WO2018187913A1 - 一种Nafion膜/Ti3C2Tx/硫复合材料 - Google Patents
一种Nafion膜/Ti3C2Tx/硫复合材料 Download PDFInfo
- Publication number
- WO2018187913A1 WO2018187913A1 PCT/CN2017/079949 CN2017079949W WO2018187913A1 WO 2018187913 A1 WO2018187913 A1 WO 2018187913A1 CN 2017079949 W CN2017079949 W CN 2017079949W WO 2018187913 A1 WO2018187913 A1 WO 2018187913A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sulfur
- composite material
- nafion
- nafion film
- ti3c2tx
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to nanomaterial synthesis, and in particular to a method for preparing a lithium sulfur battery cathode material.
- a lithium-sulfur battery is a battery system in which lithium metal is used as a negative electrode and elemental sulfur is a positive electrode.
- Lithium-sulfur batteries have two discharge platforms (approximately 2.4 V and 2.1 V), but their electrochemical reaction mechanisms are complex. Lithium-sulfur batteries have the advantages of high specific energy (2600 Wh/kg), high specific capacity (1675 mAh/g), and low cost, and are considered to be promising new generation batteries.
- the highly polylithium polysulfide Li 2 S n (8 >n>4) generated during the electrode reaction is easily soluble in the electrolyte, forming a concentration difference between the positive and negative electrodes, under the action of the concentration gradient
- the highly polylithium polysulfide is reduced by lithium metal to oligomeric lithium polysulfide.
- the oligomeric lithium polysulfide aggregates at the negative electrode, eventually forming a concentration difference between the two electrodes, and then migrating to the positive electrode to be oxidized to a highly polylithium polysulfide.
- the technical problem to be solved by the present invention is to provide a Nafion film Ti 3 C 2 T ⁇ / sulfur composite material, the composite material
- the material consists of sulfur, flake Ti 3 C 2 T x and outer layer coated Nafion membrane.
- the coating of Nafion membrane can effectively restrict the free movement of sulfur-based materials, and the flaky Ti 3 C 2 ⁇ ⁇ titanium can adsorb discharge.
- the dissolution of the product polysulfide improves the electrochemical performance of the material.
- the present invention provides a Nafion film Ti 3 C 2 T x / sulfur composite material, the composite material is composed of sulfur, flake Ti 3 C 2 T ⁇ nNafion film, and the inner layer is sulfur and Ti 3 C 2 T composite Material, the outer layer is a Nafion membrane coated with sulfur and Ti 3 C 2 T chelating material, wherein the Nafion membrane: Ti 3 C 2 T x: sulfur mass ratio is 0.05-0.2:0.05-0.2:1
- the present invention provides a Nafion membrane Ti 3 C 2 T ⁇ / sulfur composite material preparation process is as follows:
- the concentration of hydrofluoric acid in step (1) is 20 ⁇ 3 ⁇ 4-50 ⁇ 3 ⁇ 4, and the corrugated turn is 4-24 hours;
- the mass ratio of the powder to the elemental sulfur is 0.05-0.2:1, the heating reaction temperature is 155-165 ° C, and the daytime is 5-12 ⁇ ;
- the ratio of the Nafion solution to the elemental sulfur in the step (3) is 1-4:1, the mass fraction of the Nafion solution is 5-10%, and the stirring time is 1-10 hours.
- the present invention has the following beneficial effects:
- the ⁇ of Ti 3 C 2 T in the Nafion membrane m 3 C 2 T ⁇ / sulfur composite is a -F group or an -OH group, which is a strong polar group, capable of It forms a strong chemisorption of polysulfide formed during charge and discharge, which can effectively prevent polysulfide from passing through the separator to the negative electrode.
- the Nafion film in the same composite can physically protect the sulfur-based material and limit the charge.
- the polysulfide produced during the discharge process is inside the Na fion membrane, thereby reducing the shuttle effect; the composite material has the same physical and chemical adsorption ⁇ Limit the movement of polysulfides and effectively increase the life of lithium-sulfur batteries.
- Ti 3 AlC 2 ceramic powder is placed in a hydrofluoric acid having a mass concentration of 20% for 24 hours, and the solution is added to deionized water for centrifugation after etching, and then the precipitate is dried to obtain a stack.
- Ti 3 AlC 2 ceramic powder is placed in a hydrofluoric acid having a mass concentration of 50% for 4 hours, and after etching, the solution is added to deionized water for centrifugation, and then the precipitate is dried to obtain a stack.
- Ti 3 AlC 2 ceramic powder is placed in hydrofluoric acid having a mass concentration of 30% for 20 hours, and is dissolved after corrosion. The liquid is added to deionized water for centrifugation, and then the precipitate is dried to obtain a stacked layer of Ti 3 C 2 T cliff;
- Ti 3 AlC 2 ceramic powder is placed in hydrofluoric acid having a mass concentration of 40% for 15 hours, and after etching, the solution is added to deionized water for centrifugation, and then the precipitate is dried to obtain a stack.
- Ti 3 AlC 2 ceramic powder is placed in hydrofluoric acid with a concentration of 35% for 13h, after etching, the solution is added to deionized water for centrifugation, and then the precipitate is dried to obtain a stack.
- CELGARD 2400 is a diaphragm
- 1 mol/L of LiTFSI/DOL-DME (volume ratio 1:1) is an electrolyte
- 1 mol/L of LiN03 is an additive. It is assembled into a button-type battery in a filled glove box, and is tested by a Land battery test system. Constant current charge and discharge test. The charge and discharge voltage range is 1-3V, the current density is 0.5C, and the performance is shown in Table 1. Table 1
- FIG. 2 is a graph showing the charge and discharge performance of a composite material prepared into a lithium-sulfur battery according to Embodiment 1 of the present invention. It can be seen from the figure that the charge and discharge efficiency can reach more than 99%, and the first charge and discharge capacity is 945.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
一种Nafion膜/Ti3C2Tx/硫复合材料,该复合材料由硫、片状Ti3C2Tx和Nafion膜组成,内层为硫和Ti3C2Tx复合材料,外层为包覆硫和Ti3C2Tx复合材料的Nafion膜,其中Nafion膜:Ti3C2Tx:硫的质量比为0.05-0.2:0.05-0.2:1。复合材料中包覆层Nafion膜能对硫基材料进行物理保护,限制充放电过程产生的多硫化物在Nafion膜内部,从而降低穿梭效应;该复合材料从物理限域和化学吸附两个方面同时限制多硫化物的移动,有效的提高锂硫电池的寿命。
Description
发明名称:一种 Nafion膜/ Ti 3C 2Τ χ/硫复合材料 技术领域
[0001] 本发明涉及纳米材料合成, 特别涉及一种锂硫电池正极材料的制备方法。
背景技术
[0002] 锂硫电池是以金属锂为负极, 单质硫为正极的电池体系。 锂硫电池的具有两个 放电平台 (约为 2.4 V和 2.1 V) , 但其电化学反应机理比较复杂。 锂硫电池具有 比能量高 (2600 Wh/kg) 、 比容量高 (1675 mAh/g) 、 成本低等优点, 被认为 是很有发展前景的新一代电池。
技术问题
[0003] 但是目前其存在着活性物质利用率低、 循环寿命低和安全性差等问题, 这严重 制约着锂硫电池的发展。 造成上述问题的主要原因有以下几个方面: (1) 单质 硫是电子和离子绝缘体, 室温电导率低 (5x10 ^s^m ) , 由于没有离子态的硫 存在, 因而作为正极材料活化困难; (2) 在电极反应过程中产生的高聚态多硫 化锂 Li 2S n (8 > n>4) 易溶于电解液中, 在正负极之间形成浓度差, 在浓度梯度 的作用下迁移到负极, 高聚态多硫化锂被金属锂还原成低聚态多硫化锂。 随着 以上反应的进行, 低聚态多硫化锂在负极聚集, 最终在两电极之间形成浓度差 , 又迁移到正极被氧化成高聚态多硫化锂。 这种现象被称为飞梭效应, 降低了 硫活性物质的利用率。 同吋不溶性的 Li 28和 Li 2S 2沉积在锂负极表面, 更进一步 恶化了锂硫电池的性能; (3) 反应最终产物 Li 2S同样是电子绝缘体, 会沉积在 硫电极上, 而锂离子在固态硫化锂中迁移速度慢, 使电化学反应动力学速度变 慢; (4) 硫和最终产物 Li 2S的密度不同, 当硫被锂化后体积膨胀大约 79%, 易 导致 28的粉化, 引起锂硫电池的安全问题。 上述不足制约着锂硫电池的发展 , 这也是目前锂硫电池研究需要解决的重点问题。
问题的解决方案
技术解决方案
[0004] 本发明要解决的技术问题是提供一种 Nafion膜Ti 3C 2T χ/硫复合材料, 该复合材
料材料由硫、 片状 Ti 3C 2T x和外层包覆的 Nafion膜组成, Nafion膜的包覆能有效 的限制硫基材料自由移动, 片状 Ti 3C 2Τ χ钛能够吸附放电产物多硫化物的溶解, 提高材料的电化学性能。
[0005] 本发明提供一种 Nafion膜Ti 3C 2T x/硫复合材料, 该复合材料由硫、 片状 Ti 3C 2 T ^nNafion膜组成, 内层为硫和 Ti 3C 2T 复合材料, 外层为包覆硫和 Ti 3C 2T Μ 合材料的 Nafion膜, 其中 Nafion膜: Ti 3C 2T x: 硫的质量比为 0.05-0.2:0.05-0.2:1
[0006] 本发明提供一种 Nafion膜Ti 3C 2T χ/硫复合材料的制备工艺流程如下:
[0007] (1) 将 Ti 3AlC 2陶瓷粉末放入氢氟酸中腐蚀, 腐蚀后溶液加入去离子水进行 离心处理, 然后将沉淀物烘干, 得到堆垛的层片状 Ti 3C 2T x粉体;
[0008] (2) 将 Ti 3C 2T χ粉体与单质硫按比例 1:1均匀混合, 放置于密封的反应釜中, 在氮气的气氛中加热反应至 155° C, 恒温
5-12h, 反应完成后冷却至室温, 得到 Ti 3C 2T x/硫复合材料;
[0009] (3) 将得到的 Ti 3C 2T x/硫复合材料加入 Nafion溶液搅拌、 静置、 过滤、 真空 烘干, 获得 Nafion膜 /Ti 3C 2T χ/硫复合材料。
[0010] 步骤 (1) 中氢氟酸的浓度为 20<¾-50<¾, 腐蚀的吋间为 4-24小吋;
[0011] 步骤 (2) 中 Ti 3C 2T x
粉体与单质硫的质量比为 0.05-0.2:1, 加热反应温度为 155-165°C, 吋间为 5-12小 吋;
[0012] 步骤 (3) 中 Nafion溶液与单质硫的比例为 1-4:1, Nafion溶液的质量分数为 5-10 % , 搅拌吋间为 1-10小吋。
发明的有益效果
有益效果
[0013] 本发明具有如下有益效果: Nafion膜 m 3C 2T χ/硫复合材料中的 Ti 3C 2T 的 Τ 为 -F基团或 -OH基团, 为强极性基团, 能对充放电过程中形成的多硫化物形成强 烈的化学吸附, 能有效的阻止多硫化物穿过隔膜到达负极; 同吋复合材料中包 覆层 Nafion膜能对硫基材料进行物理保护, 限制充放电过程产生的多硫化物在 Na fion膜内部, 从而降低穿梭效应; 该复合材料从物理限域和化学吸附两个方面同
吋限制多硫化物的移动, 有效的提高锂硫电池的寿命。
对附图的简要说明
附图说明
[0014] 图 1是本发明的工艺流程图。
[0015] 图 2是本发明复合材料的充放电性能图。 本发明的实施方式
[0016] 下面结合附图, 对本发明的较优的实施例作进一步的详细说明:
[0017] 实施例 1
[0018] (1) 将 Ti3AlC2陶瓷粉末放入质量浓度为 20%的氢氟酸中腐蚀 24h, 腐蚀后溶 液加入去离子水进行离心处理, 然后将沉淀物烘干, 得到堆垛的层片状 Ti3C2T 崖;
[0019] (2) 将 0.5gTi3C2Tx粉体与 10g单质硫均匀混合, 放置于密封的反应釜中, 在 氮气的气氛中加热反应至 155° C, 恒温 12h, 反应完成后冷却至室温, 得到 Ti3C 2TX/硫复合材料;
[0020] (3) 将得到的 Ti 3C 2T χ/硫复合材料加入到 10g质量分数为 5%的 Nafion溶液中搅 拌 1小吋, 静置、 过滤、 真空烘干, 获得 Nafion膜 /Ti3C2Tx/硫复合材料。
[0021] 实施例 2
[0022] (1) 将 Ti3AlC2陶瓷粉末放入质量浓度为 50%的氢氟酸中腐蚀 4h, 腐蚀后溶 液加入去离子水进行离心处理, 然后将沉淀物烘干, 得到堆垛的层片状 Ti3C2T 崖;
[0023] (2) 将 2gTi3C2Tx粉体与 10g单质硫均匀混合, 放置于密封的反应釜中, 在氮 气的气氛中加热反应至 165° C, 恒温 5h, 反应完成后冷却至室温, 得到 Ti3C2T x/硫复合材料;
[0024] (3) 将得到的 Ti 3C 2T χ/硫复合材料加入到 10g质量分数为 10%的 Nafion溶液中 搅拌 10小吋, 静置、 过滤、 真空烘干, 获得 Nafion膜 /Ti 3C 2T x/硫复合材料。
[0025] 实施例 3
[0026] (1) 将 Ti3AlC2陶瓷粉末放入质量浓度为 30%的氢氟酸中腐蚀 20h, 腐蚀后溶
液加入去离子水进行离心处理, 然后将沉淀物烘干, 得到堆垛的层片状 Ti3C2T 崖;
[0027] (2) 将 lgTi3C2Tx粉体与 10g单质硫均匀混合, 放置于密封的反应釜中, 在氮 气的气氛中加热反应至 160° C, 恒温 10h, 反应完成后冷却至室温, 得到 Ti3C2 Tx/硫复合材料;
[0028] (3) 将得到的 Ti 3C 2T χ/硫复合材料加入到 40g质量分数为 5%的 Nafion溶液中搅 拌 5小吋, 静置、 过滤、 真空烘干, 获得 Nafion膜 /Ti3C2Tx/硫复合材料。
[0029] 实施例 4
[0030] (1) 将 Ti3AlC2陶瓷粉末放入质量浓度为 40%的氢氟酸中腐蚀 15h, 腐蚀后溶 液加入去离子水进行离心处理, 然后将沉淀物烘干, 得到堆垛的层片状 Ti3C2T 崖;
[0031] (2) 将 1.5gTi3C2Tx粉体与 10g单质硫均匀混合, 放置于密封的反应釜中, 在 氮气的气氛中加热反应至 162° C, 恒温 8h, 反应完成后冷却至室温, 得到 Ti3C2 Tx/硫复合材料;
[0032] (3) 将得到的 Ti 3C 2T χ/硫复合材料加入到 12g质量分数为 8%的 Nafion溶液中搅 拌 8小吋, 静置、 过滤、 真空烘干, 获得 Nafion膜 /Ti3C2Tx/硫复合材料。
[0033] 实施例 5
[0034] (1) 将 Ti3AlC2陶瓷粉末放入质量浓度为 35%的氢氟酸中腐蚀 13h, 腐蚀后溶 液加入去离子水进行离心处理, 然后将沉淀物烘干, 得到堆垛的层片状 Ti3C2T 崖;
[0035] (2) 将 0.8gTi3C2Tx粉体与 10g单质硫均匀混合, 放置于密封的反应釜中, 在 氮气的气氛中加热反应至 157° C, 恒温 9h, 反应完成后冷却至室温, 得到 Ti3C2 Tx/硫复合材料;
[0036] (3) 将得到的 Ti 3C 2T χ/硫复合材料加入到 20g质量分数为 6%的 Nafion溶液中搅 拌 4小吋, 静置、 过滤、 真空烘干, 获得 Nafion膜 /Ti3C2Tx/硫复合材料。
[0037] 电极的制备及性能测试; 将复合材料、 乙炔黑和 PVDF
按质量比 80: 10: 10在 NMP中混合, 涂覆在铝箔上为电极膜, 金属锂片为对电 极, CELGARD
2400为隔膜, lmol/L的 LiTFSI/DOL-DME (体积比 1: 1)为电解液, lmol/L的 LiN03 为添加剂, 在充满 Ar手套箱内组装成扣式电池, 采用 Land电池测试系统进行恒 流充放电测试。 充放电电压范围为 1-3V, 电流密度为 0.5C, 性能如表 1所示。 表 1
[表 1]
[0039]
[0040] 图 2是本发明实施例 1复合材料制备成锂硫电池的充放电性能图。 从图中可以看 出充放电效率可以达到 99%以上, 首次充放电容量为 945
mAh/g, 充放电效率为 99.2%, 500次充放电循环后, 容量仍然保有 75<¾, 说明该 复合材料的结构能有效抑制飞梭效应, 提高硫电池的寿命。
[0041] 以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明, 不能认 定本发明的具体实施只局限于这些说明。 对于本发明所属技术领域的普通技术 人员来说, 在不脱离本发明构思的前提下, 还可以做出若干简单推演或替换, 都应当视为属于本发明的保护范围。
Claims
[权利要求 1] 一种 Nafion膜 /Ti3C2Tx/硫复合材料, 其特征在于, 该复合材料由硫
、 片状Ti3C2Tx和Nafion膜组成, 内层为硫和 Ti 3C 2T x复合材料, 夕卜 层为包覆硫和 Ti3C2Tx复合材料的 Nafion膜, 其中 Nafion膜: Ti 3C 2T χ: 硫的质量比为 0.05-0.2:0.05-0.2:1。
[权利要求 2] —种制备如权利要求 1所述的 Nafion膜 /Ti 3C 2T χ/硫复合材料的方法, 包括以下几个步骤:
步骤 (1) : 将 Ti3AlC^¾瓷粉末放入氢氟酸中腐蚀, 腐蚀后溶液加 入去离子水进行离心处理, 然后将沉淀物烘干, 得到堆垛的层片状 Ti 3C 2Τ χ粉体;
步骤 (2) : 将 Ti3C2Tx粉体与单质硫按比例均匀混合, 放置于密封 的反应釜中, 在氮气的气氛中加热反应, 反应完成后冷却至室温, 得 到 Ti 3C 2TX/硫复合材料;
步骤 (3) : 将得到的 Ti3C2Tx/硫复合材料加入 Nafion溶液搅拌、 静 置、 过滤、 真空烘干, 获得Nafi0n膜/Ti3C2Tx/硫复合材料。
[权利要求 3] 如权利要求 2所述的方法, 其特征在于, 所述步骤 (1) 中氢氟酸的浓 度为 20<¾-50<¾, 腐蚀的吋间为 4-24小吋。
[权利要求 4] 如权利要求 2所述的方法, 其特征在于, 所述步骤 (2) 中 Ti3C2Tx¾
体与单质硫的质量比为 0.05-0.2:1, 加热反应温度为 155-165°C, 吋间 为 5- 12小吋。
[权利要求 5] 如权利要求 2所述的方法, 其特征在于, 所述步骤 (3) 中 Nafion溶液 与单质硫的比例为 1-4:1, Nafion溶液的质量分数为 5-10%, 搅拌吋间 为 1-10小吋。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/079949 WO2018187913A1 (zh) | 2017-04-10 | 2017-04-10 | 一种Nafion膜/Ti3C2Tx/硫复合材料 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/079949 WO2018187913A1 (zh) | 2017-04-10 | 2017-04-10 | 一种Nafion膜/Ti3C2Tx/硫复合材料 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018187913A1 true WO2018187913A1 (zh) | 2018-10-18 |
Family
ID=63793021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/079949 WO2018187913A1 (zh) | 2017-04-10 | 2017-04-10 | 一种Nafion膜/Ti3C2Tx/硫复合材料 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018187913A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110018148A (zh) * | 2019-01-08 | 2019-07-16 | 中国科学院金属研究所 | 一种表面增强拉曼试纸的制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016012275A1 (en) * | 2014-07-22 | 2016-01-28 | Basf Se | Composites comprising mxenes for cathodes of lithium sulfur cells |
CN105576267A (zh) * | 2015-12-25 | 2016-05-11 | 郑州大学 | 一种有机无机杂化质子交换膜及其制备方法和应用 |
CN106450205A (zh) * | 2016-11-02 | 2017-02-22 | 南京工业大学 | 二维过渡族金属碳(氮)化物与纳米硫颗粒复合材料及其制备和应用 |
-
2017
- 2017-04-10 WO PCT/CN2017/079949 patent/WO2018187913A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016012275A1 (en) * | 2014-07-22 | 2016-01-28 | Basf Se | Composites comprising mxenes for cathodes of lithium sulfur cells |
CN105576267A (zh) * | 2015-12-25 | 2016-05-11 | 郑州大学 | 一种有机无机杂化质子交换膜及其制备方法和应用 |
CN106450205A (zh) * | 2016-11-02 | 2017-02-22 | 南京工业大学 | 二维过渡族金属碳(氮)化物与纳米硫颗粒复合材料及其制备和应用 |
Non-Patent Citations (2)
Title |
---|
HUANG, JIAQI ET AL.: "Review on Advanced Functional Separators for Lithium-Sulfur Batterie s", ACTA CHIMICA SINICA, vol. 75, 15 February 2017 (2017-02-15), pages 173 - 188, XP055541898, ISSN: 0567-7351 * |
ZHAO, XIAOQIN ET AL.: "Fabrication of Layered Ti3C2 with an Accordion-Like Structure as a Potential Cathode Material for High Performance Lithium-Sulfur Batteries", JOURNAL OF MATERIALS CHEMISTRY A, vol. 3, 2 March 2015 (2015-03-02), pages 7870 - 7876, XP055541900, ISSN: 2050-7488 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110018148A (zh) * | 2019-01-08 | 2019-07-16 | 中国科学院金属研究所 | 一种表面增强拉曼试纸的制备方法 |
CN110018148B (zh) * | 2019-01-08 | 2021-09-24 | 中国科学院金属研究所 | 一种表面增强拉曼试纸的制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI725822B (zh) | 鋰電池及其負極材料 | |
WO2018184238A1 (zh) | 一种Ti3C2Tx/PVDF/Celgard复合隔膜 | |
WO2018014165A1 (zh) | 钠离子电池极片,其制备方法及含有该极片的钠离子电池 | |
WO2017139984A1 (zh) | 一种硫掺杂三维结构锂硫电池正极材料的制备方法 | |
WO2017139983A1 (zh) | 一种三维氮掺杂结构锂硫电池正极材料的制备方法 | |
CN102956895A (zh) | 表面复合包覆的正极材料及其制备方法和锂离子电池 | |
WO2020098275A1 (zh) | 一种SiO 2包覆三元正极材料及其制备方法 | |
CN108400298B (zh) | 一种制备钠离子电池用石墨烯负载锑纳米管负极材料的方法及其应用 | |
WO2017139982A1 (zh) | 一种硼氮共掺杂三维结构锂硫电池正极材料的制备方法 | |
WO2017139997A1 (zh) | 一种掺杂碳硫化锂核壳结构的正极材料的制备方法 | |
CN115072703B (zh) | 一种复合负极材料及其制备方法、应用 | |
WO2018184236A1 (zh) | 一种锂硫电池复合隔膜 | |
CN106972141A (zh) | 一种Ti3C2Tx/氧化石墨烯/Celgard复合隔膜 | |
WO2017139986A1 (zh) | 一种磷掺杂三维结构锂硫电池正极材料的制备方法 | |
JP2000090917A (ja) | リチウムイオン二次電池用正極板の製造方法 | |
WO2017139985A1 (zh) | 一种氟掺杂三维结构锂硫电池正极材料的制备方法 | |
Cong et al. | Towards enhanced structural stability by investigation of the mechanism of K ion doping in Na3V2 (PO4) 3/C for sodium ion batteries | |
WO2017139993A1 (zh) | 一种核壳结构的石墨烯/碳包覆的掺杂硫化锂复合材料的制备方法 | |
WO2017139990A1 (zh) | 一种氧化铝空心球锂硫电池正极材料的制备方法 | |
WO2017139995A1 (zh) | 石墨烯/钛酸锂包覆的硫化锂复合材料的制备方法 | |
WO2017139989A1 (zh) | 一种石墨烯/二氧化钛空心球/硫复合材料的制备方法技术领域 | |
WO2024183283A1 (zh) | 一种二次电池 | |
CN112421119A (zh) | 一种用于锂离子电池的全固态硫化物电解质的制备方法 | |
WO2018184237A1 (zh) | 一种Ti3C2Tx/Nafion/Celgard复合隔膜 | |
CN109671920B (zh) | 纳米金刚石与二氧化钛空心球复合电极材料及制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17905309 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17905309 Country of ref document: EP Kind code of ref document: A1 |