WO2018193613A1 - ピペットの斜め吸引補正方法およびピペット - Google Patents

ピペットの斜め吸引補正方法およびピペット Download PDF

Info

Publication number
WO2018193613A1
WO2018193613A1 PCT/JP2017/016009 JP2017016009W WO2018193613A1 WO 2018193613 A1 WO2018193613 A1 WO 2018193613A1 JP 2017016009 W JP2017016009 W JP 2017016009W WO 2018193613 A1 WO2018193613 A1 WO 2018193613A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipette
piston
amount
suction
liquid
Prior art date
Application number
PCT/JP2017/016009
Other languages
English (en)
French (fr)
Inventor
雄二 深見
久則 織田
千佳 有賀
Original Assignee
株式会社 エー・アンド・デイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 エー・アンド・デイ filed Critical 株式会社 エー・アンド・デイ
Priority to PCT/JP2017/016009 priority Critical patent/WO2018193613A1/ja
Publication of WO2018193613A1 publication Critical patent/WO2018193613A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/02Feed or outlet devices; Feed or outlet control devices for feeding measured, i.e. prescribed quantities of reagents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F13/00Apparatus for measuring by volume and delivering fluids or fluent solid materials, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation

Definitions

  • the present invention relates to a pipette that sucks / discharges a specified amount of liquid, and more particularly to a pipette suction amount correction method and a pipette therefor.
  • Air displacement pipettes have an air layer interposed between the piston and the liquid to be dispensed, and a volume of liquid corresponding to the volume change of the air layer due to the movement of the piston is aspirated / discharged to the tip attached to the pipette tip. By doing so, a prescribed amount of liquid is dispensed (see, for example, Patent Document 1).
  • This type of pipette is designed so that a specified amount can be sucked when the pipette is sucked in a vertically standing state as shown in FIG. Therefore, in order to dispense accurately, it is necessary to use the pipette vertically.
  • the present invention has been made based on the problems of the prior art, and an object of the present invention is to provide a method for correcting so as to obtain a correct suction amount even when the pipette is used in an inclined state, and a pipette. There is.
  • an electric pipette includes a cylinder having an air layer for sucking / discharging a liquid, a piston that moves up and down in the cylinder, and a piston for moving the piston.
  • a memory storing the relationship between the suction amounts.
  • a pipette suction amount correction method is a suction amount correction method executed in an electric pipette including an inclination sensor and having a piston driven by a motor.
  • the correction pulse number Pc of the motor necessary for moving the piston by the piston correction distance dc is obtained, and in the step (d), It is also preferable to rotate the motor by the correction pulse number Pc and discharge the liquid corresponding to the differential volume Vd.
  • the correct suction amount (discharge amount) can be obtained even if the pipette is used in an inclined state (oblique suction).
  • FIG. 1 is a development view of a pipette 1 according to an embodiment.
  • the pipette 1 is an electric pipette that is driven by a handheld, driven by a stepping motor that can control the movement of the piston by an electric signal.
  • the pipette 1 has a main body case 2 and a tip holder 3 in appearance.
  • the tip 4 is detachably attached to the tip of the tip holder 3.
  • the chip holder 3 accommodates a cylindrical cylinder 5, and an air layer 10 is formed in the cylinder 5.
  • a piston 6 is inserted into the cylinder 5 so as to be reciprocally movable in the vertical direction while ensuring airtightness by an O-ring 7.
  • the ball screw 8 is coaxially connected to the shaft of the piston 6.
  • the ball screw 8 is rotationally driven in both forward and reverse directions by a stepping motor 9 housed in the main body case 2.
  • the stepping motor 9 is controlled by a microcomputer (control means) 11 housed in the main body case 2.
  • Reference numeral 17 denotes a battery for driving means and control means.
  • the microcomputer 11 obtains a signal from a piston position detection sensor (not shown) and detects the position of the piston 6, and then the number of pulses (motor) required to move the piston 6 by a target movement amount (movement distance). ) Is input to the stepping motor 9. In response to the rotation of the stepping motor 9, the piston 6 moves up and down via the ball screw 8, and the inside of the cylinder 5 is negatively pressurized.
  • the dispensing operation is a process in which a predetermined amount of liquid is sucked into the chip 4 in (1) and all the liquid in the chip 4 is discharged in (2) and (3). Therefore, for “precise dispensing”, it is important to accurately perform the liquid suction of (1).
  • the pipette 1 of this embodiment is for increasing the accuracy of the suction operation (1).
  • the number of pulses of the stepping motor 9 is designed so that a prescribed amount can be sucked when the pipette is sucked in a vertical position (FIG. 7). For this reason, when suction (oblique suction) is performed with the pipette tilted (FIG. 8), the actual suction amount increases from the prescribed amount according to the tilt angle.
  • FIG. 2 is a graph showing the relationship between the inclination angle of the pipette during suction and the actual suction amount.
  • FIG. 2 shows an example in which a pipette capable of dispensing 10 [mL] of liquid is used.
  • the product specification of this pipette is ⁇ 0.5% (9.95 to 10.05 [mL]) when dispensing purified water at 10 [mL].
  • the tilt angle is changed, 10 [mL] of purified water is sucked, the amount discharged by blowout is weighed with a balance, converted into a volume, and used as a suction amount. Measured.
  • a tilt sensor 12 is mounted on the pipette 1 of this embodiment (see FIG. 1).
  • the tilt sensor 12 is a uniaxial acceleration sensor.
  • the inclination sensor 12 is arranged in, for example, an empty space in the main body case 2 so that the pipette 1 outputs a maximum value in a vertical state.
  • FIG. 4 is a configuration block diagram of the pipette 1.
  • the microcomputer 11 is connected to an inclination sensor 12, a memory 16, an operation switch 13, a display unit 15, and a motor drive circuit 14 for the stepping motor 9.
  • the memory 16 stores in advance the relationship between the moving distance of the piston 6 and the number of pulses necessary for sucking the specified amount, which is designed on the assumption that the pipette 1 is in a vertical state as usual.
  • the memory 16 stores in advance a sensor output value F0 of the tilt sensor 12 when the pipette 1 is in a vertical state.
  • This sensor output value F0 may be measured by extracting one pipette from a plurality of units in the manufacturing process and storing it in another pipette, or adopting a representative value from the specifications of the tilt sensor. A kind of value may be stored in another pipette. It is also preferable to store output values for each pipette so as to eliminate individual differences for each part. Further, “the relationship between the inclination angle of the pipette and the actual suction amount” as shown in FIG. 2 is stored in the memory 16 in advance.
  • This “relationship between the inclination angle of the pipette and the actual suction amount” is created from the measurement using purified water as shown in FIG. 2, as well as standard liquids such as JIS (Japanese Industrial Standards).
  • a plurality of measurements may be made from measurements using liquids, and one of them may be selected based on the viscosity input when setting the dispensing. Further, correction and complementation considering the temperature, water temperature, hydrophilicity and the like may be included.
  • FIG. 5 is an operation flowchart at the time of suction of the pipette 1 according to the embodiment.
  • the process proceeds to step S1, and in accordance with the guidance displayed on the display unit 15, the specified amount Vp is set to be sucked / discharged, and when the operator presses the operation switch 13, suction is started.
  • the microcomputer 11 causes the motor drive circuit 14 to obtain a specified pulse for obtaining a piston moving distance (hereinafter referred to as a specified piston moving distance) dp necessary for sucking the specified amount Vp. Enter the number Pp.
  • the stepping motor 9 rotates forward by a specified number of pulses Pp, raises the piston 6 by a specified moving distance dp, and sucks liquid into the chip 4.
  • step S3 the microcomputer 11 acquires the sensor output value F1 from the inclination sensor 12, and reads the sensor output value F0 in the vertical state from the memory 16. Then, the inclination angle ⁇ of the pipette 1 is calculated from the equation (1).
  • step S4 the microcomputer 11 reads the “relationship between the pipette tilt angle and the actual suction amount” stored in the memory 16, and obtains the actual suction amount Vr at the tilt angle ⁇ . (Assuming this amount is currently sucked into the tip 4). The actual suction amount Vr is larger than the specified amount Vp.
  • step S5 the microcomputer 11 obtains a differential volume Vd between the actual suction amount (volume) Vr and the specified amount (volume) Vp, as shown in FIG. Since the cross-sectional area of the cylindrical cylinder 5 is constant, this differential volume Vd can be replaced with the moving distance of the piston 6.
  • step S5 the actual piston movement amount dr necessary for sucking the specified amount Vp at the inclination angle ⁇ is obtained from the equation (2).
  • dr Vp / Vr ⁇ dp ... (2)
  • a piston correction distance dc (see FIG. 6) for discharging the differential volume Vd is obtained from the difference between dp and dr (formula (3)).
  • dc dp ⁇ dr (3)
  • step S6 the microcomputer 11 obtains the number of motor pulses (correction pulse number) Pc necessary for moving the piston 6 by the piston correction distance dc from the equation (4).
  • Pc dc / dp ⁇ Pp ... (4)
  • step S 7 the microcomputer 11 inputs the correction pulse number Pc to the motor drive circuit 14.
  • the stepping motor 9 rotates backward by the correction pulse number Pc, lowers the piston 6 by the distance dc, discharges the liquid corresponding to the differential volume Vd from the chip 4, and ends the suction operation.
  • the tilt sensor 12 is mounted in preparation for being used (inclined suction) in a state where the pipette is tilted.
  • the inclination angle ⁇ of the pipette 1 is monitored from the value of the tilt sensor 12, and when the suction is performed obliquely, a correction for discharging the extra volume of the differential volume Vd that has been suctioned is performed.
  • the number of pulses Pc is calculated, and the position of the piston 6 is corrected so that the liquid sucked into the chip 4 becomes the specified amount Vp.
  • the present invention is a dispenser (automatic machine) in which one or a plurality of air displacement pipettes are incorporated and liquid suction / discharge is automatically controlled. It is also possible to apply to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Organic Chemistry (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

ピペットが傾いた状態で使用されても、正しい吸引量が得られるように補正する方法およびピペットを提供する。本発明のある態様の電動ピペット(1)は、液体を吸引/排出するための空気層を備えるシリンダ(5)と、前記シリンダ内を上下動するピストン(6)と、前記ピストンを移動させるためのモータ(9)と、前記モータの回転を制御する制御手段(11)と、ピペットの傾斜角度を算出するための傾斜センサ(12)と、ピペットが垂直の状態の時の前記傾斜センサのセンサ出力値(F0)と、前記傾斜角度と実際の吸引量の関係を記憶したメモリ(16)と、を備える。電動ピペット(1)は、吸引動作の際には、傾斜センサ(12)の値からピペットの傾斜角度(θ)をモニタし、斜め吸引がなされた場合は、余分に吸引された差分体積(Vd)分の液体を排出する。

Description

ピペットの斜め吸引補正方法およびピペット
 本発明は、規定量の液体を吸引/排出するピペットに関し、特に、ピペットの吸引量補正方法およびそのためのピペットに関する。
 空気置換式のピペットは、ピストンと分注する液体の間に空気層を介在させ、ピストンの移動による空気層のボリューム変化に相当する容積の液体を、ピペット先端に装着されるチップに吸引/排出させることで、規定量の液体を分注する(例えば特許文献1参照)。
国際公開第2015/071956号
 この種のピペットは、ピストンの移動に関し、図7に示すように、ピペットを垂直に立てた状態で吸引した時に、規定量を吸引できるように設計されている。そのため、精度良く分注するためには、ピペットは垂直にして使用する必要がある。
 しかし、実際の現場では、吸引する液体のサンプル液量が少ないなどの理由で、図8に示すように、ピペットを傾けた状態で吸引している場合がある。
 ピペットを傾けた状態で液体を吸引(斜め吸引)すると、その傾斜角度に応じて、液体の吸引量が増加してしまうという問題が生じる。ピペットの傾斜が大きい場合は、製品スペックを満たさないこともある。この問題点について、従来のピペットに対策はとられておらず、また使用者もこの問題点を認識していないことが考えられる。
 本発明は、従来技術の問題点に基づいて為されたもので、その目的は、ピペットが傾いた状態で使用されても、正しい吸引量が得られるように補正する方法、およびピペットを提供することにある。
 上記課題を解決するために、本発明のある態様の電動ピペットは、液体を吸引/排出するための空気層を備えるシリンダと、前記シリンダ内を上下動するピストンと、前記ピストンを移動させるためのモータと、前記モータの回転を制御する制御手段と、ピペットの傾斜角度を算出するための傾斜センサと、ピペットが垂直の状態の時の前記傾斜センサのセンサ出力値と、前記傾斜角度と実際の吸引量の関係を記憶したメモリと、を備えることを特徴とする。
 上記課題を解決するために、本発明のある態様のピペットの吸引量補正方法は、傾斜センサを備え、ピストンがモータ駆動される電動ピペットにおいて実行される吸引量補正方法であって、(a)規定量Vpの液体を吸引するための吸引動作の後に、前記傾斜センサの出力値F1を取得し、前記ピペットの傾斜角度θを算出する工程と、(b)前記ピペットに予め記憶された、ピペットの傾斜角度と実際の吸引量の関係から、前記工程(a)で吸引された実際の吸引量Vrを求める工程と、(c)前記実際の吸引量Vrと前記規定量Vpの差分体積Vdだけ前記液体を排出するためのピストン補正距離dcを求める工程と、(d)前記ピストン補正距離dcだけ前記ピストンを移動して、前記差分体積Vd分の前記液体を排出する工程と、を備えることを特徴とする。
 上記態様のピペットの吸引量補正方法において、前記工程(c)において、前記ピストン補正距離dcだけ前記ピストンを動かすために必要な前記モータの補正パルス数Pcを求め、 前記工程(d)において、前記モータを前記補正パルス数Pcだけ回転し、前記差分体積Vd分の前記液体を排出するのも好ましい。
 本発明に係るピペットの吸引量補正方法およびピペットによれば、ピペットが傾いた状態で使用(斜め吸引)されても、正しい吸引量(排出量)を得ることができる。
実施の形態に係るピペットの展開図である。 吸引時のピペットの傾斜角度と実際の吸引量の関係を示すグラフである。 傾斜センサのセンサ出力値の関係を示す図である。 実施の形態に係るピペットの構成ブロック図である。 実施の形態に係るピペットの吸引時の動作フローチャートである。 差分体積を説明するための概念図である。 従来のピペットが好ましい状態で使用されている様子を示す図である。 従来のピペットが好ましくない状態で使用されている様子を示す図である。
 次に、本発明の好適な実施の形態を、図面を参照しながら説明する。図1は、実施の形態に係るピペット1の展開図である。
 ピペット1は、ピストンの移動が電気信号により制御可能なステッピングモータにより駆動される、手持ちで操作される、電動ピペットである。ピペット1は、外観上は、本体ケース2と、チップホルダー3を有する。チップホルダー3の先端には、チップ4が着脱可能に装着される。
 チップホルダー3には、筒状のシリンダ5が収容されており、シリンダ5内に空気層10が形成される。シリンダ5内には、ピストン6が、Oリング7により気密を保障されながら、上下方向に往復移動可能に挿入される。
 ピストン6の軸には、ボールネジ8が同軸で連結されている。ボールネジ8は、本体ケース2に収容されるステッピングモータ9により、正逆いずれの方向にも回転駆動される。ステッピングモータ9は、本体ケース2に収容されるマイクロコンピュータ(制御手段)11により制御される。なお、符号17は、駆動手段および制御手段のバッテリーである。
 マイクロコンピュータ11は、ピストン位置検出センサ(図示略)からの信号を得てピストン6の位置を検出した上で、ピストン6を狙いの移動量(移動距離)で動かすために必要なパルス数(モータ回転数)を、ステッピングモータ9に入力する。ステッピングモータ9の回転を受けて、ボールネジ8を介してピストン6が上下に移動し、シリンダ5内が負加圧される。
 通常の分注作業では、まず、(1)本体ケース2に設けられた操作スイッチ13(図1では図示略、図4参照)を押して、ピストン6を移動(上昇)させ、空気層10を介して、チップ4内に液体を吸引する。その後、(2)操作スイッチを押して、ピストン6を移動(下降)させ、空気層10を介して、チップ4内の液体を排出する、というプロセスが行われる。なお、チップ4の先端に液体が残ることがあるため、(2)の後に、(3)更にピストン6を下降させて、先端に残った液体を排出しきる、ブローアウトが行われるのも一般的である。従って、分注作業は、(1)で規定量の液体をチップ4内に吸引し、(2)および(3)でチップ4内の液体を全て排出するというプロセスとなる。そのため、「精度のよい分注」のためには、(1)の液体吸引を精度よく行なうことが重要となる。本形態のピペット1は、(1)の吸引動作の精度を上げるためのものである。
 上記のステッピングモータ9のパルス数は、ピペットを垂直に立てた状態で吸引した場合(図7)に、規定量を吸引できるように設計されている。このため、ピペットを傾けた状態で吸引(斜め吸引)した場合(図8)は、その傾斜角度に応じて、実際の吸引量は規定量よりも増えてしまう。
 図2は、吸引時のピペットの傾斜角度と実際の吸引量の関係を示すグラフである。図2は、10[mL]の液体を分注可能なピペットを使用した例である。このピペットの製品スペックは、精製水10[mL]分注時の精度は±0.5%(9.95~10.05[mL])である。このピペットで、水温20℃一定条件下で、傾斜角度を変えて、精製水10[mL]を吸引し、ブローアウトもして排出した量を天秤で重量計測し、体積換算して、吸引量として計測した。この結果、ピペットを垂直に立てた状態で吸引した時は、精度よく10[mL]であった。垂直状態から30度傾斜した状態で吸引した時は、10.06[mL]であった。45度傾斜した状態で吸引した時は、10.09[mL]であった。60度傾斜した状態で吸引した時は、10.13[mL]であった。
 以上から、ピペットの傾斜角度が大きくなるにつれて、吸引量が増加することが分かった。また、傾斜角度が25度超では、誤差が+0.5%超となり、製品スペックを超えてしまうことも分かった。
 そのため、本形態のピペット1には、傾斜センサ12が搭載されている(図1参照)。傾斜センサ12は、一軸の加速度センサである。傾斜センサ12は、ピペット1が垂直の状態で最大値を出力するように、例えば本体ケース2内の空きスペースに配置される。
 図3に示すように、ピペット1が垂直の状態のセンサ出力値をF0とすると、ピペット1が傾いた状態のセンサ出力値F1は、F0よりも小さくなる。ピペット1の垂直からの傾斜角度θは、式(1)で求めることができる。
   θ=cos-1(F1/F0) ・・・(1)
 図4は、ピペット1の構成ブロック図である。マイクロコンピュータ11には、傾斜センサ12と、メモリ16と、操作スイッチ13と、表示部15と、ステッピングモータ9のモータ駆動回路14が接続されている。
 メモリ16には、従来通り、ピペット1が垂直の状態を前提に設計された、規定量を吸引するために必要なピストン6の移動距離とパルス数の関係が、予め記憶されている。
 さらに、メモリ16には、ピペット1が垂直の状態の時の傾斜センサ12のセンサ出力値F0が予め記憶されている。このセンサ出力値F0は、製造過程において、複数台の中から一つのピペットを抽出して測定し、それを他のピペットにも記憶させてもよいし、傾斜センサの仕様から代表値を採用し、一種の値を他のピペットに記憶させてもよい。また、ピペット毎に出力値を記憶して、部品毎の個体差を解消するようにするのも好ましい。さらに、メモリ16には、図2で示したような、「ピペットの傾斜角度と実際の吸引量の関係」が、予め記憶されている。この「ピペットの傾斜角度と実際の吸引量の関係」は、図2のように精製水を用いた測定から作成される他、標準的な液体、例えばJIS(日本工業規格)に定められる各標準液を用いた測定から複数作成され、分注の設定時に入力された粘度を基にいずれかが選択されるようにしてもよい。また、気温、水温、親水性等を考慮した補正や補完が含まれてもよい。
 ピペット1のピストン6は、ピペット1が傾斜していても、ピペット1が垂直である場合の量で移動するので、その結果、ピペット1が傾斜していた時のチップ4内の実際の吸引量は、規定量より余分な液体を含んでいることになる。従って、ピペット1では、吸引動作の際に、次のように、余分な液体を排出する補正が行われる。
 図5は、実施の形態に係るピペット1の吸引時の動作フローチャートである。まず、ステップS1に移行して、表示部15に表示されるガイダンスに従って、規定量Vpを吸引/排出すると設定して、操作者が操作スイッチ13を押すと、吸引が開始される。
 次に、ステップS2に移行して、マイクロコンピュータ11は、モータ駆動回路14に、規定量Vpを吸引するために必要なピストン移動距離(以下、規定のピストン移動距離)dpを得るための規定パルス数Ppを入力する。ステッピングモータ9は、規定パルス数Ppだけ正回転し、ピストン6を規定の移動距離dpだけ上昇させて、チップ4に液体を吸引する。
 次に、ステップS3に移行して、マイクロコンピュータ11は、ステップS2の吸引の直後に、傾斜センサ12からセンサ出力値F1を取得し、メモリ16から垂直状態のセンサ出力値F0を読み出す。そして、式(1)から、ピペット1の傾斜角度θを算出する。
 次に、ステップS4に移行して、マイクロコンピュータ11は、メモリ16に記憶された「ピペットの傾斜角度と実際の吸引量の関係」を読み出し、傾斜角度θの時の実際の吸引量Vrを取得する(この量が、現在チップ4に吸引されていると仮定する)。実際の吸引量Vrは、規定量Vpよりも多い状態となっている。
 次に、ステップS5に移行して、マイクロコンピュータ11は、図6に示すように、実際の吸引量(体積)Vrと規定量(体積)Vpの差分体積Vdを求める。筒状のシリンダ5の横断面積は一定であるから、この差分体積Vdは、ピストン6の移動距離に置き換えることができる。ステップS5では、式(2)から、傾斜角度θの時に規定量Vpを吸引するために必要な実際のピストン移動量drを求める。
 dr=Vp/Vr×dp  ・・・(2)
そして、dpとdrの差分から、差分体積Vdを排出するためのピストン補正距離dc(図6参照)を求める(式(3))。
 dc=dp-dr ・・・(3)
 次に、ステップS6に移行して、マイクロコンピュータ11は、ピストン補正距離dcだけピストン6を移動するために必要なモータパルス数(補正パルス数)Pcを、式(4)から求める。
 Pc=dc/dp×Pp  ・・・(4)
 次に、ステップS7に移行して、マイクロコンピュータ11は、モータ駆動回路14に、補正パルス数Pcを入力する。ステッピングモータ9は、補正パルス数Pcだけ逆回転し、ピストン6を距離dcだけ下降させ、差分体積Vd分の液体を、チップ4から排出し、吸引動作を終了する。
 上記補正の具体例を示す。ピペット1が垂直な状態で10[mL]を吸引する際に必要なピストン6の移動距離,すなわち規定のピストン移動距離dpは20[mm]で、規定パルス数は800[パルス]であるとする。ステップS1~S2で液体が吸引され、ステップS3で、傾斜角度θ=60度であったとすると、ステップS4で、20[mm](800パルス)のピストン移動で、実際の吸引量Vrは10.13[mL]であると分かる。次に、ステップS5で、傾斜角度θの時に規定量Vpを吸引するために必要な実際のピストン移動量drは、式(2)から、
(10.00[mL]/10.13[mL])× 20[mm]=19.74[mm]
となる。従って、ピストン補正距離dcは、20[mm]-19.74[mm]=0.62[mm]であり、この0.62[mm]だけピストン6を戻す必要がある。次に、ステップS6で、このピストン補正距離dcを実現するのに必要な補正パルス数Pcは、式(3)から、
(0.62[mm]/20[mm])× 800[パルス]=10.4[パルス]
となる。よって、ステップS7で、10パルス分、ピストン6を下降させれば、目標としていた規定量Vpの、10[mL]に近づけることができる。
 以上、本形態のピペット1によれば、ピペットが傾いた状態で使用(斜め吸引)されるのに備えて、傾斜センサ12が搭載されている。そして、吸引動作の際には、傾斜センサ12の値からピペット1の傾斜角度θをモニタし、斜め吸引がなされた場合は、余分に吸引された差分体積Vd分の液体を排出するための補正パルス数Pcを算出し、チップ4内に吸引された液体が規定量Vpとなるように、ピストン6の位置を補正する。
 これにより、斜め吸引がなされても、チップ4内には、正確な量の液体が吸引されたことになる。正確な量の液体が吸引されたので、正確な量の液体が排出されることになる(ブローアウトがなされればより確実である)。また、ピペット1によれば、操作者は姿勢を気にすることなくピペットを扱えることになり、ユーザ利便性も向上する。
 以上、本発明の好ましい実施の形態を述べたが、当業者の知識に基づく改変は可能であり、そのような形態は本発明の範囲に含まれる。例えば、実施の形態では、手持ちにより操作される電動ピペットで説明したが、本発明は、空気置換式のピペットが一または複数組み込まれ、液体の吸引/排出が自動制御されるディスペンサー(自動機)に適用することも可能である。
1 ピペット
2 本体ケース
3 チップホルダー
4 チップ
5 シリンダ
6 ピストン
7 Oリング
8 ボールネジ
9 ステッピングモータ
10 空気層
11 マイクロコンピュータ(制御手段)
12 傾斜センサ
13 操作スイッチ
14 モータ駆動回路
15 表示部
16 メモリ
Vp 規定量
Vr 実際の吸引量
Vd 差分体積
dp 規定のピストン移動距離
dr 実際のピストン移動距離 
dc ピストン補正距離
Pp 規定パルス数
Pc 補正パルス数
 
 

Claims (3)

  1.  液体を吸引/排出するための空気層を備えるシリンダと、
     前記シリンダ内を上下動するピストンと、
     前記ピストンを移動させるためのモータと、
     前記モータの回転を制御する制御手段と、
     ピペットの傾斜角度を算出するための傾斜センサと、
     ピペットが垂直の状態の時の前記傾斜センサのセンサ出力値と、前記傾斜角度と実際の吸引量の関係を記憶したメモリと、
     を備えることを特徴とする電動ピペット。
  2.  傾斜センサを備え、ピストンがモータ駆動される電動ピペットにおいて実行される吸引量補正方法であって、
    (a)規定量Vpの液体を吸引するための吸引動作の後に、前記傾斜センサの出力値F1を取得し、前記ピペットの傾斜角度θを算出する工程と、
    (b)前記ピペットに予め記憶された、ピペットの傾斜角度と実際の吸引量の関係から、前記工程(a)で吸引された実際の吸引量Vrを求める工程と、
    (c)前記実際の吸引量Vrと前記規定量Vpの差分体積Vdだけ前記液体を排出するためのピストン補正距離dcを求める工程と、
    (d)前記ピストン補正距離dcだけ前記ピストンを移動して、前記差分体積Vd分の前記液体を排出する工程と、
     を備えることを特徴とするピペットの吸引量補正方法。
  3.  前記工程(c)において、前記ピストン補正距離dcだけ前記ピストンを動かすために必要な前記モータの補正パルス数Pcを求め、
     前記工程(d)において、前記モータを前記補正パルス数Pcだけ回転し、前記差分体積Vd分の前記液体を排出する 
     ことを特徴とする請求項2に記載のピペットの吸引量補正方法。
PCT/JP2017/016009 2017-04-21 2017-04-21 ピペットの斜め吸引補正方法およびピペット WO2018193613A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/016009 WO2018193613A1 (ja) 2017-04-21 2017-04-21 ピペットの斜め吸引補正方法およびピペット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/016009 WO2018193613A1 (ja) 2017-04-21 2017-04-21 ピペットの斜め吸引補正方法およびピペット

Publications (1)

Publication Number Publication Date
WO2018193613A1 true WO2018193613A1 (ja) 2018-10-25

Family

ID=63856579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016009 WO2018193613A1 (ja) 2017-04-21 2017-04-21 ピペットの斜め吸引補正方法およびピペット

Country Status (1)

Country Link
WO (1) WO2018193613A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020522688A (ja) * 2017-05-31 2020-07-30 ビスタラブ テクノロジーズ、インコーポレイテッド 液体の精密な分割量を分注する方法および装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4821586A (en) * 1988-02-25 1989-04-18 Medical Laboratory Automation, Inc. Programmable pipette
CN103008040A (zh) * 2012-09-05 2013-04-03 罗耿荣 自动修正精度的电动移液器及其精度修正方法
FR2993986A1 (fr) * 2012-07-24 2014-01-31 Gilson Sas Pipette de prelevement equipee de moyens permettant de detecter son inclinaison

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4821586A (en) * 1988-02-25 1989-04-18 Medical Laboratory Automation, Inc. Programmable pipette
FR2993986A1 (fr) * 2012-07-24 2014-01-31 Gilson Sas Pipette de prelevement equipee de moyens permettant de detecter son inclinaison
CN103008040A (zh) * 2012-09-05 2013-04-03 罗耿荣 自动修正精度的电动移液器及其精度修正方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020522688A (ja) * 2017-05-31 2020-07-30 ビスタラブ テクノロジーズ、インコーポレイテッド 液体の精密な分割量を分注する方法および装置
JP7089792B2 (ja) 2017-05-31 2022-06-23 ビスタラブ テクノロジーズ、インコーポレイテッド 液体の精密な分割量を分注する方法および装置

Similar Documents

Publication Publication Date Title
JP4719692B2 (ja) ピペット検査装置及びそれを取り付けたピペット
US9623406B2 (en) Electronic pipette
JP5093164B2 (ja) サンプリング機構
JP2007526116A (ja) 較正ピペット
JP2005161307A (ja) 自動で正確な非接触型の開ループ流動体調合
WO2005079989A1 (en) Electronic pipette
US20160236189A1 (en) Method for accurately calibrating discharge volume of pipette, and apparatus therefor
US5415051A (en) Automatic chemical analyzers with sampling systems
CN111749876B (zh) 校准蠕动泵和用蠕动泵分配液体的方法及执行方法的设备
JP5040422B2 (ja) マイクロチップ電気泳動装置
WO2018193613A1 (ja) ピペットの斜め吸引補正方法およびピペット
US7748281B2 (en) Dispensing apparatus, dispensing method, and analyzer
AU766417B2 (en) Applicator and electro-mechanical applicator drive system
EP0497343A2 (en) Blood analyzing system
WO2015071957A1 (ja) 事前吐出機能を備えた電動ピペット
JP7061686B2 (ja) 自動分析装置
US11229905B2 (en) Method and apparatus for dispensing precise aliquots of liquid
JP2018176138A (ja) 斜め吸引に備えたピペット
JP4773750B2 (ja) 分注装置、分注方法および分析装置
US5783451A (en) Pipetting unit and method for liquids
JP2005131541A (ja) 粘性流体塗布装置及び粘性流体塗布方法
JP6540412B2 (ja) モータ駆動機構及びモータ駆動方法
JP4264405B2 (ja) 分析装置
WO2019187996A1 (ja) 分注装置、分注方法
US20190219045A1 (en) Distributor head for a suction pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17906054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP