WO2018189981A1 - Force sensor - Google Patents

Force sensor Download PDF

Info

Publication number
WO2018189981A1
WO2018189981A1 PCT/JP2018/002935 JP2018002935W WO2018189981A1 WO 2018189981 A1 WO2018189981 A1 WO 2018189981A1 JP 2018002935 W JP2018002935 W JP 2018002935W WO 2018189981 A1 WO2018189981 A1 WO 2018189981A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
strain sensor
strain
sensor
force sensor
Prior art date
Application number
PCT/JP2018/002935
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 隆史
池田 隆男
Original Assignee
日本電産コパル電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産コパル電子株式会社 filed Critical 日本電産コパル電子株式会社
Publication of WO2018189981A1 publication Critical patent/WO2018189981A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force

Definitions

  • the embodiment of the present invention relates to a force sensor applied to, for example, a robot.
  • the force sensor (also referred to as a 6-axis force sensor) includes forces Fx, Fy, and Fz in the X-axis, Y-axis, and Z-axis directions, and moments Mx, My, This is a sensor capable of measuring Mz (see, for example, Patent Document 1 and Patent Document 2).
  • the force sensor has a force sensor chip as a strain generating body.
  • the force sensor chip has a frame-shaped support part, a square-shaped action part, and a T-shaped connection part that connects the support part and the action part, and the plurality of strain resistance elements include a connection part, an action part, Is provided on the surface of the boundary.
  • the embodiment of the present invention provides a force sensor capable of independently setting the sensitivity and allowable torque of the strain sensor and the mechanical strength of the strain generating body.
  • the force sensor of the present embodiment includes a first region, a second region, a plurality of flexible third regions that connect the first region and the second region, and the first region.
  • a force sensor capable of independently setting the sensitivity and allowable torque of the strain sensor and the mechanical strength of the strain generating body.
  • the top view which takes out and shows one of the distortion sensors shown in FIG. FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2.
  • movement of a bridge circuit The figure which shows the other example of operation
  • the top view which shows the modification of 1st Embodiment.
  • the perspective view which shows an example of the force sensor which concerns on 2nd Embodiment.
  • FIG. 1 shows a force sensor according to the first embodiment.
  • the force sensor also referred to as a first strain body
  • the force sensor includes a first strain sensor 14, a second strain sensor 15, a third strain sensor 16, and a fourth strain sensor 17.
  • the first strain body 10 includes a first structure (first region) 11, a second structure (second region) 12, and a third structure (third region) 13 as a plurality of connecting portions.
  • a first strain sensor 14, a second strain sensor 15, a third strain sensor 16, and a fourth strain sensor 17 are disposed between the first structure 11 and the second structure 12.
  • the first structure 11 has, for example, a substantially quadrangular frame shape, and has four corners and four sides. Each of the four corners of the first structure 11 has a first insertion port 11a for inserting a bolt (not shown), for example.
  • the first structure 11 is fixed to a first movable body (not shown) as a force sensor main body by a bolt inserted into each first insertion port 11a.
  • the first movable body is fixed to, for example, one of the joints (not shown) of a robot arm (not shown) as the body to be measured.
  • Each of the four sides of the first structure 11 has a first protrusion 11b.
  • each first protrusion 11b is provided on the inner surface at substantially the center of each of the four sides.
  • the height of the surface of the first protrusion 11 b is equal to the height of the first structure 11. That is, the thickness of each side of the first structure 11 is equal to the thickness of the first protrusion 11b.
  • the second structure 12 has, for example, a substantially cross shape, and the height of the surface of the second structure 12 is equal to the height of the surface of the first structure 11. That is, the thickness of the second structure 12 is equal to the thickness of the first structure 11.
  • the second structure 12 has four second protrusions 12a, and each second protrusion 12a is opposed to each first protrusion 11b of the first structure 11 with a predetermined interval.
  • the second structure 12 has a second insertion port 12b for inserting, for example, a bolt (not shown) corresponding to each second protrusion 12a.
  • the 2nd structure 12 is fixed to the 2nd movable body which is not illustrated as a force sensor main part with the volt
  • the second movable body is fixed to, for example, the other joint of a robot arm (not shown) as a measured body.
  • each third structure 13 is provided between the four corners of the first structure 11 and the four corners of the second structure 12, respectively.
  • Each third structure 13 has, for example, a substantially rectangular frame shape and has four corners.
  • the first corner of each third structure 13 is provided at the corner of the first structure 11, and the third corner opposite to the first corner of the third structure 13 is the second structure.
  • 12 are provided at corners between two adjacent second protrusions 12a.
  • the first structure 11, the second structure 12, and the third structure 13 are made of metal, for example, stainless steel (SUS), and have substantially the same thickness along the Z-axis direction in the drawing.
  • SUS stainless steel
  • the present invention is not limited to this, and the thicknesses of the first structure 11, the second structure 12, and the third structure 13 may be set.
  • the first structure 11 and the third structure 13 have a predetermined width in the illustrated X-axis and Y-axis directions.
  • the third structure 13 Since the third structure 13 has a rectangular frame shape, it can be deformed in multiple directions including the X-axis, Y-axis, and Z-axis directions shown in the figure. That is, the third structure 13 has flexibility. For this reason, the second structure 12 can be moved in multiple directions with respect to the first structure 11 by the third structure 13.
  • a first strain sensor 14 Between the four first protrusions 11b of the first structure 11 and the four second protrusions 12a of the second structure 12, a first strain sensor 14, a second strain sensor 15, and a third strain sensor 16 are provided. And a fourth strain sensor 17 are provided.
  • the first strain sensor 14 to the fourth strain sensor 17 detect forces Fx, Fy, and Fz in the X-axis, Y-axis, and Z-axis directions, and moments Mx, My, and Mz around the X-axis, Y-axis, and Z-axis.
  • FIG. 2 shows a part extracted from FIG. 1 and shows a mounting portion of the first strain sensor 14.
  • the configuration of the mounting portion of the second strain sensor 15, the third strain sensor 16 and the fourth strain sensor 17 is the same as the configuration of the mounting portion of the first strain sensor 14, and the second strain sensor 15 and the third strain sensor 16. Since the configuration of the fourth strain sensor 17 is the same as the configuration of the first strain sensor 14, a description thereof will be omitted.
  • the first strain sensor 14 includes a substrate (second strain generating body) 21, a plurality of resistors 22 constituted by, for example, thin film resistors as strain gauges, a plurality of wiring patterns 23, and a plurality of terminals. 24.
  • the substrate 21 is made of a rectangular metal plate, for example, stainless steel (SUS).
  • the rigidity of the substrate 21 is smaller than the rigidity of the third structure 13.
  • One end of the substrate 21 is welded to the first protrusion 11b, and the other end is, for example, welded to the second protrusion 12a.
  • a symbol Wp indicates a welded portion.
  • the method of attaching the substrate 21 to the first protrusion 11b and the second protrusion 12a is not limited to welding, and may be bonded by, for example, an adhesive.
  • the plurality of resistors 22, the plurality of wiring patterns 23, and the plurality of terminals 24 are provided in an intermediate portion of the substrate 21.
  • each resistor 22 One end and the other end of each resistor 22 are connected to one end of the wiring pattern 23, respectively, and the other end of each wiring pattern 23 is connected to the terminal 24.
  • the plurality of resistors 22 include four resistors Sa1, Sa2, Sb1, and Sb2 on the four first structures 11 side and four resistors Ra1, Ra2, Rb1, and Rb2 on the four second structure bodies 12 side. Contains.
  • the eight first terminals 24a and the eight second terminals 24b are arranged between the four resistors Sa1, Sa2, Sb1, Sb2 and the four resistors Ra1, Ra2, Rb1, Rb2.
  • Each of the first terminals 24a is connected to one end and the other end of the resistors Sa1, Sa2, Sb1, and Sb2 by the wiring pattern 23, and each of the second terminals 24b is connected to the resistors Ra1, Ra2, and Rb1 by the wiring pattern 23.
  • Rb2 are connected to one end and the other end, respectively.
  • FIG. 3 shows a cross section taken along line III-III shown in FIG.
  • the first strain sensor 14 includes, for example, a substrate 21, an insulating film 21a, a resistor 22, an adhesive film 21b, a wiring pattern 23, an adhesive film 21c, and a glass film 21d as a protective film.
  • an insulating film 21a is provided on the substrate 21, and a resistor 22 made of, for example, Cr—N is provided on the insulating film 21a.
  • a wiring pattern 23 made of, for example, copper (Cu) is provided on the resistor 22 with an adhesive film 21b interposed.
  • An adhesive film 21c is provided on the wiring pattern 23, and the adhesive film 21c, the wiring pattern 23, the adhesive film 21b, the resistor 22 and the insulating film 21a are covered with, for example, a glass film 21d.
  • the adhesive film 21b enhances the adhesion between the wiring pattern 23 and the resistor 22, and the adhesive film 21c enhances the adhesion between the wiring pattern 23 and the glass film 21d.
  • the adhesive films 21b and 21c are conductive films containing, for example, chromium (Cr).
  • or the 4th distortion sensor 17 is not limited to this, It can deform
  • the resistors Sa1, Sa2, Sb1, Sb2 and the resistors Ra1, Ra2, Rb1, Rb2 have the same configuration, but may have different configurations.
  • FIG. 4 shows two bridge circuits included in each of the first strain sensor 14 to the fourth strain sensor 17.
  • the first strain sensor 14 includes bridge circuits Ba1 and Bb1
  • the second strain sensor 15 includes bridge circuits Ba2 and Bb2
  • the third strain sensor 16 includes bridge circuits Ba3 and Bb3, and a fourth strain sensor 17.
  • 5A and 5B schematically show two bridge circuits included in the first strain sensor 14 to the fourth strain sensor 17, respectively.
  • FIG. 5A shows the bridge circuits Ba1, Ba2, Ba3, Ba4, and FIG. 5B shows the bridge circuits Bb1, Bb2, Bb3, Bb4.
  • resistors Sa1, Sa3, Sa5, Sa7, Sa2, Sa4, Sa6, Sa8, Sb1, Sb3, Sb5, Sb7, Sb2, Sb4, Sb6, Sb8, and resistors Ra1, Ra3, Ra5, Ra7, Ra2, Ra4, Ra6, Ra8, Rb1, Rb3, Rb5, Rb7, Rb2, Rb4, Rb6, Rb8 are the first strain sensor 14, the second strain sensor 15, the third strain sensor 16, and the fourth strain sensor, respectively. 17 resistors are shown.
  • the bridge circuit Ba1 includes resistors Sa1 and Sa2 and resistors Ra1 and Ra2 and the bridge circuit Bb1 includes resistors Sb1 and Sb2 and resistors Rb1 and Rb2.
  • one end of the resistor Sa1 is connected to one end of the resistor Ra1, and one end of the resistor Sa2 is connected to one end of the resistor Ra2.
  • the other end of the resistor Sa1 is connected to the other end of the resistor Ra2, and the power source E is supplied to the connection point between the resistor Sa1 and the resistor Ra2.
  • the other end of the resistor Sa2 and the other end of the resistor Ra1 are grounded.
  • the output voltage V ⁇ is output from the connection point between the resistor Sa1 and the resistor Ra1
  • the output voltage V + is output from the connection point between the resistor Sa2 and the resistor Ra2.
  • one end of the resistor Sb1 is connected to one end of the resistor Sb2, and the power source E is supplied to the connection point between the resistor Sb1 and the resistor Sb2.
  • One end of the resistor Rb1 is connected to one end of the resistor Rb2, and the connection point between the resistor Rb1 and the resistor Rb2 is grounded.
  • the other end of the resistor Sb1 is connected to the other end of the resistor Rb1, and an output voltage V ⁇ is output from a connection point between the resistor Sb1 and the resistor Rb1.
  • the other end of the resistor Sb2 is connected to the other end of the resistor Rb2, and an output voltage V + is output from a connection point between the resistor Sb2 and the resistor Rb2.
  • FIG. 6 schematically shows the bridge circuits Ba1, Bb1, bridge circuits Ba2, Bb2, bridge circuits Ba3, Bb4, and bridge circuits Ba4, Bb4 included in the first strain sensor 14 to the fourth strain sensor 17.
  • FIG. 7 shows the relationship between the bridge circuit and the detected force and moment.
  • the force Fx in the X-axis direction is detected by the bridge circuits Bb1 and Bb3.
  • the force Fy in the Y-axis direction is detected by the bridge circuits Bb2 and Bb4.
  • the force Fz in the Z-axis direction is detected by the bridge circuits Ba1, Ba2, Ba3, Ba4.
  • the moment Mx around the X axis is detected by the bridge circuits Ba1 and Ba3.
  • the moment My around the Y axis is detected by the bridge circuits Ba2 and Ba4.
  • the moment Mz around the Z axis is detected by the bridge circuits Bb1, Bb2, Bb3, Bb4.
  • FIG. 8 shows an example of the operation of the bridge circuit Bb1, for example.
  • the bridge circuit Bb1 detects a force in the main plane of the strain generating body 10 (X direction and / or Y direction shown in FIG. 4).
  • the output voltage Vout of the bridge circuit Bb1 is obtained from the output voltage V + and the output voltage V ⁇ by the equation (1).
  • R1 is the resistance value of the resistor Sb1
  • R2 is the resistance value of the resistor Sb2
  • R3 is the resistance value of the resistor Rb2
  • R4 is the resistance value of the resistor Rb1, and no force and moment are applied and there is no distortion.
  • ⁇ R is the value of change in resistance value.
  • FIG. 9 shows an example of the operation of the bridge circuit Ba1, for example.
  • the bridge circuit Ba1 detects a force perpendicular to the main surface of the strain body 10 (Z-axis direction).
  • the output voltage Vout of the bridge circuit Ba1 is obtained from the output voltage V + and the output voltage V ⁇ by the equation (1).
  • R1 is the resistance value of the resistor Sa1
  • R2 is the resistance value of the resistor Sa2
  • R3 is the resistance value of the resistor Ra2
  • R4 is the resistance value of the resistor Ra1, and no force and moment are applied and there is no distortion.
  • ⁇ R is the value of change in resistance value.
  • the first structure 11 and the second structure 12 are connected by the third structure 13, and the third structure 13 has a substantially rectangular frame shape and is deformed in multiple directions. Is possible. For this reason, the first structure 11 and the second structure 12 are movable in the multiaxial direction via the third structure 13.
  • the first strain sensor 14 to the fourth strain sensor 17 each including two bridge circuits are provided between the first structure 11 and the second structure 12. For this reason, sensor outputs in six-axis directions can be obtained from the output voltages of the first strain sensor 14 to the fourth strain sensor 17.
  • first strain sensor 14 to the fourth strain sensor 17 are provided separately from the third structure 13, and a substrate (second strain body) constituting the first strain sensor 14 to the fourth strain sensor 17.
  • the rigidity of 21 is smaller than the rigidity of the third structure 13. Therefore, regardless of the configuration of the substrate 21 provided in the first strain sensor 14 to the fourth strain sensor 17 that determines the sensitivity of the force sensor, the first structure 11 and the second structure as the first strain body.
  • the rigidity of the force sensor 10 can be determined only by the body 12 and the third structure 13. Therefore, the structural design of the force sensor 10 can be facilitated.
  • first strain sensor 14 to the fourth strain sensor 17 can be uniquely designed regardless of the first structure 11, the second structure 12, and the third structure 13.
  • the sensitivity of the fourteenth to fourth strain sensors 17 can be improved. Therefore, multiaxial force and moment can be measured with high accuracy.
  • the first strain sensor 14 to the fourth strain sensor 17 can be attached between the first structure 11 and the second structure 12 by welding. For this reason, it is possible to simplify manufacture.
  • a plurality of terminals 24 are arranged in the center portion of the substrate 21, and two terminals 24 can be appropriately connected to form two bridge circuits. Has been. For this reason, it is possible to easily form two different bridge circuits.
  • the third structure 13 has a rectangular frame shape. However, it is not limited to this.
  • FIG. 10 shows a modification of the first embodiment.
  • the third structure 31 is S-shaped, one end of the third structure 31 is provided at the corner of the first structure 11, and the other end is the second structure 12. It is provided at a corner between two adjacent second protrusions 12a.
  • the third structure 31 is S-shaped, and can be deformed in multiple directions including the X-axis, Y-axis, and Z-axis directions shown in the figure. For this reason, the second structure 12 can be moved in multiple directions with respect to the first structure 11 by the third structure 13. Therefore, the effect similar to 1st Embodiment can be acquired also by the structure of a modification.
  • the shape of the third structure 31 for example, an L shape, a ring shape or the like can be applied.
  • the first strain sensor 14 to the fourth strain sensor 17 are arranged at positions different from the third structure 13. In contrast, in the second embodiment, the first strain sensor 14 to the fourth strain sensor 17 and the third structure 41 are arranged at the same position.
  • the force sensor (also referred to as a first strain body) 40 includes a first strain sensor 14, a second strain sensor 15, a third strain sensor 16, and a fourth strain sensor 17. Yes.
  • the first strain body 40 includes a first structure (first region) 41, a second structure (second region) 42, and a third structure (third region) 43 as a plurality of connecting portions.
  • the first strain sensor 14, the second strain sensor 15, the third strain sensor 16, and the fourth strain sensor 17 are disposed between the first structure 41 and the second structure 42.
  • the first structure 41 has, for example, a substantially quadrangular frame shape, and has four corners and four sides. Each of the four corners of the first structure 11 has a first insertion port 11a for inserting, for example, a bolt (not shown).
  • the first structure 11 is fixed to a first movable body (not shown) as a force sensor body by, for example, a bolt (not shown) inserted into each first insertion port 11a.
  • the first movable body is fixed to, for example, one of the joints (not shown) of a robot arm (not shown) as the body to be measured.
  • each side of the first structure 41 has a first protrusion 11b.
  • the height of the surface of the first protrusion 11 b is equal to the height of the first structure 41. That is, the thickness of each side of the first structure 41 is equal to the thickness of the first protrusion 11b.
  • the second structure 42 is, for example, substantially rectangular, and the height of the surface of the second structure 12 is equal to the height of the surface of the first structure 11. That is, the thickness of the second structure 12 is equal to the thickness of the first structure 11.
  • the second structure 42 has second insertion ports 12b for inserting, for example, bolts (not shown) at four corners.
  • the 2nd structure 12 is fixed to the 2nd movable body which is not illustrated as a force sensor main part with the volt
  • the second movable body is fixed to, for example, the other joint of a robot arm (not shown) as a measured body.
  • the third structure 43 is provided between the first protrusion 11b of the first structure 11 and the middle part of each side of the second structure 42, respectively.
  • one end of the third structure 43 is connected to the first protrusion 11 b of the first structure 41, and the other end is connected to the second structure 42.
  • the height of the surface 43 a of the third structure 43 is lower than the height of the surfaces of the first structure 11, the first protrusion 11 b, and the second structure 12. That is, the thickness of the third structure 43 is made thinner than the thickness of the first structure 11, the first protrusion 11 b, and the second structure 12.
  • the width of the third structure 43 is narrower than the width of the first protrusion 11b, and the thickness is lower than the thickness of the first structure 11, the first protrusion 11b, and the second structure 12. Yes. Therefore, the third structure 43 can be deformed in multiple directions with respect to the force applied to the first structure 41 and the second structure 42, and the second structure 12
  • the three structures 13 are movable in multiple directions including the illustrated X axis, Y axis, and Z axis directions with respect to the first structure 11.
  • the first strain sensor 14, the second strain sensor 15, the third strain sensor 16, and the fourth strain sensor 17 are provided between the first structure body 11 and the second structure body 12, respectively. Specifically, a plurality of protrusions 44 are provided on the surface of the first protrusion 11 b of the first structure 11 and the surface of the second structure 12 corresponding to the first protrusion 11 b, respectively. One end and the other end of the first strain sensor 14, the second strain sensor 15, the third strain sensor 16, and the fourth strain sensor 17 are held. The intermediate portion provided with the resistor 22 of the first strain sensor 14, the second strain sensor 15, the third strain sensor 16, and the fourth strain sensor 17 is separated from the third structure 43.
  • the first strain sensor 14, the second strain sensor 15, the third strain sensor 16, and the fourth strain sensor 17 are fixed to the first protrusion 11b and the second structure 12 by welding, for example.
  • the fixing method is not limited to this, and for example, fixing with an adhesive can be used.
  • the configurations of the first strain sensor 14, the second strain sensor 15, the third strain sensor 16, and the fourth strain sensor 17 may be the same as or different from those of the first embodiment.
  • the third structure 43 is provided in the middle part of each side of the first structure 41 and the middle part of each side of the second structure 42. For this reason, if the length of one side of the second structure 42 is equal to the length of one side of the second structure 12 shown in the first embodiment, the length of one side of the first structure 41 is changed to the first embodiment. It can be shorter than the length of one side of the first structure 11 shown. Therefore, the size of the first strain body 40 can be reduced.
  • the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
  • the force sensor according to the embodiment of the present invention can be applied to a joint of a robot arm, for example.
  • SYMBOLS 10 40 ... Force sensor (1st strain body) 11, 41 ... 1st structure (1st area

Abstract

Provided is a force sensor capable of independently setting the sensitivity and allowable torque of a strain sensor or the mechanical strength of a torque sensor. A flexible third region 13 connects a first region 11 and a second region 12 to each other. A plurality of strain sensors 14, 15, 16, 17 are provided between the first region 11 and the second region 12. Each of the strain sensors is provided with: a substrate that is provided between the first region and the second region; and a plurality of resistors that are provided on the surface of the substrate.

Description

力覚センサForce sensor
 本発明の実施形態は、例えばロボットに適用される力覚センサに関する。 The embodiment of the present invention relates to a force sensor applied to, for example, a robot.
 力覚センサ(6軸力覚センサとも言う)は、X軸、Y軸、Z軸方向の力Fx、Fy、Fzと、X軸、Y軸、Z軸それぞれの軸回りのモーメントMx、My、Mzを測定することが可能なセンサである(例えば特許文献1、特許文献2参照)。 The force sensor (also referred to as a 6-axis force sensor) includes forces Fx, Fy, and Fz in the X-axis, Y-axis, and Z-axis directions, and moments Mx, My, This is a sensor capable of measuring Mz (see, for example, Patent Document 1 and Patent Document 2).
 特許文献1及び特許文献2において、力覚センサは、起歪体としての力覚センサチップを有している。力覚センサチップは、枠状の支持部と正方形状の作用部と、支持部と作用部を連結するT字状の連結部を有し、複数の歪み抵抗素子は、連結部と作用部との境界の表面に設けられている。 In Patent Document 1 and Patent Document 2, the force sensor has a force sensor chip as a strain generating body. The force sensor chip has a frame-shaped support part, a square-shaped action part, and a T-shaped connection part that connects the support part and the action part, and the plurality of strain resistance elements include a connection part, an action part, Is provided on the surface of the boundary.
特開2010-25736号公報JP 2010-25736 A 特開2008-292510号公報JP 2008-292510 A
 上記力覚センサチップは、複数の歪抵抗素子が連結部と作用部との表面に直接配置されている。このため、歪センサとしての歪抵抗素子の感度や許容トルク(最大トルク)と、起歪体としての力覚センサチップの機械的な強度を独立に設定することが困難であった。 In the force sensor chip, a plurality of strain resistance elements are directly arranged on the surfaces of the connecting portion and the action portion. For this reason, it has been difficult to independently set the sensitivity and allowable torque (maximum torque) of the strain resistance element as the strain sensor and the mechanical strength of the force sensor chip as the strain generating body.
 本発明の実施形態は、歪センサの感度や許容トルクと、起歪体の機械的な強度を独立に設定することが可能な力覚センサを提供する。 The embodiment of the present invention provides a force sensor capable of independently setting the sensitivity and allowable torque of the strain sensor and the mechanical strength of the strain generating body.
 本実施形態の力覚センサは、第1領域と、第2領域と、前記第1領域と前記第2領域とを連結し、可撓性を有する複数の第3領域と、前記第1領域と前記第2領域の間に設けられた複数の歪みセンサと、を具備し、前記複数の歪センサのそれぞれは、前記第1領域と前記第2領域の間に設けられた基板と、前記基板の表面に設けられた複数の抵抗体とを具備する。 The force sensor of the present embodiment includes a first region, a second region, a plurality of flexible third regions that connect the first region and the second region, and the first region. A plurality of strain sensors provided between the second regions, each of the plurality of strain sensors comprising: a substrate provided between the first region and the second region; and And a plurality of resistors provided on the surface.
 本発明によれば、歪センサの感度や許容トルクと、起歪体の機械的な強度を独立に設定することが可能な力覚センサを提供できる。 According to the present invention, it is possible to provide a force sensor capable of independently setting the sensitivity and allowable torque of the strain sensor and the mechanical strength of the strain generating body.
第1実施形態に係る力覚センサの一例を示す平面図。The top view which shows an example of the force sensor which concerns on 1st Embodiment. 図1に示す歪センサの1つを取り出して示す平面図。The top view which takes out and shows one of the distortion sensors shown in FIG. 図2のIII-III線に沿った断面図。FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2. 図1に示す第1歪センサ乃至第4歪センサと複数のブリッジ回路との関係を説明するために示す平面図。The top view shown in order to demonstrate the relationship between the 1st distortion sensor thru | or 4th strain sensor shown in FIG. 1, and a some bridge circuit. 図1に示す第1歪センサ乃至第4歪センサに含まれるブリッジ回路を具体的に示す図。The figure which shows concretely the bridge circuit contained in the 1st distortion sensor thru | or 4th distortion sensor shown in FIG. 図1に示す第1歪センサ乃至第4歪センサに含まれるブリッジ回路を具体的に示す図。The figure which shows concretely the bridge circuit contained in the 1st distortion sensor thru | or 4th distortion sensor shown in FIG. 各ブリッジ回路と抵抗体との関係を示す図。The figure which shows the relationship between each bridge circuit and a resistor. 各ブリッジ回路と6軸との関係を示す図。The figure which shows the relationship between each bridge circuit and 6 axes. ブリッジ回路の動作の一例を示す図。The figure which shows an example of operation | movement of a bridge circuit. ブリッジ回路の動作の他の例を示す図。The figure which shows the other example of operation | movement of a bridge circuit. 第1実施形態の変形例を示す平面図。The top view which shows the modification of 1st Embodiment. 第2実施形態に係る力覚センサの一例を示す斜視図。The perspective view which shows an example of the force sensor which concerns on 2nd Embodiment. 図11の一部を示す斜視図。The perspective view which shows a part of FIG.
 以下、実施の形態について、図面を参照して説明する。図において、同一部分には同一符号を付している。 Hereinafter, embodiments will be described with reference to the drawings. In the figure, the same parts are denoted by the same reference numerals.
(第1実施形態)
 図1は、第1実施形態に係る力覚センサを示している。力覚センサ(第1起歪体とも言う)10は、第1歪センサ14、第2歪センサ15、第3歪センサ16、及び第4歪センサ17を具備している。
(First embodiment)
FIG. 1 shows a force sensor according to the first embodiment. The force sensor (also referred to as a first strain body) 10 includes a first strain sensor 14, a second strain sensor 15, a third strain sensor 16, and a fourth strain sensor 17.
 第1起歪体10は、第1構造体(第1領域)11、第2構造体(第2領域)12、複数の連結部としての第3構造体(第3領域)13を具備し、第1構造体11と第2構造体12との間に第1歪センサ14、第2歪センサ15、第3歪センサ16、第4歪センサ17が配置されている。 The first strain body 10 includes a first structure (first region) 11, a second structure (second region) 12, and a third structure (third region) 13 as a plurality of connecting portions. A first strain sensor 14, a second strain sensor 15, a third strain sensor 16, and a fourth strain sensor 17 are disposed between the first structure 11 and the second structure 12.
 第1構造体11は、例えばほぼ四角形の枠状であり、4つの角部と、4つの辺を有している。第1構造体11の4つの角部のそれぞれは、図示せぬ例えばボルトを挿入するための第1挿入口11aを有している。第1構造体11は、各第1挿入口11aに挿入されたボルトにより、力覚センサ本体としての図示せぬ第1可動体に固定される。第1可動体は、例えば被測定体としての図示せぬロボットアームの関節の一方(例えば図示せぬモータ)に固定される。 The first structure 11 has, for example, a substantially quadrangular frame shape, and has four corners and four sides. Each of the four corners of the first structure 11 has a first insertion port 11a for inserting a bolt (not shown), for example. The first structure 11 is fixed to a first movable body (not shown) as a force sensor main body by a bolt inserted into each first insertion port 11a. The first movable body is fixed to, for example, one of the joints (not shown) of a robot arm (not shown) as the body to be measured.
 第1構造体11の4つの辺のそれぞれは、第1突部11bを有している。具体的には、各第1突部11bは、4つの辺のそれぞれのほぼ中央部で内側面に設けられている。第1突部11bの表面の高さは、第1構造体11の高さと等しくされている。すなわち、第1構造体11の各辺の厚みと第1突部11bの厚みは等しくされている。 Each of the four sides of the first structure 11 has a first protrusion 11b. Specifically, each first protrusion 11b is provided on the inner surface at substantially the center of each of the four sides. The height of the surface of the first protrusion 11 b is equal to the height of the first structure 11. That is, the thickness of each side of the first structure 11 is equal to the thickness of the first protrusion 11b.
 第2構造体12は、例えばほぼ十字形であり、第2構造体12の表面の高さは、第1構造体11の表面の高さと等しくされている。すなわち、第2構造体12の厚みは、第1構造体11の厚みと等しくされている。 The second structure 12 has, for example, a substantially cross shape, and the height of the surface of the second structure 12 is equal to the height of the surface of the first structure 11. That is, the thickness of the second structure 12 is equal to the thickness of the first structure 11.
 第2構造体12は4つの第2突部12aを有し、各第2突部12aは、第1構造体11の各第1突部11bと所定の間隔を隔てて対向される。第2構造体12は、各第2突部12aに対応して、図示せぬ例えばボルトを挿入するための第2挿入口12bを有している。第2構造体12は、各第2挿入口12bに挿入されたボルトにより、力覚センサ本体としての図示せぬ第2可動体に固定される。第2可動体は、例えば被測定体としての図示せぬロボットアームの関節の他方に固定される。 The second structure 12 has four second protrusions 12a, and each second protrusion 12a is opposed to each first protrusion 11b of the first structure 11 with a predetermined interval. The second structure 12 has a second insertion port 12b for inserting, for example, a bolt (not shown) corresponding to each second protrusion 12a. The 2nd structure 12 is fixed to the 2nd movable body which is not illustrated as a force sensor main part with the volt | bolt inserted in each 2nd insertion port 12b. The second movable body is fixed to, for example, the other joint of a robot arm (not shown) as a measured body.
 例えば4つの第3構造体13は、第1構造体11の4つの角部と第2構造体12の4つの角部との間にそれぞれ設けられている。各第3構造体13は、例えばほぼ四角形の枠状であり、4つの角部を有している。各第3構造体13の第1角部は、第1構造体11の角部に設けられ、第3構造体13の第1角部と対角にある第3角部は、第2構造体12の隣接する2つの第2突部12aの間の角部に設けられる。 For example, the four third structures 13 are provided between the four corners of the first structure 11 and the four corners of the second structure 12, respectively. Each third structure 13 has, for example, a substantially rectangular frame shape and has four corners. The first corner of each third structure 13 is provided at the corner of the first structure 11, and the third corner opposite to the first corner of the third structure 13 is the second structure. 12 are provided at corners between two adjacent second protrusions 12a.
 第1構造体11、第2構造体12及び第3構造体13は、金属、例えばステンレススチール(SUS)により構成され、図示Z軸方向に沿ってほぼ等しい厚みを有している。しかし、これに限らず、第1構造体11、第2構造体12及び第3構造体13の厚みをそれぞれ設定してもよい。また、第1構造体11及び第3構造体13は、図示X軸、Y軸方向に所定の幅を有している。 The first structure 11, the second structure 12, and the third structure 13 are made of metal, for example, stainless steel (SUS), and have substantially the same thickness along the Z-axis direction in the drawing. However, the present invention is not limited to this, and the thicknesses of the first structure 11, the second structure 12, and the third structure 13 may be set. The first structure 11 and the third structure 13 have a predetermined width in the illustrated X-axis and Y-axis directions.
 第3構造体13は、四角形の枠状であるため、図示X軸、Y軸、Z軸方向を含む多方向に変形可能とされている。すなわち、第3構造体13は、可撓性を有している。このため、第2構造体12は、第3構造体13により、第1構造体11に対して多方向に移動可能とされている。 Since the third structure 13 has a rectangular frame shape, it can be deformed in multiple directions including the X-axis, Y-axis, and Z-axis directions shown in the figure. That is, the third structure 13 has flexibility. For this reason, the second structure 12 can be moved in multiple directions with respect to the first structure 11 by the third structure 13.
 第1構造体11の4つの第1突部11bと、第2構造体12の4つの第2突部12aとの間に、第1歪センサ14、第2歪センサ15、第3歪センサ16及び第4歪センサ17がそれぞれ設けられる。第1歪センサ14乃至第4歪センサ17により、X軸、Y軸、Z軸方向の力Fx、Fy、Fzと、X軸、Y軸、Z軸周りのモーメントMx、My、Mzが検出される。 Between the four first protrusions 11b of the first structure 11 and the four second protrusions 12a of the second structure 12, a first strain sensor 14, a second strain sensor 15, and a third strain sensor 16 are provided. And a fourth strain sensor 17 are provided. The first strain sensor 14 to the fourth strain sensor 17 detect forces Fx, Fy, and Fz in the X-axis, Y-axis, and Z-axis directions, and moments Mx, My, and Mz around the X-axis, Y-axis, and Z-axis. The
 図2は、図1の一部を取り出して示すものであり、第1歪センサ14の取り付け部分を示している。第2歪センサ15、第3歪センサ16及び第4歪センサ17の取り付け部分の構成は、第1歪センサ14の取り付け部分の構成と同様であり、第2歪センサ15、第3歪センサ16及び第4歪センサ17の構成は、第1歪センサ14の構成と同様であるため、これらの説明は省略する。 FIG. 2 shows a part extracted from FIG. 1 and shows a mounting portion of the first strain sensor 14. The configuration of the mounting portion of the second strain sensor 15, the third strain sensor 16 and the fourth strain sensor 17 is the same as the configuration of the mounting portion of the first strain sensor 14, and the second strain sensor 15 and the third strain sensor 16. Since the configuration of the fourth strain sensor 17 is the same as the configuration of the first strain sensor 14, a description thereof will be omitted.
 図2において、第1歪センサ14は、基板(第2起歪体)21と、歪ゲージとしての例えば薄膜抵抗により構成された複数の抵抗体22と、複数の配線パターン23と、複数の端子24を具備している。 In FIG. 2, the first strain sensor 14 includes a substrate (second strain generating body) 21, a plurality of resistors 22 constituted by, for example, thin film resistors as strain gauges, a plurality of wiring patterns 23, and a plurality of terminals. 24.
 基板21は、矩形状の金属板、例えばステンレススチール(SUS)により構成されている。基板21の剛性は、第3構造体13の剛性より小さい。基板21の一端部は、第1突部11bに溶接され、他端部は、第2突部12aに例えば溶接されている。符号Wpは、溶接部を示している。 The substrate 21 is made of a rectangular metal plate, for example, stainless steel (SUS). The rigidity of the substrate 21 is smaller than the rigidity of the third structure 13. One end of the substrate 21 is welded to the first protrusion 11b, and the other end is, for example, welded to the second protrusion 12a. A symbol Wp indicates a welded portion.
 第1突部11b及び第2突部12aに対する基板21の取り付け方法は、溶接に限定されるものではなく、例えば接着剤により接着してもよい。 The method of attaching the substrate 21 to the first protrusion 11b and the second protrusion 12a is not limited to welding, and may be bonded by, for example, an adhesive.
 基板21は、一端部が第1突部11bに固定され、他端部が第2突部12aに固定されているため、一端部と他端部の間の中間部が変形可能とされている。 Since one end of the substrate 21 is fixed to the first protrusion 11b and the other end is fixed to the second protrusion 12a, an intermediate portion between the one end and the other end can be deformed. .
 複数の抵抗体22、複数の配線パターン23及び複数の端子24は、基板21の中間部に設けられている。 The plurality of resistors 22, the plurality of wiring patterns 23, and the plurality of terminals 24 are provided in an intermediate portion of the substrate 21.
 各抵抗体22の一端部及び他端部は、それぞれ配線パターン23の一端部に接続され、各配線パターン23の他端部はそれぞれ端子24に接続されている。 One end and the other end of each resistor 22 are connected to one end of the wiring pattern 23, respectively, and the other end of each wiring pattern 23 is connected to the terminal 24.
 複数の抵抗体22は、4つの第1構造体11側の4つの抵抗体Sa1、Sa2、Sb1、Sb2と、4つの第2構造体12側の4つの抵抗体Ra1、Ra2、Rb1、Rb2を含んでいる。 The plurality of resistors 22 include four resistors Sa1, Sa2, Sb1, and Sb2 on the four first structures 11 side and four resistors Ra1, Ra2, Rb1, and Rb2 on the four second structure bodies 12 side. Contains.
 4つの抵抗体Sa1、Sa2、Sb1、Sb2と、4つの抵抗体Ra1、Ra2、Rb1、Rb2との間に、8個の第1端子24aと、8個の第2端子24bが配置される。第1端子24aのそれぞれは、配線パターン23により抵抗体Sa1、Sa2、Sb1、Sb2の一端及び他端にそれぞれ接続され、第2端子24bのそれぞれは、配線パターン23により抵抗体Ra1、Ra2、Rb1、Rb2の一端及び他端にそれぞれ接続されている。 The eight first terminals 24a and the eight second terminals 24b are arranged between the four resistors Sa1, Sa2, Sb1, Sb2 and the four resistors Ra1, Ra2, Rb1, Rb2. Each of the first terminals 24a is connected to one end and the other end of the resistors Sa1, Sa2, Sb1, and Sb2 by the wiring pattern 23, and each of the second terminals 24b is connected to the resistors Ra1, Ra2, and Rb1 by the wiring pattern 23. , Rb2 are connected to one end and the other end, respectively.
 第1端子24aのそれぞれと、第2端子24bのそれぞれを適宜接続することにより、抵抗体Sa1、Sa2、Sb1、Sb2と、抵抗体Ra1、Ra2、Rb1、Rb2とによって、後述する2つのブリッジ回路が構成される。 By appropriately connecting each of the first terminals 24a and each of the second terminals 24b, two bridge circuits to be described later are formed by the resistors Sa1, Sa2, Sb1, and Sb2 and the resistors Ra1, Ra2, Rb1, and Rb2. Is configured.
 図3は、図2に示すIII-III線に沿った断面を示している。 FIG. 3 shows a cross section taken along line III-III shown in FIG.
 第1歪センサ14は、例えば基板21、絶縁膜21a、抵抗体22、接着膜21b、配線パターン23、接着膜21c、保護膜としてのガラス膜21dを具備している。 The first strain sensor 14 includes, for example, a substrate 21, an insulating film 21a, a resistor 22, an adhesive film 21b, a wiring pattern 23, an adhesive film 21c, and a glass film 21d as a protective film.
 具体的には、基板21上に絶縁膜21aが設けられ、絶縁膜21a上に例えばCr-Nにより構成された抵抗体22が設けられる。抵抗体22上に接着膜21bを介在して、例えば銅(Cu)により構成された配線パターン23が設けられる。配線パターン23上には接着膜21cが設けられ、接着膜21c、配線パターン23、接着膜21b、抵抗体22及び絶縁膜21aは、例えばガラス膜21dにより覆われる。接着膜21bは、配線パターン23と抵抗体22との密着性を高め、接着膜21cは、配線パターン23とガラス膜21dとの密着性を高めている。接着膜21b、21cは、例えばクロム(Cr)を含む導電膜である。 Specifically, an insulating film 21a is provided on the substrate 21, and a resistor 22 made of, for example, Cr—N is provided on the insulating film 21a. A wiring pattern 23 made of, for example, copper (Cu) is provided on the resistor 22 with an adhesive film 21b interposed. An adhesive film 21c is provided on the wiring pattern 23, and the adhesive film 21c, the wiring pattern 23, the adhesive film 21b, the resistor 22 and the insulating film 21a are covered with, for example, a glass film 21d. The adhesive film 21b enhances the adhesion between the wiring pattern 23 and the resistor 22, and the adhesive film 21c enhances the adhesion between the wiring pattern 23 and the glass film 21d. The adhesive films 21b and 21c are conductive films containing, for example, chromium (Cr).
 尚、第1歪センサ14乃至第4歪センサ17の構成は、これに限定されるものではなく、変形可能である。 In addition, the structure of the 1st distortion sensor 14 thru | or the 4th distortion sensor 17 is not limited to this, It can deform | transform.
 また、抵抗体Sa1、Sa2、Sb1、Sb2と、抵抗体Ra1、Ra2、Rb1、Rb2は、同一構成としたが、異なる構成であってもよい。 The resistors Sa1, Sa2, Sb1, Sb2 and the resistors Ra1, Ra2, Rb1, Rb2 have the same configuration, but may have different configurations.
 図4は、第1歪センサ14乃至第4歪センサ17のそれぞれに含まれる2つのブリッジ回路を示している。第1歪センサ14は、ブリッジ回路Ba1、Bb1を含み、第2歪センサ15は、ブリッジ回路Ba2、Bb2を含み、第3歪センサ16は、ブリッジ回路Ba3、Bb3を含み、第4歪センサ17は、ブリッジ回路Ba4、Bb4を含んでいる。 FIG. 4 shows two bridge circuits included in each of the first strain sensor 14 to the fourth strain sensor 17. The first strain sensor 14 includes bridge circuits Ba1 and Bb1, the second strain sensor 15 includes bridge circuits Ba2 and Bb2, the third strain sensor 16 includes bridge circuits Ba3 and Bb3, and a fourth strain sensor 17. Includes bridge circuits Ba4 and Bb4.
 図5A、図5Bは、第1歪センサ14乃至第4歪センサ17にそれぞれ含まれる2つのブリッジ回路を模式的に示している。 5A and 5B schematically show two bridge circuits included in the first strain sensor 14 to the fourth strain sensor 17, respectively.
 図5Aは、ブリッジ回路Ba1、Ba2、Ba3、Ba4を示し、図5Bは、ブリッジ回路Bb1、Bb2、Bb3、Bb4を示している。 FIG. 5A shows the bridge circuits Ba1, Ba2, Ba3, Ba4, and FIG. 5B shows the bridge circuits Bb1, Bb2, Bb3, Bb4.
 図5A、図5Bにおいて、抵抗体Sa1,Sa3,Sa5,Sa7,Sa2,Sa4,Sa6,Sa8,Sb1,Sb3,Sb5,Sb7,Sb2,Sb4,Sb6,Sb8、及び抵抗体Ra1,Ra3,Ra5,Ra7,Ra2,Ra4,Ra6,Ra8、Rb1,Rb3,Rb5,Rb7,Rb2,Rb4,Rb6,Rb8は、それぞれ第1歪センサ14、第2歪センサ15、第3歪センサ16及び第4歪センサ17の抵抗体を示している。 5A and 5B, resistors Sa1, Sa3, Sa5, Sa7, Sa2, Sa4, Sa6, Sa8, Sb1, Sb3, Sb5, Sb7, Sb2, Sb4, Sb6, Sb8, and resistors Ra1, Ra3, Ra5, Ra7, Ra2, Ra4, Ra6, Ra8, Rb1, Rb3, Rb5, Rb7, Rb2, Rb4, Rb6, Rb8 are the first strain sensor 14, the second strain sensor 15, the third strain sensor 16, and the fourth strain sensor, respectively. 17 resistors are shown.
 第1歪センサ14乃至第4歪センサ17の構成は、同一であるため、第1歪センサ14について説明する。 Since the configurations of the first strain sensor 14 to the fourth strain sensor 17 are the same, the first strain sensor 14 will be described.
 第1歪センサ14において、ブリッジ回路Ba1は、抵抗体Sa1、Sa2、及び抵抗体Ra1、Ra2を含み、ブリッジ回路Bb1は、抵抗体Sb1、Sb2、及び抵抗体Rb1、Rb2を含んでいる。 In the first strain sensor 14, the bridge circuit Ba1 includes resistors Sa1 and Sa2 and resistors Ra1 and Ra2, and the bridge circuit Bb1 includes resistors Sb1 and Sb2 and resistors Rb1 and Rb2.
 図5Aに示すブリッジ回路Ba1において、抵抗体Sa1の一端は抵抗体Ra1の一端に接続され、抵抗体Sa2の一端は抵抗体Ra2の一端に接続される。抵抗体Sa1の他端は抵抗体Ra2の他端に接続され、抵抗体Sa1と抵抗体Ra2の接続点に電源Eが供給される。抵抗体Sa2の他端と抵抗体Ra1の他端は、接地される。抵抗体Sa1と抵抗体Ra1の接続点から出力電圧V-が出力され、抵抗体Sa2と抵抗体Ra2の接続点から出力電圧V+が出力される。 In the bridge circuit Ba1 shown in FIG. 5A, one end of the resistor Sa1 is connected to one end of the resistor Ra1, and one end of the resistor Sa2 is connected to one end of the resistor Ra2. The other end of the resistor Sa1 is connected to the other end of the resistor Ra2, and the power source E is supplied to the connection point between the resistor Sa1 and the resistor Ra2. The other end of the resistor Sa2 and the other end of the resistor Ra1 are grounded. The output voltage V− is output from the connection point between the resistor Sa1 and the resistor Ra1, and the output voltage V + is output from the connection point between the resistor Sa2 and the resistor Ra2.
 図5Bに示すブリッジ回路Bb1において、抵抗体Sb1の一端は抵抗体Sb2の一端に接続され、抵抗体Sb1と抵抗体Sb2の接続点に電源Eが供給される。抵抗体Rb1の一端は抵抗体Rb2の一端に接続され、抵抗体Rb1と抵抗体Rb2の接続点は、接地される。抵抗体Sb1の他端は抵抗体Rb1の他端に接続され、抵抗体Sb1と抵抗体Rb1の接続点から出力電圧V-が出力される。抵抗体Sb2の他端は抵抗体Rb2の他端に接続され、抵抗体Sb2と抵抗体Rb2の接続点から出力電圧V+が出力される。 In the bridge circuit Bb1 shown in FIG. 5B, one end of the resistor Sb1 is connected to one end of the resistor Sb2, and the power source E is supplied to the connection point between the resistor Sb1 and the resistor Sb2. One end of the resistor Rb1 is connected to one end of the resistor Rb2, and the connection point between the resistor Rb1 and the resistor Rb2 is grounded. The other end of the resistor Sb1 is connected to the other end of the resistor Rb1, and an output voltage V− is output from a connection point between the resistor Sb1 and the resistor Rb1. The other end of the resistor Sb2 is connected to the other end of the resistor Rb2, and an output voltage V + is output from a connection point between the resistor Sb2 and the resistor Rb2.
 図6は、第1歪センサ14乃至第4歪センサ17に含まれるブリッジ回路Ba1、Bb1、ブリッジ回路Ba2、Bb2、ブリッジ回路Ba3、Bb4、及びブリッジ回路Ba4、Bb4を模式的に示している。 FIG. 6 schematically shows the bridge circuits Ba1, Bb1, bridge circuits Ba2, Bb2, bridge circuits Ba3, Bb4, and bridge circuits Ba4, Bb4 included in the first strain sensor 14 to the fourth strain sensor 17.
 上記構成において、第1構造体11及び第2構造体12に対して力及び/又はモーメント(トルク)が印加されると、第3構造体13が変形し、第1構造体11に対して第2構造体の位置が変化する。このため、第1歪センサ14乃至第4歪センサ17が変形する。第1歪センサ14乃至第4歪センサ17の変形に伴い、第1歪センサ14乃至第4歪センサ17に含まれるブリッジ回路Ba1、Bb1、ブリッジ回路Ba2、Bb2、ブリッジ回路Ba3、Bb4、及びブリッジ回路Ba4、Bb4の出力電圧V-と出力電圧V+のバランスが崩れ、印加された力及び/又はモーメントに応じた信号が検出される。 In the above configuration, when a force and / or moment (torque) is applied to the first structure 11 and the second structure 12, the third structure 13 is deformed and the first structure 11 is The position of the two structures changes. For this reason, the first strain sensor 14 to the fourth strain sensor 17 are deformed. Along with the deformation of the first strain sensor 14 to the fourth strain sensor 17, the bridge circuits Ba1, Bb1, the bridge circuits Ba2, Bb2, the bridge circuits Ba3, Bb4, and the bridge included in the first strain sensor 14 to the fourth strain sensor 17. The balance between the output voltage V− and the output voltage V + of the circuits Ba4 and Bb4 is lost, and a signal corresponding to the applied force and / or moment is detected.
 図7は、ブリッジ回路と検出される力およびモーメントの関係を示している。 FIG. 7 shows the relationship between the bridge circuit and the detected force and moment.
 図7に示すように、X軸方向の力Fxは、ブリッジ回路Bb1、Bb3により検出される。Y軸方向の力Fyは、ブリッジ回路Bb2,Bb4により検出される。Z軸方向の力Fzは、ブリッジ回路Ba1、Ba2、Ba3、Ba4により検出される。 As shown in FIG. 7, the force Fx in the X-axis direction is detected by the bridge circuits Bb1 and Bb3. The force Fy in the Y-axis direction is detected by the bridge circuits Bb2 and Bb4. The force Fz in the Z-axis direction is detected by the bridge circuits Ba1, Ba2, Ba3, Ba4.
 X軸周りのモーメントMxは、ブリッジ回路Ba1、Ba3により検出される。Y軸周りのモーメントMyは、ブリッジ回路Ba2、Ba4により検出される。Z軸周りのモーメントMzは、ブリッジ回路Bb1、Bb2、Bb3、Bb4により検出される。 The moment Mx around the X axis is detected by the bridge circuits Ba1 and Ba3. The moment My around the Y axis is detected by the bridge circuits Ba2 and Ba4. The moment Mz around the Z axis is detected by the bridge circuits Bb1, Bb2, Bb3, Bb4.
 図8は、例えばブリッジ回路Bb1の動作の一例を示している。ブリッジ回路Bb1は、起歪体10の主平面内(図4に示すX方向及び/又はY方向)の力を検出する。ブリッジ回路Bb1の出力電圧Voutは、出力電圧V+及び出力電圧V-から式(1)により得られる。 FIG. 8 shows an example of the operation of the bridge circuit Bb1, for example. The bridge circuit Bb1 detects a force in the main plane of the strain generating body 10 (X direction and / or Y direction shown in FIG. 4). The output voltage Vout of the bridge circuit Bb1 is obtained from the output voltage V + and the output voltage V− by the equation (1).
 Vout=(V+ - V-)
    =(R1/(R1+R2)-R3/(R3+R4))・E   …(1)
 図8において、
  R1は、抵抗体Sb1の抵抗値
  R2は、抵抗体Sb2の抵抗値
  R3は、抵抗体Rb2の抵抗値
  R4は、抵抗体Rb1の抵抗値
であり、力及びモーメントが印加されず歪みがない状態において、R1=R2=R3=R4=Rである。ΔRは、抵抗値の変化の値である。
Vout = (V +-V-)
= (R1 / (R1 + R2) −R3 / (R3 + R4)) · E (1)
In FIG.
R1 is the resistance value of the resistor Sb1, R2 is the resistance value of the resistor Sb2, R3 is the resistance value of the resistor Rb2, and R4 is the resistance value of the resistor Rb1, and no force and moment are applied and there is no distortion. In this case, R1 = R2 = R3 = R4 = R. ΔR is the value of change in resistance value.
 図9は、例えばブリッジ回路Ba1の動作の一例を示している。ブリッジ回路Ba1は、起歪体10の主表面と垂直方向(Z軸方向)の力を検出する。ブリッジ回路Ba1の出力電圧Voutは、出力電圧V+及び出力電圧V-から式(1)により得られる。 FIG. 9 shows an example of the operation of the bridge circuit Ba1, for example. The bridge circuit Ba1 detects a force perpendicular to the main surface of the strain body 10 (Z-axis direction). The output voltage Vout of the bridge circuit Ba1 is obtained from the output voltage V + and the output voltage V− by the equation (1).
 図9において、
  R1は、抵抗体Sa1の抵抗値
  R2は、抵抗体Sa2の抵抗値
  R3は、抵抗体Ra2の抵抗値
  R4は、抵抗体Ra1の抵抗値
であり、力及びモーメントが印加されず歪みがない状態において、R1=R2=R3=R4=Rである。ΔRは、抵抗値の変化の値である。
In FIG.
R1 is the resistance value of the resistor Sa1, R2 is the resistance value of the resistor Sa2, R3 is the resistance value of the resistor Ra2, and R4 is the resistance value of the resistor Ra1, and no force and moment are applied and there is no distortion. In this case, R1 = R2 = R3 = R4 = R. ΔR is the value of change in resistance value.
(第1実施形態の効果)
 上記第1実施形態によれば、第1構造体11と第2構造体12は、第3構造体13により連結され、第3構造体13は、ほぼ四角形の枠状であり、多方向に変形することが可能である。このため、第1構造体11と第2構造体12は、第3構造体13を介して多軸方向に移動可能である。また、それぞれ2つのブリッジ回路を含む第1歪センサ14乃至第4歪センサ17は、第1構造体11と第2構造体12との間に設けられている。このため、第1歪センサ14乃至第4歪センサ17の出力電圧より、6軸方向のセンサ出力を得ることができる。
(Effect of 1st Embodiment)
According to the first embodiment, the first structure 11 and the second structure 12 are connected by the third structure 13, and the third structure 13 has a substantially rectangular frame shape and is deformed in multiple directions. Is possible. For this reason, the first structure 11 and the second structure 12 are movable in the multiaxial direction via the third structure 13. The first strain sensor 14 to the fourth strain sensor 17 each including two bridge circuits are provided between the first structure 11 and the second structure 12. For this reason, sensor outputs in six-axis directions can be obtained from the output voltages of the first strain sensor 14 to the fourth strain sensor 17.
 しかも、第1歪センサ14乃至第4歪センサ17は、第3構造体13とは、別々に設けられ、第1歪センサ14乃至第4歪センサ17を構成する基板(第2起歪体)21の剛性は、第3構造体13の剛性よりも小さい。このため、力覚センサの感度を決定する第1歪センサ14乃至第4歪センサ17に設けられた基板21の構成に係らず、第1起歪体としての第1構造体11、第2構造体12及び第3構造体13だけで力覚センサ10の剛性を決定することができる。したがって、力覚センサ10の構造設計を容易化することが可能である。 In addition, the first strain sensor 14 to the fourth strain sensor 17 are provided separately from the third structure 13, and a substrate (second strain body) constituting the first strain sensor 14 to the fourth strain sensor 17. The rigidity of 21 is smaller than the rigidity of the third structure 13. Therefore, regardless of the configuration of the substrate 21 provided in the first strain sensor 14 to the fourth strain sensor 17 that determines the sensitivity of the force sensor, the first structure 11 and the second structure as the first strain body. The rigidity of the force sensor 10 can be determined only by the body 12 and the third structure 13. Therefore, the structural design of the force sensor 10 can be facilitated.
 さらに、第1歪センサ14乃至第4歪センサ17は、第1構造体11、第2構造体12及び第3構造体13に係りなく、独自に設計することが可能であり、第1歪センサ14乃至第4歪センサ17の感度を向上させることが可能である。したがって、多軸方向の力やモーメントを高精度に測定することができる。 Furthermore, the first strain sensor 14 to the fourth strain sensor 17 can be uniquely designed regardless of the first structure 11, the second structure 12, and the third structure 13. The sensitivity of the fourteenth to fourth strain sensors 17 can be improved. Therefore, multiaxial force and moment can be measured with high accuracy.
 また、第1歪センサ14乃至第4歪センサ17は、第1構造体11と第2構造体12との間に溶接により取り付けることができる。このため、製造を簡単化することが可能である。 The first strain sensor 14 to the fourth strain sensor 17 can be attached between the first structure 11 and the second structure 12 by welding. For this reason, it is possible to simplify manufacture.
 さらに、第1歪センサ14乃至第4歪センサ17は、基板21の中央部に複数の端子24が配置され、これら端子24を適宜接続することにより、2つのブリッジ回路を形成することが可能とされている。このため、異なる2つのブリッジ回路を容易に形成することが可能である。 Further, in the first strain sensor 14 to the fourth strain sensor 17, a plurality of terminals 24 are arranged in the center portion of the substrate 21, and two terminals 24 can be appropriately connected to form two bridge circuits. Has been. For this reason, it is possible to easily form two different bridge circuits.
(変形例)
 第1実施形態において、第3構造体13は、四角形の枠状であった。しかし、これに限定されるものではない。
(Modification)
In the first embodiment, the third structure 13 has a rectangular frame shape. However, it is not limited to this.
 図10は、第1実施形態の変形例を示している。 FIG. 10 shows a modification of the first embodiment.
 図10において、第3構造体31は、S字形状であり、第3構造体31の一端部は、第1構造体11の角部に設けられ、他端部は、第2構造体12の隣接する2つの第2突部12aの間の角部に設けられる。 In FIG. 10, the third structure 31 is S-shaped, one end of the third structure 31 is provided at the corner of the first structure 11, and the other end is the second structure 12. It is provided at a corner between two adjacent second protrusions 12a.
 本変形例において、第3構造体31は、S字形状であるため、図示X軸、Y軸、Z軸方向を含む多方向に変形可能とされている。このため、第2構造体12は、第3構造体13により、第1構造体11に対して多方向に移動可能とされている。したがって、変形例の構成によっても、第1実施形態と同様の効果を得ることができる。 In the present modification, the third structure 31 is S-shaped, and can be deformed in multiple directions including the X-axis, Y-axis, and Z-axis directions shown in the figure. For this reason, the second structure 12 can be moved in multiple directions with respect to the first structure 11 by the third structure 13. Therefore, the effect similar to 1st Embodiment can be acquired also by the structure of a modification.
 さらに、第3構造体31の形状は、例えばL字形状、リング状などが適用可能である。 Furthermore, as the shape of the third structure 31, for example, an L shape, a ring shape or the like can be applied.
(第2実施形態)
 図11、図12は、第2実施形態を示している。
(Second Embodiment)
11 and 12 show a second embodiment.
 第1実施形態は、第1歪センサ14乃至第4歪センサ17が第3構造体13とは別の位置に配置されていた。これに対して、第2実施形態は、第1歪センサ14乃至第4歪センサ17と第3構造体41とが同じ位置に配置されている。 In the first embodiment, the first strain sensor 14 to the fourth strain sensor 17 are arranged at positions different from the third structure 13. In contrast, in the second embodiment, the first strain sensor 14 to the fourth strain sensor 17 and the third structure 41 are arranged at the same position.
 図11、図12において、力覚センサ(第1起歪体とも言う)40は、第1歪センサ14、第2歪センサ15、第3歪センサ16、及び第4歪センサ17を具備している。 11 and 12, the force sensor (also referred to as a first strain body) 40 includes a first strain sensor 14, a second strain sensor 15, a third strain sensor 16, and a fourth strain sensor 17. Yes.
 第1起歪体40は、第1構造体(第1領域)41、第2構造体(第2領域)42、複数の連結部としての第3構造体(第3領域)43を具備し、第1構造体41と第2構造体42との間に第1歪センサ14、第2歪センサ15、第3歪センサ16、第4歪センサ17が配置されている。 The first strain body 40 includes a first structure (first region) 41, a second structure (second region) 42, and a third structure (third region) 43 as a plurality of connecting portions. The first strain sensor 14, the second strain sensor 15, the third strain sensor 16, and the fourth strain sensor 17 are disposed between the first structure 41 and the second structure 42.
 第1構造体41は、第1実施形態と同様に、例えばほぼ四角形の枠状であり、4つの角部と、4つの辺を有している。第1構造体11の4つの角部のそれぞれは、例えば図示せぬボルトを挿入するための第1挿入口11aを有している。第1構造体11は、各第1挿入口11aに挿入された図示せぬ例えばボルトにより、力覚センサ本体としての図示せぬ第1可動体に固定される。第1可動体は、例えば被測定体としての図示せぬロボットアームの関節の一方(例えば図示せぬモータ)に固定される。 As in the first embodiment, the first structure 41 has, for example, a substantially quadrangular frame shape, and has four corners and four sides. Each of the four corners of the first structure 11 has a first insertion port 11a for inserting, for example, a bolt (not shown). The first structure 11 is fixed to a first movable body (not shown) as a force sensor body by, for example, a bolt (not shown) inserted into each first insertion port 11a. The first movable body is fixed to, for example, one of the joints (not shown) of a robot arm (not shown) as the body to be measured.
 第1構造体41の各辺の中間部は第1突部11bを有している。第1突部11bの表面の高さは、第1構造体41の高さと等しくされている。すなわち、第1構造体41の各辺の厚みと第1突部11bの厚みは等しくされている。 The intermediate part of each side of the first structure 41 has a first protrusion 11b. The height of the surface of the first protrusion 11 b is equal to the height of the first structure 41. That is, the thickness of each side of the first structure 41 is equal to the thickness of the first protrusion 11b.
 第2構造体42は、例えばほぼ四角形であり、第2構造体12の表面の高さは、第1構造体11の表面の高さと等しくされている。すなわち、第2構造体12の厚みは、第1構造体11の厚みと等しくされている。 The second structure 42 is, for example, substantially rectangular, and the height of the surface of the second structure 12 is equal to the height of the surface of the first structure 11. That is, the thickness of the second structure 12 is equal to the thickness of the first structure 11.
 第2構造体42は、4つの角部に、図示せぬ例えばボルトを挿入するための第2挿入口12bを有している。第2構造体12は、各第2挿入口12bに挿入されたボルトにより、力覚センサ本体としての図示せぬ第2可動体に固定される。第2可動体は、例えば被測定体としての図示せぬロボットアームの関節の他方に固定される。 The second structure 42 has second insertion ports 12b for inserting, for example, bolts (not shown) at four corners. The 2nd structure 12 is fixed to the 2nd movable body which is not illustrated as a force sensor main part with the volt | bolt inserted in each 2nd insertion port 12b. The second movable body is fixed to, for example, the other joint of a robot arm (not shown) as a measured body.
 第3構造体43は、第1構造体11の第1突部11bと第2構造体42の各辺の中間部との間にそれぞれ設けられる。 The third structure 43 is provided between the first protrusion 11b of the first structure 11 and the middle part of each side of the second structure 42, respectively.
 図12に示すように、第3構造体43は、一端部が第1構造体41の第1突部11bに連結され、他端部は、第2構造体42に連結されている。 As shown in FIG. 12, one end of the third structure 43 is connected to the first protrusion 11 b of the first structure 41, and the other end is connected to the second structure 42.
 第3構造体43の表面43aの高さは、第1構造体11、第1突部11b及び第2構造体12の表面の高さより低くされている。すなわち、第3構造体43の厚みは、第1構造体11、第1突部11b及び第2構造体12の厚みより薄くされている。 The height of the surface 43 a of the third structure 43 is lower than the height of the surfaces of the first structure 11, the first protrusion 11 b, and the second structure 12. That is, the thickness of the third structure 43 is made thinner than the thickness of the first structure 11, the first protrusion 11 b, and the second structure 12.
 第3構造体43の表面43aに隣接する両側面は、凹部43bを有している。このため、第3構造体43の幅は、第1突部11bの幅より狭くされている。 Both side surfaces adjacent to the surface 43a of the third structure 43 have recesses 43b. For this reason, the width | variety of the 3rd structure 43 is made narrower than the width | variety of the 1st protrusion 11b.
 このように、第3構造体43の幅は、第1突部11bの幅に比べて狭く、厚みは第1構造体11、第1突部11b及び第2構造体12の厚みより低くされている。このため、第3構造体43は、第1構造体41と第2構造体42とに印加された力に対して、多方向に変形することが可能であり、第2構造体12は、第3構造体13により、第1構造体11に対して図示X軸、Y軸、Z軸方向を含む多方向に移動可能とされている。 Thus, the width of the third structure 43 is narrower than the width of the first protrusion 11b, and the thickness is lower than the thickness of the first structure 11, the first protrusion 11b, and the second structure 12. Yes. Therefore, the third structure 43 can be deformed in multiple directions with respect to the force applied to the first structure 41 and the second structure 42, and the second structure 12 The three structures 13 are movable in multiple directions including the illustrated X axis, Y axis, and Z axis directions with respect to the first structure 11.
 第1歪センサ14、第2歪センサ15、第3歪センサ16、第4歪センサ17は、第1構造体11と第2構造体12との間にそれぞれ設けられる。具体的には、第1構造体11の第1突部11bの表面及び第1突部11bに対応する第2構造体12の表面には、それぞれ複数の突起44が設けられ、これら突起44により、第1歪センサ14、第2歪センサ15、第3歪センサ16、第4歪センサ17の一端部及び他端部が保持される。第1歪センサ14、第2歪センサ15、第3歪センサ16、第4歪センサ17の抵抗体22が設けられた中間部は、第3構造体43から離間されている。 The first strain sensor 14, the second strain sensor 15, the third strain sensor 16, and the fourth strain sensor 17 are provided between the first structure body 11 and the second structure body 12, respectively. Specifically, a plurality of protrusions 44 are provided on the surface of the first protrusion 11 b of the first structure 11 and the surface of the second structure 12 corresponding to the first protrusion 11 b, respectively. One end and the other end of the first strain sensor 14, the second strain sensor 15, the third strain sensor 16, and the fourth strain sensor 17 are held. The intermediate portion provided with the resistor 22 of the first strain sensor 14, the second strain sensor 15, the third strain sensor 16, and the fourth strain sensor 17 is separated from the third structure 43.
 この状態において、第1歪センサ14、第2歪センサ15、第3歪センサ16、第4歪センサ17は、第1突部11b及び第2構造体12に対して例えば溶接により固定される。固定方法としては、これに限定されるものではなく、例えば接着剤よる固定などを用いることが可能である。 In this state, the first strain sensor 14, the second strain sensor 15, the third strain sensor 16, and the fourth strain sensor 17 are fixed to the first protrusion 11b and the second structure 12 by welding, for example. The fixing method is not limited to this, and for example, fixing with an adhesive can be used.
 第1歪センサ14、第2歪センサ15、第3歪センサ16、第4歪センサ17の構成は、第1実施形態と同一でも良いが、異なっていてもよい。 The configurations of the first strain sensor 14, the second strain sensor 15, the third strain sensor 16, and the fourth strain sensor 17 may be the same as or different from those of the first embodiment.
 上記状態において、第1構造体41及び第2構造体42に対して力及び/又はモーメント(トルク)が印加されると、第3構造体43が変形し、第1構造体41に対して第2構造体の位置が変化する。このため、第1歪センサ14乃至第4歪センサ17が変形する。第1歪センサ14乃至第4歪センサ17の変形に伴い、第1歪センサ14乃至第4歪センサ17に含まれるブリッジ回路Ba1、Bb1、ブリッジ回路Ba2、Bb2、ブリッジ回路Ba3、Bb4、及びブリッジ回路Ba4、Bb4の出力電圧V-と出力電圧V+のバランスが崩れ、印加された力及び/又はモーメントに応じた信号が検出される。 In the above state, when a force and / or moment (torque) is applied to the first structure 41 and the second structure 42, the third structure 43 is deformed and the first structure 41 is The position of the two structures changes. For this reason, the first strain sensor 14 to the fourth strain sensor 17 are deformed. Along with the deformation of the first strain sensor 14 to the fourth strain sensor 17, the bridge circuits Ba1, Bb1, the bridge circuits Ba2, Bb2, the bridge circuits Ba3, Bb4, and the bridge included in the first strain sensor 14 to the fourth strain sensor 17. The balance between the output voltage V− and the output voltage V + of the circuits Ba4 and Bb4 is lost, and a signal corresponding to the applied force and / or moment is detected.
(第2実施形態の効果)
 上記第2実施形態によっても、第1実施形態と同様の効果を得ることが可能である。
(Effect of 2nd Embodiment)
According to the second embodiment, the same effect as that of the first embodiment can be obtained.
 しかも、第2実施形態において、第3構造体43は、第1構造体41の各辺の中間部と第2構造体42の各辺の中間部に設けられている。このため、第2構造体42の一辺の長さが第1実施形態に示す第2構造体12の一辺の長さと等しいとすると、第1構造体41の一辺の長さを第1実施形態に示す第1構造体11の一辺の長さより短くすることができる。したがって、第1起歪体40のサイズを小型化することが可能である。 Moreover, in the second embodiment, the third structure 43 is provided in the middle part of each side of the first structure 41 and the middle part of each side of the second structure 42. For this reason, if the length of one side of the second structure 42 is equal to the length of one side of the second structure 12 shown in the first embodiment, the length of one side of the first structure 41 is changed to the first embodiment. It can be shorter than the length of one side of the first structure 11 shown. Therefore, the size of the first strain body 40 can be reduced.
 その他、本発明は上記各実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記各実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 In addition, the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage. Moreover, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
 本発明の実施形態に係る力覚センサは、例えばロボットアームの関節などに適用することが可能である。 The force sensor according to the embodiment of the present invention can be applied to a joint of a robot arm, for example.
 10、40…力覚センサ(第1起歪体)、11、41…第1構造体(第1領域)、12、42…第2構造体(第2領域)、13、43…第3構造体(第3領域)、14…第1歪センサ、15…第2歪センサ、16…第3歪センサ、17…第4歪センサ、21…基板(第2起歪体)、22…抵抗体、Ba1、Bb1、Ba2、Bb2、Ba3、Bb3、Ba4、Bb4…ブリッジ回路。 DESCRIPTION OF SYMBOLS 10, 40 ... Force sensor (1st strain body) 11, 41 ... 1st structure (1st area | region) 12, 42 ... 2nd structure (2nd area | region), 13, 43 ... 3rd structure Body (third region), 14 ... first strain sensor, 15 ... second strain sensor, 16 ... third strain sensor, 17 ... fourth strain sensor, 21 ... substrate (second strain body), 22 ... resistor , Ba1, Bb1, Ba2, Bb2, Ba3, Bb3, Ba4, Bb4... Bridge circuit.

Claims (12)

  1.  第1領域と、
     第2領域と、
     前記第1領域と前記第2領域とを連結し、可撓性を有する複数の第3領域と、
     前記第1領域と前記第2領域の間に設けられた複数の歪みセンサと、
     を具備し、
     前記複数の歪センサのそれぞれは、
     前記第1領域と前記第2領域の間に設けられた基板と、
     前記基板の表面に設けられた複数の抵抗体と
     を具備することを特徴とする力覚センサ。
    A first region;
    A second region;
    A plurality of flexible third regions connecting the first region and the second region;
    A plurality of strain sensors provided between the first region and the second region;
    Comprising
    Each of the plurality of strain sensors is
    A substrate provided between the first region and the second region;
    A force sensor comprising: a plurality of resistors provided on a surface of the substrate.
  2.  前記歪みセンサのそれぞれは、前記複数の抵抗体により構成された第1ブリッジ回路と第2ブリッジ回路を含む
     請求項1記載の力覚センサ。
    The force sensor according to claim 1, wherein each of the strain sensors includes a first bridge circuit and a second bridge circuit configured by the plurality of resistors.
  3.  前記第1ブリッジ回路は、前記基板の前記表面と垂直方向の力を検出し、前記第2ブリッジ回路は、前記基板の前記表面に沿った方向の力を検出する
     請求項2記載の力覚センサ。
    The force sensor according to claim 2, wherein the first bridge circuit detects a force in a direction perpendicular to the surface of the substrate, and the second bridge circuit detects a force in a direction along the surface of the substrate. .
  4.  前記基板の剛性は、前記第3領域の剛性よりも小さい
     請求項1記載の力覚センサ。
    The force sensor according to claim 1, wherein rigidity of the substrate is smaller than rigidity of the third region.
  5.  前記複数の歪みセンサは、前記第3領域と異なる部分に設けられる
     請求項1記載の力覚センサ。
    The force sensor according to claim 1, wherein the plurality of strain sensors are provided in a portion different from the third region.
  6.  前記複数の歪みセンサは、前記第3領域と同じ部分に設けられる
     請求項1記載の力覚センサ。
    The force sensor according to claim 1, wherein the plurality of strain sensors are provided in the same portion as the third region.
  7.  前記第1領域は、4つの第1の角部と4つの第1の辺を有する第1の枠体であり、
     前記複数の第3領域のそれぞれは、前記4つの第1の角部と前記第2領域とを接続する
     請求項1記載の力覚センサ。
    The first region is a first frame having four first corners and four first sides,
    The force sensor according to claim 1, wherein each of the plurality of third regions connects the four first corners to the second region.
  8.  前記複数の第3領域のそれぞれは、4つの第2の角部と4つの第2の辺を有する第2の枠体である
     請求項7記載の力覚センサ。
    The force sensor according to claim 7, wherein each of the plurality of third regions is a second frame body having four second corners and four second sides.
  9.  前記複数の第3領域のそれぞれは、S字状である
     請求項7記載の力覚センサ。
    The force sensor according to claim 7, wherein each of the plurality of third regions is S-shaped.
  10.  前記複数の第3領域のそれぞれは、前記4つの第1の辺の中央部と前記第2領域とを接続し、前記第1領域と前記第2領域の厚みより薄い厚みを有する
     請求項7記載の力覚センサ。
    8. Each of the plurality of third regions connects a central portion of the four first sides and the second region, and has a thickness smaller than the thickness of the first region and the second region. Force sensor.
  11.  前記複数の歪みセンサのそれぞれは、前記複数の第3領域のそれぞれの上方で、前記第1領域と前記第2領域の間に設けられる
     請求項10記載の力覚センサ。
    The force sensor according to claim 10, wherein each of the plurality of strain sensors is provided between the first region and the second region above each of the plurality of third regions.
  12.  前記複数の歪みセンサのそれぞれは、前記第1領域と前記第2領域に溶接される溶接部を具備する
     請求項1記載の力覚センサ。
    The force sensor according to claim 1, wherein each of the plurality of strain sensors includes a welded portion welded to the first region and the second region.
PCT/JP2018/002935 2017-04-14 2018-01-30 Force sensor WO2018189981A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017080738A JP6817875B2 (en) 2017-04-14 2017-04-14 Force sensor
JP2017-080738 2017-04-14

Publications (1)

Publication Number Publication Date
WO2018189981A1 true WO2018189981A1 (en) 2018-10-18

Family

ID=63792418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002935 WO2018189981A1 (en) 2017-04-14 2018-01-30 Force sensor

Country Status (2)

Country Link
JP (1) JP6817875B2 (en)
WO (1) WO2018189981A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114270157A (en) * 2019-08-30 2022-04-01 深圳纽迪瑞科技开发有限公司 Force sensing device, force sensing method and apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7295067B2 (en) * 2020-06-29 2023-06-20 トヨタ自動車株式会社 force sensor
JP2022122340A (en) * 2021-02-10 2022-08-23 株式会社レプトリノ force sensor
JP2022156888A (en) * 2021-03-31 2022-10-14 日本電産コパル電子株式会社 force sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6062497A (en) * 1983-09-14 1985-04-10 畑村 洋太郎 Multispindle-force sensor
JPH05288216A (en) * 1992-04-09 1993-11-02 Yotaro Hatamura Rectilinear motion guide apparatus equipped with force detection means
WO2003074986A1 (en) * 2002-03-07 2003-09-12 K-Tech Devices Corp. Stress sensor
WO2010088922A1 (en) * 2009-02-06 2010-08-12 Abb Ag Set of multiaxial force and torque sensor and assembling method
EP2322905A1 (en) * 2009-11-16 2011-05-18 Baumer Innotec AG Force measurement cell for measuring the injection force of injection moulding
JP2016070673A (en) * 2014-09-26 2016-05-09 株式会社レプトリノ Force sensor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3611336A1 (en) * 1986-04-04 1987-10-15 Deutsche Forsch Luft Raumfahrt FORCE TORQUE SENSOR
JPH102812A (en) * 1996-06-14 1998-01-06 Bridgestone Corp Load cell
US7240570B2 (en) * 2005-09-06 2007-07-10 The Timken Company Load-sensing bearing
JP5248221B2 (en) * 2008-06-30 2013-07-31 株式会社ワコー Force sensor and assembly method thereof
US9032817B2 (en) * 2013-10-05 2015-05-19 Bertec Limited Low profile load transducer
JP6354948B2 (en) * 2014-09-16 2018-07-11 ティアック株式会社 Load cell and method of manufacturing load cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6062497A (en) * 1983-09-14 1985-04-10 畑村 洋太郎 Multispindle-force sensor
JPH05288216A (en) * 1992-04-09 1993-11-02 Yotaro Hatamura Rectilinear motion guide apparatus equipped with force detection means
WO2003074986A1 (en) * 2002-03-07 2003-09-12 K-Tech Devices Corp. Stress sensor
WO2010088922A1 (en) * 2009-02-06 2010-08-12 Abb Ag Set of multiaxial force and torque sensor and assembling method
EP2322905A1 (en) * 2009-11-16 2011-05-18 Baumer Innotec AG Force measurement cell for measuring the injection force of injection moulding
JP2016070673A (en) * 2014-09-26 2016-05-09 株式会社レプトリノ Force sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114270157A (en) * 2019-08-30 2022-04-01 深圳纽迪瑞科技开发有限公司 Force sensing device, force sensing method and apparatus

Also Published As

Publication number Publication date
JP2018179806A (en) 2018-11-15
JP6817875B2 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
WO2018189981A1 (en) Force sensor
JP6615365B2 (en) Force / torque sensor and method
US7500406B2 (en) Multiaxial sensor
WO2018105211A1 (en) Strain generation body and force sensor equipped with strain generation body
WO2018105209A1 (en) Torque sensor
JP4909583B2 (en) Multi-axis load cell
JP6618128B2 (en) Force sensor and bridge circuit configuration method of force sensor
JP6940037B2 (en) Force sensor device
JP6919964B2 (en) Sensor chip and force sensor device
TWI829502B (en) Torque sensor
JP2021071305A (en) Force sensor device
JP4249735B2 (en) Force sensor
JP6664742B2 (en) Force sensor
CN111684250B (en) Torque sensor
US20220011184A1 (en) Multi-axial tactile sensor
JPH0772026A (en) Strain generating construction and multiaxis force detection sensor using the same
TWI818989B (en) Torque sensor
CN110857896B (en) Force sensor
JP2006058211A (en) Strain gauge type sensor
JP6957823B2 (en) Sensor chip and force sensor device
WO2019187707A1 (en) Torque sensor
JPH0690099B2 (en) Load detector
JP6999587B2 (en) Elastic body and force sensor using it
JP6919965B2 (en) Sensor chip and force sensor device
JP7062827B2 (en) Torque sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18784119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18784119

Country of ref document: EP

Kind code of ref document: A1