WO2018188496A1 - 用于确定移动充电车充电路径的方法和设备 - Google Patents

用于确定移动充电车充电路径的方法和设备 Download PDF

Info

Publication number
WO2018188496A1
WO2018188496A1 PCT/CN2018/081688 CN2018081688W WO2018188496A1 WO 2018188496 A1 WO2018188496 A1 WO 2018188496A1 CN 2018081688 W CN2018081688 W CN 2018081688W WO 2018188496 A1 WO2018188496 A1 WO 2018188496A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
vehicle
service
charged
queue
Prior art date
Application number
PCT/CN2018/081688
Other languages
English (en)
French (fr)
Inventor
夏沙
Original Assignee
蔚来汽车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蔚来汽车有限公司 filed Critical 蔚来汽车有限公司
Publication of WO2018188496A1 publication Critical patent/WO2018188496A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to new energy vehicle technology, and more particularly to a method for determining a charging path for a mobile charging vehicle and a device, a charging management system and a computer readable storage medium for implementing the method.
  • a method for determining a charging path of a mobile charging vehicle includes the following steps:
  • each of the service queues including a whole or a subset of vehicles to be charged and a mobile charging vehicle within the charging service area;
  • the associated mobile charging vehicle is determined to be the minimum communication path of the vehicle to be charged within the service queue as the charging path.
  • the step of generating at least one service queue comprises:
  • S1, S2, S3, ..., Sn are respectively the charging power required by the first to nth vehicles to be charged in the area queue, and P is the charging capability of the mobile charging vehicle allocated to the service queue;
  • step 4) Repeat step 3) for the remaining vehicles to be charged in the area queue until each vehicle to be charged in the area queue has a home service queue.
  • the mobile charging vehicles to which the different service queues belong have the same chargeability.
  • the mobile charging vehicles to which the different service queues belong have different recharging capabilities.
  • the step of determining the minimum connected path as the shortest path comprises:
  • the path map determines that the mobile charging car in the service queue reaches the minimum connected path of the vehicle to be charged in the service queue as the shortest path.
  • An apparatus for determining a service capability of a charging pile group includes:
  • a receiving module configured to receive demand data about a charging service in a charging service area, where the demand data includes location information of each vehicle to be charged in the charging service area and a required charging power;
  • each of the service queues including a whole or a subset of vehicles to be charged and a mobile charging vehicle in the charging service area;
  • a determining module for each of the service queues, determining, for the associated mobile charging vehicle, a minimum communication path of the vehicle to be charged that reaches the service queue as a charging path.
  • a charge management system in accordance with another aspect of the present invention includes a memory, a processor, and a computer program stored on the memory and operative on the processor, the program being executed to implement the following steps:
  • each of the service queues including a whole or a subset of vehicles to be charged and a mobile charging vehicle within the charging service area;
  • the associated mobile charging vehicle is determined to be the minimum communication path of the vehicle to be charged within the service queue as the charging path.
  • a computer readable storage medium according to another aspect of the present invention, wherein a computer program is stored thereon, the program being executed by the processor to implement the following steps:
  • each of the service queues including a whole or a subset of vehicles to be charged and a mobile charging vehicle within the charging service area;
  • the associated mobile charging vehicle is determined to be the minimum communication path of the vehicle to be charged within the service queue as the charging path.
  • FIG. 1 is a flow chart of a method for determining a charging path of a mobile charging vehicle in accordance with one embodiment of the present invention.
  • FIG. 2 is a flow diagram of an exemplary method of generating a service queue.
  • FIG. 3 is a flow chart of an exemplary method of determining a minimum connected path.
  • FIG. 4 is an exemplary schematic diagram of a path map.
  • FIG. 5 is a flow diagram of an exemplary algorithm for determining a minimum connected path from a road map.
  • FIG. 6 is an exemplary schematic diagram of a minimum communication path.
  • FIG. 7 is a schematic block diagram of an apparatus for determining a charging path of a mobile charging vehicle in accordance with another embodiment of the present invention.
  • FIG. 8 is a schematic block diagram of a charge management system in accordance with yet another embodiment of the present invention.
  • a geographic area is divided into a number of charging service areas, and the mobile charging vehicle is dynamically allocated based on the charging requirements of each charging service area.
  • each of the allocated mobile charging vehicles is associated with a group of vehicles to be charged in each charging service area, and the former provides charging services to the latter (hereinafter a mobile charging vehicle and The set of vehicles to be charged associated therewith is referred to as the "service queue").
  • service queue The set of vehicles to be charged associated therewith
  • the positional relationship between the mobile charging vehicle and the vehicle to be charged is represented by a map including vertices and connected paths, so that the scheduling of the mobile charging vehicle can be converted into graph theory.
  • the shortest path problem is
  • the division of the above charging service area may be based on various modes, for example, based on an administrative division method, an area defined by a road, and the like.
  • FIG. 1 is a flow chart of a method for determining a charging path of a mobile charging vehicle in accordance with one embodiment of the present invention.
  • the remote device receives demand data for the charging service within a charging service area.
  • the demand data includes location information of each current vehicle to be charged and a required charging power amount in the charging service area.
  • the remote device described herein should be broadly understood to be a device capable of communicating with a mobile charging vehicle and an in-vehicle communication device of a vehicle to be charged or a user's mobile communication device (including but not limited to a mobile phone, via a wireless network, Communicate with tablets, laptops, etc.).
  • Examples of remote devices include, but are not limited to, a computer system for unified management of a mobile charging vehicle or a device for determining a charging path of a mobile charging vehicle (the device may be part of a computer system or as a physical device independent of the computer system) .
  • the remote device can acquire the demand data periodically or randomly.
  • each service queue includes a mobile charging vehicle and associated vehicle to be charged (ie, the vehicle to be charged served by the mobile charging vehicle). It should be noted that the associated vehicle to be charged may be the entirety of the vehicle to be charged within the charging service area, or may be a subset thereof. The preferred generation of the service queue will be further described below.
  • the remote device determines, for the associated mobile charging vehicle, its minimum connected path to the vehicle to be charged in the service queue as the charging path.
  • a preferred method of determining the minimum connected path will be further described below.
  • the optimized charging path of the mobile charging vehicle can also be determined by performing the above steps 110-130.
  • FIG. 2 is a flow diagram of an exemplary method of generating a service queue.
  • the remote device determines the total amount of charge S required for the vehicle to be charged in the charging service area according to the following formula:
  • k denotes the number of vehicles to be charged
  • Si denotes the amount of charge required for the i-th vehicle to be charged.
  • the remote device selects the mobile charging car for the charging service area, so that the rechargeable capacity of the selected mobile charging car can satisfy the charging demand of the vehicle to be charged in the charging service area.
  • the mobile charging car can be selected in the following manner:
  • l represents the number of selected mobile charging vehicles
  • Pi represents the rechargeable capacity of the i-th mobile charging vehicle.
  • step 230 the remote device sorts the vehicles to be charged in the charging service area according to the required charging power to form a regional queue.
  • the area queue is denoted here as ⁇ V1, V2, V3, ... Vk ⁇ , and the charge amounts required for the vehicles V1, V2, V3, ... Vk to be charged are respectively recorded as S1, S2, S3. ,...Sk.
  • the remote device belongs to the first n to-be-charged vehicles in the area queues ⁇ V1, V2, V3, ..., Vk ⁇ as a service queue and allocates a mobile charging vehicle to generate the first condition if the following conditions are met.
  • S1, S2, S3, ..., Sn are the charging powers required for the first to nth to-be-charged vehicles in the area queues ⁇ V1, V2, V3, ..., Vk ⁇ , respectively, and P1 is the mobile charging vehicle assigned to the service queue Q1. Rechargeable capacity.
  • step 250 the remote device determines whether each of the vehicles to be charged in the area queues ⁇ V1, V2, V3, ..., Vk ⁇ has a belonging service queue. If there is a vehicle to be charged that does not belong, return to step 240. The operation of step 240 is performed on the vehicle to be charged that is not owned to generate a subsequent service queue. On the other hand, if there is a vehicle to be charged that is not owned, the flow of generating the service queue is exited and the process proceeds to step 130.
  • the chargeable capabilities of the mobile charging vehicle selected in step 220 may be the same or different.
  • FIG. 3 is a flow chart of an exemplary method of determining a minimum connected path.
  • the remote device For a service queue (e.g., the first service queue Q1 described above), the remote device generates a route map based on the current location of the mobile charging vehicle and the vehicle to be charged.
  • 4 is an exemplary schematic diagram of a path map. As shown in FIG. 4, the mobile charging vehicle V0 and the vehicles to be charged V1-V6 are regarded as vertices, and the connectable path between the mobile charging vehicle and the vehicle to be charged and the vehicle to be charged is regarded as an edge, and the number indicated is connectable. The length of the path.
  • step 320 the path map obtained by step 310 determines that the mobile charging car in the service queue reaches the minimum connected path of the vehicle to be charged in the service queue as the shortest path.
  • FIG. 5 is a flow diagram of an exemplary algorithm for determining a minimum connected path from a road map.
  • a non-connected graph T containing no edges is first constructed based on the path graph, in which each vertex corresponds to one of a mobile charging car and a vehicle to be charged in the service queue. And each vertex is a connected component.
  • a set E of edges is constructed, the set includes a connectable path between the mobile charging car and the vehicle to be charged and the vehicle to be charged as a set element, wherein the length of the connectable path is used as the right of the set element value.
  • step 530 selecting an edge or element having the smallest weight from the set E, and if the two vertices of the edge fall on different connected components, adding the edge to the non-connected graph T; otherwise, The edge is removed from the set E.
  • step 540 it is determined whether all the vertices are on the same connected component. If yes, the process proceeds to step 550, where the path in the non-connected graph T is taken as the minimum connected path; otherwise, the process returns to step 530.
  • the minimum connected path shown in FIG. 6 can be obtained by using the above algorithm, and the generation process is as follows:
  • FIG. 7 is a schematic block diagram of an apparatus for determining a charging path of a mobile charging vehicle in accordance with another embodiment of the present invention.
  • the apparatus 70 for determining a charging path of a mobile charging vehicle shown in FIG. 7 includes a receiving module 710, a generating module 720, and a determining module 730.
  • the receiving module 710 is configured to receive demand data about a charging service in a charging service area, where the demand data includes location information of each vehicle to be charged in the charging service area and a required charging power.
  • the generating module 720 is configured to generate at least one service queue based on the demand data, wherein each service queue includes a whole or a subset of vehicles to be charged and a mobile charging vehicle within the charging service area.
  • the determining module 730 is configured, for each of the service queues, to determine, for the associated mobile charging vehicle, the minimum connected path of the vehicle to be charged in the service queue as the charging path.
  • FIG. 8 is a schematic block diagram of a charge management system in accordance with yet another embodiment of the present invention.
  • the charge management system 80 shown in FIG. 8 includes a memory 810, a processor 820, and a computer program 830 stored on the memory 810 and executable on the processor 820, wherein the execution computer program 830 can be implemented with the aid of Figures 1-6 above.
  • a computer readable storage medium having stored thereon a computer program, which, when executed by a processor, implements the mobile charging vehicle path described above with reference to Figures 1-6 method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Navigation (AREA)

Abstract

一种用于确定移动充电车充电路径的方法,包含下列步骤:接收一个充电服务区域内关于充电服务的需求数据,需求数据包括该充电服务区域内每一待充电车辆的位置信息和所需的充电电量;基于需求数据生成至少一个服务队列,每个服务队列包括该充电服务区域内的待充电车辆的全体或子集和一个移动充电车;以及对于每个所述服务队列,为所属的移动充电车确定其到达服务队列内的待充电车辆的最小连通路径作为充电路径。还涉及一种实现上述方法的装置、充电管理系统和计算机可读存储介质。

Description

用于确定移动充电车充电路径的方法和设备 技术领域
本发明涉及新能源汽车技术,特别涉及用于确定移动充电车充电路径的方法以及实现所述方法的装置、充电管理系统和计算机可读存储介质。
背景技术
为了大幅减少汽车的二氧化碳排放量,汽车业正在投入大量的人力和物力来研发以电力作为动力源的新型汽车,例如混合动力汽车和纯电动汽车。由于对环境影响相对传统汽车较小,新能源汽车的前景被广泛看好。
但是受配电网容量和土地资源的制约,无法在城区兴建大量的充电式基础设施来满足电动汽车的充电需求。不仅如此,电动汽车的规模接入将给配电网的运行带来隐患,对电网的规划和调度提出了更高的要求。
移动充电车的推出能够较好地缓解甚至解决上面提及的问题。但是随着电动汽车的普及以及城市道路的复杂化,对于移动充电方案来说,如何充分、及时地满足充电需求将是其面临的一个严峻的挑战。
发明内容
本发明的一个目的是提供一种用于确定移动充电车充电路径的方法,其有助于提升移动充电车的资源利用率和整体加电服务效率。
按照本发明一个方面的用于确定移动充电车充电路径的方法包含下列步骤:
接收一个充电服务区域内关于充电服务的需求数据,所述需求数据包括该充电服务区域内每一待充电车辆的位置信息和所需的充电电量;
基于所述需求数据生成至少一个服务队列,每个所述服务队列包括该充电服务区域内的待充电车辆的全体或子集和一个移动充电车;以及
对于每个所述服务队列,为所属的移动充电车确定其到达该服务队列内的待充电车辆的最小连通路径作为充电路径。
优选地,在上述方法中,生成至少一个服务队列的步骤包括:
1)为所述充电服务区域选择移动充电车,使得所选择的移动充电车的可充电能力能够满足所述充电服务区域内的待充电车辆的充电需求;
2)按照所需的充电电量对所述充电服务区域内的待充电车辆进行排序以形成区域队列;
3)将区域队列内的前n个待充电车辆归属为一个服务队列并且分配一个移动充电车,使得:
S1+S2+…+Sn<P<S1+S2+…Sn+1
这里S1,S2,S3…,Sn分别为所述区域队列中第1至n个待充电车辆所需的充电电量,P为分配给该服务队列的移动充电车的可充电能力;
4)对于所述区域队列内的其余待充电车辆重复步骤3),直至所述区域队列内的每一待充电车辆都具有归属的服务队列。
优选地,在上述方法中,不同服务队列所属的移动充电车具有相同的可充电能力。
优选地,在上述方法中,不同服务队列所属的移动充电车具有不同的可充电能力。
优选地,在上述方法中,确定最小连通路径作为最短路径的步骤包括:
根据服务队列中的移动充电车和待充电车辆的当前位置生成路径图,其中,所述路径图包含移动充电车与待充电车辆之间以及待充电车辆之间的可连通路径作为边;以及
由所述路径图确定服务队列中的移动充电车到达该服务队列内的待充电车辆的最小连通路径作为最短路径。
本发明的还有一个目的是提供一种用于确定移动充电车充电路径的装置,其有助于提升移动充电车的资源利用率和整体加电服务效率。
按照本发明另一个方面的用于确定充电桩群的服务能力的装置包含:
接收模块,用于接收一个充电服务区域内关于充电服务的需求数据,所 述需求数据包括该充电服务区域内每一待充电车辆的位置信息和所需的充电电量;
生成模块,用于基于所述需求数据生成至少一个服务队列,每个所述服务队列包括该充电服务区域内的待充电车辆的全体或子集和一个移动充电车;以及
确定模块,用于对于每个所述服务队列,为所属的移动充电车确定其到达该服务队列内的待充电车辆的最小连通路径作为充电路径。
本发明的还有一个目的是提供一种充电管理系统,其有助于提升移动充电车的资源利用率和整体加电服务效率。
按照本发明另一个方面的充电管理系统包含存储器、处理器以及存储在所述存储器上并可在所述处理器上运行的计算机程序,执行所述程序以实现下列步骤:
接收一个充电服务区域内关于充电服务的需求数据,所述需求数据包括该充电服务区域内每一待充电车辆的位置信息和所需的充电电量;
基于所述需求数据生成至少一个服务队列,每个所述服务队列包括该充电服务区域内的待充电车辆的全体或子集和一个移动充电车;以及
对于每个所述服务队列,为所属的移动充电车确定其到达该服务队列内的待充电车辆的最小连通路径作为充电路径。
本发明的还有一个目的是提供一种计算机可读存储介质,其有助于提升充电桩的资源利用率和整体加电服务效率。
按照本发明另一个方面的计算机可读存储介质,其上存储计算机程序,该程序被处理器执行时实现以下步骤:
接收一个充电服务区域内关于充电服务的需求数据,所述需求数据包括该充电服务区域内每一待充电车辆的位置信息和所需的充电电量;
基于所述需求数据生成至少一个服务队列,每个所述服务队列包括该充电服务区域内的待充电车辆的全体或子集和一个移动充电车;以及
对于每个所述服务队列,为所属的移动充电车确定其到达该服务队列内的待充电车辆的最小连通路径作为充电路径。
附图说明
本发明的上述和/或其它方面和优点将通过以下结合附图的各个方面的描述变得更加清晰和更容易理解,附图中相同或相似的单元采用相同的标号表示。附图包括:
图1为按照本发明一个实施例的用于确定移动充电车充电路径的方法的流程图。
图2为一个生成服务队列的示例性方法的流程图。
图3为一个确定最小连通路径的示例性方法的流程图。
图4为路径图的示例性示意图。
图5为由路径图确定最小连通路径的示例性算法的流程图。
图6为最小连通路径的示例性示意图。
图7为按照本发明另一实施例的用于确定移动充电车充电路径的装置的示意框图。
图8为按照本发明还有一个实施例的充电管理系统的示意框图。
具体实施方式
下面参照其中图示了本发明示意性实施例的附图更为全面地说明本发明。但本发明可以按不同形式来实现,而不应解读为仅限于本文给出的各实施例。给出的上述各实施例旨在使本文的披露全面完整,以将本发明的保护范围更为全面地传达给本领域技术人员。
在本说明书中,诸如“包含”和“包括”之类的用语表示除了具有在说明书和权利要求书中有直接和明确表述的单元和步骤以外,本发明的技术方案也不排除具有未被直接或明确表述的其它单元和步骤的情形。
诸如“第一”和“第二”之类的用语并不表示单元在时间、空间、大小 等方面的顺序而仅仅是作区分各单元之用。
按照本发明的一个方面,将一个地理区域划分为若干充电服务区域,并且根据每个充电服务区域的充电需求,动态分配移动充电车。按照本发明的另一个方面,在每个充电服务区域内,将所分配的每个移动充电车与一组待充电车辆相关联,由前者向后者提供充电服务(以下将一个移动充电车以及与其相关联的待充电车辆的集合称为“服务队列”)。从下面的描述中将可以看到,上述区域化和分组化的特征使得移动充电资源的高效使用成为可能。
按照本发明的还有一个方面,对于一个服务队列,移动充电车与待充电车辆之间的位置关系以包含顶点和相连路径的图来表示,从而可以将移动充电车的调度变换为图论中的最短路径问题。
需要指出的是,上述充电服务区域的划分可以基于各种方式,例如可以基于行政区划方式、由道路限定的区域等。
图1为按照本发明一个实施例的用于确定移动充电车充电路径的方法的流程图。
如图1所示,在步骤110,远程设备接收一个充电服务区域内关于充电服务的需求数据。在本实施例中,需求数据包括该充电服务区域内,当前每一待充电车辆的位置信息和所需的充电电量。
需要指出的是,这里所述的远程设备应广义理解为这样的设备,其能够通过无线网络与移动充电车和待充电车辆的车载通信装置或用户的移动通信设备(包括但不限于移动电话、平板电脑和便携式电脑等)进行通信。远程设备的例如包括但不限于用于对移动充电车进行统一管理的计算机系统或者用于确定移动充电车充电路径的装置(该装置可以是计算机系统的一部分或者作为独立于计算机系统的物理装置)。
还需要指出的是,需求数据是动态变化的,因此在本实施例中,远程设备可以周期性或随机地获取需求数据。
在执行步骤110之后进入步骤120。在该步骤中,远程设备基于需求数 据生成至少一个服务队列。如上所述,每个服务队列包括一个移动充电车以及相关联的待充电车辆(也即该移动充电车所服务的待充电车辆)。需要指出的是,相关联的待充电车辆可以是该充电服务区域内的待充电车辆的全体,或者可以是其中的一个子集。有关服务队列的优选生成方式将在下面作进一步的描述。
接着进入步骤130,对于每个服务队列,远程设备为所属的移动充电车确定其到达该服务队列内的待充电车辆的最小连通路径作为充电路径。有关最小连通路径的优选确定方式将在下面作进一步的描述。
对于其它的充电服务区域,通过执行上述步骤110-130也可确定移动充电车的优化充电路径。
以下描述上述步骤120中服务队列的优选生成方式。
图2为一个生成服务队列的示例性方法的流程图。
如图2所示,在步骤210中,远程设备根据下式确定充电服务区域内的待充电车辆所需的充电总量S:
Figure PCTCN2018081688-appb-000001
这里k表示待充电车辆的数量,Si表示第i个待充电车辆所需的充电电量。
随后进入步骤220,远程设备为充电服务区域选择移动充电车,使得所选择的移动充电车的可充电能力能够满足充电服务区域内的待充电车辆的充电需求。示例性地,可以按照下列方式来选择移动充电车:
Figure PCTCN2018081688-appb-000002
这里l表示所选择的移动充电车的数量,Pi表示第i个移动充电车的可 充电能力。
在执行步骤220之后,图2所示的方法随后进入步骤230。在该步骤中,远程设备按照所需的充电电量对充电服务区域内的待充电车辆进行排序以形成区域队列。示例性地,这里将该区域队列记为{V1,V2,V3,……Vk},并且将待充电车辆V1、V2、V3、……Vk所需的充电电量分别记为S1、S2、S3、……Sk。
随后进入步骤240,远程设备在满足下列条件的情况下将区域队列{V1,V2,V3,……Vk}内的前n个待充电车辆归属为一个服务队列并且分配一个移动充电车以生成第一服务队列Q1:
S1+S2+…+Sn<P<S1+S2+…Sn+1    (3)
这里S1、S2、S3…、Sn分别为区域队列{V1,V2,V3,……Vk}中第1至n个待充电车辆所需的充电电量,P1为分配给服务队列Q1的移动充电车的可充电能力。
在执行步骤240之后进入步骤250。在该步骤中,远程设备判断区域队列{V1,V2,V3,……Vk}内的每一个待充电车辆是否都具有归属的服务队列,如果存在未有归属的待充电车辆,则返回步骤240,对于未有归属的待充电车辆施行步骤240的操作以生成后续的服务队列。另一方面,如果存在未有归属的待充电车辆,则退出生成服务队列的流程而进入步骤130。
需要指出的是,在图2所示的方法中,对于步骤220所选择的移动充电车,其可充电能力可以相同也可以不同。
以下描述上述步骤130中最小连通路径的优选确定方式。
图3为一个确定最小连通路径的示例性方法的流程图。
如图3所示,在步骤310,对于一个服务队列(例如上述第一服务队列Q1),远程设备根据其中的移动充电车和待充电车辆的当前位置生成路径 图。图4为路径图的示例性示意图。如图4所示,移动充电车V0与待充电车辆V1-V6被视为顶点,移动充电车与待充电车辆之间以及待充电车辆之间的可连通路径作为边,标注的数字表示可连通路径的长度。
随后进入步骤320,由步骤310得到的路径图确定服务队列中的移动充电车到达该服务队列内的待充电车辆的最小连通路径作为最短路径。
以下描述一个由路径图确定最小连通路径的示例性算法。
图5为由路径图确定最小连通路径的示例性算法的流程图。
如图5所示,在步骤510,首先基于路径图构造不包含边的非连通图T,在该非连通图T中,每个顶点对应于服务队列中的移动充电车和待充电车辆其中一个,并且每个顶点自成一个连通分量。
接着进入步骤520,构造一个边的集合E,该集合包含移动充电车与待充电车辆之间以及待充电车辆之间的可连通路径作为集合元素,其中可连通路径的长度作为该集合元素的权值。
随后进入步骤530,从集合E中选择一条具有最小权值的边或元素,若该边的两个顶点落在不同的连通分量上,则将此边加入到非连通图T中;否则,则从集合E中剔除该条边。
接着进入步骤540,判断所有顶点是否在同一个连通分量上,如果是,则进入步骤550,将非连通图T中的路径作为最小连通路径;否则,则返回步骤530。
以图4所示的路径图为例,利用上述算法可得到如图6所示的最小连通路径,其生成过程如下:
a)从边的集合E中选择权值最小的边,即(V0,V3),权值为5;
b)在集合E余下的边中选择权值最小的边,即(V2,V4),权值为5;
c)在集合E余下的边中选择权值最小的边,即(V3,V5),权值为6;
d)在集合E余下的边中选择权值最小的边,即(V0,V1),权值为7;
e)在集合E余下的边中选择权值最小的边,即(V1,V4),权值为7;
f)在集合E余下的边中选择权值最小的边,即(V4,V6),权值为9;
g)由于所有顶点位于同一个连通分量,由此得到如图6所示的最小连通路径。
图7为按照本发明另一实施例的用于确定移动充电车充电路径的装置的示意框图。
图7所示的用于确定移动充电车充电路径的装置70包含接收模块710、生成模块720和确定模块730。在本实施例中,接收模块710用于接收一个充电服务区域内关于充电服务的需求数据,其中,需求数据包括该充电服务区域内每一待充电车辆的位置信息和所需的充电电量。生成模块720用于基于需求数据生成至少一个服务队列,其中,每个服务队列包括该充电服务区域内的待充电车辆的全体或子集和一个移动充电车。确定模块730用于对于每个所述服务队列,为所属的移动充电车确定其到达该服务队列内的待充电车辆的最小连通路径作为充电路径。
图8为按照本发明还有一个实施例的充电管理系统的示意框图。
图8所示的充电管理系统80包含存储器810、处理器820以及存储在存储器810上并可在处理器820上运行的计算机程序830,其中,执行计算机程序830可以实现上面借助图1-6所述的用于确定移动充电车充电路径的方法。
按照本发明的另一方面,还提供了一种计算机可读存储介质,其上存储计算机程序,该程序被处理器执行时可实现上面借助图1-6所述的用于移动充电车路径的方法。
提供本文中提出的实施例和示例,以便最好地说明按照本技术及其特定应用的实施例,并且由此使本领域的技术人员能够实施和使用本发明。但是,本领域的技术人员将会知道,仅为了便于说明和举例而提供以上描述和示例。所提出的描述不是意在涵盖本发明的各个方面或者将本发明局限于所公开的精确形式。
鉴于以上所述,本公开的范围通过以下权利要求书来确定。

Claims (10)

  1. 一种用于确定移动充电车充电路径的方法,其特征在于,包含下列步骤:
    接收一个充电服务区域内关于充电服务的需求数据,所述需求数据包括该充电服务区域内每一待充电车辆的位置信息和所需的充电电量;
    基于所述需求数据生成至少一个服务队列,每个所述服务队列包括该充电服务区域内的待充电车辆的全体或子集和一个移动充电车;以及
    对于每个所述服务队列,为所属的移动充电车确定其到达该服务队列内的待充电车辆的最小连通路径作为充电路径。
  2. 如权利要求1所述的方法,其中,生成至少一个服务队列的步骤包括:
    1)为所述充电服务区域选择移动充电车,使得所选择的移动充电车的可充电能力能够满足所述充电服务区域内的待充电车辆的充电需求;
    2)按照所需的充电电量对所述充电服务区域内的待充电车辆进行排序以形成区域队列;
    3)将区域队列内的前n个待充电车辆归属为一个服务队列并且分配一个移动充电车,使得:
    S1+S2+…+Sn<P<S1+S2+…Sn+1
    这里S1,S2,S3…,Sn分别为所述区域队列中第1至n个待充电车辆所需的充电电量,P为分配给该服务队列的移动充电车的可充电能力;
    4)对于所述区域队列内的其余待充电车辆重复步骤3),直至所述区域队列内的每一待充电车辆都具有归属的服务队列。
  3. 如权利要求2所述的方法,其中,不同服务队列所属的移动充电车具有相同的可充电能力。
  4. 如权利要求2所述的方法,其中,不同服务队列所属的移动充电车具有不同的可充电能力。
  5. 如权利要求1所述的方法,其中,确定最小连通路径作为最短 路径的步骤包括:
    根据服务队列中的移动充电车和待充电车辆的当前位置生成路径图,其中,所述路径图包含移动充电车与待充电车辆之间以及待充电车辆之间的可连通路径作为边;以及
    由所述路径图确定服务队列中的移动充电车到达该服务队列内的待充电车辆的最小连通路径作为最短路径。
  6. 一种用于确定移动充电车充电路径的装置,其特征在于,所述装置包含:
    接收模块,用于接收一个充电服务区域内关于充电服务的需求数据,所述需求数据包括该充电服务区域内每一待充电车辆的位置信息和所需的充电电量;
    生成模块,用于基于所述需求数据生成至少一个服务队列,每个所述服务队列包括该充电服务区域内的待充电车辆的全体或子集和一个移动充电车;以及
    确定模块,用于对于每个所述服务队列,为所属的移动充电车确定其到达该服务队列内的待充电车辆的最小连通路径作为充电路径。
  7. 一种充电管理系统,包含存储器、处理器以及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,执行所述程序以实现下列步骤:
    接收一个充电服务区域内关于充电服务的需求数据,所述需求数据包括该充电服务区域内每一待充电车辆的位置信息和所需的充电电量;
    基于所述需求数据生成至少一个服务队列,每个所述服务队列包括该充电服务区域内的待充电车辆的全体或子集和一个移动充电车;以及
    对于每个所述服务队列,为所属的移动充电车确定其到达该服务队列内的待充电车辆的最小连通路径作为充电路径。
  8. 如权利要求7所述的充电管理系统,其中,生成至少一个服务队列的步骤包括:
    1)为所述充电服务区域选择移动充电车,使得所选择的移动充电车的可充电能力能够满足所述充电服务区域内的待充电车辆的充电需求;
    2)按照所需的充电电量对所述充电服务区域内的待充电车辆进行排序以形成区域队列;
    3)将区域队列内的前n个待充电车辆归属为一个服务队列并且分配一个移动充电车,使得:
    S1+S2+…+Sn<P<S1+S2+…Sn+1
    这里S1,S2,S3…,Sn分别为所述区域队列中第1至n个待充电车辆所需的充电电量,P为分配给该服务队列的移动充电车的可充电能力;
    4)对于所述区域队列内的其余待充电车辆重复步骤3),直至所述区域队列内的每一待充电车辆都具有归属的服务队列。
  9. 如权利要求7所述的充电管理系统,其中,确定最小连通路径作为最短路径的步骤包括:
    根据服务队列中的移动充电车和待充电车辆的当前位置生成路径图,其中,所述路径图包含移动充电车与待充电车辆之间以及待充电车辆之间的可连通路径作为边;以及
    由所述路径图确定服务队列中的移动充电车到达该服务队列内的待充电车辆的最小连通路径作为最短路径。
  10. 一种计算机可读存储介质,其上存储计算机程序,其特征在于,该程序被处理器执行时实现以下步骤:
    接收一个充电服务区域内关于充电服务的需求数据,所述需求数据包括该充电服务区域内每一待充电车辆的位置信息和所需的充电电量;
    基于所述需求数据生成至少一个服务队列,每个所述服务队列包括该充电服务区域内的待充电车辆的全体或子集和一个移动充电车;以及
    对于每个所述服务队列,为所属的移动充电车确定其到达该服务队列内的待充电车辆的最小连通路径作为充电路径。
PCT/CN2018/081688 2017-04-13 2018-04-03 用于确定移动充电车充电路径的方法和设备 WO2018188496A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710243130.1A CN107031444B (zh) 2017-04-13 2017-04-13 用于确定移动充电车充电路径的方法和设备
CN201710243130.1 2017-04-13

Publications (1)

Publication Number Publication Date
WO2018188496A1 true WO2018188496A1 (zh) 2018-10-18

Family

ID=59535103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081688 WO2018188496A1 (zh) 2017-04-13 2018-04-03 用于确定移动充电车充电路径的方法和设备

Country Status (2)

Country Link
CN (1) CN107031444B (zh)
WO (1) WO2018188496A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113657768A (zh) * 2021-08-18 2021-11-16 北京航空航天大学 基于共享电动汽车随机电量需求的移动并行充电服务方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107031444B (zh) * 2017-04-13 2020-03-31 蔚来汽车有限公司 用于确定移动充电车充电路径的方法和设备
CN107627879A (zh) * 2017-09-13 2018-01-26 国网重庆市电力公司电力科学研究院 一种为多辆静止电动汽车有序充电的移动充电系统及方法
CN108674205B (zh) * 2018-03-30 2020-07-03 广州煜煊信息科技有限公司 一种互助式电动车确定请求车的方法
CN109141454A (zh) * 2018-08-15 2019-01-04 深圳市烽焌信息科技有限公司 一种充电机器人及存储介质
CN109066857B (zh) * 2018-08-15 2021-12-24 重庆七腾科技有限公司 对巡逻机器人进行充电的方法及充电机器人
CN110210693B (zh) * 2019-02-18 2021-10-12 德州新动能铁塔发电有限公司 一种水氢发电移动供电车智能调配系统及其方法
CN112550052A (zh) * 2019-09-10 2021-03-26 索尼公司 电子设备、服务器、无线通信方法和计算机可读存储介质
CN111969633B (zh) * 2020-10-23 2021-01-12 北京国新智电新能源科技有限责任公司 移动充电桩主动配电的充电调度方法和装置
CN112550007B (zh) * 2020-12-08 2023-03-17 广东盈峰智能环卫科技有限公司 一种基于充电保洁环卫车的环卫物联族群充电方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094995A (ja) * 2009-10-27 2011-05-12 Toyota Motor Corp 車両用経路案内装置
CN103346599A (zh) * 2013-07-10 2013-10-09 奇瑞汽车股份有限公司 一种电动汽车充电的方法及系统
CN104517198A (zh) * 2015-01-14 2015-04-15 曾帆 基于gps卫星定位和远程无线通讯的充电车运营管理系统
CN204391833U (zh) * 2015-02-12 2015-06-10 刘力 智能移动充电车系统
WO2015086745A1 (en) * 2013-12-11 2015-06-18 Ecosynrg Ltd Electric charging system and method
CN204809906U (zh) * 2015-06-05 2015-11-25 深圳市华宝新能源有限公司 移动储能充电装置以及移动储能充电系统
CN107031444A (zh) * 2017-04-13 2017-08-11 蔚来汽车有限公司 用于确定移动充电车充电路径的方法和设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105098865A (zh) * 2014-05-19 2015-11-25 安徽大学 一种移动式自动驳接充电车系统
KR101901797B1 (ko) * 2015-03-10 2018-11-07 현대자동차주식회사 전기자동차 충전 시스템 및 그 방법
CN104836293B (zh) * 2015-05-08 2017-09-22 杭州南江机器人股份有限公司 自动导引运输车(agv)的充电方法和移动充电桩、充电系统
CN104935038B (zh) * 2015-06-05 2017-07-28 深圳市华宝新能源股份有限公司 移动储能充电装置以及移动储能充电系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094995A (ja) * 2009-10-27 2011-05-12 Toyota Motor Corp 車両用経路案内装置
CN103346599A (zh) * 2013-07-10 2013-10-09 奇瑞汽车股份有限公司 一种电动汽车充电的方法及系统
WO2015086745A1 (en) * 2013-12-11 2015-06-18 Ecosynrg Ltd Electric charging system and method
CN104517198A (zh) * 2015-01-14 2015-04-15 曾帆 基于gps卫星定位和远程无线通讯的充电车运营管理系统
CN204391833U (zh) * 2015-02-12 2015-06-10 刘力 智能移动充电车系统
CN204809906U (zh) * 2015-06-05 2015-11-25 深圳市华宝新能源有限公司 移动储能充电装置以及移动储能充电系统
CN107031444A (zh) * 2017-04-13 2017-08-11 蔚来汽车有限公司 用于确定移动充电车充电路径的方法和设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113657768A (zh) * 2021-08-18 2021-11-16 北京航空航天大学 基于共享电动汽车随机电量需求的移动并行充电服务方法
CN113657768B (zh) * 2021-08-18 2024-05-14 北京航空航天大学 基于共享电动汽车随机电量需求的移动并行充电服务方法

Also Published As

Publication number Publication date
CN107031444A (zh) 2017-08-11
CN107031444B (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
WO2018188496A1 (zh) 用于确定移动充电车充电路径的方法和设备
Wang et al. Smart charging for electric vehicles: A survey from the algorithmic perspective
US11087422B2 (en) Method and device for determining a configuration for deployment of a public transportation system
Luo et al. Optimal charging scheduling for large-scale EV (electric vehicle) deployment based on the interaction of the smart-grid and intelligent-transport systems
Yıldız et al. The urban recharging infrastructure design problem with stochastic demands and capacitated charging stations
CN109670661B (zh) 用于确定换电站内的欠电电池的充电策略的方法和装置
Dong et al. Rec: Predictable charging scheduling for electric taxi fleets
Hausler et al. Stochastic park-and-charge balancing for fully electric and plug-in hybrid vehicles
Jin et al. Energy efficient algorithms for electric vehicle charging with intermittent renewable energy sources
CN108944500B (zh) 一种分布式站点联合控制的电动汽车充电调度方法
You et al. Online station assignment for electric vehicle battery swapping
Kong et al. Smart rate control and demand balancing for electric vehicle charging
Qureshi et al. Scheduling and routing of mobile charging stations with stochastic travel times to service heterogeneous spatiotemporal electric vehicle charging requests with time windows
Pan et al. Many-objective optimization for large-scale EVs charging and discharging schedules considering travel convenience
Liu et al. A reservation-based vehicle-to-vehicle charging service under constraint of parking duration
Kumar et al. An edge-fog computing framework for cloud of things in vehicle to grid environment
JP2016226091A (ja) 充電設備運用支援装置、充電設備運用支援プログラム、および充電システム
Mehrabi et al. Mobile edge computing assisted green scheduling of on-move electric vehicles
Zhang et al. Urban Internet of Electric Vehicle Parking System for Vehicle-to-Grid Scheduling: Formulation and Distributed Algorithm
CN105874675A (zh) 利用用于电动汽车的电池组的电力运用方法
Li et al. A coordinated battery swapping service management scheme based on battery heterogeneity
Suresh et al. Hybrid optimization enabled multi‐aggregator‐based charge scheduling of electric vehicle in internet of electric vehicles
TWI706366B (zh) 電動車充電站電能管理方法
Yuan et al. Source: Towards solar-uncertainty-aware e-taxi coordination under dynamic passenger mobility
Du et al. Mobile applications and algorithms to facilitate electric vehicle deployment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18783652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18783652

Country of ref document: EP

Kind code of ref document: A1