WO2018185357A1 - Dispositivo de extrusión para el procesado de plásticos acoplable a sistemas de alimentación de polímeros termoplásticos y termoendurecibles. - Google Patents

Dispositivo de extrusión para el procesado de plásticos acoplable a sistemas de alimentación de polímeros termoplásticos y termoendurecibles. Download PDF

Info

Publication number
WO2018185357A1
WO2018185357A1 PCT/ES2018/070298 ES2018070298W WO2018185357A1 WO 2018185357 A1 WO2018185357 A1 WO 2018185357A1 ES 2018070298 W ES2018070298 W ES 2018070298W WO 2018185357 A1 WO2018185357 A1 WO 2018185357A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
heating
extrusion
thermoplastic
extrusion device
Prior art date
Application number
PCT/ES2018/070298
Other languages
English (en)
French (fr)
Inventor
Pablo Rodriguez Outon
Original Assignee
Pablo Rodriguez Outon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ES201730425U external-priority patent/ES1181409Y/es
Priority claimed from ES201731161U external-priority patent/ES1195158Y/es
Application filed by Pablo Rodriguez Outon filed Critical Pablo Rodriguez Outon
Priority to CN201880037564.9A priority Critical patent/CN111051036B/zh
Priority to EP18780507.2A priority patent/EP3597393B1/en
Priority to US16/500,984 priority patent/US11298864B2/en
Priority to ES18780507T priority patent/ES2928134T3/es
Publication of WO2018185357A1 publication Critical patent/WO2018185357A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/29Feeding the extrusion material to the extruder in liquid form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/256Exchangeable extruder parts
    • B29C48/2568Inserts
    • B29C48/25686Inserts for dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/286Raw material dosing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/475Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using pistons, accumulators or press rams
    • B29C48/48Two or more rams or pistons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/86Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the nozzle zone
    • B29C48/872Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the nozzle zone characterised by differential heating or cooling
    • B29C48/873Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the nozzle zone characterised by differential heating or cooling in the direction of the stream of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/91Heating, e.g. for cross linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92714Degree of crosslinking, solidification, crystallinity or homogeneity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92904Die; Nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/06Rod-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/12Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/10Thermosetting resins

Definitions

  • the invention refers to an extrusion device for the processing of plastics coupled to thermoplastic and thermosetting polymer feeding systems that provides, to the function to which it is intended, advantages and characteristics of novelty that will be described in detail later.
  • the object of the present invention focuses on a device for obtaining products manufactured continuously with resins that, starting from the liquid or pasty state, and being able to be formed by one or more components, provides rigid or flexible polymers of constant section and indefinite length through a process analogous to conventional extrusion.
  • the extrusion device has the ability to process molten, fluid, liquid or pasty polymers such as thermoplastics, thermosetting thermoplastics or thermosetting resins, regardless of their nature and viscosity.
  • the device of the invention acts as a material forming system, being able to be fed by any thermoplastic fuser system or collected to any type of extruder of those commonly used in conventional thermoplastic extrusion .
  • thermosetting thermoplastics its main function is act as an external system for the control of the cross-linking of the polymer after the previous fusion in the feeding system, which can be any thermoplastic melting system or any type of extruder of those usually used in the conventional thermoplastic extrusion.
  • the device designed here acts as a polymerization and crosslinking control system for the resin, allowing the kinetics of the curing reaction to be modulated during its fluid state, its subsequent conformation and solidification in the form of product section, and its subsequent cooling to be able to transport and handle the totally rigid product at the exit of the extrusion device.
  • an extruder designed to obtain products manufactured with rigid or flexible polymers is continuously protected by extrusion of a polymer, in liquid or pasty form, of one or more components, for which it is distinguished by comprising At least two reciprocating pistons that create a continuous flow at the exit of an extrusion head where the material progressively moves towards the extruder at the exit of at least two drive compartments, where said pistons work, which are arranged so consecutive to the extrusion head, so that the energy used to drive the pistons is invested in e! movement of the entire mass of the polymer along the extruder and the coupled devices.
  • the extruder of the invention has an ability to process polymers such as thermosetting or thermosetting resins, liquid or pasty, regardless of their nature and viscosity, which, in the case of thermosetting resins, these are polymerized in a controlled manner by dosing a precise amount of catalyst from an independent catalyst dosing system that is mixed at will before pouring into ios impeller compartments and applying a temperature profile through cooling and heating systems arranged along the extruder to control the reaction FIELD OF APPLICATION OF THE INVENTION
  • the sector of the technique in which the present invention is framed is that which corresponds to the continuous production of polymers, focusing particularly on e! scope of thermosetting resins for different products of the industrial and construction sector, among others.
  • thermosetting resins are not usually used as raw materials in extrusion processes because there is no efficient technology for this.
  • Thermosetting resins are often used in very little automated production models other than extrusion, which is e! plastics transformation process with higher production volume, followed by the injection-molding process. This situation has resulted in the products manufactured with these raw materials being limited to casting and injection applications in short series, which places these materials at a competitive price disadvantage compared to conventional plastic materials.
  • thermosetting resins are materials that generate a great interest in high-tech sectors for applications in the fields of 3D printing, medicine, electronics, aeronautics and motor racing, among others.
  • the aforementioned applications represent a very low consumption volume compared to the main applications of conventional thermoplastic materials.
  • the design of the extrusion device configuration constitutes the most important innovation element since its particular basis differs significantly from the extrusion technology commonly used.
  • the extrusion of thermosetting resins described here is based on the use of raw materials that, starting from the fluid or liquid state They provide a solid with a certain section shape at the exit of the extrusion device after a chemical reaction process.
  • This difference in the basis of the new technology has consequences that have a very positive impact not only on the characteristics of the manufacturing process, but also on the properties of the extruded products that allow the generation of new applications that until now would not be possible using the conventional thermoplastics. Therefore, the new device for extrusion of thermosetting resins is an innovative extrusion concept because it allows to manufacture existing products with new materials such as polyester, polyurethane, phenolic and epoxy resins, among others.
  • the configuration of the extrusion device of the invention responds to the difficulty that exists in processing thermosetting resins in conventional extruders.
  • thermoplastics run from! molten state to the solid when cooled very quickly, for a few seconds, which allows the material to be shaped through an extrusion mold with a very short distance compared to the length of the extruder.
  • thermosetting resins the curing reaction takes place in a much longer time compared to the solidification time of thermoplastics, because a conventional extrusion mold is not useful for shaping the part in a reactive system such as thermosetting resins, which necessarily implies using a completely different forming system whose design is described herein.
  • Nanotechnology and laser technology can be used, combined or alone, to provide the internal walls with elements of the extrusion device with a super-hydrophobic protection that eliminates or minimizes the adhesion that resins possess on any surface. It is precisely the adhesion of the resins, when they pass from the liquid to the solid state, which has caused the obstruction of many of the equipment designed in the past and has become one of the greatest challenges that has prevented the development of an efficient extrusion model of plastics based on the use of thermosetting resins. Additionally, there are different types of extruders in the market that, depending on the type of material! and application, they can have very diverse configurations.
  • Single or multiple screw extruders are the most widely extended but their use is limited to products that use thermoplastic raw materials.
  • Raw materials with a thermoplastic character have the characteristic that can be processed in a continuous manner as in the extrusion or can be processed discontinuously as in the injection because e! Molten material can be processed at any time as long as it does not lose its melt condition.
  • extruders are those of single piston, which can be used independently or coupled to screw extruders that feed the piston extruder.
  • single-piston extruders are used for the processing of thermoplastic materials that are brought to the melting temperature or when there are solvents present as in wet extrusion.
  • the single-piston extruders have the particularity that they are used in discontinuous processes that require the application of a lot of pressure and in conditions of high viscosity, which also makes them suitable for the processing of thermosetting resins because the piston pushes all the material without remaining reacted material remains that can remain attached to the walls of the compartment that houses the piston.
  • the piston supplies reactive material to a cavity that is located at the exit of the piston compartment. In this cavity there is a limited amount of material that is pushed by the piston through a nozzle into a mold that is usually coupled to a press. That is why to extruders Single piston is called piston injectors and they operate discontinuously.
  • the existing piston extruders are not useful for the processing of thermosetting resins because they present several problems for continuous operation.
  • One of the most common problems arises when the piston is receding after the previous impulse of the material, be it a molten thermoplastic or a thermosetting resin that reacts, oscillations occurring in the flow, therefore the advance of the material does not occur constantly throughout the extruder during this period.
  • the consequence of these fluctuations in the flow when it comes to a thermosetting resin is that different areas are obtained where it is cured of!
  • the material is not homogeneous and therefore its properties vary throughout the extruded part due to the different residence time of the reactive mixture in the cavity.
  • thermosetting resins are continuous extrusions of thermosetting resins.
  • Some processes for extrusion of thermosetting resins have been described but many of them operate discontinuously, as described in US4240997, where extrusion is carried out in phases and represents the main characteristic of ! processing with thermosetting resins using single piston extruders.
  • thermosetting resins Due to the particularities described in the processing of thermosetting resins, it is not surprising then that in the market single piston extruders are limited almost exclusively to the production of injection molded parts. In fact, in the market there are not many products with thermostable properties of indefinite length using resins as the main raw material. The closest thing to these products of thermosetting properties and indefinite length are very exclusive materials such as cross-linked polyethylene or cross-linked polytetrafluoroethylene. These materials are usually flexible and are continuously manufactured with thermoplastic raw materials, which are chemically treated during a reactive extrusion process carried out in screw or single piston extruders.
  • thermosetting resins for example, thermosetting resins
  • the objective of the present invention is therefore to develop an improved extrusion device to enable the continuous processing of polymers, especially the thermosetting resins, by including at least two pistons working in a coordinated manner, as explained further. forward, avoiding the previously described drawbacks of existing devices and systems so far. It can be affirmed, therefore, that, as a reference to the current state of the art, the existence of any other extrusion device that has technical and structural characteristics and the same or similar to those specifically presented in the one claimed here is unknown.
  • extrusion device for the processing of plastics attachable to thermoplastic and thermosetting polymer feeding systems proposed by the invention is thus configured as a novelty within its field of application, since according to its implementation the aforementioned objectives are satisfactorily achieved , the distinguishing details being conveniently set forth in the final claims that accompany the present description.
  • the main feature of! Extrusion device of the present invention is its ability to continuously process thermosetting resins that are polymerized therein in a controlled manner by applying a temperature profile along the device to control the reaction kinetics and properties. of the extruded product.
  • thermosetting resins of one or more components, such as polyester, epoxy, phenolic, polyurethane, polyureas and other similar resins .
  • the extruder of the invention essentially comprises at least one of the following systems which, called modules, through which the catalyzed resin circulates where the reaction takes place inside, such as a system or module of heating-reaction, a heating-shaped system or module and a cooling-solidification system or module.
  • modules may be independent or be part of one or more integrated modules with the same functions as those described below.
  • the heating-reaction module which is optional, is intended to provide a heated path to accelerate the curing reaction inside.
  • the shape of the inner section through which the resin flows will preferably be cylindrical to minimize friction and adhesion with the inner wall.
  • any other form is possible but not advisable different from the cylindrical, since the heat transfer is also more homogeneous with this geometry.
  • the resin In this area of the extrusion device the resin must remain in a still fluid state since the manufactured part will not be formed yet.
  • Another advantage of the cylindrical shape of the reaction device is that it allows modifying the inner section of!
  • the heating-reaction system introducing interchangeable hollow cylinders of different internal section area to adapt said area to the geometric section of the piece to be manufactured.
  • the heating-reaction module can take a flat shape or use a flat geometry coupling to distribute the liquid resin prior to the entrance to the heating-shaped module that continues to the heating module -reaction.
  • the heating-forming module has the function of shaping the part during the process of geification of the resin in a manner analogous to the function of the conventional extrusion mold.
  • This module can also be heated to ensure that the surface of the piece has a level of cure that allows it to slide along the inner surface of the heating-shaped module with the least possible friction.
  • heating-shaped module houses inside interchangeable insert elements whose internal section shape gives rise to the geometric shape of the extruded product. The most important advantages of employing interchangeable false elements is in the first place, to enable multiple geometric forms of the product with the same heating-forming module, and secondly, that the extrusion device can be easily removed and cleaned in case of obstruction.
  • the cooling-solidification module has essentially the same configuration characteristics as that of heating-conforming with the proviso that the temperature applied must be much lower to ensure that the projecting part is completely rigid and manipulable without risk of deformation.
  • the heating module- formed and the cooling-solidification module could be part of the same module with different temperatures, where the length of the interchangeable internal elements that shape the product inside crosses the entire integrated module.
  • Extrusion device designed here can be made with materials such as iron, steel, aluminum, brass, bronze or any other material, metallic or not, with a high heat transfer coefficient.
  • the internal surfaces of the internal elements such as the hollow cylinders of the heating-reaction system and the interchangeable inserts of the heating-forming and cooling-solidification modules must be completely smooth, preferably mirror polished in the case of metals, or made or covered with a very non-stick material so that the coefficient of friction is as low as possible and the resin flows without adhesion problems on said internal walls.
  • a coating of a permanent superhydrophobic material that is resistant to temperature and abrasion can be applied.
  • the application of a superhydrophobic coating is important, above all, in the heating-forming module, which is where the greatest adhesion will occur due to the gelation of the resin.
  • the catalysis time in gelation must be very well controlled with the appropriate amount of catalyst and taking into account the temperature profile applied along the extrusion device.
  • a transport system formed by rollers, wheels or any other analogous system that acts as a traction system for the projecting material can be coupled.
  • the transport system will facilitate the exit of the piece by reducing the internal pressure of the device, thus reducing the possibility of obstruction and allowing the subsequent transport of the product.
  • a heating system can be coupled to practice post-curing of the piece in order to accelerate its solid phase curing and improve its properties after manufacturing.
  • This system can be a device that applies falling air, infrared irradiation or any other system that transfers heat by convection, conduction or electromagnetic irradiation.
  • the feed system or extrusion module coupled to the extrusion device may optionally be a conventional extruder; a system consisting of tanks, tanks, agitators, paddle mixers, liquid jet mixers, piston pumps, gear pumps, peristaltic pumps, pressurized tanks; an injection system that works continuously; or any other system that provides sufficient pressure to drive the entire mass of reactant resin along the inside of the extrusion device.
  • a conventional extruder a system consisting of tanks, tanks, agitators, paddle mixers, liquid jet mixers, piston pumps, gear pumps, peristaltic pumps, pressurized tanks
  • an injection system that works continuously
  • any other system that provides sufficient pressure to drive the entire mass of reactant resin along the inside of the extrusion device.
  • the pressure the system must exert Feeding is a very important factor to control due to the aforementioned problem about the adhesion of resins to the internal walls of interchangeable hairpieces.
  • the preferred feeding system or extrusion module is based on the alternative movement of two pistons that create a continuous flow at the exit of an extrusion head specially designed so that the material progressively reacts towards the extruder outlet.
  • the extruder thanks to its configuration, in which two drive compartments are arranged consecutively to an extrusion head, allows to avoid the pressure drop and fluctuations of flow along all e! process. Thanks to this special configuration !, practically all the energy used in the actuation of the pistons is invested in e! movement of the entire reaction mixture mass along the extruder and coupled devices.
  • This configuration gives the extruder enough power to process any type of polymer such as a resin, regardless of its viscosity, and allows the manufacture of parts of a volume proportionally greater than the size of the extruder, being able to process virtually all Thermosetting resin formulations existing in the market.
  • the feed system or extrusion module of the invention essentially comprises at least one polymer inlet line that feeds at least two independent drive compartments that house one piston each and push the polymer towards a head of extrusion arranged consecutively to said drive compartments where the flows from both drive compartments converge to create a single continuous and sustained flow of polymer.
  • the feed system or extrusion module is prepared to extrude thermostable resins and comprises, at least, an inlet conduit through which a stream of resin driven by a pumping system flows to an external mixer, where it is mixed with the catalyst system that is supplied by a precision dispenser, and from which, through corresponding feed lines, the mixture of resin with catalyst is driven to a discharge zone, which comprises two adjacent cylindrical compartments , being introduced into each drive compartment, where it is preferably maintained at a low temperature by means of cooling systems, and driven by the alternative drive of two drive motors that move respective pistons in a synchronized manner in each drive compartment, creating two equal flows material alternatives that converge on the head d and extrusion located at the end of them already!
  • a key element of the configuration of the feed system or extrusion module described is the existence of an independent precision dispenser that is connected to the external mixer.
  • the main function of the catalyst dispenser is to be able to start the extruder and stop it. In this last phase of the production process it is necessary that the dispenser does not act so that the resin is free of the catalyst and that an adequate amount of non-reactive resin circulates.
  • the absence of catalyst in the resin allows, by means of its circulation, the cleaning of the entire machine from the external mixing device to the coupled devices, being able to recover the uncatalyzed resin to re-incorporate it into the feeding circuit and reduce to the maximum the losses of material in the operations of stop.
  • the catalyst system may be composed of a single catalyst or several catalysts of the same or different chemical nature.
  • the catalysts used can be immediate action, delayed action or latent, the latter can be activated with sources of heat, pressure, electromagnetic radiation or any other internal or external stimulus.
  • Extrusion head has the function of providing a single continuous flow of reactive mixture at its exit to the following optional devices attached to the extruder.
  • the head may or may not contain mechanical gates or any other device that opens and closes the passage of material to guarantee a sustained flow from the flows coming from the drive compartments.
  • it presents a single articulated gate that closes the passage alternately of the exit of the drive compartments, being synchronized with the actuation of each piston.
  • it is a double sliding gate.
  • the extruder may be preceded by a pre-mixed zone with stirred tanks and tanks where it is prepared and concentrates the non-reactive formulated material prepared with additives and / or fillers that is supplied to the reactive mixing device.
  • a pre-mixed zone with stirred tanks and tanks where it is prepared and concentrates the non-reactive formulated material prepared with additives and / or fillers that is supplied to the reactive mixing device.
  • one of its non-reactive components with the catalyst can be previously formulated in the premixed zone including an adequate amount of catalyst, eliminating the need for the dosing system although no control would be available. so precise of the kinetics of the reaction.
  • Another advantage is related to the simplicity of the process, which, in the case of thermoplastic materials, from when the primary material originates in a powder-shaped reactor until it is transformed into a final product, there are several or multiple extrusion processes, or as minimum two. After a first extrusion to obtain the first granules that need to be formulated with process additives, plasticizers, antioxidants, photoprotectors and additives of reinforcing fillers among others, there is at least a second extrusion to shape the final product. Given the simplicity of the process and the characteristics of the raw materials that can be used with the present invention, there are also important advantages in terms of the range of products that can be manufactured in the same facilities.
  • thermosetting resins allow for a superior customization capacity since it must be taken into account that thermoplastic material transformers must acquire the formulated granules from the raw material manufacturers, which already have predefined characteristics after polymerization. in the synthesis reactors at the manufacturer's facilities. Due to this, the thermosetting resin transformer can vary the properties in real time, being able, for example, to continuously alternate segments of materials with different properties by simply varying the input currents of the raw materials.
  • thermosetting materials generally have a higher temperature resistance, greater dimensional stability, low permeation to gases and liquids, and depending on the type of resin a greater chemical resistance, to solvents and corrosion, greater durability, superior hardness and resistance to abrasion among other advantages that, as mentioned, depend on the resin used. Therefore, the products that can be manufactured with this technoiogy have the advantages that confer the new materials capable of being processed for the purpose of this invention.
  • the configuration of the new extrusion device described the following results are allowed:
  • thermosetting resins - provide high productivity technology for products with thermosetting properties that give thermosetting resins
  • thermosetting resins provide a low-cost system that allows the extrusion process to be adapted to the chemical reaction of thermosetting resins
  • the extrusion device for the processing of plastics coupled to thermoplastic and thermosetting polymer feeding systems consists, then, in an invention of characteristics unknown until now for the purpose for which it is intended, reasons that together with its practical utility, they provide it with sufficient grounds to obtain the privilege of exclusivity that is requested.
  • Figure number 1- Shows a schematic side perspective view of an example of the complete cylindrical geometry extrusion device showing the main parts and elements it comprises;
  • Figure number 2. Shows a schematic side perspective view of the heating-reaction module of!
  • Figures 3-A, 3-B and 3-C show respective schematic views in front elevation of the cylindrical heating-reaction module shown in Figure 2, in examples with different sizes of the interchangeable hollow cylinders that allow obtaining different areas of internal section that contemplates the device of the invention;
  • Figure number 4.- Shows a schematic side perspective view of an example of the forming coupling part that contemplates the device of the invention, in an example thereof of geometry cylindrical;
  • Figure number 5. Shows a schematic view in lateral perspective of an example of the forming coupling part that contemplates the device of the invention, in another example thereof of rectangular geometry;
  • Figure 6 shows a schematic perspective view of the heating-forming module in a cylindrical embodiment with a configuration designed for integration with the cooling-solidification module object of the invention, its main parts and elements being appreciated ;
  • Figures number 7-A, 7-B, 7-C and 7-D.- Show schematic views in front elevation of
  • the extrusion device (100) of the invention coupled to polymer feeding systems in a fluid, liquid or pasty state, through a feed coupling (1), for the processing of plastic materials and for obtaining products of rigid or flexible material manufactured continuously, is essentially configured from a set of internally hollow modules through which the catalyzed resin material circulates and where the reaction takes place inside, comprising at least: a heating-forming module (6), where the material experiences a new temperature increase and adopts the desired shape; and a cooling-solidification module (8), where the material with the shaped shape passes from its liquid to solid state.
  • the extrusion device also comprises before the heating-forming module, a heating-reaction module (2), where the material experiences a first temperature increase;
  • the catalyzed resin supplied by a continuous injection system or any other feeding system optionally penetrates the heating-reaction module (2) accessing the inside of a interchangeable hollow cylinder (3) provided in said module, inside which, the resin is experiencing an increase in temperature during its travel due to the heat supplied by an external heating system (4) provided for this purpose, this may be a resistance electric, the circulation of a hot fluid or any other heating system.
  • the resin subsequently advances towards the end of the heating-reaction module (2) circulating inside a forming coupling (5), which can be cylindrical or rectangular, from the interchangeable hollow cylinder (3), until it arrives at the module heating-forming (6) that has the same section as the coupling (5).
  • a forming coupling (5) which can be cylindrical or rectangular
  • the material undergoes a new temperature increase caused by the self-acceleration of the curing reaction and the heat input supplied by another external heating system (4) that may be at a higher temperature than the previous one .
  • the increase in viscosity within the heating-forming module (6) is very high and sudden, which generates a rapid increase in the pressure that is compensated by the thrust pressure of the feed system, allowing the material to slide! reactant on the surface of the interchangeable insert elements (7) to give the desired shape, and provided in the heating-forming module (6), where the change of state of liquid to solid takes place.
  • the material moves towards a cooling-solidification module (8), which in the concrete example shown in Figure 1 is integrated with the heating-forming module (6).
  • a cooling system (9) has been installed that uses water or any other cooling system, which cools the part to ensure its rigidity and avoid its deformation in the transport after the exit of the extrusion device (100).
  • heating-reaction module (2) which is optional, is represented in Figure 2, where the elements mentioned above are shown and in greater detail, the internal interchangeable hollow cylinder (3), e! which has a length greater than the heating-reaction module (2) so that it can penetrate the forming coupling (5), which in this example is cylindrical, and locating its end just at the entrance of the heating-forming module ( 6) also cylindrical
  • the internal interchangeable hollow cylinder (3) can have different diameters and interior section areas as shown in Figures 3-A, 3-B and 3-C.
  • FIG. 4 an example of forming coupling (5) whose through hole is cylindrical at both ends is shown schematically to connect the heating-reaction module (2) with a heating-forming module ( 6) also cylindrical, normally used to manufacture short section articles with respect to the length of the product, such as tubes, bars, profiles and the like.
  • FIG. 5 a schematic example of another forming coupling (5), in this case one of cylindrical recess at a first and rectangular end in the opposite, is observed to connect the heating-reaction module ( 2) with a rectangular shaped heating module (6), normally used to manufacture long section articles with respect to the length of the product, such as sheets, plates, blocks and the like.
  • the cylindrical heating-forming module (6) is located shown in Figure 6, showing that it is integrated with a cooling-solidification module (8) also cylindrical, whose elements and parts mentioned above are shown in said figure and in Figures 7-A to 7-D, where it is observed that the interchangeable insert elements (7), being able to present various forms to shape the product leaving the extrusion device, also have an external form of cylindrical geometry, in accordance with that of the heating-forming module (6) and the cooling module -solidification (8).
  • Figure 8 shows the option of heating-forming module (6) rectangular, where it is integrated with a cooling-solidification module (8) also rectangular, and whose elements and parts mentioned above are shown in the scheme and in greater detail, for example the interchangeable insert elements (7) that are used to shape the product that exits the extrusion device, which are also rectangular in shape and can have different forms of interior section as shown in Figures 9- A, 9-B and 9-C.
  • the polymer to which the device is intended can be a thermosetting resin, a thermoplastic polymer, or a thermosetting thermoplastic.
  • the extrusion module of the present invention is shown in Figure 10 in its simplest configuration.
  • An inlet line (11) flows through the reactive mixing zone through which a resin stream flows, which is driven by a pumping system (12) to an external mixer (13) where it is mixed with the catalyst supplied by a dispenser precision (14). Jan! Mixing device is not allowed to enter air during mixing with the catalyst to avoid the presence of bubbles in the final product.
  • To the drive zone which It comprises two adjacent cylindrical compartments (20), two feed lines (15) with reactive mixture streams from the external mixer (13) reach their ends.
  • the reaction mixture is introduced into each drive compartment (20) that can be kept at a low temperature by cooling systems (16).
  • the discharge zone can be maintained at a sufficiently low temperature so that the material reacts slowly so that its viscosity does not increase significantly and that the reactive mixture can be pushed without sticking to the walls of each discharge conduit.
  • the reaction mixture is driven by the alternative drive of two drive motors (17) that move two pistons (18) in synchronized fashion creating two alternative equal flows of material that converge in the extrusion head (19) where systems and compatible devices to the usual extrusion processes in thermoplastics.
  • cooling means (16) that allow to regulate the curing speed of the reaction mixture, and the reaction kinetics can be adapted to the length of the extruder.
  • the head preferably has a gate (21), with two alternative options for carrying it out.
  • the head (19) has a single articulated gate (21) that alternatively covers the outlet of a drive compartment (20) or another.
  • its operation is as follows: while a first piston (18) moves back into the drive compartment (20) that is filling through the feed line (15), at its outlet there is an articulated gate (20) that closes the passage avoiding the recoil of reactive mixture due to the pressure exerted by the advance of the piston (18) of the adjacent drive compartment and, at the end of the action of this second piston (18) and the advance of the first, the gate articulated (21) is moved by the material's own impulse to open the exit that covered and cover the one that was open, and so on.
  • the articulated gate (21) is synchronized with the actuation of each piston (18) and can be immobilized by a locking system (22) during filling of the drive compartment (20).
  • the movement of the articulated gate could be controlled by some mechanism or system that governs the closing and opening of the gate.
  • a second embodiment option is shown, where the gate (21) is a double sliding gate whose operation consists in that, while the piston (18) of one of the drive compartments (20) recedes because it is filling through the feeding duct (15), at its entrance there is a double sliding gate (21) that is operated synchronously by cutting and opening the passage alternately in both compartments (20) perpendicular to the flow of reactive mixture, preventing the re-entry of material inside from! adjoining compartment.
  • each feed duct (15), just at the inlet of each drive compartment and prior to the head (19), of a non-return valve (23) is provided. prevents the material backing towards the mixer (13).
  • thermosetting resins of a component coupled to a device for coating substrates of indefinite morphology and indeterminate length is shown schematically represented.
  • the extruder preferably comprises a feed and mixing zone of raw materials (I), a discharge zone (II), a reaction zone (III), a substrate coating zone ( ⁇ V) and a post-curing zone (V) of the coated material.
  • a supply line (24) of resin or mixture of liquid resins provides raw material to a tank (25), which, in turn, is connected by an inlet conduit (1 1) to a pumping system (12) that supplies an inlet flow to the mixing device (13) where the resin is mixed with a catalyst supplied by a precision dispenser (14).
  • the mixing device (13) the reactive mixture is divided into two fiujos with an equivalent flow that is sent through the feeding ducts (15) of the extruder.
  • the two flows of the reactive mixture enter into two equivalent drive compartments (20) when one of the pistons (8) is collected and by means of the actuation of the motors (17) they push alternately to the pistons (18) each being Water-cooled compartment or other refrigerant circulating through the refrigeration circuit (16).
  • the reactive mixture of each compartment is propelled towards the extrusion head (19) from which a single flow is obtained! continuously and steadily towards the reaction zone.
  • thermosetting resins of two multicomponent components coupled to several devices that allow shaping, solidification and post-curing for the manufacture of structural section products constant and indefinite reinforced with solid charges.
  • the extruder comprises a feed and mixing zone of raw materials (I), a delivery zone (II), a reaction zone (Ill), a forming zone (IV), a solidification zone ( V) and a post-curing zone (VI) of the manufactured material.
  • each resin component send raw material to an agitator tank (33) of premise that operates in a discontinuous manner where all the ingredients of the formulation of each resin component are mixed and dispersed.
  • Each stirred tank is connected to a tank (25) that contains the formulation of each resin component prepared in the upper tank, which in turn it is connected by an inlet duct (1 1) to a pumping system (12) that supplies the inlet flows in the proper relationship to the mixing device (13) where both resin components are mixed with a catalyst supplied by a precision dispenser (14).
  • the reactive mixture is divided into two flows with an equivalent flow rate that are sent through the feed ducts (15) of the extruder.
  • the two flows of the reactive mixture enter into two equivalent impuision compartments (20) when each piston (18) is collected and by alternating actuation of the motors (17) they push the pistons (18) so that, each compartment being cooled by water or other refrigerant circulating through the refrigeration system circuit (16), the reactive mixture of each compartment is propelled towards the extrusion head (19) from which a single flow is continuously and constantly flowing towards the reaction zone .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

Comprende un conjunto de módulos interiormente huecos a través de los cuales circula el material a extruir, comprendiendo al menos: un módulo de calefacción-conformado (6) rectangular, donde el material experimenta un aumento de la temperatura y adopta la forma deseada; y un módulo de enfriamiento- solidificación (8) tubular, donde el material con la forma conformada pasa de su estado líquido a sólido con dicha forma. Antes del módulo (6) figura un módulo de calefacción-reacción (2), donde el material a extruir experimenta un primer aumento de temperatura. Dicho módulo (2) comprende un tubo hueco intercambiable (3) con un sistema de calefacción externo (4), en el interior del cual, el material a extruir experimenta su primer aumento de temperatura. El módulo de calefacción-conformado (6) presenta elementos postizos (7) y comprende otro sistema de calefacción externo (4) para provocar un nuevo aumento de temperatura por la autoaceleración de la reacción de curado y del aporte calorífico de dicho sistema (4) que puede estar a mayor temperatura que el anterior. Entre el módulo (2) y el módulo (6), es tubular, se incorpora un acoplamiento de conformado (5) que presenta un orificio pasante. Comprende el módulo de extrusión un circuito por el que fluye el polímero hasta al menos dos compartimientos de impulsión (20).

Description

M E M O R I A D E S C R I P T I V A
DISPOSITIVO DE EXTRUSIÓN PARA EL PROCESADO DE PLÁSTICOS ACOPLABLE A SISTEMAS DE ALIMENTACIÓN DE POLÍMEROS TERMOPLÁSTICOS Y TERMOENDURECIBLES
OBJETO DE LA INVENCIÓN
La invención, como expresa el enunciado de ia presente memoria descriptiva, se refiere a un dispositivo de extrusión para el procesado de plásticos acoplabie a sistemas de alimentación de polímeros termoplásticos y termoendurecibles que aporta, a la función a que se destina, ventajas y características de novedad que se describirán en detalle más adelante. El objeto de ia presente invención se centra, en un dispositivo para la obtención de productos fabricados de forma continua con resinas que, partiendo del estado líquido o pastoso, y pudiendo estar formadas por uno o varios componentes, proporciona polímeros rígidos o flexibles de sección constante y longitud indefinida a través de un proceso anáiogo a la extrusión convencional.
El dispositivo de extrusión tiene capacidad de procesar polímeros fundidos, fluidos, líquidos o pastosos tal como termoplásticos, termoplásticos termoendurecíbíes o resinas termoendurecibles, independientemente de su naturaleza y viscosidad. En el caso de ios polímeros termoplásticos, ei dispositivo de ia invención actúa a modo de sistema de conformado del material, pudiendo ser alimentado por cualquier sistema fusor de termopíástico o bien acopiado a cualquier tipo de extrusora de las habitualmente empleadas en ia extrusión convencional de termoplásticos. En el caso de los termoplásticos termoendurecibles, su función principal es actuar a modo de sistema externo para el control del entrecruzamiento del polímero posterior a la fusión previa en el sistema de alimentación, el cual puede ser cualquier sistema fusor de termoplástico o cualquier tipo de extrusora de las habitualmente empleadas en ia extrusión convencionai de termoplásticos. En el caso de las resinas termoendurecibles, el dispositivo aquí ideado actúa a modo de sistema de control de polimerización y entrecruzamiento de la resina, permitiendo modular la cinética de la reacción de curado durante su estado fluido, su subsiguiente conformación y solidificación con la forma de sección del producto, y su posterior enfriamiento para poder transportar y manipular el producto totalmente rígido a la salida del dispositivo de extrusión.
Adicionalmente, es objeto de protección una extrusora diseñada para la obtención de productos fabricados con polímeros rígidos o flexibles de manera continua mediante ia extrusión de un polímero, en forma líquida o pastosa, de uno o varios componentes, para lo cual se distingue por comprender ai menos dos pistones con movimiento alternativo que crean un flujo continuo a ia salida de un cabezal de extrusión donde el material va progresivamente avanzando hacia ¡a salida de la extrusora desde al menos dos compartimentos de impulsión, donde trabajan dichos pistones, que están dispuestos de manera consecutiva al cabezal de extrusión, de tai modo que la energía empleada en el accionamiento de los pistones es invertida en e! movimiento de toda ia masa del polímero a io largo de la extrusora y los dispositivos acoplados. La extrusora de la invención presenta una capacidad de procesar polímeros tal como termoestables o resinas termoestables líquidas o pastosas, independientemente de su naturaleza y viscosidad, las cuales, en el caso de las resinas termoestables, éstas son poiimerizadas de un modo controlado dosificando una cantidad precisa de catalizador desde un sistema dosificador de catalizador independiente que se mezcla a voluntad previamente a su vertido en ios compartimientos impulsores y aplicando un perfil de temperaturas a través de sistemas de refrigeración y calefacción dispuestos a lo largo de la extrusora para controlar la reacción CAMPO DE APLICACIÓN DE LA INVENCIÓN
El sector de ia técnica en el que está enmarcada ía presente invención es el que corresponde a la producción en continuo de polímeros, centrándose particularmente en e! ámbito de las resinas termoendurecibles para diferentes productos dei sector industrial y de ia construcción, entre otros.
ANTECEDENTES DE LA INVENCIÓN
En ia presente memoria se describirán eí fundamento, las características y ia problemática a resolver relacionada con la funcionaiidad del dispositivo de extrusión que permitirá la fabricación de productos extruidos con resinas termoendurecibles.
Actualmente, las resinas termoendurecibles no se suelen emplear como materias primas en los procesos de extrusión debido a que no existe una tecnología eficiente para ello. Las resinas termoendurecibles se suelen emplear en modelos de producción muy poco automatizados diferentes de la extrusión, que es e! proceso de transformación de plásticos con mayor voiumen de producción, seguido dei proceso de inyección-moldeo. Esta situación ha tenido como consecuencia que los productos fabricados con estas materas primas se hayan limitado a aplicaciones de colada e inyección en series cortas, lo que sitúa a estos materiales en desventaja competitiva en precio respecto a los materiales plásticos convencionales. Sin embargo, hoy en día ias resinas termoendurecibies son unos materiales que generan un gran interés en sectores de alta tecnología para aplicaciones en los campos de la impresión 3D, medicina, electrónica, aeronáutica y automovilismo, entre otros. No obstante, las aplicaciones mencionadas representan un volumen de consumo muy bajo en comparación al que presentan las principales aplicaciones de los materiales termoplásticos convencionales. Un hecho adiciona! a tener en cuenta y que demuestra un especial interés en el desarrollo de nuevos materiales plásticos, es que en el mercado de los productos fabricados por ia técnica de extrusión se está produciendo en todos ios sectores una situación que es muy favorable a la introducción de nuevos materiales, ya que materias primas tales como ios metales, el cemento y ios cerámicos, entre otros, están dando paso a la entrada de productos fabricados con nuevos materiales plásticos debido a su ligereza y cada vez mayor resistencia.
El diseño de la configuración del dispositivo de extrusión constituye el elemento de innovación más importante ya que su particular fundamento difiere de manera importante respecto a la tecnología de extrusión habitualmente empleada. Respecto a la extrusión convencional, donde el fundamento reside en la fusión de un material sólido para darle forma tras un posterior proceso de solidificación, ia extrusión de resinas termoendurecibles aquí descrita se fundamenta en el uso de materias primas que, partiendo del estado fluido o líquido, proporcionan a la salida del dispositivo de extrusión un sóiido con una determinada forma de sección tras un proceso de reacción química. Esta diferencia en el fundamento de ia nueva tecnología presenta unas consecuencias que inciden muy positivamente no sólo sobre las características del proceso de fabricación, sino también en las propiedades de los productos extruidos que permiten la generación de nuevas aplicaciones que hasta ahora no serían posibles empleando los termoplásticos convencionales. Por tanto, el nuevo dispositivo de extrusión de resinas termoendurecibles supone un concepto de extrusión innovador porque permite fabricar productos existentes con nuevos materiales como son ias resinas de poliéster, poliuretano, fenólicas y epoxi, entre otras.
La configuración del dispositivo de extrusión de la invención responde a la dificultad que existe para procesar las resinas termoendurecibles en extrusoras convencionales. En la extrusión convencional, ios termoplásticos transcurren de! estado fundido al sólido al enfriarse de modo muy rápido, durante unos pocos segundos, lo que permite dar forma al material a través de un molde de extrusión con un recorrido muy corto en comparación a la longitud de la extrusora. En el caso de las resinas termoendurecibles, la reacción de curado transcurre en un tiempo muy superior en comparación al tiempo de solidificación de los termoplásticos, por ¡o que un molde de extrusión convencional no es útil para dar forma a la pieza en un sistema reactivo como son las resinas termoendurecibles, lo que implica necesariamente emplear un sistema de conformado totalmente diferente cuyo diseño se describe en la presente memoria.
Un importante elemento de innovación que se prevé en esta nueva tecnología, es el uso de tecnología avanzada como es la nanotecnología y la tecnología láser. La nanotecnología y la tecnología láser se podrán emplear, combinadas o por sí solas, para dotar a las paredes internas de ios elementos del dispositivo de extrusión de una protección superhidrofóbica que permita eliminar o minimizar al máximo la adherencia que poseen las resinas sobre toda superficie. Es precisamente la adherencia de las resinas, cuando transcurren del estado líquido al sólido, lo que ha provocado la obstrucción de muchos de los equipos diseñados en el pasado y se haya convertido en uno de ios mayores retos que ha impedido desarrollar un modelo de extrusión eficiente de plásticos basado en el uso de resinas termoendurecibles. Adícionalmente, existen diferentes tipos de extrusoras en el mercado que, según eí tipo de materia! y aplicación, pueden tener configuraciones muy diversas. Las extrusoras de tornillo simple o múltiple son las más ampliamente extendidas pero su uso se limita a productos que emplean materias primas de carácter termoplástico. Las materias primas con carácter termoplástico presentan ía característica que se pueden procesar de una manera continua como sucede en la extrusión o se pueden procesar de modo discontinuo como sucede en la inyección debido a que e! material fundido puede procesarse en cualquier momento mientras no pierda su condición de fundido.
Otro tipo de extrusoras son las de pistón único, que pueden emplearse independientemente o bien acopladas a extrusoras de tornillo que alimentan a la extrusora de pistón. En la mayoría de casos, las extrusoras de pistón único se utilizan para el procesado de materiales termoplásticos que se llevan a la temperatura de fundido o cuando hay presencia de disolventes como en la extrusión húmeda. Las extrusoras de pistón único presentan la particularidad de que se emplean en procesos discontinuos que requieren la aplicación de mucha presión y en condiciones de elevada viscosidad, lo que las hace también adecuadas para el procesado de resinas termoendurecibies debido a que el pistón empuja todo el material sin que se queden restos de material reaccionados que puedan permanecer pegados a las paredes del compartimento que aloja el pistón. En muchos de los procesos de extrusión que emplean resinas termoendurecibies, el pistón suministra material reaccionante a una cavidad que se sitúa a la salida deí compartimento del pistón. En esta cavidad se aloja una cantidad limitada de material que es empujada por acción del pistón a través de una boquilla al interior de un molde que suele estar acoplado normalmente a una prensa. Es por ello que a las extrusoras de pistón único se Íes llama inyectoras de pistón y operan en discontinuo.
Debido a que en el proceso de fabricación de materiales con longitud indefinida se requiere que la extrusora opere en continuo, las extrusoras de pistón que existen en el mercado no son útiles para el procesado de resinas termoendurecibles porque presentan varios problemas para operar en continuo. Uno de los problemas más habituales se presenta cuando el pistón está retrocediendo tras el impulso previo del material, sea un termoplástico fundido o una resina termoendurecible que reacciona, produciéndose oscilaciones en ei flujo por tanto el avance del material no se produce de manera constante a lo largo de !a extrusora durante este período. La consecuencia de estas oscilaciones en el flujo cuando se trata de una resina termoendurecible, es que se obtienen diferentes zonas donde eí curado de! material no es homogéneo y por tanto sus propiedades varían a !o largo de la pieza extruida debido ai diferente tiempo de residencia de la mezcla reactiva en la cavidad.
La extrusión en continuo de resinas termoendurecibles es un proceso que tiene muy pocas referencias en la literatura. No obstante, se han descrito algunos procesos para !a extrusión de resinas termoendurecibles pero muchos de ellos operan de manera discontinua, como ei que se describe en la patente US4240997, donde la extrusión se lleva a cabo por fases y que representa la principal característica de! procesamiento con resinas termoendurecibles que emplean extrusoras de pistón único.
Una de las pocas referencias que parecen abordar el problema más prácticamente es el que se describe en !a patente EP0494222B1 . En dicha patente se trata de resolver las oscilaciones que se producen en procesos de extrusión de resinas termoendurecibles aunque en dicha patente se emplean dos bombas de pistón que crean un flujo continuo y sostenido de material que circula a través de dos mangueras interconectadas con caudales distintos y que convergen en un cabezal de extrusión. La circulación a través de estas mangueras del material reaccionante genera una evidente pérdida de carga que se suma al aumento de viscosidad en el circuito dei material reaccionante. Esta pérdida de carga impide la fabricación de grandes piezas en continuo o el procesamiento de materias primas con una elevada viscosidad ya que mucha de !a potencia de impulsión generada con las bombas de pistones se pierde a lo largo del circuito.
Debido a las particularidades descritas en eí procesamiento de resinas termoendurecibles, no es de extrañar entonces que en el mercado las extrusoras de pistón único se limiten de manera casi exclusiva a la producción de piezas moldeadas por inyección. De hecho, en e¡ mercado no se encuentran muchos productos con propiedades termoestables de longitud indefinida empleando resinas como materia prima principal. Lo más parecido a estos productos de propiedades termoestables y de longitud indefinida son materiales muy exclusivos como el poíietileno reticulado o el politetrafluroroetüeno reticulado. Estos materiales suelen ser flexibles y son fabricados de modo continuo con materias primas de carácter termoplástico, las cuales son químicamente tratadas durante un proceso de extrusión reactiva llevado a cabo en extrusoras de tornillos o de pistón único. Adicionalmente, las aplicaciones que requieren productos de longitud indefinida con propiedades termoestables han sido en muchos casos solventadas mediante el recubrimiento de una preforma con resinas termoendurecibles o mediante estructuras embebidas con este tipo de resinas en procesos de fabricación, que nada tienen que ver con el descrito en la presente invención. El objetivo de la presente invención es pues, desarrollar un dispositivo de extrusión mejorado para posibilitar el procesamiento en continuo de polímeros, especialmente ias resinas termoendurecibles, mediante la inclusión en el de al menos dos pistones que trabajan de modo coordinado, tal como se explica más adelante, evitando los inconvenientes anteriormente descritos de los dispositivos y sistemas existentes hasta ahora. Se puede afirmar, por tanto que, como referencia ai estado actual de la técnica, se desconoce la existencia de ningún otro dispositivo de extrusión que presente unas características técnicas y estructurales y iguales o semejantes a las que concretamente presenta el que aquí se reivindica. EXPLICACIÓN DE LA INVENCIÓN
El dispositivo de extrusión para el procesado de plásticos acoplable a sistemas de alimentación de polímeros termoplástlcos y termoendurecibles que la invención propone se configura pues como una novedad dentro de su campo de aplicación, ya que a tenor de su implementación se alcanzan satisfactoriamente los objetivos anteriormente señalados, estando los detalles caracterizadores que ¡a distinguen convenientemente recogidos en fas reivindicaciones finales que acompañan la presente descripción. La principal característica de! dispositivo de extrusión de la presente invención es su capacidad de procesar de manera continua resinas termoendurecibles que son polimerizadas en su interior de manera controlada mediante la aplicación de un perfil de temperaturas a lo largo del dispositivo para controlar la cinética de ¡a reacción y las propiedades del producto extruido. Concretamente, lo que ¡a invención propone, como se ha señalado anteriormente, es un dispositivo de extrusión que se puede acopiar a diferentes sistemas de alimentación de resina catalizada cuyos productos pueden ser fibras, hüos, varillas, barras, tuberías, perfiles, láminas, planchas, bloques y cualquier otro tipo de material rígido o flexible fabricado de forma continua mediante la extrusión en forma líquida o pastosa de resinas termoendurecibles de uno o varios componentes, como son las resinas de poliéster, epoxi, fenóiicas, poliuretanos, poliureas y otras similares.
De manera más precisa, la extrusora de la invención comprende, esencialmente, al menos, uno de los siguientes sistemas que, denominados módulos, a través de los cuales circula la resina catalizada donde transcurre la reacción en su interior, tales como un sistema o módulo de calefacción-reacción, un sistema o módulo de calefacción-conformado y un sistema o módulo de enfriamiento-solidificación. Dichos módulos podrán ser independientes o bien formar parte de uno o varios módulos integrados con las mismas funciones que las que se describen a continuación.
El módulo de calefacción-reacción, que es opcional, présete el cometido de proporcionar un recorrido calefactado para acelerar la reacción de curado en su interior. Según el tipo de producto a extruir, si se trata de una geometría alargada, por ejemplo, una barra, un tubo, un perfil o similares, ia forma de la sección interior por la cual fluye la resina será preferentemente cilindrica para minimizar la fricción y la adherencia con ia pared interior. No obstante, cualquier otra forma es posible pero no aconsejable diferente de la cilindrica, ya que la transferencia de calor es también más homogénea con esta geometría. En esta zona del dispositivo de extrusión la resina debe permanecer en un estado todavía fluido ya que todavía no se conformará la pieza fabricada. Otra de las ventajas de la forma cilindrica dei dispositivo de reacción es que permite modificar la sección interior de! sistema de calefacción-reacción introduciendo cilindros huecos intercambiables de diferente área de sección interna para adaptar dicha área a la sección geométrica de la pieza a fabricar. Si el producto tiene forma de lámina o plancha, el módulo de calefacción-reacción puede tomar una forma plana o bien usar un acoplamiento de geometría plana para distribuir la resina líquida previamente a la entrada ai módulo de calefacción-conformado que prosigue al módulo de calefacción-reacción.
El módulo de calefacción-conformado presenta la función de dar forma a la pieza durante el proceso de geíificación de la resina de forma análoga a ia función que tiene el molde de extrusión convencional. Este módulo también puede estar calefactado para asegurar que la superficie de la pieza tenga un nivel de curado que permita deslizarse por la superficie interior del módulo de calefacción-conformado con la mínima fricción posible. Para dar forma a ¡a pieza, e! módulo de calefacción-conformado aloja en su interior insertados unos elementos postizos intercambiables cuya forma de sección interior da lugar a ia forma geométrica del producto extruido. Las ventajas más importantes de emplear elementos postizos intercambiables es en primer lugar, posibilitar múltiples formas geométricas de producto con un mismo módulo de calefacción-conformado, y en segundo lugar, que el dispositivo de extrusión pueda retirarse y limpiarse fácilmente en caso de obstrucción.
El módulo de enfriamiento-solidificación posee esencialmente las mismas características de configuración que el de calefacción-conformado con la salvedad de que la temperatura aplicada debe ser muy inferior para garantizar que la pieza saliente esté totalmente rígida y sea manipulable sin riesgo de deformación. No obstante, el módulo de calefacción- conformado y el módulo de enfriamiento-solidificación podrían formar parte de un mismo módulo con diferentes temperaturas, donde la longitud de los elementos internos intercambiables que dan forma al producto en su interior atraviesa todo el módulo integrado.
La construcción de! dispositivo de extrusión aquí ideado puede realizarse con materiales tales como el hierro, acero, aluminio, latón, bronce o cualquier otro material, metálico o no, con un coeficiente de transferencia térmico elevado. Las superficies interiores de los elementos internos como los cilindros huecos del sistema de calefacción-reacción y los elementos insertables intercambiables de los módulos de calefacción-conformado y enfriamiento-solidificación deben ser totalmente lisas, preferentemente pulidas tipo espejo en el caso de metales, o bien fabricadas o recubiertas de un material muy antiadherente para que ei coeficiente de fricción sea lo más bajo posible y la resina fluya sin problemas de adherencia sobre dichas paredes internas.
Como elemento opcional y recomendado, con el objetivo de minimizar la adherencia de las resinas sobre ías paredes durante todo el proceso de curado, se puede aplicar un recubrimiento de un material superhidrofóbico permanente y resistente a la temperatura y a la abrasión. La aplicación de un recubrimiento superhidrofóbico es importante, sobre todo, en ei módulo de calefacción-conformado, que es donde se producirá la mayor adherencia por la gelificación de la resina. Para que la geiificación de ¡a resina se produzca en e! módulo de calefacción-conformado, el tiempo de catálisis en la gelificación debe estar muy bien controlado con la cantidad adecuada de catalizador y teniendo en cuenta el perfil de temperaturas aplicado a lo largo del dispositivo de extrusión. Una alternativa a la capa superhidrofóbica, cuando se trata de superficies metálicas, es la aplicación de un tratamiento láser especial sobre la superficie interior de los cilindros huecos y elementos postizos intercambiabíes. Este tratamiento descrito por sus autores, Chunlei Guo y Anatoliy Vorobyev del Instituto de Óptica adscrito a la Universidad de Rochester, permitirá dotar a ios metales de una protección superhidrofóbica permanente.
Opcionalmente, a la salida del dispositivo de extrusión, se puede acoplar un sistema de transporte formado por rodillos, ruedas o cualquier otro sistema análogo que actúe como sistema de tracción del material saliente. El sistema de transporte facilitará la salida de la pieza mediante la reducción de ia presión interior del dispositivo, reduciendo así la posibilidad de obstrucción y posibilitando el posterior transporte del producto. Opcionalmente, a la salida del dispositivo de extrusión se puede acopiar un sistema de calefacción para practicar un post-curado a la pieza con el objetivo de acelerar su curado en fase sólida y mejorar sus propiedades tras la fabricación. Este sistema puede ser un dispositivo que aplique aire caiiente, irradiación por infrarrojos o cualquier otro sistema que transfiera caior mediante convección, conducción o irradiación electromagnética.
El sistema de alimentación o módulo de extrusión acoplado al dispositivo de extrusión puede ser, opcionalmente, una extrusora convencional; un sistema formado por depósitos, tanques, agitadores, mezcladores de palas, mezcladores de chorro líquidos, bombas de pistón, bombas de engranajes, bombas peristálticas, depósitos presurizados; un sistema de inyección que trabaje en continuo; o cualquier otro sistema que proporcione una presión suficiente para impulsar toda la masa de resina reaccionante a lo largo del interior del dispositivo de extrusión. Con motivo de evitar la obstrucción de! dispositivo de extrusión, ia presión que debe ejercer el sistema de alimentación es un factor muy importante a controlar debido a la problemática mencionada sobre la adherencia de fas resinas a las paredes internas de los elementos postizos intercambiables. Ei sistema de alimentación o módulo de extrusión preferido se fundamenta en el movimiento alternativo de dos pistones que crean un flujo continuo a la salida de un cabezal de extrusión especialmente diseñado para que el material vaya progresivamente reaccionando hacia la salida de la extrusora. La extrusora, gracias a su configuración, en la que dos compartimentos de impulsión están dispuestos de forma consecutiva a un cabezal de extrusión, permite evitar la caída de presión y oscilaciones de flujo a lo largo de todo e! proceso. Gracias a esta configuración especia!, prácticamente toda la energía empleada en ei accionamiento de los pistones es invertida en e! movimiento de toda la masa de mezcla reaccionante a lo largo de la extrusora y los dispositivos acoplados. Esta configuración dota a la extrusora de potencia suficiente para procesar cualquier tipo de polímero tal como una resina, independientemente de su viscosidad, y permite la fabricación de piezas de un volumen proporcionalmente mayor que el tamaño de ía extrusora, siendo capaz de procesar prácticamente todas las formulaciones de resinas termoendurecibles existentes en el mercado.
Con mayor precisión el sistema de alimentación o módulo de extrusión de la invención comprende, esencialmente, al menos, una línea de entrada de polímero que alimenta a al menos dos compartimentos de impulsión independientes que alojan un pistón cada uno y empujan el polímero hacia un cabezal de extrusión dispuesto de manera consecutiva a dichos compartimentos de impulsión donde convergen los flujos procedentes de ambos compartimentos de impulsión para crear un único flujo continuo y sostenido de polímero. Así, en la realización preferida, eí sistema de alimentación o módulo de extrusión está preparado para extruir resinas termoestables y comprende, al menos, una conducción de entrada por la que fluye una corriente de resina impulsada por un sistema de bombeo hacia un mezclador externo, donde se mezcla con ei sistema catalizador que es suministrado por un dosificador de precisión, y desde el cual, a través de correspondientes conducciones de alimentación, es conducida ia mezcla de resina con catalizador a una zona de impulsión, la cual comprende dos compartimentos cilindricos contiguos, siendo introducida en cada compartimento de impulsión, donde preferentemente se mantiene a baja temperatura mediante sistemas de refrigeración, e impulsada por eí accionamiento alternativo de dos motores de impulsión que mueven respectivos pistones de un modo sincronizado en cada compartimiento de impulsión, creando dos flujos iguales alternativos de material que convergen en el cabezal de extrusión situado en el extremo de los mismos y a! que se pueden acoplar sistemas y dispositivos compatibles a los procesos de extrusión habituales en el sector de los termoplásticos. Un elemento clave de la configuración del sistema de alimentación o módulo de extrusión descrito es la existencia deí dosificador de precisión independiente que está conectado al mezclador externo. La función principal del dosificador del catalizador es poder realizar las puestas en marcha de la extrusora y la parada. En esta última fase del proceso productivo es necesario que el dosificador no actúe para que la resina esté libre del catalizador y que circule una cantidad adecuada de resina no reactiva. La ausencia de catalizador en ía resina permite, mediante su circulación, ia limpieza de toda la máquina desde el dispositivo de mezclado externo hasta los dispositivos acoplados, pudiendo recuperar la resina no catalizada para volver a incorporarla en el circuito de alimentación y reducir al máximo las mermas de material en las operaciones de parada.
Otra función muy importante es regular ia velocidad de curado de la mezcla reaccionante, pudiendo adaptar la cinética de reacción a la longitud de la extrusora según los dispositivos opcionales acoplabies a la misma. El sistema catalizador puede estar compuesto de un único catalizador o varios catalizadores de una misma o diferente naturaleza química. Los catalizadores empleados pueden ser de acción inmediata, de acción retardada o bien, latentes, pudiendo estos últimos activarse con fuentes de calor, presión, radiación electromagnética o mediante cualquier otro estímulo interno o externo.
La disposición del cabezal de extrusión respecto a los compartimentos de impulsión es otro elemento clave en la configuración de la extrusora ya que al situarse justo después de los compartimentos de impulsión se invierte toda la energía mecánica en e! movimiento del material a ¡o largo de ia extrusora y los dispositivos opcionales. E! cabezal de extrusión tiene la función de proporcionar un único caudal continuo de mezcla reactiva a su salida hacia los siguientes dispositivos opcionales acoplabies a la extrusora. El cabezal puede contener o no, unas compuertas mecánicas o cualquier otro dispositivo que abre y cierra el paso de material para garantizar un caudal sostenido a partir de los flujos provenientes de los compartimentos de impulsión. En una opción de realización presenta una única compuerta articulada que cierra el paso alternativamente de ia salida de los compartimientos de impulsión, estando sincronizada con el accionamiento de cada pistón. Y, en una segunda opción de realización se trata de una doble compuerta deslizante. Opcionalmente, para el procesado de resinas termoendurecibles de uno o más componentes, que a su vez puedan estar formadas por la mezcla de varias materias primas base o resinas, ia extrusora puede estar precedida de una zona de premezcíado con tanques agitados y depósitos donde se prepara y concentra el material formulado no reaccionante preparado con aditivos y/o cargas que es suministrado al dispositivo de mezclado reactivo. En el caso particular de resinas de dos componentes, uno de sus componentes no reactivos con el catalizador, puede ser formulado previamente en la zona de premezcíado incluyendo una cantidad adecuada de catalizador, eliminando ¡a necesidad del sistema dosificador aunque no se dispondría de un control tan preciso de la cinética de ia reacción.
Una de las ventajas de este proceso de producción respecto al proceso análogo de extrusión convencional de los materiales termoplásticos se relaciona con e! consumo de energía. En e! caso del dispositivo diseñado en la presente invención el factor más importante de consumo de energía es el empuje de los pistones, aunque su consumo no será tan elevado como el caso de la extrusión de termoplásticos, donde eí aporte de energía calorífica y mecánica es un factor que tiene un gran impacto en el precio final del producto. El alto consumo de la energía requerida en los procesos de extrusión convencionales, debido a las elevadas viscosidades y temperaturas que emplean, junto con el gasto energético que requiere el proceso de fricción y cizalla, es también bastante costoso en términos medioambientales si se tiene en cuenta la huella de carbono emitida en todo el proceso.
Otra de las ventajas se relaciona con la simplicidad del proceso, que, en el caso de los materiales termoplásticos, desde que se origina el material primario en un reactor en forma de polvo hasta que éste se transforma en un producto final, existen varios o múltiples procesos de extrusión, o como mínimo dos. Tras una primera extrusión para ia obtención los primeros gránulos que necesitan ser formulados con aditivos de proceso, plastificantes, antioxidantes, fotoprotectores y aditivos de cargas reforzantes entre otros, existe como mínimo una segunda extrusión para dar forma al producto final. Dada !a simplicidad del proceso y las características de las materias primas que se pueden emplear con la presente invención, también existen ventajas importantes en cuanto a la gama de productos que pueden fabricarse en unas mismas instalaciones. La propia naturaleza de las resinas termoendurecibíes posibilita una capacidad de personalización superior ya que se debe tener en cuenta que ios transformadores de materiales termoplásticos han de adquirir a los fabricantes de materia prima los gránulos ya formulados, los cuales ya poseen unas características predefinidas tras su polimerización en ios reactores de síntesis en las instalaciones del fabricante. Debido a esto, el transformador de resinas termoestables puede variar las propiedades en tiempo real, pudiendo por ejemplo, alternar de manera continua segmentos de materiales con diferentes propiedades variando simplemente las corrientes de entrada de las materias primas.
A nivel de producto, en comparación con los termoplásticos, los materiales termoestables poseen en general una mayor resistencia a la temperatura, una mayor estabilidad dimensional, una baja permeación a gases y líquidos, y dependiendo del tipo de resina una mayor resistencia química, a disolventes y a ia corrosión, mayor durabilidad, superior dureza y resistencia a la abrasión entre otras ventajas que, como se ha dicho, dependen de la resina empleada. Por tanto, ios productos que se pueden fabricar con esta tecnoiogía poseen las ventajas propias que le confieren ios nuevos materiaies capaces de ser procesados con el objeto de esta invención. De manera resumida, con la configuración del nuevo dispositivo de extrusión descrito, se permiten alcanzar ios siguientes resultados:
- simplificar el proceso de producción y e! número de etapas necesarias hasta el producto final;
- reducir el consumo energético del proceso de transformación desde la materia prima básica hasta el producto final;
- permitir ai transformador final influir en ias propiedades del producto para personalizarlo según la aplicación requerida; - dotar de nuevas propiedades a productos existentes mediante la incorporación de nuevos materiales que actualmente no están presentes en dichas aplicaciones al no existir una tecnología adecuada para producirlos y solventar la problemática que hasta ahora ha impedido el desarrollo de una tecnología eficiente para la extrusión de resinas termoendurecibies;
- proporcionar una tecnología de elevada productividad para productos con propiedades termoestables que le confieren las resinas termoendurecibies;
- proporcionar un sistema de bajo coste que permite adaptar eí proceso de extrusión a la reacción química de las resinas termoendurecibies;
- proporcionar un sistema simple, versátil, de fácil manipulación y limpieza. El dispositivo de extrusión para ei procesado de plásticos acoplabie a sistemas de alimentación de polímeros termoplásticos y termoendurecibies consiste, pues, en una invención de características desconocidas hasta ahora para el fin a que se destina, razones que unidas a su utilidad práctica, la dotan de fundamento suficiente para obtener ei privilegio de exclusividad que se solicita.
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, se acompaña a ta presente memoria descriptiva, como parte integrante de la misma, de unas hojas de pianos en que con carácter ilustrativo y no limitativo se ha representado lo siguiente: la figura número 1- Muestra una vista esquemática en perspectiva lateral de un ejemplo del dispositivo de extrusión completo de geometría cilindrica apreciándose las principales partes y elementos que comprende; la figura número 2.- Muestra una vista esquemática en perspectiva lateral del módulo de calefacción-reacción de! dispositivo objeto de ¡a invención, en un ejemplo cilindrico del mismo, según eí ejemplo mostrado en la figura 1 y acoplabíe a diferentes dispositivos de alimentación de polímeros, apreciándose sus principales partes y elementos; las figuras número 3-A, 3-B y 3-C- Muestran respectivas vistas esquemáticas en alzado frontal del módulo de calefacción-reacción cilindrico mostrado en ía figura 2, en ejemplos con distintos tamaños de los cilindros huecos intercambiables que permiten obtener diferentes áreas de sección interna que contempla el dispositivo de la invención; la figura número 4.- Muestra una vista esquemática en perspectiva lateral de un ejemplo de la pieza de acoplamiento de conformado que contempla el dispositivo de la invención, en un ejemplo del mismo de geometría cilindrica; la figura número 5.- Muestra una vista esquemática en perspectiva lateral de un ejemplo de la pieza de acopiamiento de conformado que contempla el dispositivo de la invención, en otro ejemplo del mismo de geometría rectangular; la figura número 6.- Muestra una vista esquemática en perspectiva iateral del módulo de calefacción-conformación, en un ejemplo de realización cilindrico con una configuración diseñada para su integración con móduio de enfriamiento-solidificación objeto de la invención, apreciándose sus principales partes y elementos; las figuras número 7-A, 7-B, 7-C y 7-D.- Muestran vistas esquemáticas en alzado frontal del móduio de calefacción-conformación mostrado en ¡a figura 6 con diferentes geometrías de productos que contempla ei dispositivo de la invención; ia figura número 8.- Muestra una vista esquemática en perspectiva lateral del móduio de calefacción-conformación en un ejemplo de realización rectangular con una configuración diseñada para su integración con módulo de enfriamiento-solidificación objeto de la invención, apreciándose sus principales partes y elementos; y las figuras número 9-A, 9-B y 9-C- Muestran vistas esquemáticas en alzado frontal del módulo de calefacción-conformación rectangular mostrado en la figura 8 con diferentes geometrías de productos que contempla el dispositivo de la invención; La figura número 10.- Muestra una vista esquemática lateral de un ejemplo básico de módulo de extrusión, acoplable al dispositivo de extrusión, apreciándose sus principales partes y elementos que la componen; la figura número 1 1.- Muestra una vista esquemática lateral del cabezal de extrusión de compuerta única articulada que prevé opcionalmente ¡a extrusora de la invención; ia figura número 12.- Muestra una vista frontal del cabezal de extrusión de compuerta única articulada mostrado en la figura 2; la figura número 13.- Muestra una vista esquemática lateral deí cabezal de extrusión de compuerta doble deslizable que prevé opcionalmente ia extrusora de la invención; la figura número 4.- Muestra una vista frontal del cabezal de extrusión de compuerta doble deslizable según la invención, mostrado en la figura 4; ia figura número 15.- Muestra una vista esquemática lateral de la extrusora de la presente invención, en un ejemplo de realización de la misma con una configuración diseñada para el recubrimiento de sustratos con resinas de un componente; y la figura número 16.- Muestra una vista esquemática latera! de la extrusora, según la invención, en otro ejemplo de la misma con una configuración diseñada para la fabricación de materiales estructurales reforzados con resinas de dos componentes o multicomponentes.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN A la vista de las mencionadas figuras, y de acuerdo con la numeración adoptada, se puede observar en ellas ejemplos no limitativos del dispositivo de extrusión para el procesado de plásticos acoplable a sistemas de alimentación de polímeros termoplásticos y termoendurecibles de la invención, el cual comprende las partes y elementos que se indican y describen en detalle a continuación.
Así, tal como se observa en dichas figuras, el dispositivo de extrusión (100) de !a invención, acoplable a sistemas de alimentación de polímeros en estado fluido, líquido o pastoso, a través de un acoplamiento de alimentación (1 ), para el procesado de materiales plásticos y para la obtención de productos de material rígido o flexible fabricado de forma continua, se configura, esencialmente, a partir de un conjunto de módulos interiormente huecos a través de los cuales circula el material de resina catalizada y donde transcurre ía reacción en su interior, comprendiendo ai menos: un módulo de calefacción-conformado (6), donde el material experimenta un nuevo aumento de la temperatura y adopta la forma deseada; y un módulo de enfriamiento-solidificación (8), donde el material con la forma conformada pasa de su estado líquido a sólido. Preferentemente el dispositivo de extrusión también comprende antes del módulo de calefacción-conformado, un módulo de calefacción-reacción (2), donde el material experimenta un primer aumento de temperatura;
El diseño completo de dicho dispositivo de extrusión (100) se representa en la figura 1 en un ejemplo de configuración cilindrica, la geometría más sencilla, cuyo fundamento se explica en detalle a continuación. A la entrada del dispositivo (100), donde se encuentra el acoplamiento de alimentación (1 ), ía resina catalizada suministrada por un sistema de inyección en continuo o cualquier otro sistema de alimentación, penetra opcionalmente en el módulo de calefacción-reacción (2) accediendo al interior de un cilindro hueco intercambiable (3) previsto en dicho módulo, en el interior del cual, la resina va experimentando un aumento de temperatura durante su recorrido debido al calor suministrado por un sistema de calefacción externo (4) previsto al efecto, pudiendo ser este una resistencia eléctrica, la circulación de un fluido caliente o cualquier otro sistema de calefacción. La resina posteriormente avanza hacia el extremo del módulo de calefacción-reacción (2) circulando por el interior de un acoplamiento de conformado (5), que puede ser cilindrico o rectangular, desde del cilindro hueco intercambiable (3), hasta su llegada al módulo de calefacción- conformado (6) que tiene la misma sección que el acoplamiento (5).
Dentro del módulo de calefacción-conformado (6) el material experimenta un nuevo aumento de temperatura provocado por la autoaceleración de la reacción de curado y del aporte calorífico suministrado por otro sistema de calefacción externo (4) que puede estar a mayor temperatura que el anterior. El aumento de viscosidad dentro del módulo de calefacción- conformado (6) es muy elevado y repentino, lo que genera un rápido aumento de la presión que se ve compensado por la presión de empuje del sistema de alimentación, permitiendo el deslizamiento del materia! reaccionante sobre la superficie de ios elementos postizos intercambiables (7) para dar la forma deseada, y previstos en eí módulo de calefacción- conformado (6), lugar donde transcurre el cambio de estado de líquido a sólido. Tras esta solidificación, el material avanza hacia un módulo de enfriamiento-solidificación (8), que en el ejemplo concreto representado en la figura 1 se encuentra integrado con el módulo de calefacción-conformado (6).
En concreto, en dicho ejemplo, alrededor del módulo de enfriamiento- solidificación (8), se ha instalado un sistema de refrigeración (9) que emplea agua o cualquier otro sistema refrigerante, el cual enfría la pieza para asegurar su rigidez y evitar su deformación en el transporte posterior a ía salida del dispositivo de extrusión (100).
E! módulo de calefacción-reacción (2), que es opcional, se encuentra representado en la figura 2, donde se muestran los elementos anteriormente citados y en mayor detalle, el cilindro hueco intercambiable interior (3), e! cual tiene una longitud mayor que el módulo de calefacción- reacción (2) para que pueda penetrar en el acoplamiento de conformado (5), que en dicho ejemplo es cilindrico, y situar su extremo justo en la entrada del módulo de calefacción-conformado (6) también cilindrico El cilindro hueco intercambiable interior (3), puede tener diferentes diámetros y áreas de sección interior tal como se representa en las figuras 3-A, 3-B y 3-C. Atendiendo a la figura 4, se observa, de forma esquemática, un ejemplo de acoplamiento de conformado (5) cuyo orificio pasante es cilindrico por ambos extremos, para conectar el módulo de calefacción-reacción (2) con un módulo de calefacción-conformado (6) también cilindrico, normalmente empleado para fabricar artículos de sección corta respecto a la longitud del producto, tales como tubos, barras, perfiles y similares.
Atendiendo a la figura 5, se observa, de una manera esquemática, otro ejemplo de acoplamiento de conformado (5), en este caso uno de hueco cilindrico en un primer extremo y rectangular en el opuesto, para conectar el módulo de calefacción-reacción (2) con un módulo de calefacción- conformado (6) rectangular, normalmente empleado para fabricar artículos de sección larga respecto a la longitud del producto, tales como láminas, planchas, bloques y similares. El módulo de calefacción-conformado (6) cilindrico se encuentra representado en la figura 6, apreciándose que está integrado con un módulo de enfriamiento-solidificación (8) también cilindrico, cuyos elementos y partes anteriormente citadas se muestran en dicha figura y en las figuras 7-A a 7-D, donde se observa que los elementos postizos intercambiables (7), pudiendo presentar formas diversas para dar forma al producto que sale del dispositivo de extrusión, igualmente presentan una forma externa de geometría cilindrica, acorde con la del módulo de calefacción-conformado (6) y del módulo de enfriamiento-solidificación (8). Por su parte, la figura 8 muestra la opción de módulo de calefacción- conformado (6) rectangular, donde está integrado con un módulo de enfriamiento-solidificación (8) también rectangular, y cuyos elementos y partes anteriormente citadas se muestran en el esquema y en mayor detalle, por ejemplo los elementos postizos intercambiables (7) que se emplean para dar forma al producto que sale del dispositivo de extrusión, que también son de forma rectangular pudiendo tener diferentes formas de sección interior tal como se representa en las figuras 9-A, 9-B y 9-C.
Por último destacar que el polímero a que se destina el dispositivo puede ser una resina termoendurecible, un polímero termopíástíco, o un termoplástico termoendurecible.
El módulo de extrusión de !a presente invención está representado en la Figura 10 en su configuración más sencilla. A la zona de mezciado reactivo llega una conducción de entrada (11 ) por la que fluye una corriente de resina que es impulsada por un sistema de bombeo (12) hacia un mezclador externo (13) donde se mezcla con el catalizador suministrado por un dosificador de precisión (14). En e! dispositivo de mezcla no se permite la entrada de aire durante el mezclado con el catalizador para evitar la presencia de burbujas en el producto final. A la zona de impulsión, que comprende dos compartimentos (20) cilindricos contiguos, llegan a sus extremos dos conducciones de alimentación (15) con corrientes de mezcla reactiva procedentes del mezclador (13) externo. La mezcla reactiva se introduce en cada compartimento de impulsión (20) que puede estar mantenido a baja temperatura por sistemas de refrigeración (16). La zona de impulsión se puede mantener a una temperatura suficientemente baja de modo que el material reaccione lentamente para que su viscosidad no se incremente de manera notable y que la mezcla reactiva pueda ser empujada sin que se pegue a las paredes de cada conducto de impulsión. La mezcla reactiva es impulsada por el accionamiento alternativo de dos motores de impulsión (17) que mueven sendos pistones (18) de modo sincronizado creando dos flujos iguales alternativos de material que convergen en el cabezal de extrusión (19) donde se pueden acoplar sistemas y dispositivos compatibles a los procesos de extrusión habitual en termoplásticos.
Es importante destacar la existencia del dosificador (14) de precisión independiente que suministra ei catalizador para endurecer la resina y que está conectado al mezclador (13) externo, permitiendo la activación y desactivación del sistema de impulsión con resina en ausencia de catalizador para efectuar la limpieza de toda la máquina.
Otro elemento importante a destacar son los medios de refrigeración (16) que permiten regular la velocidad de curado de ia mezcla reaccionante, pudiendo adaptar la cinética de reacción a la longitud de !a extrusora.
Es asimismo importante destacar la disposición del cabezal (19) de extrusión justo después de los compartimentos de impulsión provocando que se invierta toda la energía mecánica en el movimiento del material a lo largo de la extrusora y los dispositivos opcionales acoplados a dicho cabezal (19).
Para procurar la salida de un caudal sostenido, el cabezal presenta, preferentemente una compuerta (21 ), habiéndose previsto dos opciones alternativas de realización de la misma.
Así, en una primera opción de realización, apreciable en las figuras 11 y 12, el cabezal (19) presenta una única compuerta articulada (21 ) que cubre alternativamente la salida de un compartimiento de impulsión (20) u otro. En concreto, su funcionamiento es el siguiente: mientras un primer pistón (18) retrocede en el compartimento de impulsión (20) que se está llenando a través del conducto de alimentación (15), en su salida existe una compuerta articulada (20) que cierra el paso evitando el retroceso de mezcla reactiva debida a ¡a presión ejercida por el avance del pistón (18) del compartimento de impulsión contiguo y, al terminar la acción de este segundo pistón (18) y producirse el avance del primero, la compuerta articulada (21 ) es movida por el propio impulso del material para abrir la salida que tapaba y cubrir la que estaba abierta, y así sucesivamente. La compuerta articulada (21 ) está sincronizada con el accionamiento de cada pistón (18) y puede ser inmovilizada por un sistema de bloqueo (22) durante el llenado del compartimento de impulsión (20). Opcionalmente, el movimiento de la compuerta articulada podría estar controlado por algún mecanismo o sistema que gobierne ei cierre y apertura de la compuerta.
En las figuras 13 y 14 se ha representado una segunda opción de realización, donde la compuerta (21 ) es una doble compuerta deslizante cuyo funcionamiento consiste en que, mientras el pistón (18) de uno de los compartimientos de impulsión (20) retrocede porque se está llenando a través del conducto de alimentación (15), en su entrada existe una compuerta doble deslizable (21 ) que es accionada de manera sincronizada cortando y abriendo el paso de modo alternante en ambos compartimentos (20) perpendicularmente al flujo de mezcla reactiva, evitando la reentrada de material a su interior procedente de! compartimento contiguo.
En esta opción de realización, preferentemente, se prevé la existencia, en los extremos de cada conducto de alimentación (15), justo en la entrada de cada compartimento de impulsión y previo al cabezal (19), de una válvula antirretorno (23) que impide el retroceso del material hacia ei mezclador (13).
En la figura 15, se observa, representada de manera esquemática, un ejemplo de la extrusora de la invención, de doble pistón alternante, para resinas termoendurecibies de un componente acoplado a un dispositivo para el recubrimiento de sustratos de morfología indefinida y longitud indeterminada.
Además, como se observa en dicha figura 15, la extrusora comprende preferentemente una zona de alimentación y mezclado de materias primas (I), una zona de impulsión (II), una zona de reacción (III), una zona de recubrimiento del sustrato (ÍV) y una zona de postcurado (V) deí material recubierto.
Ai comienzo de ía zona de alimentación una línea de suministro (24) de resina o mezcia de resinas líquidas proporciona materia prima a un depósito (25), el cual, a su vez, está comunicado por un conducto de entrada (1 1 ) a un sistema de bombeo (12) que suministra un caudal de entrada al dispositivo mezclador (13) donde la resina se mezcia con un catalizador suministrado por un dosíficador de precisión (14). A la salida del dispositivo mezclador (13), la mezcla reactiva se divide en dos fiujos con un caudal equivalente que son enviados a través de los conductos de alimentación (15) de ía extrusora. Los dos flujos de la mezcla reactiva entran en sendos compartimentos de impulsión (20) equivalentes cuando uno de los pistones (8) está recogido y mediante ei accionamiento de los motores (17) éstos empujan de modo alternativo a los pistones (18) estando cada compartimento refrigerado por agua u otro refrigerante circulando por el circuito de refrigeración (16). La mezcla reactiva de cada compartimento es impulsada hacia el cabezal de extrusión (19) del cual sale un único cauda! de manera continua y constante hacia la zona de reacción.
Atendiendo a la figura 16, se observa otro ejemplo de realización de la extrusora de la invención, con doble pistón alternante para resinas termoendurecibles de dos componentes multicomponente acoplada a varios dispositivos que permiten la conformación, solidificación y postcurado para la fabricación de productos estructurales de sección constante e indefinida reforzados con cargas sólidas.
Así, en dicho ejemplo la extrusora comprende una zona de alimentación y mezclado de materias primas (I), una zona de impulsión (II), una zona de reacción (íll), una zona de conformación (IV), una zona de solidificación (V) y una zona de postcurado (VI) del material fabricado.
Ai comienzo de la zona de alimentación dos líneas de suministro de materias primas líquidas (24) y una tolva de alimentación (32) para aditivos y/o cargas sólidas en cada componente de la resina envían materia prima a un tanque agitador (33) de premezcía que opera de una manera discontinua donde se mezclan y dispersan todos los ingredientes de la formulación de cada componente de la resina. Cada tanque agitado está comunicado con un depósito (25) que contiene la formulación de cada componente de la resina preparada en el tanque superior, el cual a su vez está comunicado por un conducto de entrada (1 1 ) a un sistema de bombeo (12) que suministra los caudales de entrada en la relación adecuada hacia el dispositivo mezclador (13) donde ambos componentes de la resina se mezclan con un catalizador suministrado por un dosificador de precisión (14). A !a salida del dispositivo mezclador (13), la mezcla reactiva se divide en dos flujos con un caudal equivalente que son enviados a través de los conductos de alimentación (15) de la extrusora. Los dos flujos de la mezcla reactiva entran en sendos compartimentos de impuisión (20) equivalentes cuando cada pistón (18) está recogido y mediante el accionamiento alternante de los motores (17) éstos empujan los pistones (18) de modo que, estando cada compartimento refrigerado por agua u otro refrigerante circulando por ei circuito del sistema de refrigeración (16), la mezcla reactiva de cada compartimento es impulsada hacia el cabezal (19) de extrusión del cual sale un único caudal de manera continua y constante hacia la zona de reacción.
Asimismo, conviene aclarar que en algunas de las figuras se incluyen flechas indicativas de la posición que debe acabar de tener ei elemento representado, no debiendo confundirse con el sentido de deslizamiento del material, ya que este es el contrario, y va desde el acopiamiento de alimentación (1 ), donde penetra hasta ei extremo opuesto, al final del módulo de enfriamiento-solidificación (8) donde es expulsado con ia forma deseada según la que tengan los elementos postizos intercambiables (7). Descrita suficientemente la naturaleza de ia presente invención, así como la manera de ponerla en práctica, no se considera necesario hacer más extensa su explicación para que cualquier experto en la materia comprenda su alcance y las ventajas que de ella se derivan, haciéndose constar que, dentro de su esencialidad, podrá ser llevada a la práctica en otros modos de realización que difieran en detalle de la indicada a título de ejemplo, y a !as cuales alcanzará igualmente la protección que se recaba siempre que no se altere, cambie o modifique su principio fundamental.

Claims

R E I V I N D I C A C I O N E S
1 .- Dispositivo de extrusión para el procesado de plásticos acoplable a sistemas de alimentación de polímeros termoplásticos y termoendurecibles en estado fluido, líquido o pastoso para su procesado que, aplicable para la obtención de productos de material rígido o flexible fabricado de forma continua, está caracterizado por comprender un conjunto de módulos interiormente huecos a través de los cuales circula el material a extruir, comprendiendo al menos: un módulo de calefacción-conformado (6), donde el material experimenta un aumento de la temperatura y adopta la forma deseada; y un módulo de enfriamiento-solidificación (8), donde el material con la forma conformada pasa de su estado líquido a sólido con dicha forma.
2.- Dispositivo de extrusión para el procesado de plásticos acoplable a sistemas de alimentación de polímeros termoplásticos y termoendurecibles, según la reivindicación 1 , caracterizado porque además comprende, antes del módulo de calefacción-conformado, un módulo de calefacción-reacción (2), donde el material a extruir experimenta un primer aumento de temperatura.
3.- Dispositivo de extrusión para el procesado de plásticos acoplable a sistemas de alimentación de polímeros termoplásticos y termoendurecibles, según la reivindicación 2, caracterizado porque el módulo de calefacción-reacción (2) comprende un tubo hueco intercambiable (3) con un sistema de calefacción externo (4), en el interior del cual, el material a extruir experimenta su primer aumento de temperatura durante su recorrido debido al calor suministrado por dicho sistema de calefacción externo (4).
4.- Dispositivo de extrusión para el procesado de plásticos acoplable a sistemas de alimentación de polímeros termoplásticos y termoendurecibles, según cualquiera de las reivindicaciones anteriores, caracterizado porque el módulo de calefacción-conformado (6) comprende otro sistema de calefacción externo (4) para provocar que el material experimente un nuevo aumento de temperatura por la autoaceleración de la reacción de curado y del aporte calorífico de dicho sistema de calefacción externo (4), que puede estar a mayor temperatura que el anterior.
5.- Dispositivo de extrusión para el procesado de plásticos acoplable a sistemas de alimentación de polímeros termoplásticos y termoendurecibles, según cualquiera de las reivindicaciones 1 a 4, caracterizado porque el módulo de calefacción-conformado (6) comprende elementos postizos intercambiables (7) de configuraciones variables, para dar la forma deseada al material.
6. - Dispositivo de extrusión para el procesado de plásticos acoplable a sistemas de alimentación de polímeros termoplásticos y termoendurecibles, según cualquiera de las reivindicaciones 1 a 5, caracterizado porque el módulo de enfriamiento-solidificación (8) se encuentra integrado con el módulo de calefacción-conformado (6).
7. - Dispositivo de extrusión para el procesado de plásticos acoplable a sistemas de alimentación de polímeros termoplásticos y termoendurecibles, según cualquiera de las reivindicaciones 2 a 6, caracterizado porque entre el módulo de calefacción-reacción (2) y el módulo de calefacción-conformado (6) incorpora un acoplamiento de conformado (5).
8.- Dispositivo de extrusión para el procesado de plásticos acoplable a sistemas de alimentación de polímeros termoplásticos y termoendurecibles, según las reivindicaciones 3 y 5, caracterizado porque el tubo hueco intercambiable interior (3) tiene una longitud mayor que el módulo de calefacción-reacción (2) para que pueda penetrar en el acoplamiento de conformado (5), y situar su extremo justo en la entrada del módulo de calefacción-conformado (6).
9. - Dispositivo de extrusión para el procesado de plásticos acoplable a sistemas de alimentación de polímeros termoplásticos y termoendurecibles, según las reivindicaciones 1 y 8, caracterizado porque el módulo de calefacción-conformado (6) es tubular y el acoplamiento de conformado (5) presenta un orificio pasante que es cilindrico por ambos extremos, para conectar el módulo de calefacción-reacción (2) con dicho módulo de calefacción-conformado (6) tubular.
10. - Dispositivo de extrusión para el procesado de plásticos acoplable a sistemas de alimentación de polímeros termoplásticos y termoendurecibles, según las reivindicaciones 1 , 8 y 9, caracterizado porque el módulo de calefacción-conformado (6) tubular está integrado con un módulo de enfriamiento-solidificación (8) también tubular,
1 1. - Dispositivo de extrusión para el procesado de plásticos acoplable a sistemas de alimentación de polímeros termoplásticos y termoendurecibles, según cualquiera de las reivindicaciones 1 , 8 a 10, caracterizado porque el módulo de calefacción-conformado (6) es rectangular y el acoplamiento de conformado (5) presenta un orificio pasante que es cilindrico en un primer extremo y rectangular en el opuesto, para conectar el módulo de calefacción-reacción (2) con dicho módulo de calefacción-conformado (6) rectangular.
12. - Dispositivo de extrusión para el procesado de plásticos acoplable a sistemas de alimentación de polímeros termoplásticos y termoendurecibles, según cualquiera de las reivindicaciones anteriores, caracterizado por comprender un módulo de extrusión que comprende un circuito por el que fluye el polímero hasta al menos dos compartimientos de impulsión (20) provistos, cada uno, de un pistón (18) con movimiento alternativo que comunican con un cabezal (19) de extrusión, de modo que crean un flujo continuo de producto hacia dicho cabezal (19) de extrusión situado justo después de dichos compartimientos de impulsión (20) y en el que confluyen las salidas de ambos compartimientos (20), de modo que la energía empleada en el accionamiento de los pistones (18) es invertida en el movimiento de la masa de producto.
13. - Dispositivo de extrusión para el procesado de plásticos acoplable a sistemas de alimentación de polímeros termoplásticos y termoendurecibles, según la reivindicación 12, caracterizado porque cuando el polímero es una resina termoendurecible el módulo de extrusión comprende un dosificador (41 ) de catalizador y un mezclador (13) intercalados entre la conducción de entrada (1 1 ) y los conductos de alimentación (15) de los pistones (18).
14. - Dispositivo de extrusión para el procesado de plásticos acoplable a sistemas de alimentación de polímeros termoplásticos y termoendurecibles, según la reivindicación 13, caracterizado porque el módulo de extrusión comprende un sistema de bombeo (12) para hacer fluir una corriente de resina que es impulsada hacia un mezclador (13) extemo donde se mezcla con el catalizador suministrado por un dosificador de precisión (14) independíente, permitiendo la activación y desactivación del sistema de impulsión con resina en ausencia del catalizador para efectuar la limpieza de toda la máquina.
PCT/ES2018/070298 2017-04-05 2018-04-05 Dispositivo de extrusión para el procesado de plásticos acoplable a sistemas de alimentación de polímeros termoplásticos y termoendurecibles. WO2018185357A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880037564.9A CN111051036B (zh) 2017-04-05 2018-04-05 可与供应热固性聚合物和热塑性聚合物的系统联接的、用于塑料加工的挤出装置
EP18780507.2A EP3597393B1 (en) 2017-04-05 2018-04-05 Extrusion device for the processing of plastics, which can be coupled to systems for supplying thermosetting and thermoplastic polymers
US16/500,984 US11298864B2 (en) 2017-04-05 2018-04-05 Extrusion device for the processing of plastics, which can be coupled to systems for supplying thermosetting and thermoplastic polymers
ES18780507T ES2928134T3 (es) 2017-04-05 2018-04-05 Dispositivo de extrusión para el procesado de plásticos, el cual puede acoplarse a sistemas de alimentación de polímeros termoplásticos y termoendurecibles

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ESU201730425 2017-04-05
ES201730425U ES1181409Y (es) 2017-04-05 2017-04-05 Extrusora de piston multiple para el procesado de polimeros
ESU201731161 2017-10-04
ES201731161U ES1195158Y (es) 2017-10-04 2017-10-04 Dispositivo de extrusion para el procesado de plasticos acoplable a sistemas de alimentacion de polimeros termoplasticos y termoendurecibles.

Publications (1)

Publication Number Publication Date
WO2018185357A1 true WO2018185357A1 (es) 2018-10-11

Family

ID=63712045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2018/070298 WO2018185357A1 (es) 2017-04-05 2018-04-05 Dispositivo de extrusión para el procesado de plásticos acoplable a sistemas de alimentación de polímeros termoplásticos y termoendurecibles.

Country Status (5)

Country Link
US (1) US11298864B2 (es)
EP (1) EP3597393B1 (es)
CN (1) CN111051036B (es)
ES (1) ES2928134T3 (es)
WO (1) WO2018185357A1 (es)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3854346B1 (en) * 2020-01-22 2022-09-21 The Gillette Company LLC Method for making a handle for an electrically operated personal care implement
CN112549483B (zh) * 2020-12-29 2024-05-14 四川大学 一种用于双环戊二烯聚合反应的管材连续挤出装置及工艺
CN113829635B (zh) * 2021-09-18 2023-08-08 内蒙古浦景聚合材料科技有限公司 一种成型加工系统及其应用
CN114434773A (zh) * 2022-01-06 2022-05-06 内蒙古师范大学 一种大口径有机玻璃棒的制备系统
CN116786079B (zh) * 2023-04-04 2024-03-08 天津市科碳环保工程有限公司 一种活性炭再生活化处理加工设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2770841A (en) * 1952-09-04 1956-11-20 Crown Cork & Seal Co Method of continuous vulcanizing of rubber
US3154618A (en) * 1961-01-19 1964-10-27 Baer Maschf Josef Method of and apparatus for effecting a succession of pressure casting operations with castable resins
US3461490A (en) * 1967-01-30 1969-08-19 Budd Co Extruding molding compounds
US3483597A (en) * 1966-12-23 1969-12-16 Allied Chem Ram extrusion of granular resins
US4145175A (en) * 1976-03-08 1979-03-20 Keltrol Enterprises, Inc. Extrusion apparatus
US4240997A (en) 1978-06-23 1980-12-23 Jex Edward R Extrusion technique with ram speed control
EP0494222A1 (en) 1989-09-25 1992-07-15 Applicator System Ab METHOD AND DEVICE FOR COMPENSATING THE PRESSURE IN HOSES WHEN EXTRUDING TWO COMPONENTS.
KR20120050757A (ko) * 2010-11-11 2012-05-21 정명윤 멀티 유압 압축식 압출기

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1370800A (en) * 1919-04-26 1921-03-08 Henry C Egerton Process of making extruded fibrous shapes
US2587930A (en) * 1947-07-30 1952-03-04 Cascades Plywood Corp Method of and apparatus for extruding
US3158901A (en) * 1963-02-08 1964-12-01 Bell Telephone Labor Inc Continuous extruder
US3507939A (en) * 1966-12-12 1970-04-21 Phillips Petroleum Co Plastic extrusion
US3887319A (en) * 1972-12-08 1975-06-03 Polymer Corp Apparatus for the extrusion of ultra high molecular weight polymeric resins
US4913863A (en) * 1989-01-30 1990-04-03 Hoechst Celanese Corporation Split extrusion die assembly for thermoplastic materials and methods of using the same
US6210616B1 (en) * 1998-08-27 2001-04-03 Crf Technologies Group Ltd. Profile extrusion of thermoplastic composites with high filler content
DE29912972U1 (de) * 1999-07-24 1999-10-21 Breuning Wolfgang Extrusionswerkzeug
KR100924540B1 (ko) * 2006-12-11 2009-11-02 (주)엘지하우시스 고광택 압출 성형물의 제조방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2770841A (en) * 1952-09-04 1956-11-20 Crown Cork & Seal Co Method of continuous vulcanizing of rubber
US3154618A (en) * 1961-01-19 1964-10-27 Baer Maschf Josef Method of and apparatus for effecting a succession of pressure casting operations with castable resins
US3483597A (en) * 1966-12-23 1969-12-16 Allied Chem Ram extrusion of granular resins
US3461490A (en) * 1967-01-30 1969-08-19 Budd Co Extruding molding compounds
US4145175A (en) * 1976-03-08 1979-03-20 Keltrol Enterprises, Inc. Extrusion apparatus
US4240997A (en) 1978-06-23 1980-12-23 Jex Edward R Extrusion technique with ram speed control
EP0494222A1 (en) 1989-09-25 1992-07-15 Applicator System Ab METHOD AND DEVICE FOR COMPENSATING THE PRESSURE IN HOSES WHEN EXTRUDING TWO COMPONENTS.
KR20120050757A (ko) * 2010-11-11 2012-05-21 정명윤 멀티 유압 압축식 압출기

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3597393A4

Also Published As

Publication number Publication date
US11298864B2 (en) 2022-04-12
CN111051036A (zh) 2020-04-21
EP3597393B1 (en) 2022-07-13
US20200031038A1 (en) 2020-01-30
EP3597393A4 (en) 2020-07-15
CN111051036B (zh) 2021-11-23
EP3597393A1 (en) 2020-01-22
ES2928134T3 (es) 2022-11-15

Similar Documents

Publication Publication Date Title
ES2928134T3 (es) Dispositivo de extrusión para el procesado de plásticos, el cual puede acoplarse a sistemas de alimentación de polímeros termoplásticos y termoendurecibles
ES2762946T3 (es) Sistema de moldeo por inyección y método para fabricar un componente
ES2701029T3 (es) Método y dispositivo para dispensar líquidos de un recipiente acoplado a una tapa con bomba integrada
ES2773150T3 (es) Máquina de moldeo y método para moldear una pieza
CN209222522U (zh) 一种ab胶自动点胶装置
KR930703062A (ko) 거품 사출 성형 장치 및 방법
CN106915074B (zh) 一种防止漏料的3d打印喷头
CN211251082U (zh) 一种注塑机快速成型装置
US20190054437A1 (en) Mechanisms and Methods for Mixing and/or Dispensing Multipart Materials
ES2740174T3 (es) Dispositivo y método de mezcla para mezclar componentes plásticos reactivos
ES2905928T3 (es) Aparato y método para inyectar una formulación fluida a un material polimérico fundido
US9943824B2 (en) Polymerisation device and method for the production of thermoplastic polymers
CN106029323B (zh) 具有热电元件的注射模具
ES1181409U (es) Extrusora de pistón múltiple para el procesado de polímeros
CN202572812U (zh) 一种双螺旋水冷针阀喷嘴
WO2015082728A1 (es) Dispositivo para polimerizar lactamas en moldes
KR101601836B1 (ko) 마이크로 인젝션 장치
CN207327362U (zh) 一种高效安全塑料母粒冷却装置
WO2016060736A1 (en) Fluidic chip for spray nozzles
CN210362389U (zh) 一种塑料生产用双端口挤出机
CN109203393B (zh) 一种防堵塞无气泡塑料制品加工注射装置
KR101679613B1 (ko) 성형원료 공급 장치
ITMC20130029A1 (it) Macchina di stampaggio ad iniezione con serbatoi di dosaggio.
CN220638917U (zh) 一种流体数控挤出喷头
CN203077569U (zh) 用于注塑机的多温式模温装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18780507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018780507

Country of ref document: EP

Effective date: 20191105