WO2018192166A1 - 成像镜头 - Google Patents

成像镜头 Download PDF

Info

Publication number
WO2018192166A1
WO2018192166A1 PCT/CN2017/102429 CN2017102429W WO2018192166A1 WO 2018192166 A1 WO2018192166 A1 WO 2018192166A1 CN 2017102429 W CN2017102429 W CN 2017102429W WO 2018192166 A1 WO2018192166 A1 WO 2018192166A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging lens
imaging
focal length
effective focal
Prior art date
Application number
PCT/CN2017/102429
Other languages
English (en)
French (fr)
Inventor
胡亚斌
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710253905.3A external-priority patent/CN106896481B/zh
Priority claimed from CN201720406012.3U external-priority patent/CN206684372U/zh
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Priority to US16/067,061 priority Critical patent/US11333855B2/en
Publication of WO2018192166A1 publication Critical patent/WO2018192166A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only

Definitions

  • the present invention relates to an imaging lens, particularly a small imaging lens composed of five lenses.
  • CCD charge-coupled device
  • CMOS complementary metal-oxide semiconductor
  • the existing lens In order to meet the requirements of miniaturization, the existing lens usually has an F number of 2.0 or more, which achieves good optical performance while reducing the size of the lens.
  • F number 2.0 or more
  • the imaging lens especially for insufficient light (such as rainy days, dusk, etc.), hand shake, etc., so this 2.0 or above F-numbers have been unable to meet higher-order imaging requirements.
  • the present invention proposes an optical system which is applicable to portable electronic products and has an ultra-thin large aperture and good imaging quality.
  • the present invention provides an imaging lens.
  • An aspect of the invention provides an imaging lens that sequentially includes a first lens, a second lens, a third lens, a fourth lens, and the like from the object side to the image side of the imaging lens a fifth lens; wherein the effective focal length f of the imaging lens and the entrance pupil diameter EPD of the imaging lens satisfy f/EPD ⁇ 1.8, and the incident angle of the chief ray corresponding to the maximum field of view is incident on the side of the fourth lens object CRA4 ⁇ 15 °
  • Another aspect of the present invention provides an imaging lens that sequentially includes a first lens, a second lens, a third lens, a fourth lens, and a fifth from an object side to an image side of the imaging lens lens.
  • the first lens has a positive power, the object side is a convex surface;
  • the second lens has a negative power;
  • the third lens has a positive power or a negative power;
  • the fourth lens has a positive power or a negative power;
  • the fifth lens has a negative power.
  • the effective focal length f of the imaging lens satisfies 0.7 ⁇ f / f12 ⁇ 1.0 between the combined focal length f12 of the first lens and the second lens.
  • R2 is the radius of curvature of the side of the first lens image
  • R3 is the radius of curvature of the side surface of the second lens.
  • f1 is the effective focal length of the first lens
  • CT1 is the center thickness of the first lens
  • f is the effective focal length of the imaging lens
  • f1 is the effective focal length of the first lens
  • f is the effective focal length of the imaging lens
  • f2 is the effective focal length of the second lens
  • f is the effective focal length of the imaging lens
  • f5 is the effective focal length of the fifth lens
  • R1/R2 ⁇ 0.5 R1 is a radius of curvature of an object side surface of the first lens
  • R2 is a radius of curvature of an image side surface of the first lens
  • TTL is the on-axis distance from the object side of the first lens to the imaging surface
  • ImgH is half the diagonal length of the effective pixel area on the imaging surface.
  • the imaging lens according to the present invention is composed of five lenses, and is capable of achieving an ultra-thin large aperture, An imaging lens with good imaging quality.
  • FIG. 1 is a schematic structural view of an imaging lens of Embodiment 1;
  • FIG. 2 to FIG. 5 respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the imaging lens of Embodiment 1;
  • FIG. 6 is a schematic structural view of an imaging lens of Embodiment 2;
  • FIG. 11 is a schematic structural view of an imaging lens of Embodiment 3.
  • FIG. 16 is a schematic structural view of an imaging lens of Embodiment 4.
  • 17 to 20 respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the imaging lens of Example 4;
  • FIG. 21 is a schematic structural view of an imaging lens of Embodiment 5.
  • 26 is a schematic structural view of an imaging lens of Embodiment 6;
  • FIG. 30 respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the imaging lens of Example 6;
  • Figure 31 is a view showing the configuration of an imaging lens of Embodiment 7;
  • FIG. 36 is a schematic structural view of an imaging lens of Embodiment 8.
  • FIG. 41 is a schematic structural view showing an imaging lens of Embodiment 9;
  • a first element, component, region, layer or layer s s ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • the application provides an imaging lens.
  • the imaging lens according to the present application is sequentially provided from the object side to the image side of the imaging lens: a first lens, a second lens, a third lens, a fourth lens, and a fifth lens.
  • the first lens has a positive power and a side of the object is a convex surface.
  • the second lens has a negative power.
  • the third lens has a positive power or a negative power.
  • the fourth lens has a positive power or a negative power.
  • the fifth lens has a negative refractive power whose image side surface is concave at the paraxial shape and becomes convex from the concave shape as it moves away from the optical axis.
  • the effective focal length f of the imaging lens and the entrance pupil diameter EPD of the imaging lens satisfy f/EPD ⁇ 1.8, and the principal ray corresponding to the maximum field of view is incident on the side of the fourth lens object.
  • Angle CRA4 ⁇ 15°. More specifically, f/EPD ⁇ 1.80 is satisfied, and CRA4 ⁇ 11.27°.
  • the imaging lens that satisfies the above relationship can ensure that the optical system F number is within 1.8 and has a large aperture characteristic. Controlling the maximum field of view corresponding to the incident angle of the chief ray is for the system to match the image sensor CRA and improve the edge contrast.
  • R2 is the radius of curvature of the side surface of the first lens image
  • R3 is the radius of curvature of the side surface of the second lens object. More specifically, 0.70 ⁇ R2 / R3 ⁇ 1.78 is satisfied.
  • the imaging lens that satisfies the above relationship is for effectively correcting the system spherical aberration by controlling the curvature radii of the first lens and the second lens in the case where the system aperture is increased.
  • f1 is the effective focal length of the first lens
  • CT1 is the center thickness of the first lens. More specifically, 4.37 ⁇ f1/CT1 ⁇ 5.41 is satisfied. Too large or too small a center thickness of the lens can cause difficulty in lens formation. Imaging mirror that satisfies the above relationship The head can reasonably balance the focal length and thickness of the first lens, effectively correcting the system aberration and facilitating the processing.
  • f is the effective focal length of the imaging lens
  • CT4 is the center thickness of the fourth lens. More specifically, 5.84 ⁇ f / CT4 ⁇ 6.42 is satisfied.
  • the thickness of the lens center affects the power value, and the ratio of the fourth lens thickness to the system focal length is controlled within a certain range. On the one hand, it helps to correct the system color difference and helps to improve the distortion and meridional coma, and is also advantageous for molding.
  • the spherical aberration of the system at a large aperture will increase, and the first lens is in the form of positive power to improve the spherical aberration of the system while concentrating the light.
  • f is the effective focal length of the imaging lens
  • f2 is the effective focal length of the second lens. More specifically, -0.56 ⁇ f / f2 ⁇ -0.42 is satisfied.
  • the second lens is in the form of a negative power, and the ratio is controlled within a certain range, and the spherical aberration generated by the first lens is cancelled to achieve the effect of improving the spherical aberration, and is also advantageous for the chromatic aberration caused by the positive lens.
  • f is the effective focal length of the imaging lens
  • f5 is the effective focal length of the fifth lens. More specifically, -1.85 ⁇ f / f5 ⁇ -0.80 is satisfied. If the ratio is too large, the fifth lens will bear too much power, resulting in poor processability, which is not conducive to the distortion of the correction system.
  • An imaging lens that satisfies the above relationship can overcome the above drawbacks.
  • the imaging lens that satisfies the above relationship can ensure the reasonable distribution of the power of the front lens of the system, and improve the influence of the spherical aberration and coma of the system on the imaging quality.
  • R1/R2 ⁇ 0.5 R1 is the radius of curvature of the object side surface of the first lens
  • R2 is the radius of curvature of the image side surface of the first lens. More specifically, R1/R2 ⁇ 0.24 is satisfied. Defining this range can help control the power distribution of the first lens, as well as the shape of the lens within a reasonable range of manufacturing capabilities.
  • TTL/ImgH ⁇ 1.6 TTL is the on-axis distance from the object side of the first lens to the imaging surface
  • ImgH is half the diagonal length of the effective pixel area on the imaging surface. More specifically, TTL/ImgH ⁇ 1.56 is satisfied. Controlling this ratio range ensures that the system meets the needs of ultra-thin, miniaturized system structures while meeting imaging quality requirements.
  • an imaging lens according to Embodiment 1 of the present application will be described with reference to FIGS. 1 to 5.
  • FIG. 1 is a schematic structural view showing an imaging lens of Embodiment 1.
  • the imaging lens includes five lenses.
  • the five lenses are a first lens E1 having an object side surface S1 and an image side surface S2, a second lens E2 having an object side surface S3 and an image side surface S4, and a third lens E3 having an object side surface S5 and an image side surface S6, respectively.
  • the side surface S7 and the fourth lens E4 of the image side surface S8 and the fifth lens E5 having the object side surface S9 and the image side surface S10.
  • the first lens E1 to the fifth lens E5 are disposed in order from the object side to the image side of the imaging lens.
  • the first lens E1 may have a positive power, and the object side S1 may be a convex surface; the second lens E2 may have a negative power, and the image side surface S4 may be a concave surface; the third lens E3 may have a positive power; The four lens E4 may have a positive power; the fifth lens E5 may have a negative power, and the image side thereof is concave at the paraxial shape, and becomes concave from the concave shape as it goes away from the optical axis.
  • the imaging lens further includes a filter E6 having an object side S11 and an image side S12 for filtering out infrared light. In this embodiment, light from the object sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • the first to fifth lenses E1 to E5 have respective effective focal lengths f1 to f5.
  • the first lens E1 to the fifth lens E5 are sequentially arranged along the optical axis and collectively determine the total effective focal length f of the imaging lens.
  • Table 1 below shows the effective focal lengths f1 to f5 of the first to fifth lenses E1 to E5, the total effective focal length f of the imaging lens, the total length TTL of the imaging lens, and half of the maximum angle of view of the imaging lens HFOV.
  • Table 2 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the imaging lens in this embodiment. Among them, the unit of curvature radius and thickness are all millimeters (mm).
  • each aspherical surface type x is defined by the following formula (1):
  • x is the distance of the aspherical surface at height h from the optical axis, and the distance from the aspherical vertex is high;
  • k is the conic coefficient (given in Table 2);
  • Ai is the correction coefficient of the a-th order of the aspherical surface.
  • Table 3 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 of the respective aspheric surfaces S1 - S10 of the respective aspherical lenses usable in this embodiment, A 18 and A 20 .
  • the imaging lens according to Embodiment 1 is an imaging lens having an ultra-thin large aperture and good imaging quality.
  • Embodiment 2 of the present application will be described below with reference to FIGS. 6 to 10.
  • the imaging lens described in the following embodiments is the same as the arrangement of the imaging lens described in Embodiment 1.
  • a description similar to Embodiment 1 will be omitted for the sake of brevity.
  • Fig. 6 is a schematic structural view showing an imaging lens of Embodiment 2.
  • the imaging lens includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a fifth lens E5.
  • Table 4 below shows the effective focal lengths f1 to f5 of the first to fifth lenses E1 to E5, the total effective focal length f of the imaging lens, the total length TTL of the imaging lens, and half of the maximum angle of view of the imaging lens, HFOV.
  • Table 5 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the imaging lens in this embodiment. Among them, the unit of curvature radius and thickness are all millimeters (mm).
  • Table 6 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 of the respective aspheric surfaces S1 - S10 of the respective aspherical lenses usable in this embodiment, A 18 and A 20 .
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 7 is a view showing an axial chromatic aberration curve of the imaging lens of Embodiment 2, which shows that light rays of different wavelengths are deviated from a focus point after passing through the optical system.
  • FIG. 8 shows an imaging lens of Embodiment 2.
  • An astigmatism curve which represents meridional image curvature and sagittal curvature of field.
  • Fig. 9 is a view showing a distortion curve of the imaging lens of Embodiment 2, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 10 is a graph showing the chromatic aberration of magnification of the imaging lens of Embodiment 2, which shows the deviation of the different image heights on the imaging plane after the light passes through the imaging lens.
  • the imaging lens according to Embodiment 2 is an imaging lens having an ultra-thin large aperture and good imaging quality.
  • Fig. 11 is a schematic structural view showing an imaging lens of Embodiment 3.
  • the imaging lens includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a fifth lens E5.
  • Table 7 shows the effective focal lengths f1 to f5 of the first to fifth lenses E1 to E5, the total effective focal length f of the imaging lens, the total length TTL of the imaging lens, and half of the maximum angle of view of the imaging lens HFOV.
  • Table 8 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the imaging lens in this embodiment. Among them, the unit of curvature radius and thickness are all millimeters (mm).
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 12 is a view showing an axial chromatic aberration curve of the imaging lens of Embodiment 3, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical system.
  • Fig. 13 is a view showing an astigmatism curve of the imaging lens of Embodiment 3, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 14 is a view showing a distortion curve of the imaging lens of Embodiment 3, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 15 is a graph showing a magnification chromatic aberration curve of the imaging lens of Embodiment 3, which shows deviations of different image heights on the imaging plane after the light rays pass through the imaging lens.
  • the imaging lens according to Embodiment 3 is an imaging lens having an ultra-thin large aperture and good imaging quality.
  • Fig. 16 is a schematic structural view showing an imaging lens of Embodiment 4.
  • the imaging lens includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a fifth lens E5.
  • Table 10 below shows the effective focal lengths f1 to f5 of the first to fifth lenses E1 to E5, the total effective focal length f of the imaging lens, the total length TTL of the imaging lens, and half of the maximum angle of view of the imaging lens, HFOV.
  • Table 11 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the imaging lens in this embodiment. Among them, the unit of curvature radius and thickness are all millimeters (mm).
  • Table 12 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 of the respective aspheric surfaces S1 - S10 applicable to the respective aspherical lenses in this embodiment, A 18 and A 20 .
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • the imaging lens according to Embodiment 4 is an imaging lens having an ultra-thin large aperture and good imaging quality.
  • the imaging lens includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a fifth lens E5.
  • Table 13 below shows the effective focal lengths f1 to f5 of the first to fifth lenses E1 to E5, the total effective focal length f of the imaging lens, the total length TTL of the imaging lens, and half of the maximum angle of view of the imaging lens HFOV.
  • Table 14 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the imaging lens in this embodiment. Among them, the unit of curvature radius and thickness are all millimeters (mm).
  • Table 15 below shows the high order coefficient A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 of each aspherical surface S1-S10 applicable to each aspherical lens in this embodiment, A 18 and A 20 .
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 22 is a view showing an axial chromatic aberration curve of the imaging lens of Embodiment 5, which shows that light rays of different wavelengths are deviated from a focus point after passing through the optical system.
  • Fig. 23 is a view showing an astigmatism curve of the imaging lens of Embodiment 5, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 24 is a view showing a distortion curve of the imaging lens of Embodiment 5, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 25 is a graph showing the chromatic aberration of magnification of the imaging lens of Embodiment 5, which shows the deviation of the different image heights on the imaging plane after the light passes through the imaging lens.
  • the imaging lens according to Embodiment 5 is an imaging lens having an ultra-thin large aperture and good imaging quality.
  • Fig. 26 is a view showing the configuration of an imaging lens of Embodiment 6.
  • the imaging lens includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a fifth lens E5.
  • Table 16 below shows the effective focal lengths f1 to f5 of the first to fifth lenses E1 to E5, the total effective focal length f of the imaging lens, the total length TTL of the imaging lens, and half of the maximum angle of view of the imaging lens, HFOV.
  • Table 17 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the imaging lens in this embodiment. Among them, the unit of curvature radius and thickness are all millimeters (mm).
  • Table 18 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , which can be used for the respective aspheric surfaces S1 - S10 of the respective aspherical lenses in this embodiment, A 18 and A 20 .
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 27 is a view showing the axial chromatic aberration curve of the imaging lens of Example 6, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Fig. 28 is a view showing an astigmatism curve of the imaging lens of Embodiment 6, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 29 is a view showing the distortion curve of the imaging lens of Embodiment 6, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 30 is a graph showing the magnification chromatic aberration curve of the imaging lens of Embodiment 6, which shows the deviation of the different image heights on the imaging plane after the light rays pass through the imaging lens.
  • the imaging lens according to Embodiment 6 is an imaging lens having an ultra-thin large aperture and good imaging quality.
  • the imaging lens includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a fifth lens E5.
  • Table 19 below shows the effective focal lengths f1 to f5 of the first to fifth lenses E1 to E5, the total effective focal length f of the imaging lens, the total length TTL of the imaging lens, and half of the maximum angle of view of the imaging lens HFOV.
  • Table 20 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the imaging lens in this embodiment. Among them, the unit of curvature radius and thickness are all millimeters (mm).
  • Table 21 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 of the respective aspheric surfaces S1 - S10 of the respective aspherical lenses usable in this embodiment, A 18 and A 20 .
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • the imaging lens according to Embodiment 7 is an imaging lens having an ultra-thin large aperture and good imaging quality.
  • the imaging lens includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a fifth lens E5.
  • Table 22 below shows the effective focal lengths f1 to f5 of the first lens E1 to the fifth lens E5, and imaging The total effective focal length f of the lens, the total length TTL of the imaging lens, and half of the maximum field of view of the imaging lens, HFOV.
  • Table 23 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the imaging lens in this embodiment. Among them, the unit of curvature radius and thickness are all millimeters (mm).
  • Table 24 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 of the respective aspheric surfaces S1 - S10 of the respective aspherical lenses usable in this embodiment, A 18 and A 20 .
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • the imaging lens according to Embodiment 8 is an imaging lens having an ultra-thin large aperture and good imaging quality.
  • the imaging lens includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a fifth lens E5.
  • Table 25 below shows the effective focal lengths f1 to f5 of the first to fifth lenses E1 to E5, the total effective focal length f of the imaging lens, the total length TTL of the imaging lens, and half of the maximum angle of view of the imaging lens HFOV.
  • Table 26 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the imaging lens in this embodiment. Among them, the unit of curvature radius and thickness are all millimeters (mm).
  • Table 27 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 of the respective aspheric surfaces S1 - S10 of the respective aspherical lenses usable in this embodiment, A 18 and A 20 .
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 42 is a graph showing the axial chromatic aberration of the imaging lens of Example 9, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Fig. 43 is a view showing an astigmatism curve of the imaging lens of Embodiment 9, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 44 is a view showing the distortion curve of the imaging lens of Embodiment 9, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 45 is a graph showing the chromatic aberration of magnification of the imaging lens of Embodiment 9, which shows the deviation of the different image heights on the imaging plane after the light passes through the imaging lens.
  • the imaging lens according to Embodiment 9 is an imaging lens having an ultra-thin large aperture and good imaging quality.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种成像镜头,从物侧至像侧依序包括第一透镜(E1)、第二透镜(E2)、第三透镜(E3)、第四透镜(E4)和第五透镜(E5),其中,成像镜头的有效焦距f与成像镜头的入瞳直径EPD之间满足f/EPD≤1.8,以及最大视场对应的主光线入射到第四透镜的物侧面的入射角度CRA4<15°。这种成像镜头由5片镜片组成,能够实现具有超薄大孔径、良好成像质量的成像镜头。

Description

成像镜头
相关申请的交叉引用
本申请要求于2017年4月18日提交至中国国家知识产权局(SIPO)的、专利申请号为201710253905.3的中国专利申请以及于2017年4月18日提交至SIPO的、专利申请号为201720406012.3的中国专利申请的优先权和权益,以上中国专利申请通过引用整体并入本文。
技术领域
本发明涉及一种成像镜头,特别是由五片镜片组成的小型的成像镜头。
背景技术
随着CCD(charge-coupled device,电耦合器件)及CMOS(complementary metal-oxide semiconductor,互补式金属氧化物半导体)图像传感器的性能提高及尺寸减小,对应的摄像镜头也需满足高成像品质及小型化的要求。
为了满足小型化的要求,现有镜头通常配置的F数均在2.0或2.0以上,实现镜头减小尺寸的同时具有良好的光学性能。但是随着智能手机等便携式电子产品的不断发展,对成像镜头提出了更高的要求,特别是针对光线不足(如阴雨天、黄昏等)、手抖等情况,故这种2.0或2.0以上的F数已经无法满足更高阶的成像要求。
因此,本发明提出了一种可适用于便携式电子产品,具有超薄大孔径、良好的成像质量的光学系统。
发明内容
为了解决现有技术中的至少一些问题,本发明提供了一种成像镜头。
本发明的一个方面提供了一种成像镜头,所述成像镜头从所述成像镜头的物侧至像侧依序包括第一透镜、第二透镜、第三透镜、第四透镜以及 第五透镜;其中,成像镜头的有效焦距f与成像镜头的入瞳直径EPD之间满足f/EPD≤1.8,并且最大视场对应的主光线入射到第四透镜物侧面的入射角度CRA4<15°
本发明的另一个方面提供了这样一种成像镜头,所述成像镜头从所述成像镜头的物侧至像侧依序包括第一透镜、第二透镜、第三透镜、第四透镜以及第五透镜。第一透镜具有正光焦度,其物侧面为凸面;第二透镜具有负光焦度;第三透镜具有正光焦度或负光焦度;第四透镜具有正光焦度或负光焦度;所述第五透镜具有负光焦度。成像镜头的有效焦距f与第一透镜和第二透镜的组合焦距f12之间满足0.7≤f/f12<1.0。
根据本发明的一个实施方式,0.5<R2/R3<2.0,R2为第一透镜像侧面的曲率半径,R3为第二透镜物侧面的曲率半径。
根据本发明的一个实施方式,4.0<f1/CT1<6.0,f1为第一透镜的有效焦距,CT1为第一透镜的中心厚度。
根据本发明的一个实施方式,5.5<f/CT4<7.0,f为成像镜头的有效焦距,CT4为第四透镜的中心厚度。
根据本发明的一个实施方式,1.0≤f/f1<1.5,f为成像镜头的有效焦距,f1为第一透镜的有效焦距。
根据本发明的一个实施方式,-1.0<f/f2<-0.3,f为成像镜头的有效焦距,f2为第二透镜的有效焦距。
根据本发明的一个实施方式,-2.0<f/f5<-0.7,f为成像镜头的有效焦距,f5为第五透镜的有效焦距。
根据本发明的一个实施方式,R1/R2<0.5,R1为第一透镜的物侧面的曲率半径,R2为第一透镜的像侧面的曲率半径。
根据本发明的一个实施方式,1.0<f/R4<2.0,f为成像镜头的有效焦距,R4为第二透镜像侧面的曲率半径。
根据本发明的一个实施方式,|f/R7|<1.0,f为成像镜头的有效焦距,R7为第四透镜的物侧面的曲率半径。
根据本发明的一个实施方式,TTL/ImgH≤1.6,TTL为第一透镜的物侧面至成像面的轴上距离,ImgH为成像面上有效像素区域对角线长的一半。
根据本发明的成像镜头由5片镜片组成,能够实现具有超薄大孔径、 良好成像质量的成像镜头。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本发明的其它特征、目的和优点将变得更加明显。在附图中:
图1示出了实施例1的成像镜头的结构示意图;
图2至图5分别示出了实施例1的成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图6示出了实施例2的成像镜头的结构示意图;
图7至图10分别示出了实施例2的成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图11示出了实施例3的成像镜头的结构示意图;
图12至图15分别示出了实施例3的成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图16示出了实施例4的成像镜头的结构示意图;
图17至图20分别示出了实施例4的成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图21示出了实施例5的成像镜头的结构示意图;
图22至图25分别示出了实施例5的成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图26示出了实施例6的成像镜头的结构示意图;
图27至图30分别示出了实施例6的成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图31示出了实施例7的成像镜头的结构示意图;
图32至图35分别示出了实施例7的成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图36示出了实施例8的成像镜头的结构示意图;
图37至图40分别示出了实施例8的成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图41示出了实施例9的成像镜头的结构示意图;以及
图42至图45分别示出了实施例9的成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与有关发明相关的部分。
应理解的是,在本申请中,当元件或层被描述为在另一元件或层“上”、“连接至”或“联接至”另一元件或层时,其可直接在另一元件或层上、直接连接至或联接至另一元件或层,或者可存在介于中间的元件或层。当元件称为“直接位于”另一元件或层“上”、“直接连接至”或“直接联接至”另一元件或层时,不存在介于中间的元件或层。在说明书全文中,相同的标号指代相同的元件。如本文中使用的,用语“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应理解的是,虽然用语第1、第2或第一、第二等在本文中可以用来描述各种元件、部件、区域、层和/或段,但是这些元件、部件、区域、层和/或段不应被这些用语限制。这些用语仅用于将一个元件、部件、区域、层或段与另一个元件、部件、区域、层或段区分开。因此,在不背离本申请的教导的情况下,下文中讨论的第一元件、部件、区域、层或段可被称作第二元件、部件、区域、层或段。
本文中使用的用辞仅用于描述具体实施方式的目的,并不旨在限制本申请。如在本文中使用的,除非上下文中明确地另有指示,否则没有限定单复数形式的特征也意在包括复数形式的特征。还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、整体、步骤、操作、元件和/或部件,但不排除存在或添加一个或多个其它特征、整体、步骤、操作、元件、部件和/或它们的组。如在本文中使用的,用语“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。诸如“...中的至少一个”的表述当出现在元件的列表之后时,修饰整个元件列表,而不是修饰列表中的单独元件。此外, 当描述本申请的实施方式时,使用“可以”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
本申请提供了一种成像镜头。根据本申请的成像镜头从成像镜头的物侧至像侧依序设置有:第一透镜、第二透镜、第三透镜、第四透镜以及第五透镜。
在本申请的实施例中,第一透镜具有正光焦度,其物侧面为凸面。在本申请的实施例中,第二透镜具有负光焦度。在本申请的实施例中,第三透镜具有正光焦度或负光焦度。在本申请的实施例中,第四透镜具有正光焦度或负光焦度。在本申请的实施例中,第五透镜具有负光焦度,其像侧面在近轴处为凹面,随着远离光轴由凹状变为凸状。
在本申请的实施例中,成像镜头的有效焦距f与成像镜头的入瞳直径EPD之间满足f/EPD≤1.8,并且最大视场对应的主光线入射到所述第四透镜物侧面的入射角度CRA4<15°。更具体地,满足f/EPD≤1.80,CRA4≤11.27°。满足上述关系的成像镜头能够保证光学系统F数在1.8以内,具备大孔径特性。控制最大视场对应主光线的入射角度是为了系统与图像传感器CRA的匹配性及改善边缘相对照度。
在本申请的实施例中,0.5<R2/R3<2.0,R2为所述第一透镜像侧面的曲率半径,R3为所述第二透镜物侧面的曲率半径。更具体地,满足0.70≤R2/R3≤1.78。满足上述关系的成像镜头是为了在系统孔径增大的情况下,通过控制第一透镜和第二透镜的曲率半径,有效修正系统球差。
在本申请的实施例中,4.0<f1/CT1<6.0,f1为所述第一透镜的有效焦距,CT1为所述第一透镜的中心厚度。更具体地,满足4.37≤f1/CT1≤5.41。透镜的中心厚度过大或过小会对镜片成型造成困难。满足上述关系的成像镜 头能够合理平衡第一透镜的焦距和厚度,有效矫正系统像差的同时利于加工。
在本申请的实施例中,5.5<f/CT4<7.0,f为所述成像镜头的有效焦距,CT4为所述第四透镜的中心厚度。更具体地,满足5.84≤f/CT4≤6.42。镜片中心厚度影响光焦度值,将第四透镜中厚与系统焦距比值控制在一定范围,一方面利于矫正系统色差及帮助改善畸变与子午方向慧差,同时也利于成型制作。
在本申请的实施例中,1.0≤f/f1<1.5,f为所述成像镜头的有效焦距,f1为所述第一透镜的有效焦距。更具体地,满足1.07≤f/f1≤1.17。大孔径下系统的球差会增大,第一透镜为正光焦度形式使得在汇聚光线的同时起到改善系统球差的影响。
在本申请的实施例中,-1.0<f/f2<-0.3,f为所述成像镜头的有效焦距,f2为所述第二透镜的有效焦距。更具体地,满足-0.56≤f/f2≤-0.42。第二透镜为负光焦度形式,控制该比值在一定范围,与第一透镜产生的球差进行抵消,达到改善球差的效果,也利于承担正透镜产生的色差影响。
在本申请的实施例中,-2.0<f/f5<-0.7,f为所述成像镜头的有效焦距,f5为所述第五透镜的有效焦距。更具体地,满足-1.85≤f/f5≤-0.80。该比值太大则第五透镜会承担过多的光焦度,造成工艺性变差,太小不利于矫正系统的畸变。满足上述关系的成像透镜能够克服上述缺陷。
在本申请的实施例中,0.7≤f/f12<1.0,f为所述成像镜头的有效焦距,f12为所述第一透镜和所述第二透镜的组合焦距。更具体地,满足0.7≤f/f12≤0.81。满足上述关系的成像透镜能够保证系统对前组透镜光焦度的合理分配,改善系统的球差、彗差对成像质量的影响。
在本申请的实施例中,R1/R2<0.5,R1为所述第一透镜的物侧面的曲率半径,R2为所述第一透镜的像侧面的曲率半径。更具体地,满足R1/R2≤0.24。限定该范围可助于控制第一透镜的光焦度分配,也使该透镜的形状在加工制造的合理能力范围内。
在本申请的实施例中,1.0<f/R4<2.0,f为所述成像镜头的有效焦距,R4为所述第二透镜像侧面的曲率半径。更具体地,满足1.13≤f/R4≤1.79。第二透镜像侧面的曲率半径过小容易有产生鬼像的风险,太大则不易于矫 正系统的轴外像差。满足上述关系的成像透镜能够克服上述缺陷。
在本申请的实施例中,|f/R7|<1.0,f为所述成像镜头的有效焦距,R7为所述第四透镜的物侧面的曲率半径。更具体地,满足|f/R7|≤0.76。限定该范围使得边缘光线入射到第四透镜时角度较小,减小偏振对边缘照度的不利影响。
在本申请的实施例中,TTL/ImgH≤1.6,TTL为所述第一透镜的物侧面至成像面的轴上距离,ImgH为成像面上有效像素区域对角线长的一半。更具体地,满足TTL/ImgH≤1.56。控制该比值范围保证了系统在满足成像质量要求下符合超薄、小型化系统结构的需求。
以下结合具体实施例进一步描述本申请。
实施例1
首先参照图1至图5描述根据本申请实施例1的成像镜头。
图1为示出了实施例1的成像镜头的结构示意图。如图1所示,成像镜头包括5片透镜。这5片透镜分别为具有物侧面S1和像侧面S2的第一透镜E1、具有物侧面S3和像侧面S4的第二透镜E2、具有物侧面S5和像侧面S6的第三透镜E3、具有物侧面S7和像侧面S8的第四透镜E4以及具有物侧面S9和像侧面S10的第五透镜E5。第一透镜E1至第五透镜E5从成像镜头的物侧到像侧依次设置。第一透镜E1可具有正光焦度,且其物侧面S1可为凸面;第二透镜E2可具有负光焦度,且其像侧面S4可为凹面;第三透镜E3可具有正光焦度;第四透镜E4可具有正光焦度;第五透镜E5可具有负光焦度,且其像侧面在近轴处为凹面,随着远离光轴由凹状变为凸状。该成像镜头还包括用于滤除红外光的具有物侧面S11和像侧面S12的滤光片E6。在该实施例中,来自物体的光依次穿过各表面S1至S12并最终成像在成像表面S13上。
在该实施例中,第一透镜E1至第五透镜E5分别具有各自的有效焦距f1至f5。第一透镜E1至第五透镜E5沿着光轴依次排列并共同决定了成像镜头的总有效焦距f。下表1示出了第一透镜E1至第五透镜E5的有效焦距f1至f5、成像镜头的总有效焦距f、成像镜头的总长度TTL以及成像镜头的最大视场角的一半HFOV。
f1(mm) 3.50 f(mm) 3.75
f2(mm) -7.90 TTL(mm) 4.50
f3(mm) 28.78 HFOV(°) 38.6
f4(mm) 4.00    
f5(mm) -3.10    
表1
表2示出了该实施例中的成像镜头中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2017102429-appb-000001
表2
在本实施例中,各非球面面型x由以下公式(1)限定:
Figure PCTCN2017102429-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表2中曲率半径R的倒数);k为圆锥系数(在表2中已给出);Ai是非球面第i-th阶的修正系数。
下表3示出了可用于该实施例中的各非球面透镜的各非球面S1-S10的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20
Figure PCTCN2017102429-appb-000003
Figure PCTCN2017102429-appb-000004
表3
图2示出了实施例1的成像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图3示出了实施例1的成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4示出了实施例1的成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图5示出了实施例1的成像镜头的倍率色差曲线,其表示光线经由成像镜头后在成像面上的不同的像高的偏差。综上所述并参照图2至图5可以看出,根据实施例1的成像镜头是一种具有超薄大孔径、良好成像质量的成像镜头。
实施例2
以下参照图6至图10描述根据本申请实施例2的成像镜头。除了成像镜头的各透镜的参数之外,例如除了各透镜的曲率半径、厚度、材料、圆锥系数、有效焦距、轴上间距、各透镜的高次项系数等之外,在本实施例2及以下各实施例中描述的成像镜头与实施例1中描述的成像镜头的布置结构相同。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。
图6为示出了实施例2的成像镜头的结构示意图。成像镜头由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4以及第五透镜E5。
下表4示出了第一透镜E1至第五透镜E5的有效焦距f1至f5、成像镜头的总有效焦距f、成像镜头的总长度TTL以及成像镜头的最大视场角的一半HFOV。
f1(mm) 3.41 f(mm) 3.74
f2(mm) -8.55 TTL(mm) 4.54
f3(mm) -2630.73 HFOV(°) 38.4
f4(mm) 4.01    
f5(mm) -3.04    
表4
表5示出了该实施例中的成像镜头中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2017102429-appb-000005
表5
下表6示出了可用于该实施例中的各非球面透镜的各非球面S1-S10的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 7.5446E-03 2.3360E-02 -8.7259E-02 2.9093E-01 -6.3755E-01 9.2920E-01 -8.5792E-01 4.5093E-01 -1.0326E-01
S2 -2.6692E-01 6.2194E-01 -9.1291E-01 7.9399E-01 -4.5343E-01 4.5157E-01 -7.2919E-01 6.1250E-01 -1.9327E-01
S3 -2.6562E-01 6.2011E-01 -5.6016E-01 -2.0562E-01 7.8102E-01 2.3607E-01 -1.8713E+00 1.8286E+00 -5.9004E-01
S4 -1.3656E-01 2.1779E-01 6.5243E-02 -7.4276E-01 8.9520E-01 1.0105E+00 -3.5962E+00 3.5123E+00 -1.1879E+00
S5 -1.5906E-01 1.3420E-01 -9.9678E-01 4.1362E+00 -1.0845E+01 1.7633E+01 -1.7306E+01 9.3647E+00 -2.1103E+00
S6 -1.4991E-01 1.3002E-01 -6.3813E-01 1.7402E+00 -3.0348E+00 3.3549E+00 -2.2648E+00 8.4932E-01 -1.3313E-01
S7 -4.0240E-02 7.1882E-03 -7.8601E-02 8.9492E-02 -6.0178E-02 7.5583E-03 1.5332E-02 -8.0707E-03 1.2011E-03
S8 -5.1619E-02 1.6395E-01 -2.9868E-01 3.5325E-01 -2.8370E-01 1.4550E-01 -4.4278E-02 7.2448E-03 -4.9217E-04
S9 -5.7693E-01 5.8743E-01 -4.3275E-01 2.3228E-01 -8.4671E-02 2.0177E-02 -3.0071E-03 2.5465E-04 -9.3697E-06
S10 -2.6233E-01 2.4783E-01 -1.6033E-01 6.9641E-02 -2.0220E-02 3.8509E-03 -4.6140E-04 3.1576E-05 -9.4236E-07
表6
图7示出了实施例2的成像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图8示出了实施例2的成像镜头的 象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图9示出了实施例2的成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图10示出了实施例2的成像镜头的倍率色差曲线,其表示光线经由成像镜头后在成像面上的不同的像高的偏差。综上所述并参照图7至图10可以看出,根据实施例2的成像镜头是一种具有超薄大孔径、良好成像质量的成像镜头。
实施例3
以下参照图11至图15描述根据本申请实施例3的成像镜头。
图11为示出了实施例3的成像镜头的结构示意图。成像镜头由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4以及第五透镜E5。
下表7示出了第一透镜E1至第五透镜E5的有效焦距f1至f5、成像镜头的总有效焦距f、成像镜头的总长度TTL以及成像镜头的最大视场角的一半HFOV。
f1(mm) 3.49 f(mm) 3.77
f2(mm) -7.81 TTL(mm) 4.50
f3(mm) 24.07 HFOV(°) 38.5
f4(mm) 3.88    
f5(mm) -2.87    
表7
表8示出了该实施例中的成像镜头中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2017102429-appb-000006
Figure PCTCN2017102429-appb-000007
表8
下表9示出了可用于该实施例中的各非球面透镜的各非球面S1-S10的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.1989E-02 -2.3860E-02 2.6545E-01 -1.1056E+00 2.6497E+00 -3.7463E+00 3.0967E+00 -1.3776E+00 2.5427E-01
S2 -2.5700E-01 6.2385E-01 -1.0346E+00 1.5088E+00 -2.8539E+00 5.3733E+00 -6.6954E+00 4.5294E+00 -1.2736E+00
S3 -2.7164E-01 6.6065E-01 -6.1834E-01 -2.0077E-01 6.8298E-01 1.1037E+00 -3.7970E+00 3.6183E+00 -1.2177E+00
S4 -1.6457E-01 2.2517E-01 4.5435E-01 -3.3312E+00 9.3660E+00 -1.5237E+01 1.4651E+01 -7.5413E+00 1.5641E+00
S5 -1.5514E-01 1.7821E-01 -1.3637E+00 5.9325E+00 -1.6283E+01 2.7987E+01 -2.9292E+01 1.7025E+01 -4.1523E+00
S6 -1.3342E-01 1.1458E-01 -7.1491E-01 2.3052E+00 -4.7053E+00 6.0181E+00 -4.6596E+00 1.9847E+00 -3.5059E-01
S7 -2.8652E-02 -5.7628E-03 -1.5539E-01 3.5392E-01 -4.2290E-01 2.8153E-01 -1.0509E-01 2.0702E-02 -1.6810E-03
S8 -7.5873E-02 2.4311E-01 -5.0578E-01 6.8292E-01 -5.8081E-01 3.0445E-01 -9.4367E-02 1.5806E-02 -1.1027E-03
S9 -7.1400E-01 6.9407E-01 -4.1707E-01 1.6940E-01 -4.6161E-02 8.3616E-03 -9.8829E-04 7.1763E-05 -2.5556E-06
S10 -3.5630E-01 3.6082E-01 -2.4828E-01 1.1807E-01 -3.8828E-02 8.5943E-03 -1.2183E-03 9.9814E-05 -3.5893E-06
表9
图12示出了实施例3的成像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图13示出了实施例3的成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14示出了实施例3的成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图15示出了实施例3的成像镜头的倍率色差曲线,其表示光线经由成像镜头后在成像面上的不同的像高的偏差。综上所述并参照图12至图15可以看出,根据实施例3的成像镜头是一种具有超薄大孔径、良好成像质量的成像镜头。
实施例4
以下参照图16至图20描述根据本申请实施例4的成像镜头。
图16为示出了实施例4的成像镜头的结构示意图。成像镜头由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4以及第五透镜E5。
下表10示出了第一透镜E1至第五透镜E5的有效焦距f1至f5、成像镜头的总有效焦距f、成像镜头的总长度TTL以及成像镜头的最大视场角的一半HFOV。
f1(mm) 3.38 f(mm) 3.77
f2(mm) -7.57 TTL(mm) 4.50
f3(mm) 37.93 HFOV(°) 38.5
f4(mm) 3.82    
f5(mm) -2.97    
表10
下表11示出了该实施例中的成像镜头中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2017102429-appb-000008
表11
下表12示出了可用于该实施例中的各非球面透镜的各非球面S1-S10的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -6.7618E-03 5.9038E-02 -2.8301E-01 8.0111E-01 -1.3260E+00 1.3035E+00 -7.3576E-01 2.1852E-01 -2.6386E-02
S2 -1.9956E-01 4.7813E-01 -8.6756E-01 1.6074E+00 -3.0527E+00 4.6178E+00 -4.5975E+00 2.6153E+00 -6.4752E-01
S3 -2.2780E-01 5.2683E-01 -7.0626E-01 1.3982E+00 -4.3495E+00 9.4393E+00 -1.1695E+01 7.6509E+00 -2.0764E+00
S4 -1.6211E-01 2.9386E-01 -4.9361E-01 1.2415E+00 -2.8693E+00 4.1538E+00 -3.2984E+00 1.3199E+00 -2.0906E-01
S5 -1.6687E-01 2.1133E-01 -1.5650E+00 6.5515E+00 -1.7361E+01 2.9032E+01 -2.9834E+01 1.7234E+01 -4.2389E+00
S6 -1.4412E-01 1.5924E-01 -1.0058E+00 3.3526E+00 -7.0050E+00 9.1876E+00 -7.3303E+00 3.2485E+00 -6.0758E-01
S7 -7.6202E-03 -8.0789E-02 1.1716E-01 -1.9365E-01 2.2117E-01 -1.7645E-01 8.7902E-02 -2.3366E-02 2.5037E-03
S8 -8.4663E-02 2.4874E-01 -4.4858E-01 5.4450E-01 -4.3658E-01 2.2009E-01 -6.5900E-02 1.0655E-02 -7.1622E-04
S9 -6.5123E-01 6.6033E-01 -4.4702E-01 2.1428E-01 -7.0366E-02 1.5416E-02 -2.1608E-03 1.7608E-04 -6.3816E-06
S10 -3.1083E-01 3.0689E-01 -2.1160E-01 1.0046E-01 -3.2797E-02 7.1815E-03 -1.0056E-03 8.1317E-05 -2.8845E-06
表12
图17示出了实施例4的成像镜头的轴上色差曲线,其表示不同波长的 光线经由光学系统后的会聚焦点偏离。图18示出了实施例4的成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图19示出了实施例4的成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图20示出了实施例4的成像镜头的倍率色差曲线,其表示光线经由成像镜头后在成像面上的不同的像高的偏差。综上所述并参照图17至图20可以看出,根据实施例4的成像镜头是一种具有超薄大孔径、良好成像质量的成像镜头。
实施例5
以下参照图21至图25描述根据本申请实施例5的成像镜头。
图21为示出了实施例5的成像镜头的结构示意图。成像镜头由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4以及第五透镜E5。
下表13示出了第一透镜E1至第五透镜E5的有效焦距f1至f5、成像镜头的总有效焦距f、成像镜头的总长度TTL以及成像镜头的最大视场角的一半HFOV。
f1(mm) 3.49 f(mm) 3.79
f2(m) -7.54 TTL(mm) 4.50
f3(mm) 20.25 HFOV(°) 38.4
f4(mm) 3.52    
f5(mm) -2.55    
表13
下表14示出了该实施例中的成像镜头中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2017102429-appb-000009
Figure PCTCN2017102429-appb-000010
表14
下表15示出了可用于该实施例中的各非球面透镜的各非球面S1-S10的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 3.3760E-03 -2.3532E-04 1.1593E-01 -5.8985E-01 1.5161E+00 -2.1811E+00 1.7866E+00 -7.7192E-01 1.3595E-01
S2 -2.5725E-01 5.9049E-01 -7.8765E-01 5.7046E-01 -5.3378E-01 1.6472E+00 -2.9662E+00 2.4273E+00 -7.6317E-01
S3 -2.7149E-01 6.5217E-01 -5.8440E-01 -8.1713E-02 -1.0782E-01 2.9048E+00 -5.9259E+00 4.9319E+00 -1.5551E+00
S4 -1.5517E-01 2.4356E-01 2.2583E-01 -1.8557E+00 4.3024E+00 -5.0147E+00 2.5080E+00 3.3156E-01 -5.8175E-01
S5 -1.4895E-01 8.0378E-02 -6.8985E-01 2.9666E+00 -8.1368E+00 1.3876E+01 -1.4252E+01 8.0024E+00 -1.8012E+00
S6 -1.3113E-01 1.0726E-01 -7.3413E-01 2.4192E+00 -4.9465E+00 6.2982E+00 -4.8396E+00 2.0465E+00 -3.5987E-01
S7 -7.0321E-03 -2.3225E-02 -3.0709E-02 5.4881E-02 -5.4377E-02 3.0142E-02 -8.9838E-03 1.3602E-03 -8.2634E-05
S8 2.6390E-02 4.6939E-02 -7.6000E-02 5.1492E-02 -1.7462E-02 3.2310E-03 -3.3215E-04 1.7842E-05 -3.9169E-07
S9 -7.3130E-01 9.2773E-01 -8.6217E-01 5.6455E-01 -2.4194E-01 6.5405E-02 -1.0661E-02 9.4890E-04 -3.5183E-05
S10 -3.3776E-01 3.9023E-01 -3.1864E-01 1.7724E-01 -6.6368E-02 1.6395E-02 -2.5598E-03 2.2866E-04 -8.8976E-06
表15
图22示出了实施例5的成像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图23示出了实施例5的成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图24示出了实施例5的成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图25示出了实施例5的成像镜头的倍率色差曲线,其表示光线经由成像镜头后在成像面上的不同的像高的偏差。综上所述并参照图22至图25可以看出,根据实施例5的成像镜头是一种具有超薄大孔径、良好成像质量的成像镜头。
实施例6
以下参照图26至图30描述根据本申请实施例6的成像镜头。
图26为示出了实施例6的成像镜头的结构示意图。成像镜头由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4以及第五透镜E5。
下表16示出了第一透镜E1至第五透镜E5的有效焦距f1至f5、成像镜头的总有效焦距f、成像镜头的总长度TTL以及成像镜头的最大视场角的一半HFOV。
f1(mm) 3.23 f(mm) 3.77
f2(mm) -6.73 TTL(mm) 4.50
f3(mm) 26.92 HFOV(°) 38.5
f4(mm) 2.67    
f5(mm) -2.04    
表16
下表17示出了该实施例中的成像镜头中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2017102429-appb-000011
表17
下表18示出了可用于该实施例中的各非球面透镜的各非球面S1-S10的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -6.0495E-03 9.3704E-04 -9.4858E-04 2.2970E-04 -2.7291E-05 1.8407E-06 -7.1655E-08 1.4958E-09 -1.2017E-11
S2 -2.3596E-01 6.8898E-01 -1.1716E+00 1.1787E+00 -2.5298E-01 -1.0642E+00 1.4811E+00 -8.1955E-01 1.6855E-01
S3 -3.0945E-01 8.5059E-01 -1.3978E+00 1.6557E+00 -1.5171E+00 1.0927E+00 -5.4308E-01 1.5274E-01 -1.7734E-02
S4 -1.5942E-01 1.9639E-01 8.1990E-01 -5.5068E+00 1.5559E+01 -2.5041E+01 2.3264E+01 -1.1425E+01 2.2772E+00
S5 -1.6947E-01 -8.0226E-03 -1.5888E-01 2.4817E-01 -2.3809E-01 -5.8495E-02 3.2585E-02 9.2301E-02 3.3711E-02
S6 -1.4335E-01 1.3260E-01 -1.0751E+00 3.9599E+00 -8.8556E+00 1.2180E+01 -1.0036E+01 4.5243E+00 -8.4560E-01
S7 1.1791E-02 -3.8832E-02 -2.3564E-02 6.3294E-02 -6.1978E-02 3.1302E-02 -8.2856E-03 1.0949E-03 -5.7133E-05
S8 -4.6604E-02 1.6911E-02 -1.0946E-03 -2.6317E-04 4.3452E-05 -2.8021E-06 9.3695E-08 -1.6111E-09 1.1291E-11
S9 -3.4020E-01 2.0851E-01 -5.9488E-02 9.2829E-03 -8.2818E-04 4.4134E-05 -1.3986E-06 2.4408E-08 -1.8102E-10
S10 -2.2585E-01 1.9150E-01 -1.2206E-01 5.6266E-02 -1.8176E-02 3.9262E-03 -5.3775E-04 4.2298E-05 -1.4659E-06
表18
图27示出了实施例6的成像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图28示出了实施例6的成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图29示出了实施例6的成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图30示出了实施例6的成像镜头的倍率色差曲线,其表示光线经由成像镜头后在成像面上的不同的像高的偏差。综上所述并参照图27至图30可以看出,根据实施例6的成像镜头是一种具有超薄大孔径、良好成像质量的成像镜头。
实施例7
以下参照图31至图35描述根据本申请实施例7的成像镜头。
图31为示出了实施例7的成像镜头的结构示意图。成像镜头由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4以及第五透镜E5。
下表19示出了第一透镜E1至第五透镜E5的有效焦距f1至f5、成像镜头的总有效焦距f、成像镜头的总长度TTL以及成像镜头的最大视场角的一半HFOV。
f1(mm) 3.50 f(mm) 3.88
f2(mm) -9.18 TTL(mm) 4.58
3(mm) 8.84 HFOV(°) 37.1
f4(mm) -1000.08    
f5(mm) -4.85    
表19
下表20示出了该实施例中的成像镜头中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2017102429-appb-000012
Figure PCTCN2017102429-appb-000013
表20
下表21示出了可用于该实施例中的各非球面透镜的各非球面S1-S10的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.6824E-03 4.4693E-02 -2.2926E-01 7.3569E-01 -1.4878E+00 1.8942E+00 -1.4711E+00 6.3446E-01 -1.1698E-01
S2 -2.5786E-01 5.2218E-01 -2.4306E-03 -2.8694E+00 8.0894E+00 -1.1767E+01 9.8095E+00 -4.4318E+00 8.3797E-01
S3 -2.6286E-01 5.9026E-01 -1.9524E-01 -1.9136E+00 5.4999E+00 -7.7336E+00 6.1865E+00 -2.6618E+00 4.7126E-01
S4 -1.1933E-01 1.6817E-01 1.5192E-02 -2.7578E-01 -4.3381E-01 3.2757E+00 -6.0447E+00 5.0250E+00 -1.5946E+00
S5 -1.2621E-01 1.3626E-01 -1.2272E+00 5.2122E+00 -1.4132E+01 2.4117E+01 -2.5177E+01 1.4698E+01 -3.6315E+00
S6 -8.3530E-02 4.4740E-02 -5.3387E-01 1.6004E+00 -3.0888E+00 3.8571E+00 -3.0133E+00 1.3505E+00 -2.5960E-01
S7 2.1756E-03 -2.1352E-01 9.6781E-01 -2.9176E+00 4.8380E+00 -4.7654E+00 2.7227E+00 -8.2400E-01 1.0187E-01
S8 -1.5405E-01 3.7199E-01 -4.7458E-01 3.3246E-01 -1.3705E-01 2.9185E-02 -6.6732E-04 -8.7486E-04 1.1079E-04
S9 -4.2992E-01 5.5599E-01 -4.6105E-01 2.3509E-01 -7.5105E-02 1.5224E-02 -1.9082E-03 1.3498E-04 -4.1164E-06
S10 -1.7978E-01 1.7145E-01 -1.1010E-01 4.7890E-02 -1.4512E-02 2.9863E-03 -3.9300E-04 2.9522E-05 -9.5580E-07
表21
图32示出了实施例7的成像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图33示出了实施例7的成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图34示出了实施例7的成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图35示出了实施例7的成像镜头的倍率色差曲线,其表示光线经由成像镜头后在成像面上的不同的像高的偏差。综上所述并参照图32至图35可以看出,根据实施例7的成像镜头是一种具有超薄大孔径、良好成像质量的成像镜头。
实施例8
以下参照图36至图40描述根据本申请实施例8的成像镜头。
图36为示出了实施例8的成像镜头的结构示意图。成像镜头由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4以及第五透镜E5。
下表22示出了第一透镜E1至第五透镜E5的有效焦距f1至f5、成像 镜头的总有效焦距f、成像镜头的总长度TTL以及成像镜头的最大视场角的一半HFOV。
f1(mm) 3.46 f(mm) 3.76
f2(mm) -8.11 TTL(mm) 4.50
f3(mm) 34.18 HFOV(°) 38.6
f4(mm) 3.73    
f5(mm) -2.86    
表22
下表23示出了该实施例中的成像镜头中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2017102429-appb-000014
表23
下表24示出了可用于该实施例中的各非球面透镜的各非球面S1-S10的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2017102429-appb-000015
Figure PCTCN2017102429-appb-000016
表24
图37示出了实施例8的成像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图38示出了实施例8的成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图39示出了实施例8的成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图40示出了实施例8的成像镜头的倍率色差曲线,其表示光线经由成像镜头后在成像面上的不同的像高的偏差。综上所述并参照图37至图40可以看出,根据实施例8的成像镜头是一种具有超薄大孔径、良好成像质量的成像镜头。
实施例9
以下参照图41至图45描述根据本申请实施例9的成像镜头。
图41为示出了实施例9的成像镜头的结构示意图。成像镜头由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4以及第五透镜E5。
下表25示出了第一透镜E1至第五透镜E5的有效焦距f1至f5、成像镜头的总有效焦距f、成像镜头的总长度TTL以及成像镜头的最大视场角的一半HFOV。
f1(mm) 3.39 f(mm) 3.74
f2(mm) -6.89 TTL(mm) 4.50
f3(mm) 17.97 HFOV(°) 38.7
f4(mm) 3.76    
f5(mm) -2.72    
表25
下表26示出了该实施例中的成像镜头中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2017102429-appb-000017
Figure PCTCN2017102429-appb-000018
表26
下表27示出了可用于该实施例中的各非球面透镜的各非球面S1-S10的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -8.7109E-03 1.7758E-02 -6.8614E-02 1.4862E-01 -1.8254E-01 1.2387E-01 -4.4460E-02 7.7384E-03 -4.9383E-04
S2 -8.1514E-02 2.0220E-01 1.1057E-01 -2.5003E+00 9.2250E+00 -1.7256E+01 1.7515E+01 -9.0945E+00 1.8824E+00
S3 -2.0638E-01 7.0465E-01 -2.2332E+00 6.1728E+00 -1.1350E+01 1.2527E+01 -7.8928E+00 2.6045E+00 -3.4833E-01
S4 -1.3478E-01 2.3677E-01 8.1028E-01 -6.1563E+00 1.8647E+01 -3.1576E+01 3.0541E+01 -1.5604E+01 3.2493E+00
S5 -1.4966E-01 -9.8013E-02 9.3924E-01 -4.1372E+00 1.0371E+01 -1.5962E+01 1.4763E+01 -7.5332E+00 1.6557E+00
S6 -1.2901E-01 1.8854E-03 -4.0460E-02 1.9848E-01 -6.3839E-01 1.1033E+00 -1.0368E+00 5.0818E-01 -9.8937E-02
S7 -1.5503E-02 -5.3656E-02 2.1497E-02 3.8237E-03 -2.6676E-02 2.1037E-02 -6.8587E-03 1.0242E-03 -5.8057E-05
S8 -4.8164E-02 1.9273E-02 -3.7401E-03 2.3901E-04 7.5229E-07 -8.7171E-07 4.6578E-08 -1.0491E-09 8.9884E-12
S9 -6.2798E-01 4.8191E-01 -1.8853E-01 4.1177E-02 -5.1864E-03 3.9076E-04 -1.7559E-05 4.3816E-07 -4.7167E-09
S10 -3.1356E-01 2.9773E-01 -2.1119E-01 1.1245E-01 -4.2982E-02 1.1127E-02 -1.8377E-03 1.7427E-04 -7.2208E-06
表27
图42示出了实施例9的成像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图43示出了实施例9的成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图44示出了实施例9的成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图45示出了实施例9的成像镜头的倍率色差曲线,其表示光线经由成像镜头后在成像面上的不同的像高的偏差。综上所述并参照图42至图45可以看出,根据实施例9的成像镜头是一种具有超薄大孔径、良好成像质量的成像镜头。
概括地说,在上述实施例1至9中,各条件式满足下面表28的条件。
Figure PCTCN2017102429-appb-000019
Figure PCTCN2017102429-appb-000020
表28
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (26)

  1. 一种成像镜头,所述成像镜头从物侧至像侧依序包括第一透镜、第二透镜、第三透镜、第四透镜和第五透镜,
    其特征在于,所述成像镜头的有效焦距f与所述成像镜头的入瞳直径EPD之间满足f/EPD≤1.8,以及最大视场对应的主光线入射到所述第四透镜的物侧面的入射角度CRA4<15°。
  2. 根据权利要求1所述的成像镜头,其特征在于,
    所述第一透镜具有正光焦度,其物侧面为凸面;
    所述第二透镜具有负光焦度;
    所述第三透镜具有正光焦度或负光焦度;
    所述第四透镜具有正光焦度或负光焦度;
    所述第五透镜具有负光焦度,其像侧面在近轴处为凹面,随着远离光轴由凹状变为凸状。
  3. 根据权利要求1或2所述的成像镜头,其特征在于,0.5<R2/R3<2.0,R2为所述第一透镜像侧面的曲率半径,R3为所述第二透镜物侧面的曲率半径。
  4. 根据权利要求3所述的成像镜头,其特征在于,4.0<f1/CT1<6.0,f1为所述第一透镜的有效焦距,CT1为所述第一透镜的中心厚度。
  5. 根据权利要求1或2所述的成像镜头,其特征在于,5.5<f/CT4<7.0,f为所述成像镜头的有效焦距,CT4为所述第四透镜的中心厚度。
  6. 根据权利要求1或2所述的成像镜头,其特征在于,1.0≤f/f1<1.5,f为所述成像镜头的有效焦距,f1为所述第一透镜的有效焦距。
  7. 根据权利要求6所述的成像镜头,其特征在于,-1.0<f/f2<-0.3,f为所述成像镜头的有效焦距,f2为所述第二透镜的有效焦距。
  8. 根据权利要求1或2所述的成像镜头,其特征在于,-2.0<f/f5<-0.7,f为所述成像镜头的有效焦距,f5为所述第五透镜的有效焦距。
  9. 根据权利要求1所述的成像镜头,其特征在于,0.7≤f/f12<1.0,f为所述成像镜头的有效焦距,f12为所述第一透镜和所述第二透镜的组合焦距。
  10. 根据权利要求1所述的成像镜头,其特征在于,R1/R2<0.5,R1为所述第一透镜的物侧面的曲率半径,R2为所述第一透镜的像侧面的曲率半径。
  11. 根据权利要求1或2所述的成像镜头,其特征在于,1.0<f/R4<2.0,f为所述成像镜头的有效焦距,R4为所述第二透镜像侧面的曲率半径。
  12. 根据权利要求1或2所述的成像镜头,其特征在于,|f/R7|<1.0,f为所述成像镜头的有效焦距,R7为所述第四透镜的物侧面的曲率半径。
  13. 根据权利要求1或2所述的成像镜头,其特征在于,TTL/ImgH≤1.6,TTL为所述第一透镜的物侧面至成像面的轴上距离,ImgH为成像面上有效像素区域对角线长的一半。
  14. 一种成像镜头,所述成像镜头从物侧至像侧依序包括第一透镜、第二透镜、第三透镜、第四透镜和第五透镜,其特征在于,
    所述第一透镜具有正光焦度,其物侧面为凸面;
    所述第二透镜具有负光焦度;
    所述第三透镜具有正光焦度或负光焦度;
    所述第四透镜具有正光焦度或负光焦度;
    所述第五透镜具有负光焦度;
    所述成像镜头的有效焦距f与所述第一透镜和所述第二透镜的组合焦 距f12之间满足0.7≤f/f12<1.0。
  15. 根据权利要求14所述的成像镜头,其特征在于,
    所述第五透镜的像侧面在近轴处为凹面,随着远离光轴由凹状变为凸状。
  16. 根据权利要求14或15所述的成像镜头,其特征在于,0.5<R2/R3<2.0,R2为所述第一透镜像侧面的曲率半径,R3为所述第二透镜物侧面的曲率半径。
  17. 根据权利要求16所述的成像镜头,其特征在于,4.0<f1/CT1<6.0,f1为所述第一透镜的有效焦距,CT1为所述第一透镜的中心厚度。
  18. 根据权利要求14或15所述的成像镜头,其特征在于,5.5<f/CT4<7.0,f为所述成像镜头的有效焦距,CT4为所述第四透镜的中心厚度。
  19. 根据权利要求14或15所述的成像镜头,其特征在于,1.0≤f/f1<1.5,f为所述成像镜头的有效焦距,f1为所述第一透镜的有效焦距。
  20. 根据权利要求19所述的成像镜头,其特征在于,-1.0<f/f2<-0.3,f为所述成像镜头的有效焦距,f2为所述第二透镜的有效焦距。
  21. 根据权利要求14或15所述的成像镜头,其特征在于,-2.0<f/f5<-0.7,f为所述成像镜头的有效焦距,f5为所述第五透镜的有效焦距。
  22. 根据权利要求15所述的成像镜头,其特征在于,所述成像镜头的有效焦距f与所述成像镜头的入瞳直径EPD之间满足f/EPD≤1.8,并且最大视场对应的主光线入射到所述第四透镜物侧面的入射角度CRA4<15°。
  23. 根据权利要求14所述的成像镜头,其特征在于,R1/R2<0.5,R1为所述第一透镜的物侧面的曲率半径,R2为所述第一透镜的像侧面的曲率半径。
  24. 根据权利要求14或15所述的成像镜头,其特征在于,1.0<f/R4<2.0,f为所述成像镜头的有效焦距,R4为所述第二透镜像侧面的曲率半径。
  25. 根据权利要求14或15所述的成像镜头,其特征在于,|f/R7|<1.0,f为所述成像镜头的有效焦距,R7为所述第四透镜的物侧面的曲率半径。
  26. 根据权利要求14或15所述的成像镜头,其特征在于,TTL/ImgH≤1.6,TTL为所述第一透镜的物侧面至成像面的轴上距离,ImgH为成像面上有效像素区域对角线长的一半。
PCT/CN2017/102429 2017-04-18 2017-09-20 成像镜头 WO2018192166A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/067,061 US11333855B2 (en) 2017-04-18 2017-09-20 Imaging lens assembly

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201720406012.3 2017-04-18
CN201710253905.3A CN106896481B (zh) 2017-04-18 2017-04-18 成像镜头
CN201710253905.3 2017-04-18
CN201720406012.3U CN206684372U (zh) 2017-04-18 2017-04-18 成像镜头

Publications (1)

Publication Number Publication Date
WO2018192166A1 true WO2018192166A1 (zh) 2018-10-25

Family

ID=63855440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102429 WO2018192166A1 (zh) 2017-04-18 2017-09-20 成像镜头

Country Status (2)

Country Link
US (1) US11333855B2 (zh)
WO (1) WO2018192166A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI808028B (zh) * 2022-10-31 2023-07-01 新鉅科技股份有限公司 成像透鏡組及攝像模組
TWI828601B (zh) * 2023-07-12 2024-01-01 新鉅科技股份有限公司 成像透鏡組及攝像模組

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103454753A (zh) * 2012-05-28 2013-12-18 大立光电股份有限公司 拾像光学镜片系统
KR20150044681A (ko) * 2013-10-17 2015-04-27 엘지이노텍 주식회사 광학계 및 이를 포함하는 카메라 모듈
CN104765130A (zh) * 2011-08-26 2015-07-08 大立光电股份有限公司 影像镜头
CN105278080A (zh) * 2015-07-07 2016-01-27 瑞声声学科技(深圳)有限公司 摄像镜头
CN105988185A (zh) * 2015-04-10 2016-10-05 浙江舜宇光学有限公司 摄像镜头
CN106896481A (zh) * 2017-04-18 2017-06-27 浙江舜宇光学有限公司 成像镜头

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102236153B (zh) 2010-05-05 2013-07-10 大立光电股份有限公司 取像用光学镜头
JP5754670B2 (ja) 2011-06-29 2015-07-29 株式会社オプトロジック 撮像レンズ
JP2013109085A (ja) 2011-11-18 2013-06-06 Sony Corp 撮像レンズおよび撮像装置
JP2014153576A (ja) 2013-02-08 2014-08-25 Konica Minolta Inc 撮像レンズ、撮像装置及び携帯端末
JP2015135357A (ja) * 2014-01-16 2015-07-27 富士フイルム株式会社 撮像レンズおよび撮像レンズを備えた撮像装置
TWI594000B (zh) * 2014-07-29 2017-08-01 先進光電科技股份有限公司 光學成像系統
KR101719877B1 (ko) 2014-12-05 2017-03-24 삼성전기주식회사 렌즈 모듈
CN204515223U (zh) 2015-03-20 2015-07-29 大立光电股份有限公司 摄影光学镜片组、取像装置及电子装置
CN206684372U (zh) 2017-04-18 2017-11-28 浙江舜宇光学有限公司 成像镜头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104765130A (zh) * 2011-08-26 2015-07-08 大立光电股份有限公司 影像镜头
CN103454753A (zh) * 2012-05-28 2013-12-18 大立光电股份有限公司 拾像光学镜片系统
KR20150044681A (ko) * 2013-10-17 2015-04-27 엘지이노텍 주식회사 광학계 및 이를 포함하는 카메라 모듈
CN105988185A (zh) * 2015-04-10 2016-10-05 浙江舜宇光学有限公司 摄像镜头
CN105278080A (zh) * 2015-07-07 2016-01-27 瑞声声学科技(深圳)有限公司 摄像镜头
CN106896481A (zh) * 2017-04-18 2017-06-27 浙江舜宇光学有限公司 成像镜头

Also Published As

Publication number Publication date
US11333855B2 (en) 2022-05-17
US20210048621A1 (en) 2021-02-18

Similar Documents

Publication Publication Date Title
WO2019210738A1 (zh) 光学成像镜头
WO2020019794A1 (zh) 光学成像镜头
WO2018090609A1 (zh) 光学成像系统及摄像装置
WO2019210672A1 (zh) 光学成像系统
WO2018126587A1 (zh) 摄远镜头以及摄像装置
WO2020119171A1 (zh) 光学成像镜头
WO2020007081A1 (zh) 光学成像镜头
WO2018153012A1 (zh) 摄像镜头
WO2020001119A1 (zh) 摄像镜头
WO2018103250A1 (zh) 摄像镜头及摄像装置
WO2020186759A1 (zh) 光学成像镜头
WO2019227877A1 (zh) 光学成像镜头
WO2019114524A1 (zh) 光学成像镜头
WO2020107936A1 (zh) 光学成像系统
WO2018192126A1 (zh) 摄像镜头
WO2020024635A1 (zh) 光学成像镜头
WO2018214349A1 (zh) 摄像镜头
WO2019214334A1 (zh) 摄像镜头组
WO2020042799A1 (zh) 光学成像镜片组
WO2019141210A1 (zh) 光学成像镜头
WO2018058754A1 (zh) 摄像镜头及装配有该摄像镜头的摄像装置
WO2019062136A1 (zh) 摄像透镜组
WO2019052220A1 (zh) 光学成像镜头
WO2020029613A1 (zh) 光学成像镜头
WO2020007068A1 (zh) 光学成像系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17906032

Country of ref document: EP

Kind code of ref document: A1