向磁束密度を印加するように、かつ磁石の周方向に対して傾斜配置させ、MRセンサが動作磁束密度以上を検知した場合、MRセンサと磁石とが近接しており、弁体の位置が判断できるものである。   In order to solve the above-described conventional problems, a valve body for opening and closing the flow path of the present invention, a magnet fixed to the valve body so that the S pole and the N pole are in the moving direction of the valve body, An MR sensor using a magnetoresistive effect close to the magnet after movement and an actuator for driving the valve body are provided, and the magnetic sensing portion of the MR sensor is adapted to apply the magnetic flux density in the axial direction of the magnet. When the MR sensor detects an operating magnetic flux density or more with an inclination with respect to the direction, the MR sensor and the magnet are close to each other, and the position of the valve body can be determined.

MRセンサは動作磁界方向に印加された磁束密度を検知するが、動作磁界方向に対して斜めに横切るように印加された磁束密度を検知しないという特徴(論理回路)がある。磁石がMRセンサから離れた場合、MRセンサは磁石により形成する磁力線(接線がその点の磁界の向き)が流路を出入りする際に曲がる領域に位置する。そして、MRセンサを磁石の周方向に対して傾斜配置しているので、MRセンサの感磁部の印加磁界方向は動作磁界方向に対して斜めに横切るので、MRセンサは印加された磁束密度を検知しない。   The MR sensor detects the magnetic flux density applied in the direction of the operating magnetic field, but has a feature (logic circuit) that does not detect the magnetic flux density applied so as to cross obliquely with respect to the direction of the operating magnetic field. When the magnet is separated from the MR sensor, the MR sensor is located in a region where the magnetic lines of force formed by the magnet (the tangent is the direction of the magnetic field at that point) bends when entering and exiting the flow path. Since the MR sensor is inclined with respect to the circumferential direction of the magnet, the applied magnetic field direction of the magnetosensitive part of the MR sensor crosses obliquely with respect to the operating magnetic field direction. Not detected.

他方、MRセンサが、印加された磁束密度を動作磁束密度以上と検知する場合、MRセンサと磁石とが近接しており、弁体の位置が判断できる。   On the other hand, when the MR sensor detects that the applied magnetic flux density is equal to or higher than the operating magnetic flux density, the MR sensor and the magnet are close to each other, and the position of the valve body can be determined.

本発明の流体制御弁によれば、磁石の周方向に対して傾斜させてMRセンサを取付けることで、弁体の位置が検知できるという効果を奏する。   According to the fluid control valve of the present invention, there is an effect that the position of the valve body can be detected by attaching the MR sensor so as to be inclined with respect to the circumferential direction of the magnet.

実施の形態にかかる流体制御弁の概略構成の弁開状態を示す図The figure which shows the valve open state of schematic structure of the fluid control valve concerning embodiment 実施の形態にかかる流体制御弁の弁閉状態を示す図The figure which shows the valve closing state of the fluid control valve concerning embodiment 実施の形態にかかる流体制御弁の要部部分断面図FIG. 3 is a partial cross-sectional view of a main part of a fluid control valve according to an embodiment 実施の形態にかかるMRセンサを基板に配線した状態を示す斜視図The perspective view which shows the state which wired the MR sensor concerning embodiment to a board | substrate 実施の形態にかかる流体制御弁の外観図External view of fluid control valve according to embodiment (a)実施の形態にかかる流体制御弁のアクチュエータと流体制御部の斜視図、(b)実施の形態にかかる弁体の弁ゴムを除く斜視図(A) The perspective view of the actuator of the fluid control valve concerning embodiment, and a fluid control part, (b) The perspective view except the valve rubber of the valve body concerning embodiment 実施の形態にかかるMRセンサの感磁部(磁気抵抗素子)の構成と原理を示す図The figure which shows the structure and principle of the magnetosensitive part (magnetoresistance element) of MR sensor concerning embodiment (a)実施形態にかかる流体制御弁の弁開状態の弁ゴム受、磁石、流路、MRセンサの要部拡大図、(b)実施形態にかかる流体制御弁の弁閉状態の弁ゴム受、磁石、流路、MRセンサの要部拡大図(A) Enlarged view of essential parts of the valve rubber receiver, magnet, flow path, and MR sensor of the fluid control valve according to the embodiment, (b) Valve rubber receiver of the fluid control valve according to the embodiment in the valve closed state , Magnet, flow path, enlarged view of main part of MR sensor 実施の形態にかかる流体制御弁のMRセンサの取付角度45°における磁石移動による磁束密度の測定結果を示す図The figure which shows the measurement result of the magnetic flux density by the magnet movement in the attachment angle of 45 degrees of MR sensor of the fluid control valve concerning embodiment 実施の形態にかかるMRセンサの取付角度と磁石移動とによる許容動作磁界方向の範囲を示す図The figure which shows the range of the allowable operating magnetic field direction by the attachment angle and magnet movement of MR sensor concerning embodiment 実施の形態にかかる流体制御弁のMRセンサの取付角度90°における磁石移動による磁束密度の測定結果を示す図The figure which shows the measurement result of the magnetic flux density by the magnet movement in the attachment angle of 90 degrees of MR sensor of the fluid control valve concerning embodiment 実施の形態にかかる流体制御弁のMRセンサの取付角度0°における磁石移動による軸方向磁束密度の測定結果を示す図The figure which shows the measurement result of the axial direction magnetic flux density by the magnet movement in the attachment angle of 0 degree of MR sensor of the fluid control valve concerning embodiment 本実施の形態にかかる遮断装置のブロック図Block diagram of blocking device according to the present embodiment

第1の発明は、流路を開閉する弁体と、S極とN極とが前記弁体の移動方向となるように前記弁体に固定された磁石と、前記弁体の移動後に前記磁石へ近接した磁気抵抗効果を利用したMRセンサと、前記弁体を駆動するアクチュエータと、を備え、前記MRセンサの感磁部を前記磁石の軸方向磁束密度を印加するように、かつ前記磁石の周方向に対して傾斜配置させ、前記MRセンサが動作磁束密度以上を検知した場合、前記MRセンサと前
記磁石とが近接しており、弁体の位置が判断できるものである。
A first aspect of the present invention is a valve body that opens and closes a flow path, a magnet that is fixed to the valve body such that an S pole and an N pole are in the moving direction of the valve body, and the magnet after the movement of the valve body An MR sensor using a magnetoresistive effect close to the actuator, and an actuator for driving the valve body, so as to apply the magnetic flux density in the axial direction of the magnet to the magnetic sensing portion of the MR sensor, and When the MR sensor detects an operating magnetic flux density or more, the MR sensor and the magnet are close to each other, and the position of the valve body can be determined.

これにより、アクチュエータが駆動して弁体を移動させると、磁石も弁体と一緒に移動する。そして、MRセンサは動作磁界方向の印加された磁束密度を検知するが、動作磁界方向に対して斜めに横切るように印加された磁束密度を検知しないという特徴(論理回路)がある。磁石がMRセンサから離れた場合、MRセンサは磁石により形成する磁力線が流路を出入りする際に曲がる領域に位置する。そして、MRセンサを磁石の周方向に対して傾斜配置しているので、MRセンサの感磁部の印加磁界方向は正負反対になるも、動作磁界方向に対して斜めに横切るので、MRセンサは印加された磁束密度が強くても検知しない。   Accordingly, when the actuator is driven to move the valve body, the magnet also moves together with the valve body. The MR sensor detects the applied magnetic flux density in the direction of the operating magnetic field, but does not detect the applied magnetic flux density so as to cross obliquely with respect to the operating magnetic field direction (logic circuit). When the magnet is separated from the MR sensor, the MR sensor is located in a region where the magnetic field lines formed by the magnet bend when entering and exiting the flow path. Since the MR sensor is inclined with respect to the circumferential direction of the magnet, the applied magnetic field direction of the magnetosensitive portion of the MR sensor is opposite to the positive and negative directions, but the MR sensor crosses obliquely with respect to the operating magnetic field direction. Even if the applied magnetic flux density is strong, it is not detected.

他方、MRセンサが、印加された磁束密度を動作磁束密度以上と検知する場合、MRセンサと磁石とが近接しており、弁体の位置が判断できる。この際、印加された磁束密度は軸方向磁束密度である。すなわち、磁石の周方向に対して傾斜させたMRセンサは、弁体の位置が検知できる。   On the other hand, when the MR sensor detects that the applied magnetic flux density is equal to or higher than the operating magnetic flux density, the MR sensor and the magnet are close to each other, and the position of the valve body can be determined. At this time, the applied magnetic flux density is the axial magnetic flux density. That is, the MR sensor inclined with respect to the circumferential direction of the magnet can detect the position of the valve body.

第2の発明は、特に第1の発明において、前記MRセンサを搭載した基板を備え、前記MRセンサを前記基板の外縁近傍に配置し、前記基板の前記外縁を前記流路に近接させ、かつ前記流路、前記MRセンサ、基板の順に配置することにより、MRセンサを流路に近接させ、かつ基板の厚さ分MRセンサと磁石との距離が短くなるので、MRセンサの感磁部には強い軸方向磁束密度が印加され、感度が向上する。   In a second aspect of the invention, in particular, in the first aspect of the invention, the apparatus includes a substrate on which the MR sensor is mounted, the MR sensor is disposed in the vicinity of an outer edge of the substrate, the outer edge of the substrate is brought close to the flow path, and By arranging the flow path, the MR sensor, and the substrate in this order, the MR sensor is brought close to the flow path, and the distance between the MR sensor and the magnet is shortened by the thickness of the substrate. A strong axial magnetic flux density is applied to improve sensitivity.

第3の発明は、特に第1の発明において、前記MRセンサの感磁部は、前記磁石の周方向に対して30〜60°傾斜させることにより、磁石がMRセンサから離れた場合、MRセンサの感磁部の印加磁界方向は動作磁界方向に対して斜めになるので、MRセンサが印加された磁束密度を検知しない。なお、MRセンサの感磁部を磁石の周方向に対して60°を超えて傾斜させると、磁石がMRセンサから少し離れた場合でも、MRセンサは磁石により形成する磁力線が流路を出入りする際に非常に強く曲がる領域に位置する。このため、MRセンサと磁石とが近接した位置から磁石を0.5mm〜1mm前後移動するだけで、MRセンサの感磁部の印加磁界方向は動作磁界方向に対して斜めに横切るので、MRセンサは印加された磁束密度が強くても検知しない。したがって、MRセンサや磁石の位置がばらつく場合、MRセンサと磁石とが近接しても、MRセンサが印加された磁束密度を検知できず、弁の位置を誤検知する可能性がある。   According to a third aspect of the invention, in the first aspect of the invention, when the magnet is separated from the MR sensor by inclining the magnetically sensitive portion of the MR sensor by 30 to 60 degrees with respect to the circumferential direction of the magnet, the MR sensor Since the applied magnetic field direction of the magnetic sensing part is inclined with respect to the operating magnetic field direction, the magnetic flux density applied by the MR sensor is not detected. When the magnetic sensing part of the MR sensor is tilted by more than 60 ° with respect to the circumferential direction of the magnet, even if the magnet is slightly separated from the MR sensor, the magnetic field lines formed by the magnet enter and exit the flow path. It is located in an area that bends very strongly. For this reason, since the applied magnetic field direction of the magnetosensitive part of the MR sensor crosses obliquely with respect to the operating magnetic field direction only by moving the magnet around 0.5 mm to 1 mm from the position where the MR sensor and the magnet are close to each other, the MR sensor Does not detect even if the applied magnetic flux density is strong. Therefore, when the position of the MR sensor or the magnet varies, even if the MR sensor and the magnet are close to each other, the magnetic flux density applied by the MR sensor cannot be detected, and the position of the valve may be erroneously detected.

第4の発明は、特に第1〜3のいずれか1つの発明の前記流体制御弁と、前記流体制御弁の駆動回路と、前記MRセンサの信号により弁体の位置を検知する弁体位置検知回路を備え、前記弁体位置検知回路は、前記アクチュエータを駆動中は前記MRセンサによる前記弁体の位置検知を停止することを特徴とする遮断装置で、弁体を移動させているアクチュエータにより発生する磁界、ノイズなどの悪影響を避けられる。言い換えると、MRセンサは弁体が開状態または閉状態を判断し確認するものである。   According to a fourth aspect of the present invention, in particular, the fluid control valve according to any one of the first to third aspects, the drive circuit of the fluid control valve, and the valve body position detection for detecting the position of the valve body by a signal from the MR sensor. The valve body position detection circuit is a shut-off device that stops detection of the position of the valve body by the MR sensor while the actuator is being driven, and is generated by an actuator that moves the valve body. To avoid adverse effects such as magnetic field and noise. In other words, the MR sensor determines and confirms whether the valve body is open or closed.

第5の発明は、特に第4の発明において、前記流体制御弁は、前記弁体の弁閉位置の検知用と弁開位置の検知用の2つの前記MRセンサを備え、前記弁体位置検知回路は、両MRセンサが共に動作磁束密度以上を検知できない場合、前記流体制御弁を故障と判断することにより、2つのMRセンサは弁体を弁閉または弁開状態及び故障の3つを判断できる。   According to a fifth aspect of the invention, in particular, in the fourth aspect of the invention, the fluid control valve includes two MR sensors for detecting the valve closed position of the valve body and for detecting the valve open position. When both MR sensors cannot detect more than the operating magnetic flux density, the two MR sensors determine whether the valve body is closed or open and the failure is detected by determining that the fluid control valve is failed. it can.

(実施の形態)
図1は、実施の形態にかかる流体制御弁の概略構成の一例を、基板を除き、弁開状態を示す図である。図2は、同流体制御弁の基板を除き、弁閉状態を示す図である。図3は、
同流体制御弁を示す要部部分断面図である。図4は、MRセンサを基板に配線した状態を示す斜視図である。図5は、同流体制御弁の外観図である。図6(a)は、同流体制御弁のアクチュエータと流体制御部の斜視図であり、図6(b)は、弁体の弁ゴムを除く斜視図である。以下、図1〜図6を参照しつつ、本実施の形態の流体制御弁について説明する。
(Embodiment)
FIG. 1 is a diagram illustrating an example of a schematic configuration of a fluid control valve according to an embodiment in a valve open state, excluding a substrate. FIG. 2 is a view showing a valve closed state except for the substrate of the fluid control valve. FIG.
It is a principal part fragmentary sectional view which shows the fluid control valve. FIG. 4 is a perspective view showing a state in which the MR sensor is wired to the substrate. FIG. 5 is an external view of the fluid control valve. FIG. 6A is a perspective view of the actuator and fluid control unit of the fluid control valve, and FIG. 6B is a perspective view of the valve body excluding the valve rubber. Hereinafter, the fluid control valve of the present embodiment will be described with reference to FIGS.

図1〜6に例示するように、流体制御弁1は、アクチュエータ2と流体制御部3及び流路4で構成している。アクチュエータ2は、電動機であるステッピングモータであり、コイル5を有するステータ6と、コイル5への通電による励磁により回転するロータ7及びベース8で構成されている。ロータ7は、円筒形状をしており、外側に磁石9と内側に回転軸10とを一体成形する樹脂のブッシュ11からなる。ベース8は、下方へ突出した4つの櫛状の上回転抑制板12を形成している。   As illustrated in FIGS. 1 to 6, the fluid control valve 1 includes an actuator 2, a fluid control unit 3, and a flow path 4. The actuator 2 is a stepping motor that is an electric motor, and includes a stator 6 having a coil 5, and a rotor 7 and a base 8 that are rotated by excitation by energization of the coil 5. The rotor 7 has a cylindrical shape, and is composed of a resin bush 11 that integrally molds a magnet 9 on the outside and a rotating shaft 10 on the inside. The base 8 forms four comb-shaped upper rotation suppression plates 12 protruding downward.

流体制御部3は、ポリアセタール樹脂(POM)製の弁体13と変換手段14とで構成している。弁体13は、弁ゴム受15と弁ゴム16及びスプリング17とからなる。また、弁体13は、アクチュエータ2により弁の開状態と弁の閉状態とを移動する。本実施の形態では、移動経路は6mmに設定している。   The fluid control unit 3 includes a valve body 13 made of polyacetal resin (POM) and conversion means 14. The valve body 13 includes a valve rubber receiver 15, a valve rubber 16, and a spring 17. Further, the valve body 13 is moved between an open state of the valve and a closed state of the valve by the actuator 2. In this embodiment, the moving path is set to 6 mm.

弁ゴム受15は、回転軸10先端に形成されたオネジ18に係止されたネジピッチ1〜2の短いメネジ19を内部に形成した円筒部20と、下面に弁ゴム16を取付ける円盤21と、円盤21からベース8側へ(上方)突出した4つの櫛状の下回転抑制板22とから形成されている。また、円盤21の上面に、かつ外周縁に接するように、マーカーとなる磁石23が、樹脂バネ(接着、圧入などでもよい)により固定されている。本実施例では、磁石23は円筒Φ4.0×t1.5、材質ネオジウムで、着磁は厚さ方向で、上がS極24、下(円盤21側)がN極25になるように配置している。   The valve rubber receiver 15 includes a cylindrical portion 20 in which a short female screw 19 having a screw pitch of 1 to 2 that is locked to a male screw 18 formed at the tip of the rotary shaft 10 is formed inside, a disk 21 that attaches the valve rubber 16 to the lower surface, It is formed of four comb-like lower rotation suppression plates 22 protruding from the disk 21 toward the base 8 (upward). In addition, a magnet 23 serving as a marker is fixed to the upper surface of the disc 21 and in contact with the outer peripheral edge by a resin spring (adhesion, press-fitting, or the like). In this embodiment, the magnet 23 is a cylinder Φ4.0 × t1.5, made of neodymium, and magnetized in the thickness direction, so that the upper side is the S pole 24 and the lower side (the disk 21 side) is the N pole 25. is doing.

スプリング17は、ベース8と弁ゴム受15との間に、圧縮可能な方向に摺動自在に設けられ弁ゴム受15と弁ゴム16とを付勢する。変換手段14は、上回転抑制板12と下回転抑制板22が勘合し構成したものである。   The spring 17 is slidably provided in a compressible direction between the base 8 and the valve rubber receiver 15 and biases the valve rubber receiver 15 and the valve rubber 16. The conversion means 14 is configured by fitting the upper rotation suppression plate 12 and the lower rotation suppression plate 22 together.

流路4は、樹脂製で、形状はL型の中空円筒で、入口26、弁座27、出口28、アクチュエータ挿入口29を開口している。アクチュエータ挿入口29には、アクチュエータ2が配置されている。   The flow path 4 is made of resin and has an L-shaped hollow cylinder, and has an inlet 26, a valve seat 27, an outlet 28, and an actuator insertion port 29. The actuator 2 is disposed in the actuator insertion port 29.

弁開用MRセンサ31と弁閉用MRセンサ32は、感磁部を磁石23の軸方向磁束密度を印加するように、かつ磁石23の周方向に対して傾斜するように配置しており、具体的な配置構成を次に説明する。   The MR sensor 31 for opening the valve and the MR sensor 32 for closing the valve are arranged so that the magnetically sensitive portion is inclined with respect to the circumferential direction of the magnet 23 so as to apply the magnetic flux density in the axial direction of the magnet 23. A specific arrangement configuration will be described next.

弁開用MRセンサ31と弁閉用MRセンサ32は、基板33に実装され、この基板33がMRセンサ取付部30に固定されることで、磁石23の磁界との位置関係が所定の状態となるようにしている。   The valve opening MR sensor 31 and the valve closing MR sensor 32 are mounted on a substrate 33, and the substrate 33 is fixed to the MR sensor mounting portion 30, so that the positional relationship with the magnetic field of the magnet 23 is in a predetermined state. It is trying to become.

MRセンサ取付部30は、図3に示すように、磁石23近傍の流路4の外面4aから外面4aの接線(本実施の形態では、磁石23の周方向と同じ)に対して45°傾斜させ突出して形成している。   As shown in FIG. 3, the MR sensor mounting portion 30 is inclined by 45 ° from the outer surface 4a of the flow path 4 near the magnet 23 to the tangent line of the outer surface 4a (same as the circumferential direction of the magnet 23 in this embodiment). And projecting.

また、基板33は、図4に示すように、四隅に開口した4つの位置決め穴34を有し、弁開用MRセンサ31と弁閉用MRセンサ32は、磁石23に最も近接できるように基板33の外縁33a近傍(例えば0.5mm前後)で、弁開時と弁閉時の弁体の移動距離(後述する6mm)に相当する間隔をおいてに配置されている。   As shown in FIG. 4, the substrate 33 has four positioning holes 34 opened at the four corners, and the valve opening MR sensor 31 and the valve closing MR sensor 32 are arranged so as to be closest to the magnet 23. In the vicinity of the outer edge 33a of 33 (for example, around 0.5 mm), the valve body is disposed at an interval corresponding to the moving distance (6 mm, which will be described later) when the valve is opened and closed.

そして、基板33は、弁開用MRセンサ31が、弁開時に位置する磁石23に近接し、同様に弁閉用MRセンサ32が、弁閉時に位置する磁石23に近接するように、位置決め穴34をMRセンサ取付部30から突出した4つの位置決めピン35で位置決めして取り付ける。その際、基板33の外縁33aを流路4の外面4aに押し当て、かつ流路4、弁開用MRセンサ31と弁閉用MRセンサ32、基板33の順になるように位置決めピン35に位置決め穴34を挿入する。   The substrate 33 has a positioning hole so that the MR sensor 31 for opening the valve is close to the magnet 23 positioned when the valve is open, and the MR sensor 32 for closing the valve is close to the magnet 23 positioned when the valve is closed. 34 is positioned and attached by four positioning pins 35 protruding from the MR sensor attachment portion 30. At that time, the outer edge 33 a of the substrate 33 is pressed against the outer surface 4 a of the flow path 4, and the positioning pins 35 are positioned so that the flow path 4, the valve opening MR sensor 31, the valve closing MR sensor 32, and the substrate 33 are in this order. The hole 34 is inserted.

なお、弁開用MRセンサ31と弁閉用MRセンサ32の印加磁界方向の中心は回転軸10と磁石23の中心を通る直線(A)上に位置しており、取付け傾斜方向の直線(B)は磁石23の中心からオフセットした位置関係にある。   The center of the applied magnetic field direction of the valve opening MR sensor 31 and the valve closing MR sensor 32 is located on a straight line (A) passing through the center of the rotating shaft 10 and the magnet 23, and a straight line (B ) Is in a positional relationship offset from the center of the magnet 23.

この構成により、弁開用MRセンサ31と弁閉用MRセンサ32を流路4に近接させ、かつ基板33の厚さ分だけ弁開用MRセンサ31と弁閉用MRセンサ32と磁石23との距離が短くなるので、弁開用MRセンサ31と弁閉用MRセンサ32の感磁部には強い軸方向磁束密度が印加され、感度が向上する。   With this configuration, the MR sensor 31 for valve opening and the MR sensor 32 for valve closing are brought close to the flow path 4, and the MR sensor 31 for valve opening, the MR sensor 32 for valve closing, and the magnet 23 are equal to the thickness of the substrate 33. Therefore, a strong axial magnetic flux density is applied to the magnetic sensing portions of the valve opening MR sensor 31 and the valve closing MR sensor 32, and the sensitivity is improved.

次に、MRセンサについて詳しく説明する。MRセンサは、磁石のS極またはN極の磁界の強弱に対してON/OFFの動作をする。具体例としては、MRセンサは株式会社村田製作所製 MRMS501A−001A(W1.45×D1.45×H0.55):動作磁界方向は感磁部(電磁抵抗素子)を横切る方向。動作磁束密度ON(絶対値)2.5mT、動作磁束密度OFF0.5mT(絶対値)、設計磁束密度5mT前後(メーカ推奨)である。   Next, the MR sensor will be described in detail. The MR sensor performs ON / OFF operation with respect to the strength of the magnetic field of the S or N pole of the magnet. As a specific example, the MR sensor is manufactured by Murata Manufacturing Co., Ltd. MRMS501A-001A (W1.45 × D1.45 × H0.55): the direction of the operating magnetic field is the direction across the magnetic sensing part (electromagnetic resistance element). The operating magnetic flux density is ON (absolute value) 2.5 mT, the operating magnetic flux density is OFF 0.5 mT (absolute value), and the designed magnetic flux density is around 5 mT (manufacturer recommended).

動作磁束密度ONはMRセンサがONする閾値であり、動作磁束密度OFFはMRセンサがOFFする閾値である。なお、0.5mT〜2.5mTの範囲はON/OFFのいずれも出力する。その他、MRセンサはパナソニック株式会社製 MR EZMPなどがある。他方、磁気センサの1つであるホールIC(ホール効果)では、動作磁界方向は感磁部を貫通する方向であり、MRセンサとは異なる。   The operating magnetic flux density ON is a threshold value for turning on the MR sensor, and the operating magnetic flux density OFF is a threshold value for turning off the MR sensor. Note that the range of 0.5 mT to 2.5 mT outputs both ON and OFF. In addition, MR sensors include MR EZMP manufactured by Panasonic Corporation. On the other hand, in the Hall IC (Hall effect) which is one of the magnetic sensors, the direction of the operating magnetic field is a direction penetrating the magnetic sensitive part and is different from that of the MR sensor.

図7には、MRセンサ(株式会社村田製作所製 MRMS501A−001A)の感磁部の構成と原理を示している。MRセンサの感磁部は4つの磁気抵抗素子R1、R2、R3、R4をホイートストン・ブリッジに構成し、電力Vccが供給される。磁気抵抗素子R1、R2は垂角に磁界が印加されると、抵抗値が減少する。同時に、磁気抵抗素子R3、R4は平行に磁界が印加されるので、抵抗値が変化しない。   FIG. 7 shows the configuration and principle of the magnetosensitive part of the MR sensor (Murata Manufacturing Co., Ltd. MRMS501A-001A). The magnetosensitive part of the MR sensor comprises four magnetoresistive elements R1, R2, R3, R4 in a Wheatstone bridge, and is supplied with electric power Vcc. When a magnetic field is applied to the magnetoresistive elements R1 and R2 at a perpendicular angle, the resistance value decreases. At the same time, since the magnetic field is applied in parallel to the magnetoresistive elements R3 and R4, the resistance value does not change.

MRセンサの感磁部は指定された動作磁界方向に外部から磁界を印加されると、抵抗値が低下する磁気抵抗素子R1、R2と抵抗値が変わらない磁気抵抗素子R3、R4に分かれるので、a点とb点の電位差が発生する。この電位差を利用してMRセンサはコンパレータによりON/OFFを出力する。また、動作磁界方向に対して斜めに磁界を印加されると、4つの磁気抵抗素子R1、R2、R3、R4の抵抗値は差が少なくなり、a点とb点の電位差も小さくなる。すなわち、強い磁界を動作磁界方向に対して斜めに印加しても、MRセンサはOFFを出力する。   The magnetosensitive part of the MR sensor is divided into magnetoresistive elements R1 and R2 whose resistance value decreases and magnetoresistive elements R3 and R4 whose resistance value does not change when a magnetic field is applied from the outside in the designated operating magnetic field direction. A potential difference between points a and b occurs. Using this potential difference, the MR sensor outputs ON / OFF by a comparator. When a magnetic field is applied obliquely with respect to the direction of the operating magnetic field, the resistance values of the four magnetoresistive elements R1, R2, R3, and R4 are reduced, and the potential difference between the points a and b is also reduced. That is, even if a strong magnetic field is applied obliquely with respect to the direction of the operating magnetic field, the MR sensor outputs OFF.

具体的には、MRセンサは動作磁界方向に対して−15°〜15°程度に傾斜して印加される磁界は検知できる。なお、動作磁界方向は正負どちらでも磁気抵抗素子R1、R2の抵抗が変化するので、磁石23のS極またはN極を移動方向のどちらに配置してもよい。すなわち、MRセンサは動作磁界方向に対して165°〜195°(−165°〜−195°)程度まで反転し印加される磁界も検知できる。   Specifically, the MR sensor can detect a magnetic field applied with an inclination of about −15 ° to 15 ° with respect to the direction of the operating magnetic field. Since the resistance of the magnetoresistive elements R1 and R2 changes regardless of whether the operating magnetic field direction is positive or negative, the S pole or N pole of the magnet 23 may be arranged in either direction of movement. That is, the MR sensor can detect a magnetic field that is reversed and applied to about 165 ° to 195 ° (−165 ° to −195 °) with respect to the direction of the operating magnetic field.

以上のように構成された流体制御弁1について、以下その動作、作用を説明する。   About the fluid control valve 1 comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、気体(白抜き矢印)が入口26から流路4に入り、弁体13の側から弁座27を通り、出口28から流出している、図1の弁体13の弁開状態について、図8を用いて説明する。なお、図8の矢印はN極25からS極24へ向かう磁力線を示している。   First, the gas (open arrow) enters the flow path 4 from the inlet 26, passes through the valve seat 27 from the valve body 13 side, and flows out from the outlet 28. This will be described with reference to FIG. Note that the arrows in FIG. 8 indicate lines of magnetic force from the N pole 25 to the S pole 24.

図8(a)に示すように、磁石23が弁開用MRセンサ31の真横に位置しているので、磁力線が弁開用MRセンサ31の感磁部を動作磁界方向に横切っている。他方、磁石23が弁閉用MRセンサ32の上方6mmに位置しているので、流路4内から外へ向かい曲がる磁力線が弁閉用MRセンサ32の感磁部を動作磁界方向に対して斜めに横切っている。   As shown in FIG. 8 (a), since the magnet 23 is positioned directly beside the valve opening MR sensor 31, the magnetic field lines cross the magnetic sensing part of the valve opening MR sensor 31 in the direction of the operating magnetic field. On the other hand, since the magnet 23 is located 6 mm above the valve closing MR sensor 32, the magnetic lines of force bending outward from the flow path 4 cause the magnetic sensing portion of the valve closing MR sensor 32 to be inclined with respect to the operating magnetic field direction. Crossing.

図9は、MRセンサの取付角度が45°(磁石23の周方向に対して)においてガウスメーターにより磁束密度を測定した結果を示す。   FIG. 9 shows the result of measuring the magnetic flux density with a gauss meter when the mounting angle of the MR sensor is 45 ° (relative to the circumferential direction of the magnet 23).

図9に示すように、弁開状態においては、弁開用MRセンサ31の感磁部(磁石位置0mm)には、動作磁束密度ON以上の約10mTの磁束密度が印加されている。他方、弁閉用MRセンサ32の感磁部(磁石位置−6mm)には、約−2mTの磁束密度が印加されているが、印加磁界方向が動作磁界方向に対して−150°程度なので、弁閉用MRセンサ32は印加された−2mTの磁束密度約を検知できない。なお、印加磁界方向は軸方向磁束密度と45°方向磁束密度(軸方向に対して90°でMRセンサの感磁部を横切る)とから算出している。   As shown in FIG. 9, in the valve open state, a magnetic flux density of about 10 mT, which is equal to or higher than the operating magnetic flux density ON, is applied to the magnetic sensing part (magnet position 0 mm) of the valve opening MR sensor 31. On the other hand, a magnetic flux density of about −2 mT is applied to the magnetic sensing part (magnet position −6 mm) of the valve closing MR sensor 32, but the applied magnetic field direction is about −150 ° with respect to the operating magnetic field direction. The MR sensor 32 for valve closing cannot detect the applied magnetic flux density of −2 mT. The applied magnetic field direction is calculated from the axial direction magnetic flux density and the 45 ° direction magnetic flux density (90 ° with respect to the axial direction and crossing the magnetosensitive portion of the MR sensor).

図13は、流体制御弁1を用いた遮断装置の一例を示すブロック図で、流体制御弁1と、アクチュエータ2を駆動する為の駆動回路41と弁開用MRセンサ31と弁閉用MRセンサ32の信号から弁体13の位置を検知する弁体位置検知回路42とを備えた制御部40とから成る。   FIG. 13 is a block diagram showing an example of a shut-off device using the fluid control valve 1. The fluid control valve 1, the drive circuit 41 for driving the actuator 2, the valve opening MR sensor 31, and the valve closing MR sensor The control part 40 provided with the valve body position detection circuit 42 which detects the position of the valve body 13 from 32 signals.

そこで、弁体13の位置を確認するために、制御部40が指示を出し、弁開用MRセンサ31と弁閉用MRセンサ32とに給電されると、コンパレータにより弁開用MRセンサ31の出力がON、弁閉用MRセンサ32の出力がOFFを出力する。このことから、弁体13が弁開状態であることが判断できる。   Therefore, in order to confirm the position of the valve body 13, when the control unit 40 issues an instruction and power is supplied to the valve opening MR sensor 31 and the valve closing MR sensor 32, the comparator opens the MR sensor 31 for valve opening. The output is ON, and the output of the valve closing MR sensor 32 is OFF. From this, it can be determined that the valve body 13 is in the valve open state.

他方、気体が、弁ゴム16に遮断されている、図2の弁体13の弁閉状態について、図8を用いて説明する。   On the other hand, the valve closed state of the valve body 13 of FIG. 2 in which gas is blocked by the valve rubber 16 will be described with reference to FIG.

図8(b)に示すように、磁石23が弁閉用MRセンサ32の真横に位置しているので、磁力線が弁閉用MRセンサ32の感磁部を動作磁界方向に横切っている。他方、磁石23が弁開用MRセンサ31の下方6mmに位置しているので、流路4外から内へ向かい曲がる磁力線が弁開用MRセンサ31の感磁部を動作磁界方向に対して斜めに横切っている。   As shown in FIG. 8B, since the magnet 23 is positioned directly beside the valve closing MR sensor 32, the magnetic lines of force cross the magnetic sensing part of the valve closing MR sensor 32 in the operating magnetic field direction. On the other hand, since the magnet 23 is positioned 6 mm below the MR sensor 31 for opening the valve, the magnetic lines of force bending from the outside of the flow path 4 to the inside of the MR sensor 31 for opening the valve are inclined with respect to the direction of the operating magnetic field. Crossing.

図9に示すように、弁閉状態においては、弁閉用MRセンサ32の感磁部には、動作磁束密度ON以上の約10mTの磁束密度が印加されている。他方、弁開用MRセンサ31の感磁部には、約−2mTの磁束密度が印加されているが、印加磁界方向が動作磁界方向に対して150°程度なので、弁開用MRセンサ31は印加された磁束密度を検知できない。   As shown in FIG. 9, in the valve closed state, a magnetic flux density of about 10 mT, which is equal to or higher than the operating magnetic flux density ON, is applied to the magnetic sensing part of the valve closing MR sensor 32. On the other hand, a magnetic flux density of about −2 mT is applied to the magnetic sensing part of the valve opening MR sensor 31, but the applied magnetic field direction is about 150 ° with respect to the operating magnetic field direction. The applied magnetic flux density cannot be detected.

そこで、弁体13の位置を確認するために、制御部40が指示を出し、弁開用MRセンサ31と弁閉用MRセンサ32とに給電されると、コンパレータにより弁開用MRセンサ
31の出力がOFF、弁閉用MRセンサ32の出力がONを出力する。このことから、弁体13が弁閉状態であることが判断できる。流体制御弁1は、かかる態様により弁開用MRセンサ31と弁閉用MRセンサ32が弁体13の位置を検出し、確認できる。
Therefore, in order to confirm the position of the valve body 13, when the control unit 40 issues an instruction and power is supplied to the valve opening MR sensor 31 and the valve closing MR sensor 32, the comparator opens the MR sensor 31 for valve opening. The output is OFF, and the output of the valve closing MR sensor 32 is ON. From this, it can be determined that the valve body 13 is in the valve closed state. In the fluid control valve 1, the valve opening MR sensor 31 and the valve closing MR sensor 32 can detect and confirm the position of the valve body 13 in this manner.

その後、アクチュエータ2が駆動あるいは弁開用MRセンサ31が弁体13を弁開状態と判断するまで、流速測定などの機器(図示せず)への電源供給を停止する。すなわち、気体が流れていないので、流速測定などの他の機器への電源供給は不要であり省エネが図れる。   Thereafter, until the actuator 2 is driven or the valve opening MR sensor 31 determines that the valve element 13 is in the valve open state, power supply to a device (not shown) such as a flow velocity measurement is stopped. That is, since no gas is flowing, it is not necessary to supply power to other devices such as flow velocity measurement, and energy saving can be achieved.

ところで、弁体13の位置を確認するために、制御部40が指示を出し、弁開用MRセンサ31と弁閉用MRセンサ32に給電された時、コンパレータにより弁開用MRセンサ31と弁閉用MRセンサ32の出力が共にONまたは共にOFFを出力した場合、流体制御弁1が故障と判断でき、続いて、表示、音などの警報ができる。   By the way, in order to confirm the position of the valve body 13, when the control unit 40 gives an instruction and power is supplied to the valve opening MR sensor 31 and the valve closing MR sensor 32, the comparator opens the valve opening MR sensor 31 and the valve. When both the outputs of the closing MR sensor 32 are ON or OFF, it can be determined that the fluid control valve 1 is out of order, and subsequently an alarm such as display or sound can be given.

図10はMRセンサの取付角度と磁石移動とによる許容動作磁界方向範囲(−15°〜15°)を示す。許容動作磁界方向は、MRセンサが印加された磁界を検知できる方向である。具体的には、MRセンサの各取付角度で磁石を移動させ、軸方向と取付角度方向(軸方向に対して90°でMRセンサの感磁部を横切る)の両磁束密度から印加磁界方向を算出し、印加磁界方向が−15°〜15°になる範囲を許容動作磁界方向範囲とし求めた。MRセンサの取付角度が30°〜60°の範囲では、許容動作磁界方向範囲は±2mm以上確保できる。   FIG. 10 shows the allowable operating magnetic field direction range (−15 ° to 15 °) depending on the MR sensor mounting angle and magnet movement. The allowable operating magnetic field direction is a direction in which the magnetic field applied by the MR sensor can be detected. Specifically, the magnet is moved at each mounting angle of the MR sensor, and the applied magnetic field direction is determined from the magnetic flux density in both the axial direction and the mounting angle direction (90 ° with respect to the axial direction and crossing the magnetosensitive part of the MR sensor). The range in which the applied magnetic field direction is −15 ° to 15 ° was determined as the allowable operating magnetic field direction range. When the mounting angle of the MR sensor is in the range of 30 ° to 60 °, the allowable operating magnetic field direction range can be secured ± 2 mm or more.

MRセンサの取付角度(MRセンサ取付部30)が60°を超えると、許容動作磁界方向範囲が狭くなり、MRセンサによる位置検知が難しくなる。例えば、図11は、MRセンサの取付角度が90°(流路4の外面に直角)においてガウスメーターにより磁束密度を測定した結果を示す。図11に示すように、軸方向と取付角度方向(この場合、半径方向になる)の両磁束密度とから算出した印加磁界方向は、磁石23を僅かに移動しても急激に変化する。それは、半径方向磁束密度が急激に変化することが原因である。その結果、許容動作磁界方向範囲が±0.5mmと非常に狭くなるという課題がある。また、流路4の寸法が同じでも、MRセンサの取付角度が大きくなると、弁開用MRセンサ31と弁閉用MRセンサ32と磁石23との距離が離れるので、軸方向磁束密度のピークが7mTと小さいという課題がある。   If the mounting angle of the MR sensor (MR sensor mounting portion 30) exceeds 60 °, the allowable operating magnetic field direction range becomes narrow and position detection by the MR sensor becomes difficult. For example, FIG. 11 shows the result of measuring the magnetic flux density with a gauss meter when the mounting angle of the MR sensor is 90 ° (perpendicular to the outer surface of the flow path 4). As shown in FIG. 11, the applied magnetic field direction calculated from both the magnetic flux density in the axial direction and the mounting angle direction (in this case, the radial direction) changes rapidly even if the magnet 23 is moved slightly. This is because the radial magnetic flux density changes abruptly. As a result, there is a problem that the allowable operating magnetic field direction range is as narrow as ± 0.5 mm. Even if the dimensions of the flow path 4 are the same, when the MR sensor mounting angle is increased, the distances between the valve opening MR sensor 31, the valve closing MR sensor 32, and the magnet 23 are increased. There is a problem of being as small as 7 mT.

逆にMRセンサの取付角度(MRセンサ取付部30)が30°を下回る場合、図10に示すように、容動作磁界方向範囲は±3mm以上確保できる。しかし、発明が解決しようとする課題で記述したように、図12によると磁石23が4mmを超えて移動すると、印加される磁界の方向が180°反転し、MRセンサは再び動作磁束密度ONを検知してしまう。この結果、MRセンサの取付角度は30°を下回ることができない。また、流路4の寸法が同じでも、MRセンサの取付角度が小さくなると、弁開用MRセンサ31と弁閉用MRセンサ32と磁石23との距離が短いので、軸方向磁束密度のピークが12mTと大きいという特長が使えない。   Conversely, when the mounting angle of the MR sensor (MR sensor mounting portion 30) is less than 30 °, as shown in FIG. 10, the operating magnetic field direction range can be secured ± 3 mm or more. However, as described in the problem to be solved by the invention, according to FIG. 12, when the magnet 23 moves beyond 4 mm, the direction of the applied magnetic field is reversed by 180 °, and the MR sensor again sets the operating magnetic flux density ON. It will be detected. As a result, the mounting angle of the MR sensor cannot be less than 30 °. Even if the dimensions of the flow path 4 are the same, when the MR sensor mounting angle is reduced, the distance between the valve opening MR sensor 31, the valve closing MR sensor 32, and the magnet 23 is short, so that the peak of the axial magnetic flux density is increased. The feature of being as large as 12mT cannot be used.

これらの結果、MRセンサの取付角度は、30°〜60°の範囲が最適である。言い方を換えると、MRセンサの取付角度が30°を下回れば、MRセンサの感磁部にはほぼ軸方向磁束密度が印加されるので、磁石23がMRセンサに近接する場合と離れると場合の二度、動作磁束密度ONを検知してしまうという課題を有する。また、MRセンサの取付角度を60°を超えれば、磁石23の少しの移動において半径方向磁束密度が急激に変化する影響により、印加磁界方向も著しく変化する。このために、MRセンサや磁石の位置のばらつきで、MRセンサが磁束密度を検知できなくなるという課題を有する。要は、MRセンサを取付角度30°〜60°の範囲で配置することが、磁石23が離れても、磁力
線がMRセンサの感磁部を動作磁界方向に対して最適な角度で斜めに横切ることになる。
As a result, the optimum mounting angle of the MR sensor is in the range of 30 ° to 60 °. In other words, if the mounting angle of the MR sensor is less than 30 °, almost the magnetic flux density is applied to the magnetic sensing portion of the MR sensor, so that the magnet 23 is close to the MR sensor and separated from the MR sensor. There is a problem that the operating magnetic flux density ON is detected twice. Further, if the mounting angle of the MR sensor exceeds 60 °, the applied magnetic field direction also changes significantly due to the effect of a sudden change in the radial magnetic flux density with a slight movement of the magnet 23. For this reason, there is a problem that the MR sensor cannot detect the magnetic flux density due to variations in the position of the MR sensor or the magnet. In short, it is possible to arrange the MR sensor in the range of the mounting angle of 30 ° to 60 °. Even if the magnet 23 is separated, the magnetic field lines obliquely cross the MR sensor's magnetic sensing portion at an optimum angle with respect to the operating magnetic field direction. It will be.

次に、制御部40がアクチュエータ2を駆動させると、回転軸10が回転してオネジ18とメネジ19とを介して、弁体13に回転力が伝わる。次に、上回転抑制板12と下回転抑制板22の接触により、弁体13は回転動作を抑制され、弁開状態または弁閉状態へ6mm直進移動する。弁開用MRセンサ31と弁閉用MRセンサ32の感磁部は、アクチュエータ2により発生する磁界、ノイズなどの影響を受ける。すなわち、アクチュエータ2が駆動中は、弁開用MRセンサ31と弁閉用MRセンサ32を使用すること自体意味がないので、弁体13の位置検知を停止する。要は、弁開用MRセンサ31と弁閉用MRセンサ32は弁開状態または弁閉状態を確認するものである。   Next, when the control unit 40 drives the actuator 2, the rotary shaft 10 rotates and the rotational force is transmitted to the valve body 13 through the male screw 18 and the female screw 19. Next, due to the contact between the upper rotation suppression plate 12 and the lower rotation suppression plate 22, the valve body 13 is restrained from rotating, and moves straight 6 mm to the valve open state or the valve closed state. The magnetic sensing portions of the valve opening MR sensor 31 and the valve closing MR sensor 32 are affected by the magnetic field generated by the actuator 2, noise, and the like. That is, while the actuator 2 is being driven, it is meaningless to use the valve opening MR sensor 31 and the valve closing MR sensor 32, and therefore the position detection of the valve body 13 is stopped. In short, the valve opening MR sensor 31 and the valve closing MR sensor 32 are for confirming a valve open state or a valve closed state.

他方、許容動作磁界方向範囲を拡大するためには、磁石23を厚くすれば効果があるが、磁石23は不必要に大きく、その分弁体13への固定が難しくなるという課題がある。   On the other hand, in order to expand the allowable operating magnetic field direction range, it is effective to increase the thickness of the magnet 23. However, the magnet 23 is unnecessarily large, and there is a problem that it is difficult to fix the magnet 23 to the valve body 13.

さらに、弁開状態では、弁体13はベース8により位置規制され、弁閉状態では、弁体13は弁座27により位置規制される。そこで、弁体13が位置規制される分、磁石23の位置ばらつきが抑制されるので、弁開状態で弁開用MRセンサ31は磁石23より上に配置(例えば、1mm)し、弁閉状態で弁閉用MRセンサ32は磁石23より下に配置(例えば、1mm)する。すなわち、磁石23が移動直後(例えば、1mm移動)に軸方向磁束密度のピークを検知できるようにMRセンサを予め磁石23からずらしておけば、許容動作磁界方向範囲を有効に利用できる。その分、磁石23は薄くできる。   Further, the position of the valve body 13 is regulated by the base 8 in the valve open state, and the position of the valve body 13 is regulated by the valve seat 27 in the valve closed state. Therefore, since the position variation of the valve body 13 is restricted, the position variation of the magnet 23 is suppressed. Therefore, the valve opening MR sensor 31 is disposed above the magnet 23 (for example, 1 mm) in the valve open state, and the valve closed state. The valve closing MR sensor 32 is disposed below the magnet 23 (for example, 1 mm). That is, if the MR sensor is shifted from the magnet 23 in advance so that the peak of the axial magnetic flux density can be detected immediately after the magnet 23 moves (for example, 1 mm movement), the allowable operating magnetic field direction range can be used effectively. Accordingly, the magnet 23 can be made thinner.

なお、本実施形態では、磁石23として円筒形状のネオジム磁石を使用したが、弁開用MRセンサ31と弁閉用MRセンサ32の感磁部と磁石との距離が近ければ、磁力の弱いサマコバ磁石やフェライト磁石でもよい。要は 弁開用MRセンサ31と弁閉用MRセンサ32の感磁部が動作磁束密度ONを超えていれば、磁石23の材質や形状は問わない。また、MRセンサ取付部30は、一枚板で構成しているが、弁開用MRセンサ31と弁閉用MRセンサ32が磁石23の周方向に対して任意の角度、例えば45°に傾斜配置すればよく、位置決めピン35の周囲2ケ所だけでも問題ない。   In the present embodiment, a cylindrical neodymium magnet is used as the magnet 23. However, if the distance between the magnetism sensing portion of the valve opening MR sensor 31 and the valve closing MR sensor 32 and the magnet is short, a summer coke having a low magnetic force is used. A magnet or a ferrite magnet may be used. In short, the material and shape of the magnet 23 are not limited as long as the magnetic sensing portions of the valve opening MR sensor 31 and the valve closing MR sensor 32 exceed the operating magnetic flux density ON. The MR sensor mounting portion 30 is formed of a single plate, but the valve opening MR sensor 31 and the valve closing MR sensor 32 are inclined at an arbitrary angle with respect to the circumferential direction of the magnet 23, for example, 45 °. There is no problem even if only two locations around the positioning pin 35 are provided.

また、弁開用MRセンサ31と弁閉用MRセンサ32が検知した磁束密度に関する情報は、何らかの制御部に送られて処理されるが、該処理を行う主体は特に限定されない。例えば、アクチュエータ2を制御する制御部が設けられる場合には、制御部がかかる情報の処理を行う機能を兼ね備えていてもよい。あるいは、制御部とは別個に、弁体13の位置を検出するための制御部が設けられていてもよい。また、実施の形態1の流体制御弁1は、必ずしも制御部を備えていなくてもよい。   In addition, information on the magnetic flux density detected by the valve opening MR sensor 31 and the valve closing MR sensor 32 is sent to and processed by some control unit, but the subject that performs the processing is not particularly limited. For example, when a control unit that controls the actuator 2 is provided, the control unit may have a function of processing such information. Or the control part for detecting the position of the valve body 13 may be provided separately from the control part. Moreover, the fluid control valve 1 of Embodiment 1 does not necessarily need to be provided with the control part.

上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。特に、流体制御弁は垂直以外に、水平、斜めと取付方向は自在である。   The above description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details of the structure and / or function may be substantially changed without departing from the spirit of the invention. In particular, the fluid control valve can be mounted in any direction other than vertical, such as horizontal, diagonal, and mounting directions.

本発明の流体制御弁は、磁石の周方向に対して傾斜させてMRセンサを取付けることで、弁体の位置検知として有用である。   The fluid control valve of the present invention is useful for detecting the position of the valve body by attaching the MR sensor so as to be inclined with respect to the circumferential direction of the magnet.

1 流体制御弁
2 アクチュエータ
4 流路
13 弁体
23 磁石
24 S極
25 N極
31 弁開用MRセンサ
32 弁閉用MRセンサ
33 基板
41 駆動回路
42 弁体位置検知回路
DESCRIPTION OF SYMBOLS 1 Fluid control valve 2 Actuator 4 Flow path 13 Valve body 23 Magnet 24 S pole 25 N pole 31 MR sensor for valve opening 32 MR sensor for valve closing 33 Board | substrate 41 Drive circuit 42 Valve body position detection circuit

Claims (5)

流路を開閉する弁体と、
S極とN極とが前記弁体の移動方向となるように前記弁体に固定された磁石と、
前記弁体の移動後に前記磁石へ近接した磁気抵抗効果を利用したMRセンサと、
前記弁体を駆動するアクチュエータと、を備え、
前記MRセンサの感磁部を前記磁石の軸方向磁束密度を印加するように、かつ前記磁石の周方向に対して傾斜配置させることで、前記MRセンサが動作磁束密度以上を検知した場合、前記MRセンサと前記磁石とが近接しており、弁体の位置が判断できる流体制御弁。
A valve body for opening and closing the flow path;
A magnet fixed to the valve body such that the S pole and the N pole are in the moving direction of the valve body;
An MR sensor using a magnetoresistive effect close to the magnet after the valve body has moved,
An actuator for driving the valve body,
When the MR sensor detects an operating magnetic flux density or more by arranging the magnetic sensing part of the MR sensor so as to apply the magnetic flux density in the axial direction of the magnet and tilting with respect to the circumferential direction of the magnet, A fluid control valve in which the MR sensor and the magnet are close to each other and the position of the valve body can be determined.
前記MRセンサを搭載した基板を備え、前記MRセンサを前記基板の外縁近傍に配置し、前記基板の前記外縁を前記流路に近接させ、かつ前記流路、前記MRセンサ、基板の順に配置する、請求項1に記載の流体制御弁。 A substrate on which the MR sensor is mounted; the MR sensor is disposed in the vicinity of the outer edge of the substrate; the outer edge of the substrate is disposed close to the flow path; and the flow path, the MR sensor, and the substrate are disposed in this order. The fluid control valve according to claim 1. 前記MRセンサの感磁部は、前記磁石の周方向に対して30°〜60°傾斜させる、請求項1に記載の流体制御弁。 2. The fluid control valve according to claim 1, wherein the magnetosensitive part of the MR sensor is inclined by 30 ° to 60 ° with respect to a circumferential direction of the magnet. 請求項1〜3のいずれか1つに記載の前記流体制御弁と、前記流体制御弁の駆動回路と、前記MRセンサの信号により弁体の位置を検知する弁体位置検知回路を備え、前記弁体位置検知回路は、前記アクチュエータが駆動中は前記MRセンサによる前記弁体の位置検知を停止することを特徴とする遮断装置。 The fluid control valve according to any one of claims 1 to 3, a drive circuit for the fluid control valve, and a valve body position detection circuit that detects the position of the valve body by a signal from the MR sensor, The valve body position detection circuit stops the position detection of the valve body by the MR sensor while the actuator is driven. 前記流体制御弁は、前記弁体の弁閉位置の検知用と弁開位置の検知用の2つの前記MRセンサを備え、
前記弁体位置検知回路は、両MRセンサが共に動作磁束密度以上を検知できない場合、前記流体制御弁を故障と判断する、請求項4に記載の遮断装置。
The fluid control valve includes two MR sensors for detecting a valve closing position and a valve opening position of the valve body,
The shut-off device according to claim 4, wherein the valve body position detection circuit determines that the fluid control valve is in failure when both MR sensors cannot detect an operating magnetic flux density or more.
JP2018054015A 2018-03-22 2018-03-22 Fluid control valve and shutoff device using the same Pending JP2019167975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018054015A JP2019167975A (en) 2018-03-22 2018-03-22 Fluid control valve and shutoff device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018054015A JP2019167975A (en) 2018-03-22 2018-03-22 Fluid control valve and shutoff device using the same

Publications (1)

Publication Number Publication Date
JP2019167975A true JP2019167975A (en) 2019-10-03

Family

ID=68106440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018054015A Pending JP2019167975A (en) 2018-03-22 2018-03-22 Fluid control valve and shutoff device using the same

Country Status (1)

Country Link
JP (1) JP2019167975A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08135467A (en) * 1994-11-07 1996-05-28 Moriyama Kogyo Kk Mounting structure of position sensor
JP2001241909A (en) * 2000-02-10 2001-09-07 Mannesmann Vdo Ag Rectilinear position sensor and method for detecting position of object
JP2002374652A (en) * 2001-06-13 2002-12-26 Sankyo Seiki Mfg Co Ltd Linear driver

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08135467A (en) * 1994-11-07 1996-05-28 Moriyama Kogyo Kk Mounting structure of position sensor
JP2001241909A (en) * 2000-02-10 2001-09-07 Mannesmann Vdo Ag Rectilinear position sensor and method for detecting position of object
JP2002374652A (en) * 2001-06-13 2002-12-26 Sankyo Seiki Mfg Co Ltd Linear driver

Similar Documents

Publication Publication Date Title
JP4470577B2 (en) Rotation angle detector
JP4900835B2 (en) Angle detection device, valve device and non-contact volume
JP4169536B2 (en) Actuator
JP4204294B2 (en) Rotation angle detector
JP2007285741A (en) Rotation detection device
JPH07264833A (en) Motor
US6867584B1 (en) Non-contact type rotation-angle sensing device
WO2021044758A1 (en) Rotation detector and motor equipped with same
JP4706407B2 (en) Magnetic encoder device
JP4973869B2 (en) Moving body detection device
JP2006317203A (en) Sensor module, and angle detector using the same
WO2015029105A1 (en) Electric motor
JP2019167975A (en) Fluid control valve and shutoff device using the same
WO2019159698A1 (en) Fluid control valve
JP6387788B2 (en) Magnetic medium for magnetic encoder, magnetic encoder, and method for manufacturing magnetic medium
JP4484033B2 (en) Moving body detection device
JPH09236644A (en) Magnetic potentiometer
WO2021020541A1 (en) Rotation angle detection sensor
JP4577263B2 (en) Magnetic sensor
JP2003139560A (en) Rotational position detector
JP2007263190A (en) Bearing with rotation detecting device
JP2005043209A (en) Magnetic detection device
TW202035943A (en) Rotary angle detecting device
JP2003004479A (en) Noncontact location sensor
JP2005195471A (en) Rotation angle detecting device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220426