WO2019159698A1 - Fluid control valve - Google Patents
Fluid control valve Download PDFInfo
- Publication number
- WO2019159698A1 WO2019159698A1 PCT/JP2019/003294 JP2019003294W WO2019159698A1 WO 2019159698 A1 WO2019159698 A1 WO 2019159698A1 JP 2019003294 W JP2019003294 W JP 2019003294W WO 2019159698 A1 WO2019159698 A1 WO 2019159698A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pole
- valve body
- flux density
- magnet
- magnetic flux
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K37/00—Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/02—Actuating devices; Operating means; Releasing devices electric; magnetic
- F16K31/04—Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
Definitions
- the present invention relates to a fluid control valve. More specifically, the present invention relates to a fluid control valve capable of detecting the position of a valve body.
- a conventional fluid control valve includes a stepping motor that is an electric motor, a conversion unit that is locked to a rotation shaft of the stepping motor and converts rotation of the rotation shaft to linear motion, and a valve body that is locked to the conversion unit and opens and closes a flow path And a valve body position detector.
- a position detection unit of a valve body used in a conventional fluid control valve a magnet provided at one end of the valve body and an open magnetic detection element for detecting the open state of the valve body arranged on the outer surface of the flow path And the structure which provides the magnetic detection element for closing which detects the closed state of a valve body is disclosed (for example, refer patent document 1).
- the valve body moves and opens and closes the flow path by the conversion unit that converts the rotation of the rotation shaft of the stepping motor into a linear motion.
- the conversion unit that converts the rotation of the rotation shaft of the stepping motor into a linear motion.
- a dedicated opening magnetic detecting element and a closing magnetic detecting element are required.
- the orientations of the N and S poles of the magnet, their arrangement, the characteristics of the opening magnetic detection element and the closing magnetic detection element, and specific examples thereof are not disclosed.
- the present invention provides a fluid control valve that provides one S pole and N pole detection type Hall IC on the side of the moving direction of the magnet to detect the open state and the closed state of the valve element.
- the fluid control valve includes a valve body that opens and closes a flow path, a magnet that is fixed to the valve body so that the S pole and the N pole are positioned forward and backward with respect to the moving direction of the valve body, and the movement of the magnet S pole and N pole detection type Hall IC located on the side of the direction, and an actuator for driving the valve body.
- the magnetic sensing portion is arranged in the direction of applying the magnetic flux density toward the central axis of the magnet
- the magnetic flux density of one of the S pole and the N pole is the operating magnetic flux density when the valve body is closed.
- the position of the valve body is determined by detecting that the magnetic flux density of the other second pole of the S pole and the N pole is equal to or higher than the operating magnetic flux density.
- the bipolar detection type Hall IC detects that the magnetic flux density toward the central axis of the first pole is greater than or equal to the operating magnetic flux density It can be determined that the valve body is closed.
- the bipolar detection type Hall IC detects that the magnetic flux density toward the central axis of the second pole is equal to or higher than the operating magnetic flux density, It can be determined that the valve body is open.
- the fluid control valve of the present invention it is possible to detect the open state and the closed state of the valve by providing one bipolar detection type Hall IC on the side of the moving direction of the magnet.
- FIG. 1 is a cross-sectional view showing an open state of the schematic configuration of the fluid control valve in the first embodiment.
- FIG. 2 is a cross-sectional view showing a closed state of the fluid control valve in the first embodiment.
- FIG. 3 is a perspective view of the fluid control valve according to the first embodiment.
- FIG. 4A is a perspective view of an actuator and a fluid control unit of the fluid control valve in the first embodiment.
- FIG. 4B is a perspective view of the valve body excluding the valve rubber of the fluid control valve in the first embodiment.
- FIG. 5 is a diagram illustrating a measurement result of magnetic flux density due to magnet movement of the fluid control valve in the first embodiment.
- FIG. 6 is a perspective view of the substrate on which the bipolar detection type Hall IC of the fluid control valve according to the first embodiment is attached.
- FIG. 7 is an enlarged cross-sectional view of a main part of the fluid control valve in the first embodiment.
- FIG. 1 is a cross-sectional view showing an open state of a fluid control valve in the present embodiment.
- FIG. 2 is a cross-sectional view showing a closed state of the fluid control valve in the present embodiment.
- FIG. 3 is a perspective view of the fluid control valve in the present embodiment.
- FIG. 4A is a perspective view of the actuator and fluid control unit of the fluid control valve in the present embodiment.
- FIG. 4B is a perspective view of the valve body excluding the valve rubber of the fluid control valve in the present embodiment.
- the fluid control valve 1 includes an actuator 2, a fluid control unit 3, and a flow path 4.
- the actuator 2 is a stepping motor that is an electric motor, and includes a stator 6 having a coil 5, a rotor 7 that rotates by excitation by energization of the coil 5, and a base 8 that supports the stator 6 and the rotor 7.
- the rotor 7 has a cylindrical shape, and includes an outer magnet 9, an inner rotary shaft 10, and a resin bush 11 that integrally molds the magnet 9 and the rotary shaft 10.
- the base 8 forms four comb-like upper rotation suppression plates 12 protruding downward.
- the fluid control unit 3 includes a valve body 13 made of polyacetal resin (POM) and a conversion unit 14 that converts the rotation of the rotary shaft 10 of the actuator 2 into a linear motion.
- the valve body 13 includes a valve rubber receiver 15, a valve rubber 16, and a spring 17. Further, the valve body 13 is moved between an open state of the valve and a closed state of the valve by the actuator 2. In this embodiment, the moving path is set to 6 mm.
- the valve rubber receiver 15 forms a cylindrical portion 20 in which a short female screw 19 having a screw pitch of 1 to 2 locked to a male screw 18 formed at the tip of the rotary shaft 10 is formed.
- a cylindrical aperture may be used instead of the female screw 19.
- the valve rubber receiver 15 has a disk 21 for attaching the valve rubber 16 on the lower surface, and four comb-like lower rotation suppression plates 22 protruding from the disk 21 toward the base 8 (upward).
- a magnet 23 serving as a marker is fixed to the upper surface of the disk 21 by a resin spring (adhesion, press-fitting, etc.) so as to contact the outer peripheral edge of the disk 21 (see FIG. 4B).
- the magnet 23 is a cylinder ⁇ 4.0 ⁇ t1.5, and the material is neodymium. Magnetization of the magnet 23 is in the thickness direction.
- the S pole 24 is positioned on the upper side, which is the side away from the disk 21, and the N pole 25 is positioned on the lower side, which is on the disk 21 side.
- the spring 17 is slidably provided in a compressible direction between the base 8 and the valve rubber receiver 15 and biases the valve rubber receiver 15 and the valve rubber 16 toward the valve seat 27.
- the conversion unit 14 is configured by fitting the upper rotation suppression plate 12 and the lower rotation suppression plate 22.
- the flow path 4 is made of resin and has an L-shaped cylinder as shown in FIG. 3 and has an inlet 26, a valve seat 27, an outlet 28, and an actuator insertion port 29 opened.
- the actuator 2 is disposed in the actuator insertion port 29.
- the S-pole and N-pole bipolar detection type Hall IC 30 is arranged on the side of the 6 mm moving path of the magnet 23 so as to be in direct contact with the outer surface of the flow path 4.
- the bipolar detection type Hall IC 30 performs ON / OFF operation with respect to the strength of the magnetic field of the S or N pole of the magnet.
- the bipolar detection type Hall IC 30 for example, EM-1791 (W2.1 ⁇ D2.1 ⁇ H0.55) manufactured by Asahi Kasei Electronics Co., Ltd. is used.
- the applied magnetic flux density of the EM-1791 is a direction penetrating the magnetic sensing part (Hall element), and two S poles or N poles are output depending on this direction.
- the operating magnetic flux density (absolute value) is 3.2 mT
- the return magnetic flux density is 1.4 mT (absolute value)
- the design (manufacturer recommended) operating magnetic flux density is around 6 mT.
- the bipolar detection type Hall IC 30 includes AN48836B manufactured by Panasonic Corporation.
- the operating magnetic flux density is a threshold at which the bipolar detection type Hall IC 30 is turned on, and the return magnetic flux density is a threshold at which the bipolar detection type Hall IC 30 is turned off.
- the applied magnetic flux density is in a direction across the surface of the magnetic sensitive part and is different from the Hall IC.
- FIG. 5 shows a radius direction (toward the central axis of the magnet 23) when the magnet 23 is moved up and down about 10 mm with reference to a magnetic sensing portion (not shown) arranged parallel to the upper surface inside the bipolar detection type Hall IC 30.
- the result of having measured the magnetic flux density of this, the magnetic flux density of the axial (thickness) direction, and the magnetic flux density of the circumferential direction with the gauss meter is shown.
- the gauss meter is at the same position as the magnetic sensing part of the bipolar detection type Hall IC 30 and at a position 6 mm away from the cylindrical central axis of the magnet 23.
- the bipolar detection type Hall IC 30 when the magnet 23 moves along the central axis of the magnet 23 itself, the direction is opposite, but a radial magnetic flux density showing two large peaks is applied. More specifically, a position where the magnet 23 has moved about 3 mm upward and about 3 mm downward along the central axis of the magnet 23 from the magnetic sensing part of the bipolar detection type Hall IC 30 becomes a peak of the magnetic flux density in the radial direction. . Note that the magnetic flux density in the circumferential direction cannot be used because there is little change.
- the magnetic flux density in the axial (thickness) direction shows one large peak, but two Hall ICs are required for opening and closing, and cannot be used for the applied magnetic flux density.
- the peak magnetic flux density position in the radial direction tends to be slightly separated.
- the bipolar detection type Hall IC 30 since the bipolar detection type Hall IC 30 is small, it is wired to the substrate 31.
- Four positioning holes 32 opened at the four corners of the substrate 31 and four positioning pins protruding from the outer surface of the flow path 4 so that the magnetic sensing part of the bipolar detection type Hall IC 30 is located in the middle of the 6 mm moving path of the magnet 23.
- Position at 33 (see FIG. 3).
- the positioning pin 33 has a positioning hole 32 so that the upper surface 30a of the bipolar detection type Hall IC 30 is in contact with the outer surface of the flow path 4 so that the magnetic sensing part of the bipolar detection type Hall IC 30 can apply a magnetic flux density in the radial direction. Insert.
- the magnetic flux density in the axial (thickness) direction is applied to the magnetic sensitive part of the AMR sensor.
- FIG. 1 when the valve body 13 is in an open state, gas (white arrow) enters the flow path 4 from the inlet 26 (see FIG. 3) and passes through the valve seat 27 from the valve body 13 side. , Has flowed out of the outlet 28.
- the open state of the valve body 13 will be described with reference to FIG. Note that an elliptical arrow A shown in FIGS. 7A and 7B indicates lines of magnetic force directed from the N pole 25 to the S pole 24.
- FIG. 7A since the magnet 23 is located 3 mm above the bipolar detection type Hall IC 30, the magnetic lines of force going out from the inside of the flow path 4 penetrate the magnetic sensing part of the bipolar detection type Hall IC 30. To do. That is, the magnetic flux density in the radial direction of the N pole 25 magnetic field is applied to the magnetic sensing part of the bipolar detection type Hall IC 30.
- a magnetic flux density of about 7 mT which is equal to or higher than the operating magnetic flux density, is applied to the magnetic sensing part (N pole) of the bipolar detection type Hall IC 30.
- the magnetic flux density in the radial direction of the magnetic field of the S pole 24 is not applied to the magnetic sensing part (S pole) of the bipolar detection type Hall IC 30. Therefore, in order to confirm the position of the valve body 13, when a control unit (not shown) issues an instruction and power is supplied to the bipolar detection type Hall IC 30, the output for the N pole of the bipolar detection type Hall IC 30 is turned ON, S The pole output is OFF. From this, it can be determined that the valve body 13 is in the open state.
- a magnetic flux density of about ⁇ 7 mT which is equal to or higher than the operating magnetic flux density, is applied to the magnetic sensing part (S pole) of the bipolar detection type Hall IC 30.
- the magnetic flux density in the radial direction of the N pole 25 magnetic field is not applied to the magnetic sensing part (N pole) of the bipolar detection type Hall IC 30. Therefore, in order to confirm the position of the valve body 13, when the control unit gives an instruction and power is supplied to the bipolar detection type Hall IC 30, the output for the N pole of the bipolar detection type Hall IC 30 is OFF and the output for the S pole is ON. Is output. From this, it can be determined that the valve body 13 is closed. In the fluid control valve 1, the bipolar detection type Hall IC 30 can detect and confirm the position of the valve body 13 in this manner.
- valve rubber 16 is omitted, so that the valve rubber 16 appears open. However, when the valve rubber 16 is mounted on the disc 21 of the valve body 13, the valve rubber 16 is attached to the valve seat 27. Closed contact.
- the lines of magnetic force penetrating the magnetic sensing part of the bipolar detection type Hall IC 30 are in opposite directions, but the magnetic flux density in the radial direction is The absolute value is almost the same. Therefore, the magnet 23 is required to hold at least a magnetic force that provides an operating magnetic flux density that can be detected by the bipolar detection type Hall IC 30. In other words, it is not necessary to select a strong magnet 23 having an extra magnetic force (surface magnetic flux density) in consideration of the radial magnetic flux density difference between the opened state of the valve body 13 and the closed state of the valve body 13. That is, the large-sized and high-quality magnet 23 is not necessary.
- both the N pole output and the S pole output of the bipolar detection type Hall IC 30 are ON or both.
- OFF is output, it can be determined that the fluid control valve 1 is out of order, and then an alarm can be given to the effect that the fluid control valve 1 is out of order by display, sound, or the like.
- the peak magnetic flux density in the radial direction is located at a 3 mm position where the moving distance of the magnet 23 with reference to the magnetically sensitive portion of the bipolar detection type Hall IC 30 is about twice the thickness of the magnet 23 itself. There is. In other words, the thickness of the magnet 23 is optimally 20% to 30% of the 6 mm moving path of the magnet 23.
- the magnetic force of the magnet 23 naturally becomes weak and the position of the peak magnetic flux density in the radial direction approaches, so that the magnetic sensing part of the bipolar detection type Hall IC 30 A small magnetic flux density exceeding the peak magnetic flux density in the radial direction is applied to.
- the magnetic force surface magnetic flux density
- the bipolar detection type Hall IC 30 applies the magnetic flux density before the peak magnetic flux density in the radial direction. Is done.
- the magnet 23 is thicker, the magnetic force (surface magnetic flux density) is increased, so that an operating magnetic flux density or higher is applied to the bipolar detection type Hall IC 30, so that the position of the valve body 13 can be detected.
- the magnet 23 becomes unnecessarily large, and fixing to the valve body 13 becomes difficult.
- the control unit drives the actuator 2
- the rotating shaft 10 rotates and the rotational force is transmitted to the valve body 13 through the male screw 18 and the female screw 19.
- the valve body 13 is restrained from rotating, and moves straight 6 mm to the open state or the closed state.
- the applied magnetic flux density becomes less than the return magnetic flux density, and when the valve body 13 moves further 2 mm, the applied magnetic flux density exceeds the operating magnetic flux density of the opposite polarity. Become.
- the magnetic flux density applied to the magnetic sensing part of the bipolar detection type Hall IC 30 changes rapidly while the actuator 2 is driven, and is affected by the magnetic field, noise, and the like generated by the actuator 2. That is, while the actuator 2 is being driven, there is no point in using the bipolar detection type Hall IC 30 itself, so the position detection of the valve body 13 is stopped. That is, the bipolar detection type Hall IC 30 confirms whether the valve body 13 is in an open state or a closed state.
- a cylindrical neodymium magnet is used as the magnet 23.
- the distance between the magnetic sensing part of the bipolar detection type Hall IC 30 and the central axis of the magnet is short, even a Samacoba magnet or a ferrite magnet having a weak magnetic force may be used. Good. That is, the material and shape of the magnet 23 are not limited as long as the magnetic sensing part of the bipolar detection type Hall IC 30 exceeds the operating magnetic flux density (the thickness of the magnet 23 is 20 to 30% of the moving path length of the magnet 23). ).
- information regarding the magnetic flux density in the radial direction detected by the bipolar detection type Hall IC 30 is sent to and processed by some control unit, but the subject that performs this processing is not particularly limited.
- the control unit may have a function of processing such information.
- a controller for detecting the position of the valve body 13 may be provided separately from the controller.
- the fluid control valve 1 of the present embodiment does not necessarily include a control unit.
- the fluid control valve can be mounted in any direction other than vertical, such as horizontal, diagonal, and mounting directions.
- the first invention includes a valve body that opens and closes the flow path, and a magnet that is fixed to the valve body so that the S pole and the N pole are positioned forward and backward with respect to the moving direction of the valve body.
- an S pole and N pole detection type Hall IC located on the side of the moving direction of the magnet, and an actuator for driving the valve body.
- the bipolar detection type Hall IC in which the magnetic sensing portion is arranged in the direction of applying the magnetic flux density toward the central axis of the magnet uses the magnetic flux density of one of the S pole and the N pole as the operating magnetic flux density when the valve body is closed.
- the position of the valve body is determined by detecting that the magnetic flux density of the other second pole of the S pole and the N pole is equal to or higher than the operating magnetic flux density.
- the magnet when the actuator is driven to move the valve body to the closed state, the magnet also moves with the valve body.
- the magnetic sensing part of the pole detection type Hall IC detects that the magnetic flux density toward the central axis of the magnet of the first pole of one of the S pole and the N pole is equal to or higher than the operating magnetic flux density
- the valve body is closed. It can be judged and confirmed.
- the magnetic flux density toward the central axis of the first pole magnet is detected to be equal to or higher than the operating magnetic flux density, and at the same time, the magnetic flux density toward the central axis of the other second pole of the S pole and N pole is equal to or lower than the operating magnetic flux density. Can be determined and confirmed more reliably that the valve body is in the closed state.
- the magnetic sensing part of the bipolar detection type Hall IC detects that the magnetic flux density toward the central axis of the second pole is equal to or higher than the operating magnetic flux density
- the bipolar detection type Hall IC is located in the middle of the moving path of the magnet that moves between the position of the magnet when the valve body is closed and the position of the magnet when the valve body is opened. May be arranged.
- the magnet should keep at least the magnetic force (surface magnetic flux density) that can be detected by the magnetic sensing part of the bipolar detection type Hall IC in consideration of variations such as the distance between the magnet and the bipolar detection type Hall IC. That's fine. That is, it is not necessary to select a strong magnet that retains an extra magnetic force in consideration of the magnetic flux density difference between the open state of the valve body and the closed state of the valve body. Therefore, a large, high-quality magnet is not necessary.
- the thickness of the magnet may be 20% or more and 30% or less of the length of the path along which the magnet moves between when the valve body is closed and when the valve body is opened.
- the magnetic sensing part of the bipolar detection type Hall IC detects a substantially peak magnetic flux density. That is, since the magnetic flux density toward the central axis of the magnet peaks from the magnetic sensing part of the bipolar detection type Hall IC at a position about twice the thickness of the magnet, when the valve body is closed and when opened, If the length of the path along which the magnet moves is determined, the optimum magnet thickness is determined to be 20% to 30% of the length of the path.
- the position detection of the valve body by the bipolar detection type Hall IC may be stopped while the actuator is driven.
- the bipolar detection type Hall IC can detect the magnetic flux density when the valve body is opened or closed. That is, during the movement of the magnet, the magnetic flux density toward the central axis of the magnet applied to the magnetic sensing part of the bipolar detection type Hall IC changes significantly, and at the same time, the magnetic field generated by the actuator moving the valve body, noise, etc. Therefore, it is meaningless to use a bipolar detection type Hall IC. In other words, the bipolar detection type Hall IC determines and confirms whether the valve body is in an open state or a closed state.
- the fluid control valve when the bipolar detection type Hall IC cannot detect the operating magnetic flux density or more, the fluid control valve may be determined to be in failure.
- the bipolar detection type Hall IC can determine the three states of the valve body in the closed state, the open state, and the failure.
- the fluid control valve of the present invention is useful as a fluid control valve capable of detecting the position of the valve body with one bipolar detection type Hall IC.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Indication Of The Valve Opening Or Closing Status (AREA)
Abstract
This fluid control valve comprises a valve body (13) that opens and closes a flow channel, a magnet (23) secured to the valve body (13) so that an S pole (24) and an N pole (25) are positioned forward and rearward with respect to the movement direction of the valve body (13), a two-pole detection Hall IC (30) having an S pole and N pole to the side of the magnet (23) relative to the movement direction, and an actuator that drives the valve body (13). The two-pole detection Hall IC (30), in which a magnetosensitive part is disposed along a direction in which magnetic flux density directed toward the center axis of the magnet (23) is applied, detects the magnetic flux density of a first pole, which is one of the S pole (24) and the N pole (25), at or above an operative magnetic flux density when the valve body (13) is closed, and detects the magnetic flux density of a second pole, which is the other of the S pole (24) and the N pole (25), at or above an operative magnetic flux density when the valve body (13) is open, whereby the position of the valve body (13) is assessed.
Description
本発明は、流体制御弁に関する。より詳しくは、弁体の位置を検出可能な流体制御弁に関する。
The present invention relates to a fluid control valve. More specifically, the present invention relates to a fluid control valve capable of detecting the position of a valve body.
従来の流体制御弁について説明する。従来の流体制御弁は、電動機であるステッピングモータと、ステッピングモータの回転軸に係止され回転軸の回転を直動に変換する変換部と、変換部に係止され流路を開閉する弁体と、弁体の位置検出部とを備えている。従来の流体制御弁に用いられている弁体の位置検出部としては、弁体の一端に設けられた磁石と、流路の外面に配置した弁体の開状態を検出する開用磁気検出素子および弁体の閉状態を検出する閉用磁気検出素子とを設ける構成が開示されている(例えば、特許文献1参照)。
A conventional fluid control valve will be described. A conventional fluid control valve includes a stepping motor that is an electric motor, a conversion unit that is locked to a rotation shaft of the stepping motor and converts rotation of the rotation shaft to linear motion, and a valve body that is locked to the conversion unit and opens and closes a flow path And a valve body position detector. As a position detection unit of a valve body used in a conventional fluid control valve, a magnet provided at one end of the valve body and an open magnetic detection element for detecting the open state of the valve body arranged on the outer surface of the flow path And the structure which provides the magnetic detection element for closing which detects the closed state of a valve body is disclosed (for example, refer patent document 1).
しかしながら、従来の構成では、ステッピングモータの回転軸の回転を直動に変換する変換部により弁体が移動して流路を開閉する。その際、弁体が開状態時の磁石と、弁体が閉状態時の磁石とを検出するため、それぞれ専用の開用磁気検出素子と閉用磁気検出素子を必要とした。また、磁石のN極とS極の向き、その配置、開用磁気検出素子および閉用磁気検出素子の特性やその具体例が開示されていない。
However, in the conventional configuration, the valve body moves and opens and closes the flow path by the conversion unit that converts the rotation of the rotation shaft of the stepping motor into a linear motion. At that time, in order to detect the magnet when the valve element is in the open state and the magnet when the valve element is in the closed state, a dedicated opening magnetic detecting element and a closing magnetic detecting element are required. Further, the orientations of the N and S poles of the magnet, their arrangement, the characteristics of the opening magnetic detection element and the closing magnetic detection element, and specific examples thereof are not disclosed.
本発明は、磁石の移動方向の側方にあるS極およびN極の両極検知型ホールICを1つ設けて、弁体の開状態と閉状態を検知する流体制御弁を提供する。
The present invention provides a fluid control valve that provides one S pole and N pole detection type Hall IC on the side of the moving direction of the magnet to detect the open state and the closed state of the valve element.
本発明の流体制御弁は、流路を開閉する弁体と、S極とN極とが弁体の移動方向に対して前後に位置するように弁体に固定された磁石と、磁石の移動方向の側方にあるS極およびN極の両極検知型ホールICと、弁体を駆動するアクチュエータとを備える。感磁部を磁石の中心軸に向かう磁束密度を印加する方向に配置した両極検知型ホールICが、弁体の閉時にS極、N極の一方の第1の極の磁束密度が動作磁束密度以上であることを検知し、弁体の開時にS極、N極の他方の第2の極の磁束密度が動作磁束密度以上であることを検知することにより弁体の位置を判断する。
The fluid control valve according to the present invention includes a valve body that opens and closes a flow path, a magnet that is fixed to the valve body so that the S pole and the N pole are positioned forward and backward with respect to the moving direction of the valve body, and the movement of the magnet S pole and N pole detection type Hall IC located on the side of the direction, and an actuator for driving the valve body. In the bipolar detection type Hall IC in which the magnetic sensing portion is arranged in the direction of applying the magnetic flux density toward the central axis of the magnet, the magnetic flux density of one of the S pole and the N pole is the operating magnetic flux density when the valve body is closed. When the valve body is opened, the position of the valve body is determined by detecting that the magnetic flux density of the other second pole of the S pole and the N pole is equal to or higher than the operating magnetic flux density.
この構成により、アクチュエータが駆動して弁体と磁石を閉状態へ移動させ、両極検知型ホールICが、第1の極の中心軸に向かう磁束密度を動作磁束密度以上であることを検知した場合、弁体が閉状態であると判断できる。他方、アクチュエータが駆動して弁体と磁石を開状態へ移動させ、両極検知型ホールICが、第2の極の中心軸に向かう磁束密度を動作磁束密度以上とであることを検知した場合、弁体が開状態であると判断できる。
With this configuration, when the actuator is driven to move the valve body and the magnet to the closed state, the bipolar detection type Hall IC detects that the magnetic flux density toward the central axis of the first pole is greater than or equal to the operating magnetic flux density It can be determined that the valve body is closed. On the other hand, when the actuator is driven to move the valve body and the magnet to the open state and the bipolar detection type Hall IC detects that the magnetic flux density toward the central axis of the second pole is equal to or higher than the operating magnetic flux density, It can be determined that the valve body is open.
このように、本発明の流体制御弁によれば、磁石の移動方向の側方にある両極検知型ホールICを1つ設けることで弁の開状態と閉状態とを検知できるという効果を奏する。
As described above, according to the fluid control valve of the present invention, it is possible to detect the open state and the closed state of the valve by providing one bipolar detection type Hall IC on the side of the moving direction of the magnet.
(第1の実施の形態)
図1は、本実施の形態における流体制御弁の開状態を示す断面図である。図2は、本実施の形態における流体制御弁の閉状態を示す断面図である。図3は、本実施の形態における流体制御弁の斜視図である。図4Aは、本実施の形態における流体制御弁のアクチュエータと流体制御部の斜視図である。図4Bは、本実施の形態における流体制御弁の弁ゴムを除く弁体の斜視図である。 (First embodiment)
FIG. 1 is a cross-sectional view showing an open state of a fluid control valve in the present embodiment. FIG. 2 is a cross-sectional view showing a closed state of the fluid control valve in the present embodiment. FIG. 3 is a perspective view of the fluid control valve in the present embodiment. FIG. 4A is a perspective view of the actuator and fluid control unit of the fluid control valve in the present embodiment. FIG. 4B is a perspective view of the valve body excluding the valve rubber of the fluid control valve in the present embodiment.
図1は、本実施の形態における流体制御弁の開状態を示す断面図である。図2は、本実施の形態における流体制御弁の閉状態を示す断面図である。図3は、本実施の形態における流体制御弁の斜視図である。図4Aは、本実施の形態における流体制御弁のアクチュエータと流体制御部の斜視図である。図4Bは、本実施の形態における流体制御弁の弁ゴムを除く弁体の斜視図である。 (First embodiment)
FIG. 1 is a cross-sectional view showing an open state of a fluid control valve in the present embodiment. FIG. 2 is a cross-sectional view showing a closed state of the fluid control valve in the present embodiment. FIG. 3 is a perspective view of the fluid control valve in the present embodiment. FIG. 4A is a perspective view of the actuator and fluid control unit of the fluid control valve in the present embodiment. FIG. 4B is a perspective view of the valve body excluding the valve rubber of the fluid control valve in the present embodiment.
以下、図1~図4を参照しつつ、本実施の形態における流体制御弁について説明する。
Hereinafter, the fluid control valve in the present embodiment will be described with reference to FIGS.
なお、説明における方向については、原則として各図中の方向の記載に従うものとする。また、本実施の形態における流体制御弁は、図示しない制御部により制御されるものである。
In addition, as a general rule, directions in the explanation shall follow the description of directions in each figure. Further, the fluid control valve in the present embodiment is controlled by a control unit (not shown).
図1~図4A、図4Bに例示するように、流体制御弁1はアクチュエータ2と流体制御部3および流路4を有する。アクチュエータ2は電動機であるステッピングモータであり、コイル5を有するステータ6と、コイル5への通電による励磁により回転するロータ7およびステータ6とロータ7を支持するベース8を有する。ロータ7は円筒形状をしており、外側の磁石9と、内側の回転軸10と、磁石9および回転軸10を一体成形する樹脂製のブッシュ11からなる。ベース8は下方へ突出した4つの櫛状の上回転抑制板12を形成している。
1 to 4A and 4B, the fluid control valve 1 includes an actuator 2, a fluid control unit 3, and a flow path 4. The actuator 2 is a stepping motor that is an electric motor, and includes a stator 6 having a coil 5, a rotor 7 that rotates by excitation by energization of the coil 5, and a base 8 that supports the stator 6 and the rotor 7. The rotor 7 has a cylindrical shape, and includes an outer magnet 9, an inner rotary shaft 10, and a resin bush 11 that integrally molds the magnet 9 and the rotary shaft 10. The base 8 forms four comb-like upper rotation suppression plates 12 protruding downward.
流体制御部3は、ポリアセタール樹脂(POM)製の弁体13と、アクチュエータ2の回転軸10の回動を直動に変換する変換部14とを有する。弁体13は、弁ゴム受15と弁ゴム16およびスプリング17を有する。また、弁体13は、アクチュエータ2により弁の開状態と弁の閉状態とを移動する。本実施の形態では、移動経路は6mmに設定している。
The fluid control unit 3 includes a valve body 13 made of polyacetal resin (POM) and a conversion unit 14 that converts the rotation of the rotary shaft 10 of the actuator 2 into a linear motion. The valve body 13 includes a valve rubber receiver 15, a valve rubber 16, and a spring 17. Further, the valve body 13 is moved between an open state of the valve and a closed state of the valve by the actuator 2. In this embodiment, the moving path is set to 6 mm.
弁ゴム受15は、回転軸10の先端に形成されたオネジ18に係止されたネジピッチ1~2の短いメネジ19を内部に形成した円筒部20を形成している。なお、メネジ19の代りに円筒の絞りとしてもよい。また、弁ゴム受15は、下面に弁ゴム16を取付ける円盤21と、円盤21からベース8側へ(上方)突出した4つの櫛状の下回転抑制板22を有する。
The valve rubber receiver 15 forms a cylindrical portion 20 in which a short female screw 19 having a screw pitch of 1 to 2 locked to a male screw 18 formed at the tip of the rotary shaft 10 is formed. A cylindrical aperture may be used instead of the female screw 19. Further, the valve rubber receiver 15 has a disk 21 for attaching the valve rubber 16 on the lower surface, and four comb-like lower rotation suppression plates 22 protruding from the disk 21 toward the base 8 (upward).
また、円盤21の上面には、円盤21の外周縁に接するように、マーカーとなる磁石23が、樹脂バネ(接着、圧入などでもよい)により固定されている(図4B参照)。本実施の形態では、磁石23は円筒Φ4.0×t1.5、材質ネオジウムである。磁石23の着磁は厚さ方向である。図4Bに示すように、円盤21から離れる側である上に位置するのがS極24となり、円盤21側である下に位置するのがN極25となるように配置している。
Further, a magnet 23 serving as a marker is fixed to the upper surface of the disk 21 by a resin spring (adhesion, press-fitting, etc.) so as to contact the outer peripheral edge of the disk 21 (see FIG. 4B). In the present embodiment, the magnet 23 is a cylinder Φ4.0 × t1.5, and the material is neodymium. Magnetization of the magnet 23 is in the thickness direction. As shown in FIG. 4B, the S pole 24 is positioned on the upper side, which is the side away from the disk 21, and the N pole 25 is positioned on the lower side, which is on the disk 21 side.
スプリング17は、ベース8と弁ゴム受15との間に、圧縮可能な方向に摺動自在に設けられ弁ゴム受15と弁ゴム16を弁座27の方向へ付勢する。変換部14は、上回転抑制板12と下回転抑制板22を勘合して構成している。
The spring 17 is slidably provided in a compressible direction between the base 8 and the valve rubber receiver 15 and biases the valve rubber receiver 15 and the valve rubber 16 toward the valve seat 27. The conversion unit 14 is configured by fitting the upper rotation suppression plate 12 and the lower rotation suppression plate 22.
流路4は、樹脂製で、形状は図3に示すようにL型の円筒で、入口26、弁座27、出口28、およびアクチュエータ挿入口29を開口している。アクチュエータ挿入口29には、アクチュエータ2が配置されている。
The flow path 4 is made of resin and has an L-shaped cylinder as shown in FIG. 3 and has an inlet 26, a valve seat 27, an outlet 28, and an actuator insertion port 29 opened. The actuator 2 is disposed in the actuator insertion port 29.
S極およびN極の両極検知型ホールIC30は、磁石23の6mmの移動経路の側方で、流路4の外面に直接接触するように配置されている。両極検知型ホールIC30は、磁石のS極またはN極の磁場の強弱に対してON/OFFの動作をする。
The S-pole and N-pole bipolar detection type Hall IC 30 is arranged on the side of the 6 mm moving path of the magnet 23 so as to be in direct contact with the outer surface of the flow path 4. The bipolar detection type Hall IC 30 performs ON / OFF operation with respect to the strength of the magnetic field of the S or N pole of the magnet.
具体例としては、両極検知型ホールIC30としては、例えば旭日化成エレクトロニクス株式会社製 EM-1791(W2.1×D2.1×H0.55)を用いる。このEM-1791の印加磁束密度は感磁部(ホール素子)を貫通する方向であり、この方向に応じてS極あるいはN極の2つ出力する。また、動作磁束密度(絶対値)3.2mT、復帰磁束密度1.4mT(絶対値)、設計(メーカ推奨)動作磁束密度6mT前後である。EM-1791以外に両極検知型ホールIC30としては、パナソニック株式会社製 AN48836Bなどがある。
As a specific example, as the bipolar detection type Hall IC 30, for example, EM-1791 (W2.1 × D2.1 × H0.55) manufactured by Asahi Kasei Electronics Co., Ltd. is used. The applied magnetic flux density of the EM-1791 is a direction penetrating the magnetic sensing part (Hall element), and two S poles or N poles are output depending on this direction. The operating magnetic flux density (absolute value) is 3.2 mT, the return magnetic flux density is 1.4 mT (absolute value), and the design (manufacturer recommended) operating magnetic flux density is around 6 mT. In addition to EM-1791, the bipolar detection type Hall IC 30 includes AN48836B manufactured by Panasonic Corporation.
動作磁束密度は両極検知型ホールIC30がONする閾値であり、復帰磁束密度は両極検知型ホールIC30がOFFする閾値である。他方、磁気センサの1つであるAMRセンサ(Anisotropic Magneto Resistiveセンサ:磁気抵抗効果素子)では、印加磁束密度は感磁部の表面を横切る方向であり、ホールICとは異なる。
The operating magnetic flux density is a threshold at which the bipolar detection type Hall IC 30 is turned on, and the return magnetic flux density is a threshold at which the bipolar detection type Hall IC 30 is turned off. On the other hand, in an AMR sensor (Anisotropic Magneto Resistive sensor: magnetoresistive effect element) which is one of the magnetic sensors, the applied magnetic flux density is in a direction across the surface of the magnetic sensitive part and is different from the Hall IC.
図5は、両極検知型ホールIC30内部で上面に平行に配置された感磁部(図示せず)を基準に磁石23を上下10mm程度移動した時の半径(磁石23の中心軸に向かう)方向の磁束密度、軸(厚さ)方向の磁束密度、および周方向の磁束密度をガウスメータで測定した結果を示す。ガウスメータは、両極検知型ホールIC30の感磁部と同じ位置で、磁石23の円筒中心軸から6mm離れた位置にある。
FIG. 5 shows a radius direction (toward the central axis of the magnet 23) when the magnet 23 is moved up and down about 10 mm with reference to a magnetic sensing portion (not shown) arranged parallel to the upper surface inside the bipolar detection type Hall IC 30. The result of having measured the magnetic flux density of this, the magnetic flux density of the axial (thickness) direction, and the magnetic flux density of the circumferential direction with the gauss meter is shown. The gauss meter is at the same position as the magnetic sensing part of the bipolar detection type Hall IC 30 and at a position 6 mm away from the cylindrical central axis of the magnet 23.
両極検知型ホールIC30は、磁石23が磁石23自身の中心軸に沿って移動すると、方向は正反対であるが、2つの大きなピークを示す半径方向の磁束密度が印加される。詳しく説明すると、磁石23が両極検知型ホールIC30の感磁部から磁石23の中心軸に沿って上方に約3mm移動した位置と下方に約3mm移動した位置が半径方向の磁束密度のピークになる。なお、周方向の磁束密度は、変化が少ないので利用できない。
In the bipolar detection type Hall IC 30, when the magnet 23 moves along the central axis of the magnet 23 itself, the direction is opposite, but a radial magnetic flux density showing two large peaks is applied. More specifically, a position where the magnet 23 has moved about 3 mm upward and about 3 mm downward along the central axis of the magnet 23 from the magnetic sensing part of the bipolar detection type Hall IC 30 becomes a peak of the magnetic flux density in the radial direction. . Note that the magnetic flux density in the circumferential direction cannot be used because there is little change.
また、軸(厚さ)方向の磁束密度は1つ大きなピークを示すが、ホールICが開用と閉用の2つ必要ということになり、印加磁束密度に利用できない。なお、磁石23の中心軸と両極検知型ホールIC30の感磁部との距離が短くなると、半径方向のピーク磁束密度位置が少し離れる傾向がある。
Also, the magnetic flux density in the axial (thickness) direction shows one large peak, but two Hall ICs are required for opening and closing, and cannot be used for the applied magnetic flux density. When the distance between the central axis of the magnet 23 and the magnetic sensing part of the bipolar detection type Hall IC 30 is shortened, the peak magnetic flux density position in the radial direction tends to be slightly separated.
一般的に、図6に示すように、両極検知型ホールIC30は小さいので、基板31に配線されている。両極検知型ホールIC30の感磁部が磁石23の6mmの移動経路の中間に位置するように、基板31の四隅に開口した4つの位置決め穴32と流路4の外面から突出した4つの位置決めピン33(図3参照)で位置決めする。
Generally, as shown in FIG. 6, since the bipolar detection type Hall IC 30 is small, it is wired to the substrate 31. Four positioning holes 32 opened at the four corners of the substrate 31 and four positioning pins protruding from the outer surface of the flow path 4 so that the magnetic sensing part of the bipolar detection type Hall IC 30 is located in the middle of the 6 mm moving path of the magnet 23. Position at 33 (see FIG. 3).
そして、両極検知型ホールIC30の感磁部が、半径方向の磁束密度を印加できるように、両極検知型ホールIC30の上面30aが流路4の外面に接するように、位置決めピン33に位置決め穴32を挿入する。他方、この配置でのAMRセンサの場合、AMRセンサの感磁部は、軸(厚さ)方向の磁束密度が印加される。
The positioning pin 33 has a positioning hole 32 so that the upper surface 30a of the bipolar detection type Hall IC 30 is in contact with the outer surface of the flow path 4 so that the magnetic sensing part of the bipolar detection type Hall IC 30 can apply a magnetic flux density in the radial direction. Insert. On the other hand, in the case of the AMR sensor in this arrangement, the magnetic flux density in the axial (thickness) direction is applied to the magnetic sensitive part of the AMR sensor.
以上のように構成された流体制御弁1について、以下その動作、作用を説明する。
The operation and action of the fluid control valve 1 configured as described above will be described below.
まず、図1に示すように、弁体13が開状態の場合、気体(白抜き矢印)が入口26(図3参照)から流路4に入り、弁体13の側から弁座27を通り、出口28から流出している。この弁体13の開状態について、図7を用いて説明する。なお、図7の(a)と(b)に示す楕円状の矢印AはN極25からS極24へ向かう磁力線を示している。図7の(a)に示すように、磁石23が両極検知型ホールIC30の上方3mmに位置しているので、流路4内から外へ向かう磁力線が両極検知型ホールIC30の感磁部を貫通する。すなわち、両極検知型ホールIC30の感磁部は、N極25磁場の半径方向の磁束密度が印加されている。
First, as shown in FIG. 1, when the valve body 13 is in an open state, gas (white arrow) enters the flow path 4 from the inlet 26 (see FIG. 3) and passes through the valve seat 27 from the valve body 13 side. , Has flowed out of the outlet 28. The open state of the valve body 13 will be described with reference to FIG. Note that an elliptical arrow A shown in FIGS. 7A and 7B indicates lines of magnetic force directed from the N pole 25 to the S pole 24. As shown in FIG. 7A, since the magnet 23 is located 3 mm above the bipolar detection type Hall IC 30, the magnetic lines of force going out from the inside of the flow path 4 penetrate the magnetic sensing part of the bipolar detection type Hall IC 30. To do. That is, the magnetic flux density in the radial direction of the N pole 25 magnetic field is applied to the magnetic sensing part of the bipolar detection type Hall IC 30.
具体的には、図5に示すように、両極検知型ホールIC30の感磁部(N極)には、動作磁束密度以上の約7mTの磁束密度が印加されている。当然、両極検知型ホールIC30の感磁部(S極)には、S極24磁場の半径方向の磁束密度が印加されない。そこで、弁体13の位置を確認するために、制御部(図示せず)が指示を出し、両極検知型ホールIC30に給電されると、両極検知型ホールIC30のN極用出力がON、S極用出力がOFFを出力する。このことから、弁体13が開状態であることが判断できる。
Specifically, as shown in FIG. 5, a magnetic flux density of about 7 mT, which is equal to or higher than the operating magnetic flux density, is applied to the magnetic sensing part (N pole) of the bipolar detection type Hall IC 30. Naturally, the magnetic flux density in the radial direction of the magnetic field of the S pole 24 is not applied to the magnetic sensing part (S pole) of the bipolar detection type Hall IC 30. Therefore, in order to confirm the position of the valve body 13, when a control unit (not shown) issues an instruction and power is supplied to the bipolar detection type Hall IC 30, the output for the N pole of the bipolar detection type Hall IC 30 is turned ON, S The pole output is OFF. From this, it can be determined that the valve body 13 is in the open state.
他方、気体が、弁ゴム16に遮断されている、図2の弁体13の閉状態について、図7を用いて説明する。図7の(b)に示すように、磁石23が両極検知型ホールIC30の下方3mmに位置しているので、流路4外から内へ向かう磁力線が両極検知型ホールIC30の感磁部を貫通する。すなわち、両極検知型ホールIC30の感磁部は、S極24磁場の半径方向の磁束密度が印加されている。
On the other hand, the closed state of the valve body 13 of FIG. 2 in which the gas is blocked by the valve rubber 16 will be described with reference to FIG. As shown in FIG. 7B, since the magnet 23 is located 3 mm below the bipolar detection type Hall IC 30, the magnetic field lines going from the outside to the inside of the flow path 4 penetrate the magnetic sensing part of the bipolar detection type Hall IC 30. To do. That is, the magnetic flux density in the radial direction of the S pole 24 magnetic field is applied to the magnetic sensitive part of the bipolar detection type Hall IC 30.
具体的には、図5に示すように、両極検知型ホールIC30の感磁部(S極)には、動作磁束密度以上の約-7mTの磁束密度が印加されている。当然、両極検知型ホールIC30の感磁部(N極)には、N極25磁場の半径方向の磁束密度が印加されない。そこで、弁体13の位置を確認するために、制御部が指示を出し、両極検知型ホールIC30に給電されると、両極検知型ホールIC30のN極用出力がOFF、S極用出力がONを出力する。このことから、弁体13が閉状態であることが判断できる。流体制御弁1は、かかる態様により両極検知型ホールIC30が弁体13の位置を検出し、確認できる。
Specifically, as shown in FIG. 5, a magnetic flux density of about −7 mT, which is equal to or higher than the operating magnetic flux density, is applied to the magnetic sensing part (S pole) of the bipolar detection type Hall IC 30. Naturally, the magnetic flux density in the radial direction of the N pole 25 magnetic field is not applied to the magnetic sensing part (N pole) of the bipolar detection type Hall IC 30. Therefore, in order to confirm the position of the valve body 13, when the control unit gives an instruction and power is supplied to the bipolar detection type Hall IC 30, the output for the N pole of the bipolar detection type Hall IC 30 is OFF and the output for the S pole is ON. Is output. From this, it can be determined that the valve body 13 is closed. In the fluid control valve 1, the bipolar detection type Hall IC 30 can detect and confirm the position of the valve body 13 in this manner.
なお、図7の(b)では、弁ゴム16を省略して示しているので開状態に見えるが、弁ゴム16を弁体13の円盤21に装着した状態では弁ゴム16が弁座27に接触している閉状態となる。
In FIG. 7B, the valve rubber 16 is omitted, so that the valve rubber 16 appears open. However, when the valve rubber 16 is mounted on the disc 21 of the valve body 13, the valve rubber 16 is attached to the valve seat 27. Closed contact.
その後、アクチュエータ2が駆動あるいは両極検知型ホールIC30が弁体13を開状態と判断するまで、流速測定などの機器(図示せず)への電源供給を停止する。すなわち、気体が流れていないので、流速測定などの他の機器への電源供給は不要であり省エネルギーが図れる。
Thereafter, power supply to devices (not shown) such as flow velocity measurement is stopped until the actuator 2 is driven or the bipolar detection type Hall IC 30 determines that the valve body 13 is in an open state. That is, since no gas is flowing, it is not necessary to supply power to other devices such as flow velocity measurement, and energy saving can be achieved.
なお、磁石23を上にN極25を配置し、下(円盤21側)がS極24に配置すると出力が反対になるので、注意が必要である。同様に、両極検知型ホールIC30を上下反対に取付けると出力が反対になるので、注意が必要である。
Note that if the N pole 25 is arranged on the magnet 23 and the bottom (the disk 21 side) is arranged on the S pole 24, the output is reversed, so care must be taken. Similarly, if the bipolar detection type Hall IC 30 is mounted upside down, the output is reversed, so care must be taken.
また、図5と図7に示すように、弁体13の開状態と閉状態とでは、両極検知型ホールIC30の感磁部を貫通する磁力線は反対方向であるが、半径方向の磁束密度の絶対値はほぼ同じである。したがって、磁石23は両極検知型ホールIC30が検知できる動作磁束密度になる磁力を最低限保持すればよい。言い換えると、弁体13の開状態と弁体13の閉状態との半径方向の磁束密度差を考慮して、余分な磁力(表面磁束密度)を有する強力な磁石23を選択する必要がない。すなわち、大型、高級材質の磁石23は不要である。
Further, as shown in FIG. 5 and FIG. 7, in the opened state and the closed state of the valve body 13, the lines of magnetic force penetrating the magnetic sensing part of the bipolar detection type Hall IC 30 are in opposite directions, but the magnetic flux density in the radial direction is The absolute value is almost the same. Therefore, the magnet 23 is required to hold at least a magnetic force that provides an operating magnetic flux density that can be detected by the bipolar detection type Hall IC 30. In other words, it is not necessary to select a strong magnet 23 having an extra magnetic force (surface magnetic flux density) in consideration of the radial magnetic flux density difference between the opened state of the valve body 13 and the closed state of the valve body 13. That is, the large-sized and high-quality magnet 23 is not necessary.
ところで、弁体13の位置を確認するために、制御部が指示を出し、両極検知型ホールIC30に給電された時、両極検知型ホールIC30のN極出力とS極用出力が共にONまたは共にOFFを出力した場合、流体制御弁1が故障と判断でき、続いて、表示、音などによって流体制御弁1が故障である旨の警報ができる。
By the way, in order to confirm the position of the valve body 13, when the control unit issues an instruction and power is supplied to the bipolar detection type Hall IC 30, both the N pole output and the S pole output of the bipolar detection type Hall IC 30 are ON or both. When OFF is output, it can be determined that the fluid control valve 1 is out of order, and then an alarm can be given to the effect that the fluid control valve 1 is out of order by display, sound, or the like.
これらの結果、1つの両極検知型ホールIC30により、弁体13の開状態と閉状態および流体制御弁1の故障が判断できる。
As a result, it is possible to determine the open state and the closed state of the valve body 13 and the failure of the fluid control valve 1 by one bipolar detection type Hall IC 30.
また、図5に示すように、両極検知型ホールIC30の感磁部を基準とした磁石23の移動距離が、磁石23自身の厚さの約2倍の3mm位置に、半径方向のピーク磁束密度がある。言い換えると、磁石23の厚さは、磁石23の6mmの移動経路の20%以上30%以下が最適である。
Further, as shown in FIG. 5, the peak magnetic flux density in the radial direction is located at a 3 mm position where the moving distance of the magnet 23 with reference to the magnetically sensitive portion of the bipolar detection type Hall IC 30 is about twice the thickness of the magnet 23 itself. There is. In other words, the thickness of the magnet 23 is optimally 20% to 30% of the 6 mm moving path of the magnet 23.
例えば、磁石23の厚さを6mmの移動経路の15%と薄くすると、磁石23の磁力は当然弱くなり、かつ半径方向のピーク磁束密度の位置が近づくので、両極検知型ホールIC30の感磁部には半径方向のピーク磁束密度を超えた小さい磁束密度が印加される。加えて、磁石23が薄い分、当然磁力(表面磁束密度)が低下する。この磁束密度の低下を補うには、高コストの高級材質による磁石の磁力向上が必要になる。逆に、磁石23の厚さを6mmの移動経路の35%と厚くすると、半径方向のピーク磁束密度の位置が離れるので、両極検知型ホールIC30は半径方向のピーク磁束密度前の磁束密度が印加される。ただし、磁石23が厚い分、磁力(表面磁束密度)が増加するので、両極検知型ホールIC30には動作磁束密度以上が印加されるので、弁体13の位置が検知できる。ただ、磁石23が不必要に大きくなり、その分弁体13への固定が難しくなる。
For example, when the thickness of the magnet 23 is reduced to 15% of the moving path of 6 mm, the magnetic force of the magnet 23 naturally becomes weak and the position of the peak magnetic flux density in the radial direction approaches, so that the magnetic sensing part of the bipolar detection type Hall IC 30 A small magnetic flux density exceeding the peak magnetic flux density in the radial direction is applied to. In addition, the magnetic force (surface magnetic flux density) naturally decreases because the magnet 23 is thin. In order to compensate for this decrease in magnetic flux density, it is necessary to improve the magnetic force of the magnet by using a high-cost high-grade material. On the contrary, when the thickness of the magnet 23 is increased to 35% of the moving path of 6 mm, the position of the peak magnetic flux density in the radial direction is separated, so that the bipolar detection type Hall IC 30 applies the magnetic flux density before the peak magnetic flux density in the radial direction. Is done. However, since the magnet 23 is thicker, the magnetic force (surface magnetic flux density) is increased, so that an operating magnetic flux density or higher is applied to the bipolar detection type Hall IC 30, so that the position of the valve body 13 can be detected. However, the magnet 23 becomes unnecessarily large, and fixing to the valve body 13 becomes difficult.
次に、制御部がアクチュエータ2を駆動させると、回転軸10が回転してオネジ18とメネジ19とを介して、弁体13に回転力が伝わる。次に、上回転抑制板12と下回転抑制板22の接触により、弁体13は回転動作を抑制され、開状態または閉状態へ6mm直進移動する。両極検知型ホールIC30の感磁部は、弁体13が約2mm移動すると印加される磁束密度は復帰磁束密度未満になり、更に2mm移動すると印加される磁束密度は逆極の動作磁束密度以上になる。
Next, when the control unit drives the actuator 2, the rotating shaft 10 rotates and the rotational force is transmitted to the valve body 13 through the male screw 18 and the female screw 19. Next, due to the contact between the upper rotation suppression plate 12 and the lower rotation suppression plate 22, the valve body 13 is restrained from rotating, and moves straight 6 mm to the open state or the closed state. In the magnetic sensing part of the bipolar detection type Hall IC 30, when the valve element 13 moves about 2 mm, the applied magnetic flux density becomes less than the return magnetic flux density, and when the valve body 13 moves further 2 mm, the applied magnetic flux density exceeds the operating magnetic flux density of the opposite polarity. Become.
すなわち、両極検知型ホールIC30の感磁部に印加される磁束密度は、アクチュエータ2が駆動中急激に変化し、かつアクチュエータ2により発生する磁界、ノイズなどの影響を受ける。すなわち、アクチュエータ2が駆動中は、両極検知型ホールIC30を使用すること自体意味がないので、弁体13の位置検知を停止する。すなわち、両極検知型ホールIC30は弁体13が開状態または閉状態を確認するものである。
That is, the magnetic flux density applied to the magnetic sensing part of the bipolar detection type Hall IC 30 changes rapidly while the actuator 2 is driven, and is affected by the magnetic field, noise, and the like generated by the actuator 2. That is, while the actuator 2 is being driven, there is no point in using the bipolar detection type Hall IC 30 itself, so the position detection of the valve body 13 is stopped. That is, the bipolar detection type Hall IC 30 confirms whether the valve body 13 is in an open state or a closed state.
なお、本実施形態では、磁石23として円筒形状のネオジム磁石を使用したが、両極検知型ホールIC30の感磁部と磁石の中心軸との距離が近ければ、磁力の弱いサマコバ磁石やフェライト磁石でもよい。すなわち、両極検知型ホールIC30の感磁部が動作磁束密度を超えていれば、磁石23の材質や形状は問わない(磁石23の厚さは、磁石23の移動経路長さの20~30%)。
In this embodiment, a cylindrical neodymium magnet is used as the magnet 23. However, if the distance between the magnetic sensing part of the bipolar detection type Hall IC 30 and the central axis of the magnet is short, even a Samacoba magnet or a ferrite magnet having a weak magnetic force may be used. Good. That is, the material and shape of the magnet 23 are not limited as long as the magnetic sensing part of the bipolar detection type Hall IC 30 exceeds the operating magnetic flux density (the thickness of the magnet 23 is 20 to 30% of the moving path length of the magnet 23). ).
また、両極検知型ホールIC30が検知した半径方向の磁束密度に関する情報は、何らかの制御部に送られて処理されるが、この処理を行う主体は特に限定されない。例えば、アクチュエータ2を制御する制御部が設けられる場合には、制御部がかかる情報の処理を行う機能を兼ね備えていてもよい。あるいは、制御部とは別に、弁体13の位置を検出するための制御部が設けられていてもよい。また、本実施の形態の流体制御弁1は、必ずしも制御部を備えていなくてもよい。
In addition, information regarding the magnetic flux density in the radial direction detected by the bipolar detection type Hall IC 30 is sent to and processed by some control unit, but the subject that performs this processing is not particularly limited. For example, when a control unit that controls the actuator 2 is provided, the control unit may have a function of processing such information. Alternatively, a controller for detecting the position of the valve body 13 may be provided separately from the controller. Further, the fluid control valve 1 of the present embodiment does not necessarily include a control unit.
上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造および/または機能の詳細を実質的に変更できる。特に、流体制御弁は垂直以外に、水平、斜めと取付方向は自在である。
The above description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details of the structure and / or function may be substantially changed without departing from the spirit of the invention. In particular, the fluid control valve can be mounted in any direction other than vertical, such as horizontal, diagonal, and mounting directions.
以上説明したように、第1の発明は、流路を開閉する弁体と、S極とN極とが弁体の移動方向に対して前後に位置するように弁体に固定された磁石と、磁石の移動方向の側方にあるS極およびN極の両極検知型ホールICと、弁体を駆動するアクチュエータとを備える。感磁部を磁石の中心軸に向かう磁束密度を印加する方向に配置した両極検知型ホールICが、弁体の閉時にS極、N極の一方の第1の極の磁束密度を動作磁束密度以上と検知し、弁体の開時にS極、N極の他方の第2の極の磁束密度を動作磁束密度以上と検知することにより弁体の位置を判断する。
As described above, the first invention includes a valve body that opens and closes the flow path, and a magnet that is fixed to the valve body so that the S pole and the N pole are positioned forward and backward with respect to the moving direction of the valve body. And an S pole and N pole detection type Hall IC located on the side of the moving direction of the magnet, and an actuator for driving the valve body. The bipolar detection type Hall IC in which the magnetic sensing portion is arranged in the direction of applying the magnetic flux density toward the central axis of the magnet uses the magnetic flux density of one of the S pole and the N pole as the operating magnetic flux density when the valve body is closed. When the valve body is opened, the position of the valve body is determined by detecting that the magnetic flux density of the other second pole of the S pole and the N pole is equal to or higher than the operating magnetic flux density.
この構成により、アクチュエータが駆動して弁体を閉状態へ移動させると、磁石も弁体と一緒に移動する。次に、極検知型ホールICの感磁部が、S極、N極の一方の第1の極の磁石の中心軸に向かう磁束密度を動作磁束密度以上と検知した場合、弁体が閉状態であると判断、確認できる。なお、第1の極の磁石の中心軸に向かう磁束密度を動作磁束密度以上と検知すると同時にS極、N極の他方の第2の極の磁石の中心軸に向かう磁束密度が動作磁束密度以下と検知した場合は、より確実に弁体が閉状態であると判断、確認できる。
With this configuration, when the actuator is driven to move the valve body to the closed state, the magnet also moves with the valve body. Next, when the magnetic sensing part of the pole detection type Hall IC detects that the magnetic flux density toward the central axis of the magnet of the first pole of one of the S pole and the N pole is equal to or higher than the operating magnetic flux density, the valve body is closed. It can be judged and confirmed. The magnetic flux density toward the central axis of the first pole magnet is detected to be equal to or higher than the operating magnetic flux density, and at the same time, the magnetic flux density toward the central axis of the other second pole of the S pole and N pole is equal to or lower than the operating magnetic flux density. Can be determined and confirmed more reliably that the valve body is in the closed state.
また、アクチュエータが駆動して弁体を開状態へ移動させると、両極検知型ホールICの感磁部が、第2の極の中心軸に向かう磁束密度を動作磁束密度以上と検知した場合、弁体が開状態であると判断、確認できる。なお、第2の極の磁石の中心軸に向かう磁束密度を動作磁束密度以上と検知すると同時に第1の極の磁石の中心軸に向かう磁束密度が動作磁束密度以下と検知した場合は、より確実に弁体が開状態であると判断、確認できる。
Further, when the actuator is driven to move the valve body to the open state, when the magnetic sensing part of the bipolar detection type Hall IC detects that the magnetic flux density toward the central axis of the second pole is equal to or higher than the operating magnetic flux density, You can judge and confirm that your body is open. It is more reliable if the magnetic flux density toward the central axis of the second pole magnet is detected to be equal to or higher than the operating magnetic flux density and at the same time the magnetic flux density toward the central axis of the first pole magnet is detected to be equal to or lower than the operating magnetic flux density. It can be determined and confirmed that the valve body is open.
第2の発明は、特に第1の発明において、弁体の閉時における磁石の位置と弁体の開時における磁石の位置との間を移動する磁石の移動経路の中間に両極検知型ホールICを配置してもよい。
According to a second aspect of the present invention, in the first aspect of the invention, the bipolar detection type Hall IC is located in the middle of the moving path of the magnet that moves between the position of the magnet when the valve body is closed and the position of the magnet when the valve body is opened. May be arranged.
この構成により、両極検知型ホールICの感磁部が弁体の閉時に検知する第1の極の磁石の中心軸に向かう磁束密度と、弁体の開時に第2の極の磁石の中心軸に向かう磁束密度とは、方向は反対であるが、絶対値はほぼ同じである。したがって、磁石は両極検知型ホールICの感磁部が検知できる動作磁束密度になる磁力(表面磁束密度)を、磁石と両極検知型ホールICとの距離などのバラツキを考慮して最低限保持すればよい。すなわち、弁体の開状態と弁体の閉状態との磁束密度差を考慮して、余分な磁力を保持する強力な磁石を選択する必要がない。そのため、大型、高級材質の磁石は不要である。
With this configuration, the magnetic flux density toward the central axis of the first pole magnet detected by the magnetic sensing part of the bipolar detection type Hall IC when the valve body is closed, and the central axis of the second pole magnet when the valve body is opened Although the direction is opposite to the magnetic flux density toward, the absolute value is almost the same. Therefore, the magnet should keep at least the magnetic force (surface magnetic flux density) that can be detected by the magnetic sensing part of the bipolar detection type Hall IC in consideration of variations such as the distance between the magnet and the bipolar detection type Hall IC. That's fine. That is, it is not necessary to select a strong magnet that retains an extra magnetic force in consideration of the magnetic flux density difference between the open state of the valve body and the closed state of the valve body. Therefore, a large, high-quality magnet is not necessary.
第3の発明は、特に第2の発明において、磁石の厚さを磁石が弁体の閉時と弁体の開時とを移動する経路の長さの20%以上30%以下としてもよい。
In the third invention, particularly in the second invention, the thickness of the magnet may be 20% or more and 30% or less of the length of the path along which the magnet moves between when the valve body is closed and when the valve body is opened.
両極検知型ホールICの感磁部は略ピーク磁束密度を検知する。すなわち、両極検知型ホールICの感磁部から磁石の厚さの約2倍の位置、弁体の閉時と開時の2ケ所に、磁石の中心軸に向かう磁束密度がピークになるので、磁石が移動する経路の長さが決まれば、最適な磁石の厚さがその経路の長さの20%以上30%以下に決まる。
The magnetic sensing part of the bipolar detection type Hall IC detects a substantially peak magnetic flux density. That is, since the magnetic flux density toward the central axis of the magnet peaks from the magnetic sensing part of the bipolar detection type Hall IC at a position about twice the thickness of the magnet, when the valve body is closed and when opened, If the length of the path along which the magnet moves is determined, the optimum magnet thickness is determined to be 20% to 30% of the length of the path.
第4の発明は、特に第1~3のいずれか1つの発明において、アクチュエータが駆動中は両極検知型ホールICによる弁体の位置検知を停止してもよい。
In the fourth invention, particularly in any one of the first to third inventions, the position detection of the valve body by the bipolar detection type Hall IC may be stopped while the actuator is driven.
両極検知型ホールICは弁体の開時あるいは弁体の閉時の磁束密度を検知することができる。すなわち、磁石の移動中、両極検知型ホールICの感磁部に印加される磁石の中心軸に向かう磁束密度は著しく変化し、同時に、弁体を移動させているアクチュエータにより発生する磁界、ノイズなどの影響が大きいので、両極検知型ホールICを使用すること自体意味がない。言い換えると、両極検知型ホールICは弁体が開状態または閉状態を判断し確認するものである。
The bipolar detection type Hall IC can detect the magnetic flux density when the valve body is opened or closed. That is, during the movement of the magnet, the magnetic flux density toward the central axis of the magnet applied to the magnetic sensing part of the bipolar detection type Hall IC changes significantly, and at the same time, the magnetic field generated by the actuator moving the valve body, noise, etc. Therefore, it is meaningless to use a bipolar detection type Hall IC. In other words, the bipolar detection type Hall IC determines and confirms whether the valve body is in an open state or a closed state.
第5の発明は、特に第1~4のいずれか1つの発明の発明において、両極検知型ホールICが動作磁束密度以上を検知できない場合、流体制御弁を故障と判断してもよい。
In the fifth aspect of the invention, in particular, in any one of the first to fourth aspects of the invention, when the bipolar detection type Hall IC cannot detect the operating magnetic flux density or more, the fluid control valve may be determined to be in failure.
この構成により、両極検知型ホールICは弁体を閉状態、開状態および故障の3つの状態を判断できる。
With this configuration, the bipolar detection type Hall IC can determine the three states of the valve body in the closed state, the open state, and the failure.
本発明の流体制御弁は、1つの両極検知型ホールICで、弁体の位置を検出可能な流体制御弁として有用である。
The fluid control valve of the present invention is useful as a fluid control valve capable of detecting the position of the valve body with one bipolar detection type Hall IC.
2 アクチュエータ
4 流路
13 弁体
23 磁石
24 S極
25 N極
30 両極検知型ホールIC 2Actuator 4 Flow path 13 Valve element 23 Magnet 24 S pole 25 N pole 30 Bipolar detection type Hall IC
4 流路
13 弁体
23 磁石
24 S極
25 N極
30 両極検知型ホールIC 2
Claims (5)
- 流路を開閉する弁体と、
S極とN極とが前記弁体の移動方向に対して前後に位置するように前記弁体に固定された磁石と、
前記磁石の移動方向の側方にあるS極およびN極の両極検知型ホールICと、
前記弁体を駆動するアクチュエータと、を備え、
感磁部を前記磁石の中心軸に向かう磁束密度を印加する方向に配置した前記両極検知型ホールICが、前記弁体の閉時にS極、N極の一方の第1の極の磁束密度を動作磁束密度以上と検知し、前記弁体の開時にS極、N極の他方の第2の極の磁束密度を動作磁束密度以上と検知することにより前記弁体の位置を判断する流体制御弁。 A valve body for opening and closing the flow path;
A magnet fixed to the valve body such that the S pole and the N pole are positioned forward and backward with respect to the moving direction of the valve body;
S pole and N pole detection Hall IC on the side of the moving direction of the magnet,
An actuator for driving the valve body,
The bipolar detection type Hall IC in which the magnetic sensing portion is arranged in a direction in which the magnetic flux density toward the central axis of the magnet is applied has the magnetic flux density of one of the S pole and N pole when the valve body is closed. A fluid control valve that detects an operating magnetic flux density or more and detects the position of the valve body by detecting the magnetic flux density of the other second pole of the S pole and the N pole when the valve body is opened as the operating magnetic flux density or more. . - 前記弁体の閉時における前記磁石の位置と前記弁体の開時における前記磁石の位置との間を移動する前記磁石の移動経路の中間に前記両極検知型ホールICを配置する、請求項1に記載の流体制御弁。 The bipolar detection type Hall IC is arranged in the middle of a moving path of the magnet that moves between a position of the magnet when the valve body is closed and a position of the magnet when the valve body is opened. The fluid control valve described in 1.
- 前記磁石の厚さを前記磁石の前記移動経路の長さの20%以上30%以下とする、請求項2に記載の流体制御弁。 The fluid control valve according to claim 2, wherein a thickness of the magnet is 20% or more and 30% or less of a length of the moving path of the magnet.
- 前記アクチュエータが駆動中は前記両極検知型ホールICによる前記弁体の位置の検知を停止する、請求項1~3のいずれか1項に記載の流体制御弁。 The fluid control valve according to any one of claims 1 to 3, wherein detection of the position of the valve body by the bipolar detection type Hall IC is stopped while the actuator is driven.
- 前記両極検知型ホールICが動作磁束密度以上の磁束密度を検知できない場合、前記流体制御弁を故障と判断する、請求項1~4のいずれか1項に記載の流体制御弁。 The fluid control valve according to any one of claims 1 to 4, wherein when the bipolar detection type Hall IC cannot detect a magnetic flux density equal to or higher than an operating magnetic flux density, the fluid control valve is determined to be in failure.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-025604 | 2018-02-16 | ||
JP2018025604A JP2019143649A (en) | 2018-02-16 | 2018-02-16 | Fluid control valve |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019159698A1 true WO2019159698A1 (en) | 2019-08-22 |
Family
ID=67621012
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/003294 WO2019159698A1 (en) | 2018-02-16 | 2019-01-31 | Fluid control valve |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2019143649A (en) |
WO (1) | WO2019159698A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT17071U1 (en) * | 2020-02-26 | 2021-04-15 | Msg Mechatronic Systems Gmbh | Valve for a motor vehicle |
US20220107033A1 (en) * | 2020-10-07 | 2022-04-07 | ECO Holding 1 GmbH | System for monitoring the position of a valve needle of an expansion valve |
CN116058684A (en) * | 2021-11-04 | 2023-05-05 | 杭州九阳小家电有限公司 | Control method of food processor and food processor |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63199079U (en) * | 1987-06-10 | 1988-12-21 | ||
JPH05280916A (en) * | 1992-02-05 | 1993-10-29 | Mitsubishi Electric Corp | Straight line displacement detection device |
JP2002106744A (en) * | 2000-09-28 | 2002-04-10 | Techno Excel Co Ltd | Electromagnetic feed water valve device |
JP2002238288A (en) * | 2001-02-06 | 2002-08-23 | Honda Motor Co Ltd | Fault control apparatus of displacement sensor |
JP2010019189A (en) * | 2008-07-11 | 2010-01-28 | Toyota Motor Corp | Failure diagnosis apparatus of valve control mechanism |
JP2011503469A (en) * | 2007-11-07 | 2011-01-27 | キョントン ネットワーク カンパニー リミテッド | Flow control valve |
-
2018
- 2018-02-16 JP JP2018025604A patent/JP2019143649A/en active Pending
-
2019
- 2019-01-31 WO PCT/JP2019/003294 patent/WO2019159698A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63199079U (en) * | 1987-06-10 | 1988-12-21 | ||
JPH05280916A (en) * | 1992-02-05 | 1993-10-29 | Mitsubishi Electric Corp | Straight line displacement detection device |
JP2002106744A (en) * | 2000-09-28 | 2002-04-10 | Techno Excel Co Ltd | Electromagnetic feed water valve device |
JP2002238288A (en) * | 2001-02-06 | 2002-08-23 | Honda Motor Co Ltd | Fault control apparatus of displacement sensor |
JP2011503469A (en) * | 2007-11-07 | 2011-01-27 | キョントン ネットワーク カンパニー リミテッド | Flow control valve |
JP2010019189A (en) * | 2008-07-11 | 2010-01-28 | Toyota Motor Corp | Failure diagnosis apparatus of valve control mechanism |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT17071U1 (en) * | 2020-02-26 | 2021-04-15 | Msg Mechatronic Systems Gmbh | Valve for a motor vehicle |
EP3872377A1 (en) * | 2020-02-26 | 2021-09-01 | MSG Mechatronic Systems GmbH | Valve for a motor vehicle |
US20220107033A1 (en) * | 2020-10-07 | 2022-04-07 | ECO Holding 1 GmbH | System for monitoring the position of a valve needle of an expansion valve |
CN116058684A (en) * | 2021-11-04 | 2023-05-05 | 杭州九阳小家电有限公司 | Control method of food processor and food processor |
Also Published As
Publication number | Publication date |
---|---|
JP2019143649A (en) | 2019-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019159698A1 (en) | Fluid control valve | |
JP6101511B2 (en) | Stepping motor and electric valve using the same | |
US11585458B2 (en) | Electronic expansion valve | |
JP5401902B2 (en) | motor | |
US8093844B2 (en) | Braking function for brushless DC motor control | |
JP4204294B2 (en) | Rotation angle detector | |
JP4592435B2 (en) | Small motor with encoder | |
JP4169536B2 (en) | Actuator | |
JP2005048671A (en) | Engine intake control device | |
JP6271784B2 (en) | Stepping motor and electric valve using the same | |
JPWO2005040730A1 (en) | Rotation angle detector | |
JP2005249137A (en) | Bearing with rotation sensor | |
JPH09236644A (en) | Magnetic potentiometer | |
JP2019167975A (en) | Fluid control valve and shutoff device using the same | |
JP2007037230A (en) | Movement of meter apparatus | |
JP6157850B2 (en) | Throttle valve device | |
JPH0337671B2 (en) | ||
JP4487427B2 (en) | Non-contact position sensor | |
JP6429985B2 (en) | Motorized valve | |
JP2005195471A (en) | Rotation angle detecting device | |
JP2007085743A (en) | Noncontact rotation displacement sensor | |
JP3891045B2 (en) | Rotation angle detector | |
WO2024065834A1 (en) | Temperature measurement device | |
KR100352479B1 (en) | A rotor rotation angle detector of brushless motor | |
JP2008202657A (en) | Electromagnetic clutch |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19754752 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19754752 Country of ref document: EP Kind code of ref document: A1 |