WO2018185911A1 - 空調システム - Google Patents

空調システム Download PDF

Info

Publication number
WO2018185911A1
WO2018185911A1 PCT/JP2017/014373 JP2017014373W WO2018185911A1 WO 2018185911 A1 WO2018185911 A1 WO 2018185911A1 JP 2017014373 W JP2017014373 W JP 2017014373W WO 2018185911 A1 WO2018185911 A1 WO 2018185911A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
indoor
air conditioning
room temperature
conditioning system
Prior art date
Application number
PCT/JP2017/014373
Other languages
English (en)
French (fr)
Inventor
結 義澤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/014373 priority Critical patent/WO2018185911A1/ja
Priority to JP2019511021A priority patent/JP6707187B2/ja
Publication of WO2018185911A1 publication Critical patent/WO2018185911A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle

Definitions

  • the present invention relates to an air conditioning system that optimally controls a plurality of indoor units individually.
  • an air conditioning system there is a multi-room type air conditioner in which a plurality of indoor units are connected to one outdoor unit.
  • each indoor unit uses a temperature difference between the measured current indoor temperature and a preset temperature, and a capacity code corresponding to the capacity of the indoor unit. Control is performed (for example, refer to Patent Document 1).
  • the flow distribution ratio of the refrigerant flowing through each indoor unit is determined based on such parameters, and the opening of the electric expansion valve is determined.
  • the conventional air conditioning system can correct the difference in required capacity due to the temperature difference between the room temperature and the set temperature.
  • the cooling capacity varies depending on the room temperature, even if the temperature difference between the room temperature and the set temperature is the same, the indoor unit may be insufficient or excessive in capacity depending on the current indoor temperature level.
  • the room temperature differs from room to room, so it takes a short time for the room temperature to reach the target temperature in one room, but it takes longer in another room. Occurs.
  • the cooling capacity of the entire system is increased in order to avoid such a situation, dew condensation due to excessive capacity may occur in some indoor units.
  • the present invention has been made to solve the above-described problems, and provides an air conditioning system capable of performing air conditioning with optimum capacity in each room even when the room temperatures of a plurality of rooms vary. For the purpose.
  • An air conditioning system includes an outdoor unit having a compressor and an outdoor heat exchanger, a plurality of indoor units each having a throttle device and an indoor heat exchanger, and connected to the outdoor unit through refrigerant piping.
  • Each of the plurality of indoor units includes a plurality of indoor temperature sensors that measure a room temperature of a space to be air-conditioned, and a control device that controls the compressor and the expansion device.
  • a target evaporation temperature is obtained based on a temperature difference between a set temperature of each of the plurality of indoor units and the indoor temperature of the air-conditioned space of the indoor unit, and the target evaporation temperature is calculated based on the indoor temperature.
  • the operation frequency of the compressor is obtained from the corrected target evaporation temperature, the compressor is controlled to rotate at the operation frequency, and each set temperature of the plurality of indoor units and the An individual opening degree of each of the expansion devices of the plurality of indoor units is obtained based on a temperature difference between the indoor temperature of the air-conditioning target space of the internal unit and a capacity ratio of the plurality of indoor units, The individual opening is corrected based on the room temperature of the air-conditioning target space of the indoor unit, and the throttle device is controlled so as to become the corrected individual opening of the throttle device.
  • the air conditioning system of the present invention during the cooling operation, the target evaporation temperature and the individual opening are corrected by the room temperature, so that the compressor frequency and the refrigerant flow rate of each indoor unit are adjusted.
  • the air conditioning system can reduce the difference in the capacity of each indoor unit due to the variation in the indoor temperature of each air conditioning target space, and can perform air conditioning with the optimum capacity for each air conditioning target space.
  • FIG. 1 is a schematic configuration diagram showing a configuration of an air conditioning system according to Embodiment 1 of the present invention.
  • the air conditioning system 1 includes an outdoor unit 10, a plurality of indoor units 20a, 20b, and 20c (hereinafter simply referred to as an indoor unit 20 when there is no need to distinguish between them), various sensors, a control device 50, and the like. Is done.
  • three indoor units 20 a, 20 b, and 20 c are connected in parallel to one outdoor unit 10.
  • the outdoor unit 10 includes an outdoor heat exchanger 11, a compressor 12, and the like.
  • the indoor units 20a, 20b, and 20c are equipped with indoor heat exchangers 22a, 22b, and 22c, expansion devices 21a, 21b, and 21c, and the like. Yes.
  • the compressor 12, the outdoor heat exchanger 11, the expansion device 21, the indoor heat exchanger 22, and the like are connected by a refrigerant pipe to constitute the refrigeration cycle 2.
  • the number of indoor units 20 is not limited to three, and may be one or more.
  • the compressor 12 is composed of a variable capacity compressor, and compresses and circulates the refrigerant.
  • the expansion device 21 is composed of, for example, an electronic expansion valve, and depressurizes the refrigerant.
  • the outdoor heat exchanger 11 and the indoor heat exchanger 22 exchange heat between the refrigerant flowing in the piping and the air.
  • the outdoor heat exchanger 11 is provided with an outdoor fan that supplies air to the outdoor heat exchanger 11, and the indoor heat exchanger 22 is provided with an indoor fan that supplies air to the indoor heat exchanger 22. Yes.
  • the plurality of indoor units 20 are installed in different air conditioning target spaces, the indoor unit 20a performs air conditioning in the room A, the indoor unit 20b performs air conditioning in the room B, and the indoor unit 20c performs air conditioning in the room C.
  • the outdoor unit 10 and the indoor unit 20 are provided with a plurality of sensors (hereinafter sometimes collectively referred to as a sensor group 60) that detect temperature, humidity, pressure, or the like.
  • the outdoor unit 10 is provided with a discharge pressure sensor 61, a suction pressure sensor 62, a liquid pipe temperature sensor 63, and the like.
  • the discharge pressure sensor 61 is provided in the discharge side piping of the compressor 12 and detects the pressure (discharge pressure) of the refrigerant discharged from the compressor 12.
  • the suction pressure sensor 62 is provided in a pipe on the suction side of the compressor 12 and detects the pressure (suction pressure) of the refrigerant sucked into the compressor 12.
  • the liquid pipe temperature sensor 63 is provided in a pipe on the downstream side of the outdoor heat exchanger 11, and detects the temperature of the liquid refrigerant flowing through the pipe.
  • Each indoor unit 20a, 20b, 20c is provided with indoor temperature sensors 64a, 64b, 64c (hereinafter, simply referred to as indoor temperature sensor 64 if it is not necessary to distinguish between them).
  • the indoor temperature sensor 64 is installed in the indoor unit 20 or the air conditioning target space and detects the indoor temperature T.
  • the liquid pipe temperature sensor 63 and the room temperature sensor 64 are composed of, for example, a thermistor.
  • the indoor temperature sensor 64 is described as measuring the dry bulb temperature as the indoor temperature T.
  • the indoor temperature sensor 64 may include a humidity sensor or the like and measure the wet bulb temperature as the indoor temperature T. .
  • the control device 50 is composed of, for example, a microcomputer and controls the operation of the air conditioning system 1.
  • the control device 50 is connected to the above-described sensor group 60 (see FIG. 3), each actuator, a remote controller (not shown), and the like so as to be able to communicate wirelessly or by wire.
  • the actuator is, for example, the compressor 12, the expansion devices 21a, 21b, and 21c, the outdoor fan, the indoor fan, and the like.
  • the control device 50 is mounted on the outdoor unit 10, but may be installed outside the casing of the outdoor unit 10.
  • the control device of the outdoor unit 10 and the control devices of the indoor units 20a, 20b, and 20c may be configured separately, and these control devices may be connected to each other via a signal line or the like.
  • arrow 13 indicates the direction of refrigerant circulation during cooling operation.
  • the outdoor heat exchanger 11 acts as a condenser
  • the indoor heat exchangers 22a, 22b, and 22c act as evaporators.
  • the compressor 12 is frequency controlled so that the evaporation temperature matches the target evaporation temperature TEm.
  • the valve opening degree is adjusted, and individual refrigerant flow control is performed for each indoor unit 20.
  • FIG. 2 is an explanatory diagram showing the relationship between the room temperature and the reduced capacity of the air conditioning system.
  • the horizontal axis represents the indoor wet bulb temperature [° C.]
  • the vertical axis represents the rated ratio of capacity.
  • the capacity increases as the indoor temperature T increases, and the capacity decreases as the indoor temperature T decreases. That is, if the indoor temperature T causes a difference in capacity, and an air conditioning target space with a low indoor temperature T is to obtain the same capacity as an air conditioning target space with a high indoor temperature T, the capacity needs to be increased.
  • the operation frequency of the compressor 12 and the opening degree of the expansion devices 21a, 21b, and 21c are corrected using the correction value based on the current indoor temperature T, It is configured to correct the required capacity.
  • FIG. 3 is a functional block diagram showing a functional configuration of the control device of the air conditioning system according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram showing a setting example of the target evaporation temperature TEm of the air conditioning system according to Embodiment 1 of the present invention.
  • FIG. 5 is a diagram illustrating an example of a correction value Ct of the target evaporation temperature TEm based on the room temperature T of the air conditioning system according to Embodiment 1 of the present invention.
  • FIG. 3 is a functional block diagram showing a functional configuration of the control device of the air conditioning system according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram showing a setting example of the target evaporation temperature TEm of the air conditioning system according to Embodiment 1 of the present invention.
  • FIG. 5 is a diagram illustrating an example of a correction value Ct of the target evaporation temperature TEm based on the room temperature T of the air conditioning system
  • FIG. 6 is a diagram illustrating a setting example of the entire opening degree Dw of the expansion device of the air conditioning system according to Embodiment 1 of the present invention.
  • FIG. 7 is a diagram showing a setting example of the capacity code P with respect to the capacity of the indoor unit of the air conditioning system according to Embodiment 1 of the present invention.
  • FIG. 8 is a diagram illustrating an example of a correction value of the individual opening degree Di due to the temperature difference ⁇ T of the air conditioning system according to Embodiment 1 of the present invention.
  • FIG. 9 is an explanatory diagram showing an example of a correction value of the individual opening degree Di depending on the room temperature T of the air conditioning system according to Embodiment 1 of the present invention.
  • the control device 50 includes an operation control unit 51, a storage unit 52, a target evaporation temperature determination unit 53, an opening degree determination unit 54, and the like.
  • the operation control unit 51 controls the operation of the main air conditioning system 1.
  • the operation control unit 51 receives a detection value from the sensor group 60 and an operation command from the remote controller, and outputs a control signal to the actuator.
  • the operation control unit 51 refers to the storage unit 52, extracts a control value corresponding to the input from the information stored in the storage unit 52, and outputs it as a control signal.
  • the operation control unit 51 controls the operation frequency of the compressor 12 so that the measured evaporation temperature approaches the target evaporation temperature TEm during the cooling operation.
  • the operation control unit 51 individually controls the opening degree of the expansion device 21 and adjusts the amount of refrigerant flowing through each indoor unit 20.
  • the storage unit 52 stores in advance control information used for controlling each actuator, a plurality of correspondence tables K1 to K6 described later, and the like.
  • the storage unit 52 stores detection information acquired from the sensor group 60, setting information set via a remote controller, operation information of each actuator being controlled, and the like.
  • the various types of information described above may be stored in a table format or stored as an expression. If the information is stored in a table format, it may be configured such that desired data is calculated by interpolation. Further, the control information and the correction values of the correspondence tables K1 to K6 and the like are obtained in advance through experiments or the like in order to obtain a desired result, for example.
  • the target evaporation temperature determining unit 53 determines the target evaporation temperature TEm. At this time, the target evaporation temperature determination unit 53 refers to the correspondence table K1 and the correspondence table K2 stored in the storage unit 52. The target evaporation temperature determination unit 53 stores the determined target evaporation temperature TEm in the storage unit 52 and notifies the operation control unit 51 of it.
  • the target evaporation temperature determination unit 53 sets the target evaporation temperature TEm according to the temperature difference ⁇ T between the current room temperature T and the set temperature. Specifically, the larger the sum of the temperature differences ⁇ T in each indoor unit 20, the greater the overall air conditioning load and the greater the capacity required, so the target evaporation temperature TEm is set lower.
  • the target evaporation temperature TEm [° C.] of 11 ° C. or 7 ° C. is set, respectively. That is, the target evaporation temperature TEm is set so that the target evaporation temperature TEm decreases as the total temperature difference ⁇ T increases.
  • the target evaporation temperature determination unit 53 corrects the set target evaporation temperature TEm with the current room temperature T. Specifically, as shown in FIG. 2, the capacity tends to decrease in a room where the room temperature T is low. Therefore, the capacity is corrected, that is, the target evaporation temperature TEm is corrected to be decreased.
  • the correspondence table K2 shown in FIG. 5 for example, when the room temperature T is 17 ° C. and 25 ° C., a correction value Ct of ⁇ 3 ° C. or 0 ° C. is set, respectively, and the lower the room temperature T, the target evaporation temperature TEm Is associated with a correction value Ct for lowering.
  • the correction value Ct becomes 0 when the room temperature T becomes 24 ° C. or higher.
  • the target evaporation temperature TEm is increased with respect to the room temperature T higher than 24 ° C.
  • a correction value Ct for suppressing the above may be set.
  • the opening degree determination unit 54 determines individual opening degrees Dia, Div, Dic (hereinafter, simply referred to as individual opening degrees Di) of the expansion devices 21a, 21b, 21c. At this time, the opening degree determination unit 54 refers to the correspondence tables K3, K4, K5, and K6 stored in the storage unit 52. Further, the opening degree determination unit 54 stores the determined individual opening degree Di in the storage unit 52 and notifies the operation control unit 51 of it.
  • the opening degree determination unit 54 determines the overall opening degree Dw of the expansion device 21 so as to reach the target value using the degree of supercooling SC.
  • the overall opening degree Dw is set to increase the refrigerant flow rate when the current supercooling degree SC is small, and to suppress the refrigerant flow rate when the supercooling degree SC is large.
  • the degree of supercooling SC is calculated from the temperature difference between the saturated temperature converted value of the discharge pressure detected by the discharge pressure sensor 61 and the refrigerant temperature detected by the liquid pipe temperature sensor 63. In the correspondence table K3 shown in FIG. 6, for example, when the difference in supercooling degree ⁇ SC [° C.] between the target value and the current supercooling degree SC is 1 ° C.
  • the opening degree determination unit 54 allocates the overall opening degree Dw to each of the expansion devices 21a, 21b, 21c according to the indoor unit capacity [kW] of the indoor unit 20, and the individual opening degree Dia, Div, Dic. Set.
  • the opening degree determination unit 54 allocates a large amount of refrigerant to the indoor unit 20 that requires a large amount of refrigerant flow, and the indoor heat exchanger 22 is small. A small amount of refrigerant is allocated to the indoor unit 20 that requires a small refrigerant flow rate.
  • the capacity code P representing the capacity of the indoor unit is associated with the indoor unit capacity [kW], and the higher the indoor unit capacity, the higher the capacity code P is set. .
  • the opening degree determination unit 54 adds up the capacity codes of the connected indoor units 20, and sets the total opening degree Dw according to the ratio of the capacity codes of the indoor units 20 to the totaled capacity codes. 20 and each individual opening degree Di is set.
  • the opening degree determination unit 54 corrects the set individual opening degree Di.
  • the opening degree determination unit 54 corrects the individual opening degree Di based on the temperature difference ⁇ T between the current room temperature T and a preset temperature set in advance.
  • the correction coefficient Cd1 is set to 1 or 1.5, and the individual opening degree increases as the temperature difference ⁇ T increases.
  • a correction coefficient Cd1 for increasing Di is associated. The opening determination unit 54 performs such correction during the cooling operation, thereby increasing the individual opening Di for the indoor unit 20 in the air-conditioning target space where the temperature difference ⁇ T is large, thereby increasing the capacity.
  • the individual opening degree Di is made small so as to easily converge to the target temperature.
  • the opening degree determination unit 54 further corrects the individual opening degree Di based on the current indoor temperature T.
  • the correction coefficient Cd2 is set to 2.2 or 0.7, respectively, and the lower the room temperature T, the more individually A correction coefficient Cd2 for increasing the opening degree Di is associated.
  • a correction coefficient Cd2 of 1 is set for the room temperature T of 27 ° C.
  • a correction coefficient Cd2 of less than 1 is set for the room temperature T higher than 27 ° C.
  • the correction value decreases the degree Di.
  • FIG. 10 is an explanatory diagram showing the relationship between the room temperature T and the correction value in FIG.
  • the horizontal axis in FIG. 10 represents the indoor dry bulb temperature [° C.] as the room temperature T, and the vertical axis represents the correction coefficient Cd2 as the correction value.
  • the set value and the correction value for determining the target evaporation temperature TEm and the individual opening degree Di of the expansion device 21 are stored in a table format like the correspondence tables K1 to K6. These data may be stored as equations as shown in FIG.
  • the indoor temperature sensor 64 measures the dry bulb temperature as the indoor temperature T
  • the indoor temperature T of the correspondence tables K1 to K6 is represented by the dry bulb temperature
  • the control is performed at the dry bulb temperature.
  • the present invention can also be applied to an indoor unit in which no humidity sensor is installed.
  • the structure which controls using the indoor wet bulb temperature as the indoor temperature T may be sufficient as the control apparatus 50.
  • the indoor wet bulb temperature is calculated from detection information from, for example, a temperature sensor and a humidity sensor.
  • the correspondence tables K1 to K6 are such that the room temperature T is expressed by the wet bulb temperature.
  • the controller 50 controls the wet bulb temperature. More accurate correction can be performed for the capacity drop.
  • FIG. 11 is a flowchart showing the capability setting control performed by the control device according to Embodiment 1 of the present invention.
  • FIG. 12 is an explanatory diagram showing a specific example of setting of the individual opening degree Di of the air conditioning system according to Embodiment 1 of the present invention.
  • the target evaporation temperature determining unit 53 sets the target evaporation temperature TEm based on the temperature difference ⁇ T (step ST101). At this time, the target evaporation temperature determination unit 53 obtains information on the set temperature and the current indoor temperature T regarding each indoor unit 20 from the operation control unit 51, calculates the sum of the temperature differences ⁇ T, and the correspondence table of the storage unit 52 Referring to K1, a target evaporation temperature TEm corresponding to the temperature difference ⁇ T is set. Next, the target evaporation temperature determination unit 53 corrects the set target evaporation temperature TEm with the current room temperature T with reference to the correspondence table K2 of the storage unit 52 (step ST102).
  • the target evaporation temperature determination unit 53 transmits information on the target evaporation temperature TEm determined in step ST102 to the operation control unit 51, and the operation control unit 51 sets the operation frequency of the compressor 12 based on the determined target evaporation temperature TEm. Control. At this time, the operation frequency is controlled to increase when the target evaporation temperature TEm decreases, and the compressor frequency is controlled to decrease when the target evaporation temperature TEm increases.
  • step ST101 when the temperature difference ⁇ T in the room A is 3 ° C., the temperature difference ⁇ T in the room B is 2 ° C., and the temperature difference ⁇ T in the room C is 5 ° C., the total value of the temperature differences ⁇ T is 10 ° C.
  • the target evaporation temperature TEm is set to 7 ° C.
  • the correction value Ct of the target evaporation temperature TEm is ⁇ 3 ° C. according to the correspondence table K2.
  • the opening degree determination unit 54 determines the entire opening degree Dw of the expansion device 21 so that the degree of supercooling SC reaches the target value (step ST103). For example, when the difference ⁇ SC between the target value and the current supercooling degree SC is 10 ° C., the total opening degree of the expansion devices 21a, 21b, 21c, that is, the total opening degree Dw is 900 pulses according to the correspondence table K3. Is set.
  • the opening degree determination unit 54 sets the individual opening degrees Dia, Div, Dic of the expansion devices 21a, 21b, 21c based on the capability code P (step ST104).
  • the indoor unit 20a and the indoor unit 20b perform a cooling operation
  • the indoor unit 20c stops operating
  • the overall opening Dw is set to 900 pulses.
  • the indoor capacity code of the indoor unit 20a is “5” according to the correspondence table K4, and the indoor capacity of the indoor unit 20b.
  • the code is “4”. Therefore, as shown in FIG.
  • the opening degree determination unit 54 corrects the individual opening degrees Dia, Div, and Dic set in step ST104 based on the temperature difference ⁇ T between the current room temperature T and the set temperature (step ST105).
  • the correction coefficient Cd1 for the individual openings Dia and Div of the expansion device 21a and the expansion device 21b is a correspondence table. According to K5, it becomes 1.3 and 1.1, respectively.
  • the opening degree determination unit 54 further corrects the individual opening degree Di calculated in step ST105 with the current indoor temperature T (step ST106).
  • the correction coefficient Cd2 for the individual openings Dia and Dib of the expansion device 21a and the expansion device 21b is a correspondence table. According to K6, it becomes 1.2 and 1.4, respectively.
  • the correction coefficient Cd2 that increases the individual opening degree Dib is applied to the indoor unit 20b having a lower indoor temperature T in the installed rooms A and B among the indoor units 20a and 20b that are in operation, and the capacity reduction due to the indoor temperature T is applied. Is supplemented.
  • the opening degree determination unit 54 transmits information on the individual opening degrees Dia, Div, Dic determined in step ST106 to the operation control unit 51, and the operation control unit 51 uses the determined Dia, Div, Dic for each aperture.
  • the opening degree of the devices 21a, 21b, and 21c is controlled.
  • the control device 50 repeats the capacity setting control of the above-mentioned steps ST101 to ST106 every preset time, and when the current room temperature T reaches the set temperature, the throttle devices of the corresponding rooms A, B, C 21 is fully closed, and the indoor unit 20 is set in the thermo OFF state. When a temperature difference occurs again between the room temperature T and the set temperature, the control device 50 sets the corresponding indoor unit 20 to the thermo-ON state and starts the above-described capacity setting control.
  • the air conditioning system 1 since the air conditioning system 1 performs control for correcting the decrease in capacity due to the room temperature T, the capacity becomes uniform even when the indoor temperatures T are different among the plurality of indoor units 20. Thereby, the air conditioning system 1 can prevent the occurrence of a situation where some of the indoor units 20 have insufficient capacity and the remaining some of the indoor units 20 have excessive capacity.
  • the air conditioning system 1 may, for example, set the temperature difference ⁇ T between the current room temperature T and the set temperature, and the room temperature and the set time before a certain time. Based on the temperature difference ⁇ Tx from the temperature, a decrease or increase in capacity may be estimated and the correction coefficient may be adjusted. In this case, for example, the control device 50 compares the current temperature difference ⁇ T with the temperature difference ⁇ Tx before a certain time, increases the correction coefficient when the difference is large, and decreases the correction coefficient when the difference is small. According to such a configuration, even in a situation where the indoor dry bulb temperature is high but the indoor wet bulb temperature is low, the air conditioning system 1 can perform correction closer to the actual load.
  • the air conditioning system 1 predicts the next temperature change, and even when the room temperature T is the same, the air temperature system 1 rises to the current room temperature T and falls to the current room temperature T. Therefore, the correction value may be different. For example, when the room temperature rises continuously for a certain period of time and reaches the current room temperature T, the control device 50 predicts that the temperature will rise next time, and increases the correction value to increase the temperature. prevent. On the other hand, when the room temperature continuously decreases from a certain time before and reaches the current room temperature T, the control device 50 decreases the correction value to converge to the set temperature.
  • the control device 50 has a plurality of correction values related to the room temperature T.
  • importance is attached to the capacity, importance is placed on prevention of excessive capacity, or usage environment such as a humid environment or a dry environment is emphasized.
  • the correction value can be switched in accordance with the above.
  • the air conditioning system 1 includes the outdoor unit 10 including the compressor 12 and the outdoor heat exchanger 11, the expansion device 21 and the indoor heat exchanger 22, respectively.
  • a plurality of indoor units 20a, 20b, and 20c connected via the refrigerant pipe and each of the plurality of indoor units 20 measure an indoor temperature T of an air-conditioning target space (for example, rooms A, B, and C) that is air-conditioned.
  • a plurality of indoor temperature sensors 64a, 64b, 64c and a control device 50 for controlling the compressor 12 and the expansion device 21 are provided, and the control device 50 sets each set temperature of the plurality of indoor units 20 during cooling operation.
  • the target evaporation temperature TEm is obtained based on the temperature difference ⁇ T between the room temperature T and the indoor temperature T of the air-conditioning target space of the indoor unit 20, the target evaporation temperature TEm is corrected based on the room temperature T, and the corrected target is obtained.
  • the operating frequency of the compressor 12 is obtained from the generated temperature TEm, the compressor 12 is controlled to rotate at the operating frequency, the set temperature of each of the plurality of indoor units 20 and the indoor temperature of the air-conditioning target space of the indoor unit 20 Based on the temperature difference ⁇ T with respect to T and the capacity ratio of the plurality of indoor units 20, the individual openings Di of the expansion devices 21 of the plurality of indoor units 20 are obtained, and the individual openings Di of the expansion devices are determined as It correct
  • the air conditioning system 1 corrects not only the load difference due to the temperature difference ⁇ T of each air conditioning target space and the capacity difference of each indoor unit 20, but also the difference in the indoor temperature T of each air conditioning target space.
  • the plurality of indoor units 20 can be set to the optimum capacity without variation.
  • control device 50 is associated with the room temperature T, and is associated with the first correction value (for example, the correction value Ct) that lowers the target evaporation temperature TEm as the room temperature T is lower, and the room temperature T.
  • the second correction value (for example, correction coefficient Cd2) for correcting to increase the individual opening degree Di of the expansion device 21 as the room temperature T is lower has a storage unit 52 in which the second correction value (for example, correction coefficient Cd2) is stored.
  • the target evaporation temperature TEm is corrected based on the room temperature T
  • the target evaporation temperature TEm is corrected by the first correction value (correction value Ct) corresponding to the room temperature T
  • the expansion device 21 is opened individually.
  • the degree Di is corrected based on the room temperature T
  • the individual opening degree Di of the expansion device 21 is corrected by the second correction value (correction coefficient Cd2) corresponding to the room temperature T.
  • the air conditioning system 1 refers to the plurality of correction values stored in the storage unit 52 and corrects the difference in required capacity for each indoor unit 20 caused by the difference in the indoor temperature T in each air conditioning target space. Can do. For example, in an air-conditioning target space where the room temperature T is low, correction is performed to increase the individual opening degree Di of the expansion device, and a reduction in capacity can be prevented compared to a case where correction based on the room temperature T is not performed.
  • the plurality of indoor temperature sensors 64 measure the dry bulb temperature as the indoor temperature T, and the first correction value (for example, the correction value Ct) and the second correction value (for example, the correction coefficient Cd2) are dry bulbs. It is associated with the room temperature represented by the temperature.
  • the air conditioning system 1 does not need to provide a humidity sensor corresponding to each indoor unit 20, and performs the above-described capability correction using the dry bulb temperature obtained from the temperature sensor provided in the general air conditioning system. Can do.
  • the plurality of indoor temperature sensors 64 measure the wet bulb temperature as the indoor temperature T, and the first correction value (for example, the correction value Ct) and the second correction value (for example, the correction coefficient Cd2) are the wet bulb. It is associated with the room temperature expressed in temperature.
  • the capacity of the indoor unit 20 greatly depends on the wet bulb temperature, but the air conditioning system 1 is controlled by the wet bulb temperature, thereby comparing with the case of performing the control by the dry bulb temperature.
  • the ability correction can be performed more accurately.
  • the second correction value (for example, the correction coefficient Cd2) increases the individual opening degree Di of the throttle device for an indoor temperature lower than a set threshold (for example, 27 ° C.), and the throttle for an indoor temperature that is equal to or higher than the set threshold.
  • a set threshold for example, 27 ° C.
  • a correction value for lowering the individual opening Di of the device is associated.
  • the air conditioning system 1 can further reduce the difference in capacity of each indoor unit 20 by increasing and decreasing the individual opening degree Di of each expansion device 21, thereby suppressing a decrease in capacity and excessive capacity. Generation of dew can be suppressed.
  • FIG. 13 is a schematic block diagram which shows the structure of the air conditioning system which concerns on Embodiment 2 of this invention.
  • FIG. 14 is a functional block diagram showing a functional configuration of the control device of the air conditioning system according to Embodiment 2 of the present invention.
  • the air conditioning system 101 includes an outdoor unit 10, a plurality of indoor units 20a, 20b, and 20c, a sensor group 160, a control device 150, and the like.
  • an outdoor unit 10 a plurality of indoor units 20a, 20b, and 20c, a sensor group 160, a control device 150, and the like.
  • the indoor units 20a, 20b, and 20c are provided with human sensors 66a, 66b, and 66c (hereinafter, referred to as human sensors 66 when there is no need to distinguish them).
  • the human sensor 66 detects the presence of a person in an air-conditioning target space in which the indoor unit 20 performs air conditioning, that is, the rooms A, B, and C, and includes, for example, a non-contact temperature sensor such as an infrared sensor.
  • the control device 150 and the human sensor 66 are connected to be communicable by wire or wirelessly, and detection information is transmitted from the human sensor 66 to the control device 150 during operation of the air conditioning system 1.
  • the control device 150 includes an operation control unit 51, a storage unit 52, a target evaporation temperature determination unit 53, an opening degree determination unit 54, and the like. In the second embodiment, the control device 150 further includes a human body information determination unit 55.
  • the human body information determination unit 55 determines whether or not there are many people in each air conditioning target space based on the detection information of the human sensor 66. At this time, for example, the human body information determination unit 55 detects human body information such as the position and the number of people in each of the rooms A, B, and C, and the number of people in the room is larger than the set threshold value. In addition, it may be determined that there are many people. And the human body information determination part 55 memorize
  • the target evaporation temperature determination unit 53 corrects the target evaporation temperature TEm based on the determination result of the human body information determination unit 55 when determining the target evaporation temperature TEm. For example, when the received determination result indicates that the number of persons in the room A is large, the target evaporation temperature determination unit 53 performs correction to reduce the target evaporation temperature TEm calculated in step ST102 of FIG. Then, the target evaporation temperature determination unit 53 transmits information on the target evaporation temperature TEm determined in this way to the operation control unit 51.
  • the opening degree determination unit 54 corrects the individual opening degree Di based on the determination result of the human body information determination unit 55 when determining the individual opening degree Di of each expansion device 21. For example, when the received determination result indicates that the number of people in the room A is large, the opening degree determination unit 54 corrects the individual opening degree Dia calculated in step ST106 of FIG. Then, the opening degree determination unit 54 transmits information on the individual opening degrees Di thus determined to the operation control unit 51.
  • the operation control unit 51 When the operation control unit 51 receives the detection information from the human sensor 66, the operation control unit 51 transmits the detection information to the human body information determination unit 55. Further, the operation control unit 51 controls the operation frequency of the compressor 12 based on the determined target evaporation temperature TEm, and controls the opening of each expansion device 21 with the determined individual opening Di.
  • the operation frequency of the compressor 12 increases in the configuration in which the capacity correction by the number of persons as described above is performed by the control device 50 as compared with the case where such correction is not performed.
  • the refrigerant flow rate of the indoor unit 20a increases. Therefore, the capacity of the indoor unit 20a determined to have a large number of people in the room increases, and the air conditioning system 101 can maintain comfort in any air conditioning target space.
  • the control device 150 uses, for example, the correction values set in the correspondence tables K1 to K6 as the determination result. By adjusting based on the above, the target evaporation temperature TEm and the individual opening degree Di may be corrected.
  • the embodiment of the present invention is not limited to the above embodiment, and various changes can be made.
  • the capability setting control is not limited to the control flow shown in FIG.
  • the correction of step ST106 may be processed prior to the correction of step ST105, and the process of determining the individual opening degree Di in steps ST103 to ST106 is the target evaporation temperature TEm in steps ST101 and ST102. It may be performed before or simultaneously with the process of determining.
  • the numerical values such as correction values shown in FIGS. 4 to 10 are examples, and may be set as appropriate in the applied air conditioning system.
  • the human body information determination unit 55 notifies the target evaporation temperature determination unit 53 and the opening degree determination unit 54 of information on the number of persons in the room, and the target evaporation temperature determination unit 53 and the opening degree determination unit 54 have a person present. You may be comprised so that the correction which reduces the cooling capacity of the room which does not exist may be carried out. According to such a configuration, the air conditioning system 101 can effectively increase the capacity of only the rooms A, B, and C in which people are present and the room temperature T needs to be lowered during the cooling operation, and an energy saving effect is obtained. In addition, user comfort is improved.
  • the air conditioning system 101 distributes the plurality of indoor units 20 even when there is a difference in the indoor temperature T of each air conditioning target space, as in the first embodiment. There is an effect that the ability can be corrected so as to obtain the optimum ability.
  • the air conditioning system 101 further includes a plurality of human sensors 66a, 66b, and 66c that detect the presence of a person in each air conditioning target space (for example, the rooms A, B, and C), and the control device 150 further includes a plurality of human sensors. Based on the detection information of the human sensor 66, whether or not there are many people is determined for each of the air-conditioning target spaces, and the indoor unit (for example, the air-conditioning target space determined to have many people) (for example, The expansion device 21a in the room A) is corrected so as to increase the individual opening degree Dia corrected based on the room temperature T.
  • the indoor unit for example, the air-conditioning target space determined to have many people
  • the air conditioning system 101 can perform the capacity correction suitable for the actual environment based on the number of persons existing in each air conditioning target space. For example, since the air conditioning system 101 can increase the capacity of the room A having many people, the comfort of the user can be maintained even in an air conditioning target space where the number of people is large and the temperature is likely to rise.

Abstract

空調システムは、圧縮機および室外熱交換器を有する室外機と、絞り装置および室内熱交換器をそれぞれ有し、室外機と冷媒配管を介して接続された複数の室内機と、複数の室内機のそれぞれが空調を行う空調対象空間の室内温度を計測する複数の室内温度センサと、圧縮機および絞り装置を制御する制御装置とを備え、制御装置は、冷房運転時においては、複数の室内機のそれぞれの設定温度と当該室内機の空調対象空間の室内温度との温度差に基づいて目標蒸発温度を求め、目標蒸発温度を室内温度に基づいて補正し、補正後の目標蒸発温度から圧縮機の運転周波数を求め、当該運転周波数で回転するように圧縮機を制御し、複数の室内機のそれぞれの設定温度と当該室内機の空調対象空間の室内温度との温度差と、複数の室内機の能力比とに基づいて複数の室内機のそれぞれの絞り装置の個別開度を求め、絞り装置の個別開度を、当該室内機の空調対象空間の室内温度に基づいて補正し、補正後の絞り装置の個別開度になるように絞り装置を制御する。

Description

空調システム
 本発明は、複数の室内機を個別に最適制御する空調システムに関する。
 従来、空調システムにおいて、1台の室外機に複数台の室内機が接続された多室形の空気調和機がある。このような多室形空気調和機において、各室内機は、計測された現在の室内温度と予め設定された設定温度との温度差、および、室内機の容量に対応した能力コード等を用いて制御が行われる(例えば、特許文献1参照)。特許文献1に開示される空調システムでは、このようなパラメータに基づいて各室内機に流れる冷媒の分流比率が決定され、電動膨張弁の開度が決定される。
特開平04-84061号公報
 従来の空調システムは、室内温度と設定温度との温度差による必要能力の差については補正することができる。しかしながら、冷房能力は、室内温度によっても変動するため、室内温度と設定温度との温度差が同一の場合でも、現在の室内温度の高低によって室内機は能力不足あるいは能力過多となることがある。特に、多室形空気調和機においては、部屋ごとに室内温度が異なるため、ある部屋では室内温度が目標温度に到達するまでの時間が短時間で済むが、他のある部屋では長くなるという状況が生じる。また、このような状況を回避するためにシステム全体の冷房能力を増加させた場合には、一部の室内機で能力過多による露付きが生じることもある。
 本発明は、上記のような課題を解決するためになされたもので、複数の部屋の室内温度にばらつきがある場合でも、各部屋に最適な能力で空調を行うことができる空調システムを提供することを目的とする。
 本発明に係る空調システムは、圧縮機および室外熱交換器を有する室外機と、絞り装置および室内熱交換器をそれぞれ有し、前記室外機と冷媒配管を介して接続された複数の室内機と、複数の前記室内機のそれぞれが空調を行う空調対象空間の室内温度を計測する複数の室内温度センサと、前記圧縮機および前記絞り装置を制御する制御装置とを備え、前記制御装置は、冷房運転時においては、複数の前記室内機のそれぞれの設定温度と当該室内機の空調対象空間の前記室内温度との温度差に基づいて目標蒸発温度を求め、前記目標蒸発温度を前記室内温度に基づいて補正し、補正後の目標蒸発温度から前記圧縮機の運転周波数を求め、当該運転周波数で回転するように前記圧縮機を制御し、複数の前記室内機のそれぞれの設定温度と当該室内機の空調対象空間の前記室内温度との温度差と、複数の前記室内機の能力比とに基づいて複数の前記室内機のそれぞれの前記絞り装置の個別開度を求め、前記絞り装置の個別開度を、当該室内機の空調対象空間の前記室内温度に基づいて補正し、補正後の絞り装置の個別開度になるように前記絞り装置を制御するものである。
 本発明の空調システムによれば、冷房運転時に、室内温度により目標蒸発温度および個別開度が補正されるので、圧縮機周波数および各室内機の冷媒流量が調整される。これにより、空調システムは、各空調対象空間の室内温度のばらつきによる各室内機の能力の差を小さくし、各空調対象空間に最適な能力で空調を行うことができる。
本発明の実施の形態1に係る空調システムの構成を示す概略構成図である。 室内温度と空調システムの能力低下との関係を示す説明図である。 本発明の実施の形態1に係る空調システムの制御装置の機能構成を示す機能ブロック図である。 本発明の実施の形態1に係る空調システムの目標蒸発温度TEmの設定例を示す図である。 本発明の実施の形態1に係る空調システムの室内温度Tによる目標蒸発温度TEmの補正値Ctの一例を示す図である。 本発明の実施の形態1に係る空調システムの絞り装置の全体開度Dwの設定例を示す図である。 本発明の実施の形態1に係る空調システムの室内機の容量に対する能力コードPの設定例を示す図である。 本発明の実施の形態1に係る空調システムの温度差ΔTによる個別開度Diの補正値の一例を示す図である。 本発明の実施の形態1に係る空調システムの室内温度Tによる個別開度Diの補正値の一例を示す説明図である。 図9の室内温度Tと補正値との関係を式に示した説明図である。 本発明の実施の形態1に係る制御装置が実施する能力設定制御を示すフローチャートである。 本発明の実施の形態1に係る空調システムの個別開度Diの設定の具体例を示す説明図である。 本発明の実施の形態2に係る空調システムの構成を示す概略構成図である。 本発明の実施の形態2に係る空調システムの制御装置の機能構成を示す機能ブロック図である。
実施の形態1.
 図1は、本発明の実施の形態1に係る空調システムの構成を示す概略構成図である。空調システム1は、室外機10と、複数の室内機20a,20b,20c(以下、特に区別する必要がない場合には単に室内機20という)と、各種センサと、制御装置50等とにより構成される。図1では、1台の室外機10に対して、3台の室内機20a,20b,20cが互いに並列に接続されている。室外機10は、室外熱交換器11と圧縮機12等とを備え、室内機20a,20b,20cは、室内熱交換器22a,22b,22cおよび絞り装置21a,21b,21c等を搭載している。そして、圧縮機12と室外熱交換器11と絞り装置21と室内熱交換器22等とが冷媒配管により接続されて冷凍サイクル2を構成している。なお、室内機20の台数は、3台に限定されず、1台以上であればよい。
 圧縮機12は、容量可変型の圧縮機で構成され、冷媒を圧縮して循環させる。絞り装置21は、例えば電子膨張弁で構成され、冷媒を減圧するものである。室外熱交換器11および室内熱交換器22は、配管内を流れる冷媒と空気との間で熱交換するものである。また、室外熱交換器11には、室外熱交換器11に空気を供給する室外ファンが付設され、室内熱交換器22には、室内熱交換器22に空気を供給する室内ファンが付設されている。
 複数の室内機20はそれぞれ異なる空調対象空間に設置され、室内機20aは部屋Aの空調を行い、室内機20bは部屋Bの空調を行い、室内機20cは部屋Cの空調を行う。
 図1に示すように、室外機10および室内機20には、温度、湿度または圧力等を検出する複数のセンサ(以下、総称してセンサ群60という場合がある)が配置されている。室外機10には、吐出圧力センサ61、吸入圧力センサ62および液管温度センサ63等が設置されている。吐出圧力センサ61は、圧縮機12の吐出側の配管に設けられ、圧縮機12が吐出する冷媒の圧力(吐出圧力)を検出する。吸入圧力センサ62は、圧縮機12の吸入側の配管に設けられ、圧縮機12に吸入される冷媒の圧力(吸入圧力)を検出する。液管温度センサ63は、室外熱交換器11の下流側の配管に設けられ、配管を流れる液冷媒の温度を検出する。また、各室内機20a,20b,20cには、室内温度センサ64a,64b,64c(以下、特に区別する必要がない場合には単に室内温度センサ64という)が設置されている。室内温度センサ64は、室内機20または空調対象空間に設置され、室内温度Tを検出する。液管温度センサ63および室内温度センサ64は、例えばサーミスタ等で構成される。実施の形態1では、室内温度センサ64は、室内温度Tとして乾球温度を計測するものとして説明するが、湿度センサ等を備え、室内温度Tとして湿球温度を計測するものであってもよい。
 制御装置50は、例えばマイコン等で構成され、空調システム1の運転を制御する。制御装置50は、上記のセンサ群60(図3参照)、各アクチュエータ、および図示しないリモコン等と、無線または有線により通信可能に接続されている。ここでアクチュエータとは、例えば、圧縮機12、絞り装置21a,21b,21c、室外ファンおよび室内ファン等である。なお、図1において、制御装置50は室外機10に搭載されているが、室外機10の筐体の外に設置されていてもよい。あるいは、室外機10の制御装置と各室内機20a,20b,20cの制御装置とを分けて構成し、これらの制御装置は互いに信号線等を介して接続されていてもよい。
 図中、矢印13は、冷房運転時における冷媒の循環方向を示す。このとき、室外熱交換器11は凝縮器として作用し、室内熱交換器22a,22b,22cは蒸発器として作用する。圧縮機12は、蒸発温度を目標蒸発温度TEmに一致させるように周波数制御される。各室内機20a,20b,20cに設けられた絞り装置21a,21b,21cは、弁開度が調整され、室内機20ごとに個別の冷媒流量制御が行われる。
 図2は、室内温度と空調システムの能力低下との関係を示す説明図である。図2において、横軸は室内湿球温度[℃]を表し、縦軸は能力の定格比を表している。図2に示されるように、室内温度Tが高くなるほど能力は高くなり、室内温度Tが低くなると能力は低下する。つまり、室内温度Tにより能力に差が生じ、室内温度Tが低い空調対象空間で、室内温度Tが高い空調対象空間と同等の能力を得ようとすると、能力を増加させる必要がある。そのため、実施の形態1の空調システム1では、冷房運転を行う際、現在の室内温度Tによる補正値を用いて圧縮機12の運転周波数および絞り装置21a,21b,21cの開度を補正し、必要能力の補正を行う構成となっている。
 次に、図3~図9に基づき、制御装置50の機能構成、および、能力補正に用いられる補正値等について詳細を説明する。図3は、本発明の実施の形態1に係る空調システムの制御装置の機能構成を示す機能ブロック図である。図4は、本発明の実施の形態1に係る空調システムの目標蒸発温度TEmの設定例を示す図である。図5は、本発明の実施の形態1に係る空調システムの室内温度Tによる目標蒸発温度TEmの補正値Ctの一例を示す図である。図6は、本発明の実施の形態1に係る空調システムの絞り装置の全体開度Dwの設定例を示す図である。図7は、本発明の実施の形態1に係る空調システムの室内機の容量に対する能力コードPの設定例を示す図である。図8は、本発明の実施の形態1に係る空調システムの温度差ΔTによる個別開度Diの補正値の一例を示す図である。図9は、本発明の実施の形態1に係る空調システムの室内温度Tによる個別開度Diの補正値の一例を示す説明図である。
 制御装置50は、運転制御部51と、記憶部52と、目標蒸発温度決定部53と、開度決定部54等とにより構成される。
 運転制御部51は、主な空調システム1の運転を制御する。運転制御部51は、センサ群60からの検出値およびリモコンからの運転指令等が入力され、アクチュエータに制御信号を出力する。このとき、運転制御部51は記憶部52を参照し、記憶部52に記憶されている情報から入力に応じた制御値を抽出し、制御信号として出力している。例えば、運転制御部51は、冷房運転時には、計測される蒸発温度が目標蒸発温度TEmに近づくように圧縮機12の運転周波数を制御する。また運転制御部51は、絞り装置21の開度を個別に制御し、各室内機20に流れる冷媒量を調整している。
 記憶部52は、各アクチュエータの制御に使用される制御情報、および後述する複数の対応テーブルK1~K6等を予め記憶している。また記憶部52には、センサ群60から取得した検出情報、リモコンを介して設定された設定情報、および制御中の各アクチュエータの運転情報等が格納される。なお、上記の各種情報は、テーブル形式で保存されていてもよく、あるいは式として記憶されていてもよい。情報がテーブル形式で保存されている場合には、補間により所望のデータが算出されるように構成すればよい。また、制御情報および対応テーブルK1~K6等の補正値等は、例えば、所望の結果を得るために予め実験等により取得されたものである。
 目標蒸発温度決定部53は、目標蒸発温度TEmを決定する。このとき目標蒸発温度決定部53は、記憶部52に記憶されている対応テーブルK1および対応テーブルK2を参照する。また目標蒸発温度決定部53は、決定した目標蒸発温度TEmを、記憶部52に保存するとともに運転制御部51に通知する。
 まず、目標蒸発温度決定部53は、現在の室内温度Tと設定温度との温度差ΔTに応じて目標蒸発温度TEmを設定する。具体的には、各室内機20における温度差ΔTの和が大きいほど全体の空調負荷が大きく、大きな能力が必要となるため、目標蒸発温度TEmは低く設定される。図4に示される対応テーブルK1において、例えば温度差ΔTの合計が1℃と10℃に対しては、それぞれ目標蒸発温度TEm[℃]の11℃または7℃が設定されている。つまり目標蒸発温度TEmは、温度差ΔTの合計が大きくなるに従い目標蒸発温度TEmが小さくなるように設定されている。
 次に、目標蒸発温度決定部53は、現在の室内温度Tにより、設定された目標蒸発温度TEmを補正する。具体的には、図2に示すように室内温度Tが低い部屋では能力が低下する傾向があるため、能力を上昇させるすなわち目標蒸発温度TEmを下げるように補正される。図5に示される対応テーブルK2において、例えば室内温度Tが17℃と25℃に対しては、それぞれ補正値Ctの-3℃または0℃が設定され、室内温度Tが低いほど目標蒸発温度TEmを低くする補正値Ctが対応づけられている。図5には、室内温度Tが24℃以上になると補正値Ctは0となる場合について示されているが、例えば24℃より高い室内温度Tに対して、目標蒸発温度TEmを上昇させて能力を抑える補正値Ctが設定されていてもよい。
 開度決定部54は、絞り装置21a,21b,21cの個別開度Dia,Dib,Dic(以下、単に個別開度Diという場合がある)を決定する。このとき開度決定部54は、記憶部52に記憶されている対応テーブルK3,K4,K5,K6を参照する。また開度決定部54は、決定した個別開度Diを、記憶部52に保存するとともに運転制御部51に通知する。
 まず、開度決定部54は、過冷却度SCを用いて目標値に達するように絞り装置21の全体開度Dwを決定する。具体的には、全体開度Dwは、現在の過冷却度SCが小さいときには冷媒流量を増加させ、過冷却度SCが大きいときには冷媒流量を抑えるように設定される。ここで、過冷却度SCは、吐出圧力センサ61により検出された吐出圧力の飽和温度換算値と液管温度センサ63により検出された冷媒温度との温度差から算出される。図6に示される対応テーブルK3において、例えば、目標値と現在の過冷却度SCとの過冷却度差ΔSC[℃]が1℃と10℃に対しては、それぞれ全体開度Dw[パルス]の540パルスまたは900パルスが設定されている。つまり、実過冷却度が目標値に近いあるいは大きい場合に全体開度Dwが小さく、目標値に対して実過冷却度が小さいほど大きな全体開度Dwが対応づけられている。
 次に、開度決定部54は、上記の全体開度Dwを、室内機20の室内機容量[kW]に応じて各絞り装置21a,21b,21cに割り振り、個別開度Dia、Dib,Dicを設定する。ところで、多室形空気調和機では、部屋ごとに室内機20a,20b,20cの大きさが異なる場合がある。そのため、開度決定部54は、複数の室内機20のうち、室内熱交換器22が大きく、多くの冷媒流量を必要とする室内機20には冷媒を多く割り振り、室内熱交換器22が小さく、冷媒流量が少なくて済む室内機20には冷媒を少なく割り振る。図7に示される対応テーブルK4において、室内機容量[kW]に対して、室内機の能力を表す能力コードPが関連づけられており、室内機容量が高いほど高い能力コードPが設定されている。運転中、開度決定部54は、例えば、接続している室内機20の能力コードを合計し、合計した能力コードに対する各室内機20の能力コードの割合によって、全体開度Dwを各室内機20に割り振り、各個別開度Diを設定する。
 次に、開度決定部54は、設定された上記の個別開度Diを補正する。1つめの補正として、開度決定部54は、現在の室内温度Tと予め設定された設定温度との温度差ΔTに基づいて、個別開度Diを補正する。図8に示される対応テーブルK5において、温度差ΔT[℃]が1と6に対しては、それぞれ補正係数Cd1の1または1.5が設定されており、温度差ΔTが大きいほど個別開度Diを大きくする補正係数Cd1が対応付けられている。開度決定部54は、冷房運転時にこのような補正を行なうことで、温度差ΔTが大きい空調対象空間の室内機20に対しては個別開度Diを大きくして能力を上昇させ、温度差ΔTが小さい空調対象空間の室内機20に対しては個別開度Diを小さくして目標温度へ収束し易くする。2つめの補正として、開度決定部54は、現在の室内温度Tにより、個別開度Diをさらに補正する。図9に示される対応テーブルK6において、室内温度T[℃]が15℃と30℃に対しては、それぞれ補正係数Cd2の2.2または0.7が設定され、室内温度Tが低いほど個別開度Diを大きくする補正係数Cd2が対応付けられている。また対応テーブルK6において、27℃の室内温度Tに対しては補正係数Cd2の1が設定されており、27℃より高い室内温度Tに対しては1未満の補正係数Cd2が設定され、個別開度Diを小さくする補正値となっている。
 図10は、図9の室内温度Tと補正値との関係を式に示した説明図である。図10の横軸は、室内温度Tとして室内乾球温度[℃]を表し、縦軸は、補正値として補正係数Cd2を表している。これまで、目標蒸発温度TEmおよび絞り装置21の個別開度Diを決定するための設定値および補正値等が、対応テーブルK1~K6のようにテーブル形式で保存されている場合について説明したが、これらのデータは、図10に示すような式として記憶されていてもよい。
 また、これまで、室内温度センサ64は室内温度Tとして乾球温度を計測し、対応テーブルK1~K6の室内温度Tは乾球温度で表され、制御も乾球温度で行われる場合について説明した。このような構成では、湿度センサが無い場合でも計測可能な室内乾球温度を用いて制御が行われるため、湿度センサが設置されていない室内機においても適用できる。
 なお、制御装置50は、室内温度Tとして室内湿球温度を用いて制御する構成であってもよい。室内湿球温度は、例えば温度センサと湿度センサからの検出情報により算出される。この場合、対応テーブルK1~K6は室内温度Tが湿球温度で表されたものとなるが、能力低下は湿球温度に特に依存するため、制御装置50は、湿球温度で制御することにより能力低下に対しより正確な補正を行うことができる。
 次に、図11および図12に基づき、冷房運転時に制御装置50が実施する能力設定制御について説明する。図11は、本発明の実施の形態1に係る制御装置が実施する能力設定制御を示すフローチャートである。図12は、本発明の実施の形態1に係る空調システムの個別開度Diの設定の具体例を示す説明図である。
 制御開始後、目標蒸発温度決定部53は、温度差ΔTに基づき目標蒸発温度TEmを設定する(ステップST101)。このとき、目標蒸発温度決定部53は、運転制御部51から各室内機20に関する設定温度および現在の室内温度Tの情報を取得して温度差ΔTの合計を算出し、記憶部52の対応テーブルK1を参照し、温度差ΔTに対応する目標蒸発温度TEmを設定する。次に、目標蒸発温度決定部53は、設定した目標蒸発温度TEmを、記憶部52の対応テーブルK2を参照して現在の室内温度Tにより補正する(ステップST102)。目標蒸発温度決定部53は、ステップST102で決定した目標蒸発温度TEmの情報を運転制御部51に送信し、運転制御部51は、決定された目標蒸発温度TEmに基づき圧縮機12の運転周波数を制御する。このとき、目標蒸発温度TEmが下がると運転周波数が上がり、目標蒸発温度TEmが上がると圧縮機周波数は下がるように制御される。
 例えば、ステップST101において、部屋Aの温度差ΔTが3℃、部屋Bの温度差ΔTが2℃、部屋Cの温度差ΔTが5℃であるとき、温度差ΔTの合計値は10℃であり、対応テーブルK1によれば目標蒸発温度TEmは7℃に設定される。また、例えば、部屋Aの室内温度Tが17℃である場合、対応テーブルK2によれば目標蒸発温度TEmの補正値Ctは-3℃である。この場合、結果として、目標蒸発温度TEmは4℃(=7℃-3℃)に決定される。
 続いて、開度決定部54は、過冷却度SCが目標値に達するよう、絞り装置21の全体開度Dwを決定する(ステップST103)。例えば、目標値と現在の過冷却度SCとの差ΔSCが10℃である場合には、絞り装置21a,21b,21cの合計の開度すなわち全体開度Dwは、対応テーブルK3に従い900パルスと設定される。
 次に、開度決定部54は、能力コードPに基づいて各絞り装置21a,21b,21cの個別開度Dia,Dib,Dicを設定する(ステップST104)。以下、図12に基づき、個別開度Diの設定の具体例をあげて説明する。ここで、室内機20aおよび室内機20bは冷房運転を行い、室内機20cは運転を停止し、全体開度Dwは900パルスに設定されているものとする。室内機20aの室内機容量が2.8kW、室内機20bの室内機容量が2.2kWである場合、対応テーブルK4により、室内機20aの室内能力コードは「5」、室内機20bの室内能力コードは「4」となる。したがって、図12に示すように、室内機20aの個別開度Diaは500パルス(=900×5/9)、室内機20bの個別開度Dibは400パルス(=900×4/9)に設定される。これより、運転中の室内機20a,20bのうち、能力コードPが大きい室内機20aでは絞り装置21aの個別開度Diaが大きく設定され、能力コードPが小さい室内機20bでは絞り装置21bの個別開度Dibが小さく設定される。つまり、室内機20aには均等に割り振るよりも多くの冷媒が流れ、また、室内機20bには室内機20aよりも少ない冷媒が流れる。なお、室内機20cは運転を停止しているため、絞り装置21cは閉となっている。
 次に、開度決定部54は、現在の室内温度Tと設定温度との温度差ΔTに基づき、上記のステップST104で設定された個別開度Dia,Dib,Dicを補正する(ステップST105)。ここで、部屋Aの温度差ΔTが4℃であり、部屋Bの温度差ΔTが2℃であるとき、絞り装置21aおよび絞り装置21bの個別開度Dia,Dibに対する補正係数Cd1は、対応テーブルK5に従いそれぞれ1.3と1.1になる。ステップST104で設定された個別開度Dia,Dibにこの補正係数Cd1が掛けあわされ、室内機20aでは個別開度Diaは650パルス(=500×1.3)となり、室内機20bでは個別開度Dibは440パルス(=400×1.1)となる。つまり、運転中の室内機20a,20bのうち、現在の室内温度Tがすでに目標温度に近い室内機20bでは、個別開度Dibの補正前後の変化が抑えられ、温度差ΔTが大きい室内機20aでは、ステップST104で設定された個別開度Diaを大きくする補正がなされる。
 次に、開度決定部54は、ステップST105にて算出された個別開度Diを、さらに現在の室内温度Tにより補正する(ステップST106)。ここで、部屋Aの室内温度Tが25℃であり、部屋Bの室内温度Tが23℃であるとき、絞り装置21aおよび絞り装置21bの個別開度Dia,Dibに対する補正係数Cd2は、対応テーブルK6に従いそれぞれ1.2と1.4になる。ステップST105で算出された個別開度Dia,Dibにこの補正係数Cd2が掛けあわされ、室内機20aでは個別開度Diaが780パルス(=650×1.2)となり、室内機20bでは個別開度Dibが616パルス(=440×1.4)となる。つまり、運転中の室内機20a,20bのうち設置された部屋A,Bの室内温度Tが低い室内機20bほど、個別開度Dibを大きくする補正係数Cd2が適用され、室内温度Tによる能力低下が補われる。
 そして、開度決定部54は、ステップST106で決定した個別開度Dia,Dib,Dicの情報を運転制御部51に送信し、運転制御部51は、決定されたDia,Dib,Dicで各絞り装置21a,21b,21cの開度を制御する。
 制御装置50は、上記ステップST101~ステップST106の能力設定制御を予め設定された時間ごとに繰り返し、設定温度へ現在の室内温度Tが達した時点で、対応する部屋A,B,Cの絞り装置21を全閉し、室内機20をサーモOFF状態とする。また、室内温度Tと設定温度との間に再び温度差が生じた場合には、制御装置50は、対応する室内機20をサーモON状態とし、上記の能力設定制御を開始する。
 このように、空調システム1は、室内温度Tによる能力低下を補正する制御を行うので、複数の室内機20において室内温度Tに差がある場合であっても能力が均一になる。これにより、空調システム1は、一部の室内機20で能力不足となり、残りの一部の室内機20で能力過多となる状況の発生を防止することができる。
 なお、室内温度Tとして室内乾球温度で制御が行われる場合には、空調システム1は、例えば、現在の室内温度Tと設定温度との温度差ΔT、および、一定時間前の室内温度と設定温度との温度差ΔTxに基づいて、能力の低下分または増加分を推測し、補正係数を調整するよう構成されてもよい。この場合、制御装置50は、例えば、現在の温度差ΔTを一定時間前の温度差ΔTxと比較し、その差が大きいときに補正係数を大きくし、小さいときに補正係数を小さくする。このような構成によれば、室内乾球温度は高いが室内湿球温度は低いといった状況においても、空調システム1は、より実際の負荷に近い補正を行うことができる。
 また、空調システム1は、次の温度変化を予測し、同一の室内温度Tであっても、上昇して現在の室内温度Tになった場合と降下して現在の室内温度Tになった場合とで、補正値を異なるものとする構成でもよい。例えば、室内温度が一定時間前から連続して上昇して現在の室内温度Tになった場合には、制御装置50は、次も温度が上昇すると予測し、補正値を大きくして温度上昇を防ぐ。一方、室内温度が一定時間前から連続して下降して現在の室内温度Tになった場合には、制御装置50は、補正値を小さくして設定温度に収束させる。
 また制御装置50は、室内温度Tに関する補正値を複数有しており、能力を重視する場合、能力過多の防止を重視する場合、あるいは、多湿環境もしくは乾燥した環境といった使用環境を重視する場合等に応じて、補正値を切り替えできるように構成することもできる。
 以上のように、実施の形態1において、空調システム1は、圧縮機12および室外熱交換器11を有する室外機10と、絞り装置21および室内熱交換器22をそれぞれ有し、室外機10と冷媒配管を介して接続された複数の室内機20a,20b,20cと、複数の室内機20のそれぞれが空調を行う空調対象空間(例えば、部屋A,B,C)の室内温度Tを計測する複数の室内温度センサ64a,64b,64cと、圧縮機12および絞り装置21を制御する制御装置50とを備え、制御装置50は、冷房運転時においては、複数の室内機20のそれぞれの設定温度と当該室内機20の空調対象空間の室内温度Tとの温度差ΔTに基づいて目標蒸発温度TEmを求め、目標蒸発温度TEmを室内温度Tに基づいて補正し、補正後の目標蒸発温度TEmから圧縮機12の運転周波数を求め、当該運転周波数で回転するように圧縮機12を制御し、複数の室内機20のそれぞれの設定温度と当該室内機20の空調対象空間の室内温度Tとの温度差ΔTと、複数の室内機20の能力比とに基づいて複数の室内機20のそれぞれの絞り装置21の個別開度Diを求め、絞り装置の個別開度Diを、当該室内機20の空調対象空間の室内温度Tに基づいて補正し、補正後の絞り装置の個別開度Diになるように絞り装置21を制御する。
 これにより、空調システム1は、各空調対象空間の温度差ΔTによる負荷の違い、および各室内機20の容量の差だけでなく、各空調対象空間の室内温度Tの差についても能力補正するので、複数の室内機20をばらつきなく最適な能力とすることができる。
 また、制御装置50は、室内温度Tに対応付けられて、室内温度Tが低いほど目標蒸発温度TEmを低くする第1の補正値(例えば、補正値Ct)と、室内温度Tに対応づけられて、室内温度Tが低いほど絞り装置21の個別開度Diを上げるように補正する第2の補正値(例えば、補正係数Cd2)と、が記憶された記憶部52を有し、冷房運転時においては、目標蒸発温度TEmを室内温度Tに基づいて補正する際に、目標蒸発温度TEmを室内温度Tに対応する第1の補正値(補正値Ct)によって補正し、絞り装置21の個別開度Diを室内温度Tに基づいて補正する際に、絞り装置21の個別開度Diを室内温度Tに対応する第2の補正値(補正係数Cd2)によって補正する。
 これにより、空調システム1は、記憶部52に記憶された複数の補正値を参照して、各空調対象空間の室内温度Tの高低差によって生じる室内機20ごとの必要能力の差を補正することができる。例えば、室内温度Tが低い空調対象空間においては、絞り装置の個別開度Diを上げる補正がなされ、室内温度Tによる補正を行わない場合と比べて能力低下を防止することができる。
 また、複数の室内温度センサ64は、室内温度Tとして乾球温度を計測し、第1の補正値(例えば、補正値Ct)および第2の補正値(例えば、補正係数Cd2)は、乾球温度で表された室内温度に対応付けられている。
 これにより、空調システム1は、各室内機20に対応して湿度センサを設ける必要がなく、一般の空調システムが備える温度センサから得られる乾球温度を利用して、上記の能力補正を行うことができる。
 また、複数の室内温度センサ64は、室内温度Tとして湿球温度を計測し、第1の補正値(例えば、補正値Ct)および第2の補正値(例えば、補正係数Cd2)は、湿球温度で表された室内温度に対応づけられている。
 これにより、例えば図2に示すように室内機20の能力は湿球温度に大きく依存するが、空調システム1は、湿球温度で制御を行うことにより、乾球温度で制御を行う場合と比べて、より正確に能力補正を行うことができる。
 また、第2の補正値(例えば、補正係数Cd2)は、設定閾値(例えば、27℃)よりも低い室内温度については絞り装置の個別開度Diを上げ、設定閾値以上の室内温度については絞り装置の個別開度Diを下げる補正値が対応づけられている。
 これにより、空調システム1は、各絞り装置21の個別開度Diを上げる補正と下げる補正により、各室内機20の能力の差をさらに小さくすることができ、能力低下を抑えるとともに、能力過多による露付きの発生を抑制することができる。
実施の形態2.
 図13および図14に基づき、実施の形態2の空調システム101について説明する。図13は、本発明の実施の形態2に係る空調システムの構成を示す概略構成図である。図14は、本発明の実施の形態2に係る空調システムの制御装置の機能構成を示す機能ブロック図である。
 空調システム101は、室外機10と、複数の室内機20a,20b,20cと、センサ群160と、制御装置150等とにより構成される。以下、実施の形態2において実施の形態1と異なる構成についてのみ説明し、同一の構成については同一符号を付して説明を省略する。
 実施の形態2において、各室内機20a,20b,20cには、人感センサ66a,66b,66c(以下、特に区別する必要がない場合には人感センサ66という)が設置されている。人感センサ66は、室内機20が空調を行う空調対象空間すなわち部屋A,B,Cにおける人の存在を検出するものであり、例えば、赤外線センサ等の非接触温度センサで構成される。
 制御装置150と人感センサ66とは、有線または無線により通信可能に接続されており、空調システム1の運転中には、人感センサ66から制御装置150に検出情報が送信される。
 制御装置150は、運転制御部51と、記憶部52と、目標蒸発温度決定部53と、開度決定部54等とから構成される。また、実施の形態2において、制御装置150はさらに人体情報判定部55を有している。
 人体情報判定部55は、人感センサ66の検出情報に基づいて、各空調対象空間に人が多く存在しているか否かを判定する。このとき、人体情報判定部55は、例えば、各部屋A,B,Cに在室している人の位置および人の数等の人体情報を検出し、室内の人数が設定閾値よりも多い場合に、人が多く存在していると判定すればよい。そして、人体情報判定部55は、各部屋A,B,Cについての判定結果を、記憶部52に記憶するとともに目標蒸発温度決定部53および開度決定部54に通知する。
 目標蒸発温度決定部53は、目標蒸発温度TEmを決定する際に、人体情報判定部55の判定結果に基づいて目標蒸発温度TEmを補正する。例えば、目標蒸発温度決定部53は、受信した判定結果が、部屋Aの人数が多いことを示すものであるとき、図11のステップST102で算出された目標蒸発温度TEmを下げる補正をする。そして、目標蒸発温度決定部53は、このようにして決定した目標蒸発温度TEmの情報を運転制御部51に送信する。
 開度決定部54は、各絞り装置21の個別開度Diを決定する際に、人体情報判定部55の判定結果に基づいて個別開度Diを補正する。例えば、開度決定部54は、受信した判定結果が、部屋Aの人数が多いことを示すものであるとき、図11のステップST106で算出された個別開度Diaを大きくする補正をする。そして、開度決定部54は、このようにして決定した各個別開度Diの情報を運転制御部51に送信する。
 運転制御部51は、人感センサ66から検出情報を受信すると、人体情報判定部55に送信する。また運転制御部51は、決定された目標蒸発温度TEmに基づき圧縮機12の運転周波数を制御し、決定された個別開度Diで各絞り装置21の開度を制御する。人数が多い部屋Aが存在する場合、制御装置50により上記のような人数による能力補正が実施される構成では、このような補正がなされない場合に比べて、圧縮機12の運転周波数が上昇し、室内機20aの冷媒流量が増加する。そのため、室内の人数が多いと判定された室内機20aでは能力が上昇し、空調システム101は、どの空調対象空間においても快適性を維持することができる。
 なお、判定結果に基づき、目標蒸発温度TEmおよび個別開度Diが直接補正される場合について説明したが、制御装置150は、例えば、対応テーブルK1~K6に設定されている補正値等を判定結果に基づいて調整することにより、目標蒸発温度TEmおよび個別開度Diを補正するように構成されてもよい。
 なお、本発明の実施の形態は上記実施の形態に限定されず、種々の変更を行うことができる。例えば、能力設定制御は、図11に示される制御フローに限定されない。例えば、ステップST105の補正よりも先にステップST106の補正が処理される構成でもよく、また、ステップST103~ステップST106の個別開度Diを決定する処理は、ステップST101およびステップST102の目標蒸発温度TEmを決定する処理よりも前、あるいは同時に実施されてもよい。
 また、図4~図10に示す補正値等の数値は一例であって、適用する空調システムにおいて適宜設定すればよい。
 また、人体情報判定部55は、室内の人数の情報を目標蒸発温度決定部53および開度決定部54に通知し、目標蒸発温度決定部53および開度決定部54は、人が存在していない部屋の冷房能力を減らす補正をするように構成されていてもよい。このような構成によれば、空調システム101は、冷房運転時に、人が存在し、室内温度Tを下げる必要がある部屋A,B,Cのみ有効に能力を上げることができ、省エネ効果が得られ、また、利用者の快適性が向上する。
 以上のように、実施の形態2においても、空調システム101は、実施の形態1の場合と同様に、各空調対象空間の室内温度Tに差がある場合においても複数の室内機20をばらつきなく最適な能力とするように能力補正することができるという効果を有する。
 また、空調システム101は、それぞれの空調対象空間(例えば、部屋A,B,C)の人の存在を検出する複数の人感センサ66a,66b,66cをさらに備え、制御装置150はさらに、複数の人感センサ66の検出情報に基づいて人が多く存在しているか否かを空調対象空間のそれぞれについて判定し、人が多く存在していると判定された空調対象空間の室内機(例えば、部屋A)の絞り装置21aについては、室内温度Tに基づいて補正された個別開度Diaを上げるように補正する。
 これにより、空調システム101は、各空調対象空間に存在する人の人数の多少に基づいて、実際の環境に見合った能力補正を行うことができる。空調システム101は、例えば、人が多い部屋Aについては能力を上昇させることができるため、人数が多く温度が上昇し易い空調対象空間でも利用者の快適性を維持することができる。
 1,101 空調システム、2 冷凍サイクル、10 室外機、11 室外熱交換器、12 圧縮機、20(20a,20b,20c) 室内機、21(21a,21b,21c) 絞り装置、22(22a,22b,22c) 室内熱交換器、50,150 制御装置、51 運転制御部、52 記憶部、53 目標蒸発温度決定部、54 開度決定部、55 人体情報判定部、60,160 センサ群、61 吐出圧力センサ、62 吸入圧力センサ、63 液管温度センサ、64(64a,64b,64c) 室内温度センサ、66(66a,66b,66c) 人感センサ、A~C 部屋、Cd1 補正係数、Cd2 補正係数、Ct 補正値、Di(Dia,Dib,Dic) 個別開度、Dw 全体開度、K1~K6 対応テーブル、P 能力コード、SC 過冷却度、T 室内温度、TEm 目標蒸発温度、ΔSC 過冷却度差、ΔT 温度差、ΔTx 一定時間前の温度差。

Claims (6)

  1.  圧縮機および室外熱交換器を有する室外機と、
     絞り装置および室内熱交換器をそれぞれ有し、前記室外機と冷媒配管を介して接続された複数の室内機と、
     複数の前記室内機のそれぞれが空調を行う空調対象空間の室内温度を計測する複数の室内温度センサと、
     前記圧縮機および前記絞り装置を制御する制御装置と
    を備え、
     前記制御装置は、冷房運転時においては、
     複数の前記室内機のそれぞれの設定温度と当該室内機の空調対象空間の前記室内温度との温度差に基づいて目標蒸発温度を求め、前記目標蒸発温度を前記室内温度に基づいて補正し、補正後の目標蒸発温度から前記圧縮機の運転周波数を求め、当該運転周波数で回転するように前記圧縮機を制御し、
     複数の前記室内機のそれぞれの設定温度と当該室内機の空調対象空間の前記室内温度との温度差と、複数の前記室内機の能力比とに基づいて複数の前記室内機のそれぞれの前記絞り装置の個別開度を求め、前記絞り装置の個別開度を、当該室内機の空調対象空間の前記室内温度に基づいて補正し、補正後の絞り装置の個別開度になるように前記絞り装置を制御する、
     空調システム。
  2.  前記制御装置は、
     前記室内温度に対応付けられて、室内温度が低いほど前記目標蒸発温度を下げるように補正する第1の補正値と、前記室内温度に対応づけられて、室内温度が低いほど前記絞り装置の個別開度を上げるように補正する第2の補正値と、が記憶された記憶部を有し、
     冷房運転時においては、
     前記目標蒸発温度を前記室内温度に基づいて補正する際に、前記目標蒸発温度を前記室内温度に対応する前記第1の補正値によって補正し、
     前記絞り装置の個別開度を前記室内温度に基づいて補正する際に、前記絞り装置の個別開度を前記室内温度に対応する前記第2の補正値によって補正する、
     請求項1に記載の空調システム。
  3.  複数の前記室内温度センサは、前記室内温度として乾球温度を計測し、
     前記第1の補正値および前記第2の補正値は、乾球温度で表された室内温度に対応付けられている、
     請求項2に記載の空調システム。
  4.  複数の前記室内温度センサは、前記室内温度として湿球温度を計測し、
     前記第1の補正値および前記第2の補正値は、湿球温度で表された室内温度に対応づけられている、
     請求項2に記載の空調システム。
  5.  前記第2の補正値は、設定閾値よりも低い室内温度については前記絞り装置の個別開度を上げ、前記設定閾値以上の室内温度については前記絞り装置の個別開度を下げる補正値が対応づけられている
     請求項2~4のいずれか一項に記載の空調システム。
  6.  それぞれの前記空調対象空間の人の存在を検出する複数の人感センサをさらに備え、
     前記制御装置はさらに、
     複数の前記人感センサの検出情報に基づいて人が多く存在しているか否かを前記空調対象空間のそれぞれについて判定し、
     人が多く存在していると判定された空調対象空間の室内機の前記絞り装置については、前記室内温度に基づいて補正された前記個別開度を上げるように補正する、
     請求項1~5のいずれか一項に記載の空調システム。
PCT/JP2017/014373 2017-04-06 2017-04-06 空調システム WO2018185911A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/014373 WO2018185911A1 (ja) 2017-04-06 2017-04-06 空調システム
JP2019511021A JP6707187B2 (ja) 2017-04-06 2017-04-06 空調システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/014373 WO2018185911A1 (ja) 2017-04-06 2017-04-06 空調システム

Publications (1)

Publication Number Publication Date
WO2018185911A1 true WO2018185911A1 (ja) 2018-10-11

Family

ID=63712397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014373 WO2018185911A1 (ja) 2017-04-06 2017-04-06 空調システム

Country Status (2)

Country Link
JP (1) JP6707187B2 (ja)
WO (1) WO2018185911A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114061112A (zh) * 2021-11-26 2022-02-18 珠海格力电器股份有限公司 空调系统及其控制方法
CN115164299A (zh) * 2022-06-10 2022-10-11 青岛海尔空调电子有限公司 空调器的控制方法、系统、控制装置及可读存储介质
CN115183407A (zh) * 2022-06-10 2022-10-14 青岛海尔空调电子有限公司 空调器的控制方法、系统、控制装置及可读存储介质
WO2023147723A1 (zh) * 2022-02-07 2023-08-10 青岛海尔空调器有限总公司 空调噪音的控制方法、控制系统、电子设备和储存介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7171414B2 (ja) * 2018-12-19 2022-11-15 三菱重工サーマルシステムズ株式会社 空気調和システムの制御装置、空気調和システム、空気調和システムの制御方法および空気調和システムの制御プログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0484061A (ja) * 1990-07-26 1992-03-17 Matsushita Seiko Co Ltd 多室形空気調和機の電動膨張弁制御装置
JPH0828985A (ja) * 1994-07-14 1996-02-02 Toshiba Ave Corp 空気調和機
JP2008190759A (ja) * 2007-02-02 2008-08-21 Daikin Ind Ltd 空気調和装置
JP2013210124A (ja) * 2012-03-30 2013-10-10 Mitsubishi Electric Corp 空気調和機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0484061A (ja) * 1990-07-26 1992-03-17 Matsushita Seiko Co Ltd 多室形空気調和機の電動膨張弁制御装置
JPH0828985A (ja) * 1994-07-14 1996-02-02 Toshiba Ave Corp 空気調和機
JP2008190759A (ja) * 2007-02-02 2008-08-21 Daikin Ind Ltd 空気調和装置
JP2013210124A (ja) * 2012-03-30 2013-10-10 Mitsubishi Electric Corp 空気調和機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114061112A (zh) * 2021-11-26 2022-02-18 珠海格力电器股份有限公司 空调系统及其控制方法
CN114061112B (zh) * 2021-11-26 2023-01-13 珠海格力电器股份有限公司 空调系统及其控制方法
WO2023147723A1 (zh) * 2022-02-07 2023-08-10 青岛海尔空调器有限总公司 空调噪音的控制方法、控制系统、电子设备和储存介质
CN115164299A (zh) * 2022-06-10 2022-10-11 青岛海尔空调电子有限公司 空调器的控制方法、系统、控制装置及可读存储介质
CN115183407A (zh) * 2022-06-10 2022-10-14 青岛海尔空调电子有限公司 空调器的控制方法、系统、控制装置及可读存储介质

Also Published As

Publication number Publication date
JPWO2018185911A1 (ja) 2019-07-25
JP6707187B2 (ja) 2020-06-10

Similar Documents

Publication Publication Date Title
JP6642379B2 (ja) 空調機
WO2018185911A1 (ja) 空調システム
US8306667B2 (en) Air-conditioning apparatus
US10088211B2 (en) Air-conditioning apparatus
CN107407494B (zh) 空调
US10753664B2 (en) Method and apparatus for reheat dehumidification with variable speed outdoor fan
US20190086113A1 (en) Air conditioning system
US10962249B2 (en) Air conditioning apparatus and air conditioning control method
JP6250076B2 (ja) 空調制御装置、空調制御システム、空調制御方法及びプログラム
US10941951B2 (en) Systems and methods for temperature and humidity control
KR20170109309A (ko) 공기 조화기의 제습운전 제어 장치 및 그 방법
JP2016053452A (ja) 空気調和機
CN111765607A (zh) 控制一拖多空调器电子膨胀阀方法及一拖多空调器和介质
JP6141217B2 (ja) 圧縮機劣化診断装置及び圧縮機劣化診断方法
JP5863988B2 (ja) 空調装置、コントローラ、空調制御方法及びプログラム
US10544952B2 (en) Air conditioner and method of controlling the same
KR101913511B1 (ko) 공기조화기의 제어방법
JP2021173518A (ja) 空気調和システムおよび制御方法
JP2019011950A (ja) 空気調和機
JP6271011B2 (ja) 冷凍空調装置
KR20200073471A (ko) 공기조화기의 제어 방법
JP7336458B2 (ja) 冷凍システムの接続関係判定装置、冷凍システムおよびプログラム
JP6906689B2 (ja) 空気調和機
JP2015218986A (ja) 空気調和機
KR20090047224A (ko) 공기조화기 및 그 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904777

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019511021

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17904777

Country of ref document: EP

Kind code of ref document: A1