WO2018186472A1 - 位相差フィルム、円偏光板又は楕円偏光板、表示パネル、液晶表示パネル、有機el表示パネル、表示装置、液晶表示装置、及び有機el表示装置 - Google Patents

位相差フィルム、円偏光板又は楕円偏光板、表示パネル、液晶表示パネル、有機el表示パネル、表示装置、液晶表示装置、及び有機el表示装置 Download PDF

Info

Publication number
WO2018186472A1
WO2018186472A1 PCT/JP2018/014608 JP2018014608W WO2018186472A1 WO 2018186472 A1 WO2018186472 A1 WO 2018186472A1 JP 2018014608 W JP2018014608 W JP 2018014608W WO 2018186472 A1 WO2018186472 A1 WO 2018186472A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
positive
plate
display panel
display device
Prior art date
Application number
PCT/JP2018/014608
Other languages
English (en)
French (fr)
Inventor
諭 江森
裕之 雨宮
剛志 黒田
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to JP2019511307A priority Critical patent/JP7200931B2/ja
Publication of WO2018186472A1 publication Critical patent/WO2018186472A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to a retardation film, and a circularly or elliptically polarizing plate provided with the retardation film, a display panel, a liquid crystal display panel, an organic EL display panel, a display device, a liquid crystal display device, and an organic EL display device.
  • an optical film applied to an image display device or the like there is a retardation film that imparts a desired retardation to incident light by a retardation layer.
  • a retardation film that imparts a desired retardation to incident light by a retardation layer.
  • organic electroluminescence (organic EL) display device a ⁇ / 4 retardation film is used as a circularly polarizing plate in a form combined with a linear polarizing plate, and functions as an external light antireflection film.
  • a retardation film in which a positive A plate and a positive C plate are combined is used as a part of an optical compensation film in order to increase the contrast with respect to a visual field from an oblique direction. .
  • a retardation film does not provide the same effect for all wavelengths.
  • an external light reflecting film of an organic EL display device is taken as an example, in an external light reflecting film in which a ⁇ / 4 retardation film and a polarizer are laminated, only light having a wavelength of 550 nm can be circularly polarized. Long-wavelength and short-wavelength light becomes elliptically polarized light, and it is difficult to exhibit a complete anti-reflection function.
  • a retardation film used for an optical compensation film in a liquid crystal display device is taken as an example, the use of a ⁇ / 4 retardation film can compensate for the color in the front direction, but the oblique viewing angle direction. However, it has been difficult to sufficiently compensate for the color tone.
  • the reverse wavelength dispersion characteristic is a wavelength dispersion characteristic in which the phase difference in the transmitted light is smaller as the wavelength is shorter, more specifically, the front retardation (Re 450 ) at a wavelength of 450 nm and the front at a wavelength of 550 nm.
  • the relationship with retardation (Re 550 ) is Re 450 ⁇ Re 550
  • the wavelength dispersion characteristic is Re 450 / Re 550 ⁇ 1.
  • the wavelength dispersion characteristic in which the phase difference in the transmitted light is larger on the shorter wavelength side more specifically, the front retardation (Re 450 ) at a wavelength of 450 nm and the front retardation (Re 550 ) at a wavelength of 550 nm.
  • the chromatic dispersion characteristic in which Re 450 > Re 550 and Re 450 / Re 550 > 1 is called the positive chromatic dispersion characteristic.
  • a retardation layer having a positive A characteristic positive A plate
  • a retardation layer having a negative A characteristic negative A plate
  • a retardation layer having a positive C characteristic positive C plate
  • a retardation layer having a negative C plate positive C plate
  • a retardation layer (negative C plate) having the characteristics of negative C or a method for improving various optical characteristics such as viewing angle characteristics and color tone by combining them as necessary or as required.
  • the characteristics of positive A are the refractive index in the X-axis direction along the layer surface is Nx
  • the refractive index in the Y-axis direction perpendicular to the X-axis in the direction along the layer surface is Ny
  • the refractive index in the layer thickness direction the refractive index in the layer thickness direction.
  • the characteristic of negative A is a relationship of Nz ⁇ Nx> Ny and has a feature that the optical axis is in the Ny direction.
  • the characteristics of the positive C have a relationship of Nz> Nx ⁇ Ny and have a feature that the optical axis is in the Nz direction.
  • the characteristic of negative C is a relationship of Nx ⁇ Ny> Nz and has a feature that the optical axis is in the Nz direction.
  • one or more negative biaxial retardation films (nx> ny> nz) and 1 are used for viewing angle compensation between the polarizing plate and the liquid crystal cell.
  • an object of the present invention is to provide a retardation film that has a good contrast in a wide viewing angle range over a wide band and can suppress a change in color for each viewing angle.
  • Another object of the present invention is to provide a circularly or elliptically polarizing plate, a display panel, a liquid crystal display panel, an organic EL display panel, a display device, a liquid crystal display device, and an organic EL display device using the retardation film.
  • the inventor has not only the individual chromatic dispersion characteristics of the positive A plate and the positive C plate, but also the relationship between the chromatic dispersion characteristics of the two plates affects the optical performance.
  • the present invention was completed by obtaining the knowledge.
  • [1] comprises a positive A-type properties, when the front retardation at the wavelength of 450nm was front retardation at a wavelength of Re A450, 550 nm and Re A550, the positive A plate of the Re A450 / Re A550 and .DELTA.N A, Comprising a positive C type characteristics, when the thickness direction retardation at a wavelength of 450nm was the thickness direction retardation at a wavelength of Rth C450, 550 nm and Rth C550, Yes and the positive C plate of the Rth C450 / Rth C550 and .DELTA.N C, the and the .DELTA.N a, and one of the .DELTA.N C is 1.0 or less, along with the other is less than 1.0,
  • a circularly or elliptically polarizing plate comprising the retardation film according to any one of [1] to [5] and a polarizer.
  • a display panel comprising the retardation film according to any one of [1] to [5].
  • a liquid crystal having an optical compensation function comprising two polarizers, and the retardation film and the liquid crystal layer according to any one of [1] to [5] disposed between the two polarizers Display panel.
  • An organic EL display panel comprising: [10] A display device comprising the display panel according to any one of [7] to [9]. [11] A liquid crystal display device comprising the liquid crystal display panel according to [8]. [12] The liquid crystal display device according to [11], wherein the liquid crystal display is an IPS mode liquid crystal display device. [13] An organic EL display device comprising the organic EL display panel according to [9].
  • a retardation film capable of performing contrast and optical compensation with a wide viewing angle over a wide band, and a circularly or elliptically polarizing plate, a display panel, and a liquid crystal display panel using the same. It can also be applied to organic EL display panels, display devices, liquid crystal display devices, and organic EL display devices.
  • FIG. 2 is a diagram illustrating an example of a layer configuration of a retardation film 10.
  • FIG. It is a figure explaining the layer structure of the liquid crystal display device 20 to which the phase difference film 10 is applied. It is a figure explaining the layer structure of the organic electroluminescence display 30 to which the phase difference film 10 is applied. It is a figure explaining the evaluation of contrast in an example. It is a figure explaining the evaluation method of the hue in an Example. It is a figure explaining the evaluation of the hue in an Example.
  • the retardation film of the present invention includes a positive A plate and a positive C plate.
  • the positive A plate has a positive A type characteristic
  • the positive C plate has a positive C type characteristic.
  • the positive A plate when the front retardation at the wavelength of 450nm was front retardation at a wavelength of Re A450, 550 nm and Re A550, the Re A450 / Re A550 and .DELTA.N A, the positive C plate, the thickness at a wavelength of 450nm when the direction retardation and the thickness direction retardation and Rth C550 at a wavelength of Rth C450, 550 nm, when the Rth C450 / Rth C550 and .DELTA.N C, the .DELTA.N a, and one of the .DELTA.N C is 1.0 or less, the other It is less than 1.0, and
  • FIG. 1 is a diagram for explaining the layer structure of a retardation film 10 of the present invention according to one embodiment.
  • various optical characteristics can be improved by arranging the retardation film 10 together with various other optical films on a liquid crystal display panel or an organic EL display panel.
  • the optical characteristics include external light reflection, improved viewing angle characteristics, optical compensation for reducing light leakage in an oblique direction, and color correction.
  • the retardation film 10 of this embodiment includes a positive C plate 13 and a positive A plate 14.
  • the retardation film 10 is provided on an alignment film 12 provided on a substrate 11.
  • the substrate preferably has transparency, and can be appropriately selected from conventionally known transparent substrates.
  • Transparent substrates include glass substrates, acetyl cellulose resins such as triacetyl cellulose; polyester resins such as polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, and polylactic acid; polypropylene, polyethylene, polymethylpentene, and the like.
  • the base material 11 preferably has a transmittance in the visible light region of 80% or more, and more preferably 90% or more.
  • the transmittance of the transparent substrate can be measured according to JIS K7361-1: 1997 (plastic-transparent material total light transmittance test method).
  • the haze of the substrate 11 is preferably 5% or less, more preferably 3% or less, and still more preferably 1% or less. It is preferable for the haze of the substrate to be in the above range since it is more excellent in transparency.
  • the haze of the substrate can be measured according to JIS K 7136: 2000 (Plastic—How to determine haze of transparent material).
  • the transmittance and haze of the base material are not particularly limited.
  • the thickness of the base material 11 is not particularly limited as long as necessary supportability can be imparted depending on the use of the retardation film, etc., but is usually 10 ⁇ m or more, preferably 25 ⁇ m or more, more preferably 30 ⁇ m or more. And, it is usually 200 ⁇ m or less, preferably 125 ⁇ m or less, more preferably 100 ⁇ m or less. In recent years, there has been a strong demand for thinning the display device itself. In that case, the thinner the film, the more preferable it is.
  • the lower limit is preferably 15 ⁇ m or more, more preferably 20 ⁇ m or more, and the upper limit is Preferably it is 80 micrometers or less, More preferably, it is 60 micrometers or less, More preferably, it is 40 micrometers or less.
  • the thickness is thicker than the above range, for example, after forming a long retardation film and cutting it into a single-phase retardation film, the processing waste increases or the cutting blade wears out. May become faster. Moreover, when it is thinner than the said range, it may be difficult to provide required supportability.
  • the alignment film 12 is a layer for aligning liquid crystalline components contained in the positive C plate 13 in a certain direction, and is a vertical alignment film.
  • a necessary alignment film can be applied depending on the properties of the liquid crystal component of the positive C plate.
  • the alignment film may not necessarily have a vertical alignment regulating force.
  • the vertical alignment film is an alignment film having a vertical alignment regulating force, and is applied to various vertical alignment films, VA liquid crystal display devices, and the like used for producing a known C-plate retardation film.
  • a vertical alignment film can be applied, and for example, a polyimide alignment film, an alignment film using an LB film (Langmuir-Blodgett film), or the like can be applied.
  • the constituent material of the alignment film include lecithin, stearic acid, silane-based surfactant, titanate-based surfactant, pyridinium salt-based polymer surfactant, and monobasic carboxylic acid chromium complex. It is done.
  • the vertical alignment film may be formed of a silane coupling vertical alignment film composition, a polyimide vertical alignment film composition, or the like.
  • silane coupling type vertical alignment film an alignment film formed of a composition for a silane coupling type vertical alignment film containing a long chain alkyl group such as n-octadecyltriethoxysilane and a silicon compound having an alkoxy group is used.
  • polyimide-based vertical alignment films include soluble polyimide having a long-chain alkyl group or alicyclic structure in the side chain, and a polyimide system containing polyamic acid having a long-chain alkyl group or alicyclic structure in the side chain
  • the composition for vertical alignment films is exemplified.
  • composition for the vertical alignment film “JALS-2021” and “JALS-204” for polyimide-based vertical alignment film manufactured by JSR Corporation, and “RN-1517” manufactured by Nissan Chemical Industries, Ltd.
  • Commercial products such as “SE-1211” and “EXPOA-018” can be applied.
  • the method for forming the alignment film 12 is not particularly limited.
  • the alignment film may be formed by applying a composition for forming an alignment film on the substrate 11 and applying an alignment regulating force as necessary. it can.
  • the means for imparting the alignment regulating force to the alignment film can be a conventionally known one. More specifically, a method for applying and drying an alignment film forming composition, a method for applying an alignment film forming composition and curing with ultraviolet light, and the like, applying an alignment film forming composition, Examples thereof include a method of curing with ultraviolet light after drying.
  • the thickness of the alignment film 12 may be set as appropriate as long as the liquid crystalline components in the positive C plate 13 can be arranged in a certain direction.
  • the thickness of the alignment film is usually 1 nm or more, preferably 30 nm or more, more preferably 60 nm, still more preferably 100 nm or more, and usually 10 ⁇ m or less, preferably 5 ⁇ m or less, more preferably 1000 nm or less, more preferably 500 nm or less. It is.
  • the retardation film of the present invention has a positive C plate having positive C type characteristics.
  • the refractive index in the X-axis direction along the layer surface is Nx
  • the refractive index in the Y-axis direction perpendicular to the X-axis in the direction along the layer surface is Ny
  • the refractive index in the layer thickness direction is Nz
  • Nz> Nx ⁇ Ny and the optical axis is in the Nz direction.
  • the in-plane retardation value (Re) of the positive C plate is preferably small, preferably 20 nm or less, more preferably 10 nm or less, still more preferably 5 nm or less, and still more preferably 1 nm or less.
  • the positive C plate 13 is a layer that has the above-mentioned positive C characteristics and has a predetermined wavelength dispersion characteristic and bears an optical function.
  • the positive C plate 13 is a liquid crystal material (hereinafter, “liquid crystal material” is also referred to as “liquid crystal compound”) used for producing retardation layers of various optical films, and has a predetermined wavelength dispersion characteristic. It can be composed of a polymerizable liquid crystal composition containing a liquid crystal compound. That is, on the positive C plate 13, the liquid crystal compound is vertically (homeotropic) aligned.
  • the positive C plate is not limited to this, and may be configured without using a liquid crystal material.
  • the positive C plate 13 has a positive C-type characteristic.
  • the positive C plate 13 is obtained as Rth C450 / Rth C550 .
  • .DELTA.N C is 1.0 or less than 1.0. More specifically, in the case of .DELTA.N A is 1.0 or less to be described later, .DELTA.N C is less than 1.0, when .DELTA.N A is less than 1.0 .DELTA.N C is less than 1.0 . More preferably .DELTA.N C is less than 0.9.
  • this ⁇ N C has a relationship with ⁇ N A of the positive A plate 14 described later, which is
  • a retardation film having a positive A plate and a positive C plate is employed from the viewpoint of obtaining a good contrast in a wide viewing angle range.
  • each of the positive A plate and the positive C plate has wavelength dispersion of phase difference.
  • each of the wavelength dispersion characteristics is related to the characteristics of the retardation film as a whole. It has been found that by changing
  • ⁇ N A ⁇ N C is 0.15 or less, preferably 0.12 or less, more preferably 0.10 or less, still more preferably 0.08 or less, from the viewpoint of suppressing color fluctuation. More preferably, it is 0.06 or less, More preferably, it is 0.04 or less.
  • color change In view of obtaining good contrast over a wide range of viewing angles, and color change for each viewing angle (hereinafter, also referred to as "color change".)
  • .DELTA.N C is more preferably 0.87 or less, more More preferably, it is 0.85 or less.
  • .DELTA.N C is preferably 0.70 or more, more preferably 0.75 or more, more preferably 0.78 or more, still more preferably 0.80 or more.
  • the thickness of the positive C plate 13 is not particularly limited, but when a positive C plate is made of a liquid crystal material, it is preferably 0.3 ⁇ m or more and 3.0 ⁇ m or less from the viewpoint of obtaining a desired phase difference. Further, when a material other than the liquid crystal compound, for example, a thermoplastic resin composition containing a styrene resin and an acrylic resin is used (see JP 2010-185937 A), a desired retardation is obtained. From the viewpoint, it is preferably 50 ⁇ m or more and 150 ⁇ m or less. In addition, when using the retardation film of this invention for a flexible display apparatus, the thinner one as a whole retardation film is preferable, and it is preferable to produce positive C plate with a liquid crystal material.
  • the positive C plate is preferably prepared from a polymerizable liquid crystal composition containing a liquid crystal material, and the polymerizable liquid crystal composition preferably has a liquid crystal property and contains a liquid crystal material having a polymerizable functional group in the molecule.
  • the liquid crystal material include a disc-shaped liquid crystal material (discotic liquid crystal material) and a rod-shaped liquid crystal material.
  • the liquid crystal material is preferably a rod-shaped liquid crystal material. Since the reverse dispersibility is expressed from the difference in dispersibility between the main chain and the side chain, it is difficult for the discotic liquid crystal material to exhibit the reverse dispersibility.
  • a rod-like liquid crystal material is preferable because the dispersibility can be controlled by changing the main chain and the side chain, and the wavelength dispersibility can be easily adjusted.
  • the obtained plate has a characteristic of Nx ⁇ Ny> Nz, and it is difficult to obtain a positive C plate. It is preferable that at least one of a positive A plate and a positive C plate described later contains a polymerizable rod-like liquid crystal material, and both the positive A plate and the positive C plate contain a polymerizable rod-like liquid crystal material. More preferred.
  • the rod-shaped liquid crystal material is a general term for liquid crystal materials whose molecular shape can be regarded as a rod shape.
  • the rod-like liquid crystal compound is a compound in which the intrinsic birefringence of the liquid crystal material is positive uniaxial, and specifically, Nx> Ny ⁇ Nz, or Nz coefficient ((Nx ⁇ Nz) / (Nx ⁇ Ny) ) ⁇ 1 liquid crystal material. That the molecular shape can be regarded as a rod shape means a compound in which a / b> 1 when the major axis of the molecule is a and the minor axis of the molecule is b, preferably a / b ⁇ 2, preferably a / b ⁇ 3.
  • any conventionally known liquid crystal material may be used and is not particularly limited. As long as it has reverse wavelength dispersion characteristics, there can be mentioned, for example, liquid crystal compounds exhibiting reverse wavelength dispersion characteristics described in JP-T-2010-522892.
  • a liquid crystal material described in JP 2010-528992 A and a liquid crystal material described in International Publication No. 2013/180217 may be used.
  • the liquid crystal material include materials exhibiting a liquid crystal phase such as a nematic phase and a smectic phase. However, the liquid crystal material exhibits a nematic phase from the viewpoint of being easily arranged regularly as compared with liquid crystal materials exhibiting other liquid crystal phases. It is more preferable to use a liquid crystal material.
  • the liquid crystal material exhibiting a nematic phase it is preferable to use a material having spacers at both ends of the mesogen. A liquid crystal material having spacers at both ends of the mesogen is excellent in flexibility.
  • the liquid crystal material is preferably a polymerizable liquid crystal material having a polymerizable functional group in the molecule as described above.
  • a polymerizable functional group By having a polymerizable functional group, it becomes possible to polymerize and fix the liquid crystal material, so that the alignment stability is excellent and the phase change is less likely to occur over time.
  • the polymerizable liquid crystal material has two or more polymerizable functional groups in the molecule. By having two or more polymerizable functional groups, the three-dimensional alignment of the liquid crystal material can be further stabilized.
  • Examples of the polymerizable functional group include those that polymerize by the action of ionizing radiation such as ultraviolet rays and electron beams, or heat.
  • Examples of these polymerizable functional groups include radically polymerizable functional groups.
  • Representative examples of radically polymerizable functional groups include functional groups having at least one addition-polymerizable ethylenically unsaturated double bond, and specific examples include vinyl groups and acrylate groups with or without substituents. (Generic name including acryloyl group, methacryloyl group, acryloyloxy group, methacryloyloxy group) and the like.
  • a generally known cationic polymerizable functional group may be used as the polymerizable functional group.
  • an alicyclic ether group (epoxy group, oxetanyl group, etc.), a cyclic acetal group, Examples thereof include a cyclic lactone group, a cyclic imino ether group, a cyclic thioether group, a spiro orthoester group, and a vinyloxy group.
  • an alicyclic ether group and a vinyloxy group are preferable, and an epoxy group, an oxetanyl group, and a vinyloxy group are more preferable.
  • the liquid crystal material is particularly preferably one having a polymerizable functional group at the terminal.
  • a liquid crystal material for example, the ends of the liquid crystal material can be polymerized with each other to be in a three-dimensionally aligned state, thus providing stability and exhibiting optical properties.
  • An excellent retardation film can be formed.
  • a liquid crystal material can be used individually by 1 type or in mixture of 2 or more types.
  • the rod-like liquid crystal material is exemplified below, but the present invention is not limited to these examples.
  • the content of the liquid crystal material in the polymerizable liquid crystal composition is not particularly limited, but is preferably contained in the polymerizable liquid crystal composition in a proportion of 5% by mass or more and 40% by mass or less. More preferably, it is contained in a proportion of 30% by mass or less.
  • the amount of the liquid crystal material is less than 5% by mass, it is necessary to apply a large amount at the time of production, and it is difficult to produce and a large amount of solvent needs to be removed. .
  • it exceeds 40% by mass the viscosity of the polymerizable liquid crystal composition becomes too high, so that the workability of producing the layer is deteriorated.
  • the content of the liquid crystal material with respect to the solid content mass (mass excluding the solvent) of the polymerizable liquid crystal composition is preferably 75 to 99.9% by mass, more preferably 80 to 99% by mass, and still more preferably 85 to It is 98 mass%.
  • the liquid crystal material described above is usually dissolved in a solvent.
  • a solvent it is necessary that the liquid crystal material described above can be uniformly dissolved, but a known solvent can be used.
  • solvents include hydrocarbons such as toluene and xylene; ketones such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone and methyl isobutyl ketone; ethers such as tetrahydrofuran; 1-methoxy-2-propanol, 1-methoxy Examples include glycol ethers such as propyl-2-acetate; esters such as methyl acetate, ethyl acetate, and butyl acetate.
  • a solvent may be used individually by 1 type and may use 2 or more types together.
  • the content of the solvent in the polymerizable liquid crystal composition is preferably 66 parts by mass or more and 1,900 parts by mass or less with respect to 100 parts by mass of the liquid crystal material (liquid crystal compound). If the amount of the solvent is less than 66 parts by mass, the liquid crystal material may not be dissolved uniformly. On the other hand, if it exceeds 1,900 parts by mass, a part of the solvent may remain and reliability may be lowered, and uniform coating may not be possible. From this viewpoint, it is more preferably 900 parts by mass or less.
  • the polymerizable liquid crystal composition may contain other additives as necessary.
  • the other compound is not particularly limited as long as it has compatibility with the liquid crystal material and does not impair the above-described alignment order of the liquid crystal material.
  • a polymerization initiator, a polymerizable compound, a plasticizer, A surfactant and a silane coupling agent can be exemplified.
  • the retardation film of the present invention has a positive A plate having positive A type characteristics.
  • the refractive index in the X-axis direction along the layer surface is Nx
  • the refractive index in the Y-axis direction perpendicular to the X-axis in the direction along the layer surface is Ny
  • the refractive index in the layer thickness direction is Nz
  • the relationship is Nx> Ny ⁇ Nz and the optical axis is in the Nx direction.
  • Ny ⁇ Nz includes a refractive index difference between Ny and Nz of 0.03 or less. If
  • the positive A plate 14 is a layer having a positive A characteristic and a predetermined chromatic dispersion characteristic and carrying an optical function.
  • the positive A plate 14 is a liquid crystal material used for producing retardation layers of various optical films, and is preferably composed of a polymerizable liquid crystal composition containing the liquid crystal material. That is, the liquid crystal material has a homogeneous alignment.
  • the homogeneous alignment means a state in which the molecular long axes of the liquid crystal material are aligned in the horizontal direction.
  • the positive A plate preferably exhibits a smectic phase.
  • the smectic phase refers to a state in which molecules aligned in one direction have a phase structure.
  • the nematic phase refers to a state in which the constituent molecules have an orientational order but do not have a three-dimensional positional order.
  • Positive A plate 14 specifically comprises a positive A-type properties, when the front retardation at a wavelength of 450nm front retardation at a wavelength of Re A450, 550 nm was Re A550, obtained by Re A450 / Re A550 ⁇ N A is less than 1.0 or less than 1.0. More specifically, when the .DELTA.N C is 1.0 or less, .DELTA.N A is less than 1.0, when .DELTA.N C is less than 1.0 is .DELTA.N A is 1.0 or less. More preferably .DELTA.N A is less than 0.9.
  • this .DELTA.N A shows the relationship between .DELTA.N C positive C plate 13 described above is,
  • color change In view of obtaining good contrast over a wide range of viewing angles, and color change for each viewing angle (hereinafter, also referred to as "color change".)
  • .DELTA.N A is more preferably 0.87 or less, more More preferably, it is 0.85 or less.
  • .DELTA.N A is preferably 0.70 or more, more preferably 0.75 or more, more preferably 0.78 or more, still more preferably 0.80 or more.
  • the thickness of the positive A plate 14 is not particularly limited, but when the positive A plate is made of a liquid crystal material, it is preferably 0.3 ⁇ m or more and 3.0 ⁇ m or less from the viewpoint of obtaining a desired phase difference.
  • a positive A plate from a material other than a liquid crystal material, for example, a composition containing a polycarbonate-based resin and / or an amorphous cycloolefin-based resin (JP 2010-185937 A, JP 2009-2009 A). From the viewpoint of obtaining a desired phase difference, the thickness of the positive A plate is preferably 15 ⁇ m or more and 150 ⁇ m or less, and more preferably 15 ⁇ m or more and 100 ⁇ m or less.
  • a uniaxially stretched polycarbonate resin uniaxially stretched PC
  • a uniaxially stretched cycloolefin resin uniaxially stretched COP
  • the thinner one as a whole retardation film is preferable, and it is preferable to produce positive A plate with a liquid crystal material.
  • the positive A plate is preferably prepared from a polymerizable liquid crystal composition containing a liquid crystal material, and the polymerizable liquid crystal composition preferably has a liquid crystal property and contains a liquid crystal material having a polymerizable functional group in the molecule.
  • the liquid crystal material include a disc-shaped liquid crystal material (discotic liquid crystal material) and a rod-shaped liquid crystal material.
  • the liquid crystal material is preferably a rod-shaped liquid crystal material. Since the reverse dispersibility is expressed from the difference in dispersibility between the main chain and the side chain, it is difficult for the discotic liquid crystal material to exhibit the reverse dispersibility.
  • a rod-like liquid crystal material is preferable because the dispersibility can be controlled by changing the main chain and the side chain, and the wavelength dispersibility can be easily adjusted.
  • the liquid crystal material is not particularly limited, and means all liquid crystal materials included in the composition forming the positive A plate, and may consist of only one liquid crystal material, or two or more liquid crystal materials. It may be a mixture of materials.
  • any conventionally known liquid crystal material may be used as long as it is a liquid crystal material exhibiting a prescribed wavelength dispersion, and is not particularly limited.
  • compounds represented by general formula (I) described in JP-A-2008-297210, compounds represented by general formula (1) described in JP-A-2010-84032, and JP-A-2016- Examples thereof include liquid crystal compound A0 described in Japanese Patent No. 53709.
  • Examples of the polymerizable functional group include those that polymerize by the action of ionizing radiation such as ultraviolet rays and electron beams, or heat.
  • Examples of these polymerizable functional groups include radically polymerizable functional groups.
  • Representative examples of radically polymerizable functional groups include functional groups having at least one addition-polymerizable ethylenically unsaturated double bond, and specific examples include vinyl groups and acrylate groups with or without substituents. (Generic name including acryloyl group, methacryloyl group, acryloyloxy group, methacryloyloxy group) and the like.
  • a generally known cationic polymerizable functional group may be used as the polymerizable functional group.
  • an alicyclic ether group (epoxy group, oxetanyl group, etc.), a cyclic acetal group, Examples thereof include a cyclic lactone group, a cyclic imino ether group, a cyclic thioether group, a spiro orthoester group, and a vinyloxy group.
  • an alicyclic ether group and a vinyloxy group are preferable, and an epoxy group, an oxetanyl group, and a vinyloxy group are more preferable.
  • the liquid crystal material for the positive A plate is particularly preferably one having a polymerizable functional group at the terminal.
  • a liquid crystal compound for example, the ends of the liquid crystal material can be polymerized with each other to be in a three-dimensionally aligned state, thus providing stability and exhibiting optical properties.
  • An excellent retardation film can be formed.
  • a liquid crystal material may be used individually by 1 type, and may use 2 or more types together.
  • the content of the liquid crystal material in the polymerizable liquid crystal composition is not particularly limited, but is preferably contained in the polymerizable liquid crystal composition in a proportion of 5% by mass or more and 40% by mass or less. More preferably, it is contained in a proportion of 30% by mass or less.
  • the amount of the liquid crystal material is less than 5% by mass, it is necessary to apply a large amount at the time of production, and it is difficult to produce and a large amount of solvent needs to be removed. .
  • the amount exceeds 40 parts by mass the viscosity of the polymerizable liquid crystal composition becomes too high, so that the workability of producing the layer is deteriorated.
  • the content of the liquid crystal material with respect to the solid content mass (mass excluding the solvent) of the polymerizable liquid crystal composition is preferably 75 to 99.9% by mass, more preferably 80 to 99% by mass, and still more preferably 85 to It is 98 mass%.
  • the liquid crystal material described above is usually dissolved in a solvent.
  • a solvent it is necessary that the liquid crystal material described above can be uniformly dissolved, but a known solvent can be used.
  • solvents include hydrocarbons such as toluene and xylene; ketones such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone and methyl isobutyl ketone; ethers such as tetrahydrofuran; 1-methoxy-2-propanol, 1-methoxy Examples include glycol ethers such as propyl-2-acetate; esters such as methyl acetate, ethyl acetate, and butyl acetate.
  • a solvent may be used individually by 1 type and may use 2 or more types together.
  • the content of the solvent in the polymerizable liquid crystal composition is preferably 66 parts by mass or more and 1,900 parts by mass or less with respect to 100 parts by mass of the liquid crystal material (liquid crystal compound). If the amount of the solvent is less than 66 parts by mass, the liquid crystal material may not be dissolved uniformly. On the other hand, if it exceeds 1,900 parts by mass, a part of the solvent may remain and reliability may be lowered, and uniform coating may not be possible. From this viewpoint, it is more preferably 900 parts by mass or less.
  • the polymerizable liquid crystal composition may contain other additives as necessary.
  • the other compound is not particularly limited as long as it has compatibility with the liquid crystal material and does not impair the above-described alignment order of the liquid crystal material.
  • a polymerization initiator, a polymerizable compound, a plasticizer, A surfactant and a silane coupling agent can be exemplified.
  • the retardation film 10 having the above configuration has the following characteristics. That is, when the front retardation of the front retardation at a wavelength of 450nm of the positive A plate at the wavelength of the Re A450, 550 nm was Re A550, .DELTA.N A obtained by Re A450 / Re A550, the thickness direction at a wavelength of 450nm of the positive C plate when the thickness direction retardation was Rth C550 retardation at the wavelength of the Rth C450, 550 nm, for .DELTA.N C obtained by Rth C450 / Rth C550, ⁇ N a , and one of .DELTA.N C is 1.0 or less and the other 1.0 And a relationship of
  • a retardation film having a positive A plate and a positive C plate is employed from the viewpoint of obtaining good contrast in a wide viewing angle range.
  • each of the positive A plate and the positive C plate has wavelength dispersion of phase difference.
  • each of the wavelength dispersion characteristics is related to the characteristics of the retardation film as a whole. It has been found that by changing
  • a phase difference film in which color variation is suppressed by stacking a positive A plate and a positive C plate and further setting a wavelength dispersion relationship between the positive A plate and the positive C plate within a specific range. Can be provided.
  • the retardation film 10 includes a base material supplying process, an alignment film forming process, a positive C plate forming process, and a positive A plate forming process.
  • the base material supplying step the base material 11 is provided by a roll.
  • the alignment film forming step the alignment film 12 is formed on one surface of the substrate 11. Specifically, it is as follows. The base material 11 is pulled out from the supply reel, and the composition constituting the alignment film is laminated on the base material 11.
  • the method for laminating the composition on the substrate 11 is not particularly limited, and examples thereof include a die coating method, a gravure coating method, a reverse coating method, a knife coating method, a dip coating method, a spray coating method, and an air knife coating. Methods such as spin coating, roll coating, printing, dipping and pulling up, curtain coating, casting, bar coating, extrusion coating, and E-type coating can be used. And the alignment film 12 is made by drying the laminated
  • the composition constituting the positive C plate is laminated on the alignment film 12 in the same manner as the alignment film forming step, and the composition is cured by irradiating with ultraviolet rays. As a result, a positive C plate 13 is obtained.
  • Low-pressure mercury lamps sterilization lamps, fluorescent chemical lamps, black lights
  • high-pressure discharge lamps high-pressure mercury lamps, metal halide lamps
  • short arc discharge lamps ultra-high-pressure mercury lamps, xenon lamps, mercury xenon) Lamp
  • a metal halide lamp, a xenon lamp, a high-pressure mercury lamp, and the like can be preferably used.
  • the wavelength of ultraviolet rays is appropriately set according to the material constituting the composition, and specifically, the wavelength is 210 nm or more and 380 nm or less, preferably 230 nm or more and 380 nm or less, more preferably 250 nm or more and 380 nm or less. Is preferably used.
  • As the irradiation amount of the ultraviolet (integrated light quantity) is not particularly limited, for example, it is preferably in the range of 100 mJ / cm 2 or more 1,500 mJ / cm 2 or less, 100 mJ / cm 2 or more 800 mJ / cm 2 More preferably within the following range.
  • the composition constituting the positive A plate is laminated on the positive C plate 13 and cured. This can be performed in the same manner as the formation of the positive C plate 13. In this case, it is preferable to provide an alignment film for the positive A plate.
  • the present invention is not limited to this, and a positive A plate may be separately prepared and transferred to the positive C plate and stacked.
  • the retardation film of the present invention may be produced by laminating a positive C plate on a substrate having positive A characteristics.
  • a positive C plate may be prepared separately, and the positive C plate may be transferred to a positive A plate to produce the retardation film 10 of the present invention.
  • an optical functional laminate to which the above-described retardation film 10 is applied will be described.
  • this optical function laminated body it can arrange
  • the aspect which uses the retardation film of this invention as an optical compensation film of a liquid crystal display device, and the aspect used for the external light reflecting plate of an organic electroluminescent display device with a linear polarizer are illustrated.
  • the circularly polarizing plate or elliptically polarizing plate of the present invention has the retardation film and polarizer of the present invention, and is preferably a circularly polarizing plate when used as an external light antireflection film.
  • the circularly polarizing plate and the elliptically polarizing plate are disposed on an organic electroluminescence display device or a touch panel and have a role of exhibiting antireflection performance.
  • a retardation film is provided on the light source side of the display panel, and a polarizer is provided on the incident side of light that is desired to prevent reflection, such as external light.
  • the positive A plate is a half-wave retardation plate (hereinafter also referred to as “ ⁇ / 2 retardation plate”), a quarter-wave retardation plate ( Hereinafter, it is also referred to as “ ⁇ / 4 retardation plate”) or a combination thereof.
  • the retardation film is used as a circularly polarizing plate
  • the positive A plate is a reverse dispersion ⁇ / 4 retardation plate, or a ⁇ / 4 retardation plate and a ⁇ / 2 position. It is preferable that it is a laminated body with a phase difference plate.
  • the in-plane retardation of the ⁇ / 2 retardation plate at a wavelength of 550 nm is preferably 200 to 300 nm, more preferably 220 to 280 nm, and further preferably 240 to 275 nm.
  • the ⁇ / 4 retardation plate has an in-plane retardation at a wavelength of 550 nm of preferably 100 to 180 nm, more preferably 110 to 160 nm, and still more preferably 120 to 150 nm.
  • the circularly polarizing plate or the elliptically polarizing plate has the retardation film and the polarizer of the present invention.
  • the polarizer preferably forms a polarizing plate together with a protective film.
  • any of an iodine-based polarizer, a dye-based polarizer using a dichroic dye, and a polyene-based polarizer may be used.
  • the iodine polarizer and the dye polarizer are generally produced using a polyvinyl alcohol film.
  • the absorption axis of the polarizer corresponds to the stretching direction of the film.
  • a polarizer stretched in the longitudinal direction has an absorption axis parallel to the longitudinal direction
  • a polarizer stretched in the lateral direction perpendicular to the transport direction
  • a polarizer generally has a protective film.
  • the antireflection layer described later and the above-described retardation film can function as a protective film for the polarizer.
  • a protective film for a polarizer is laminated separately from the antireflection layer and the retardation film, it is preferable to use a cellulose ester film having high optical isotropy as the protective film.
  • the retardation film of the present invention is suitably used for a display panel. Further, the present invention is applied to a display device provided with the display.
  • a display panel a liquid crystal display panel, an organic electroluminescence display panel (hereinafter also referred to as “organic EL display panel”, the same shall apply hereinafter), a micro light-emitting diode display panel (hereinafter referred to as “micro LED display panel”), etc.
  • the display device include a liquid crystal display device including the liquid crystal display panel, an organic EL display device including the organic EL display panel, and a micro LED display device including the micro LED display panel.
  • a display device is preferred.
  • a liquid crystal display panel is provided with a liquid crystal cell between two layers of polarizers, and a backlight is provided on the incident light side of the liquid crystal display panel.
  • the polarizer preferably forms a polarizing plate together with the protective film.
  • the retardation film of the present invention may be used for any of the four polarizer protective films.
  • the retardation film of the present invention is preferably disposed between the liquid crystal cell and the polarizing plate in the liquid crystal display panel, and may be used as a protective film disposed between the liquid crystal cell and the polarizing plate.
  • the liquid crystal display device is not particularly limited as long as it includes a liquid crystal display panel and a backlight, but the liquid crystal display panel backlight, a drive control unit electrically connected to the display panel and the backlight, and these It is preferable to provide the housing
  • FIG. 2 is a diagram illustrating a layer configuration of the liquid crystal display device 20 including the retardation film 10.
  • the optical functional laminate 26 is disposed on the light exit surface side of the liquid crystal display panel 23.
  • the polarizer 27 and the retardation film 10 for linearly polarizing are included and used for optical compensation.
  • an IPS liquid crystal display device In-plane switching liquid crystal display; IPS-LCD
  • a liquid crystal display panel 23 is disposed on the side of the observer of the backlight 22.
  • the liquid crystal display panel 23 is provided with a liquid crystal cell 25 made of IPS liquid crystal, and a linearly polarizing plate 24 is provided on the backlight 22 side of the liquid crystal cell 25 by, for example, a pressure-sensitive adhesive layer (not shown).
  • the linearly polarizing plate 24 is configured, for example, by sandwiching a polarizer that functions as a linearly polarizing plate between two substrates made of a transparent film. Moreover, you may use the retardation film 10 of this invention as one polarizer protective film (base material).
  • the IPS mode (hereinafter also referred to as IPS mode) is an aspect in which liquid crystal materials are aligned substantially in parallel during black display, and liquid crystal molecules are aligned in parallel to the substrate surface in the absence of voltage.
  • IPS liquid crystal display device including the retardation film of the present invention, color variation due to an oblique viewing angle when viewed from an oblique direction is suppressed.
  • the retardation film 10 is provided only on the outgoing light side, but the present invention is not limited to this, and between the linear polarizing plate 24 on the incident light side and the liquid crystal cell 25.
  • the retardation film 10 of the present invention may be further arranged.
  • FIG. 1 the liquid crystal display device shown in FIG.
  • the retardation film 10 of the present invention that functions as an optical compensation film is disposed, color variation due to an oblique viewing angle is suppressed.
  • the IPS mode liquid crystal display device include Japanese Patent Application Laid-Open Nos. 2003-15160, 2003-75850, 2003-295171, 2004-12730, 2004-12731, 2005-106967, JP-A-2005-134914, JP-A-2005-241923, JP-A-2005-284304, JP-A-2006-189758, JP-A-2006-194918, JP-A-2006-220680, JP-A-2007-140353, JP 2007-178904, JP 2007-293290, JP 2007-328350, JP 2008-3251, JP 2008-39806, JP 2008-40291, JP 2008-65196, JP 2008-76849, JP 2008-9681 It can be used those described in each publication of issue, and the like.
  • the optical functional laminate 26 is disposed on the exit surface of the liquid crystal cell 25.
  • This optical functional laminate 26 includes a retardation film 10 that constitutes an optical compensation film for optical compensation, a polarizer 27, and a base material (protective film) 28 that is a surface material.
  • a transparent film such as TAC is applied to the substrate 28, and a polarizer 27 as a linear polarizer is provided here.
  • An antireflection layer (low refractive index layer) may be further laminated on the surface (viewing side) of the polarizer 27.
  • the retardation film 10 constituting the optical functional laminate 26 functions as an optical compensation film from an oblique field of view in a wide band.
  • the organic EL display device is a display device in which a light emitting layer or a plurality of organic compound thin films including a light emitting layer are formed between a pair of electrodes of an anode and a cathode, and the organic EL display of the present invention is provided on the viewing side of the organic EL display device.
  • the organic compound thin film may have a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, a protective layer, and the like, and each of these layers has other functions. It may be.
  • FIG. 3 is a diagram illustrating a layer configuration of the organic EL display panel 30 including the retardation film 10.
  • the optical functional laminate 36 is an external light antireflection film disposed on the light emission surface side of the organic EL display element 33.
  • This optical functional laminate 36 includes a polarizer 37 for linearly polarizing and the retardation film 10 and has an external light antireflection function as a so-called circularly polarizing plate.
  • the organic EL display device is not particularly limited as long as it includes the organic EL display panel of the present invention, and the organic EL display panel, a drive control unit electrically connected to the organic EL display panel, and these It is preferable to provide the housing
  • the organic EL display panel 30 is a device that provides an observer with video light emitted by the organic EL display element 33, and an optical functional laminate 36 is disposed on the emission surface of the organic EL display element 33.
  • the optical functional laminate 36 functions as a circularly polarizing plate for preventing reflection of external light, and includes a retardation film 10, a polarizer 37 as a linear polarizer, and a base material (protective film) 38 as a surface material.
  • the positive A plate 14 of the retardation film 10 functions as a ⁇ / 4 retardation layer, and the positive C plate 13 is laminated thereon.
  • the retardation film 10 constituting the optical functional laminate 36 functions as an external light antireflection film in a wide band.
  • the simulation in the embodiment by modeling the laminate following the liquid crystal display panel 23 shown in FIG. 2, by changing the .DELTA.N C of .DELTA.N A and the positive C plate of the positive A plate retardation film 10 contained herein , Contrast, and hue change at 60 ° viewing angle. Further, by changing the .DELTA.N C of the positive A plate .DELTA.N A and the positive C plate of the retardation film 10 following the organic EL display panel shown in FIG. 3 models the laminate contained therein, 60 ° field of view The hue change at the corner was evaluated.
  • the simulation of the liquid crystal display panel was performed using LCD-MASTER (Shintech Co., Ltd.) and the light source as the LED light source.
  • the layer structure of the model is, from the observer side, an upper polarizing plate having an absorption axis of 90 ° with respect to the reference, a positive C plate, a positive A plate having an optical axis parallel to the absorption axis of the upper polarizing plate, a liquid crystal cell, and A lower polarizing plate having an absorption axis of 0 ° with respect to the reference was used, and light was irradiated from the lower polarizing plate side.
  • the contrast of the liquid crystal display panel was calculated by (white display (ON) luminance / black display (OFF) luminance).
  • the luminance of the black display was calculated with the orientation direction of the liquid crystal molecules of the liquid crystal cell set to 0 ° with respect to the reference.
  • white display the average value when the orientation direction of the liquid crystal molecules of the liquid crystal cell is 45 ° with respect to the reference and 135 ° is defined as the luminance of white display.
  • the simulation of the organic EL display panel was performed using an LCD-MASTER (Shintech Co., Ltd.) and a light source (external light incident on the panel) as a D65 light source.
  • the angle formed by the absorption axis of the polarizer and the slow axis of the positive A plate was 45 °.
  • a reflection plate (100% reflection) was provided on the side of the positive C plate opposite to the side on which the positive A plate was provided.
  • FIG. 5 ⁇ Viewing angle hue change>
  • the upper diagram in FIG. 5 is a diagram showing the laminate in plan view
  • the lower diagram in FIG. 5 is a diagram showing the laminate from the side.
  • the hue at each position was obtained.
  • a * and b * are obtained by making one round (360 °) in increments of 5 ° at the 60 ° viewing angle.
  • the a * in at an angle, b * were respectively a * 2, b * 2, angle of a * in the preceding (an angle -5 °), the b * a * 1, b * 1 and To do.
  • the color fluctuation value for 5 degrees is obtained by the following formula. ⁇ (A * 2 -a * 1 ) 2 + (b * 2 -b * 1) 2 ⁇ 0.5
  • the color variation values for 5 ° were obtained in increments of 5 ° from 0 ° to 360 °, and the sum of all color variations was obtained and evaluated. A smaller total color variation means less color variation.
  • a liquid crystal display device was manufactured by laminating a retardation film in which a positive C plate and a positive A plate were laminated and an optical laminate in which a polarizing plate was laminated on a liquid crystal display device in which the glass portion of the liquid crystal cell was exposed.
  • a portable information terminal which is a commercially available organic EL display device, is disassembled, the circularly polarizing plate is peeled off, and a positive C plate and a positive A plate are laminated on the organic EL display device after the circularly polarizing plate is peeled off.
  • stacked the film and the polarizing plate was bonded together, and the organic electroluminescence display was produced.
  • the evaluation criteria are as follows. 3 points: I don't mind the color difference. 2 points: There is a color difference, but there is no problem.
  • Table 1 shows the value of S 2 / S 1 in the contrast evaluation for the liquid crystal display panel.
  • Table 2 shows the total color variation in the liquid crystal display panel.
  • Table 3 shows the total color variation in the organic EL display panel.
  • Table 4 shows the evaluation by visual confirmation of the visibility at a viewing angle of 60 ° in the liquid crystal display device, and
  • Table 5 shows the evaluation by visual confirmation of the visibility at a viewing angle of 60 ° in the organic EL display device.
  • one of ⁇ N A of the positive A plate and ⁇ N C of the positive C plate is 1.0 or less and the other is less than 1.0, and

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Polarising Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本発明の目的は、広帯域に亘って、広い視野角の範囲でコントラストが良好で、視野角度ごとの色の変化を抑えることができる位相差フィルムを提供することである。更に、該位相差フィルムを用いた円偏光板又は楕円偏光板、表示パネル、液晶表示パネル、有機EL表示パネル、表示装置、液晶表示装置、及び有機EL表示装置を提供することである。 本発明の位相差フィルムは、ポジティブA型の特性を備え、450nmの波長における正面リタデーションをReA450、550nmの波長における正面リタデーションをReA550としたとき、ReA450/ReA550をΔNAとするポジティブAプレートと、ポジティブC型の特性を備え、450nmの波長における厚み方向リタデーションをRthC450、550nmの波長における厚み方向リタデーションをRthC550としたとき、RthC450/RthC550をΔNCとするポジティブCプレートと、を有し、ΔNA、及びΔNCの一方が1.0以下、他方が1.0未満であるとともに、|ΔNA-ΔNC|≦0.15である。

Description

位相差フィルム、円偏光板又は楕円偏光板、表示パネル、液晶表示パネル、有機EL表示パネル、表示装置、液晶表示装置、及び有機EL表示装置
 本発明は、位相差フィルム、並びに、該位相差フィルムを備える円偏光板又は楕円偏光板、表示パネル、液晶表示パネル、有機EL表示パネル、表示装置、液晶表示装置、及び有機EL表示装置に関する。
 画像表示装置等に適用される光学フィルムとして、入射した光に対して位相差層により所望の位相差を付与する位相差フィルムがある。例えば有機エレクトロルミネッセンス(有機EL)表示装置では、λ/4位相差フィルムを直線偏光板と組み合わせた形態で円偏光板として使用され、外光反射防止フィルムとして機能する。また、IPSモード等の液晶表示装置では、斜め方向からの視野に対するコントラストを高めるために、ポジティブAプレートとポジティブCプレートとが組み合わされた位相差フィルムが光学補償フィルムの一部として用いられている。
 このような位相差フィルムは、全ての波長に対して同様の効果をもたらすものではないことがよく知られている。
 例えば有機EL表示装置の外光反射フィルムを例に取れば、λ/4位相差フィルム及び偏光子を積層した外光反射フィルムでは波長550nmの光のみを円偏光にさせることができるが、これより長い波長、及び短い波長の光は楕円偏光となって、完全な外光反射防止機能を発揮することが難しい。
 また、液晶表示装置における光学補償フィルムに用いられる位相差フィルムを例に取れば、λ/4位相差フィルムを用いることで、正面方向の色味に対する補償を行うことができるが、斜め視野角方向に対しては、十分な色味補償を行うことが困難であった。
 この問題に対し、広い波長域(広帯域)で機能する位相差フィルムとして逆波長分散特性を有する位相差フィルムを用いることが提案されている(例えば特許文献1及び特許文献2参照)。ここで、逆波長分散特性とは、短波長側ほど透過光における位相差が小さい波長分散特性であり、より具体的には、450nmの波長における正面リタデーション(Re450)と、550nmの波長における正面リタデーション(Re550)との関係が、Re450<Re550であり、Re450/Re550<1となる波長分散特性である。これに対して反対に、短波長側ほど透過光における位相差が大きい波長分散特性、より具体的には、450nmの波長における正面リタデーション(Re450)と、550nmの波長における正面リタデーション(Re550)との関係が、Re450>Re550であり、Re450/Re550>1となる波長分散特性は、正波長分散特性と呼ばれている。
 また、波長分散特性とは別に、ポジティブAの特性を有する位相差層(ポジティブAプレート)、ネガティブAの特性を有する位相差層(ネガティブAプレート)、ポジティブCの特性を有する位相差層(ポジティブCプレート)、及びネガティブCの特性を有する位相差層(ネガティブCプレート)を単体、又は必要に応じて組み合わせて視野角特性、色味等の種々の光学特性を改善する方法が提案されている。
 ここで、ポジティブAの特性とは、層面に沿ったX軸方向の屈折率をNx、層面に沿った方向でX軸に直交するY軸方向の屈折率をNy、層厚方向の屈折率をNzとしたとき、Nx>Ny≒Nzの関係であるとともに、光軸がNx方向となる特徴を有するものである。
 ネガティブAの特性とは、Nz≒Nx>Nyの関係であるとともに、光軸がNy方向となる特徴を有するものである。
 ポジティブCの特性とは、Nz>Nx≒Nyの関係であるとともに、光軸がNz方向となる特徴を有するものである。
 そしてネガティブCの特性とは、Nx≒Ny>Nzの関係であるとともに、光軸がNz方向となる特徴を有するものである。
 また、特許文献3に記載されているように、偏光板と液晶セルとの間に視野角補償のために、1つ以上の負の二軸性位相差フィルム(nx>ny>nz)と1つ以上の+Cプレート(nx=ny<nz)とが負の二軸性位相差フィルムが偏光板に隣接するように配置されているIPS表示装置が知られている。
特開2016-53709号公報 特開2015-14712号公報 特表2006-520008号公報
 ところが、従来から提案されているAプレート、及びCプレートを単に組み合わせて用いても、コントラストが良好な視野角が狭くなってしまったり、見る角度によってフィルムに色の変化が表れることが多く、改善が望まれていた。
 また、特許文献3に記載された発明では、視野角コントラストは改善するが、傾斜角において、色づきが発生するという問題があることを発見した。
 本発明は、上記問題に鑑み、広帯域に亘って、広い視野角の範囲でコントラストが良好で、視野角度ごとの色の変化を抑えることができる位相差フィルムを提供することを課題とする。また、この位相差フィルムを用いた円偏光板又は楕円偏光板、表示パネル、液晶表示パネル、有機EL表示パネル、表示装置、液晶表示装置、及び有機EL表示装置を提供することを課題とする。
 上記の課題に対して本発明者は鋭意検討を重ねた結果、ポジティブAプレート、及びポジティブCプレートの個々の波長分散特性のみでなく、両プレートの波長分散特性の関係も光学性能に影響を与えるとの知見を得て本発明を完成させた。
 本発明は、以下の〔1〕~〔13〕に関する。
 〔1〕 ポジティブA型の特性を備え、450nmの波長における正面リタデーションをReA450、550nmの波長における正面リタデーションをReA550としたとき、ReA450/ReA550をΔNとするポジティブAプレートと、
 ポジティブC型の特性を備え、450nmの波長における厚み方向リタデーションをRthC450、550nmの波長における厚み方向リタデーションをRthC550としたとき、RthC450/RthC550をΔNとするポジティブCプレートと、を有し、前記ΔN、及び前記ΔNの一方が1.0以下、他方が1.0未満であるとともに、
   |ΔN-ΔN|≦0.15
 である、位相差フィルム。
 〔2〕 前記ΔN、及び前記ΔNの少なくとも一方が0.9未満である、〔1〕に記載の位相差フィルム。
 〔3〕 前記ΔN、及び前記ΔNのいずれもが0.9未満である、〔1〕に記載の位相差フィルム。
 〔4〕 前記ΔN、及び前記ΔNのいずれもが0.75以上である、〔1〕~〔3〕のいずれかに記載の位相差フィルム。
 〔5〕 前記ポジティブAプレート、及び前記ポジティブCプレートの少なくとも一方が重合性棒状液晶材料を含有してなる、〔1〕~〔4〕のいずれか記載の位相差フィルム。
 〔6〕 〔1〕~〔5〕のいずれかに記載の位相差フィルム、及び偏光子を有する、円偏光板又は楕円偏光板。
 〔7〕 〔1〕~〔5〕のいずれかに記載の位相差フィルムを備える、表示パネル。
 〔8〕 2つの偏光子と、該2つの偏光子の間に配置される〔1〕~〔5〕のいずれかに記載の位相差フィルム及び液晶層と、を備える、光学補償機能を有する液晶表示パネル。
 〔9〕 有機EL表示素子と、該有機EL表示素子の出光側に配置される〔1〕~〔5〕のいずれかに記載の位相差フィルム及び偏光子をこの順で備える外光反射防止フィルムと、を備える、有機EL表示パネル。
 〔10〕 〔7〕~〔9〕のいずれかに記載の表示パネルを備える、表示装置。
 〔11〕 〔8〕に記載の液晶表示パネルを備える、液晶表示装置。
 〔12〕 前記液晶表示がIPSモードの液晶表示装置である、〔11〕に記載の液晶表示装置。
 〔13〕 〔9〕に記載の有機EL表示パネルを備える、有機EL表示装置。
 本発明によれば、広帯域に亘って、広い視野角でコントラスト、光学補償をすることが可能な位相差フィルムを提供でき、これを用いた円偏光板又は楕円偏光板、表示パネル、液晶表示パネル、有機EL表示パネル、表示装置、液晶表示装置、及び有機EL表示装置に適用することも可能である。
位相差フィルム10の層構成の一例を示す図である。 位相差フィルム10を適用した液晶表示装置20の層構成を説明する図である。 位相差フィルム10を適用した有機EL表示装置30の層構成を説明する図である。 実施例におけるコントラストの評価について説明する図である。 実施例における色相の評価方法について説明する図である。 実施例における色相の評価について説明する図である。
 以下、本発明を具体的な形態例で詳しく説明する。ただし、本発明は以下の形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。
[位相差フィルム]
 本発明の位相差フィルムは、ポジティブAプレートと、ポジティブCプレートとを有し、前記ポジティブAプレートは、ポジティブA型の特性を備え、前記ポジティブCプレートは、ポジティブC型の特性を備える。また、ポジティブAプレートにおいて、450nmの波長における正面リタデーションをReA450、550nmの波長における正面リタデーションをReA550としたとき、ReA450/ReA550をΔNとし、ポジティブCプレートにおいて、450nmの波長における厚み方向リタデーションをRthC450、550nmの波長における厚み方向リタデーションをRthC550としたとき、RthC450/RthC550をΔNとしたとき、前記ΔN、及び前記ΔNの一方が1.0以下、他方が1.0未満であるとともに、|ΔN-ΔN|≦0.15である。
<基材>
 図1は1つの形態に係る本発明の位相差フィルム10の層構成を説明する図である。本形態では、例えば画像表示装置に対して、この位相差フィルム10を各種の他の光学フィルムとともに液晶表示パネル、有機EL表示パネルに配置することで、種々の光学特性を向上させることができる。光学特性としては例えば外光反射、視野角特性の向上、斜め方向の光漏れの低減に係る光学補償、色味の補正等が挙げられる。
 図1よりわかるように、本形態の位相差フィルム10は、ポジティブCプレート13、及び、ポジティブAプレート14を有して構成されている。図1では、該位相差フィルム10は、基材11に設けられた配向膜12上に設けられている。
 基材11は、ガラス基材、金属箔、樹脂基材等が挙げられる。その中でも、基材は透明性を有することが好ましく、従来公知の透明基材の中から適宜選択することができる。なお、以下の例に限定されない。
 透明基材としては、ガラス基材の他、トリアセチルセルロース等のアセチルセルロース系樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリ乳酸等のポリエステル系樹脂;ポリプロピレン、ポリエチレン、ポリメチルペンテン等のオレフィン系樹脂;(メタ)アクリル系樹脂;ポリウレタン系樹脂;ポリエーテルスルホン系樹脂;ポリカーボネート系樹脂;ポリスルホン;ポリエーテル系樹脂;ポリエーテルケトン系樹脂;(メタ)アクロニトリル系樹脂;シクロオレフィンポリマー、シクロオレフィンコポリマー等のシクロオレフィン系樹脂;ポリイミド系樹脂;ポリアミド;ポリイミドアミド;ポリ塩化ビニル系樹脂;ポリ塩化ビニリデン系樹脂;ポリスチレン系樹脂;ポリビニルアルコール系樹脂;ポリフェニレンサルファイド系樹脂;ポリアリレート樹脂等の樹脂を用いて形成された透明樹脂基材が挙げられる。
 基材11は、可視光領域における透過率が80%以上であることが好ましく、90%以上であることがより好ましい。ここで、透明基材の透過率は、JIS K7361-1:1997(プラスチック-透明材料の全光透過率の試験方法)により測定することができる。
 また、基材11のヘーズは、好ましくは5%以下、より好ましくは3%以下、更に好ましくは1%以下である。基材のヘーズが上記範囲内であると、より透明性に優れるので好ましい。基材のヘーズは、JIS K 7136:2000(プラスチック-透明材料のヘーズの求め方)により測定することができる。
 なお、位相差フィルムを転写して使用する場合には、基材は最終製品に部材として組み込まれないため、基材の透過率及びヘーズは特に限定されない。
 基材11の厚みは、位相差フィルムの用途等に応じて、必要な支持性を付与できる範囲内であれば特に限定されないが、通常10μm以上、好ましくは25μm以上、より好ましくは30μm以上であり、そして、通常200μm以下、好ましくは125μm以下、より好ましくは100μm以下である。なお、近年、表示装置自身の薄膜化の要望が強くなってきており、その場合には、より薄膜であるほど好ましく、下限は、好ましくは15μm以上、より好ましくは20μm以上であり、上限は、好ましくは80μm以下、より好ましくは60μm以下、更に好ましくは40μm以下である。厚みが上記の範囲よりも厚いと、例えば、長尺状の位相差フィルムを形成した後、裁断加工し、枚葉の位相差フィルムとする際に、加工屑が増加したり、裁断刃の磨耗が早くなってしまったりすることがある。また、上記範囲よりも薄いと、必要な支持性を付与することが困難な場合がある。
<配向膜>
 図1中、配向膜12は、ポジティブCプレート13に含まれる液晶性成分を一定方向に配列させるための層であり垂直配向膜である。ただし、配向膜はポジティブCプレートの液晶性成分の性質により適宜必要なものを適用することができる。例えばポジティブCプレートの液晶性成分自体に垂直配向性がある場合には、配向膜には必ずしも垂直配向規制力を具備しなくてもよい場合がある。また、液晶性成分自体が十分な自己配向性を有している場合には、必ずしも配向膜を形成する必要はない。
 本形態では垂直配向膜は、垂直方向の配向規制力を備えた配向膜であり、公知のCプレートの位相差フィルムの作製に供する各種垂直配向膜、VA液晶表示装置等に適用される各種の垂直配向膜を適用することができ、例えばポリイミド配向膜、LB膜(Langmuir-Blodgett膜)による配向膜等を適用することができる。
 具体的に、配向膜の構成材料としては、例えば、レシチン、ステアリン酸、シラン系界面活性剤、チタネート系界面活性剤、ピリジニウム塩系高分子界面活性剤、一塩基性カルボン酸クロム錯体等が挙げられる。また、垂直配向膜を、シランカップリング系垂直配向膜用組成物、ポリイミド系垂直配向膜用組成物等により形成してもよい。シランカップリング系垂直配向膜としては、n-オクタデシルトリエトキシシラン等の長鎖アルキル基と、アルコキシ基を有するケイ素化合物を含有するシランカップリング系垂直配向膜用組成物により形成された配向膜が例示され、ポリイミド系垂直配向膜としては、長鎖アルキル基や脂環式構造を側鎖に有する可溶性ポリイミド、長鎖アルキル基や脂環式構造を側鎖に有するポリアミック酸等を含有するポリイミド系垂直配向膜用組成物が例示される。また、垂直配向膜用組成物として、ジェイエスアール(株)製のポリイミド系垂直配向膜用組成物「JALS-2021」や「JALS-204」、日産化学工業(株)製の「RN-1517」、「SE-1211」、「EXPOA-018」等の市販品を適用することができる。
 配向膜12の形成方法は特に限定されないが、例えば、基材11上に、配向膜形成用の組成物を塗布し、必要に応じて配向規制力を付与することにより、配向膜とすることができる。配向膜に配向規制力を付与する手段は、従来公知のものとすることができる。
 より具体的には、配向膜形成用の組成物を塗布し、乾燥する方法、配向膜形成用の組成物を塗布し、紫外線等で硬化させる方法、配向膜形成用の組成物を塗布し、乾燥後に紫外線等で硬化させる方法等が例示される。
 配向膜12の厚みは、ポジティブCプレート13における液晶性成分を一定方向に配列できればよく、適宜設定すればよい。配向膜の厚みは、通常1nm以上、好ましくは30nm以上、より好ましくは60nm、更に好ましくは100nm以上であり、そして、通常10μm以下、好ましくは5μm以下、より好ましくは1000nm以下、更に好ましくは500nm以下である。
<ポジティブCプレート>
 本発明の位相差フィルムは、ポジティブC型の特性を有するポジティブCプレートを有する。ポジティブCプレートは、層面に沿ったX軸方向の屈折率をNx、層面に沿った方向でX軸に直交するY軸方向の屈折率をNy、層厚方向の屈折率をNzとしたとき、Nz>Nx≒Nyの関係であるとともに、光軸がNz方向となる特徴を有するものである。
 本発明において、ポジティブCプレートの面内のレタデーション値(Re)が小さいことが好ましく、好ましくは20nm以下、より好ましくは10nm以下、更に好ましくは5nm以下、より更に好ましくは1nm以下である。
 ポジティブCプレート13は、上述したポジティブCの特性を有するとともに、所定の波長分散特性を有して光学的機能を担う層である。そしてこのポジティブCプレート13は、各種の光学フィルムの位相差層の作製に供する液晶材料(以下、「液晶材料」を、「液晶化合物」ともいう。)であって、所定の波長分散特性である液晶化合物を含む重合性液晶組成物により構成され得る。すなわち、このポジティブCプレート13では、液晶化合物が垂直(ホメオトロピック)配向している。なお、ポジティブCプレートはこれに限定されるものではなく、液晶材料を使用せずに構成されていてもよい。
 具体的にはポジティブCプレート13は、ポジティブC型の特性を備え、450nmの波長における厚み方向リタデーションをRthC450、550nmの波長における厚み方向リタデーションをRthC550としたとき、RthC450/RthC550で得られるΔNが1.0未満又は1.0以下である。より具体的には、後で説明するΔNが1.0以下の場合には、ΔNは1.0未満、ΔNが1.0未満の場合にはΔNは1.0以下である。より好ましくはΔNは0.9未満である。またこのΔNは、後で説明するポジティブAプレート14のΔNとの関係が、|ΔN-ΔN|≦0.15である。
 本発明では、広い視野角の範囲で良好なコントラストを得る観点から、ポジティブAプレート及びポジティブCプレートを有する位相差フィルムを採用している。しかし、ポジティブAプレート及びポジティブCプレートのそれぞれが位相差の波長分散性を有している。本発明者等は、ポジティブAプレート及びポジティブCプレートを積層している位相差フィルムにおいて、それぞれの波長分散特性が、全体としての位相差フィルムの特性に関連していると考え、検討した結果、|ΔN-ΔN|を0.15以下とすることによって、視野角度ごとの色の変化(以下、「色変動」ともいう。)が抑制されることを見出したものである。
 上記の|ΔN-ΔN|は、色変動を抑制する観点から、0.15以下であり、好ましくは0.12以下、より好ましくは0.10以下、更に好ましくは0.08以下、より更に好ましくは0.06以下、より更に好ましくは0.04以下である。
 広い視野角の範囲で良好なコントラストを得る観点、及び視野角度ごとの色の変化(以下、「色変動」ともいう。)を抑える観点から、ΔNは、更に好ましくは0.87以下、より更に好ましくは0.85以下である。また、色変動を抑える観点から、ΔNは、好ましくは0.70以上、より好ましくは0.75以上、更に好ましくは0.78以上、より更に好ましくは0.80以上である。
 ポジティブCプレート13の厚みは特に限定されることはないが、液晶材料でポジティブCプレートを作製する場合には、所望の位相差を得る観点から、0.3μm以上3.0μm以下が好ましい。
 また、液晶性化合物以外の材料、例えば、スチレン系樹脂とアクリル系樹脂とを含む熱可塑性樹脂組成物から作製する場合には(特開2010-185937号公報等参照)、所望の位相差を得る観点から、50μm以上150μm以下が好ましい。
 なお、本発明の位相差フィルムを、フレキシブル表示装置に使用する場合には、位相差フィルム全体として薄い方が好ましく、ポジティブCプレートを液晶材料で作製することが好ましい。
 ポジティブCプレートは、液晶材料を含む重合性液晶組成物により作製することが好ましく、重合性液晶組成物は、液晶性を示し、分子内に重合性官能基を有する液晶材料を含有するものが好ましい。液晶材料としては、円盤状液晶材料(ディスコティック液晶材料)と、棒状液晶材料とが挙げられるが、本発明において、液晶材料は棒状液晶材料であることが好ましい。逆分散性は、主鎖と側鎖との分散性の差から発現しているため、円盤状液晶材料では、逆分散性を発現させることが困難である。一方、棒状液晶材料であれば、主鎖と側鎖を変更することで、分散性を制御することが可能であり、波長分散性の調整が容易である点からも好ましい。また、円盤状液晶材料では、得られるプレートがNx≒Ny>Nzの特性となるため、ポジティブCプレートを得ることが困難である。
 後述するポジティブAプレート及びポジティブCプレートの少なくとも一方が重合性棒状液晶材料を含有してなることが好ましく、ポジティブAプレート及びポジティブCプレートのいずれもが重合性棒状液晶材料を含有してなることがより好ましい。
 ここで、棒状液晶材料とは、分子形状が棒状とみなせる液晶材料の総称である。棒状液晶化合物とは、液晶材料の固有複屈折率が正の一軸性を有するものであり、具体的には、Nx>Ny≒Nz、又はNz係数((Nx-Nz)/(Nx-Ny))≒1である液晶材料である。分子形状が棒状とみなせるとは、分子の長軸をa、分子の短軸をbとしたとき、a/b>1である化合物を意味し、好ましくはa/b≧2、好ましくはa/b≧3である。
 液晶材料としては、従来公知のいずれの液晶材料を用いてもよく特に限定されることはない。逆波長分散特性を有するものであれば、例えば特表2010-522892号公報に記載の逆波長分散特性を示す液晶化合物等を挙げることができる。また、特表2010-522892号公報に記載されている液晶材料、及び国際公開第2013/180217号に記載されているような液晶材料を使用してもよい。
 なお、液晶材料として、ネマチック相、スメクチック相等の液晶相を示す材料が挙げられるが、他の液晶相を示す液晶材料と比較して規則的に配列させることが容易である観点からネマチック相を示す液晶材料を用いることがより好ましい。ネマチック相を示す液晶材料としては、メソゲン両端にスペーサを有する材料を用いることが好ましい。メソゲン両端にスペーサを有する液晶材料は、柔軟性に優れる。
 また、液晶材料は、上述したように分子内に重合性官能基を有する重合性液晶材料であることが好ましい。重合性官能基を有することにより、液晶材料を重合して固定することが可能になるため、配列安定性に優れ、位相差性の経時変化が生じにくくなる。また、重合性液晶材料は、分子内に重合性官能基を2つ以上有することがより好ましい。重合性官能基を2つ以上有することにより、液晶材料の三次元的な配向を、より安定させることができる。
 重合性官能基としては、例えば、紫外線、電子線等の電離放射線、あるいは熱の作用によって重合するものを挙げることができる。これら重合性官能基としては、ラジカル重合性官能基が挙げられる。ラジカル重合性官能基の代表例としては、少なくとも1つの付加重合可能なエチレン性不飽和二重結合を持つ官能基が挙げられ、具体例として、置換基を有する若しくは有さないビニル基、アクリレート基(アクリロイル基、メタクリロイル基、アクリロイルオキシ基、メタクリロイルオキシ基を包含する総称)等が挙げられる。
 また、重合性官能基として、一般的に知られているカチオン重合性官能基を使用してもよく、具体的には、脂環式エーテル基(エポキシ基、オキセタニル基等)、環状アセタール基、環状ラクトン基、環状イミノエーテル基、環状チオエーテル基、スピロオルソエステル基、ビニルオキシ基等が挙げられる。これらの中でも、脂環式エーテル基、ビニルオキシ基が好ましく、エポキシ基、オキセタニル基、ビニルオキシ基がより好ましい。
 また、液晶材料は、末端に重合性官能基を有するものが特に好ましい。このような液晶材料を用いることにより、例えば、液晶材料の末端同士が互いに重合して、三次元的に配向した状態にすることができるため、安定性を備え、かつ、光学特性の発現性に優れた位相差フィルムを形成することができる。
 なお、液晶材料は、1種単独で又は2種以上を混合して用いることができる。
 棒状液晶材料を以下に例示するが、本発明はこれらの例示に限定されるものではない。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 重合性液晶組成物中における液晶材料の含有量としては、特に限定されないが、重合性液晶組成物中に5質量%以上40質量%以下の割合で含まれていることが好ましく、10質量%以上30質量%以下の割合で含まれていることがより好ましい。液晶材料の量が5質量%未満であると、作製時に多量に付与する必要があり、製造し難いとともに、多量の溶剤除去が必要となるため、溶剤残存に起因する信頼性の悪化が生じやすい。一方で、40質量%を超えると、その重合性液晶組成物の粘度が高くなりすぎるために、層の作製の作業性が悪くなる。
 また、重合性液晶組成物の固形分質量(溶剤を除いた質量)に対する液晶材料の含有量は、好ましくは75~99.9質量%、より好ましくは80~99質量%、更に好ましくは85~98質量%である。
 上述した液晶材料は、通常溶剤に溶解されている。溶剤としては、上述した液晶材料を均一に溶解できるものであることが必要となるが、公知の溶剤を用いることができる。このような溶剤として例えばトルエン、キシレン等の炭化水素類;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、メチルイソブチルケトン等のケトン類;テトラヒドロフラン等のエーテル類;1-メトキシ-2-プロパノール、1-メトキシプロピル-2-アセテート等のグリコールエーテル類;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類が挙げられる。
 溶剤は、1種単独で使用してもよく、2種以上を併用してもよい。
 重合性液晶組成物中の溶剤の含有量としては、液晶材料(液晶化合物)100質量部に対して66質量部以上1,900質量部以下であることが好ましい。溶剤の量が66質量部未満であると、液晶材料を均一に溶かすことができないことがある。一方で、1,900質量部を超えると、溶剤の一部が残存して信頼性が低下することがあり、また均一に塗工できないことがある。かかる観点からより好ましくは900質量部以下である。
 なお、重合性液晶組成物は、必要に応じて他の添加剤を含有してもよい。他の化合物としては、液晶材料との相溶性を有し、上述した液晶材料の配列秩序を害するものでなければ特に限定されるものではなく、例えば、重合開始剤、重合性化合物、可塑剤、界面活性剤及びシランカップリング剤等を挙げることができる。
<ポジティブAプレート>
 本発明の位相差フィルムは、ポジティブA型の特性を有するポジティブAプレートを有する。ポジティブAプレートは、層面に沿ったX軸方向の屈折率をNx、層面に沿った方向でX軸に直交するY軸方向の屈折率をNy、層厚方向の屈折率をNzとしたとき、Nx>Ny≒Nzの関係であるとともに、光軸がNx方向となる特徴を有するものである。なお、Ny≒Nzとは、NyとNzの屈折率差が、0.03以下のものを含み、|Ny-Nz|≦0.03であれば、Ny≒Nzであるとする。なお、|Ny-Nz|>0であるとき、Ny>Nzであることが好ましい。
 ポジティブAプレート14は、ポジティブAの特性を有するとともに、所定の波長分散特性を有して光学的機能を担う層である。そしてこのポジティブAプレート14は、各種の光学フィルムの位相差層の作製に供する液晶材料であって、液晶材料を含む重合性液晶組成物により構成されることが好ましい。すなわち、液晶材料がホモジニアス配向を有している。ホモジニアス配向とは、液晶材料の分子長軸が水平方向に配向している状態を意味する。ポジティブAプレートは、スメクチック相を示すことが好ましい。ここで、スメクチック相とは、一方向にそろった分子が相構造を有している状態をいう。また、ネマチック相とは、その構成分子が配向秩序を有するが、三次元的な位置秩序を持たない状態をいう。
 具体的にはポジティブAプレート14は、ポジティブA型の特性を備え、450nmの波長における正面リタデーションをReA450、550nmの波長における正面リタデーションをReA550としたとき、ReA450/ReA550で得られるΔNが1.0未満又は1.0以下である。より具体的には、上記ΔNが1.0以下の場合には、ΔNは1.0未満、ΔNが1.0未満の場合にはΔNは1.0以下である。より好ましくはΔNは0.9未満である。またこのΔNは、上記したポジティブCプレート13のΔNとの関係が、|ΔN-ΔN|≦0.15である。
 広い視野角の範囲で良好なコントラストを得る観点、及び視野角度ごとの色の変化(以下、「色変動」ともいう。)を抑える観点から、ΔNは、更に好ましくは0.87以下、より更に好ましくは0.85以下である。また、色変動を抑える観点から、ΔNは、好ましくは0.70以上、より好ましくは0.75以上、更に好ましくは0.78以上、より更に好ましくは0.80以上である。
 ポジティブAプレート14の厚みは特に限定されることはないが、液晶材料でポジティブAプレートを作製する場合には、所望の位相差を得る観点から、0.3μm以上3.0μm以下が好ましい。
 また、液晶材料以外の材料、例えば、ポリカーボネート系樹脂及び/又は非晶性シクロオレフィン系樹脂を含む組成物からポジティブAプレートを作製する場合には(特開2010-185937号公報、特開2009-122715号公報等参照)、所望の位相差を得る観点から、ポジティブAプレートの厚みは、15μm以上150μm以下が好ましく、15μm以上100μm以下がより好ましい。なお、ポジティブAプレートとして、一軸延伸されたポリカーボネート系樹脂(一軸延伸PC)、一軸延伸されたシクロオレフィン系樹脂(一軸延伸COP)等を使用してもよい。
 なお、本発明の位相差フィルムをフレキシブル表示装置に使用する場合には、位相差フィルム全体として薄い方が好ましく、ポジティブAプレートを液晶材料で作製することが好ましい。
 ポジティブAプレートは、液晶材料を含む重合性液晶組成物により作製することが好ましく、重合性液晶組成物は、液晶性を示し、分子内に重合性官能基を有する液晶材料を含有するものが好ましい。液晶材料としては、円盤状液晶材料(ディスコティック液晶材料)と、棒状液晶材料とが挙げられるが、本発明において、液晶材料は棒状液晶材料であることが好ましい。逆分散性は、主鎖と側鎖との分散性の差から発現しているため、円盤状液晶材料では、逆分散性を発現させることが困難である。一方、棒状液晶材料であれば、主鎖と側鎖を変更することで、分散性を制御することが可能であり、波長分散性の調整が容易である点からも好ましい。
 なお、液晶材料は、特に限定されるものではなく、ポジティブAプレートを形成する組成物に含まれる全ての液晶材料を意味し、1種の液晶材料のみからなってもよく、2種以上の液晶材料の混合物であってもよい。
 液晶材料としては、規定された波長分散性を示す液晶材料であれば、従来公知のいずれの液晶材料を用いてもよく特に限定されることはない。これには例えば特開2008-297210号公報に記載の一般式(I)で表される化合物、特開2010-84032号公報に記載の一般式(1)で表される化合物、特開2016-53709号公報に記載の液晶化合物A0等を挙げることができる。
 重合性官能基としては、例えば、紫外線、電子線等の電離放射線、あるいは熱の作用によって重合するものを挙げることができる。これら重合性官能基としては、ラジカル重合性官能基が挙げられる。ラジカル重合性官能基の代表例としては、少なくとも1つの付加重合可能なエチレン性不飽和二重結合を持つ官能基が挙げられ、具体例として、置換基を有する若しくは有さないビニル基、アクリレート基(アクリロイル基、メタクリロイル基、アクリロイルオキシ基、メタクリロイルオキシ基を包含する総称)等が挙げられる。
 また、重合性官能基として、一般的に知られているカチオン重合性官能基を使用してもよく、具体的には、脂環式エーテル基(エポキシ基、オキセタニル基等)、環状アセタール基、環状ラクトン基、環状イミノエーテル基、環状チオエーテル基、スピロオルソエステル基、ビニルオキシ基等が挙げられる。これらの中でも、脂環式エーテル基、ビニルオキシ基が好ましく、エポキシ基、オキセタニル基、ビニルオキシ基がより好ましい。
 また、ポジティブAプレート用の液晶材料は、末端に重合性官能基を有するものが特に好ましい。このような液晶化合物を用いることにより、例えば、液晶材料の末端同士が互いに重合して、三次元的に配向した状態にすることができるため、安定性を備え、かつ、光学特性の発現性に優れた位相差フィルムを形成することができる。
 なお、液晶材料は、1種単独で使用してもよく、2種以上を併用してもよい。
 重合性液晶組成物中における液晶材料の含有量としては、特に限定されないが、重合性液晶組成物中に5質量%以上40質量%以下の割合で含まれていることが好ましく、10質量%以上30質量%以下の割合で含まれていることがより好ましい。液晶材料の量が5質量%未満であると、作製時に多量に付与する必要があり、製造し難いとともに、多量の溶剤除去が必要となるため、溶剤残存に起因する信頼性の悪化が生じやすい。一方で、40質量部を超えると、その重合性液晶組成物の粘度が高くなりすぎるために、層の作製の作業性が悪くなる。
 また、重合性液晶組成物の固形分質量(溶剤を除いた質量)に対する液晶材料の含有量は、好ましくは75~99.9質量%、より好ましくは80~99質量%、更に好ましくは85~98質量%である。
 上述した液晶材料は、通常溶剤に溶解されている。溶剤としては、上述した液晶材料を均一に溶解できるものであることが必要となるが、公知の溶剤を用いることができる。このような溶剤として例えばトルエン、キシレン等の炭化水素類;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、メチルイソブチルケトン等のケトン類;テトラヒドロフラン等のエーテル類;1-メトキシ-2-プロパノール、1-メトキシプロピル-2-アセテート等のグリコールエーテル類;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類が挙げられる。
 溶剤は1種単独で使用してもよく、2種以上を併用してもよい。
 重合性液晶組成物中の溶剤の含有量としては、液晶材料(液晶化合物)100質量部に対して66質量部以上1,900質量部以下であることが好ましい。溶剤の量が66質量部未満であると、液晶材料を均一に溶かすことができないことがある。一方で、1,900質量部を超えると、溶剤の一部が残存して信頼性が低下することがあり、また均一に塗工できないことがある。かかる観点からより好ましくは900質量部以下である。
 なお、重合性液晶組成物には、必要に応じて他の添加剤を含有してもよい。他の化合物としては、液晶材料との相溶性を有し、上述した液晶材料の配列秩序を害するものでなければ特に限定されるものではなく、例えば、重合開始剤、重合性化合物、可塑剤、界面活性剤及びシランカップリング剤等を挙げることができる。
 以上の構成を備える位相差フィルム10は、次の特徴を具備する。すなわち、ポジティブAプレートの450nmの波長における正面リタデーションをReA450、550nmの波長における正面リタデーションをReA550としたとき、ReA450/ReA550で得られるΔN、ポジティブCプレートの450nmの波長における厚み方向リタデーションをRthC450、550nmの波長における厚み方向リタデーションをRthC550としたとき、RthC450/RthC550で得られるΔNについて、ΔN、及びΔNの一方が1.0以下、他方が1.0未満であるとともに、|ΔN-ΔN|≦0.15なる関係を有している。
 上述したように、本発明では、広い視野角の範囲で良好なコントラストを得る観点から、ポジティブAプレート及びポジティブCプレートを有する位相差フィルムを採用している。しかし、ポジティブAプレート及びポジティブCプレートのそれぞれが位相差の波長分散性を有している。本発明者等は、ポジティブAプレート及びポジティブCプレートを積層している位相差フィルムにおいて、それぞれの波長分散特性が、全体としての位相差フィルムの特性に関連していると考え、検討した結果、|ΔN-ΔN|を0.15以下とすることによって、視野角度ごとの色の変化(以下、「色変動」ともいう。)が抑制されることを見出したものである。ポジティブAプレートとポジティブCプレートを単に積層した位相差フィルムでは、波長分散特性に関して十分に検討できておらず、色変動を十分に抑制することが困難である。本発明では、ポジティブAプレートとポジティブCプレートとを積層し、更に、ポジティブAプレートとポジティブCプレートとの波長分散性の関係を特定の範囲とすることで、色変動が抑制された位相差フィルムを提供することができる。
 |ΔN-ΔN|を特定の範囲とすることで、広い波長域に亘って、位相差フィルムの基本的機能としての外光反射、光学的補償機能を発揮することができるとともに、広い視野角に亘ってコントラスト向上、視野角による色の変化を抑制することができる。
 その際ΔN、及びΔNの少なくとも一方が0.9未満であることが好ましい。また、ポジティブAプレート、及びポジティブCプレートの少なくとも一方が上記した重合性棒状液晶材料を含有してなることが好ましい。
<位相差フィルムの製造方法>
 次に、位相差フィルム10の製造方法について説明する。例えば位相差フィルム10は、基材の供給工程、配向膜の形成工程、ポジティブCプレートの形成工程、及びポジティブAプレートの形成工程を含んで構成される。
 基材の供給工程では、基材11が、ロールにより提供される。
 そして、配向膜の形成工程では、基材11の一方の面に配向膜12を形成する。具体的には次の通りである。
 基材11を供給リールから引き出し、配向膜を構成する組成物を基材11上に積層させる。基材11上への組成物の積層方法としては、特に限定されるものではなく、例えば、ダイコート法、グラビアコート法、リバースコート法、ナイフコート法、ディップコート法、スプレーコート法、エアーナイフコート法、スピンコート法、ロールコート法、プリント法、浸漬引き上げ法、カーテンコート法、キャスティング法、バーコート法、エクストルージョンコート法、E型塗工方法等を用いることができる。
 そして積層された組成物を乾燥させることにより配向膜12とする。
 ポジティブCプレートの形成工程では、一例として、該ポジティブCプレートを構成する組成物を配向膜の形成工程と同様にして配向膜12上に積層し、紫外線の照射を施すことによって組成物を硬化させてポジティブCプレート13を得る。紫外線の照射の光源としては、低圧水銀ランプ(殺菌ランプ、蛍光ケミカルランプ、ブラックライト)、高圧放電ランプ(高圧水銀ランプ、メタルハライドランプ)、ショートアーク放電ランプ(超高圧水銀ランプ、キセノンランプ、水銀キセノンランプ)等を用いることができる。その中でも、メタルハライドランプ、キセノンランプ、高圧水銀ランプ等を好ましく用いることができる。紫外線の波長としては、組成物を構成する材料等に応じて適宜設定されるものであり、具体的には、波長が210nm以上380nm以下、好ましくは230nm以上380nm以下、更に好ましくは250nm以上380nm以下の照射光を用いることが好ましい。また、紫外線の照射量(積算光量)としては、特に限定されないが、例えば、100mJ/cm以上1,500mJ/cm以下の範囲内であることが好ましく、100mJ/cm以上800mJ/cm以下の範囲内であることがより好ましい。
 ポジティブAプレートの形成工程では、例えば該ポジティブAプレートを構成する組成物をポジティブCプレート13上に積層して硬化させる。これはポジティブCプレート13の形成と同様に行うことができる。この際にはポジティブAプレートに対して配向膜を設けることが好ましい。
 ただし、これに限らずポジティブAプレートを別途作製しておき、ポジティブCプレートに転写して積層することもできる。また、ポジティブAの特性を有する基材に、ポジティブCプレートを積層して、本発明の位相差フィルムを作製してもよい。
 また、ポジティブCプレートを別途作製しておき、該ポジティブCプレートをポジティブAプレートに転写して、本発明の位相差フィルム10を作製してもよい。
 次に、上述した位相差フィルム10を適用した光学機能積層体について説明する。この光学機能積層体においては、画像表示パネルに配置される各種の光学機能積層体の構成の1つに位相差フィルム10を含むことで配置できる。
 具体的には、本発明の位相差フィルムを、液晶表示装置の光学補償フィルムとして使用する態様や、直線偏光子とともに、有機EL表示装置の外光反射板に使用する態様が例示される。
[円偏光板又は楕円偏光板]
 本発明の円偏光板又は楕円偏光板は、本発明の位相差フィルム及び偏光子を有し、外光反射防止フィルムとして使用する場合には、円偏光板であることが好ましい。
 円偏光板及び楕円偏光板は、有機エレクトロルミネッセンス表示装置や、タッチパネル上に配置して、反射防止能を発揮する役割を有する。円偏光板及び楕円偏光板は、表示パネルの光源側に位相差フィルムが設けられ、外光等の、反射を防止したい光の入射側に偏光子が設けられている。
<位相差フィルム>
 円偏光板又は楕円偏光板に使用する場合には、ポジティブAプレートは、1/2波長位相差板(以下、「λ/2位相差板」ともいう。)、1/4波長位相差板(以下、「λ/4位相差板」ともいう。)、又はその組合せであることが好ましい。本発明において、位相差フィルムを円偏光板に使用する場合には、ポジティブAプレートは、逆分散性のλ/4位相差板であるか、又は、λ/4位相差板とλ/2位相差板との積層体であることが好ましい。
 λ/2位相差板は、波長550nmにおける面内位相差が、好ましくは200~300nm、より好ましくは220~280nm、更に好ましくは240~275nmである。
 λ/4位相差板は、波長550nmにおける面内位相差が、好ましくは100~180nm、より好ましくは110~160nm、更に好ましくは120~150nmである。
<偏光子>
 本発明において、円偏光板又は楕円偏光板は、本発明の位相差フィルム及び偏光子を有する。該偏光子は、保護膜とともに偏光板を形成していることが好ましい。
 偏光子としては、ヨウ素系偏光子、二色性染料を用いる染料系偏光子やポリエン系偏光子のいずれを用いてもよい。
 ヨウ素系偏光子及び染料系偏光子は、一般にポリビニルアルコール系フィルムを用いて製造する。偏光子の吸収軸は、フィルムの延伸方向に相当する。従って、縦方向(搬送方向)に延伸された偏光子は長手方向に対して平行に吸収軸を有し、横方向(搬送方向と垂直方向)に延伸された偏光子は長手方向に対して垂直に吸収軸を有する。
 偏光子は一般に保護膜を有する。本発明において、後述する反射防止層や、前述した位相差フィルムを、偏光子の保護膜として機能させることができる。上記反射防止層や位相差フィルムとは別に偏光子の保護膜を積層する場合は、保護膜として光学的等方性が高いセルロースエステルフィルムを用いることが好ましい。
 偏光子として直線偏光子を用い、上記位相差フィルムと組み合わせることで、円偏光板として機能する偏光子一体型の積層体を高い生産性で製造できる。
[表示パネル(液晶表示パネル、有機EL表示パネル)及び表示装置(液晶表示装置、有機EL表示装置)]
 本発明の位相差フィルムは、表示パネルに好適に使用される。また、該表示を備える表示装置に適用される。表示パネルとしては、液晶表示パネル、有機エレクトロルミネッセンス表示パネル(以下、「有機EL表示パネル」ともいう。以下、同様である。)、マイクロ発光ダイオード表示パネル(以下、「マイクロLED表示パネル」)等が例示され、液晶表示パネル又は有機EL表示パネルであることが好ましい。また、表示装置としては、前記液晶表示パネルを備える液晶表示装置、前記有機EL表示パネルを備える有機EL表示装置、前記マイクロLED表示パネルを備えるマイクロLED表示装置が例示され、液晶表示装置又は有機EL表示装置であることが好ましい。
<液晶表示パネル及び液晶表示装置>
 一般に液晶表示パネルは2層の偏光子の間に液晶セルが設けられ、液晶表示パネルの入射光側に、バックライトが設けられる。また、上述したように、偏光子は、保護膜とともに偏光板を形成することが好ましい。なお、バックライトの液晶セルが設けられる側とは反対側に、反射板を有していてもよい。
 液晶表示パネルでは、2層の偏光子が使用されるため、一般に4枚の偏光子保護フィルムを有する。本発明の位相差フィルムは、4枚の偏光子保護フィルムのいずれかに用いてもよい。本発明の位相差フィルムは、液晶表示パネルにおける液晶セルと偏光板との間に配置することが好ましく、また、液晶セルと偏光板の間に配置される保護フィルムとして用いてもよい。
 また、液晶表示装置は、液晶表示パネル及びバックライトを備えるものであれば特に限定されないが、液晶表示パネルバックライトと、該表示パネル及びバックライトに電気的に接続された駆動制御部と、これらを収容する筐体とを備えることが好ましい。
 より具体的な1つの例として本発明の位相差フィルム10を備えた液晶表示装置に適用する場合について説明する。図2は、位相差フィルム10を含む液晶表示装置20の層構成を示す図である。この液晶表示装置20において、光学機能積層体26は、液晶表示パネル23のうちの出射面側に配置される。ここには直線偏光させるための偏光子27及び位相差フィルム10を含み、光学補償に供する例である。
 液晶表示装置20としては、IPS液晶表示装置(In-plane Switchingliquidcrystaldisplay;IPS-LCD)が好適であり、バックライト22の観察者側面に液晶表示パネル23が配置される。
 液晶表示パネル23は、IPS液晶による液晶セル25が設けられ、この液晶セル25のバックライト22側に、例えば感圧性の粘着層(図示せず)により直線偏光板24が設けられる。なお、直線偏光板24は、例えば、透明フィルムからなる2枚の基材の間に直線偏光板として機能を担う偏光子が挟持されて構成される。また、本発明の位相差フィルム10を、一方の偏光子保護フィルム(基材)として使用してもよい。
 IPS方式(以下、IPSモードともいう。)は黒表示時に液晶材料が略平行に配向する態様であり、電圧無印加状態で液晶分子を基板面に対して平行配向させる。本発明の位相差フィルムを備えるIPS方式の液晶表示装置では、斜めから視認したときの斜め視野角による色変動が抑制される。
 なお、図2では、出射光側にのみ、位相差フィルム10が設けられているが、本発明はこれに限定されるものではなく、入射光側の直線偏光板24と液晶セル25との間に、本発明の位相差フィルム10を更に配置してもよい。
 図2に示す液晶表示装置では、光学補償フィルムとして機能する本発明の位相差フィルム10が配置されているので、斜め視野角による色変動が抑制される。
 IPSモード液晶表示装置は、例えば特開2003-15160号、特開2003-75850号、特開2003-295171号、特開2004-12730号、特開2004-12731号、特開2005-106967号、特開2005-134914号、特開2005-241923号、特開2005-284304号、特開2006-189758号、特開2006-194918号、特開2006-220680号、特開2007-140353号、特開2007-178904号、特開2007-293290号、特開2007-328350号、特開2008-3251号、特開2008-39806号、特開2008-40291号、特開2008-65196号、特開2008-76849号、特開2008-96815号等の各公報に記載のものも使用できる。
 図2に示す液晶表示パネル23では、液晶セル25の出射面に光学機能積層体26が配置される。この光学機能積層体26は、光学補償のための光学補償フィルムを構成する位相差フィルム10、偏光子27、及び表面材である基材(保護フィルム)28を備える。基材28は、TAC等の透明フィルムが適用され、ここに直線偏光子としての偏光子27が設けられる。
 偏光子27の表面(視認側)に、更に反射防止層(低屈折率層)を積層してもよい。
 このように、光学機能積層体26を構成する位相差フィルム10は、広帯域において、斜め視野からの光学補償フィルムとして機能する。
<有機EL表示パネル及び有機EL表示装置>
 有機EL表示装置は陽極、陰極の一対の電極間に、発光層又は発光層を含む複数の有機化合物薄膜を形成した表示装置であり、有機EL表示装置の視認側に、本発明の有機EL表示パネルを有する。また、有機化合物薄膜は、発光層のほか正孔注入層、正孔輸送層、電子注入層、電子輸送層、保護層などを有してもよく、またこれらの各層はそれぞれ他の機能を備えたものであってもよい。有機EL表示装置の電極や有機化合物薄膜等の各層は、公知の材料・方法により形成することができる。
 具体的な他の1つの例として位相差フィルム10を備えた有機EL表示パネルに適用する場合について説明する。図3は、位相差フィルム10を含む有機EL表示パネル30の層構成を示す図である。この有機EL表示パネル30において、光学機能積層体36は、有機EL表示素子33の出射面側に配置される外光反射防止フィルムである。この光学機能積層体36は、直線偏光させるための偏光子37、及び位相差フィルム10を含み、いわゆる円偏光板として外光反射防止機能を有するものとなる。
 なお、有機EL表示装置は、本発明の有機EL表示パネルを備えるものであれば特に限定されないが、有機EL表示パネルと、該有機EL表示パネルに電気的に接続された駆動制御部と、これらを収容する筐体とを備えることが好ましい。
 有機EL表示パネル30は、有機EL表示素子33で自発光した映像光を観察者に提供する装置であり、有機EL表示素子33の出射面に光学機能積層体36が配置される。この光学機能積層体36は、外光反射防止のための円偏光板として機能し、位相差フィルム10、直線偏光子としての偏光子37、表面材である基材(保護フィルム)38を備える。なお、このとき、位相差フィルム10のポジティブAプレート14がλ/4位相差層として機能し、これにポジティブCプレート13が積層された態様となる。
 このように、光学機能積層体36を構成する位相差フィルム10は、広帯域において、外光反射防止フィルムとして機能する。
 実施例ではシミュレーションにより、図2に示した液晶表示パネル23に倣って積層体をモデル化し、ここに含まれる位相差フィルム10のポジティブAプレートのΔN及びポジティブCプレートのΔNを変更して、コントラスト、及び60°視野角における色相変化について評価した。
 また、図3に示した有機EL表示パネルに倣って積層体をモデル化し、これに含まれる位相差フィルム10のポジティブAプレートのΔN及びポジティブCプレートのΔNを変更して、60°視野角における色相変化について評価した。
 液晶表示パネルのシミュレーションはLCD-MASTER(シンテック(株))を用い、光源をLED光源として行った。モデルの層構成は観察者側から、吸収軸を基準に対して90°とした上偏光板、ポジティブCプレート、光軸を上偏光板の吸収軸に平行としたポジティブAプレート、液晶セル、及び吸収軸を基準に対して0°とした下偏光板とし、下偏光板側から光を照射する条件とした。なお、液晶表示パネルのコントラストは、(白表示(ON)の輝度÷黒表示(OFF)の輝度)で算出した。黒表示(OFF)のシミュレーションでは、液晶セルの液晶分子の配向方向を、基準に対して0°として、黒表示の輝度を算出した。また、白表示(ON)の場合には、液晶セルの液晶分子の配向方向を基準に対して45°とした場合と、135°とした場合の平均値を、白表示の輝度とした。
 また、有機EL表示パネルのシミュレーションは、同様に、LCD-MASTER(シンテック(株))を用い、光源(パネルに入射する外光)をD65光源として行った。モデルの層構成は、偏光子の吸収軸とポジティブAプレートの遅相軸とがなす角度を45°とした。また、ポジティブCプレートのポジティブAプレートが設けられている側と反対側に、反射板(100%反射)を設けた。
 シミュレーションに使用したポジティブAプレートは、以下の通りである。
 層面に沿ったX軸方向の屈折率(550nm)Nx=1.587
 層面に沿った方向でX軸に直交するY軸方向の屈折率(550nm)Ny=1.531
 層厚方向の屈折率(550nm)Nz=1.531
 Re(550nm)=(Nx-Ny)×d=140nm
 (ここで、dは、ポジティブAプレートの厚み(nm)である。)
 シミュレーションに使用したポジティブCプレートは、以下の通りである。
 層面に沿ったX軸方向の屈折率(550nm)Nx=1.573
 層面に沿った方向でX軸に直交するY軸方向の屈折率(550nm)Ny=1.573
 層厚方向の屈折率(550nm)Nz=1.629
 Rth(550nm)=[{(Nx+Ny)/2}-Nz]×d=-90~-110nm(液晶表示装置用、前記の範囲で適宜調整を行った。)
 Rth(550nm)=[{(Nx+Ny)/2}-Nz]×d=-70nm(有機EL表示装置用)
 (ここで、dは、ポジティブCプレートの厚み(nm)である。)
[評価]
<コントラスト>
 図4(a)に1つの例を示したように、画面の中心に対して全方位(円周方向)における各視野角(円の半径方向)でのコントラストを得て、コントラストの等高線(図4(a)の実線)を得た。
 これに対して、図4(a)に太点線の円で表した極角60°の線を重ね、図4(b)に示したように、極角60°におけるコントラストの変動を調べ、斜線で示した曲線以下の部分Pの面積を得た。この面積をコントラスト総和Sとする。
 そして、ΔN=1.00、及びΔN=1.00におけるコントラスト総和をSとし、各ΔNとΔNの組み合わせにおけるコントラスト総和SのSに対する割合を算出した。従ってS/Sである。これによればS/Sの値が大きいほどΔN=1.00、及びΔN=1.00のときに比べてコントラストが相対的に良好であるといえる。表1に結果を示した。
<視野角色相変化>
 図5に模式図を示したように、評価対象である積層体の面の中心から延びる法線nに対してθ=60°傾斜した視野角における色を測定した。図5の上方の図は積層体を平面視した図、図5の下方は積層体を側面から見た図である。図5からわかるように、θ=60°の視野角はOを中心に円を描くように存在するので、Tを起点として矢印Kに沿ってOを中心とした円を描くように一周に亘って各位置における色相を得た。
 その結果として図6(a)、図6(b)に1つずつ例を示したように、一周した際に色の変化が生じることからこれをx-y表色系のxy座標に表した。これにより、60°視野角における方位(周方向位置)と色の変化との関係を評価することができる。色相の変化は少ない方がよく、60°視野角で一周する際に様々な色を跨がないことが好ましい。従って、図6(a)にE1示したような円形に近いものより、図6(b)にE2で示した細い形状のものが色相の変化が少なく好ましいといえる。
 すなわち、x-y表色系のxy座標に表したときに、60°視野角で一周したときに、上述のように、色相の変化が少ないとともに、白色(x=0.33、y=0.33)からの距離の総和が小さいことが好ましく、また、色度図の色の跨ぎがないことが好ましい。
 各例について、上記60°視野角で一周(360°)を5°刻みで、a及びbを得る。そしてある角度でのa、bをそれぞれa 、b とし、その1つ前(ある角度-5°)における角度でのa、bをa 、b とする。そして、次式により、5°分の色変動値を得る。
{(a -a +(b -b 0.5
この5°分の色変動値を、0°~360°で5°刻みで得て、全ての和をとることで色変動総和を得て評価した。この色変動総和は小さい方が色の変動が少ないことを意味する。
<視野角60°における視認性の目視確認による評価>
 IPS方式である市販の液晶表示装置から液晶セルよりも視認側に存在する層を剥離し、液晶セルのガラス部を露出させた。液晶セルのガラス部を露出させた液晶表示装置に、ポジティブCプレート及びポジティブAプレートを積層した位相差フィルムと、偏光板とを積層した光学積層体を貼合し、液晶表示装置を作製した。
 また、市販の有機EL表示装置である携帯型情報端末を分解し、円偏光板を剥離し、円偏光板を剥離後の有機EL表示装置に、ポジティブCプレート及びポジティブAプレートを積層した位相差フィルムと、偏光板とを積層した光学積層体を貼合し、有機EL表示装置を作製した。
 作製した液晶表示装置及び有機EL表示装置について、60°視野角で一周(360°)し、目視確認による評価を実施した。
 評価基準は、以下の通りである。
   3点:色の差が気にならない。
   2点:色の差があるが、問題ない
   1点:色の差があるが、実用上許容可能
   0点:色の差がひどく、実用上問題である
 20人のパネラーによって目視確認による評価を行い、平均値で評価を行った。
   A:特に良好(平均が2.5点以上)
   B:良好(平均が1.7点以上2.5点未満)
   C:可(平均が1.0点以上1.7点未満)
   D:不可(平均が1.0点未満)
 結果を以下の表4(液晶表示装置)及び表5(有機EL表示装置)に示す。
[結果]
 表1には、液晶表示パネルについて、コントラスト評価におけるS/Sの値を示した。表2には液晶表示パネルにおける色変動総和を表した。また、表3には有機EL表示パネルにおける色変動総和を表した。
 表4には、液晶表示装置における視野角60°における視認性の目視確認による評価を、表5には、有機EL表示装置における視野角60°における視認性の目視確認による評価を示した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表1~表5からわかるように、ポジティブAプレートのΔN、及びポジティブCプレートのΔNのうち、一方が1.0以下、他方が1.0未満であり、|ΔN-ΔN|≦0.15であることにより、コントラストが良好で、視野角による色変動が少ない位相差フィルムとすることができる。
  10 位相差フィルム
  11 基材
  12 配向膜
  13 ポジティブCプレート
  14 ポジティブAプレート
  20 液晶表示装置
  22 バックライト
  23 液晶表示パネル
  24 直線偏光板
  25 液晶セル
  26 光学機能積層体
  27 偏光子
  28 基材
  30 有機EL表示パネル
  33 有機EL表示素子
  36 光学機能積層体
  37 偏光子
  38 基材

Claims (13)

  1.  ポジティブA型の特性を備え、450nmの波長における正面リタデーションをReA450、550nmの波長における正面リタデーションをReA550としたとき、ReA450/ReA550をΔNとするポジティブAプレートと、
     ポジティブC型の特性を備え、450nmの波長における厚み方向リタデーションをRthC450、550nmの波長における厚み方向リタデーションをRthC550としたとき、RthC450/RthC550をΔNとするポジティブCプレートと、を有し、
     前記ΔN、及び前記ΔNの一方が1.0以下、他方が1.0未満であるとともに、
     |ΔN-ΔN|≦0.15
     である、位相差フィルム。
  2.  前記ΔN、及び前記ΔNの少なくとも一方が0.9未満である、請求項1に記載の位相差フィルム。
  3.  前記ΔN、及び前記ΔNのいずれもが0.9未満である、請求項1に記載の位相差フィルム。
  4.  前記ΔN、及び前記ΔNのいずれもが0.75以上である、請求項1~3のいずれかに記載の位相差フィルム。
  5.  前記ポジティブAプレート、及び前記ポジティブCプレートの少なくとも一方が重合性棒状液晶材料を含有してなる、請求項1~4のいずれかに記載の位相差フィルム。
  6.  請求項1~5のいずれかに記載の位相差フィルム、及び偏光子を有する、円偏光板又は楕円偏光板。
  7.  請求項1~5のいずれかに記載の位相差フィルムを備える、表示パネル。
  8.  2つの偏光板と、
     該2つの偏光板の間に配置される請求項1~5のいずれかに記載の位相差フィルム及び液晶層と、を備える、光学補償機能を有する液晶表示パネル。
  9.  有機EL表示素子と、
     該有機EL表示素子の出光側に配置される請求項1~5のいずれかに記載の位相差フィルム及び偏光子をこの順で備える外光反射防止フィルムと、を備える、
     有機EL表示パネル。
  10.  請求項7~9のいずれかに記載の表示パネルを備える、表示装置。
  11.  請求項8に記載の液晶表示パネルを備える、液晶表示装置。
  12.  前記液晶表示がIPSモードの液晶表示装置である、請求項11に記載の液晶表示装置。
  13.  請求項9に記載の有機EL表示パネルを備える、有機EL表示装置。
PCT/JP2018/014608 2017-04-05 2018-04-05 位相差フィルム、円偏光板又は楕円偏光板、表示パネル、液晶表示パネル、有機el表示パネル、表示装置、液晶表示装置、及び有機el表示装置 WO2018186472A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019511307A JP7200931B2 (ja) 2017-04-05 2018-04-05 位相差フィルム、円偏光板又は楕円偏光板、表示パネル、液晶表示パネル、有機el表示パネル、表示装置、液晶表示装置、及び有機el表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017075190 2017-04-05
JP2017-075190 2017-04-05

Publications (1)

Publication Number Publication Date
WO2018186472A1 true WO2018186472A1 (ja) 2018-10-11

Family

ID=63713514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014608 WO2018186472A1 (ja) 2017-04-05 2018-04-05 位相差フィルム、円偏光板又は楕円偏光板、表示パネル、液晶表示パネル、有機el表示パネル、表示装置、液晶表示装置、及び有機el表示装置

Country Status (3)

Country Link
JP (1) JP7200931B2 (ja)
TW (1) TWI762615B (ja)
WO (1) WO2018186472A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200050720A (ko) * 2018-11-02 2020-05-12 주식회사 엘지화학 편광판
WO2020153639A1 (ko) * 2019-01-24 2020-07-30 삼성에스디아이 주식회사 액정표시장치
KR20200101037A (ko) * 2019-02-19 2020-08-27 주식회사 엘지화학 편광판의 제조 방법
CN112748601A (zh) * 2019-10-31 2021-05-04 住友化学株式会社 图像显示装置
JP2021162737A (ja) * 2020-03-31 2021-10-11 大日本印刷株式会社 機能性フィルム、偏光板及び画像表示装置
JP2023513542A (ja) * 2020-03-05 2023-03-31 エルジー・ケム・リミテッド 光学フィルムおよびこれを含むマイクロledディスプレイ
JP7532858B2 (ja) 2020-03-31 2024-08-14 大日本印刷株式会社 機能性フィルム、偏光板及び画像表示装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7256655B2 (ja) * 2019-02-25 2023-04-12 住友化学株式会社 光学積層体、及び、有機el表示装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015200861A (ja) * 2013-09-11 2015-11-12 富士フイルム株式会社 光学異方性層とその製造方法、積層体とその製造方法、偏光板、液晶表示装置及び有機el表示装置
WO2017170455A1 (ja) * 2016-03-30 2017-10-05 日本ゼオン株式会社 光学異方性層及びその製造方法、光学異方性積層体及びその製造方法、光学異方性転写体、偏光板、並びに画像表示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070091229A1 (en) * 2005-06-09 2007-04-26 Jang Soo J Vertically aligned liquid crystal display
KR101635298B1 (ko) * 2012-02-22 2016-06-30 코니카 미놀타 가부시키가이샤 광학 필름, 원편광판 및 화상 표시 장치
JP6913157B2 (ja) * 2017-03-23 2021-08-04 富士フイルム株式会社 有機エレクトロルミネッセンス表示装置、位相差フィルム、円偏光板

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015200861A (ja) * 2013-09-11 2015-11-12 富士フイルム株式会社 光学異方性層とその製造方法、積層体とその製造方法、偏光板、液晶表示装置及び有機el表示装置
WO2017170455A1 (ja) * 2016-03-30 2017-10-05 日本ゼオン株式会社 光学異方性層及びその製造方法、光学異方性積層体及びその製造方法、光学異方性転写体、偏光板、並びに画像表示装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102466771B1 (ko) * 2018-11-02 2022-11-14 주식회사 엘지화학 편광판
KR20200050720A (ko) * 2018-11-02 2020-05-12 주식회사 엘지화학 편광판
US11892669B2 (en) 2018-11-02 2024-02-06 Lg Chem, Ltd. Polarizing plate and display device
WO2020153639A1 (ko) * 2019-01-24 2020-07-30 삼성에스디아이 주식회사 액정표시장치
KR20200101037A (ko) * 2019-02-19 2020-08-27 주식회사 엘지화학 편광판의 제조 방법
US11975500B2 (en) 2019-02-19 2024-05-07 Lg Chem, Ltd. Method for manufacturing polarizing plate
KR102522253B1 (ko) * 2019-02-19 2023-04-17 주식회사 엘지화학 편광판의 제조 방법
CN112748601B (zh) * 2019-10-31 2024-04-26 住友化学株式会社 图像显示装置
CN112748601A (zh) * 2019-10-31 2021-05-04 住友化学株式会社 图像显示装置
JP2023513542A (ja) * 2020-03-05 2023-03-31 エルジー・ケム・リミテッド 光学フィルムおよびこれを含むマイクロledディスプレイ
JP7446663B2 (ja) 2020-03-05 2024-03-11 エルジー・ケム・リミテッド 光学フィルムおよびこれを含むマイクロledディスプレイ
JP2021162737A (ja) * 2020-03-31 2021-10-11 大日本印刷株式会社 機能性フィルム、偏光板及び画像表示装置
JP7532858B2 (ja) 2020-03-31 2024-08-14 大日本印刷株式会社 機能性フィルム、偏光板及び画像表示装置

Also Published As

Publication number Publication date
TW201842385A (zh) 2018-12-01
JP7200931B2 (ja) 2023-01-10
JPWO2018186472A1 (ja) 2020-03-05
TWI762615B (zh) 2022-05-01

Similar Documents

Publication Publication Date Title
WO2018186472A1 (ja) 位相差フィルム、円偏光板又は楕円偏光板、表示パネル、液晶表示パネル、有機el表示パネル、表示装置、液晶表示装置、及び有機el表示装置
US10353246B2 (en) Liquid crystal display device and polarizer protective film
TWI587010B (zh) 抗反射偏光板及含此板之影像顯示裝置
WO2018164126A1 (ja) 有機エレクトロルミネッセンス表示装置、位相差フィルム、円偏光板
KR101377911B1 (ko) 위상차 필름, 휘도 향상 필름, 편광판, 위상차 필름의 제조 방법 및 액정 표시 장치
US9989688B2 (en) Polarizing plate, image display apparatus, and method for improving bright-place contrast in image display apparatus
WO2016052360A1 (ja) 円偏光板、表示装置
JP7513136B2 (ja) 位相差フィルム、偏光板補償フィルム、及び外光反射防止フィルム
JP7351223B2 (ja) 光学積層体、表示パネル及び表示装置
WO2015147287A1 (ja) 液晶パネル、液晶表示装置、偏光板、および偏光板保護フィルム
WO2019167926A1 (ja) 積層体、有機電界発光装置、液晶表示装置
JP2019139242A (ja) 円偏光板及びその製造方法、広帯域λ/4板、有機エレクトロルミネッセンス表示装置、並びに液晶表示装置
JP6995426B2 (ja) 多層液晶フィルム、偏光板および偏光板の製造方法
JP6925588B2 (ja) 反射防止用光学フィルタ及び有機発光装置
WO2018123725A1 (ja) 円偏光板、有機エレクトロルミネッセンス表示装置
WO2017145935A1 (ja) 光学フィルム、光学フィルムの製造方法および表示装置
KR20190138598A (ko) 적층체 및 이를 포함하는 액정 표시 장치
TWI683141B (zh) 用於抗反射的光學濾光片以及有機發光裝置
JP6987411B2 (ja) 積層体およびこれを含む液晶表示装置
JP7026789B2 (ja) 液晶表示装置
JP7530964B2 (ja) 光学異方性層、光学フィルム、偏光板および画像表示装置
JP2009036860A (ja) 液晶表示装置
JP2008122885A (ja) 位相差フィルム、および、偏光板
JP6783698B2 (ja) 積層体、表示装置
JP6521007B2 (ja) 偏光板、画像表示装置、および画像表示装置における明所コントラストの改善方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781338

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019511307

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18781338

Country of ref document: EP

Kind code of ref document: A1