WO2018192146A1 - 双余度定子及双余度电机 - Google Patents

双余度定子及双余度电机 Download PDF

Info

Publication number
WO2018192146A1
WO2018192146A1 PCT/CN2017/097377 CN2017097377W WO2018192146A1 WO 2018192146 A1 WO2018192146 A1 WO 2018192146A1 CN 2017097377 W CN2017097377 W CN 2017097377W WO 2018192146 A1 WO2018192146 A1 WO 2018192146A1
Authority
WO
WIPO (PCT)
Prior art keywords
windings
teeth
coils
stator
phase coil
Prior art date
Application number
PCT/CN2017/097377
Other languages
English (en)
French (fr)
Inventor
蒋奎
阮波
李庆旭
章正昌
李富强
Original Assignee
苏州汇川联合动力系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州汇川联合动力系统有限公司 filed Critical 苏州汇川联合动力系统有限公司
Publication of WO2018192146A1 publication Critical patent/WO2018192146A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings

Definitions

  • the present invention relates to the field of electrical machines, and more particularly to a dual redundancy stator and a dual redundancy motor.
  • Chinese Patent No. 102,035,271 A discloses a dual redundant winding motor employing a concentrated winding structure in which two sets of winding coils share the same slot.
  • the Chinese patent application with the nickname 104617687 A discloses a two-winding motor stator employing a two-layer concentrated winding structure, the stator having two sets of windings on the same inner and outer teeth.
  • the Chinese patent application with the nickname 103269137 A discloses a two-winding motor structure that also employs a two-layer concentrated winding structure, the two sets of windings being also located in one of the slots.
  • the technical problem to be solved by the present invention is that the two sets of windings of the above-mentioned double redundant motor are located in the same slot, and there is thermal coupling, and the mutual inductance between the two windings is large, the magnetic circuits are coupled with each other, and the decoupling control algorithm is difficult. Larger problems, providing a new dual-duplex stator and dual-reverb motor.
  • the technical solution of the present invention is to provide a dual-duty stator including a stator core, the inner circumference of the stator core having 6k first teeth uniformly distributed in the circumferential direction, k is a positive integer, and each of the first teeth is wound around a coil; a first set of windings composed of 3k coils on 3k first teeth is connected to the first power supply unit, and another 3k first teeth are a second set of windings formed by the upper 3k coils is connected to the second power supply unit, and the first set of windings and the second set of windings are alternately distributed on the 6k first teeth; the stator core
  • the inner circumference also has 6k second teeth, and the 6k second teeth and the 6k first teeth are alternately distributed in the circumferential direction to physically isolate the two coils on the adjacent first teeth.
  • the coils of the same phase in the first set of windings and the second set of windings are separated by six slots.
  • the first set of windings includes a first U-phase coil, a first V-phase coil, a first W-phase coil, and the first U-phase coil, a V-phase coil and a first W-phase coil are respectively separated by 4 slots;
  • the second sleeve winding includes a second U-phase coil, a second V-phase coil, a second W-phase coil, and the second U-phase coil The second V-phase coil and the second W-phase coil are separated by four slots.
  • each of the first sets of windings has the same number of turns; the number of turns of each of the second set of windings is the same.
  • the ratio of the width of the second tooth to the width of the first tooth is 0.2-1
  • the present invention also provides a dual redundancy motor including a rotor, two inverters, and a dual redundancy stator according to any one of the above, the two inverters being respectively connected to the first power supply unit and The second power supply unit.
  • the number of poles of the rotor is 10k
  • the number of slots of the double-duty stator is 12k
  • the windings of the coils of the second winding are The coils of the first set of windings are wound in opposite directions
  • the number of poles of the rotor is 8k
  • the number of slots of the double-duplex stator is 12k
  • the windings of the coils of the second winding are The coils of the respective phases of the first set of windings are wound in the same direction.
  • the dual redundancy motor further includes a switching unit, the switching unit is respectively connected to two inverters, and is used for switching the working states of the two inverters. .
  • the rotor is a surface mount rotor, a built-in radial rotor, and an inner A tangential rotor, a multi-layer magnetic steel rotor, a hybrid magnetic circuit rotor or a Halbach array rotor.
  • two adjacent coils can be realized by adding a second tooth not wound around the coil between adjacent first teeth on the stator core.
  • Physical thermal isolation eliminates the insulation of adjacent coils.
  • the present invention realizes the complete magnetic circuit decoupling between the two sets of windings by rationally arranging the two sets of windings, and can perform the same decoupling control on the two sets of windings.
  • FIG. 1 is a schematic view of an embodiment of a dual redundancy stator of the present invention
  • FIG. 2 is a schematic view showing the wiring of the first set of windings and the second set of windings in the double redundant stator of the present invention
  • FIG. 3 is a schematic diagram of an embodiment of a dual redundancy motor of the present invention.
  • FIG. 1 is a schematic diagram of a dual-duty stator embodiment of the present invention
  • the dual-duty stator in the embodiment of the present invention adopts a 24-slot concentrated winding structure, and has two sets of three-phase symmetric windings.
  • the dual redundancy stator can be used in motors with high reliability.
  • the double-duty stator of the present embodiment includes a stator core 10 having an inner circumference having twelve first teeth 11 and twelve second teeth 12 alternately distributed, and the twelve first teeth 11 are in the stator iron The inner circumference of the core is evenly distributed in the circumferential direction.
  • the stator core 10 is formed by stacking silicon steel sheets, and may be of a one-piece structure, a spliced structure or a yoke-separated structure, or other achievable modes, which are not limited herein.
  • the first tooth 11 and the second tooth 12 are integrally formed with the yoke portion (i.e., the annular portion) of the stator core 10 to constitute the entire stator core 10.
  • the ratio of the width of the second tooth 12 (ie, the dimension in the circumferential direction) to the width of the first tooth 11 (ie, the dimension in the circumferential direction) may be 0.2 to 1, by which the first tooth 11 and the first tooth 11 can be secured.
  • the magnetic flux density of the second tooth 12 is substantially the same, At the same time, the width of the tooth gap between the first tooth 11 and the second tooth 12 is increased to increase the power density.
  • Each of the 12 first teeth 11 is wound around a coil, and the second tooth 12 is not wound around the coil, that is, the entire stator core 10 has 12 coils Ul-1, Ul-2, Vl-1, Vl-2, Wl-1, Wl-2, U2-1, U2-2, V2-l, V2-2, W2-l, W2-2. Since the first teeth 11 around which the coils are disposed are separated from the second teeth 12 that are not wound around the coils, the second teeth 12 can serve as partial magnetic circuits and fault-tolerant teeth, and can be paired with two adjacent first teeth 11 The coils are physically isolated for greater reliability, while saving the insulation of the motor system.
  • 12 coils Ul-1, Ul-2, Vl-1, Vl-2, Wl-1, Wl-2, U2-l, U2-2, V2-l, V2-2, W2-l, W2-2 is divided into two sets of armature windings (coil spacing distribution in two sets of armature windings), wherein: the first set of windings includes two first U-phase coils Ul-1, Ul-2, two first V Phase coils Vl-1, V1-2 and two first W-phase coils W1-1, W1-2, and six of the first set of windings Ul-1, Ul-2, Vl-1, Vl-2 , Wl-1, Wl-2 are connected to the first power supply unit (as shown in FIG.
  • the second set of windings comprises two second U-phase coils U2-l, U2-2, two second V-phase coils V2-l, V2-2, two second W-phase coils W2-l, W2-2, and six coils U2-l, U2-2, V2-l, V2-2 in the second set of windings W2-l and W2-2 are connected to the second power supply unit (as shown in Fig.
  • the first set of windings and the second set of windings are respectively powered by the first power supply unit and the second power supply unit that are independent of each other (the first power supply unit and the second power supply unit are respectively connected to different inverters, and the first power supply unit and the first power supply unit
  • the power supply voltage of the two power supply units can be the same or different), so when the first set of windings fails or even burns, the second set of windings can be cut into operation immediately, achieving double redundancy fault tolerance. Due to the physical isolation between the two sets of windings, the electrical, magnetic and thermal triple decoupling can be realized with high reliability.
  • each of the coils Ul-1, Ul-2, Vl-1, Vl-2, Wl-1, Wl-2 in the first set of windings has the same number of turns
  • each coil in the second set of windings U2-l, U2-2, V2-l, V2-2, W2-l, W2-2 have the same number of turns
  • V2-l, V2-2, W2-l, W2-2 may be the same or different.
  • the turns ratio of each winding of the two sets of windings may be determined according to the power distribution relationship of the two sets of windings.
  • the coils of the same phase in the first set of windings and the second set of windings may be spaced by six slots.
  • the coil U1-1 in the first set of windings is spaced apart from the first tooth 11 in which the coil U2-1 in the second set of windings is located, the first set of windings
  • the coil U1-2 is spaced 90° from the first tooth 11 where the coil U2-2 in the second set of windings is located, the coil W1-1 in the first set of windings and the coil W2-1 in the second set of windings are located
  • the first teeth 11 are spaced 90° apart.
  • the two coils of the same phase in the first set of windings and the second set of windings may be connected in parallel or in series according to power requirements, applications, etc. (as shown in FIG. 2, Two coils of the same phase of one winding are connected in series, two coils of the same phase of the second winding are connected in parallel, and the two coils are spaced apart by 180°.
  • two of the first U-phase coils Ul-1, U1-2 of the first set of windings are respectively located on the two first teeth 11 spaced apart by 180[deg.]; the two first V-phase coils Vl-1, V1-2 are respectively Located on two first teeth 11 spaced 180° apart; the two first W-phase coils W1-1, W1-2 are respectively located on the two first teeth 11 spaced 180[deg.] apart.
  • a Y-shaped topology connection or a triangular topology connection may be adopted between the phase windings.
  • the U1 phase coil, the VI phase coil and the W1 phase coil of the first winding are respectively separated by 4 slots, and the U2 phase coil, the V2 phase coil and the W2 phase coil of the second winding are respectively separated by 4 slots.
  • the first U-phase coils Ul-1, Ul-2, the first V-phase coils Vl-1, Vl-2, and the first W-phase coils W1-1, W1-2 are located at intervals 120, respectively.
  • the second U-phase coil U2-l, U2-2, the second V-phase coil V2-l, V2-2, the second W-phase coil W2 -l, W2-2 are respectively located on the first tooth 11 at intervals of 120°.
  • each phase of each set of windings may be one coil or more than two.
  • the coil as long as the number of the first teeth 11 and the second teeth 12 on the stator core 10 and the distribution of the coils on the first teeth 11 are adjusted.
  • the inner circumference of the stator core has 6k first teeth uniformly distributed in the circumferential direction and 6k second teeth (k is a positive integer), and 6k first teeth and 6k second teeth are alternately distributed in the circumferential direction; a coil is wound around each of the first teeth, and a first set of windings composed of 3k coils of 3k first teeth are connected to
  • the first power supply unit is connected to the second power supply unit by a second set of windings of 3k coils on the other 3k first teeth, and the first set of windings and the second set of windings are alternately arranged on the first teeth.
  • the present invention further provides a dual redundancy motor including a rotor 20, two inverters, and the above-described dual redundancy stator 10, wherein the two inverters respectively
  • the first power supply unit and the second power supply unit are connected to each other to independently supply power to the first set of windings and the second set of windings on the dual-duty stator 10, respectively, to achieve double redundancy fault tolerance.
  • the 10k/12k structure is adopted (that is, the number of poles of the rotor 20 is 10k, and the number of slots of the double-retenterator 10 is 12k), and the coils of the second winding are wound and first.
  • the coils of each phase of the winding are wound in opposite directions.
  • the 8k/12k structure is adopted (that is, the number of poles of the rotor 20 is 8k, and the number of slots of the double-retenterator 10 is 12k), and the windings of the coils of the second winding are wound with the first winding.
  • the coils of each phase are wound in the same direction.
  • the double redundant motor may further include a switching unit that is respectively connected to the two inverters and used to switch the operating states of the two inverters. For example, when the first set of windings fails or even burns, the switching unit stops the output of the inverter connected to the first power supply unit and causes the inverter connected to the second power supply unit to output a driving signal to the second set of windings, so that the second set The windings are immediately cut into operation.
  • a switching unit that is respectively connected to the two inverters and used to switch the operating states of the two inverters. For example, when the first set of windings fails or even burns, the switching unit stops the output of the inverter connected to the first power supply unit and causes the inverter connected to the second power supply unit to output a driving signal to the second set of windings, so that the second set The windings are immediately cut into operation.
  • the rotor 20 can adopt various magnetic circuit structures, for example, the rotor can be a surface mount rotor, a built-in radial rotor (I type), and a built-in tangential rotor (Spoke type). , multi-layer magnetic steel rotor, hybrid magnetic circuit rotor ("V", "V+ ⁇ , etc.) or Halbach array rotor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

一种双余度定子及双余度电机,所述双余度定子包括定子铁芯(10),所述定子铁芯(10)的内周具有6k个沿圆周方向均匀分布的第一齿(11),所述k为正整数,且每一第一齿(11)上绕设有线圈;由3k个第一齿(11)上的3k个线圈构成的第一套绕组连接到第一供电单元,由另外3k个第一齿(11)上的3k个线圈构成的第二套绕组连接到第二供电单元;所述定子铁芯(10)的内周还具有6k个第二齿(12),且所述6k个第二齿(12)和所述6k个第一齿(11)沿圆周方向交替分布。通过在定子铁芯上相邻的第一齿之间增加不绕线圈的第二齿,可实现两个相邻的线圈的物理热隔离。并且,通过对两套绕组进行合理布局,实现了两套绕组间完全磁路解耦,可对两套绕组进行同时解耦控制。

Description

双余度定子及双余度电机 技术领域
[0001] 本发明涉及电机领域, 更具体地说, 涉及一种双余度定子及双余度电机。
背景技术
[0002] 在多电 /全电飞机、 电动汽车、 舰船等的推进系统中, 电机系统的可靠性至关 重要, 为提高可靠性, 目前多采用双余度电机或多相电机系统。 并且双余度电 机或多相电机系统已经逐渐成为高可靠电机应用领域的一种趋势。
[0003] 目前的双余度电机系统中, 通常将传统电机的单套电枢绕组改为两套独立供电 的电枢绕组; 在正常工况吋, 由第一套电枢绕组输出功率或两套电枢绕组同吋 输出功率; 当第一套电枢绕组发生故障吋, 切换为第二套电枢绕组单独工作, 以保证持续功率输出。
[0004] 公幵号为 102035271 A的中国专利公幵了一种采用集中绕组结构的双冗余绕组 电机, 其两套绕组线圈共用同一个齿槽。 公幵号为 104617687 A的中国专利申请 则公幵了一种采用双层集中绕组结构的双绕组电机定子, 其定子同一个齿上分 内外层绕有两套绕组。 公幵号为 103269137 A的中国专利申请则公幵了一种同样 采用双层集中绕组结构的双绕组电机结构, 其两套绕组同样位于一个齿槽内。
[0005] 在上述的双绕组方案中, 由于两套电枢绕组位于同一个齿槽内, 存在热耦合, 当一套绕组故障烧毁吋, 另一套绕组烧毁风险较大。 并且两套绕组之间还需使 用大量的绝缘材料, 增加了电机系统成本。 此外, 上述双绕组方案中还存在两 套绕组间互感较大, 磁路相互耦合, 解耦控制算法难度较大等问题。
技术问题
[0006] 本发明要解决的技术问题在于, 针对上述双余度电机的两套绕组位于同一槽内 , 存在热耦合, 同吋两绕组间互感较大, 磁路相互耦合, 解耦控制算法难度较 大等问题, 提供一种新的双余度定子及双余度电机。
问题的解决方案
技术解决方案 [0007] 本发明解决上述技术问题的技术方案是, 提供一种双余度定子, 包括定子铁芯 , 所述定子铁芯的内周具有 6k个沿圆周方向均匀分布的第一齿, 所述 k为正整数 , 且每一所述第一齿上绕设有线圈; 由 3k个第一齿上的 3k个线圈构成的第一套 绕组连接到第一供电单元, 由另外 3k个第一齿上的 3k个线圈构成的第二套绕组 连接到第二供电单元, 且所述第一套绕组和所述第二套绕组在所述 6k个第一齿 上呈交替分布; 所述定子铁芯的内周还具有 6k个第二齿, 且所述 6k个第二齿和 所述 6k个第一齿沿圆周方向交替分布, 以对相邻的第一齿上的两个线圈进行物 理隔离。
[0008] 在本发明所述的双余度定子中, 所述第一套绕组和所述第二套绕组中同一相的 线圈相隔 6个齿槽。
[0009] 在本发明所述的双余度定子中, 所述第一套绕组包括第一 U相线圈、 第一 V相 线圈、 第一 W相线圈, 且所述第一 U相线圈、 第一 V相线圈、 第一 W相线圈分别 相隔 4个齿槽; 所述第二套绕组包括第二 U相线圈、 第二 V相线圈、 第二 W相线圈 , 且所述第二 U相线圈、 第二 V相线圈、 第二 W相线圈分别相隔 4个齿槽。
[0010] 在本发明所述的双余度定子中, 所述第一套绕组中的各个线圈的匝数相同; 所 述第二套绕组中的各个线圈的匝数相同。
[0011] 在本发明所述的双余度定子中, 所述第二齿的宽度与所述第一齿的宽度之比为 0.2-1 =
[0012] 本发明还提供一种双余度电机, 包括转子、 两个逆变器以及如上任一项所述的 双余度定子, 所述两个逆变器分别连接到第一供电单元和第二供电单元。
[0013] 在本发明所述的双余度电机中, 所述转子的极数为 10k, 所述双余度定子的齿 槽数为 12k, 所述第二套绕组的各相线圈绕向与第一套绕组的各相线圈绕向相反
[0014] 在本发明所述的双余度电机中, 所述转子的极数为 8k, 所述双余度定子的齿槽 数为 12k, 所述第二套绕组的各相线圈绕向与第一套绕组的各相线圈绕向相同。
[0015] 在本发明所述的双余度电机中, 所述双余度电机还包括切换单元, 所述切换单 元分别与两个逆变器连接, 并用于切换两个逆变器的工作状态。
[0016] 在本发明所述的双余度电机中, 所述转子为表贴式转子、 内置径向式转子、 内 置切向式转子、 多层磁钢转子、 混合磁路转子或海尔贝克阵列转子。
发明的有益效果
有益效果
[0017] 本发明所述的双余度定子及双余度电机, 通过在定子铁芯上相邻的第一齿之间 增加不绕线圈的第二齿, 可实现两个相邻的线圈的物理热隔离, 省去了相邻线 圈的绝缘材料。 并且, 本发明通过对两套绕组进行合理布局, 实现了两套绕组 间完全磁路解耦, 可对两套绕组进行同吋解耦控制。
对附图的简要说明
附图说明
[0018] 图 1是本发明双余度定子实施例的示意图;
[0019] 图 2是本发明双余度定子中第一套绕组和第二套绕组的接线示意图;
[0020] 图 3是本发明双余度电机实施例的示意图。
本发明的实施方式
[0021] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用 以解释本发明, 并不用于限定本发明。
[0022] 如图 1所示, 是本发明双余度定子实施例的示意图, 本发明一实施例中的双余 度定子采用 24齿槽集中绕组结构, 并绕有两套三相对称绕组, 该双余度定子可 应用于具有高可靠性的电机中。 本实施例的双余度定子包括定子铁芯 10, 该定 子铁芯 10的内周具有交替分布的 12个第一齿 11和 12个第二齿 12, 上述 12个第一 齿 11在定子铁芯的内周上沿圆周方向均匀分布。 上述定子铁芯 10由硅钢片冲叠 而成, 可采用一体式结构、 拼接式结构或齿轭分离式结构, 或者其它可实现方 式, 在此不做限制。 第一齿 11和第二齿 12则与定子铁芯 10的轭部 (即环形部分 ) 一体构成整个定子铁芯 10。
[0023] 上述第二齿 12的宽度 (即周向的尺寸) 与第一齿 11的宽度 (即周向的尺寸) 之 比可为 0.2~1, 通过该方式, 可保证第一齿 11和第二齿 12的磁通密度基本相同, 同吋增大第一齿 11和第二齿 12之间的齿槽的宽度, 提高功率密度。
[0024] 上述 12个第一齿 11中的每一个齿上绕设有一个线圈, 第二齿 12则不绕线圈, 即 整个定子铁芯 10上具有 12个线圈 Ul-1、 Ul-2、 Vl-1、 Vl-2、 Wl-1、 Wl-2、 U2-1 、 U2-2、 V2-l、 V2-2、 W2-l、 W2-2。 由于绕设有线圈的第一齿 11之间具有不绕 线圈的第二齿 12相隔, 第二齿 12可作为部分磁路及容错齿, 可对相邻的第一齿 1 1上的两个线圈进行物理隔离, 可靠性更高, 同吋节省了电机系统绝缘材料。
[0025] 12个线圈 Ul-1、 Ul-2、 Vl-1、 Vl-2、 Wl-1、 Wl-2、 U2-l、 U2-2、 V2-l、 V2-2 、 W2-l、 W2-2分为两套电枢绕组 (两套电枢绕组中的线圈间隔分布) , 其中: 第一套绕组包括两个第一 U相线圈 Ul-1、 Ul-2、 两个第一 V相线圈 Vl-1、 V1-2和 两个第一 W相线圈 Wl-1、 W1-2, 且第一套绕组中的 6个线圈 Ul-1、 Ul-2、 Vl-1 、 Vl-2、 Wl-1、 Wl-2连接到第一供电单元 (如图 2所示, 第一套绕组中的 6个线 圈 Ul-1、 Ul-2、 Vl-1、 Vl-2、 Wl-1、 Wl-2连接到第一供电单元的 Ul、 VI、 Wl 及 01四个接线端子) ; 第二套绕组包括两个第二 U相线圈 U2-l、 U2-2、 两个第 二 V相线圈 V2-l、 V2-2、 两个第二 W相线圈 W2-l、 W2-2, 且该第二套绕组中的 6 个线圈 U2-l、 U2-2、 V2-l、 V2-2、 W2-l、 W2-2则连接到第二供电单元 (如图 2 所示, 第二套绕组中的 6个线圈 U2-l、 U2-2、 V2-l、 V2-2、 W2-l、 W2-2则连接 到第二供电单元的 U2、 V2、 W2及 02四个接线端子) 。 且第一套绕组中的线圈 与第二套绕组中的线圈交替排列。 由于第一套绕组和第二套绕组分别由相互独 立的第一供电单元和第二供电单元供电 (第一供电单元和第二供电单元分别连 接不同逆变器, 且该第一供电单元和第二供电单元的供电电压可相同或不同) , 因此当第一套绕组发生故障甚至烧毁吋, 第二套绕组可立刻切入工作, 实现 双余度容错功能。 由于两套绕组间具有物理隔离, 可实现电、 磁、 热三重解耦 , 可靠性高。
[0026] 特别地, 第一套绕组中的各线圈 Ul-1、 Ul-2、 Vl-1、 Vl-2、 Wl-1、 Wl-2的匝 数相同, 第二套绕组中的各线圈 U2-l、 U2-2、 V2-l、 V2-2、 W2-l、 W2-2匝数相 同。 而第一套绕组中的各线圈 Ul-1、 Ul-2、 Vl-1、 Vl-2、 Wl-1、 Wl-2的匝数与 第二套绕组中的各线圈 U2-l、 U2-2、 V2-l、 V2-2、 W2-l、 W2-2可相同或不同, 具体可根据两套绕组的功率分配关系确定两套绕组各线圈匝数比。 [0027] 为便于解耦控制, 可使第一套绕组和第二套绕组中同一相的线圈间隔 6个齿槽 。 在本实施例中, 采用转子极数和定子槽数为 10k/12k的配合 (即转子极数为 10k , 定子槽数为 12k) , 且 k=2, 贝 1侗一相的线圈分别位于间隔 90°的第一齿 11上, 且绕向相反, 例如第一套绕组中的线圈 U1-1与第二套绕组中的线圈 U2-1所在的 第一齿 11间隔 90°, 第一套绕组中的线圈 U1-2与第二套绕组中的线圈 U2-2所在的 第一齿 11间隔 90°, 第一套绕组中的线圈 W1-1与第二套绕组中的线圈 W2-1所在的 第一齿 11间隔 90°。 通过上述方式, 使得两套绕组互感几乎为 0, 无磁路耦合, 很 容易实现两套绕组同吋解耦控制。
[0028] 在上述的双余度定子中, 第一套绕组和第二套绕组中的同一相的两个线圈可根 据功率需求、 应用场合等采取并联或串联方式 (如图 2所示, 第一套绕组的同一 相的两个线圈串联连接, 第二套绕组的同一相的两个线圈并联连接) , 且该两 个线圈间隔 180°。 例如第一套绕组中的两个第一 U相线圈 Ul-1、 U1-2分别位于间 隔 180°的两个第一齿 11上; 两个第一 V相线圈 Vl-1、 V1-2分别位于间隔 180°的两 个第一齿 11上; 两个第一 W相线圈 Wl-1、 W1-2分别位于间隔 180°的两个第一齿 1 1上。
[0029] 在第一套绕组和第二套绕组中, 各相绕组间可采用 Y形拓扑连接或三角形拓扑 连接方式。 第一套绕组的 U1相线圈、 VI相线圈、 W1相线圈分别相隔 4个齿槽, 第二套绕组的 U2相线圈、 V2相线圈、 W2相线圈分别相隔 4个齿槽。 例如在本实 施例中, 第一 U相线圈 Ul-1、 Ul-2、 第一 V相线圈 Vl-1、 Vl-2、 第一 W相线圈 W 1-1、 W1-2分别位于间隔 120°的第一齿 11上; 同样地, 在第二套绕组中, 第二 U 相线圈 U2-l、 U2-2、 第二 V相线圈 V2-l、 V2-2、 第二 W相线圈 W2-l、 W2-2分别 位于间隔 120°的第一齿上 11。
[0030] 上述结构不仅可应用于两套三相绕组的双余度电机, 还可应用于其他类型的双 余度电机, 例如每一套绕组中的每一相可以为一个线圈或超过两个线圈, 此吋 只要调整定子铁芯 10上的第一齿 11和第二齿 12的数量以及第一齿 11上的线圈的 分布方式即可。 即定子铁芯的内周具有 6k个沿圆周方向均匀分布的第一齿和 6k 个第二齿 (k为正整数) , 且 6k个第一齿和 6k个第二齿沿圆周方向交替分布; 每 一第一齿上绕设有线圈, 由 3k个第一齿上的 3k个线圈构成的第一套绕组连接到 第一供电单元, 由另外 3k个第一齿上的 3k个线圈构成的第二套绕组连接到第二 供电单元, 且第一套绕组和第二套绕组在第一齿上呈交替排列。
[0031] 如图 3所示, 本发明还提供一种双余度电机, 该双余度电机包括转子 20、 两个 逆变器以及上述的双余度定子 10, 其中两个逆变器分别连接到第一供电单元和 第二供电单元, 从而分别为双余度定子 10上的第一套绕组和第二套绕组独立供 电, 实现双余度容错功能。
[0032] 在双余度电机采用 10k/12k结构 (即转子 20的极数为 10k, 双余度定子 10的齿槽 数为 12k) 吋, 第二套绕组的各相线圈绕向与第一套绕组的各相线圈绕向相反。 而在双余度电机采用 8k/12k结构 (即转子 20的极数为 8k, 双余度定子 10的齿槽数 为 12k) 吋, 第二套绕组的各相线圈绕向与第一套绕组的各相线圈绕向相同。 上 述双余度电机还可包括切换单元, 该切换单元分别与两个逆变器连接, 并用于 切换两个逆变器的工作状态。 例如当第一套绕组发生故障甚至烧毁吋, 切换单 元使连接第一供电单元的逆变器停止输出并使连接第二供电单元的逆变器向第 二套绕组输出驱动信号, 使第二套绕组立刻切入工作。
[0033] 在上述的双余度电机中, 转子 20可采用各种磁路结构, 例如转子可以为表贴式 转子、 内置径向式转子 (I型) 、 内置切向式转子 (Spoke型) 、 多层磁钢转子、 混合磁路转子 ("V"、 "V+Γ等) 或海尔贝克 (Halbach) 阵列转子等。
工业实用性
[0034] 以上所述, 仅为本发明较佳的具体实施方式, 但本发明的保护范围并不局限于 此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到 的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围 应该以权利要求的保护范围为准。

Claims

权利要求书
[权利要求 1] 一种双余度定子, 包括定子铁芯, 所述定子铁芯的内周具有 6k个沿圆 周方向均匀分布的第一齿, 所述 k为正整数, 且每一所述第一齿上绕 设有线圈; 由 3k个第一齿上的 3k个线圈构成的第一套绕组连接到第一 供电单元, 由另外 3k个第一齿上的 3k个线圈构成的第二套绕组连接到 第二供电单元, 且所述第一套绕组和所述第二套绕组在所述 6k个第一 齿上呈交替分布; 其特征在于: 所述定子铁芯的内周还具有 6k个第二 齿, 且所述 6k个第二齿和所述 6k个第一齿沿圆周方向交替分布, 以对 相邻的第一齿上的两个线圈进行物理隔离。
[权利要求 2] 根据权利要求 1所述的双余度定子, 其特征在于: 所述第一套绕组和 所述第二套绕组中同一相的线圈相隔 6个齿槽。
[权利要求 3] 根据权利要求 1所述的双余度定子, 其特征在于: 所述第一套绕组包 括第一 U相线圈、 第一 V相线圈、 第一 W相线圈, 且所述第一 U相线 圈、 第一 V相线圈、 第一 W相线圈分别相隔 4个齿槽; 所述第二套绕 组包括第二 U相线圈、 第二 V相线圈、 第二 W相线圈, 且所述第二 U 相线圈、 第二 V相线圈、 第二 W相线圈分别相隔 4个齿槽。
[权利要求 4] 根据权利要求 1所述的双余度定子, 其特征在于: 所述第一套绕组中 的各个线圈的匝数相同; 所述第二套绕组中的各个线圈的匝数相同。
[权利要求 5] 根据权利要求 1所述的双余度定子, 其特征在于: 所述第二齿的宽度 与所述第一齿的宽度之比为 0.2~1。
[权利要求 6] —种双余度电机, 其特征在于: 包括转子、 两个逆变器以及如权利要 求 1-5中任一项所述的双余度定子, 所述两个逆变器分别连接到第一 供电单元和所述第二供电单元。
[权利要求 7] 根据权利要求 6所述的双余度电机, 其特征在于: 所述转子的极数为 1
Ok, 所述双余度定子的齿槽数为 12k, 所述第二套绕组的各相线圈绕 向与所述第一套绕组的各相线圈绕向相反。
[权利要求 8] 根据权利要求 6所述的双余度电机, 其特征在于: 所述转子的极数为 8 k, 所述双余度定子的齿槽数为 12k, 所述第二套绕组的各相线圈绕向 与第一套绕组的各相线圈绕向相同。
[权利要求 9] 根据权利要求 6所述的双余度电机, 其特征在于: 所述双余度电机还 包括切换单元, 所述切换单元分别与两个逆变器连接, 并用于切换两 个逆变器的工作状态。
[权利要求 10] 根据权利要求 6所述的双余度电机, 其特征在于: 所述转子为表贴式 转子、 内置径向式转子、 内置切向式转子、 多层磁钢转子、 混合磁路 转子或海尔贝克阵列转子。
PCT/CN2017/097377 2017-04-18 2017-08-14 双余度定子及双余度电机 WO2018192146A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710254078.XA CN107070016A (zh) 2017-04-18 2017-04-18 双余度定子及双余度电机
CN201710254078X 2017-04-18

Publications (1)

Publication Number Publication Date
WO2018192146A1 true WO2018192146A1 (zh) 2018-10-25

Family

ID=59601200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097377 WO2018192146A1 (zh) 2017-04-18 2017-08-14 双余度定子及双余度电机

Country Status (2)

Country Link
CN (1) CN107070016A (zh)
WO (1) WO2018192146A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6922604B2 (ja) * 2017-09-26 2021-08-18 日本電産株式会社 モータ
CN107733106B (zh) * 2017-10-27 2020-04-07 大连海事大学 一种集成电机推进器用永磁容错轮缘推进电机
JP2019187047A (ja) * 2018-04-06 2019-10-24 マブチモーター株式会社 モータ
CN110017250B (zh) * 2019-03-29 2020-12-08 华中科技大学 一种变速恒频风力发电系统
CN112436641B (zh) 2019-08-26 2021-11-16 安徽美芝精密制造有限公司 定子组件、电机、压缩机及制冷设备
CN113659739B (zh) * 2021-08-17 2022-09-30 浙江大学 一种新型模块化电机定子
CN113708522A (zh) * 2021-10-28 2021-11-26 南京理工大学 一种高可靠永磁容错转向电机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050174006A1 (en) * 2004-02-06 2005-08-11 Valeo Electrical Systems, Inc. Winding topologies for stators in brushless motors
CN1913284A (zh) * 2006-08-14 2007-02-14 南京航空航天大学 Halbach永磁容错无刷直流电机
CN103095081A (zh) * 2013-02-17 2013-05-08 天津大学 各相绕组间低热耦合无电磁耦合的双余度永磁同步电动机
CN104506113A (zh) * 2014-12-31 2015-04-08 南京航空航天大学 一种双绕组永磁容错电机驱动系统的控制方法
CN104779758A (zh) * 2015-04-29 2015-07-15 哈尔滨工业大学 基于单双层混合绕组的模块化多相永磁同步电机
CN105656273A (zh) * 2014-11-14 2016-06-08 中国航空工业第六八研究所 一种双余度分数槽隔槽嵌放无刷直流电机及嵌线方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202872493U (zh) * 2012-10-09 2013-04-10 天津市松正电动汽车技术股份有限公司 一种磁路解耦的双绕组电机和六相电机
CN206922515U (zh) * 2017-04-18 2018-01-23 苏州汇川联合动力系统有限公司 双余度定子及双余度电机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050174006A1 (en) * 2004-02-06 2005-08-11 Valeo Electrical Systems, Inc. Winding topologies for stators in brushless motors
CN1913284A (zh) * 2006-08-14 2007-02-14 南京航空航天大学 Halbach永磁容错无刷直流电机
CN103095081A (zh) * 2013-02-17 2013-05-08 天津大学 各相绕组间低热耦合无电磁耦合的双余度永磁同步电动机
CN105656273A (zh) * 2014-11-14 2016-06-08 中国航空工业第六八研究所 一种双余度分数槽隔槽嵌放无刷直流电机及嵌线方法
CN104506113A (zh) * 2014-12-31 2015-04-08 南京航空航天大学 一种双绕组永磁容错电机驱动系统的控制方法
CN104779758A (zh) * 2015-04-29 2015-07-15 哈尔滨工业大学 基于单双层混合绕组的模块化多相永磁同步电机

Also Published As

Publication number Publication date
CN107070016A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
WO2018192146A1 (zh) 双余度定子及双余度电机
US10411573B2 (en) Permanent-magnet synchronous machine and motor vehicle system
US11502567B2 (en) Stator winding for a rotating electrical machine
JP5757282B2 (ja) 固定子および回転電機
US20060273686A1 (en) Hub motors
US8258665B2 (en) Motor winding
WO2017090514A1 (ja) 回転電機および回転電機システム
JP6178475B2 (ja) 単極電動発電装置
JP2016127639A (ja) 回転電機の固定子
CN107846128A (zh) 直流无刷电机及使用其的电动助力转向系统
JP2012210094A (ja) 三相交流回転電機
JP5457869B2 (ja) 回転電機の固定子及び回転電機
WO2020079944A1 (ja) 回転電機の制御装置及び回転電機の制御方法
CN118174480A (zh) 双三相凸极转子同步磁阻电机、电机系统及其控制方法
CN212258560U (zh) 三相定子绕组、电机定子总成及电机
CN104779754B (zh) 双绕组轴向磁场磁通切换容错电机
JP2010028957A (ja) 誘導機及び誘導機極数切換システム
CN206922515U (zh) 双余度定子及双余度电机
JP2012147674A (ja) 回転電機及び回転電機の固定子
CN115411852A (zh) 一种三相永磁容错电机及其容错控制系统
JP2011036060A (ja) 電動機
JP7464506B2 (ja) 回転電機
JP7202979B2 (ja) 電力変換装置
JP3624897B2 (ja) 同期モータのコイル給電構造
CN212660021U (zh) 双绕组定子及电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17906139

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/05/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17906139

Country of ref document: EP

Kind code of ref document: A1