WO2018192064A1 - 表面波等离子体加工设备 - Google Patents

表面波等离子体加工设备 Download PDF

Info

Publication number
WO2018192064A1
WO2018192064A1 PCT/CN2017/087253 CN2017087253W WO2018192064A1 WO 2018192064 A1 WO2018192064 A1 WO 2018192064A1 CN 2017087253 W CN2017087253 W CN 2017087253W WO 2018192064 A1 WO2018192064 A1 WO 2018192064A1
Authority
WO
WIPO (PCT)
Prior art keywords
adjustment
split
plasma processing
processing apparatus
dielectric
Prior art date
Application number
PCT/CN2017/087253
Other languages
English (en)
French (fr)
Inventor
刘春明
韦刚
Original Assignee
北京北方华创微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方华创微电子装备有限公司 filed Critical 北京北方华创微电子装备有限公司
Publication of WO2018192064A1 publication Critical patent/WO2018192064A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/3222Antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32238Windows
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the present invention relates to the field of microelectronics, and in particular to a surface wave plasma processing apparatus.
  • the plasma processing apparatus includes a capacitively coupled plasma processing apparatus, an inductively coupled plasma processing apparatus, an electron cyclotron resonance plasma processing apparatus, and a surface wave plasma processing apparatus.
  • surface wave plasma processing equipment can achieve higher plasma density, lower electron temperature, and no need to increase external magnetic field compared with other plasma processing equipment, so surface wave plasma processing equipment becomes the most advanced.
  • One of the plasma devices One of the plasma devices.
  • FIG. 1 is a schematic structural view of a conventional surface wave plasma processing apparatus.
  • the surface wave plasma processing apparatus mainly includes a microwave source mechanism, an antenna mechanism, and a reaction chamber 19.
  • the microwave source mechanism includes a power source 1, a microwave source (magnetron) 2, a resonator 3, an inverter 4, a load 5, a directional coupler 6, an impedance adjusting unit 7, a waveguide 8, and a feed coaxial probe 9.
  • the antenna mechanism includes an antenna main body 11, a slit plate 15, a retardation plate 12, and a dielectric window 16.
  • the microwave source mechanism is used to supply microwave energy, and is loaded onto the retardation plate 12 through the feed coaxial probe 9; the wavelength of the microwave energy is compressed by the retardation plate 12, so that the microwave is in the slit plate 15 Circularly polarized, circularly polarized microwaves are excited through the dielectric window 16 to form a plasma within the reaction chamber 19. Further, a support table 21 is provided in the reaction chamber 19 for supporting the substrate 20.
  • the density distribution of the plasma generated by the surface wave plasma processing apparatus below the dielectric window 16 is the same, since the process of plasma diffusion above the substrate 20 is closely related to the process conditions, different process conditions (for example, air pressure). Under the process gas species, the density distribution of the plasma diffusing over the substrate 20 will be different. Therefore, it is difficult to ensure that a uniform plasma distribution can be obtained above the substrate 20 under different process conditions.
  • the present invention is directed to at least one of the technical problems existing in the prior art, and proposes a surface wave plasma processing apparatus which can not only improve the uniformity of density distribution of plasma but also reduce manufacturing cost.
  • a surface wave plasma processing apparatus comprising a microwave generating device, a microwave transmitting mechanism, an antenna mechanism and a reaction chamber which are sequentially connected, wherein the antenna mechanism comprises an antenna cavity and a retardation plate a slot plate and a dielectric window, the antenna cavity being disposed at a top of the reaction chamber; the retardation plate, the slot plate and the dielectric window being sequentially embedded in the antenna cavity from top to bottom; the microwave transmission
  • the mechanism is configured to load microwave energy into the retardation plate, the dielectric window includes a medium body, an adjustment body is disposed in the medium body, and a lower surface of the adjustment body and a lower surface of the medium body The phase is flush; and the adjustment body is different from the dielectric constant of the dielectric body.
  • the density distribution of the plasma generated in the reaction chamber of the plasma processing apparatus and the number of the adjusted splits are The electrical constant, radial width and/or position are set.
  • the dielectric constant of the adjustment split is greater than the dielectric constant of the dielectric body
  • the modulating split is for reducing a density distribution of a plasma generated in a reaction chamber of the plasma processing apparatus corresponding to a region in which the modulating split is located.
  • the regulatory splits are one or more, and the plurality of the regulatory splits have the same or different dielectric constants.
  • the regulating split body is annular, and when the regulating split body is plural, for two adjacent two adjusted split bodies, one of the adjusted split bodies has an inner diameter greater than or equal to another adjusted split body. The outer diameter of the two, and the two are nested with each other.
  • a groove is disposed on a lower surface of the medium body, the number of the grooves corresponds to the number of the adjustment split bodies, and the respective adjustment split bodies are disposed in the corresponding grooves in a one-to-one correspondence.
  • the thickness of the adjustment body is smaller than the thickness of the medium body.
  • the thickness of the adjustment split is from one third to one quarter of the thickness of the medium body.
  • the material used in the dielectric body comprises SiN or SiO 2 .
  • the material used for the adjustment of the split includes Al 2 O 3 .
  • the surface wave plasma processing apparatus provides an adjustment split body in a medium body of the medium window, and the lower surface of the adjustment split body is flush with the lower surface of the medium body, and adjusts the split body and the medium body
  • the dielectric constants are different, so that the surface waves of the same incident angle can pass through different dielectric constant media, and since the surface wave passes through a medium with a large dielectric constant, there is a larger refraction angle or total reflection.
  • the surface waves of the same incident angle are different from the refractive index of the lower surface of the adjusting body and the lower surface of the medium body, that is, the surface wave of the same incident angle has a refractive index greater than the dielectric constant of the medium having a larger dielectric constant.
  • the refractive index of a small medium can achieve the purpose of adjusting the uniformity of plasma density distribution.
  • the surface wave plasma processing apparatus provided by the present invention does not need to add other microwave devices such as a power splitter and a phase shifter, so that the manufacturing cost of the device can be reduced while improving the uniformity of density distribution of the plasma.
  • FIG. 1 is a schematic structural view of a conventional surface wave plasma processing apparatus
  • FIG. 2A is a schematic structural diagram of a surface wave plasma processing apparatus according to an embodiment of the present invention.
  • 2B is a bottom view of the media window in the embodiment of the present invention.
  • 2C is a cross-sectional view of the dielectric window in the radial direction in the embodiment of the present invention.
  • Figure 3 is a schematic view showing the propagation of surface waves on the lower surface of different media
  • FIG. 4 is a distribution diagram of a plurality of adjustment splits used in an embodiment of the present invention.
  • FIG. 5 is another distribution diagram of a plurality of adjustment splits used in an embodiment of the present invention.
  • the surface wave plasma processing apparatus includes a microwave generating device, a microwave transmitting mechanism, an antenna mechanism, and a reaction chamber 45 which are sequentially connected. Therein, a support table 47 is provided in the reaction chamber 45 for carrying the substrate 46.
  • the microwave transmission mechanism includes a power source 31, a microwave source (magnetron) 32, a resonator 33, an inverter 34, a load 35, a directional coupler 36, an impedance adjusting unit 37, a waveguide 38, and a feed coaxial probe 39.
  • the antenna mechanism includes an antenna cavity 40, a retardation plate 41, a slot plate 43 and a dielectric window, wherein the antenna cavity 40 is disposed at the top of the reaction chamber 45; the retardation plate, the slot plate 43 and the dielectric window are sequentially from top to bottom Embedded in the antenna cavity 40.
  • the microwave transmission mechanism loads the microwave energy into the retardation plate 41 through the feed coaxial probe 39. After the microwave energy passes through the retardation plate 41, the wavelength is compressed, so that the microwave generates circular polarization on the slit plate 43, and the circularly polarized microwave passes through the medium.
  • the window is excited to form a plasma within the reaction chamber 45.
  • the dielectric window includes a media body 44 in which the adjustment split 42 is disposed, and the lower surface of the adjustment split 42 is flush with the lower surface of the media body 44, and the dielectric of the split 42 and the dielectric body 44 is adjusted.
  • the constants are different. Since both the lower surface of the adjustment split 42 and the lower surface of the dielectric body 44 are exposed to the plasma environment, they must be flush with each other to avoid interference with the propagation of surface waves, thereby being in the reaction chamber 45.
  • the plasma distribution has an effect.
  • the refractive index is just such that the incident electromagnetic wave in the dielectric window forms a total reflection at the interface of the dielectric window, at which time the electromagnetic wave no longer enters the reaction chamber 45 as a volume wave.
  • a pure surface wave is formed along the surface of the dielectric window, so that the density of the plasma does not increase any more, and at different interface interfaces, the incident electromagnetic waves in the same direction will reach the pure surface earlier in the larger dielectric constant medium. Wave state.
  • the refractive index on the lower surface of the dielectric body 44 is different, that is, the surface wave of the same incident angle has a refractive index greater than that of a medium having a small dielectric constant, so that the plasma density can be adjusted.
  • the number, dielectric constant, radial width and/or position of the adjustment split 42 can be generated in the reaction chamber of the plasma processing apparatus according to a surface wave plasma processing apparatus using a single dielectric constant dielectric window.
  • the density distribution of the plasma is set.
  • the plasma density distribution formed by the excitation is "M" in the radial direction of the reaction chamber, that is, the plasma distributed in the central region of the reaction chamber.
  • the bulk density is low, and the plasma density distributed in the middle portion of the periphery of the central region is high.
  • a medium having a large dielectric constant can be disposed at a position corresponding to the intermediate portion to reduce
  • the plasma density of the intermediate region acts to increase the uniformity of density distribution of the plasma.
  • the dielectric constant of the adjustment split 42 can be made larger than the dielectric constant of the dielectric body 44.
  • a i are the incident angle of the electromagnetic wave, which adjust the angle of refraction on the lower surface of the sub-body 42 is greater than the refraction angle A r on the lower surface of the dielectric body 44 and the value of the angle of refraction 42 is adjusted separately to achieve total reflection
  • the critical point is such that the electromagnetic wave forms total reflection on the lower surface of the adjustment split 42 (in FIG. 3, the rightmost rightward arrow indicates the reflection direction in which the electromagnetic wave forms total reflection), and the corresponding adjustment split 42 is located at this time.
  • the density of the plasma inside is no longer increased; and the electromagnetic wave continues to feed the volume wave into the reaction chamber 45 through the medium body 44, so that the plasma density of the region corresponding to the medium body 44 is increased, thereby adjusting the reaction chamber.
  • the purpose of plasma uniformity For example, for an antenna mechanism having a dielectric window of a single dielectric constant, the plasma density distribution formed by the excitation is "M" in the radial direction of the reaction chamber, that is, the plasma distributed in the central region of the reaction chamber. The bulk density is low, and the plasma density distributed in the middle portion of the periphery of the central region is high.
  • the adjustment split body 42 may be disposed at a position in the medium body 44 corresponding to the intermediate portion to serve to reduce the plasma density of the intermediate portion, thereby improving the reaction chamber.
  • the uniformity of the density distribution of the plasma for an antenna mechanism having a dielectric window of a single dielectric constant, the plasma density distribution formed by the excitation is "M" in the radial direction of the reaction chamber, that
  • the surface wave plasma processing apparatus does not need to add microwave devices such as a power splitter and a phase shifter, so that the manufacturing cost of the device can be reduced while improving the uniformity of density distribution of the plasma.
  • the dielectric constant of the adjusting split 42 can be made smaller than the dielectric constant of the dielectric body 44.
  • the plasma density of the adjusting split 42 in the reaction chamber can be set to be low.
  • the corresponding region of the region is located, and the remaining region of the plasma having a higher plasma density corresponds to the dielectric body 44, so that the dielectric body 44 having a larger dielectric constant can serve to reduce the plasma density.
  • the effect of the plasma density of the higher remaining regions in turn, can increase the uniformity of the density distribution of the plasma within the reaction chamber.
  • the adjustment split body 42 is one and is annular.
  • the plasma density distribution formed by the excitation is "M" in the radial direction of the reaction chamber, that is, the plasma density distributed in the central region of the reaction chamber. It is lower, and the plasma density distributed in the middle portion of the periphery of the central region is higher.
  • a groove is provided on the lower surface of the medium body 44, and the adjustment split 42 is disposed in the groove.
  • the adjusting split body 42 and the groove may be screwed and fixedly connected.
  • the matching split thread 42 and the groove are respectively provided with matching threads on the annular mating surface, thereby adjusting the split body 42 by means of the screw connection.
  • the fixing of the medium body 44 may also be fixedly connected by a card slot, specifically, the outer ring of the adjusting split 42 respectively.
  • a plurality of convex portions and a plurality of card slots are disposed on the inner wall of the groove and the inner peripheral wall of the medium body 44. The plurality of card slots are symmetrically distributed along the circumference, and the plurality of convex portions are correspondingly matched with the plurality of card slots, thereby realizing The fixation of the split body 42 and the media body 44 is adjusted.
  • the number of the adjustment splits may be plural, and the dielectric constants of the plurality of adjustment splits may be the same, or It can also be different.
  • the inner diameters of the respective adjustment split bodies are different, and the outer diameters of the respective adjustment split bodies are different, and can be nested with each other, so that the reaction chamber can be more finely
  • the plasma density distribution of different regions in the radial direction of the chamber is adjusted, that is, in the case where there are a plurality of annular adjustment splits, one of the adjusted splits for the two adjacent adjustment splits
  • the inner diameter is greater than or equal to the outer diameter of the other adjustment split, and the two are nested with each other.
  • the above-mentioned mutual nesting means that in any two adjacent annular adjusting bodies, the outer diameter of the adjusting split body on the outer side is equal to or larger than the outer diameter of the inner side regulating split body, and the outer side adjustment split sleeve Provided around the adjustment split on the inside, ie the adjustment split on the inside is actually embedded in the inner circle of the adjustment split on the outside, and the two adjustment splits can be spaced apart and/or not interval.
  • the adjustment split is two, which are the first adjustment split 42a and the second adjustment split 42b, respectively, both of which are annular.
  • the inner diameter of the first adjustment split 42a is larger than the outer diameter of the second adjustment split 42b, and the first adjustment split 42a is sleeved around the second adjustment split 42b with a space therebetween.
  • the inner diameter of the first adjusting split 42a is equal to the outer diameter of the second adjusting split 42b, and the first adjusting split 42a is sleeved around the second adjusting split 42b, and both There is no gap between them.
  • the number of grooves provided on the lower surface of the medium body corresponds to the number of adjustment splits, and the respective adjustment splits are disposed in the corresponding recesses in a one-to-one correspondence.
  • the adjustment split can also take any other shape, for example, in the form of dots and lines. Segment or irregular shape and so on.
  • the respective split bodies may have a space between them, or may have no space.
  • the thickness of the adjusting split 42 is smaller than the thickness of the medium body 44, which makes the medium body 44 always a unitary structure without being separated into a plurality of split bodies by the adjusting split 42 so that the medium body 44 can be secured.
  • Mechanical strength is one-third to one-quarter of the thickness of the medium body 44, and the adjusting split 42 having a thickness within the range ensures that the adjusting split 42 is firmly disposed in the medium. In the body 44, the medium body 44 can be ensured to have better mechanical strength.
  • the material used for the dielectric body 44 includes SiN or SiO 2 .
  • the material used to adjust the split 42 includes Al 2 O 3 .

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

一种表面波等离子体加工设备,其包括依次连接的微波发生装置、微波传输机构、天线机构和反应腔室(45),其中,天线机构包括天线腔体(40)、滞波板(41)、缝隙板(43)和介质窗,天线腔体(40)设置在反应腔室(45)顶部;滞波板(41)、缝隙板(43)和介质窗由上而下依次内嵌在天线腔体(40)内;微波传输机构用于向滞波板(41)加载微波能量,介质窗包括介质本体(44),在介质本体(44)内设置有调节分体(42),且调节分体(42)的下表面与介质本体(44)的下表面相平齐;并且,调节分体(42)的介电常数与介质本体(44)的介电常数不同。其不仅可以提高等离子体的密度分布均匀性,而且可以降低制造成本。

Description

表面波等离子体加工设备 技术领域
本发明涉及微电子技术领域,特别涉及一种表面波等离子体加工设备。
背景技术
目前,等离子体加工设备被广泛地应用于集成电路或MEMS器件的制造工艺中。等离子体加工设备包括电容耦合等离子体加工设备、电感耦合等离子体加工设备、电子回旋共振等离子体加工设备和表面波等离子体加工设备等。其中,表面波等离子体加工设备相对其他等离子体加工设备而言,可以获得更高的等离子体密度、更低的电子温度,且不需要增加外磁场,因此表面波等离子体加工设备成为最先进的等离子体设备之一。
图1为现有的一种表面波等离子体加工设备的结构示意图。如图1所示,表面波等离子体加工设备主要包括微波源机构、天线机构和反应腔室19。其中,微波源机构包括电源1、微波源(磁控管)2、谐振器3、换流器4、负载5、定向耦合器6、阻抗调节单元7、波导8和馈电同轴探针9。天线机构包括天线主体11、缝隙板15、滞波板12和介质窗16。在进行工艺时,微波源机构用于提供微波能量,并通过馈电同轴探针9加载到滞波板12上;微波能量通过滞波板12后波长被压缩,从而使得微波在缝隙版15上产生圆偏振,圆偏振的微波通过介质窗16在反应腔室19内激发形成等离子体。此外,在反应腔室19内设置有支撑台21,用以支撑基片20。
但是,上述表面波等离子体加工设备在介质窗16下方产生的等离子体的密度分布是相同的,由于等离子体扩散至基片20上方的过程与工艺条件密切相关,不同的工艺条件(例如,气压、工艺气体种类)下,等离子体扩散至基片20上方的密度分布会不同,因此,很难保证在不同的工艺条件下在基片20的上方均能够获得均匀的等离子体分布。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提出了一种表面波等离子体加工设备,其不仅可以提高等离子体的密度分布均匀性,而且可以降低制造成本。
为实现本发明的目的而提供一种表面波等离子体加工设备,包括依次连接的微波发生装置、微波传输机构、天线机构和反应腔室,其中,所述天线机构包括天线腔体、滞波板、缝隙板和介质窗,所述天线腔体设置在所述反应腔室顶部;所述滞波板、缝隙板和介质窗由上而下依次内嵌在所述天线腔体内;所述微波传输机构用于向所述滞波板加载微波能量,所述介质窗包括介质本体,在所述介质本体内设置有调节分体,且所述调节分体的下表面与所述介质本体的下表面相平齐;并且,所述调节分体与所述介质本体的介电常数不同。
优选的,根据使用单一介质常数介质窗的表面波等离子体加工设备进行工艺时,在该等离子体加工设备的反应腔室内产生的等离子体的密度分布情况而对所述调节分体的数量、介电常数、径向宽度和/或位置进行设定。
优选的,所述调节分体的介电常数大于所述介质本体的介电常数;
所述调节分体用于降低所述等离子体加工设备的反应腔室内的对应于所述调节分体所在区域产生的等离子体的密度分布。
优选的,所述调节分体为一个或多个,且多个所述调节分体的介电常数相同或不同。
优选的,所述调节分体呈环状,且在所述调节分体为多个时,对于两两相邻的调节分体而言,其中一个调节分体的内径大于等于另一个调节分体的外径,且二者相互嵌套设置。
优选的,在所述介质本体的下表面设置有凹槽,所述凹槽的数量与所述调节分体的数量相对应,且各个调节分体一一对应地设置在相应的凹槽中。
优选的,所述调节分体的厚度小于所述介质本体的厚度。
优选的,所述调节分体的厚度是所述介质本体的厚度的三分之一到四分之一。
优选的,所述介质本体所采用的材料包括SiN或者SiO2
优选的,所述调节分体所采用的材料包括Al2O3
本发明具有以下有益效果:
本发明提供的表面波等离子体加工设备,其通过在介质窗的介质本体内设置调节分体,且使调节分体的下表面与介质本体的下表面相平齐,并且调节分体与介质本体的介电常数不同,可以使相同入射角的表面波分别通过不同介电常数的介质,而由于表面波通过介电常数较大的介质时,会有更大的折射角或者形成全反射,因而相同入射角的表面波分别在调节分体的下表面与介质本体的下表面上的折射率不同,即,相同入射角的表面波在介电常数较大的介质的折射率大于介电常数较小的介质的折射率,从而可以达到调节等离子体密度分布均匀性的目的。此外,本发明提供的表面波等离子体加工设备无需增加诸如功分器和相移器等的其他微波器件,从而可以在提高等离子体的密度分布均匀性的前提下,降低设备的制造成本。
附图说明
图1为现有的一种表面波等离子体加工设备的结构示意图;
图2A为本发明实施例提供的表面波等离子体加工设备的结构示意图;
图2B为本发明实施例中介质窗的仰视图;
图2C为本发明实施例中介质窗沿径向方向的剖视图;
图3为表面波在不同介质的下表面的传播情况示意图;
图4为本发明实施例采用的多个调节分体的一种分布图;
图5为本发明实施例采用的多个调节分体的另一种分布图。
具体实施方式
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图来对本发明提供的表面波等离子体加工设备进行详细描述。
图2A为本发明实施例提供的表面波等离子体加工设备的结构示意图。图2B为本发明实施例中介质窗的仰视图。图2C为本发明实施例中介质窗沿径向方向的剖视图。请一并参阅图2A~图2C,表面波等离子体加工设备包括依次连接的微波发生装置、微波传输机构、天线机构和反应腔室45。其中,在反应腔室45内设置有支撑台47,用于承载基片46。微波传输机构包括电源31、微波源(磁控管)32、谐振器33、换流器34、负载35、定向耦合器36、阻抗调节单元37、波导38和馈电同轴探针39。天线机构包括天线腔体40、滞波板41、缝隙板43和介质窗,其中,天线腔体40设置在反应腔室45顶部;滞波板、缝隙板43和介质窗由上而下依次内嵌在天线腔体40内。微波传输机构通过馈电同轴探针39向滞波板41加载微波能量,微波能量通过滞波板41后波长被压缩,从而使得微波在缝隙版43上产生圆偏振,圆偏振的微波通过介质窗在反应腔室45内激发形成等离子体。
介质窗包括介质本体44,在介质本体44内设置有调节分体42,且调节分体42的下表面与介质本体44的下表面相平齐,并且调节分体42与介质本体44的介电常数不同。由于调节分体42的下表面与介质本体44的下表面均暴露在等离子体环境中,因此,二者必需相互平齐,以避免对表面波的传播产生干扰,从而对反应腔室45内的等离子体分布产生影响。
当等离子体的密度达到表面波临界电子密度时,其折射率刚好可以使介质窗中的入射电磁波在介质窗分界面形成全反射,此时电磁波不再以体积波形式进入反应腔室45,而是沿着介质窗表面形成纯表面波,从而等离子体的密度不再增大,而在不同的介质分界面上,相同方向的入射电磁波将在较大的介电常数介质下更早达到纯表面波状态。基于上述原理,通过使调节分体42与介质本体44的介电常数不同,可以使相同入射角的表面波分别通过 不同介电常数的介质,而由于表面波通过介电常数较大的介质时,会有更大的折射角或者形成全反射,因而相同入射角的表面波分别在调节分体42的下表面与介质本体44的下表面上的折射率不同,即,相同入射角的表面波在介电常数较大的介质的折射率大于介电常数较小的介质的折射率,从而可以达到调节等离子体密度分布均匀性的目的。
优选的,调节分体42的数量、介电常数、径向宽度和/或位置可以根据使用单一介质常数介质窗的表面波等离子体加工设备进行工艺时在该等离子体加工设备的反应腔室内产生的等离子体的密度分布情况进行设定。例如,对于具有单一介质常数的介质窗的天线机构来说,由其激发形成的等离子体密度分布在反应腔室的径向上呈“M”型,即,分布在反应腔室的中心区域的等离子体密度较低,而分布在中心区域外围的中间区域的等离子体密度较高。在这种情况下,在设计本发明提供的表面波等离子体加工设备中的介质窗时,可以将介电常数较大的介质设置在与上述中间区域相对应的位置处,以起到减小该中间区域的等离子体密度的作用,从而可以提高等离子体的密度分布均匀性。
在本实施例中,如图3所示,可以使调节分体42的介电常数大于介质本体44的介电常数。对于入射角均为Ai的电磁波,其在调节分体42的下表面上的折射角大于在介质本体44的下表面上的折射角Ar且调节分体42的折射角的数值达到全反射临界点,而使得电磁波在调节分体42的下表面形成全反射(图3中,最右侧的向右的箭头即表示电磁波形成全反射的反射方向),此时对应调节分体42所在区域内的等离子体的密度不再增大;而电磁波通过介质本体44继续向反应腔室45内馈入体积波,使对应介质本体44所在区域的等离子体密度增大,从而达到调节反应腔室内的等离子体的均匀性的目的。例如,对于具有单一介质常数的介质窗的天线机构来说,由其激发形成的等离子体密度分布在反应腔室的径向上呈“M”型,即,分布在反应腔室的中心区域的等离子体密度较低,而分布在中心区域外围的中间 区域的等离子体密度较高。在这种情况下,可以将调节分体42设置在介质本体44中的与上述中间区域相对应的位置处,以起到减小该中间区域的等离子体密度的作用,从而可以提高反应腔室内的等离子体的密度分布均匀性。
此外,本发明提供的表面波等离子体加工设备无需增加诸如功分器和相移器等的微波器件,从而可以在提高等离子体的密度分布均匀性的前提下,降低设备的制造成本。
在实际应用中,也可以使调节分体42的介电常数小于介质本体44的介电常数,在这种情况下,可以将调节分体42设置在与反应腔室中的等离子体密度较低的区域相对应的位置处,而反应腔室中的等离子体密度较高的其余区域则与介质本体44相对应,从而介电常数较大的介质本体44可以起到减小所述等离子体密度较高的其余区域的等离子体密度的作用,进而可以提高反应腔室内的等离子体的密度分布的均匀性。
在本实施例中,如图2B和图2C所示,调节分体42为一个,且呈环状。对于具有单一介质常数的介质窗的天线机构来说,由其激发形成的等离子体密度分布在反应腔室的径向上呈“M”型,即,分布在反应腔室的中心区域的等离子体密度较低,而分布在中心区域外围的中间区域的等离子体密度较高。在这种情况下,通过使调节分体42的介电常数大于介质本体44的介电常数,并且采用环状的调节分体42,且将其设置在与上述中间区域相对应的位置处,可以起到减小该中间区域的等离子体密度的作用,从而可以提高等离子体的密度分布均匀性。
在本实施例中,在介质本体44的下表面设置有凹槽,调节分体42设置在该凹槽中。可选的,调节分体42和凹槽可以采用螺纹固定连接,具体来说,分别在调节分体42与凹槽的环形配合面上设置相互配合的螺纹,从而借助螺纹连接实现调节分体42和介质本体44的固定。或者,调节分体42和凹槽也可以采用卡槽固定连接,具体来说,分别在调节分体42的环体外 周壁和介质本体44的凹槽内周壁上设置多个凸部和多个卡槽,多个卡槽沿周向对称分布,多个凸部一一对应地与多个卡槽相配合,从而实现调节分体42和介质本体44的固定。
在实际应用中,为了更细化地对反应腔室内的不同区域的等离子体密度分布进行调节,调节分体的数量还可以为多个,且多个调节分体的介电常数可以相同,或者也可以不同。另外,在环状的调节分体为多个的情况下,各个调节分体的内径不同,且各个调节分体的外径不同,并且能够相互嵌套设置,从而可以更细化地对反应腔室的径向上的不同区域的等离子体密度分布进行调节,也就是说,在环状的调节分体为多个的情况下,对于两两相邻的调节分体而言,其中一个调节分体的内径大于等于另一个调节分体的外径,且二者相互嵌套设置。上述相互嵌套,是指在任意相邻的两个环状的调节分体中,处于外侧的调节分体的内径大于等于处于内侧的调节分体的外径,且处于外侧的调节分体套设在处于内侧的调节分体的周围,即,处于内侧的调节分体实际是嵌入在处于外侧的调节分体的内圆中,并且两个调节分体之间可以具有间隔,和/或没有间隔。例如,如图4所示,调节分体为两个,分别为第一调节分体42a和第二调节分体42b,二者均为环状。并且,第一调节分体42a的内径大于第二调节分体42b的外径,且第一调节分体42a套设在第二调节分体42b的周围,并且二者之间具有间隔。又如,如图5所示,第一调节分体42a的内径等于第二调节分体42b的外径,且第一调节分体42a套设在第二调节分体42b的周围,并且二者之间没有间隔。在实际应用中,对于三个以上的调节分体,也可以同时存在上述有间隔和没有间隔这两种情况,即,在相邻的两个调节分体的相邻处具有间隔,在另外的相邻的调节分体的相邻处不具有间隔。
此外,对于多个调节分体,设置在介质本体的下表面的凹槽的数量与调节分体的数量相对应,且各个调节分体一一对应地设置在相应的凹槽中。
在实际应用中,调节分体还可以采用其他任意形状,例如,呈点状、线 段状或者不规则形状等等。并且,在调节分体为多个时,各个调节分体之间可以具有间隔,或者也可以没有间隔。
优选的,调节分体42的厚度小于介质本体44的厚度,这使得介质本体44始终为一整体式结构,而不会被调节分体42分隔成多个分体,从而可以保证介质本体44的机械强度。进一步优选的,调节分体42的厚度是介质本体44的厚度的三分之一到四分之一,厚度在该范围内的调节分体42,既可以保证调节分体42稳固地设置在介质本体44中,又可以保证介质本体44具有较佳的机械强度。
在实际应用中,介质本体44所采用的材料包括SiN或者SiO2。调节分体42所采用的材料包括Al2O3
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (10)

  1. 一种表面波等离子体加工设备,包括依次连接的微波发生装置、微波传输机构、天线机构和反应腔室,其中,所述天线机构包括天线腔体、滞波板、缝隙板和介质窗,所述天线腔体设置在所述反应腔室顶部;所述滞波板、缝隙板和介质窗由上而下依次内嵌在所述天线腔体内;所述微波传输机构用于向所述滞波板加载微波能量,其特征在于,所述介质窗包括介质本体,在所述介质本体内设置有调节分体,且所述调节分体的下表面与所述介质本体的下表面相平齐;并且,所述调节分体与所述介质本体的介电常数不同。
  2. 如权利要求1所述的表面波等离子体加工设备,其特征在于,根据使用单一介质常数介质窗的表面波等离子体加工设备进行工艺时,在该等离子体加工设备的反应腔室内产生的等离子体的密度分布情况而对所述调节分体的数量、介电常数、径向宽度和/或位置进行设定。
  3. 如权利要求2所述的表面波等离子体加工设备,其特征在于,所述调节分体的介电常数大于所述介质本体的介电常数;
    所述调节分体用于降低所述等离子体加工设备的反应腔室内的对应于所述调节分体所在区域产生的等离子体的密度分布。
  4. 如权利要求1所述的表面波等离子体加工设备,其特征在于,所述调节分体为一个或多个,且多个所述调节分体的介电常数相同或不同。
  5. 如权利要求4所述的表面波等离子体加工设备,其特征在于,所述调节分体呈环状,且在所述调节分体为多个时,对于两两相邻的调节分体而言,其中一个调节分体的内径大于等于另一个调节分体的外径,且二者相互嵌套设置。
  6. 如权利要求4所述的表面波等离子体加工设备,其特征在于,在所述介质本体的下表面设置有凹槽,所述凹槽的数量与所述调节分体的数量相对应,且各个调节分体一一对应地设置在相应的凹槽中。
  7. 如权利要求1-6任意一项所述的表面波等离子体加工设备,其特征在于,所述调节分体的厚度小于所述介质本体的厚度。
  8. 如权利要求7所述的表面波等离子体加工设备,其特征在于,所述调节分体的厚度是所述介质本体的厚度的三分之一到四分之一。
  9. 如权利要求1-6任意一项所述的表面波等离子体加工设备,其特征在于,所述介质本体所采用的材料包括SiN或者SiO2
  10. 如权利要求1-6任意一项所述的表面波等离子体加工设备,其特征在于,所述调节分体所采用的材料包括Al2O3
PCT/CN2017/087253 2017-04-20 2017-06-06 表面波等离子体加工设备 WO2018192064A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710261107.5A CN108735567B (zh) 2017-04-20 2017-04-20 表面波等离子体加工设备
CN201710261107.5 2017-04-20

Publications (1)

Publication Number Publication Date
WO2018192064A1 true WO2018192064A1 (zh) 2018-10-25

Family

ID=63855466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087253 WO2018192064A1 (zh) 2017-04-20 2017-06-06 表面波等离子体加工设备

Country Status (3)

Country Link
CN (1) CN108735567B (zh)
TW (1) TWI673758B (zh)
WO (1) WO2018192064A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110797248A (zh) * 2018-08-01 2020-02-14 北京北方华创微电子装备有限公司 表面波等离子体装置和半导体处理设备
CN109509969B (zh) * 2018-12-11 2024-02-27 上海健康医学院 一种用于激发可变负介电常数环境的微波天线装置
JP7208873B2 (ja) * 2019-08-08 2023-01-19 東京エレクトロン株式会社 シャワープレート、下部誘電体、及びプラズマ処理装置
CN112530298B (zh) * 2020-12-08 2022-10-14 康佳集团股份有限公司 一种等离子体显示面板及显示装置
CN113571400A (zh) * 2021-07-16 2021-10-29 北京北方华创微电子装备有限公司 半导体工艺设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003188154A (ja) * 2001-12-21 2003-07-04 Sharp Corp プラズマプロセス装置およびプラズマ制御方法
CN1450847A (zh) * 2002-04-09 2003-10-22 夏普株式会社 等离子体处理装置和等离子体处理方法
CN101742807A (zh) * 2008-11-05 2010-06-16 Ips有限公司 一种等离子发生装置及等离子处理装置
CN102027575A (zh) * 2008-08-22 2011-04-20 东京毅力科创株式会社 微波导入机构、微波等离子源以及微波等离子处理装置
CN102738059A (zh) * 2011-03-31 2012-10-17 东京毅力科创株式会社 等离子体处理方法、以及元件隔离方法
CN105430862A (zh) * 2014-09-23 2016-03-23 北京北方微电子基地设备工艺研究中心有限责任公司 一种表面波等离子体设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4062928B2 (ja) * 2002-02-06 2008-03-19 東京エレクトロン株式会社 プラズマ処理装置
CN100492591C (zh) * 2003-09-04 2009-05-27 东京毅力科创株式会社 等离子处理装置
US7584714B2 (en) * 2004-09-30 2009-09-08 Tokyo Electron Limited Method and system for improving coupling between a surface wave plasma source and a plasma space
WO2008033928A2 (en) * 2006-09-12 2008-03-20 Tokyo Electron Limited Electron beam enhanced surface wave plasma source
CN103094046A (zh) * 2007-08-28 2013-05-08 东京毅力科创株式会社 等离子体处理装置以及等离子体处理装置用的顶板
US8753475B2 (en) * 2008-02-08 2014-06-17 Tokyo Electron Limited Plasma processing apparatus
US8415884B2 (en) * 2009-09-08 2013-04-09 Tokyo Electron Limited Stable surface wave plasma source
JP6509049B2 (ja) * 2015-06-05 2019-05-08 東京エレクトロン株式会社 マイクロ波プラズマ源およびプラズマ処理装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003188154A (ja) * 2001-12-21 2003-07-04 Sharp Corp プラズマプロセス装置およびプラズマ制御方法
CN1450847A (zh) * 2002-04-09 2003-10-22 夏普株式会社 等离子体处理装置和等离子体处理方法
CN102027575A (zh) * 2008-08-22 2011-04-20 东京毅力科创株式会社 微波导入机构、微波等离子源以及微波等离子处理装置
CN101742807A (zh) * 2008-11-05 2010-06-16 Ips有限公司 一种等离子发生装置及等离子处理装置
CN102738059A (zh) * 2011-03-31 2012-10-17 东京毅力科创株式会社 等离子体处理方法、以及元件隔离方法
CN105430862A (zh) * 2014-09-23 2016-03-23 北京北方微电子基地设备工艺研究中心有限责任公司 一种表面波等离子体设备

Also Published As

Publication number Publication date
CN108735567A (zh) 2018-11-02
CN108735567B (zh) 2019-11-29
TWI673758B (zh) 2019-10-01
TW201842528A (zh) 2018-12-01

Similar Documents

Publication Publication Date Title
TWI719290B (zh) 使用模組化微波源的電漿處理工具
WO2018192064A1 (zh) 表面波等离子体加工设备
US7243610B2 (en) Plasma device and plasma generating method
US8967080B2 (en) Top plate of microwave plasma processing apparatus, plasma processing apparatus and plasma processing method
TWI685015B (zh) 微波電漿源及電漿處理裝置
US10211032B2 (en) Microwave plasma source and plasma processing apparatus
US6818852B2 (en) Microwave plasma processing device, plasma processing method, and microwave radiating member
TWI548311B (zh) Surface wave plasma generation antenna and surface wave plasma processing device
US20110150719A1 (en) Microwave introduction mechanism, microwave plasma source and microwave plasma processing apparatus
JP2018006718A (ja) マイクロ波プラズマ処理装置
WO2021220551A1 (ja) プラズマ処理装置
JP2012190899A (ja) プラズマ処理装置
CN107369601B (zh) 表面波等离子体加工设备
US20170263417A1 (en) Plasma processing apparatus and plasma processing method
KR102489747B1 (ko) 플라즈마 처리 장치
WO2021152655A1 (ja) プラズマ処理装置
KR101722307B1 (ko) 마이크로파 방사 안테나, 마이크로파 플라즈마원 및 플라즈마 처리 장치
KR100682096B1 (ko) 플라즈마 처리장치 및 플라즈마 생성방법
CN109219226B (zh) 一种等离子体发生装置
JP6700128B2 (ja) マイクロ波プラズマ処理装置
JP6700127B2 (ja) マイクロ波プラズマ処理装置
US20230238217A1 (en) Plasma processing apparatus
US20200211825A1 (en) Focalized microwave plasma reactor
JP4486068B2 (ja) プラズマ生成方法
JP2024017093A (ja) プラズマ処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17906726

Country of ref document: EP

Kind code of ref document: A1