WO2018188354A1 - 光源面板和显示装置 - Google Patents

光源面板和显示装置 Download PDF

Info

Publication number
WO2018188354A1
WO2018188354A1 PCT/CN2017/114239 CN2017114239W WO2018188354A1 WO 2018188354 A1 WO2018188354 A1 WO 2018188354A1 CN 2017114239 W CN2017114239 W CN 2017114239W WO 2018188354 A1 WO2018188354 A1 WO 2018188354A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
light emitting
source panel
layer
Prior art date
Application number
PCT/CN2017/114239
Other languages
English (en)
French (fr)
Inventor
胡伟频
冯翔
魏从从
王纯
姜明宵
孙晓
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/068,281 priority Critical patent/US11271051B2/en
Publication of WO2018188354A1 publication Critical patent/WO2018188354A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • G02B30/31Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers involving active parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1323Arrangements for providing a switchable viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/1533Constructional details structural features not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/157Structural association of cells with optical devices, e.g. reflectors or illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133562Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements on the viewer side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133567Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements on the back side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/02Function characteristic reflective
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80518Reflective anodes, e.g. ITO combined with thick metallic layers

Definitions

  • At least one embodiment of the present disclosure is directed to a light source panel and a display device.
  • a reflective display device Compared with a transmissive display device, a reflective display device has a softer image, lower power consumption, and can obtain a better display effect in, for example, outdoors, and thus is increasingly favored in, for example, the field of electronic books.
  • the reflective display device is greatly affected by the illumination of the external environment, and when the external environment is insufficiently illuminated, the display effect is lowered.
  • At least one embodiment of the present disclosure provides a display device including: a reflective display panel and a light source panel disposed on a light exit side of the display panel parallel to the display panel, the light source panel including a parallax barrier structure and a light emitting unit
  • the light emitting unit may emit light to illuminate the display panel in operation; wherein the light source panel includes a light emitting area and a light transmitting area, the light emitting unit is disposed in the light emitting area, and the parallax barrier structure is disposed in the a side of the light emitting unit remote from the display panel, the parallax barrier structure includes a light splitting component, the light splitting component includes at least a non-transparent state, and the light transmissive region is located in a portion between adjacent the light splitting components, The light emitting unit and the light splitting member at least partially overlap in a direction perpendicular to the light source panel.
  • an orthographic projection of a portion between adjacent light splitting members on a surface of the light source panel and a surface of the light transmitting region on a surface of the light source panel coincide.
  • an orthographic projection of the light emitting unit on a surface of the light source panel is located on a surface of the light splitting member on the light source panel. Within the orthographic projection.
  • the light emitting unit is an organic light emitting device
  • the organic light emitting device includes at least a first electrode layer, a light emitting layer, and a second electrode layer which are sequentially stacked.
  • the first electrode layer is disposed on a side of the light emitting layer away from the display panel, and the second electrode layer is a transparent electrode.
  • the light emitting layer is a white light emitting layer or includes a red light emitting layer, a green light emitting layer, and a blue light emitting layer stacked on each other.
  • the light source panel further includes a pixel defining layer defining the light emitting unit, the pixel defining layer being a transparent material and extending into the light transmitting region.
  • the first electrode layer is an opaque electrode, and the first electrode layer is configured as a light splitting member constituting the parallax barrier structure.
  • the parallax barrier structure includes a black matrix as a light splitting member, and the first electrode layer and the black matrix are at least partially overlapped.
  • the first electrode layer is a reflective electrode
  • an orthographic projection of the first electrode layer on a surface of the light source panel is located at the black matrix. Inside the orthographic projection on the surface of the light source panel.
  • the parallax barrier structure is a liquid crystal grating or an electrochromic grating, and the liquid crystal grating or the electrochromic grating is converted into a non-transparent state after applying a voltage signal.
  • a portion is used as the light splitting member, and the first electrode layer is a transparent electrode.
  • At least one embodiment of the present disclosure provides a light source panel including a parallax barrier structure and a light emitting unit; wherein the parallax barrier structure includes a plurality of light splitting members, the light splitting member includes at least a non-transparent state, and the light transmitting layer The region is located in a portion between adjacent ones of the light splitting members, and the light emitting unit and the light splitting member at least partially overlap in a direction perpendicular to the light source panel.
  • the light emitting unit is an organic light emitting device
  • the organic light emitting device includes at least a first electrode layer, a light emitting layer, and a second electrode layer which are sequentially stacked.
  • the first electrode layer is an opaque electrode, and the first electrode layer is configured as a light splitting member constituting the parallax barrier structure.
  • the parallax barrier structure includes a black matrix as a light splitting member, and the first electrode layer and the black matrix are at least partially overlapped.
  • the first electrode layer is a reflective electrode
  • an orthographic projection of the first electrode layer on a surface of the light source panel is located at the black matrix. Inside the orthographic projection on the surface of the light source panel.
  • the parallax barrier structure is a liquid crystal grating or an electrochromic grating, and the liquid crystal grating or the electrochromic grating is converted into a non-transparent state after applying a voltage signal.
  • the portion serves as the spectroscopic member.
  • FIG. 1 is a schematic structural diagram of a display device according to an embodiment of the present disclosure
  • FIG. 2 is a schematic view showing an optical path of the display device shown in FIG. 1;
  • Figure 3a is a schematic structural view of the area A shown in Figure 1;
  • Figure 3b is another schematic structural view of the A region shown in Figure 1;
  • Figure 3c is a schematic view showing another structure of the area A shown in Figure 1;
  • FIG. 4a is a schematic structural diagram of a light splitting component according to an embodiment of the present disclosure.
  • FIG. 4b is another schematic structural diagram of a light splitting component according to an embodiment of the present disclosure.
  • 5a-5f are process diagrams of a method for fabricating a light source panel according to an embodiment of the present disclosure.
  • a front light source may be disposed on the display panel of the reflective display device.
  • Providing a front light source on the display side of the display panel can solve the problem of poor display performance caused by insufficient ambient light, but the display device having the structure is usually only used for displaying a two-dimensional image, and cannot satisfy the user. Further requirements for displaying three-dimensional images or even two-dimensional and three-dimensional image switching functions.
  • the display device may include: a reflective display panel and a light source panel disposed on the light exit side of the display panel parallel to the display panel, the light source panel including a parallax barrier structure and a light emitting unit, and the light emitting unit may illuminate the display panel in operation.
  • the light source panel includes a light emitting area disposed in the light emitting area, the parallax barrier structure is disposed on a side of the light emitting unit away from the display panel, and the parallax barrier structure includes a light splitting component, the light splitting component includes at least a non-transparent state, adjacent The portion between the light-splitting members corresponds to a light-transmitting region of the light source panel (for example, the light-transmitting region is located in a portion between adjacent light-splitting members), and the light-emitting unit and the light-splitting member at least partially overlap in a direction perpendicular to the light source panel.
  • the light emitting unit may provide a light source to the reflective display panel to enhance the display effect of the display device, and the parallax barrier structure is disposed in the light source panel, so that the display device may have a three-dimensional display function.
  • FIG. 1 is a schematic structural view of a display device according to an embodiment of the present disclosure.
  • the display device includes The light source panel 100 and the reflective display panel 200, the light source panel 100 includes a parallax barrier structure 120 and a light emitting layer 600.
  • the light emitting unit 110 is disposed in the light emitting layer 600, and the light emitting unit 110 can illuminate the display panel 200 in operation; the light source panel 100
  • the light-emitting area N and the light-transmitting area M are disposed, the light-emitting unit 110 is disposed in the light-emitting area N, the parallax barrier structure 120 is disposed on a side of the light-emitting unit 110 remote from the display panel 200, and the parallax barrier structure 120 includes a light-splitting part 121, the light-splitting part 121 includes at least a non-transparent state, and the light emitting unit 110 and the beam splitting member 121 at least partially overlap in a direction perpendicular to the light source panel 100, and the light transmitting region 130 is located in a portion between the adjacent beam splitting members 121, the light transmitting region 130 It is distributed corresponding to the display panel 200.
  • the reflective display panel 200 mainly realizes image display by reflecting external light, so the effect of displaying an image is greatly affected by the light intensity of the external environment.
  • the light emitting unit 110 in the light source panel 100 can provide light to the display panel 200.
  • the front light source can be provided to ensure the display effect of the image of the display device.
  • the position of the light transmitting region may be defined by the light splitting member.
  • the light splitting member in the light source panel 100, between the adjacent beam splitting members 121 is a light transmitting region 130.
  • the orthographic projection of the portion between the adjacent beam splitting members 121 on the surface on which the light source panel 100 is located coincides with the light transmitting region M.
  • the light splitting member 121 defines the light transmitting region M, that is, the light transmitting region M between the light separating members 121.
  • the light splitting member 121 is disposed to overlap with the light emitting unit 110.
  • the light splitting member 121 is opaque, it can prevent light emitted from the light emitting unit 110 from being directly emitted from the display device to interfere with the display image. In order to ensure the display effect of the display device.
  • the orthographic projection of the light emitting unit 110 on the face of the light source panel 100 is located within the orthographic projection of the spectroscopic member 121 on the face of the light source panel 100.
  • the spectroscopic member 121 is in a non-transparent state, the light emitted from the light-emitting unit 110 is blocked by the spectroscopic member 121, and the light emitted from the light-emitting unit 110 is prevented from being directly emitted from the display device, thereby affecting the display effect of the display device.
  • the relative position of the light-emitting unit 110 and the light-splitting member 121 is not limited to the above-described manner, and the light-splitting member 121 may partially overlap the light-emitting unit 110 when the display function of the display device is secured.
  • the main principle of the naked eye three-dimensional display is to receive different parallax images through the user's two eyes. After the parallax image is analyzed by the brain, the user is made to have a layered feeling on the received image, thereby generating a stereoscopic effect.
  • 2 is a schematic view of the optical path of the display device shown in FIG. 1. For example, as shown in FIG.
  • the display panel 200 includes a plurality of pixel units, wherein the pixel unit R1 may provide a first parallax image R2 (eg, a right eye image), and the pixel unit L1 may provide a second parallax image L2 (eg, a left eye image),
  • the light exiting side of the display panel 200 is provided with a parallax barrier structure 120, which can cause the first parallax image R2 and the second parallax image L2 to be respectively displayed at different positions such as the right eye and the left eye of the user, that is, the right eye and the left of the user
  • the eye receives the first parallax image R2 and the second parallax image L2, respectively, so that the naked eye three-dimensional display can be realized.
  • the positional relationship between the light splitting member 121 in the light source panel 100 and the pixel unit (for example, R1 and L1, etc.) of the display panel 200 is not limited as long as the display image of the display panel 200 is displayed. After passing through the spectroscopic member 121 in the parallax barrier structure 120, it becomes a parallax image.
  • the spectroscopic part 121 can divide the parallax image for each column of pixel units.
  • the light splitting component 121 may be disposed in each adjacent Between the R1 column pixel unit and the L1 column pixel unit, the image displayed by each adjacent R1 column pixel unit and L1 column pixel unit is located in a different parallax image.
  • the spectroscopic part 121 can divide the parallax image for a plurality of columns of pixel units.
  • the R1 area includes a plurality of columns of adjacent pixel units
  • the L1 area may also include a plurality of columns of adjacent pixel units.
  • the light splitting member 121 may be disposed between each adjacent R1 region and the L1 region such that images displayed by pixel cells in each adjacent R1 region and pixel cells in the L1 region are located in different parallax images.
  • connection relationship between the light source panel 100 and the display panel 200 is not limited as long as the light emitted by the light source panel 100 can enter the display panel 200, and the light is reflected by the display panel 200 through the light source.
  • the panel 100 can be used to display an image.
  • the light source panel 100 and the display panel 200 may be fixed by an external frame, and the light source panel 100 may be fixed to the light exiting side of the display panel 200.
  • an optical adhesive layer may be disposed between the light source panel 100 and the display panel 200, and the light source panel 100 is adhered to the light exiting side of the display panel 200 through the optical adhesive layer.
  • the type of the light emitting unit in the light source panel is not limited.
  • the light emitting unit 110 may be provided at least partially overlapping the spectroscopic member 121, and may provide a light source to the display panel 200.
  • the light emitting unit 110 may be a strip light source, an organic light emitting device, or the like.
  • the light-emitting unit 110 is taken as an example of an organic light-emitting device.
  • FIG. 3a is a structural schematic view of the A region shown in FIG. 1, which is a cross-sectional view.
  • the light emitting unit 110 is an organic light emitting device, and the organic light emitting device may include at least a first electrode layer 112, a light emitting layer 113, and a second electrode layer 111 which are sequentially stacked, and the first electrode layer 112 is disposed.
  • the organic light emitting device provides a light source for the display panel 200, so that the light emitted by the light emitting layer 113 needs to pass through the second electrode layer 111.
  • the second electrode layer 111 is at least a translucent electrode, and may be, for example, a transparent electrode.
  • the organic light emitting device eg, the light emitting unit 110
  • the organic light emitting device may emit white light, blue light, other monochromatic or polychromatic light, etc., in the embodiment of the present disclosure. This is not limited as long as it can realize the supply of the light source to the display panel 200.
  • the technical solution in the following embodiments of the present disclosure will be described by taking an example of emitting white light by an organic light-emitting device.
  • the specific structure of the white light-emitting organic light-emitting device is not limited.
  • the light emitting layer 113 may be a white light emitting layer or a red light emitting layer, a green light emitting layer, and a blue light emitting layer combined with each other.
  • a description will be given by taking the light-emitting layer 113 as a combination of a red light-emitting layer, a green light-emitting layer, and a blue light-emitting layer.
  • the light emitting layer 113 may include a red light emitting layer 1131, a green light emitting layer 1132, and a blue light emitting layer 1133 which are superposed on each other, Red, green and blue light are emitted during operation, and the light is mixed with each other to obtain white light.
  • the red light emitting layer 1131, the green light emitting layer 1132, and the blue light emitting layer 1133 are not limited to being overlapped with each other in a direction perpendicular to the light source panel 100 as shown in FIG. 3a, and may be parallel to the light source panel 100.
  • the side faces are arranged side by side in the direction of the face, and the disclosure does not limit this, as long as the light emitting device can provide white light.
  • the light source panel 100 may further include a pixel defining layer 114 defining the light emitting unit 110, the pixel defining Layer 114 may define the location of the illumination unit 110.
  • the preparation material of the pixel defining layer 114 may be a transparent material and extend into the light transmissive region 130, for example, functioning as a planarization layer, and may also facilitate reflection through the display panel 200. Light can be transmitted from the light transmissive region 130.
  • the three-dimensional display function of the display device is realized mainly by the parallax barrier structure 120 provided in the light source panel 100.
  • the parallax barrier structure 120 is disposed in the light source panel 100.
  • several arrangements of the parallax barrier structure 120 and the structure of the corresponding light source panel 100 will be described by way of several embodiments.
  • the first electrode layer 112 can be an opaque electrode.
  • the first electrode layer 112 may be configured as the light splitting member 121 constituting the parallax barrier structure 120, that is, the light splitting member 121 shown in FIG. 1 may be the same as the first electrode layer 112 shown in FIG. 3a. structure.
  • the light emitting unit 110 can realize the light source supply to the display panel 200 or have the parallax barrier function, so that it is not necessary to provide an additional light blocking layer on the side of the light source panel 100 remote from the display panel 200.
  • the structure of the light source panel 100 can be simplified, the overall thickness of the display device can be reduced, and the production cost can be reduced.
  • the light source panel 100 may further include a first base substrate 101, and the first base substrate 101 may be disposed on a side of the light source panel remote from the display panel 200.
  • the first base substrate 101 may provide support for the light source panel 100, and the first base substrate 101 is a transparent material to facilitate transmission of light.
  • the material for preparing the first substrate is not limited.
  • the first substrate 101 may be a transparent substrate such as a glass substrate, a quartz substrate, or a plastic substrate.
  • the types of the first electrode layer and the second electrode layer are not limited.
  • the first electrode layer 112 and the second electrode layer 111 may be an anode and a cathode, respectively.
  • the first electrode layer 112 is one of an anode and a cathode
  • the second electrode layer 111 is the other of an anode and a cathode, as long as the second electrode layer 111 is at least a translucent electrode (for example, a transparent electrode).
  • the material of the anode may include indium tin oxide (ITO), indium zinc oxide (IZO), indium gallium oxide (IGO), gallium zinc oxide (GZO) zinc oxide (ZnO), indium oxide ( In 2 O 3 ), aluminum zinc oxide (AZO), carbon nanotubes, etc.;
  • the material of the cathode may include metals such as Ag, Al, Ca, In, Li or Mg or alloys thereof (for example, Mg-Ag magnesium silver alloy) .
  • the material forming the second electrode layer 106 includes indium tin oxide (ITO), indium zinc oxide (IZO), indium gallium oxide (IGO), carbon nanotubes, or the like.
  • the second electrode layer 111 may be an anode made of a transparent ITO material
  • the first electrode layer 112 may be a cathode made of a metal aluminum material
  • the first electrode layer 112 is in a non-transparent state, thereby simultaneously serving as a parallax barrier structure 120.
  • the light splitting member 121 in the middle.
  • the specific structure of the organic light emitting device is not limited.
  • the organic light emitting device may further include a hole transport layer disposed between the anode and the light emitting layer 113, and an electron transport layer disposed between the cathode and the light emitting layer 113; in order to improve electron and hole injection efficiency of the light emitting layer
  • the organic light emitting device may further include an electron injecting layer disposed between the cathode and the electron transporting layer, and an organic functional layer such as a hole injecting layer disposed between the anode and the hole transporting layer.
  • the material of the light-emitting layer may include 8-hydroxyquinoline aluminum, 8-hydroxyquinoline aluminum, anthracene derivative, etc.
  • the material of the electron injecting layer may include lithium fluoride, lithium oxide, lithium boron oxide, potassium silicon oxide, Barium carbonate, 8-hydroxyquinoline aluminum-lithium, etc.
  • the material of the electron transport layer includes an oxazole derivative, a metal chelate compound, an azole compound, a quinoline derivative, a porphyrin derivative, a diazonium derivative, and the like.
  • the material of the hole transport layer may include polyparaphenylene vinyl, polythiophene, polysilane, triphenylmethane, triarylamine, anthraquinone, pyrazoline, chewazole Classes, carbazoles, butadienes, etc.; materials for the hole injection layer may include copper cyanide, molybdenum trioxide, 1-TNATA, 2-TNATA, polyaniline, PEDOT (3,4-ethylene dioxythiophene single Body polymer) and so on. It should be noted that the preparation materials of the above structures in the organic light-emitting device are not limited to the above-mentioned ranges, and may be selected according to specific needs, and embodiments of the present disclosure are not limited thereto.
  • FIG. 3b is another structural schematic view of the A region shown in FIG. 1, which is a cross-sectional view.
  • the spectroscopic member 121 included in the parallax barrier structure 120 may be a black matrix, and the first electrode layer 112 is at least partially overlapped with the black matrix.
  • the black matrix may be provided with an anti-reflection structure. This prevents external light from being reflected by the spectroscopic member 121 and interferes with the display image of the display device, thereby improving the display effect.
  • the first electrode layer 112 may be a reflective electrode, so that all the light emitted by the light emitting unit 110 can enter the display panel 200, thereby improving the utilization of light and reducing power consumption.
  • the first electrode layer 112 may also be a transparent electrode.
  • the orthographic projection of the first electrode layer 112 on the face of the light source panel 100 is located within the orthographic projection of the black matrix on the face of the light source panel 100. In this way, the first electrode layer 112 can be prevented from obscuring the black matrix Part of the open area reduces the aperture ratio of the pixel area of the display device.
  • the relative positional relationship between the first electrode layer 112 and the black matrix is not limited to the above arrangement manner.
  • the first electrode layer 112 and the black matrix may also be disposed to partially overlap, as long as the arrangement of the first electrode layer 112 and the black matrix is guaranteed to be displayed.
  • the display function of the device is sufficient, and the embodiments of the present disclosure are not limited herein.
  • the light source panel may further include a flat layer 115 that may be disposed between the black matrix and the light emitting unit 110.
  • the flat layer 115 has a flattening effect to make the arrangement position of the black matrix accurate, and the flat layer 115 can serve as an excessive film layer between the black matrix and the light emitting unit 110, so that the black matrix and the light emitting unit 110 are more firmly combined.
  • the flat layer 115 can also prevent harmful impurities, ions, static electricity, and the like in the black matrix from affecting the light emitting unit 110, for example.
  • the flat layer 115 may be in a transparent state to ensure light transmission.
  • the material of the flat layer 115 may include, for example, an organic material such as a resin or an inorganic material having a good light transmittance such as silicon nitride or silicon oxide.
  • FIG. 3c is another schematic structural view of the A region shown in FIG. 1, which is a cross-sectional view.
  • a first reflective layer 116 may be disposed between the beam splitting member 121 and the light emitting unit 110.
  • the first reflective layer 116 has a function of reflecting light, and may be, for example, a metal reflective layer.
  • the light emitting unit 110 can be designed according to actual needs without being limited by, for example, the case where the first electrode layer 112 is provided as a reflective electrode.
  • the display device when the light splitting member 121 is opaque, the display device may have a three-dimensional display function, and if the light splitting member 121 can also be converted into a transparent state, that is, the light source panel 100 may also be in a transparent state.
  • the display device can have a two-dimensional display function, that is, the display device can switch between the two-dimensional and three-dimensional display functions.
  • the parallax barrier structure 120 may be a liquid crystal grating or an electrochromic grating.
  • the non-transparent portion may be converted into a transparent state after switching a voltage signal, or may be restored to a non-transparent state.
  • the parallax barrier structure 120 is illustrated as being in a non-transparent state after being applied with a voltage signal, instead of being applied with a voltage signal as a transparent state, and the parallax barrier structure 120 is included in an applied voltage.
  • a portion that is converted into a non-transparent state after the signal can be used as the beam splitting member 121.
  • parallax barrier structure 120 is an electrochromic grating and a liquid crystal grating, respectively, will be described.
  • a parallax barrier structure in the light source panel 100 120 is an electrochromic grating.
  • the light splitting member 121 may include a third electrode layer, an electrochromic layer, and a fourth electrode layer which are sequentially stacked.
  • FIG. 4a is a schematic structural view of the light splitting member according to an embodiment of the present disclosure, which is a cross-sectional view.
  • the light splitting member 121 may include a third electrode layer 502, an electrochromic layer 503, and a first layer that are sequentially stacked on the second substrate 501.
  • the four electrode layer 504, and the third electrode layer 502 and the fourth electrode layer 504 are transparent electrodes.
  • one of the third electrode layer 502 and the fourth electrode layer 504 is a strip electrode (corresponding to a non-transparent region to be obtained) and the other is a planar electrode, or both are strip electrodes.
  • the third electrode layer 502 and the fourth electrode layer 504 may be disposed on the same side of the second substrate 501 or on different sides of the second substrate 501.
  • the specific arrangement positions of the third electrode layer 502 and the fourth electrode layer 504 in the light source panel are not limited as long as the electrochromic layer 503 is disposed on the third electrode layer 502 and the fourth electrode layer. 504 between.
  • the electrochromic layer 503 is in a transparent state without applying an electric field, and a voltage may be applied to the third electrode layer 502 and the fourth electrode layer 504, thereby An electric field is formed therebetween, and by applying the electric field to the electrochromic layer 503, the electrochromic layer 503 can be converted into a non-transparent state.
  • the electric field can adjust the degree of transparency of the electrochromic layer 503, for example, after an electric field is applied, the electrochromic layer 503 transitions from a transparent state to a dark state to a non-transparent state.
  • the electrochromic layer 503 in the non-transparent state can function as the spectroscopic member 121, and can block the ambient light or the light emitted from the display panel from passing through the spectroscopic member 121, thereby realizing the three-dimensional display function of the display device.
  • the second substrate 501 may be a transparent polycarbonate plate, glass, plastic, acrylic plate, etc.; the material of the electrochromic layer 503 may include tungsten trioxide, polythiophene, and a derivative thereof, a viologen, a tetrathiafulvalene or a metal phthalocyanine compound; the third electrode layer 502 and the fourth electrode layer 504 are transparent conductive materials, and may be, for example, indium tin oxide (ITO) or indium oxide.
  • transparent refers to a state in which the light transmittance is greater than 75%
  • non-transparent refers to a state in which the light transmittance is less than 25%
  • translucent refers to a partial light transmission, such as a light transmittance of 25% to 75.
  • transflective refers to partial reflection, such as a reflectance of 25% to 75%.
  • the parallax barrier structure 120 in the light source panel 100 is a liquid crystal grating
  • FIG. 4b is another schematic structural view of the light splitting component provided in an embodiment of the present disclosure.
  • the liquid crystal grating may include a first substrate 513, a second substrate 514, and a second liquid crystal layer 518 disposed between the first substrate 513 and the second substrate 514, the first substrate 513 and the first substrate The two substrates 514 are bonded to each other by the second sealant 517 to form a liquid crystal cell.
  • the first polarizing plate 511 and the second polarizing plate 512 are disposed on opposite sides of the second liquid crystal layer 518.
  • the first polarizing plate 511 may be disposed on a side of the first substrate 513 away from the second substrate 514
  • the second polarizing plate 512 may be disposed on a side of the second substrate 514 away from the first substrate 513
  • polarization axes of the first polarizing plate 511 and the second polarizing plate 512 may be parallel or perpendicular to each other.
  • the fifth electrode layer 515 and the sixth electrode layer 516 are disposed on opposite sides of the second liquid crystal layer 518.
  • the fifth electrode layer 515 may be disposed on a side of the first substrate 513 facing the second substrate 514
  • the sixth electrode The layer 516 may be disposed on a side of the second substrate 514 facing the first substrate 513.
  • one of the fifth electrode layer 515 and the sixth electrode layer 516 is a strip electrode and the other is a planar electrode, or both are strip electrodes.
  • the electric field can control the degree of deflection of the liquid crystal molecules in the liquid crystal layer 518, so that the transmittance of light passing through the liquid crystal grating can be adjusted by the cooperation of the first polarizing plate 511 and the second polarizing plate 512, thereby obtaining liquid crystal.
  • the first polarizing plate 511 and the second polarizing plate 512 are not limited to being located outside the first substrate 513 and the second substrate 514 as shown in FIG. 4b, and may be respectively disposed on the first substrate. 513 and the inner side of the second substrate 514; likewise, the fifth electrode layer 515 and the sixth electrode layer 516 are not limited to the inner side of the first substrate 513 and the second substrate 514 as shown in FIG. 4b, and may also be respectively disposed at the first
  • the outer side of the substrate 513 and the second substrate 514 can be controlled to switch between the transparent state and the non-transparent state as long as the deflection of the liquid crystal molecules in the liquid crystal layer 518 can be controlled to control the degree of light transmission.
  • the fifth electrode layer 515 and the sixth electrode layer 516 are transparent conductive materials, such as indium tin oxide (ITO), indium zinc oxide (IZO), indium gallium oxide (IGO), and oxidation.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • IGO indium gallium oxide
  • oxidation Gallium zinc (GZO) zinc oxide (ZnO), indium oxide (In 2 O 3 ), aluminum zinc oxide (AZO), and carbon nanotubes.
  • the display device can realize two-dimensional display.
  • the light source panel 100 can realize a transparent state, that is, each part structure in the light source panel can be a transparent structure.
  • the light emitting unit 110 is a transparent structure, and the first electrode layer 112 and the second electrode layer 111 included may also be transparent electrodes.
  • the type of the display panel is not limited.
  • the display panel may be a reflective liquid crystal display panel, a transflective liquid crystal display panel, or an electronic paper display panel, etc., as long as the display panel can display an image by reflecting light.
  • the display panel 200 is a reflective liquid crystal display panel.
  • the display panel 200 may include an array substrate 210 and a color filter substrate 240, and a first liquid crystal layer 260 disposed between the array substrate 210 and the color filter substrate 240.
  • the array substrate 210 and the color filter substrate 240 pass through A frame glue 230 is combined with each other to form a liquid crystal cell.
  • the first liquid crystal layer 260 may be disposed on the array substrate 210 with a second reflective layer 220, and the second reflective layer 220 may reflect the external environment or the light provided by the light emitting unit 110. .
  • the display panel 200 may further include a polarizing layer 250.
  • the polarizing layer 250 may be disposed between the first liquid crystal layer 260 and the light source panel 100.
  • the polarizing layer 250 may be disposed on a side of the color filter substrate 240 facing the light source panel 100 as shown in FIG.
  • At least one embodiment of the present disclosure provides a display device, which may include the display device in any of the foregoing embodiments.
  • the display device may be a liquid crystal display, an electronic paper display, an OLED display, a mobile phone, a tablet computer, a television, a notebook computer, a digital photo frame, or the like, including the display device in any of the foregoing embodiments.
  • At least one embodiment of the present disclosure provides a light source panel, which may include a parallax barrier structure and a light emitting unit; wherein the parallax barrier structure includes a plurality of light splitting members, the light splitting member includes at least a non-transparent state, and between adjacent light splitting components In the light transmitting region, the light emitting unit and the light separating member at least partially overlap in a direction perpendicular to the light source panel.
  • the parallax barrier structure includes a plurality of light splitting members, the light splitting member includes at least a non-transparent state, and between adjacent light splitting components In the light transmitting region, the light emitting unit and the light separating member at least partially overlap in a direction perpendicular to the light source panel.
  • the light emitting unit may be an organic light emitting device, and the organic light emitting device includes at least a first electrode layer, a light emitting layer, and a second electrode layer which are sequentially stacked.
  • a first electrode is an opaque electrode, and the first electrode layer is configured as a beam splitting member that constitutes a parallax barrier structure.
  • the parallax barrier structure includes a black matrix as a light splitting member, and the first electrode layer is at least partially overlapped with the black matrix.
  • the parallax barrier structure is a liquid crystal grating or an electrochromic grating
  • the liquid crystal grating or the electrochromic grating includes a portion that is converted into a non-transparent state after applying a voltage signal.
  • a beam splitting component As a beam splitting component.
  • the structure of the light source panel is not limited to the above content, and the specific structure thereof may refer to the light source panel in the foregoing embodiment (with respect to the embodiment of the display device). The relevant content is not described here.
  • At least one embodiment of the present disclosure provides a method of fabricating a light source panel, the method comprising: providing a first substrate; forming a parallax barrier structure on the first substrate; and then forming a light on the parallax barrier structure a unit; wherein the parallax barrier structure comprises a plurality of beam splitting members, the beam splitting member comprises at least a non-transparent state, and the light transmitting region is located in a portion between the adjacent beam splitting members, the light emitting unit and the beam splitting member at least partially overlapping in a direction perpendicular to the light source panel .
  • the specific structure of the parallax barrier structure and the light-emitting unit can be referred to the related content in the foregoing embodiments (for the light source panel and the embodiment of the display device), and details are not described herein.
  • the beam splitting member can define the location of the light transmissive region. For example, between adjacent light splitting members is a light transmitting region.
  • FIG. 5a-5f are process diagrams of a method for fabricating a light source panel according to an embodiment of the present disclosure, which is a schematic diagram of a partial structure of a light source panel.
  • the light source panel structure shown in FIG. 3b is taken as an example.
  • the method for fabricating the light source panel provided by at least one embodiment of the present disclosure may include the following process:
  • a first substrate substrate 101 is provided, a parallax barrier structure film layer is deposited on the first substrate substrate 101 and patterned to form a parallax barrier structure 120, which may include more A spaced apart beam splitting component 121 (e.g., a black matrix).
  • the area between the adjacent beam splitting members 121 may be a light transmitting area.
  • the patterning process may be, for example, a photolithography patterning process, which may include, for example, coating a photoresist layer on a structural layer that needs to be patterned, and exposing the photoresist layer using a mask.
  • the exposed photoresist layer is developed to obtain a photoresist pattern, the structural layer is etched using the photoresist pattern as a mask, and then the photoresist pattern is optionally removed.
  • the shape is formed on the first base substrate 101 on which the parallax barrier structure 120 is formed.
  • the flat layer 115 can be a transparent material.
  • a pixel defining layer film layer is deposited on the flat layer 115 and patterned to form a pixel defining layer 114.
  • the pixel defining layer 114 is a transparent material to ensure the passage of light.
  • a partial structure of an organic light emitting device or an organic light emitting device is formed in a region defined by the pixel defining layer 114, for example, a first electrode layer 112 is formed in a region defined by the pixel defining layer 114.
  • a light-emitting layer 113 is deposited on the first base substrate 101 on which the first electrode layer 112 is formed, for example, a stack including a red light-emitting layer 1131, a green light-emitting layer 1132, and a blue light-emitting layer 1133 may be deposited. .
  • the organic light emitting device may further include structures such as an electron injection layer, an electron transport layer, a hole injection layer, and a hole transport layer, and the above structure and the light emitting layer 113 may be deposited on the first substrate as shown in FIG. 5e.
  • the entire surface of the substrate 101 may also be formed in a region defined by the pixel defining layer 114, for example, the plurality of structures described above may be formed in an area defined by the pixel defining layer 114 by inkjet printing.
  • a second electrode layer 111 is formed on the first substrate 101, and the second electrode layer 111 is a transparent electrode, so that the light emitted by the light-emitting layer 113 can pass through the second electrode layer 111.
  • the structures in the light source panel may refer to the related descriptions in the foregoing embodiments (for embodiments of the light source panel and the display device), and do not Narration.
  • Embodiments of the present disclosure provide a light source panel and a display device, and may have at least one of the following effects:
  • At least one embodiment of the present disclosure provides a light source panel and a display device, the light emitting unit and the parallax barrier structure disposed in the light source panel, which can provide a front light source for the reflective display panel to improve the quality of the displayed image, and
  • the display device can be provided with a three-dimensional display function.
  • the display device In the display device provided by at least one embodiment of the present disclosure, if the parallax barrier structure in the light source panel can realize the switching between the transparent state and the non-transparent state, the display device can realize the two-dimensional display function and the three-dimensional display function. Mode switching between.
  • the simplification can be simplified.
  • the structure of the light source panel reduces the thickness of the display device while reducing the production cost.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种光源面板(100)和显示装置。显示装置包括:反射式的显示面板(200)以及设置在显示面板(200)的出光侧的光源面板(100),光源面板(100)包括视差屏障结构(120)和发光单元(110),视差屏障结构(120)包括分光部件(121),分光部件(121)至少包括非透明态,透光区域(130)位于相邻分光部件(121)之间的部分中,发光单元(110)与分光部件(121)在垂直于光源面板(100)的方向至少部分重叠。光源面板(100)提供前置光源以提高显示图像的质量,又使得显示装置可以具备三维显示功能。

Description

光源面板和显示装置
本申请要求于2017年4月10日递交的中国专利申请第201710229226.2号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开至少一个实施例涉及一种光源面板和显示装置。
背景技术
与透射式的显示装置相比,反射式的显示装置的图像更加柔和、功耗更低,在例如户外可以获得更好的显示效果,因此在例如电子书领域等受到越来越多的青睐。
反射式显示装置受外部环境光照的影响较大,当外部环境光照不足时,其显示效果降低。
发明内容
本公开至少一实施例提供一种显示装置,包括:反射式的显示面板以及平行于所述显示面板设置在所述显示面板的出光侧的光源面板,所述光源面板包括视差屏障结构和发光单元,所述发光单元可在操作中发光照射所述显示面板;其中,所述光源面板包括发光区域和透光区域,所述发光单元设置在所述发光区域,所述视差屏障结构设置在所述发光单元的远离所述显示面板的一侧,所述视差屏障结构包括分光部件,所述分光部件至少包括非透明态,所述透光区域位于相邻所述分光部件之间的部分中,所述发光单元与所述分光部件在垂直于所述光源面板的方向至少部分重叠。
例如,在本公开至少一实施例提供的显示装置中,相邻所述分光部件之间的部分在所述光源面板所在面上的正投影与所述透光区域在所述光源面板所在面上的正投影重合。
例如,在本公开至少一实施例提供的显示装置中,所述发光单元在所述光源面板所在面上的正投影位于所述分光部件在所述光源面板所在面上 的正投影之内。
例如,在本公开至少一实施例提供的显示装置中,所述发光单元为有机发光器件,以及所述有机发光器件至少包括依次叠置的第一电极层、发光层和第二电极层,所述第一电极层设置在所述发光层的远离所述显示面板的一侧,所述第二电极层为透明电极。
例如,在本公开至少一实施例提供的显示装置中,所述发光层为白光发光层或者包括彼此叠置的红光发光层、绿光发光层和蓝光发光层。
例如,在本公开至少一实施例提供的显示装置中,所述光源面板还包括界定所述发光单元的像素界定层,所述像素界定层为透明材料并且延伸到所述透光区域中。
例如,在本公开至少一实施例提供的显示装置中,所述第一电极层为不透明电极,且所述第一电极层被配置为构成所述视差屏障结构的分光部件。
例如,在本公开至少一实施例提供的显示装置中,所述视差屏障结构包括作为分光部件的黑矩阵,所述第一电极层与所述黑矩阵至少部分重叠设置。
例如,在本公开至少一实施例提供的显示装置中,所述第一电极层为反射电极,并且所述第一电极层在所述光源面板所在面上的正投影位于所述黑矩阵在所述光源面板所在面上的正投影之内。
例如,在本公开至少一实施例提供的显示装置中,所述视差屏障结构为液晶光栅或电致变色光栅,所述液晶光栅或电致变色光栅包括在施加电压信号后被转变为非透明态的部分以作为所述分光部件,以及所述第一电极层为透明电极。
本公开至少一实施例提供一种光源面板,该光源面板包括视差屏障结构和发光单元;其中,所述视差屏障结构包括多个分光部件,所述分光部件至少包括非透明态,所述透光区域位于相邻所述分光部件之间的部分中,所述发光单元与所述分光部件在垂直于所述光源面板的方向至少部分重叠。
例如,在本公开至少一实施例提供的光源面板中,所述发光单元为有机发光器件,并且所述有机发光器件至少包括依次叠置的第一电极层、发光层和第二电极层。
例如,在本公开至少一实施例提供的光源面板中,所述第一电极层为不透明电极,且所述第一电极层被配置为构成所述视差屏障结构的分光部件。
例如,在本公开至少一实施例提供的光源面板中,所述视差屏障结构包括作为分光部件的黑矩阵,所述第一电极层与所述黑矩阵至少部分重叠设置。
例如,在本公开至少一实施例提供的光源面板中,所述第一电极层为反射电极,并且所述第一电极层在所述光源面板所在面上的正投影位于所述黑矩阵在所述光源面板所在面上的正投影之内。
例如,在本公开至少一实施例提供的光源面板中,所述视差屏障结构为液晶光栅或电致变色光栅,所述液晶光栅或电致变色光栅包括在施加电压信号后被转变为非透明态的部分以作为所述分光部件。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为本公开一实施例提供的显示装置的结构示意图;
图2为图1所示显示装置的光路示意图;
图3a为图1中所示A区域的一种结构示意图;
图3b为图1中所示A区域的另一种结构示意图;
图3c为图1中所示A区域的另一种结构示意图;
图4a为本公开一实施例提供的分光部件的一种结构示意图;
图4b为本公开一实施例提供的分光部件的另一种结构示意图;以及
图5a~图5f为本公开一实施例提供的一种光源面板制备方法的过程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。 基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
为了实现户外和户内的切换模式,可以在反射式显示装置的显示面板上设置前置光源。在显示面板的显示侧设置前置光源,虽然可以解决外界环境光不足的情况下而导致的显示效果不良的问题,但是具有该结构的显示装置通常只用于显示二维画面,并不能满足用户对其显示三维画面甚至二维、三维画面切换功能的进一步需求。
本公开至少一个实施例提供了一种光源面板和显示装置以解决上述技术问题。该显示装置可以包括:反射式的显示面板以及平行于显示面板设置在显示面板的出光侧的光源面板,光源面板包括视差屏障结构和发光单元,发光单元可在操作中发光照射显示面板。光源面板包括发光区域和透光区域,发光单元设置在发光区域中,视差屏障结构设置在发光单元的远离显示面板的一侧,视差屏障结构包括分光部件,分光部件至少包括非透明态,相邻分光部件之间部分对应于光源面板的透光区域(例如该透光区域位于相邻分光部件之间的部分中),发光单元与分光部件在垂直于光源面板的方向至少部分重叠。发光单元可以向反射式的显示面板提供光源,以提升显示装置的显示效果,同时光源面板中设置有视差屏障结构,使得显示装置可以具备三维显示功能。
下面,结合附图对根据本公开至少一个实施例中的光源面板和显示装置进行说明。
本公开至少一实施例提供一种显示装置,图1为本公开一实施例提供的显示装置的结构示意图,其为剖面图。例如图1所示,该显示装置包括 光源面板100和反射式的显示面板200,光源面板100包括视差屏障结构120以及发光层600,发光层600中设置有发光单元110,发光单元110可在操作中发光照射显示面板200;光源面板100包括发光区域N和透光区域M,发光单元110设置在发光区域N中,视差屏障结构120设置在发光单元110的远离显示面板200的一侧,视差屏障结构120包括分光部件121,该分光部件121至少包括非透明态,并且发光单元110与分光部件121在垂直于光源面板100的方向上至少部分重叠,透光区域130位于相邻的分光部件121之间的部分中,该透光区域130与显示面板200相对应分布。
反射式的显示面板200主要是通过反射外界的光以实现图像显示的,所以显示图像的效果受外界环境的光强的影响较大。光源面板100中的发光单元110可以为显示面板200提供光线,在外界环境光线不足例如处于室内环境光较弱的情况下,可以提供前置光源以保证显示装置的图像的显示效果。
需要说明的是,在本公开至少一个实施例中,可以通过分光部件限定透光区域的位置。例如,如图1所示,在光源面板100中,相邻的分光部件121之间为透光区域130。
例如,在本公开至少一实施例中,如图1所示,相邻分光部件121之间的部分在光源面板100所在面上的正投影与透光区域M重合。示例性的,在光源面板100中,分光部件121限定出透光区域M,即分光部件121之间为透光区域M。
在垂直于光源面板100的方向上,分光部件121与发光单元110重叠设置,当分光部件121为非透明时,其可以防止发光单元110发出的光直接从显示装置中射出而对显示图像造成干扰,从而保证显示装置的显示效果。
例如,在本公开至少一个实施例中,如图1所示,发光单元110在光源面板100所在面上的正投影位于分光部件121在光源面板100所在面上的正投影之内。如此,在例如分光部件121为非透明态的情况下,发光单元110发出的光线会被分光部件121遮挡,防止发光单元110发出的光线直接从显示装置中射出,影响显示装置的显示效果。需要说明的是,发光单元110和分光部件121的相对位置不限于上述方式,在保障显示装置的显示功能的情况下,分光部件121也可以与发光单元110部分重叠。
裸眼三维显示主要原理是通过用户的两眼接收不同的视差图像,该视差图像经大脑分析后,使用户对接收的图像产生层次感,进而产生立体感。图2为图1所示显示装置的光路示意图。例如图2所示,显示面板200包括多个像素单元,其中像素单元R1可以提供第一视差图像R2(例如右眼图像),像素单元L1可以提供第二视差图像L2(例如左眼图像),而显示面板200的出光侧设置有视差屏障结构120,可以使得第一视差图像R2和第二视差图像L2分别显示于不同位置例如用户的右眼和左眼接收,即使得用户的右眼和左眼分别接收第一视差图像R2和第二视差图像L2,从而可以实现裸眼三维显示。
需要说明的是,在本公开的实施例中,对光源面板100中的分光部件121与显示面板200的像素单元(例如R1和L1等)的位置关系不做限制,只要显示面板200的显示图像经过视差屏障结构120中的分光部件121后变为视差图像即可。
例如,分光部件121可以对每列像素单元进行视差图像的划分。示例性的,如图2所示,以于每一列的像素单元(像素单元R1所在列的像素单元以及像素单元L1所在列的像素单元)为例,分光部件121可以设置在每个相邻的R1列像素单元和L1列像素单元之间,如此,每相邻的R1列像素单元和L1列像素单元所显示的图像位于不同的视差图像之中。
例如,分光部件121可以对多列像素单元进行视差图像的划分。示例性的,如图2所示,R1区域包括多列相邻的像素单元,L1区域中也可以包括多列相邻的像素单元。分光部件121可以设置在每个相邻的R1区域和L1区域之间,如此,每相邻的R1区域中的像素单元和L1区域中的像素单元所显示的图像位于不同的视差图像之中。
在本公开的实施例中,对光源面板100和显示面板200之间的连接关系不做限制,只要光源面板100发射的光可以进入显示面板200中,并且该光经显示面板200反射后经由光源面板100以显示图像即可。示例性的,可以通过外部框架固定光源面板100和显示面板200,将光源面板100固定在显示面板200的出光侧。示例性的,可以在光源面板100和显示面板200之间设置光学胶层,光源面板100通过该光学胶层贴合在显示面板200的出光侧上。
下面,分别对显示装置中的光源面板和显示面板的结构进行说明。
在本公开实施例提供的显示装置中,对光源面板中的发光单元的类型不做限制。如图1所示,发光单元110只要可以与分光部件121至少部分重叠设置,并且可以向显示面板200提供光源即可。例如发光单元110可以为条形光源、有机发光器件等。为便于解释本公开技术方案,在本公开下述实施例中,以发光单元110为有机发光器件为例进行说明。
在本公开至少一个实施例提供的显示装置中,图3a为图1中所示A区域的一种结构示意图,其为剖面图。例如图1和图3a所示,发光单元110为有机发光器件,该有机发光器件至少可以包括依次叠置的第一电极层112、发光层113和第二电极层111,第一电极层112设置在发光层113的远离显示面板200的一侧。该有机发光器件为显示面板200提供光源,所以发光层113发射的光线需要透过第二电极层111。即在本公开实施例中,第二电极层111至少为半透明电极,例如可以为透明电极。
在本公开至少一个实施例提供的显示装置中,如图1和图3a所示,有机发光器件(例如发光单元110)可以发射白光、蓝光、其它单色或多色光等,在本公开实施例中对此不做限制,只要其可以实现对显示面板200的光源供给即可。
下面,以有机发光器件发射白光为例,对本公开下述实施例中的技术方案进行说明。在本公开的实施例中,对发射白光的有机发光器件的具体化结构不做限制。示例性的,在有机发光器件中,发光层113可以为白光发光层或者彼此组合的红光发光层、绿光发光层和蓝光发光层。下面,在本公开的下述实施例中,以发光层113为红光发光层、绿光发光层和蓝光发光层的组合为例进行说明。
在本公开至少一个实施例提供的显示装置中,例如图1和图3a所示,发光层113可以包括彼此叠置的红光发光层1131、绿光发光层1132和蓝光发光层1133,其在工作时分别发出红光、绿光和蓝光,这些光彼此混合后可以得到白光。需要说明的是,红光发光层1131、绿光发光层1132和蓝光发光层1133不限于如图3a所示的在垂直于光源面板100的方向上彼此叠置,也可以在平行于光源面板100所在面的方向上并排设置,本公开对此不做限制,只要发光器件可以提供白光即可。
在本公开至少一个实施例提供的显示装置中,例如图1和图3a所示,光源面板100还可以包括界定发光单元110的像素界定层114,像素界定 层114可以限定发光单元110的设置位置。例如,在本公开至少一个实施例中,像素界定层114的制备材料可以为透明材料并且延伸至透光区域130中,例如起到平坦化层的作用,还可以便于使得经由显示面板200反射的光线可以从透光区域130处透射出来。
在本公开至少一个实施例提供的显示装置中,主要通过设置于光源面板100中的视差屏障结构120以实现显示装置的三维显示功能。视差屏障结构120设置于光源面板100中的方式有多种。下面,通过几个实施例,对视差屏障结构120的几种设置方式及相应的光源面板100的结构进行说明。
例如,在本公开至少一个实施例中,如图1和图3a所示,第一电极层112可以为不透明电极。例如,在上述情况下,第一电极层112可以配置为构成视差屏障结构120的分光部件121,即图1中所示的分光部件121与图3a中所示的第一电极层112可以为同一结构。在上述情况下,发光单元110既可以实现对显示面板200的光源供给,又可以使得具有视差屏障功能,如此可以不需要在光源面板100的远离显示面板200的一侧再设置额外的挡光层,可以简化光源面板100的结构,减小显示装置的整体厚度并降低生产成本。
例如,在本公开至少一个实施例中,光源面板100还可以包括第一衬底基板101,第一衬底基板101可以设置于光源面板的远离显示面板200的一侧。第一衬底基板101可以为光源面板100提供支撑,并且第一衬底基板101为透明材料以便于透射光线。在本公开的实施例中,对第一衬底基板的制备材料不做限制,例如第一衬底基板101可以为玻璃基板、石英基板、塑料基板等透明基板。
在本公开的实施例中,对第一电极层和第二电极层的类型不做限制。示例性的,第一电极层112和第二电极层111可以互为阳极和阴极。例如第一电极层112为阳极和阴极中的一方,第二电极层111为阳极和阴极中的另一方,只要第二电极层111至少为半透明电极(例如透明电极)即可。
在本公开实施例中,例如,阳极的材料可以包括氧化铟锡(ITO)、氧化铟锌(IZO)、氧化铟镓(IGO)、氧化镓锌(GZO)氧化锌(ZnO)、氧化铟(In2O3)、氧化铝锌(AZO)和碳纳米管等;阴极的材料可以包括Ag、Al、Ca、In、Li或Mg等金属或它们的合金来(例如Mg-Ag镁银合金)。 例如,形成该第二电极层106的材料包括氧化铟锡(ITO)、氧化铟锌(IZO)、氧化铟镓(IGO)或碳纳米管等。示例性的,第二电极层111可以为透明ITO材料构成的阳极,第一电极层112可以为金属铝材料构成的阴极,第一电极层112为非透明态,从而同时可以作为视差屏障结构120中的分光部件121。
例如,在本公开的实施例中,对有机发光器件的具体化结构不做限制。示例性的,有机发光器件还可以包括设置在阳极和发光层113之间空穴传输层,以及设置在阴极和发光层113之间的电子传输层;为了提高电子和空穴注入发光层的效率,该有机发光器件还可以包括设置在阴极和电子传输层之间的电子注入层,以及设置在阳极和空穴传输层之间的空穴注入层等有机功能层。
例如,发光层的材料可以包括8-羟基喹啉铝、8-羟基喹啉铝、蒽的衍生物等;电子注入层的材料可以包括氟化锂、氧化锂、氧化锂硼、硅氧化钾、碳酸铯、8-羟基喹啉铝-锂等;电子传输层的材料包括噁唑衍生物、金属螯合物、唑类化合物、喹啉衍生物、喔啉衍生物、二氮蒽衍生物、含硅的杂环衍生物等;空穴传输层的材料可以包括聚对苯撑乙烯类、聚噻吩类、聚硅烷类、三苯甲烷类、三芳胺类、腙类、吡唑啉类、嚼唑类、咔唑类、丁二烯类等;空穴注入层的材料可以包括酞氰铜、三氧化钼、1-TNATA、2-TNATA、聚苯胺、PEDOT(3,4-乙烯二氧噻吩单体的聚合物)等。需要说明的是,有机发光器件中的上述各结构的制备材料不限于上述所述范围,可以根据具体需要进行选择,本公开的实施例对此不做限制。
例如,在本公开至少一个实施例中,图3b为图1中所示A区域的另一种结构示意图,其为剖面图。例如图1和图3b所示,视差屏障结构120所包括的分光部件121可以为黑矩阵,并且第一电极层112与黑矩阵至少部分重叠设置。黑矩阵可以为设置有防反射结构,如此可以避免外界光线经由分光部件121反射后对显示装置的显示图像构成干扰,可以提高显示效果。例如,第一电极层112可以为反射电极,如此可以使得发光单元110发射的光线全部进入显示面板200中,提高光的利用率,降低功耗。或者,当黑矩阵具有反射性能时,第一电极层112也可以为透明电极。例如,第一电极层112在光源面板100所在面上的正投影位于黑矩阵在光源面板100所在面上的正投影之内。如此,可以防止第一电极层112遮挡黑矩阵 的部分开口区域,降低显示装置的像素区域的开口率。例如,第一电极层112与黑矩阵的相对位置关系不限于上述设置方式,例如,第一电极层112与黑矩阵也可以设置为部分重叠,只要第一电极层112与黑矩阵的设置保证显示装置的显示功能即可,本公开的实施例在此不做限制。
例如,在本公开至少一个实施例中,光源面板还可以包括平坦层115,平坦层115可以设置于黑矩阵和发光单元110之间。平坦层115具有平坦化的作用以使得黑矩阵的设置位置准确,并且平坦层115可以在黑矩阵和发光单元110之间充当一个过度膜层,使得黑矩阵和发光单元110之间结合得更稳固。此外,平坦层115还可以防止例如黑矩阵中的有害杂质、离子或静电等对发光单元110造成影响。在本公开实施例中,平坦层115可以为透明态以保证光线透过。平坦层115的材料例如可以包括例如树脂等有机材料或例如氮化硅或者氧化硅等透光率良好的无机材料。
例如,在本公开至少一个实施例中,图3c为图1中所示A区域的另一种结构示意图,其为剖面图。例如如图1和图3c所示,可以在分光部件121和发光单元110之间设置第一反射层116。第一反射层116具有反射光的功能,例如可以为金属反射层。如此,发光单元110可以根据实际需要进行设计,不会受到例如将第一电极层112设置为反射电极等情况的限制。
在本公开至少一个实施例提供的显示装置中,当分光部件121为不透明情况下,显示装置可以具有三维显示功能,如果分光部件121也可以转换为透明态,即光源面板100也可以为透明态,则显示装置可以具备二维显示功能,即显示装置可以实现二维和三维显示功能之间的切换。
在本公开至少一个实施例提供的显示装置中,例如,视差屏障结构120可以为液晶光栅或电致变色光栅。例如液晶光栅和电致变色光栅中,非透明部分可以在切换电压信号后转变为透明态,或再恢复为非透明态。下面,在本公开下述实施例中,以视差屏障结构120在被施加电压信号后为非透明态而非被施加电压信号为透明态为例进行说明,并且在视差屏障结构120包括在施加电压信号后被转变为非透明态的部分可以作为分光部件121。
下面,在本公开的下述几个实施例中,对视差屏障结构120分别为电致变色光栅和液晶光栅两种情况进行说明。
例如,在本公开至少一个实施例中,光源面板100中的视差屏障结构 120为电致变色光栅。例如,分光部件121可以包括依次叠置的第三电极层、电致变色层和第四电极层,图4a为本公开一实施例提供的分光部件的一种结构示意图,其为剖面图。
例如,在本公开至少一个实施例中,如图1和图4a所示,分光部件121可以包括依次叠置在第二衬底基板501上的第三电极层502、电致变色层503和第四电极层504,并且第三电极层502和第四电极层504为透明电极。例如,第三电极层502和第四电极层504中的一个为条状电极(对应于要得到的非透明区域)而另一个为面状电极,或者二者均为条状电极。例如,第三电极层502和第四电极层504可以设置在第二衬底基板501的同一侧,也可以设置在第二衬底基板501的不同侧。在本公开的实施例中,对第三电极层502和第四电极层504在光源面板中的具体设置位置不做限制,只要电致变色层503设置在第三电极层502和第四电极层504之间即可。
在本公开至少一个实施例中,例如,该电致变色层503在未施加电场的情况下处于透明态,可以在第三电极层502和第四电极层504上施加电压,从而在两者之间形成电场,通过向电致变色层503施加该电场,可以使得电致变色层503转换为非透明态。示例性的,该电场可以调节电致变色层503的透明程度,例如在施加电场后,电致变色层503由透明态转变为深色状态直至非透明态。非透明态的电致变色层503可以作为分光部件121,还可以阻挡环境光或者显示面板出射的光线透过分光部件121,从而可以实现显示装置的三维显示功能。
在本公开至少一个实施例中,第二衬底基板501可以为透明态的聚碳酸酯板、玻璃、塑料、亚克力板等;电致变色层503的材料可以包括三氧化钨、聚噻吩类及其衍生物、紫罗碱类、四硫富瓦烯或金属酞菁类化合物等;第三电极层502和第四电极层504为透明导电材料,例如可以为氧化铟锡(ITO)、氧化铟锌(IZO)、氧化铟镓(IGO)、氧化镓锌(GZO)氧化锌(ZnO)、氧化铟(In2O3)、氧化铝锌(AZO)和碳纳米管等。
需要说明的是,在本公开的实施例中对透明态和非透明态之间区别的界限不做限制。示例性的,“透明”指透光率大于75%的状态,而“非透明”指透光率小于25%的状态,“半透明”指部分透光,例如透光率为25%~75%,“半透半反”指部分反射,例如反射率为25%~75%。
例如,在本公开至少一个实施例中,光源面板100中的视差屏障结构120为液晶光栅,图4b为本公开一实施例提供的分光部件的另一种结构示意图,其为剖面图。例如图1和图4b所示,该液晶光栅可以包括第一基板513、第二基板514以及设置在第一基板513和第二基板514之间的第二液晶层518,第一基板513和第二基板514通过第二封框胶517彼此结合以形成液晶盒。第二液晶层518相对的两侧设置有第一偏振片511和第二偏振片512,例如第一偏振片511可以设置在第一基板513的远离第二基板514的一侧,第二偏振片512可以设置在第二基板514的远离第一基板513的一侧,并且第一偏振片511和第二偏振片512的偏光轴可以彼此平行或者垂直。第二液晶层518的相对的两侧设置有第五电极层515和第六电极层516,例如第五电极层515可以设置在第一基板513的面向第二基板514的一侧,第六电极层516可以设置在第二基板514的面向第一基板513的一侧。例如,第五电极层515和第六电极层516中的一个为条状电极而另一个为面状电极,或者二者均为条状电极。
在本公开至少一个实施例中,如图4b所示,当在第五电极层515和第六电极层516上施加电压时,在第一基板513和第二基板514之间形成例如垂直电场,该电场可以控制液晶层518中的液晶分子的偏转程度,从而在第一偏振片511和第二偏振片512的配合下,可以调控穿过液晶光栅的光的透过率,由此可以得到液晶光栅的透明态至非透明态之间的转换。需要说明的是,在本示例中,第一偏振片511和第二偏振片512不限于如图4b所示的位于第一基板513和第二基板514的外侧,也可以分别设置在第一基板513和第二基板514的内侧;同样的,第五电极层515和第六电极层516不限于如图4b所示的位于第一基板513和第二基板514的内侧,也可以分别设置在第一基板513和第二基板514的外侧,只要能够控制液晶层518中的液晶分子的偏转以对光的透过程度进行控制,即可取得液晶光栅可以在透明态与非透明态之间切换的技术效果。
在本公开至少一个实施例中,第五电极层515和第六电极层516为透明导电材料,例如可以为氧化铟锡(ITO)、氧化铟锌(IZO)、氧化铟镓(IGO)、氧化镓锌(GZO)氧化锌(ZnO)、氧化铟(In2O3)、氧化铝锌(AZO)和碳纳米管等。
需要说明的是,在本公开的实施中,在显示装置可以实现二维显示的 情况下,即光源面板100可以实现透明态,即光源面板中的各部分结构可以为透明结构。在上述情况下,发光单元110为透明结构,其包括的第一电极层112和第二电极层111也可以为透明电极。
在本公开至少一个实施例提供的显示装置中,对显示面板的类型不做限制。例如,显示面板可以为反射式液晶显示面板、半透半反式液晶显示面板或电子纸显示面板等,只要该显示面板通过对光的反射可以显示图像即可。
例如,在本公开至少一个实施例中,显示面板200为反射式的液晶显示面板。如图1所示,该显示面板200可以包括阵列基板210和彩膜基板240以及设置于阵列基板210和彩膜基板240之间的第一液晶层260,阵列基板210和彩膜基板240通过第一封框胶230彼此结合以形成液晶盒,阵列基板210上面对第一液晶层260可以设置有第二反射层220,第二反射层220可以将外界环境或者发光单元110提供的光线进行反射。
例如,在本公开至少一个实施例中,显示面板200还可以包括偏光层250。偏光层250可以设置于第一液晶层260和光源面板100之间,例如偏光层250可以设置在如图1所示的彩膜基板240的面向光源面板100的一侧。
本公开至少一实施例提供一种显示设备,该显示设备可以包括前述任一实施例中的显示装置。
例如,在本公开至少一个实施例中,显示设备可以为包括前述任一实施例中的显示装置的液晶显示器、电子纸显示器、OLED显示器、手机、平板电脑、电视机、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
本公开至少一实施例提供一种光源面板,该光源面板可以包括视差屏障结构和发光单元;其中,视差屏障结构包括多个分光部件,分光部件至少包括非透明态,相邻分光部件之间为透光区域,发光单元与分光部件在垂直于光源面板的方向至少部分重叠。
例如,在本公开至少一个实施例提供的光源面板中,发光单元可以为有机发光器件,并且有机发光器件至少包括依次叠置的第一电极层、发光层和第二电极层。
例如,在本公开至少一个实施例提供的光源面板中,例如,第一电极 层为不透明电极,且第一电极层被配置为构成视差屏障结构的分光部件。
例如,在本公开至少一个实施例提供的光源面板中,例如,视差屏障结构包括作为分光部件的黑矩阵,第一电极层与黑矩阵至少部分重叠设置。
例如,在本公开至少一个实施例提供的光源面板中,例如,视差屏障结构为液晶光栅或电致变色光栅,液晶光栅或电致变色光栅包括在施加电压信号后被转变为非透明态的部分以作为分光部件。
需要说明的是,在本公开至少一个实施例提供的光源面板中,光源面板的结构不限于上述所述内容,其具体结构可以参考前述实施例(关于显示装置的实施例)中的关于光源面板的相关内容,在此不做赘述。
本公开至少一实施例提供一种光源面板的制备方法,该方法包括:提供第一衬底基板;在所述第一衬底基板上形成视差屏障结构;然后在所述视差屏障结构上形成发光单元;其中,视差屏障结构包括多个分光部件,分光部件至少包括非透明态,透光区域位于相邻分光部件之间的部分中,发光单元与分光部件在垂直于光源面板的方向至少部分重叠。在本公开实施例中,视差屏障结构以及发光单元的具体结构可以参考前述实施例(关于光源面板以及显示装置的实施例)中的相关内容,在此不做赘述。
例如,在本公开至少一个实施例中,分光部件可以限定透光区域的位置。例如,相邻分光部件之间为透光区域。
图5a~图5f为本公开一实施例提供的一种光源面板制备方法的过程图,其为光源面板的局部结构的示意图。例如如图5a~图5f所示,以图3b所示的光源面板结构为例,本公开至少一个实施例提供的光源面板的制备方法可以包括如下过程:
如图5a所示,提供第一衬底基板101,在该第一衬底基板101上沉积视差屏障结构膜层并对其进行构图工艺以形成视差屏障结构120,该视差屏障结构120可以包括多个间隔的分光部件121(例如黑矩阵)。相邻分光部件121之间的区域可以为透光区域。
在本公开的实施例中,构图工艺例如可以为光刻构图工艺,其例如可以包括:在需要被构图的结构层上涂覆光刻胶层,使用掩膜板对光刻胶层进行曝光,对曝光的光刻胶层进行显影以得到光刻胶图案,使用光刻胶图案作为掩模对结构层进行蚀刻,然后可选地去除光刻胶图案。
如图5b所示,在形成有视差屏障结构120的第一衬底基板101上形 成平坦层115,该平坦层115可以为透明材料。
如图5c所示,在平坦层115上沉积像素界定层膜层并对其进行构图工艺以形成像素界定层114。该像素界定层114为透明材料以保证光的通过。
如图5d所示,在像素界定层114所限定的区域内形成有机发光器件或有机发光器件的部分结构,例如在像素界定层114所限定的区域内形成第一电极层112。
如图5e所示,在形成有第一电极层112的第一衬底基板101上沉积发光层113,例如可以沉积包括红光发光层1131、绿光发光层1132和蓝光发光层1133的叠层。
需要说明的是,有机发光器件还可以包括例如电子注入层、电子传输层、空穴注入层以及空穴传输层等结构,上述结构和发光层113可以如图5e所示沉积在第以衬底基板101的整个表面上;也可以形成在像素界定层114所限定的区域内,例如上述多个结构可以通过喷墨打印的方式形成在像素界定层114所限定的区域内。
如图5f所示,在第一衬底基板101上形成第二电极层111,该第二电极层111为透明电极,以便于发光层113发射的光线可以透过第二电极层111。
需要说明的是,在本公开上述实施例提供的光源面板的制备方法中,光源面板中的各结构可以参考前述实施例(关于光源面板和显示装置的实施例)中相关说明,在此不做赘述。
本公开的实施例提供一种光源面板和显示装置,并且可以具有以下至少一项有益效果:
(1)本公开至少一个实施例提供一种光源面板和显示装置,光源面板中设置的发光单元和视差屏障结构,既可以为反射式显示面板提供前置光源以提高显示图像的质量,又可以使得该显示装置可以具备三维显示功能。
(2)在本公开至少一个实施例提供的显示装置中,如果光源面板中的视差屏障结构可以实现透明态与非透明态的切换,则使得显示装置可以实现二维显示功能与三维显示功能之间的模式切换。
(3)在本公开至少一个实施例提供的光源面板中,在光源面板中的视差屏障结构中的分光部件由发光单元的电极构成的情况下,可以简化了 光源面板的结构,减小显示装置厚度的同时降低了生产成本。
对于本公开,还有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以权利要求的保护范围为准。

Claims (16)

  1. 一种显示装置,包括:
    反射式的显示面板;
    平行于所述显示面板设置在所述显示面板的出光侧的光源面板,所述光源面板包括视差屏障结构和发光单元,所述发光单元可在操作中发光照射所述显示面板;
    其中,所述光源面板包括发光区域和透光区域,所述发光单元设置在所述发光区域,所述视差屏障结构设置在所述发光单元的远离所述显示面板的一侧,所述视差屏障结构包括分光部件,所述分光部件至少包括非透明态,所述透光区域位于相邻所述分光部件之间的部分中,所述发光单元与所述分光部件在垂直于所述光源面板的方向至少部分重叠。
  2. 根据权利要求1所述的显示装置,其中,
    相邻所述分光部件之间的部分在所述光源面板所在面上的正投影与所述透光区域在所述光源面板所在面上的正投影重合。
  3. 根据权利要求1或2所述的显示装置,其中,
    所述发光单元在所述光源面板所在面上的正投影位于所述分光部件在所述光源面板所在面上的正投影之内。
  4. 根据权利要求1-3任一项所述的显示装置,其中,所述发光单元为有机发光器件,以及
    所述有机发光器件至少包括依次叠置的第一电极层、发光层和第二电极层,所述第一电极层设置在所述发光层的远离所述显示面板的一侧,所述第二电极层为透明电极。
  5. 根据权利要求4所述的显示装置,其中,所述发光层为白光发光层或者包括彼此叠置的红光发光层、绿光发光层和蓝光发光层。
  6. 根据权利要求1-5中任一项所述的显示装置,其中,所述光源面板还包括界定所述发光单元的像素界定层,所述像素界定层为透明材料并且延伸到所述透光区域中。
  7. 根据权利要求4-6中任一项所述的显示装置,其中,所述第一电极层为不透明电极,且所述第一电极层被配置为构成所述视差屏障结构的分光部件。
  8. 根据权利要求4-6中任一项所述的显示装置,其中,所述视差屏障结构包括作为分光部件的黑矩阵,所述第一电极层与所述黑矩阵至少部分重叠设置。
  9. 根据权利要求8所述的显示装置,其中,
    所述第一电极层为反射电极,并且所述第一电极层在所述光源面板所在面上的正投影位于所述黑矩阵在所述光源面板所在面上的正投影之内。
  10. 根据权利要求4-9中任一项所述的显示装置,其中,所述视差屏障结构为液晶光栅或电致变色光栅,所述液晶光栅或电致变色光栅包括在施加电压信号后被转变为非透明态的部分以作为所述分光部件,以及
    所述第一电极层为透明电极。
  11. 一种光源面板,包括:
    视差屏障结构和发光单元;
    其中,所述视差屏障结构包括多个分光部件,所述分光部件至少包括非透明态,所述透光区域位于相邻所述分光部件之间的部分中,所述发光单元与所述分光部件在垂直于所述光源面板的方向至少部分重叠。
  12. 根据权利要求11所述的光源面板,其中,所述发光单元为有机发光器件,并且所述有机发光器件至少包括依次叠置的第一电极层、发光层和第二电极层。
  13. 根据权利要求12所述的光源面板,其中,所述第一电极层为不透明电极,且所述第一电极层被配置为构成所述视差屏障结构的分光部件。
  14. 根据权利要求12所述的光源面板,其中,所述视差屏障结构包括作为分光部件的黑矩阵,所述第一电极层与所述黑矩阵至少部分重叠设置。
  15. 根据权利要求14所述的光源面板,其中,
    所述第一电极层为反射电极,并且所述第一电极层在所述光源面板所在面上的正投影位于所述黑矩阵在所述光源面板所在面上的正投影之内。
  16. 根据权利要求11-15中任一项所述的光源面板,其中,所述视差屏障结构为液晶光栅或电致变色光栅,所述液晶光栅或电致变色光栅包括在施加电压信号后被转变为非透明态的部分以作为所述分光部件。
PCT/CN2017/114239 2017-04-10 2017-12-01 光源面板和显示装置 WO2018188354A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/068,281 US11271051B2 (en) 2017-04-10 2017-12-01 Light source panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710229226.2A CN106992202A (zh) 2017-04-10 2017-04-10 光源面板和显示装置
CN201710229226.2 2017-04-10

Publications (1)

Publication Number Publication Date
WO2018188354A1 true WO2018188354A1 (zh) 2018-10-18

Family

ID=59416095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114239 WO2018188354A1 (zh) 2017-04-10 2017-12-01 光源面板和显示装置

Country Status (3)

Country Link
US (1) US11271051B2 (zh)
CN (1) CN106992202A (zh)
WO (1) WO2018188354A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106992202A (zh) * 2017-04-10 2017-07-28 京东方科技集团股份有限公司 光源面板和显示装置
CN108681089A (zh) * 2018-06-04 2018-10-19 成都工业学院 3d显示装置及系统
CN110163044A (zh) * 2018-06-05 2019-08-23 京东方科技集团股份有限公司 指纹识别装置及其制作方法、指纹识别方法、以及显示设备
CN110350101A (zh) * 2019-06-20 2019-10-18 深圳市华星光电半导体显示技术有限公司 镜面oled显示装置和镜面oled显示装置的制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105717688A (zh) * 2016-04-22 2016-06-29 京东方科技集团股份有限公司 对盒基板、反射式显示面板、显示装置及其驱动方法
CN106098737A (zh) * 2016-07-05 2016-11-09 京东方科技集团股份有限公司 一种有机发光二极管显示面板及其制备方法和显示装置
CN106992202A (zh) * 2017-04-10 2017-07-28 京东方科技集团股份有限公司 光源面板和显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI341948B (en) 2005-05-20 2011-05-11 Epson Imaging Devices Corp Display device
JP2007041536A (ja) * 2005-05-20 2007-02-15 Sanyo Epson Imaging Devices Corp 表示装置及び液晶表示装置
JP2008197132A (ja) * 2007-02-08 2008-08-28 Seiko Epson Corp 指向性表示ディスプレイ
CN104730719B (zh) * 2015-04-09 2017-03-15 京东方科技集团股份有限公司 触控裸眼光栅3d显示装置及其制备和控制方法
KR101818479B1 (ko) * 2016-06-30 2018-01-15 엘지디스플레이 주식회사 액정 전계 배리어

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105717688A (zh) * 2016-04-22 2016-06-29 京东方科技集团股份有限公司 对盒基板、反射式显示面板、显示装置及其驱动方法
CN106098737A (zh) * 2016-07-05 2016-11-09 京东方科技集团股份有限公司 一种有机发光二极管显示面板及其制备方法和显示装置
CN106992202A (zh) * 2017-04-10 2017-07-28 京东方科技集团股份有限公司 光源面板和显示装置

Also Published As

Publication number Publication date
CN106992202A (zh) 2017-07-28
US20210202619A1 (en) 2021-07-01
US11271051B2 (en) 2022-03-08

Similar Documents

Publication Publication Date Title
US20220093682A1 (en) Display substrates, display panels and display devices
WO2021196867A1 (zh) Oled显示面板及制备方法、显示装置
CN111029382A (zh) 显示面板、多区域显示面板和显示装置
TWI674467B (zh) 顯示單元及電子裝置
JP7246481B2 (ja) 表示パネル及び端末
TWI459076B (zh) 顯示裝置
US20230157138A1 (en) Display panel and display device
EP3156841A1 (en) Display base plate, display panel and display device
WO2018188354A1 (zh) 光源面板和显示装置
US20220376209A1 (en) Display substrate and preparation method therefor, and display apparatus
KR20160010356A (ko) 표시 장치
JP5205914B2 (ja) 表示装置および電子機器
TW201631566A (zh) 影像處理裝置、顯示系統以及電子裝置
KR20150095188A (ko) 전자 기기
CN111697039A (zh) 一种显示面板及显示装置
CN113130574B (zh) 显示装置
CN112928148A (zh) 显示面板和电子设备
US20220121301A1 (en) Display device
JP2021067707A (ja) 表示装置
CN113031337A (zh) 显示面板及显示装置
CN215933642U (zh) 显示基板、显示面板和显示装置
JP6387555B2 (ja) 表示装置および電子機器
JP2005148740A (ja) デュアルディスプレイの反射型液晶ディスプレイ
CN116914066A (zh) 发光显示设备及其制造方法
CN215815880U (zh) 显示面板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17905670

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01.04.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17905670

Country of ref document: EP

Kind code of ref document: A1