WO2018188320A1 - 一种终端触摸屏交互方法及装置 - Google Patents

一种终端触摸屏交互方法及装置 Download PDF

Info

Publication number
WO2018188320A1
WO2018188320A1 PCT/CN2017/108088 CN2017108088W WO2018188320A1 WO 2018188320 A1 WO2018188320 A1 WO 2018188320A1 CN 2017108088 W CN2017108088 W CN 2017108088W WO 2018188320 A1 WO2018188320 A1 WO 2018188320A1
Authority
WO
WIPO (PCT)
Prior art keywords
contacts
controlled object
pairs
touch screen
contact
Prior art date
Application number
PCT/CN2017/108088
Other languages
English (en)
French (fr)
Inventor
蔡睿
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018188320A1 publication Critical patent/WO2018188320A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/21Input arrangements for video game devices characterised by their sensors, purposes or types
    • A63F13/214Input arrangements for video game devices characterised by their sensors, purposes or types for locating contacts on a surface, e.g. floor mats or touch pads
    • A63F13/2145Input arrangements for video game devices characterised by their sensors, purposes or types for locating contacts on a surface, e.g. floor mats or touch pads the surface being also a display device, e.g. touch screens
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/55Controlling game characters or game objects based on the game progress
    • A63F13/57Simulating properties, behaviour or motion of objects in the game world, e.g. computing tyre load in a car race game
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/80Special adaptations for executing a specific game genre or game mode
    • A63F13/803Driving vehicles or craft, e.g. cars, airplanes, ships, robots or tanks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • G06F3/04883Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures for inputting data by handwriting, e.g. gesture or text

Definitions

  • the present invention relates to the field of touch screen technologies, and in particular, to a terminal touch screen interaction method and device.
  • the existing pressure touch screen generally divides different areas on the screen, and by default, different areas represent different moving directions such as up, down, left, and right. Furthermore, the force pressed on each zone represents the speed of travel in that direction.
  • the operator can only control the controlled object by constantly changing the finger in a specific area, which will not only easily block the touch screen, but also the control realized by the controlled object is Mechanically linear, different from the actual operating experience. For example, when using a pressure touch screen to experience a traditional racing game, since the pressing is one-dimensional, only a fixed angle can be provided when steering the car, and the entire body of the car can only be mechanically linearly steered. It is obviously inconsistent with the actual driving experience, so it will greatly reduce the user's real experience.
  • the purpose of the embodiments of the present invention is to provide a terminal touch screen interaction method and device, which can determine the moving direction of the controlled object by recognizing the position and pressure value of the user's multiple contacts, and calculate the pressure difference between the contacts.
  • the value is used to realize the control of the offset direction, so that the accurate and precise control of the controlled object can be realized without being limited to certain specific areas, and the realism experience is improved.
  • a method for interacting a touch screen of a terminal comprising:
  • the magnitude of the pressure value determines at least one primary directional contact and two pairs of secondary directional contacts
  • An offset angle of the controlled object is determined based on the detected pressure values on the two pairs of secondary directional contacts.
  • the terminal touch screen interaction method wherein the at least one main direction contact includes only one of the main direction contacts, after determining the main direction contact and the two pairs of secondary direction contacts, The method further includes:
  • the terminal touch screen interaction method wherein the determining, according to the detected pressure value on the at least one main direction contact, the moving speed of a controlled object on the touch screen of the terminal comprises:
  • the controlled object performs a deceleration motion, where V is the moving speed of the controlled object, V 0 is the value of the original initial velocity, A is the value of the constant acceleration, and P is the pressure value of the main direction contact.
  • the terminal touch screen interaction method wherein the at least one main direction contact comprises two pairs of the main direction contacts, wherein the main direction contact and the two pairs of secondary direction touches are determined After the point, the method further includes:
  • the terminal touch screen interaction method wherein the at least one according to the detected
  • the step of determining the moving speed of a controlled object on the touch screen of the terminal by the pressure value on the main direction contact comprises:
  • the terminal touch screen interaction method wherein the step of determining an offset angle of the controlled object according to the pressure values of the two pairs of secondary directional contacts comprises:
  • the offset angle is calculated according to the pressure difference.
  • the terminal touch screen interaction method wherein the step of calculating the offset angle according to a pressure difference between the secondary direction contacts comprises:
  • the pressure ratio is multiplied by a maximum offset angle to obtain the offset angle.
  • An embodiment of the present invention further provides a terminal touch screen interaction device, where the device includes:
  • a gesture determining module configured to detect a plurality of contacts on the touch screen of the terminal, and determine at least one main direction contact and two pairs of secondary direction touches according to the detected magnitude of the pressure values of the plurality of contacts point;
  • a moving speed calculation module configured to determine a moving speed of a controlled object on the touch screen of the terminal according to the detected pressure value on the at least one main direction contact
  • An offset angle calculation module is configured to determine an offset angle of the controlled object based on the detected pressure values on the two pairs of secondary directional contacts.
  • the terminal touch screen interaction device wherein the gesture determination module detects that the at least one main direction contact includes only one of the main direction contacts and determines the main direction contact and the two pairs of times Directional contacts, the device further includes:
  • a moving direction determining module configured to determine a moving direction of the controlled object according to the position of the main direction contact and the two pairs of secondary direction contacts, wherein the moving direction is the main direction contact
  • the line segments of the two pairs of secondary direction contacts are in the opposite direction of the perpendicular.
  • the terminal touch screen interaction device wherein the moving speed calculation module includes:
  • the terminal touch screen interaction device wherein the gesture determination module detects that the at least one main direction contact comprises two pairs of the main direction contacts and determines the main direction contact and the two Pair of secondary directional contacts, the device comprising:
  • a moving direction determining module wherein the moving direction determining module is further configured to determine a moving direction of the controlled object according to the positions of the two pairs of the main direction contacts and the two pairs of the second direction contacts, The direction of movement is a line connecting two pairs of the main direction contacts.
  • the terminal touch screen interaction device wherein the moving speed calculation module includes:
  • V V 0 +A* ⁇ P
  • the controlled object performs an acceleration motion
  • V V 0 -A* ⁇ P
  • the controlled object performs a deceleration motion, where V is the moving speed of the controlled object, V 0 is the value of the original initial velocity, A is the value of the constant acceleration, and ⁇ P is in the two The difference between the pressure values on the pair of main direction contacts.
  • the terminal touch screen interaction device wherein the offset angle calculation module includes:
  • a threshold comparison processing unit configured to calculate a pressure difference between pressure values of the two pairs of secondary directional contacts, and compare the pressure difference with a preset threshold, if the pressure difference is greater than
  • the preset threshold calculates the offset angle according to a pressure difference between the secondary direction contacts.
  • the terminal touch screen interaction device wherein the offset angle calculation module further includes:
  • a first arithmetic unit configured to divide the pressure difference value by a maximum pressure value of the two pairs of secondary direction contacts to obtain a pressure ratio
  • a second operation unit configured to multiply the pressure ratio by a maximum offset angle to obtain the offset angle.
  • a method and device for interacting a touch screen of a terminal determines a moving direction of a controlled object by recognizing a position and a pressure value of a user's multiple contacts, and calculating a pressure difference between the contacts to achieve a bias
  • the direction control is moved, so that the effective and precise control of the controlled object can be realized without being limited to certain specific areas, and the realism experience is improved, and the interaction mode can be applied in multiple scenarios, and has a good application prospect.
  • a storage medium comprising a stored program, wherein the program is executed to perform the method of any of the above.
  • a processor for running a program wherein the program is executed to perform the method of any of the above.
  • FIG. 1 is a flowchart of a method for interacting a touch screen of a terminal according to a first embodiment of the present invention
  • FIG. 2 is a flowchart of a method for interacting a touch screen of a terminal according to a second embodiment of the present invention
  • FIG. 3 is a flowchart of a method for interacting a touch screen of a terminal according to a third embodiment of the present invention.
  • FIG. 4 is a structural block diagram of a touch screen interaction device of a terminal according to a fourth embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of three contacts in a method for interacting a touch screen of a terminal according to a fifth embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of four contacts in a method for interacting a touch screen of a terminal according to a sixth embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for interacting a touch screen of a terminal according to a first embodiment of the present invention, including the following steps:
  • the touch screen of the terminal detects three contacts
  • the pressure values corresponding to the three contacts are detected and the magnitude relationship between them is determined, and when the pressure value of one of the contacts is determined to be much larger than the other two
  • the contact is used as the main direction contact, and the other two contacts constitute the two pairs of secondary direction contacts.
  • step S102 Determine a moving speed of a controlled object on the touch screen of the terminal according to the detected pressure value on the at least one main direction contact.
  • step S101 after confirming the main direction contact, the moving speed of the controlled object on the touch panel of the terminal is determined according to the pressure value of the main direction contact. It should be noted that there is a certain linear relationship between the pressure value and the moving speed.
  • FIG. 2 is a flowchart of a method for interacting a touch screen of a terminal according to a second embodiment of the present invention, including the following steps:
  • S201 Detect a plurality of contacts on the touch screen of the terminal, and determine at least one main direction contact and two pairs of secondary direction contacts according to the detected magnitudes of the pressure values of the plurality of contacts. Since the operation is performed on the terminal touch screen (generally a pressure touch screen), when the finger acts on the touch screen of the terminal, the touch screen of the terminal responds to the corresponding contact and simultaneously detects the corresponding The pressure value of the contact, after obtaining the pressure value corresponding to each contact, determines at least one main direction contact and two pairs of secondary direction contacts according to the pressure value corresponding to the respective contacts. It should be noted here that the pressure value of the main direction contact is generally much larger than the pressure value of the two pairs of second direction contacts.
  • the terminal touch screen detects four contacts
  • the pressure values corresponding to the four contacts are detected and the magnitude relationship between them is determined.
  • the two contacts having a larger pressure value are used as the main direction contacts, and the other two contacts constitute the two pairs of the secondary direction contacts.
  • step S202 Determine a moving speed of a controlled object on the touch screen of the terminal according to the detected pressure value of the at least one main direction contact.
  • step S201 after confirming the main direction contact, the moving speed of the controlled object on the touch panel of the terminal is determined according to the pressure value of the main direction contact. It should be noted that there is a certain linear relationship between the pressure value and the moving speed.
  • S203 Calculate a pressure difference between pressure values of the two pairs of secondary directional contacts, and compare the pressure difference with a preset threshold.
  • the pressure difference between the secondary directional contacts is first calculated by the pressure values of the two pairs of secondary directional contacts, and then the secondary direction is The pressure difference between the contacts is compared with the preset threshold, and whether or not the offset is performed is determined based on the correlation comparison result.
  • FIG. 3 is a flowchart of a method for interacting a touch screen of a terminal according to a third embodiment of the present invention, and the specific steps include:
  • the step S301 is exactly the same as the steps of S101 and S201 described above, that is, detecting the specific position of the plurality of contacts and the magnitude of the pressure value on the touch screen of the terminal, and then according to the detected multiple touches.
  • the magnitude of the pressure value of the point determines the one primary direction contact and the two pairs of secondary direction contacts. For example, when the terminal touch screen detects four contacts, the pressure values corresponding to the four contacts are detected and the magnitude relationship between them is determined.
  • the two contacts having a larger pressure value are used as the main direction contacts, and the other two contacts constitute the two pairs of the secondary direction contacts.
  • Step S302. Determine a moving speed of a controlled object on the touch screen of the terminal according to the detected pressure value of the at least one main direction contact. According to the above step S301, after confirming the main direction contact, the moving speed of the controlled object on the touch panel of the terminal is determined according to the pressure value of the main direction contact. It should be noted that there is a certain linear relationship between the pressure value and the moving speed.
  • V is the moving speed of the controlled object
  • V0 is the value of the original initial velocity
  • A is the value of the constant acceleration
  • ⁇ P is the pressure difference between the main direction contacts.
  • S303 Determine a pressure difference between the secondary direction contacts according to the pressure values of the two pairs of secondary direction contacts and compare the pressure difference between the secondary direction contacts with a preset threshold.
  • ⁇ max is the maximum offset angle
  • ⁇ N 1 is the pressure difference between the secondary directional contacts
  • N max is the maximum pressure value of the two pairs of secondary directional contacts. Since the ⁇ N 1 is the pressure difference between the secondary directional contacts, it is necessarily smaller than the maximum pressure value N max of the two pairs of secondary directional contacts, so the ratio of ⁇ N 1 /N max must be less than 1, The offset angle ⁇ is smaller than the maximum offset angle ⁇ max .
  • FIG. 4 is a structural block diagram of a touch screen interaction device of a terminal according to a fourth embodiment of the present invention.
  • the touch screen interaction device of the terminal includes:
  • the gesture judging module is configured to detect more on the touch screen of the terminal And controlling at least one main direction contact and two pairs of second direction contacts according to the detected magnitude of the pressure values of the plurality of contacts.
  • the moving direction determining module is configured to determine a moving direction of the controlled object according to the position of the main direction contact and the two pairs of secondary direction contacts, when the at least one main
  • the moving direction is a reverse direction of a perpendicular line of the line segment connecting the main directional contact to the two pairs of secondary directional contacts;
  • the moving direction is a connection of two pairs of the main direction contacts.
  • the moving speed calculation module includes:
  • V is the moving speed of the controlled object
  • V 0 is the value of the original initial velocity
  • A is the value of the constant acceleration
  • P is the pressure value of the main direction contact
  • the value, ⁇ P is the pressure difference between the primary directional contacts.
  • the terminal touch screen interaction device further includes an offset angle calculation module, and the offset The shift angle calculation module is configured to determine an offset angle of the controlled object according to the detected pressure values of the two pairs of secondary directional contacts.
  • the offset angle calculation module includes:
  • a threshold comparison processing unit configured to determine a pressure difference between the secondary direction contacts according to a pressure value of the two pairs of secondary direction contacts and perform a pressure difference between the secondary direction contacts and a preset threshold value Comparing, if the pressure difference between the secondary direction contacts is greater than the preset threshold, the offset angle is calculated according to the pressure difference between the secondary direction contacts.
  • the first arithmetic unit is configured to divide the pressure difference between the secondary direction contacts by the maximum pressure value of the two pairs of secondary direction contacts to obtain a pressure ratio.
  • a second operation unit configured to multiply the pressure ratio by a maximum offset angle to obtain the offset angle.
  • the gesture judging module, the moving direction judging module, the moving speed calculating module, and the offset angle calculating module are mutually coupled and configured to jointly detect a plurality of contacts on the touch screen of the terminal, and according to the The pressure values of the plurality of contacts determine the primary direction contact and the two pairs of secondary direction contacts, and then calculate the corresponding movement speed and offset angle. After calculating the confirmed moving speed of the controlled object and the offset angle, transmitting related data information to the mobile module, after receiving the moving speed and the information of the offset angle, the mobile module , related movement and offset according to the received information.
  • FIG. 5 is a schematic structural diagram of three contacts in a method for interacting a touch screen of a terminal according to a fifth embodiment of the present invention.
  • the touch screen of the terminal detects three contacts, the three contacts are detected.
  • the pressure value is judged to have a magnitude relationship with each other. If the pressure value of one of the contacts 11 is much larger than the pressure value of the contact 121 and the contact 122, the contact 11 having the maximum pressure value is taken as the main direction.
  • the contact 11, the other two contacts 121 and the contacts 122 are combined into two pairs of secondary directional contacts 12.
  • V V 0 ⁇ A*P
  • the moving direction is a reverse direction of a perpendicular line of the line segment in which the main direction contact 11 is connected to the two pairs of the secondary direction contacts 12.
  • the moving direction is a reverse direction of a perpendicular line of the line segment in which the main direction contact 11 is connected to the two pairs of the secondary direction contacts 12.
  • the formula for calculating the offset angle ⁇ is:
  • ⁇ max is the maximum offset angle
  • ⁇ N 1 is the pressure difference between the contact 121 and the contact 122, wherein the contact 121 and the contact 122 are both secondary contacts.
  • N max is the maximum pressure value of the two pairs of secondary directional contacts 12 . Since the ⁇ N 1 is the pressure difference between the contact 121 and the contact 122, the pressure difference is inevitably smaller than the maximum pressure value N max of the two pairs of the secondary directional contacts 12, thus ⁇ N 1 /N The ratio of max must be less than 1, and the offset angle ⁇ is smaller than the maximum offset angle ⁇ max . Further, in the present embodiment, for the application scenario of the racing car, in order to protect the safety of the racer, the maximum offset angle ⁇ max has a value of 45°.
  • FIG. 6 is a schematic structural diagram of four contacts in a method for interacting a touch screen of a terminal according to a sixth embodiment of the present invention.
  • the touch screen of the terminal detects four contacts, the four contacts are detected.
  • the pressure values and determine the size relationship between them As shown in Figure 6, if you touch When the pressure value of the point 211 and the contact 212 is much larger than the pressure value of the contact 221 and the contact 222, the contact 211 and the contact 212 are used as the main direction contact, and the contact 221 and the The contact 222 acts as a secondary contact.
  • the pressure value corresponding to each contact is detected, and the moving speed of the controlled object is calculated based on the detected pressure value. For example, when the pressure value of the contact 211 is detected as P1 and the pressure value of the contact 212 is P2, the moving speed V of the controlled object on the touch screen of the terminal is calculated according to the following formula:
  • V V 0 ⁇ A* ⁇ P
  • V 0 the value of the original initial velocity
  • A the value of the constant acceleration
  • ⁇ P when the value of P 1 is greater than the value of P 2 , that is, the pressure value of the main direction contact 211 is greater than the pressure value of the main direction contact 212, the value of the ⁇ P is positive.
  • a value the direction of movement of the controlled object (eg, also a racing car) is the side toward the main direction contact 211, which corresponds to the advancement in the actual scene, and corresponds to the greater the pressure difference between the two
  • the greater the forward speed, the direction of the constant acceleration of the car is the same as the direction of the original initial speed, and the car makes a uniform acceleration motion; conversely, when the value of P 1 is less than the value of P 2 , that is, the main direction
  • the pressure value of the contact 211 is smaller than the pressure value of the main direction contact 212, and the value of the ⁇ P is a negative value, and the moving direction of the controlled object is one toward the main direction contact 212.
  • the side is equivalent to the back in the actual scene, and the greater the pressure difference between the two, the corresponding back speed is greater.
  • the direction of the constant acceleration of the car is opposite to the direction of the original initial speed.
  • the car is decelerated to zero, if the direction and size of the constant acceleration of the car remain the same (that is, the direction of the constant acceleration of the car is opposite to the direction of the original initial speed), then the car is in the direction of the original initial speed. Reverse acceleration motion in the opposite direction.
  • the moving direction is the main direction contact 211 and the main direction contact 212 connection.
  • the main direction The pressure value of the contact 211 and the main direction contact 212 is the largest, and the controlled object, that is, the racing car, contacts the main direction contact along the secondary direction contact 221 and the secondary direction contact 222. 211 and the direction of the perpendicular line made by the main direction contact 212 are moved, and are moved in conjunction with the above-described determined moving speed V.
  • the formula for calculating the offset angle ⁇ is:
  • ⁇ max is the maximum offset angle
  • ⁇ N 1 is the pressure difference between the contact 221 and the contact 222, wherein the contact 221 and the contact 222 are both secondary contacts.
  • N max is the maximum pressure value between the secondary direction contact 221 or the secondary direction contact 222. Since the ⁇ N 1 is the pressure difference between the contact 221 and the contact 222, the pressure difference is inevitably smaller than the maximum pressure value N max of the secondary contact, so the ratio of ⁇ N 1 /N max is necessarily less than 1
  • the offset angle ⁇ is smaller than the maximum offset angle ⁇ max . Further, in the present embodiment, for the application scenario of the racing car, in order to protect the safety of the racer, the maximum offset angle ⁇ max has a value of 45°.
  • the primary direction contact and the secondary direction contact may appear at any position of the terminal touch screen.
  • the invention relates to a terminal touch screen interaction method and device, which determines the moving direction of the controlled object by recognizing the position and pressure value of the user's multi-contact, and realizes the offset direction by calculating the pressure difference between the contacts. Control, so that it can achieve effective and precise control of the controlled object without restricting it to certain specific areas, and improve the realism experience, and the interaction mode can be applied in multiple scenarios, and has a good application prospect.
  • Embodiments of the present invention also provide a storage medium including a stored program, wherein the program described above executes the method of any of the above.
  • the foregoing storage medium may include, but is not limited to: a USB flash drive, only Read-Only Memory (ROM), Random Access Memory (RAM), mobile hard disk, disk or optical disk, and other media that can store program code.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • mobile hard disk disk or optical disk, and other media that can store program code.
  • Embodiments of the present invention also provide a processor for running a program, wherein the program is executed to perform the steps of any of the above methods.
  • the terminal touch screen interaction method and apparatus provided by the embodiments of the present invention have the following beneficial effects: the effective and precise control of the controlled object can be realized without being limited to certain specific areas, and the realism experience is improved. Application prospects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

本发明实施例涉及一种终端触摸屏的交互方法与装置,所述方法包括在所述终端触摸屏上检测多个触点,并根据检测到的所述多个触点的压力值的大小确定至少一个主方向触点以及两个成对的次方向触点;根据检测到的在所述至少一个主方向触点上的压力值确定所述终端触摸屏上一被控对象的移动速度;根据检测到的在所述两个成对的次方向触点上的压力值确定所述被控对象的偏移角度。本发明实施例通过识别用户的多触点的位置以及压力值来判定被控对象的移动方向,并通过计算触点间的压力差值来实现对偏移方向控制,从而不用局限在某些特定区域便可实现对被控对象的有效精准控制,提高了真实度体验,具有广泛的应用前景。

Description

一种终端触摸屏交互方法及装置 技术领域
本发明涉及触摸屏技术领域,特别涉及一种终端触摸屏交互方法及装置。
背景技术
随着压力触摸屏的兴起,给用户带来了更多维度的输入操作,也带来了完全不一样的体验。
然而,现有的压力触摸屏一般是通过在屏幕上划分不同的区域,默认将不同的区域代表上下左右等不同的移动方向。此外,各区域上按压的力度代表在该方向上的行进速度。在模拟操作控制过程中,操作人员只能在特定的区域内通过不断地变换手指来实现对被控对象的控制,这将不仅容易遮挡触摸屏,而且对所述被控对象所实现的控制都是机械线性的,与实际操作体验不同。例如,在利用压力触摸屏体验传统的赛车游戏时,由于按压是一维的,在对赛车进行转向时只能提供一种固定的角度,赛车的整个车身只能机械线性地进行转向运动,而这与现实中的驾驶体验是明显不符合的,因此将大大降低了用户的真实感体验。
发明内容
为此,本发明实施例的目的在于提出一种终端触摸屏交互方法及装置,通过识别用户的多触点的位置以及压力值来判定被控对象的移动方向,并通过计算触点间的压力差值来实现对偏移方向控制,从而不用局限在某些特定区域便可实现对被控对象的有效精准控制,提高了真实度体验。
本发明实施例解决技术问题所采用的技术方案如下:
一种终端触摸屏的交互方法,所述方法包括:
在所述终端触摸屏上检测多个触点,并根据检测到的所述多个触点的 压力值的大小确定至少一个主方向触点以及两个成对的次方向触点;
根据检测到的在所述至少一个主方向触点上的压力值确定所述终端触摸屏上一被控对象的移动速度;
根据检测到的在所述两个成对的次方向触点上的压力值确定所述被控对象的偏移角度。
所述终端触摸屏交互方法,其中,所述至少一个主方向触点仅包含一个所述主方向触点,在确定了所述主方向触点以及所述两个成对的次方向触点之后,所述方法还包括:
根据所述主方向触点以及所述两个成对的次方向触点的位置确定所述被控对象的移动方向,所述移动方向为所述主方向触点向所述两个成对的次方向触点连成的线段所作垂线的反方向。
所述终端触摸屏交互方法,其中,所述根据检测到的在所述至少一个主方向触点上的压力值确定所述终端触摸屏上一被控对象的移动速度的步骤包括:
根据公式V=V0±A*P计算所述终端触摸屏上所述被控对象的移动速度,当所述恒定加速度的方向与所述原始初速度的方向相同时所述公式为V=V0+A*P,此时所述被控对象作加速运动;当所述恒定加速度的方向与所述原始初速度的方向相反时,所述公式为V=V0-A*P,此时所述被控对象作减速运动,其中V为所述被控对象的移动速度,V0为原始初速度的值,A为恒定加速度的值,P为所述主方向触点的压力值。
所述终端触摸屏交互方法,其中,所述至少一个主方向触点包含两个成对的所述主方向触点,在确定了所述主方向触点以及所述两个成对的次方向触点之后,所述方法还包括:
根据两个成对的所述主方向触点以及所述两个成对的次方向触点的位置确定所述被控对象的移动方向,所述移动方向为两个成对的所述主方向触点的连线。
所述终端触摸屏交互方法,其中,所述根据检测到的在所述至少一个 主方向触点上的压力值确定所述终端触摸屏上一被控对象的移动速度的步骤包括:
根据公式V=V0±A*ΔP计算所述终端触摸屏上所述被控对象的移动速度,当所述恒定加速度的方向与所述原始初速度的方向相同时所述公式为V=V0+A*ΔP,所述被控对象作加速运动;当所述恒定加速度的方向与所述原始初速度的方向相反时,所述公式为V=V0-A*ΔP,所述被控对象作减速运动,其中V为所述被控对象的移动速度,V0为原始初速度的值,A为恒定加速度的值,ΔP为在两个成对的所述主方向触点上的压力值之间的差值。
所述终端触摸屏交互方法,其中,所述根据所述两个成对的次方向触点的压力值确定被控对象的偏移角度的步骤包括:
计算所述两个成对的次方向触点的压力值之间的压力差值,并将所述压力差值与预设阈值进行比较;
若所述压力差值大于所述预设阈值,则根据所述压力差值计算所述偏移角度。
所述终端触摸屏交互方法,其中,所述根据所述次方向触点间的压力差值计算所述偏移角度的步骤包括:
将所述压力差值除以所述两个成对的次方向触点的最大压力值以得到压力比值;
将所述压力比值乘以最大偏移角度以得到所述偏移角度。
本发明实施例还提供一种终端触摸屏交互装置,所述装置包括:
手势判断模块,设置为在所述终端触摸屏上检测多个触点,并根据检测到的所述多个触点的压力值的大小确定至少一个主方向触点以及两个成对的次方向触点;
移动速度计算模块,设置为根据检测到的在所述至少一个主方向触点上的压力值确定所述终端触摸屏上一被控对象的移动速度;
偏移角度计算模块,设置为根据检测到的在所述两个成对的次方向触点上的压力值确定所述被控对象的偏移角度。
所述终端触摸屏交互装置,其中,所述手势判断模块检测到所述至少一个主方向触点仅包含一个所述主方向触点并确定所述主方向触点以及所述两个成对的次方向触点,所述装置还包括:
移动方向判断模块,设置为根据所述主方向触点以及所述两个成对的次方向触点的位置确定所述被控对象的移动方向,所述移动方向为所述主方向触点向所述两个成对的次方向触点连成的线段所作垂线的反方向。
所述终端触摸屏交互装置,其中,所述移动速度计算模块包括:
移动速度计算单元,设置为根据公式V=V0±A*P计算所述终端触摸屏上所述被控对象的移动速度,当所述恒定加速度的方向与所述原始初速度的方向相同时所述公式为V=V0+A*P,所述被控对象作加速运动;当所述恒定加速度的方向与所述原始初速度的方向相反时,所述公式为V=V0-A*P,所述被控对象作减速运动,V为所述被控对象的移动速度,V0为原始初速度的值,A为恒定加速度的值,P为所述主方向触点的压力值。
所述终端触摸屏交互装置,其中,所述手势判断模块检测到所述至少一个主方向触点包含两个成对的所述主方向触点并确定所述主方向触点以及所述两个成对的次方向触点,所述装置包括:
移动方向判断模块,所述移动方向判断模块还设置为根据两个成对的所述主方向触点以及所述两个成对的次方向触点的位置确定所述被控对象的移动方向,所述移动方向为两个成对的所述主方向触点的连线。
所述终端触摸屏交互装置,其中,所述移动速度计算模块包括:
移动速度计算单元,所述移动速度计算单元还设置为根据公式V=V0±A*ΔP计算所述终端触摸屏上所述被控对象的移动速度,当所述恒定加速度的方向与所述原始初速度的方向相同时所述公式为V=V0+A*ΔP,所述被控对象作加速运动;当所述恒定加速度的方向与所述原始初速度的方向相反时,所述公式为V=V0-A*ΔP,所述被控对象作减速运 动,其中V为所述被控对象的移动速度,V0为原始初速度的值,A为恒定加速度的值,ΔP为在两个成对的所述主方向触点上的压力值之间的差值。
所述终端触摸屏交互装置,其中,所述偏移角度计算模块包括:
阈值比较处理单元,设置为计算所述两个成对的次方向触点的压力值之间的压力差值,并将所述压力差值与预设阈值进行比较,若所述压力差值大于所述预设阈值,则根据所述次方向触点间的压力差值计算所述偏移角度。
所述终端触摸屏交互装置,其中,所述偏移角度计算模块还包括:
第一运算单元,设置为将所述压力差值除以所述两个成对的次方向触点的最大压力值以得到压力比值;
第二运算单元,设置为将所述压力比值乘以最大偏移角度得到所述偏移角度。
本发明实施例提出的一种终端触摸屏交互方法及装置,通过识别用户的多触点的位置以及压力值来判定被控对象的移动方向,并通过计算触点间的压力差值来实现对偏移方向控制,从而不用局限在某些特定区域便可实现对被控对象的有效精准控制,提高了真实度体验,并且该交互方式可以应用在多个场景中,具有良好的应用前景。
根据本发明的又一个实施例,还提供了一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行上述任一项所述的方法。
根据本发明的又一个实施例,还提供了一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行上述任一项所述的方法。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得更加明显,或通过本发明的实践了解到。
附图说明
图1为本发明第一实施例提出的终端触摸屏交互方法的流程图;
图2为本发明第二实施例提出的终端触摸屏交互方法的流程图;
图3为本发明第三实施例提出的终端触摸屏交互方法的流程图;
图4为本发明第四实施例提出的终端触摸屏交互装置的结构框图;
图5为本发明第五实施例提出的终端触摸屏交互方法中三触点的结构示意图;
图6为本发明第六实施例提出的终端触摸屏交互方法中四触点的结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明而不是要求本发明必须以特定的方位构造和操作,因此不能理解为对本发明的限制。
参照下面的描述和附图,将清楚本发明的实施例以及其他类似的拓展。在这些描述和附图中,具体公开了本发明的实施例中的一些特定实施方式,来表示实施本发明的实施例的原理的一些方式,但是应当理解,本发明的实施例的范围不受此限制。相反,本发明的实施例包括落入所附加权利要求书的精神和内涵范围内的所有变化、修改和等同物。
请参阅图1,图1是本发明第一实施例提出的终端触摸屏交互方法的流程图,包括以下步骤:
S101,在所述终端触摸屏上检测多个触点,并根据检测到的所述多个触点的压力值的大小确定至少一个主方向触点以及两个成对的次方向触点。由于在进行模拟应用中,操作都是在所述终端触摸屏(一般为压力触 摸屏)上进行,当手指作用在所述终端触摸屏上时,所述终端触摸屏会响应对应的触点,并同时检测相应触点的压力值,在获得了各个触点所对应的压力值之后,根据所述各个触点所对应的压力值判断出至少一个主方向触点以及两个成对的次方向触点。在此需要说明的是,所述主方向触点的压力值一般远大于所述两个成对的次方向触点的压力值。例如,当所述终端触摸屏检测到三个触点时,则检测此三个触点所对应的压力值并判断其相互之间的大小关系,当确定其中一个触点的压力值远大于另外两个触点压力值时,则将该触点作为主方向触点,另外两个触点组成所述两个成对的次方向触点。
S102,根据检测到的在所述至少一个主方向触点上的压力值确定所述终端触摸屏上一被控对象的移动速度。根据上述S101步骤所述,在确认了所述主方向触点之后,则根据所述主方向触点的压力值来确定在所述终端触摸屏上的所述被控对象的移动速度。在此需要说明的是,所述压力值与所述移动速度之间存在一定的线性关系,例如当所述主方向触点仅为一个所述主方向触点时,则根据公式V=V0±A*P来计算所述终端触摸屏上所述被控对象的移动速度,当所述恒定加速度的方向与所述原始初速度的方向相同时所述公式为V=V0+A*P,此时所述被控对象的移动速度在所述原始初速度的基础上继续增大,也即作加速运行;当所述恒定加速度的方向与所述原始初速度的方向相反时所述公式为V=V0-A*P,此时所述被控对象的移动速度在所述原始初速度的基础上逐渐减小,也即作减速运动,当所述被控对象减速到零时,若所述恒定加速度的方向与大小保持不变,则所述被控对象在与所述原始初速度方向相反的方向上作加速运动,其中V为所述被控对象的移动速度,V0为原始初速度的值,A为恒定加速度的值,P为所述主方向触点的压力值。
S103,根据检测到的在所述两个成对的次方向触点上的压力值确定所述被控对象的偏移角度。在计算完所述被控对象的移动速度之后,还需要对所述被控对象的偏移角度也进行计算,此时则根据所述两个成对的次方向触点的压力值确定所述被控对象的偏移角度。
请参阅图2,图2是本发明第二实施例提出的终端触摸屏交互方法的流程图,包括以下步骤:
S201,在所述终端触摸屏上检测多个触点,并根据检测到的所述多个触点的压力值的大小确定至少一个主方向触点以及两个成对的次方向触点。由于在进行模拟应用中,操作都是在所述终端触摸屏(一般为压力触摸屏)上进行,当手指作用在所述终端触摸屏上时,所述终端触摸屏会响应对应的触点,并同时检测相应触点的压力值,在获得了各个触点所对应的压力值之后,根据所述各个触点所对应的压力值判断出至少一个主方向触点以及两个成对的次方向触点。在此需要说明的是,所述主方向触点的压力值一般远大于所述两个成对的次方向触点的压力值。例如,当所述终端触摸屏检测到四个触点时,则检测此四个触点所对应的压力值并判断其相互之间的大小关系,当确定其中某两个触点的压力值远大于另外两个触点压力值时,则将该两个压力值较大的触点作为主方向触点,另外两个触点组成所述两个成对的次方向触点。
S202,根据检测到的所述至少一个主方向触点的压力值确定所述终端触摸屏上一被控对象的移动速度。根据上述S201步骤所述,在确认了所述主方向触点之后,则根据所述主方向触点的压力值来确定在所述终端触摸屏上的所述被控对象的移动速度。在此需要说明的是,所述压力值与所述移动速度之间存在一定的线性关系,例如当所述主方向触点包括两个所述主方向触点时,则根据公式V=V0±A*ΔP计算所述终端触摸屏上所述被控对象的移动速度,其中当所述恒定加速度的方向与所述原始初速度的方向相同时所述公式为V=V0+A*ΔP,此时所述被控对象的移动速度在所述原始初速度的基础上继续增大,也即作加速运行;当所述恒定加速度的方向与所述原始初速度的方向相反时,所述公式为V=V0-A*ΔP,此时所述被控对象的移动速度在所述原始初速度的基础上逐渐减小,也即作减速运动,当所述被控对象减速到零时,若所述恒定加速度的方向与大小保持不变,则所述被控对象在与所述原始初速度方向相反的方向上作加速运动,其中V为所述被控对象的移动速度,V0为原始初速度的值,A为恒定加 速度的值,ΔP为所述主方向触点之间的压力差值。
S203,计算所述两个成对的次方向触点的压力值之间的压力差值,并将所述压力差值与与预设阈值进行比较。在本实施例中,在计算所述偏移角度之前,首先要通过所述两个成对的次方向触点的压力值来计算次方向触点间的压力差值,然后将所述次方向触点间的压力差值与所述预设阈值进行比较,根据相关的比较结果来判断是否进行偏移。
S204,若所述压力差值大于所述预设阈值,则根据所述压力差值计算所述偏移角度。在此需要指出的是,当所述次方向触点间的压力差值小于所述预设阈值时,则不计算所述偏移角度,也即所述被控对象不发生偏移。
请参阅图3,图3为本发明第三实施例提出的终端触摸屏交互方法的流程图,具体步骤包括:
S301,在所述终端触摸屏上检测多个触点,并根据检测到的所述多个触点的压力值的大小确定至少一个主方向触点以及两个成对的次方向触点。同理,该S301步骤与上述S101以及上述S201的步骤完全相同,也即在所述终端触摸屏上检测多个触点的具体位置以及压力值的大小,然后再根据检测到的所述多个触点的压力值大小确定所述一个主方向触点以及两个成对的次方向触点。例如,当所述终端触摸屏检测到四个触点时,则检测此四个触点所对应的压力值并判断其相互之间的大小关系,当确定其中某两个触点的压力值远大于另外两个触点压力值时,则将该两个压力值较大的触点作为主方向触点,另外两个触点组成所述两个成对的次方向触点。
S302,根据检测到的所述至少一个主方向触点的压力值确定所述终端触摸屏上一被控对象的移动速度。根据上述S301步骤所述,在确认了所述主方向触点之后,则根据所述主方向触点的压力值来确定在所述终端触摸屏上的所述被控对象的移动速度。在此需要说明的是,所述压力值与所述移动速度之间存在一定的线性关系,例如当所述主方向触点包括两个所述主方向触点时,则根据公式V=V0±A*ΔP计算所述终端触摸屏上所述被 控对象的移动速度,其中当所述恒定加速度的方向与所述原始初速度的方向相同时所述公式为V=V0+A*ΔP,所述被控对象作加速运动;当所述恒定加速度的方向与所述原始初速度的方向相反时,所述公式为V=V0-A*ΔP,所述被控对象作减速运动。其中V为所述被控对象的移动速度,V0为原始初速度的值,A为恒定加速度的值,ΔP为所述主方向触点之间的压力差值。
S303,根据所述两个成对的次方向触点的压力值确定次方向触点间的压力差值并将所述次方向触点间的压力差值与预设阈值进行比较。在本实施例中,在计算所述偏移角度之前,同样也需要首先通过所述两个成对的次方向触点的压力值来计算次方向触点间的压力差值,然后将所述次方向触点间的压力差值与所述预设阈值进行比较,根据相关的比较结果来判断是否进行偏移。
S304,若所述次方向触点间的压力差值大于所述预设阈值,则将所述次方向触点间的压力差值除以所述两个成对的次方向触点的最大压力值以得到压力比值。
S305,将所述压力比值乘以最大偏移角度以得到所述偏移角度。
当所述次方向触点间的压力差值大于所述预设阈值时,综合上述S304以及上述S305步骤可知,所述偏移角度θ的计算公式为:
θ=θmax*(ΔN1/Nmax)
其中,θmax为最大偏移角度,ΔN1为所述次方向触点间的压力差值,Nmax为所述两个成对的次方向触点的最大压力值。由于所述ΔN1为所述次方向触点间的压力差值,必然小于所述两个成对的次方向触点的最大压力值Nmax,因此ΔN1/Nmax的比值必然小于1,所述偏移角度θ小于所述最大偏移角度θmax
请参阅图4,图4为本发明第四实施例提出的终端触摸屏交互装置的结构框图,所述终端触摸屏交互装置包括:
手势判断模块,所述手势判断模块设置为在所述终端触摸屏上检测多 个触点,并根据检测到的所述多个触点的压力值的大小确定至少一个主方向触点以及两个成对的次方向触点。
移动方向判断模块,所述移动方向判断模块设置为根据所述主方向触点以及所述两个成对的次方向触点的位置确定所述被控对象的移动方向,当所述至少一个主方向触点仅包括一个所述主方向触点时,则所述移动方向为所述主方向触点向所述两个成对的次方向触点连成的线段所作垂线的反方向;当所述至少一个主方向触点包括两个所述主方向触点时,则所述移动方向为两个成对的所述主方向触点的连线。
移动速度计算模块,所述移动速度计算模块设置为根据检测到的所述至少一个主方向触点的压力值确定所述终端触摸屏上一被控对象的移动速度。其中,所述移动速度计算模块包括:
移动速度计算单元,当所述至少一个主方向触点仅包括一个所述主方向触点时,则所述移动速度计算单元设置为根据公式V=V0±A*P计算所述终端触摸屏上所述被控对象的移动速度,其中当所述恒定加速度的方向与所述原始初速度的方向相同时所述公式为V=V0+A*P,所述被控对象作加速运动;当所述恒定加速度的方向与所述原始初速度的方向相反时,所述公式为V=V0-A*P,所述被控对象作减速运动。其中V为所述被控对象的移动速度,V0为原始初速度的值,A为恒定加速度的值,P为所述主方向触点的压力值;当所述至少一个主方向触点包括两个所述主方向触点时,则所述移动速度计算单元还设置为根据公式V=V0±A*ΔP计算所述终端触摸屏上所述被控对象的移动速度,其中当所述恒定加速度的方向与所述原始初速度的方向相同时所述公式为V=V0+A*ΔP,所述被控对象作加速运动;当所述恒定加速度的方向与所述原始初速度的方向相反时,所述公式为V=V0-A*ΔP,所述被控对象作减速运动,V为所述被控对象的移动速度,V0为原始初速度的值,A为恒定加速度的值,ΔP为所述主方向触点之间的压力差值。
除此之外,所述终端触摸屏交互装置还包括偏移角度计算模块,该偏 移角度计算模块设置为根据检测到的所述两个成对的次方向触点的压力值确定所述被控对象的偏移角度。其中,该偏移角度计算模块包括:
阈值比较处理单元,设置为根据所述两个成对的次方向触点的压力值确定次方向触点间的压力差值并将所述次方向触点间的压力差值与预设阈值进行比较,若所述次方向触点间的压力差值大于所述预设阈值,则根据所述次方向触点间的压力差值计算所述偏移角度。
第一运算单元,设置为将所述次方向触点间的压力差值除以所述两个成对的次方向触点的最大压力值以得到压力比值。
第二运算单元,设置为将所述压力比值乘以最大偏移角度得到所述偏移角度。
所述手势判断模块、所述移动方向判断模块、所述移动速度计算模块以及所述偏移角度计算模块相互连接配合作用,共同设置为在所述终端触摸屏上检测多个触点,并根据所述多个触点的压力值确定所述主方向触点以及所述两个成对的次方向触点,然后再计算对应的移动速度以及偏移角度。当计算确认完所述被控对象的所述移动速度以及所述偏移角度之后,将相关的数据信息发送给移动模块,所述移动模块接收所述移动速度以及所述偏移角度的信息之后,根据所接收的信息进行相关移动与偏移。
请参阅图5,图5为本发明第五实施例提出的终端触摸屏交互方法中三触点的结构示意图,当所述终端触摸屏检测到三个触点时,则检测此三个触点所对应的压力值并判断其相互之间的大小关系,若其中一个触点11的压力值远大于触点121以及触点122的压力值时,则将该具有最大压力值的触点11作为主方向触点11,另外两个触点121以及触点122组合成两个成对的次方向触点12。
在确认了所述主方向触点11的具体位置以及压力值P之后,则根据所述主方向触点11的压力值P来确定在所述终端触摸屏上的所述被控对象的移动速度V。在此需要说明的是,所述压力值P与所述移动速度V之间存在一定的线性关系。计算所述移动速度V的计算公式为:
V=V0±A*P
当所述恒定加速度的方向与所述原始初速度的方向相同时所述公式为V=V0+A*P,所述被控对象作加速运动;当所述恒定加速度的方向与所述原始初速度的方向相反时,所述公式为V=V0-A*P,所述被控对象作减速运动。其中V0为原始初速度的值,A为恒定加速度的值,P为所述主方向触点11的压力值。
在确认了所述被控对象的所述移动速度之后,还需要确定所述被控对象的移动方向。其中,所述移动方向为所述主方向触点11向所述两个成对的次方向触点12连成的线段所作垂线的反方向。具体地来说,在模拟赛车的场景中,当在所述终端触摸屏上检测到三指触点时,由于所述触点11为主方向触点,因此该主方向触点11的压力值最大,所述被控对象也即所述赛车沿着所述两个成对的次方向触点12向所述主方向触点11所作的垂线的方向移动,结合上述已经确定的所述移动速度V进行移动。
当然,在进行模拟赛车的场景中,由于赛车在行驶过程中需要经常进行角度的变换,因此需要对偏移角度进行计算。在本实施例中,计算所述偏移角度θ的公式为:
θ=θmax*(ΔN1/Nmax)
其中,θmax为最大偏移角度,ΔN1为触点121与触点122之间的压力差值,其中所述触点121以及所述触点122均为次方向触点。Nmax为所述两个成对的次方向触点12的最大压力值。由于所述ΔN1为触点121以及触点122之间的压力差值,该压力差值必然小于所述两个成对的次方向触点12的最大压力值Nmax,因此ΔN1/Nmax的比值必然小于1,所述偏移角度θ小于所述最大偏移角度θmax。此外,在本实施例中,对于赛车的应用场景,为了保护赛车手的安全,所述最大偏移角度θmax的值为45°。
请参阅图6,图6为本发明第六实施例提出的终端触摸屏交互方法中四触点的结构示意图,当所述终端触摸屏检测到四个触点时,则检测此四个触点所对应的压力值并判断其相互之间的大小关系。如图6所示,若触 点211以及触点212的压力值远大于触点221以及触点222的压力值时,则将所述触点211以及所述触点212作为主方向触点,将所述触点221以及所述触点222作为次方向触点。与此同时,检测各个触点对应的压力值,并根据所检测到的压力值来计算所述被控对象的移动速度。例如,当检测到所述触点211的压力值为P1,所述触点212的压力值为P2之后,根据以下公式来计算所述终端触摸屏上所述被控对象的移动速度V:
V=V0±A*ΔP
当所述恒定加速度A的方向与所述原始初速度的V0方向相同时所述公式为V=V0+A*ΔP,所述被控对象作加速运动,当所述恒定加速度A的方向与所述原始初速度V0的方向相反时所述公式为V=V0-A*ΔP,此时所述被控对象作减速运动。其中V0为原始初速度的值,A为恒定加速度的值,ΔP为所述主方向触点211以及所述主方向触点212之间的压力差值,也即ΔP=P1-P2。对于ΔP而言,当P1的值大于P2的值时,也即所述主方向触点211的压力值大于所述主方向触点212的压力值,此时所述ΔP的值为正值,所述被控对象(例如同样为赛车)的移动方向为朝向所述主方向触点211的一侧,相当于实际场景中的前进,并且当两者的压力差值越大所对应的前进速度就越大,此时赛车的恒定加速度的方向与所述原始初速度方向相同,赛车作匀加速运动;相反的,当P1的值小于P2的值时,也即所述主方向触点211的压力值小于所述主方向触点212的压力值,此时所述ΔP的值为负值,此时所述被控对象的移动方向为朝向所述主方向触点212的一侧,相当于实际场景中的后退,并且当两者的压力差值越大所对应的后退速度也就越大,此时赛车的恒定加速度的方向与所述原始初速度的方向相反,赛车作匀减速运动。当赛车减速至零之后,若赛车的恒定加速度的方向与大小均保持不变(也即赛车的恒定加速度的方向与原始初速度的方向相反),则此时赛车在与所述原始初速度方向相反的方向上进行反向加速运动。
在确认了所述被控对象的所述移动速度之后,还需要确定所述被控对象的移动方向。所述移动方向为所述主方向触点211以及所述主方向触点 212的连线。具体地来说,在模拟赛车的场景中,当在所述终端触摸屏上检测到四指触点时,由于所述触点211以及所述触点212为主方向触点,因此所述主方向触点211以及所述主方向触点212的压力值最大,所述被控对象也即所述赛车沿着所述次方向触点221以及所述次方向触点222向所述主方向触点211以及所述主方向触点212所作的垂线的方向移动,并结合上述已经确定的所述移动速度V进行移动。
与此同时,在进行模拟赛车的场景中,由于赛车在行驶过程中不可避免地需要经常进行角度的变换,因此需要对相应的偏移角度进行计算。在本实施例中,计算所述偏移角度θ的公式为:
θ=θmax*(ΔN1/Nmax)
其中,θmax为最大偏移角度,ΔN1为触点221与触点222之间的压力差值,其中所述触点221以及所述触点222均为次方向触点。Nmax为所述次方向触点221或所述次方向触点222间的最大压力值。由于所述ΔN1为触点221以及触点222之间的压力差值,该压力差值必然小于所述次方向触点的最大压力值Nmax,因此ΔN1/Nmax的比值必然小于1,所述偏移角度θ小于所述最大偏移角度θmax。此外,在本实施例中,对于赛车的应用场景,为了保护赛车手的安全,所述最大偏移角度θmax的值为45°。
在此需要说明的是,在本发明中,所述主方向触点以及所述次方向触点可以出现在所述终端触摸屏的任意位置处。
本发明提出的一种终端触摸屏交互方法及装置,通过识别用户的多触点的位置以及压力值来判定被控对象的移动方向,并通过计算触点间的压力差值来实现对偏移方向控制,从而不用局限在某些特定区域便可实现对被控对象的有效精准控制,提高了真实度体验,并且该交互方式可以应用在多个场景中,具有良好的应用前景。
本发明的实施例还提供了一种存储介质,该存储介质包括存储的程序,其中,上述程序运行时执行上述任一项所述的方法。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只 读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本发明的实施例还提供了一种处理器,该处理器用于运行程序,其中,该程序运行时执行上述任一项方法中的步骤。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。
工业实用性
如上所述,本发明实施例提供的一种终端触摸屏交互方法及装置具有以下有益效果:不用局限在某些特定区域便可实现对被控对象的有效精准控制,提高了真实度体验,具有广泛的应用前景。

Claims (15)

  1. 一种终端触摸屏的交互方法,包括:
    在所述终端触摸屏上检测多个触点,并根据检测到的所述多个触点的压力值的大小确定至少一个主方向触点以及两个成对的次方向触点;
    根据检测到的在所述至少一个主方向触点上的压力值确定所述终端触摸屏上一被控对象的移动速度;
    根据检测到的在所述两个成对的次方向触点上的压力值确定所述被控对象的偏移角度。
  2. 根据权利要求1所述的终端触摸屏交互方法,其中,所述至少一个主方向触点仅包含一个所述主方向触点,在确定了所述主方向触点以及所述两个成对的次方向触点之后,所述方法还包括:
    根据所述主方向触点以及所述两个成对的次方向触点的位置确定所述被控对象的移动方向,所述移动方向为所述主方向触点向所述两个成对的次方向触点连成的线段所作垂线的反方向。
  3. 根据权利要求2所述的终端触摸屏交互方法,其中,所述根据检测到的在所述至少一个主方向触点上的压力值确定所述终端触摸屏上一被控对象的移动速度的步骤包括:
    根据公式V=V0±A*P计算所述终端触摸屏上所述被控对象的移动速度,当所述恒定加速度的方向与所述原始初速度的方向相同时所述公式为V=V0+A*P,所述被控对象作加速运动;当所述恒定加速度的方向与所述原始初速度的方向相反时,所述公式为V=V0-A*P,所述被控对象作减速运动,其中V为所述被控对象的移动速度,V0为原始初速度的值,A为恒定加速度的值,P为所述主方向触点的压力值。
  4. 根据权利要求1所述的终端触摸屏交互方法,其中,所述至少一个主方向触点包含两个成对的所述主方向触点,在确定了所述主方向触点以及所述两个成对的次方向触点之后,所述方法还包括:
    根据两个成对的所述主方向触点以及所述两个成对的次方向触点的位置确定所述被控对象的移动方向,所述移动方向为两个成对的所述主方向触点的连线。
  5. 根据权利要求4所述的终端触摸屏交互方法,其中,所述根据检测到的在所述至少一个主方向触点上的压力值确定所述终端触摸屏上一被控对象的移动速度的步骤包括:
    根据公式V=V0±A*ΔP计算所述终端触摸屏上所述被控对象的移动速度,当所述恒定加速度的方向与所述原始初速度的方向相同时所述公式为V=V0+A*ΔP,所述被控对象作加速运动;当所述恒定加速度的方向与所述原始初速度的方向相反时,所述公式为V=V0-A*ΔP,所述被控对象作减速运动,其中V为所述被控对象的移动速度,V0为原始初速度的值,A为恒定加速度的值,ΔP为在两个成对的所述主方向触点上的压力值之间的差值。
  6. 根据权利要求1至5任一所述的终端触摸屏交互方法,其中,所述根据检测到的在所述两个成对的次方向触点上的压力值确定所述被控对象的偏移角度的步骤包括:
    计算所述两个成对的次方向触点的压力值之间的压力差值,并将所述压力差值与预设阈值进行比较;
    若所述压力差值大于所述预设阈值,则根据所述压力差值计算所述偏移角度。
  7. 根据权利要求6所述的终端触摸屏交互方法,其中,所述根据 所述压力差值计算所述偏移角度的步骤包括:
    将所述压力差值除以所述两个成对的次方向触点的最大压力值以得到压力比值;
    将所述压力比值乘以最大偏移角度以得到所述偏移角度。
  8. 一种终端触摸屏交互装置,包括:
    手势判断模块,设置为在所述终端触摸屏上检测多个触点,并根据检测到的所述多个触点的压力值的大小确定至少一个主方向触点以及两个成对的次方向触点;
    移动速度计算模块,设置为根据检测到的在所述至少一个主方向触点上的压力值确定所述终端触摸屏上一被控对象的移动速度;
    偏移角度计算模块,设置为根据检测到的在所述两个成对的次方向触点上的压力值确定所述被控对象的偏移角度。
  9. 根据权利要求8所述的终端触摸屏交互装置,其中,所述手势判断模块检测到所述至少一个主方向触点仅包含一个所述主方向触点并确定所述主方向触点以及所述两个成对的次方向触点,所述装置还包括:
    移动方向判断模块,设置为根据所述主方向触点以及所述两个成对的次方向触点的位置确定所述被控对象的移动方向,所述移动方向为所述主方向触点向所述两个成对的次方向触点连成的线段所作垂线的反方向。
  10. 根据权利要求9所述的终端触摸屏交互装置,其中,所述移动速度计算模块包括:
    移动速度计算单元,设置为根据公式V=V0±A*P计算所述终端 触摸屏上所述被控对象的移动速度,当所述恒定加速度的方向与所述原始初速度的方向相同时所述公式为V=V0+A*P,所述被控对象作加速运动;当所述恒定加速度的方向与所述原始初速度的方向相反时,所述公式为V=V0-A*P,所述被控对象作减速运动,其中V为所述被控对象的移动速度,V0为原始初速度的值,A为恒定加速度的值,P为所述主方向触点的压力值。
  11. 根据权利要求8所述的终端触摸屏交互装置,其中,所述手势判断模块检测到所述至少一个主方向触点包含两个成对的所述主方向触点并确定所述主方向触点以及所述两个成对的次方向触点,所述装置包括:
    移动方向判断模块,所述移动方向判断模块还设置为根据两个成对的所述主方向触点以及所述两个成对的次方向触点的位置确定所述被控对象的移动方向,所述移动方向为两个成对的所述主方向触点的连线。
  12. 根据权利要求11所述的终端触摸屏交互装置,其中,所述移动速度计算模块包括:
    移动速度计算单元,所述移动速度计算单元还设置为根据公式V=V0±A*ΔP计算所述终端触摸屏上所述被控对象的移动速度,当所述恒定加速度的方向与所述原始初速度的方向相同时所述公式为V=V0+A*ΔP,所述被控对象作加速运动;当所述恒定加速度的方向与所述原始初速度的方向相反时,所述公式为V=V0-A*ΔP,所述被控对象作减速运动,其中V为所述被控对象的移动速度,V0为原始初速度的值,A为恒定加速度的值,ΔP为在两个成对的所述主方向触点上的压力值之间的差值。
  13. 根据权利要求8至12任一所述的终端触摸屏交互装置,其中,所述偏移角度计算模块包括:
    阈值比较处理单元,设置为计算所述两个成对的次方向触点的压力值之间的压力差值,并将所述压力差值与预设阈值进行比较,若所述压力差值大于所述预设阈值,则根据所述次方向触点间的压力差值计算所述偏移角度。
  14. 根据权利要求13所述的终端触摸屏交互装置,其中,所述偏移角度计算模块还包括:
    第一运算单元,设置为将所述压力差值除以所述两个成对的次方向触点的最大压力值以得到压力比值;
    第二运算单元,设置为将所述压力比值乘以最大偏移角度得到所述偏移角度。
  15. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至7中任一项所述的方法。
PCT/CN2017/108088 2017-04-12 2017-10-27 一种终端触摸屏交互方法及装置 WO2018188320A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710237349.0 2017-04-12
CN201710237349.0A CN108693990A (zh) 2017-04-12 2017-04-12 一种终端触摸屏交互方法及装置

Publications (1)

Publication Number Publication Date
WO2018188320A1 true WO2018188320A1 (zh) 2018-10-18

Family

ID=63793141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108088 WO2018188320A1 (zh) 2017-04-12 2017-10-27 一种终端触摸屏交互方法及装置

Country Status (2)

Country Link
CN (1) CN108693990A (zh)
WO (1) WO2018188320A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109947349A (zh) * 2019-03-22 2019-06-28 思特沃克软件技术(北京)有限公司 一种基于车载触摸屏进行参数调节的方法和车载触摸屏

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112542225A (zh) * 2019-09-20 2021-03-23 河南翔宇医疗设备股份有限公司 一种康复训练互动方法、装置及设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100110463A (ko) * 2009-04-03 2010-10-13 (주)에스이 플라즈마 터치인식 정밀도 및 내구성을 강화한 터치패널 구조 및 그 제조 방법
CN102339164A (zh) * 2011-09-15 2012-02-01 清华大学 边角多点分布的感知位置、力和加速度的压电式触摸屏
CN103097996A (zh) * 2010-09-08 2013-05-08 三星电子株式会社 运动控制触屏方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6717568B1 (en) * 1999-09-10 2004-04-06 Sony Computer Entertainment Inc. Method of controlling the movement of a position indicating item, storage medium on which a program implementing said method is stored, and electronic device
CN105912162B (zh) * 2016-04-08 2018-11-20 网易(杭州)网络有限公司 控制虚拟对象的方法、装置及触控设备
CN106095158B (zh) * 2016-05-20 2018-10-23 青岛海信电器股份有限公司 光标的位移矢量的计算方法、装置及控制光标移动的系统
CN107992259A (zh) * 2016-10-27 2018-05-04 中兴通讯股份有限公司 运动参数的确定方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100110463A (ko) * 2009-04-03 2010-10-13 (주)에스이 플라즈마 터치인식 정밀도 및 내구성을 강화한 터치패널 구조 및 그 제조 방법
CN103097996A (zh) * 2010-09-08 2013-05-08 三星电子株式会社 运动控制触屏方法和装置
CN102339164A (zh) * 2011-09-15 2012-02-01 清华大学 边角多点分布的感知位置、力和加速度的压电式触摸屏

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109947349A (zh) * 2019-03-22 2019-06-28 思特沃克软件技术(北京)有限公司 一种基于车载触摸屏进行参数调节的方法和车载触摸屏
WO2020191973A1 (en) * 2019-03-22 2020-10-01 Thoughtworks Software Technology (Beijing) Limited Co. Parameter adjustment using vehicle touch screen
US11592976B2 (en) 2019-03-22 2023-02-28 Thoughtworks Software Technology (Beijing) Limited Co. Parameter adjustment using vehicle touch screen

Also Published As

Publication number Publication date
CN108693990A (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
CN105641927B (zh) 虚拟对象转向控制方法及装置
WO2016065712A1 (zh) 触摸屏控制方法和触摸屏装置
US9927869B2 (en) Apparatus for outputting virtual keyboard and method of controlling the same
CN102591450B (zh) 信息处理装置及其操作方法
US20120256856A1 (en) Information processing apparatus, information processing method, and computer-readable storage medium
CN105912162A (zh) 控制虚拟对象的方法、装置及触控设备
CN108553892B (zh) 虚拟对象控制方法、装置、存储介质及电子设备
CN104516675A (zh) 一种可折叠屏幕的控制方法及电子设备
CN105117056A (zh) 一种操作触摸屏的方法和设备
US20120299851A1 (en) Information processing apparatus, information processing method, and program
WO2018188320A1 (zh) 一种终端触摸屏交互方法及装置
WO2021203449A1 (zh) 基于振动的指示方法、触控组件、终端和可读存储介质
EP2771766B1 (en) Pressure-based interaction for indirect touch input devices
CN105068653A (zh) 确定虚拟空间中触摸事件的方法及装置
CN104182148A (zh) 一种按键控制方法和装置
JP6387239B2 (ja) プログラム及びサーバ
CN106325654A (zh) 应用于触摸终端的3d界面切屏方法及触摸终端
JP2014109888A (ja) 入力装置およびプログラム
CN108721893B (zh) 游戏中虚拟载具的控制方法、装置和计算机可读存储介质
TWI664997B (zh) 電子設備及玩具控制方法
CN104615342A (zh) 一种信息处理方法及电子设备
KR20190013186A (ko) 가상공간상의 사용자 터치 인터렉션 제공 시스템
CN103513881B (zh) 电子设备及电子设备中控制显示界面的方法及装置
WO2018077250A1 (zh) 运动参数的确定方法及装置
TWI521445B (zh) Touch device and its touch track detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17905533

Country of ref document: EP

Kind code of ref document: A1