WO2018192439A1 - 一种封闭燃烧炉头二次辐射式烟气余热再利用方法和结构 - Google Patents

一种封闭燃烧炉头二次辐射式烟气余热再利用方法和结构 Download PDF

Info

Publication number
WO2018192439A1
WO2018192439A1 PCT/CN2018/083178 CN2018083178W WO2018192439A1 WO 2018192439 A1 WO2018192439 A1 WO 2018192439A1 CN 2018083178 W CN2018083178 W CN 2018083178W WO 2018192439 A1 WO2018192439 A1 WO 2018192439A1
Authority
WO
WIPO (PCT)
Prior art keywords
flue gas
exhaust passage
gas
waste heat
combustion
Prior art date
Application number
PCT/CN2018/083178
Other languages
English (en)
French (fr)
Inventor
刘元雨
Original Assignee
深圳市元疆科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市元疆科技有限公司 filed Critical 深圳市元疆科技有限公司
Publication of WO2018192439A1 publication Critical patent/WO2018192439A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/02Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • F23D14/126Radiant burners cooperating with refractory wall surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/62Mixing devices; Mixing tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/06Arrangements of devices for treating smoke or fumes of coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C11/00Combinations of two or more stoves or ranges, e.g. each having a different kind of energy supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage

Definitions

  • the invention relates to the technical field of a stove, in particular to a method and structure for reusing waste heat of a secondary radiant flue gas of a closed combustion furnace
  • the gas stoves are all burned by open flame. Whether it is infrared or atmospheric combustion, the flame should contact the bottom of the pot, mainly by conduction heating. The high temperature flue gas is directly distributed to the surrounding, and the thermal efficiency is low (generally less than 60%). .
  • Patent No. 101285596 the Chinese patent "a fully enclosed gas stove” has a fully enclosed structure, but uses atmospheric combustion, low thermal efficiency, and no residual heat of flue gas; publication number CN104864421A Although it is explicitly proposed to adopt the infrared heating method to realize the technical solution of separating the flue gas from the pot through the transparent SiO2 glass plate, the waste heat of the flue gas is not fully utilized, and the thermal efficiency is lower due to the glass barrier.
  • An object of the present invention is to provide a waste heat reuse method for generating secondary infrared radiation by using a high-temperature flue gas of a closed combustion burner and a structure for realizing the same.
  • a secondary radiator is added to a closed combustion burner cavity structure, so that the gas-air mixture is subjected to infrared combustion heating on the combustion surface, and the high-temperature smoke is generated from the row.
  • the gas passage When the gas passage is discharged, it must pass through the secondary radiator to generate secondary infrared radiation heating, that is, the high-infrared radiance characteristic of the partial material is used to convert the thermal energy of the high-temperature flue gas into infrared radiation, thereby improving the heat utilization rate.
  • the method utilizes a material with high infrared conversion rate to convert high temperature flue gas thermal energy into infrared radiation, and at the same time, due to insufficient premixing and complexity of combustion reaction, some unburned gas and carbon monoxide intermediate products may exist in the flue gas. They can re-ignite the combustion reaction to generate infrared radiation when passing through the secondary radiator, and reduce the harmful content in the smoke.
  • the structure includes a gas/air inlet passage and a premixing chamber, an infrared combustion plate, a work surface, an exhaust passage, a secondary radiator and an outer cavity, wherein the outer cavity and the work surface form a closed cavity.
  • the gas/air intake passage is composed of a gas intake pipe and an air intake passage, and the structure layout is not limited, and both of them are connected to the premixing chamber, and the gas and air are mixed into the combustion surface through the combustion plate after being mixed in the premixing chamber.
  • the infrared burning plate may be a honeycomb ceramic body burning plate, a metal fiber burning body, a metal corrugated plate burning body, or the like, and the gas/air premixed gas may be subjected to infrared radiation-based combustion on the surface thereof.
  • the outer cavity is made of a material resistant to high temperature and high heat insulation, such as aerogel, aluminum silicate, rock wool, etc., the upper end is in close contact with the bottom of the work surface, and the lower end of the furnace cavity is in close contact to ensure high temperature after combustion.
  • the flue gas can only pass through the exhaust after passing through the secondary radiator.
  • the work surface is made of glass resistant to high temperature and high infrared transmittance, such as microcrystalline ceramic glass, alumina glass, and the like.
  • the exhaust passage is a flue gas exhaust passage, which can be arranged in the center or around the furnace cavity, or a plurality of exhaust passages are arranged at the same time to ensure smooth airflow of the exhaust passage.
  • the secondary radiator is made of a high-infrared radiance material capable of long-term operation in high-temperature flue gas, such as iron-chromium-aluminum, silicon carbide, or the like, and is made of a fabric or honeycomb structure having high air permeability and low wind resistance. Ensure that the radiation direction is toward the heating surface of the pan, so that the airflow passes through to generate infrared radiation and lower the temperature.
  • the closed infrared cooker directly discharged from the flue gas is more energy-efficient and has higher heat utilization rate.
  • the effective heating area of the infrared light of the burner is increased.
  • a small amount of under-burned gas and intermediate products (such as carbon monoxide CO) can re-ignite on the secondary radiator to further reduce the emission of harmful gases such as CO.
  • FIG. 1 is a cross-sectional view showing the basic structure of an embodiment of the present invention.
  • Figure 2 is a cross-sectional view showing the basic structure of the second embodiment of the present invention.
  • Embodiment 1 In Fig. 1, a honeycomb infrared combustion plate (13) with an intermediate through hole is closely connected with a premixing chamber (14) with an intermediate exhaust through hole (18), and an exhaust through hole (18) is fixed at the inlet.
  • a secondary radiator (19) made of a high-breathing iron-chromium-aluminum fiber braid, the inner surface of the aerogel outer cavity (12) is closely connected to the outer wall surface of the premixing chamber (14), and the upper end and the glass-ceramic table (11) Closely fit to form a closed combustion chamber.
  • the gas enters the premixing chamber (14) from the gas inlet pipe (17), and the air enters the premixing chamber (14) through the air intake pipe (16). After the gas and the air are thoroughly mixed, the gas passes through the infrared burning plate (13) on the surface.
  • the infrared radiation is mainly burned, and the infrared rays are heated through the work surface (11) to heat the cookware (10).
  • the high-temperature flue gas after combustion flows into the intermediate exhaust through-hole (18) in the closed combustion chamber, and passes through the high-breathing iron-chromium-aluminum fiber braided secondary radiator (19), and part of the heat is converted into infrared radiation, and a small amount is not Complete combustion of gas and CO, etc., also completes combustion and forms infrared radiation.
  • the temperature of the flue gas after passing through the secondary radiator is lowered, and the low-temperature flue gas flows along the exhaust passage, and further heat exchanges from the exhaust pipe ( 15) After discharge.
  • the advantage of this scheme is that the outer wall surface temperature of the burner cavity is low, but the middle exhaust passage is large, and the power density of the heat radiation zone is low.
  • Embodiment 2 The integral burning surface infrared burning plate (29) in FIG. 2 is closely combined with the premixing chamber (24), and the upper end of the outer cavity (23) made of aluminum silicate is in close contact with the glass flat working surface (21).
  • the inner wall surface has a certain gap with the outer wall surface of the premixing chamber (24) to form an exhaust passage; the lower end of the outer cavity body (23) is in close contact with the furnace bottom plate (28) to form a closed combustion chamber, and the silicon carbide ceramic honeycomb body 2
  • the secondary radiator (22) is placed at the outer edge of the outer cavity (23) and the infrared combustion plate (29) and at the inlet of the exhaust passage, and may partially or completely block the exhaust passage.
  • the gas and air intake structure is the same as in the first embodiment.
  • the air/gas mixture gas passes through the infrared combustion plate (29), it is ignited to form infrared radiation-based combustion, and the infrared rays are heated through the work surface (21) to heat the pot (20).
  • the high-temperature gas after combustion flows into the surrounding exhaust passage in the closed combustion chamber, and when the secondary radiator (22) made of the silicon carbide ceramic honeycomb body is passed, part of the heat is converted into infrared radiation, and a small amount of incompletely combusted gas and carbon monoxide CO, etc. It is further burned here and forms infrared radiation.
  • the temperature of the flue gas after passing through the secondary radiator is lowered, and the temperature is significantly lowered after further heat exchange along the exhaust passage, and is discharged after entering the exhaust pipe (25).
  • the advantage of this scheme is that the intermediate effective heating zone has a large power density, the flue gas heat exchange area is large and sufficient, and the overall thermal efficiency is high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Gas Burners (AREA)
  • Incineration Of Waste (AREA)

Abstract

一种封闭燃烧炉头二次辐射式烟气余热再利用结构及方法,该结构包括工作台面(11)、炉头外腔体(12)、燃烧板(13)、预混腔(14)、空气进气管(16)、燃气进气管(17)、二次辐射体(19)、排气通道(18)。工作台面(11)与外腔体(12)上端紧密接触构成密闭空间,燃气空气混合气透过燃烧板(13)燃烧后的烟气只能从排气通道(18)排出。该方法为将二次辐射体(19)置于排气通道(18)入口处,使高温烟气流向排气通道(18)时,必须透过二次辐射体(19)。高温烟气透过二次辐射体(19)时可将烟气余热和未尽燃气转化为红外辐射,降低烟气温度和有害物含量。

Description

一种封闭燃烧炉头二次辐射式烟气余热再利用方法和结构 技术领域
本发明涉及一种炉具技术领域,具体是一种封闭燃烧炉头二次辐射式烟气余热再利用方法和结构
背景技术
目前燃气灶都是采用明火燃烧加热,不管是红外线式还是大气燃烧式,其火焰都要接触锅底,以传导加热为主,高温烟气直接向四周散发,热效率低(一般低于60%)。专利号101285596的中国专利“一种全封闭燃气炉具”公开文本虽然采用全封闭式结构,但采用的是大气式燃烧,热效率低,且烟气余热都未利用;公布号为CN104864421A的公开文本虽然明确的提出了采用红外线加热方式,实现将烟气与锅具通过透明SiO2玻璃板隔离进行炊事的技术方案,但是烟气余热未也充分利用,因玻璃阻隔,热效率更低。专利号204678422的专利“燃气灶余热利用装置”公开了烟气余热利用装置,利用储水盘管回收烟气余热,对直接燃烧效率提升无关,且不适合家用,专利申请号为2016102172158的专利提出了烟气余热再利用方法,但主要是接触式热交换,利用烟气余热加热进气,烟气通道口无法形成有效红外线辐射加热区,使相同直径炉头的有效热功率降低,且因烟气温度高,对烟道的材料和设计有特别要求。
发明内容
本发明的目的是提供一种利用封闭燃烧炉头的高温烟气产生二次红外线辐射的余热再利用方法和实现该方法的结构。
为实现上述目的,根据本发明的一个方面,在封闭燃烧的炉头腔体结构上增加二次辐射体,使燃气空气混合气在燃烧面进行红外线式燃烧加热后,产生的高温烟气从排气通道排出时必须透过二次辐射体,从而产生二次红外线辐射加热,即借助部分材料的高红外辐射率特性,将高温烟气的热能转化为红外辐射,提高热利用率。
所述方法就是利用高红外转化率的材料将高温烟气热能转化为红外辐射,同时由于预混 不充分和燃烧反应的复杂性,烟气中可能存在部分未燃尽燃气和一氧化碳等中间产物,它们在透过二次辐射体时可再次发生燃烧反应产生红外辐射,并降低烟气中有害物含量。
所述结构包括燃气/空气进气通道和预混腔、红外线燃烧板、工作台面、排气通道、二次辐射体和外腔体,其中外腔体与工作台面构成密闭腔体。
所述燃气/空气进气通道由燃气进气管和空气进气通道组成,结构布局不限,二者均连通预混腔,燃气和空气在预混腔混合后透过燃烧板达到燃烧面。
所述红外线燃烧板可以为蜂窝陶瓷体燃烧板、金属纤维燃烧体、金属波纹板燃烧体等,燃气/空气预混气可以在其表面进行红外辐射为主的燃烧。
所述外腔体由耐高温高绝热率材料制成,如气凝胶、硅酸铝、岩棉等等,上端与工作台面底部紧密接触,下端炉头腔体紧密接触,确保燃烧后的高温烟气只能透过二次辐射体后从排气通过排出。
所述工作台面由耐高温高红外透过率的玻璃制成,如微晶陶瓷玻璃、氧化铝玻璃等等。
所述排气通道为烟气排出通路,可布局于炉头腔体中心或者四周,或者同时布局多个排气通道,确保排气通道气流顺畅。
所述二次辐射体由可在高温烟气中长期工作的高红外辐射率材料,如铁铬铝、碳化硅等等,制成具有高透气率和低风阻纤维织物或者蜂窝体结构,布局上保证辐射方向朝锅具受热面,使气流经过后产生红外辐射并降低温度。
本发明与现有技术相比的有益效果是:
1.比烟气直接排出的封闭式红外线炉具更节能、热利用率更高。
2.炉头红外线有效加热面积增大。
3.烟气经过二次辐射体后温度降低,可降低排气通道的设计和材料选择要求。
4.少量未充分燃烧的燃气和中间产物(如一氧化碳CO)可以在二次辐射体上再次发生燃烧反应,进一步降低CO等有害气体的排放量
附图说明
图1为本发明实施例一基本结构的剖视图
图2为本发明实施例二基本结构的剖视图
具体实施方式
实施例一:图1中有带中间通孔的蜂窝红外线燃烧板(13)与带有中间排气通孔(18)的预混腔(14)紧密连接,排气通孔(18)入口固定高透气率铁铬铝纤维编织物制成的二次辐射体(19),气凝胶外腔体(12)内表面与预混腔(14)外壁面紧密连接、上端与微晶玻璃工作台(11)紧密贴合,构成密闭燃烧室。燃气从燃气进气管(17)进入预混腔(14),同时空气通过空气进气管(16)进入预混腔(14),燃气与空气充分混合后,透过红外线燃烧板(13)在表面形成红外辐射为主的燃烧,红外线透过工作台面(11)加热锅具(10)。
燃烧后的高温烟气在密闭燃烧室内向中间排气通孔(18)流动,穿过高透气率铁铬铝纤维编织物二次辐射体(19)时,部分热量转化为红外线辐射,少量未完全燃烧燃气和CO等也在此完成燃烧并形成红外线辐射,透过二次辐射体后的烟气温度有所降低,低温烟气沿排气通道流动,通过进一步换热后从排气管(15)后排出。
本方案的优点是炉头腔体外壁面温度较低,但中间排气通道较大,热辐射区功率密度较低。
实施例二:图2中整块燃烧面红外线燃烧板(29)与预混腔(24)紧密结合,硅酸铝制成的外腔体(23)上端与玻璃平板工作台面(21)紧密接触,其内壁面与预混腔(24)外壁面有一定空隙,形成排气通道;外腔体(23)下端与炉头底板(28)紧密接触,形成密闭燃烧室,碳化硅陶瓷蜂窝体二次辐射体(22)安放在外腔体(23)和红外线燃烧板(29)外缘、排气通道入口处,可以部分或全部遮挡排气通道。燃气和空气的进气结构与实施例一相同。
空气/燃气混合气体透过红外线燃烧板(29)后,经点火形成红外辐射为主的燃烧,红外线透过工作台面(21)加热锅具(20)。
燃烧后的高温气体在密闭燃烧室内向四周排气通道流动,穿过碳化硅陶瓷蜂窝体制成的二次辐射体(22)时,部分热量转化为红外线辐射,少量未完全燃烧燃气和一氧化碳CO等也在此进一步燃烧并形成红外线辐射,透过二次辐射体后的烟气温度有所降低,沿排气通道进一步换热后温度显著降低,并进入排气管(25)后排出。
本方案的优点是中间有效加热区功率密度大,烟气热交换面积大且充分,整体热效率高。
上述实施例仅仅是对本发明的优选实施例进行描述,并非对本发明的构思和范围进行限定,在不脱离本发明设计思想的前提下,本领域中专业技术人员对本发明的技术方案所采取的各种变化和改进,均属于本发明的保护范围。

Claims (3)

  1. 一种封闭燃烧炉头二次辐射式烟气余热再利用结构,包括:工作台面(11)、炉头外腔体(12)、燃烧板(13)、预混腔(14)、空气进气管(16)、燃气进气管(17)、二次辐射体(19)、排气通道(18)组成,其特征在于:工作台面(11)与外腔体(12)上端紧密接触,构成密闭空间,燃气空气混合气透过燃烧板(13)燃烧后的烟气只能从排气通道(18)排出,二次辐射体(19)置于排气通道(18)入口处,使高温烟气流向排气通道(18)时,必须透过二次辐射体。
  2. 一种封闭燃烧炉头二次辐射式烟气余热再利用方法,其特征在于:二次辐射体(19)置于排气通道(18)入口处,辐射体将高温烟气的部分热能转化为红外线辐射,降低烟气温度;同时烟气中少量未燃尽燃气和中间产物如一氧化碳等将在二次辐射体(19)上再次发生反应,产生红外线辐射,降低烟气有害物含量。
  3. 根据权利要求1和2所述的封闭燃烧炉头二次辐射式烟气余热再利用方法和结构,其特征在于:二次辐射体(19)由耐高温、抗氧化、具有高红外辐射率材料制成,应具有高透气率的低风阻结构,可以是金属纤维编织物、多孔蜂窝陶瓷体等。
PCT/CN2018/083178 2017-04-17 2018-04-16 一种封闭燃烧炉头二次辐射式烟气余热再利用方法和结构 WO2018192439A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710248428.1A CN108730973A (zh) 2017-04-17 2017-04-17 一种封闭燃烧炉头二次辐射式烟气余热再利用方法和结构
CN201710248428.1 2017-04-17

Publications (1)

Publication Number Publication Date
WO2018192439A1 true WO2018192439A1 (zh) 2018-10-25

Family

ID=63856215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083178 WO2018192439A1 (zh) 2017-04-17 2018-04-16 一种封闭燃烧炉头二次辐射式烟气余热再利用方法和结构

Country Status (2)

Country Link
CN (1) CN108730973A (zh)
WO (1) WO2018192439A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037536A (en) * 1998-03-31 2000-03-14 Jx Crystals Inc. TPV fireplace insert or TPV indoor heating stove
JP2004239535A (ja) * 2003-02-06 2004-08-26 Rinnai Corp ガスコンロ
US20050056267A1 (en) * 2003-09-11 2005-03-17 Maytag Corporation Combination radiant/convection gas cooking appliance
US20080003531A1 (en) * 2006-06-30 2008-01-03 Gas Technology Institute Self-recuperated, low NOx flat radiant panel heater
CN201819264U (zh) * 2010-10-21 2011-05-04 陈立德 具有热辐射网结构的节能燃气炉具
CN203258701U (zh) * 2013-05-08 2013-10-30 华南理工大学 一种组合式中餐燃气灶聚能装置
CN204962761U (zh) * 2015-07-02 2016-01-13 周海波 燃气催化无焰近红外间接加热多孔介质燃烧器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037536A (en) * 1998-03-31 2000-03-14 Jx Crystals Inc. TPV fireplace insert or TPV indoor heating stove
JP2004239535A (ja) * 2003-02-06 2004-08-26 Rinnai Corp ガスコンロ
US20050056267A1 (en) * 2003-09-11 2005-03-17 Maytag Corporation Combination radiant/convection gas cooking appliance
US20080003531A1 (en) * 2006-06-30 2008-01-03 Gas Technology Institute Self-recuperated, low NOx flat radiant panel heater
CN201819264U (zh) * 2010-10-21 2011-05-04 陈立德 具有热辐射网结构的节能燃气炉具
CN203258701U (zh) * 2013-05-08 2013-10-30 华南理工大学 一种组合式中餐燃气灶聚能装置
CN204962761U (zh) * 2015-07-02 2016-01-13 周海波 燃气催化无焰近红外间接加热多孔介质燃烧器

Also Published As

Publication number Publication date
CN108730973A (zh) 2018-11-02

Similar Documents

Publication Publication Date Title
WO2021036796A1 (zh) 一种具有盘绕型双层间壁式回热器的节能环保燃气灶
CN205783767U (zh) 一种烟气余热高效回收利用锅炉
CN102759130A (zh) 余热回收高效燃气灶
CN104266231B (zh) 一种燃气灶环保节能罩
CN107504487B (zh) 连续弥散式燃烧装置及形成连续弥散燃烧的方法
WO2018192439A1 (zh) 一种封闭燃烧炉头二次辐射式烟气余热再利用方法和结构
CN208170388U (zh) 通用型双重净化无焰节能燃烧器
CN102213449A (zh) 一种高效低污染中餐燃气炒菜灶
CN203385026U (zh) 回火式节能燃气灶
CN202109534U (zh) 一种高效低污染中餐燃气炒菜灶
WO2011082508A1 (zh) 一种燃油燃烧节能的方法及其燃烧器
CN214581261U (zh) 一种烧热效率高的节能减排燃气灶
CN105889929B (zh) 利用烟气预热空气的燃烧器及其使用方法
CN108006705A (zh) 一种燃气灶头和燃气灶
CN210532458U (zh) 无焰燃气灶
CN108224489A (zh) 一种高效环保燃烧系统及其操作方法
KR101972555B1 (ko) 밀폐형 복사식 가스레인지
CN108180507B (zh) 一种部分预混气体多孔介质燃气灶
CN211011500U (zh) 静音带副火醇油灶
CN205979886U (zh) 节能型燃气灶具
CN205807843U (zh) 一种高温预混燃气热载体炉
CN213207937U (zh) 一种新型节能燃气灶
CN219674247U (zh) 一种半导体废气处理设备新型红外线燃烧腔体
CN202719645U (zh) 复合材质多层储能双效加热多孔预混余热控制节能炉头
CN2356233Y (zh) 采暖炊事反烧炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18787664

Country of ref document: EP

Kind code of ref document: A1