WO2018184575A1 - 一种光源模组及包括该光源模组的照明装置 - Google Patents

一种光源模组及包括该光源模组的照明装置 Download PDF

Info

Publication number
WO2018184575A1
WO2018184575A1 PCT/CN2018/081969 CN2018081969W WO2018184575A1 WO 2018184575 A1 WO2018184575 A1 WO 2018184575A1 CN 2018081969 W CN2018081969 W CN 2018081969W WO 2018184575 A1 WO2018184575 A1 WO 2018184575A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
source module
light source
generating portion
blue
Prior art date
Application number
PCT/CN2018/081969
Other languages
English (en)
French (fr)
Inventor
周志贤
强洁
Original Assignee
苏州欧普照明有限公司
欧普照明股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710222531.9A external-priority patent/CN106931332A/zh
Priority claimed from CN201720356384.XU external-priority patent/CN206708776U/zh
Application filed by 苏州欧普照明有限公司, 欧普照明股份有限公司 filed Critical 苏州欧普照明有限公司
Priority to EP18781536.0A priority Critical patent/EP3575670B1/en
Publication of WO2018184575A1 publication Critical patent/WO2018184575A1/zh
Priority to US16/594,808 priority patent/US20200044123A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/003Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/02Arrangement of electric circuit elements in or on lighting devices the elements being transformers, impedances or power supply units, e.g. a transformer with a rectifier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention relates to a light source module and a lighting device comprising the same.
  • CRI Ra does not match the color perception of LED light sources; and for environments with high color saturation, CRI values are often inconsistent with human visual perception.
  • CIE and IES and other organizations have successively launched GAI, CQS and other light source color evaluation capabilities to complement the shortcomings of CRI.
  • IES North American Institute of Illumination
  • IES TM-30-15IES Method for Evaluating Light Source Color Rendition.
  • Various chip packaging manufacturers and application vendors have also introduced products with higher GAI indicators, higher CQS indexes, or better TM30-15 indices in addition to CRI indicators, but the relationship between specific indicators and visual performance of products remains to be determined. verification.
  • the object of the present invention is to solve the above problems, and to seek an LED light source with higher vividness for indicators such as CRI, GAI, CQS, and TM30-15.
  • a light source module including:
  • a blue light generating portion for emitting blue light
  • a green light generating portion for emitting green light
  • red light generating portion for emitting red light
  • the peak wavelength of the blue light is in the range of 430 to 470 nm, and the half width of the emission spectrum is in the range of 15 to 35 nm;
  • the peak wavelength of the red light is in the range of 620-660 nm, the half-width of the emission spectrum is in the range of 70-105 nm, and the peak intensity of the blue light is 40%-60% of the peak intensity of the red light;
  • the spectrum of the green light in the range of 510-580 nm is 5 nm as a measurement interval, and the relative intensity of the spectral intensity in the adjacent 5 nm wavelength width is less than 15%;
  • the illumination light emitted by the light source module conforms to the following conditions in the CIE1931 color coordinate system:
  • the abscissa X is in the range of 0.410 to 0.450; and the ordinate Y is in the range of 0.375 to 0.415.
  • the light emitted by the light source module further satisfies the following condition: at the same wavelength, the light source module emits a spectrum whose rate of change of the spectral intensity of the adjacent wavelength is A1( ⁇ ), and the color temperature of the light source module
  • the difference A( ⁇ ) between the rate of change A2 ( ⁇ ) of the spectral intensity of the adjacent wavelength of the same Planck blackbody radiant heat radiation spectrum is in the interval [-3.0, 3.0].
  • the A( ⁇ ) is in the interval [-1.5, 1.5].
  • the half width of the emission spectrum of the red light is in the range of 70 to 85 nm or 95 to 105 nm.
  • the blue light generating portion is a blue LED chip.
  • the green light generating portion includes a green light phosphor that absorbs light emitted from the blue light generating portion and emits green light by wavelength conversion.
  • the red light generating portion includes a red light phosphor that absorbs light emitted by the blue light generating portion and emits red light by wavelength conversion.
  • the blue light generating portion, the green light generating portion, and the red light generating portion are integrally packaged, wherein the blue light generating portion is a blue LED, and the green light generating portion absorbs light emitted by the blue light generating portion and is converted by wavelength
  • the green light-emitting phosphor that emits green light is a red light-emitting body that absorbs light emitted from the blue light generating portion and emits red light by wavelength conversion.
  • the green phosphor is an aluminate system, or a silicate system, or a nitride system, or an oxynitride system, or a combination of any two of the above.
  • the red phosphor is a nitride system, or a silicate system, or a combination of the two.
  • abscissa X is in the range of 0.420 to 0.440; and the ordinate Y is in the range of 0.385 to 0.405.
  • abscissa X is in the range of 0.425 to 0.435; and the ordinate Y is in the range of 0.390 to 0.400.
  • the color temperature of the light emitted by the light source module is in the range of 2500K to 3600K.
  • the color rendering parameter CRI of the light emitted by the light source module is greater than 90.
  • the color rendering index Rf of the light emitted by the light source module is greater than 90.
  • the color rendering index R9 of the light emitted by the light source module is greater than 70.
  • the color gamut index Rg of the light emitted by the light source module is greater than 100.
  • the invention also provides a lighting device comprising:
  • the power module is connected to the light source module to provide power for the light source module to work.
  • the lighting device further includes a controller, and the controller is connected to the light source module for adjusting illumination light emitted by the light source module.
  • the light source module provided by the invention has a specific spectral distribution, and not only considers the evaluation of the illumination effect by the color theory, but also considers the influence of the spectrum on the actual illumination effect, and considers the influence of the luminescent material on the spectrum, and obtains a kind of illumination. High color preference and high vividness, high color rendering index and high color gamut index, compared with ceramic metal halide lamps, similar light source.
  • Figure 1 is a schematic view showing the structure of a lighting device of the present invention
  • Embodiment 1 of the present invention is a relative spectral energy distribution diagram of Embodiment 1 of the present invention.
  • Figure 3 is a distribution diagram of A( ⁇ ) in Embodiment 1 of the present invention.
  • Figure 4 is a relative spectral energy distribution diagram of Embodiment 2 of the present invention.
  • Figure 5 is a distribution diagram of A( ⁇ ) in Embodiment 2 of the present invention.
  • Figure 6 is a diagram showing the relative spectral energy distribution of Example 3 of the present invention.
  • Figure 7 is a distribution diagram of A( ⁇ ) in Embodiment 3 of the present invention.
  • Figure 8 is a diagram showing the relative spectral energy distribution of Embodiment 4 of the present invention.
  • Figure 9 is a distribution diagram of A( ⁇ ) in Embodiment 4 of the present invention.
  • Figure 10 is a relative spectral energy distribution diagram of Embodiment 5 of the present invention.
  • Figure 11 is a distribution diagram of A( ⁇ ) in Embodiment 5 of the present invention.
  • Figure 12 is a CIE1931 color coordinate diagram of Embodiments 1 to 5 of the present invention.
  • Figure 13 is a schematic view showing the structure of a light source module of the present invention.
  • a light source module and a lighting device according to the present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments.
  • the light source module provided by the invention is a warm white light source with a color temperature between 2500K and 3600K, which can be applied to the lighting fixture 101 shown in FIG. 1 for daily illumination.
  • the lighting fixture 101 includes a power source driver (not shown) and a controller 102, a heat sink 103, a lighting module 104, a lampshade 105, and the like.
  • the controller can be used to adjust the light color and light intensity of the illumination module 104.
  • the lampshade 105 can be replaced with other optical components, such as lenses, diffusing components, light guides, etc., depending on the design of the luminaire, and may not include heat dissipation.
  • the light source module 104 includes a blue light generating unit that outputs a blue light component, a green light generating unit that outputs a yellow-green light component, and a red light generating unit that outputs a red light component.
  • the light-emitting portions of the different color lights in the light source module 104 may be an LED chip or a phosphor material that can convert the wavelength of light, or a combination of an LED chip and a phosphor material, and the phosphor material can be based on the emitted light color. Different choices of phosphors for different systems.
  • a single-color LED chip can be used for the blue light generating portion.
  • the single-color LED chip referred to herein refers to an LED chip that directly emits light by a semiconductor material without a phosphor, and the blue light generating portion can also adopt an LED chip with a phosphor.
  • the mode that is, the blue light generating portion includes a blue phosphor that absorbs light emitted from the semiconductor light emitting element (LED chip) and emits blue light by wavelength conversion
  • the semiconductor light emitting element herein may be a single color LED chip that emits ultraviolet light.
  • the red light generating portion is similar to the blue light generating portion, and a monochromatic LED chip can be used. However, in a preferred embodiment, the red light generating portion includes red light that absorbs light emitted from the semiconductor light emitting element and emits red light by wavelength conversion. Phosphor.
  • the green light generating portion includes a green light phosphor that absorbs light emitted from the semiconductor light emitting element and emits green light by wavelength conversion, and the type of the green light phosphor includes an aluminate system such as YAG, Ga-YAG, Lu-AG. , TbAG, etc., or a silicate system, a nitride system, an oxynitride system lamp.
  • the green light generating portion may be excited by a phosphor to generate green light, or may be a combination of two or more kinds of phosphors, or may be composed of a plurality of phosphors of a plurality of peak wavelengths. When combined by a plurality of phosphors, the fluorescent light is generated.
  • the body is not limited to one component, for example, it can be a different green phosphor of two white LEDs, and the spectral superposition generated by them obtains the spectral intensity between 510-580 nm that we need.
  • the combination of such phosphors is not limited to the green light generating portion, and when the blue light generating portion and the red light generating portion contain the phosphor, a plurality of phosphors may be used, and the phosphors may be distributed in different devices. .
  • the red light generating portion and the green light generating portion are merely descriptions for explaining the present invention, such as a certain portion of the energy of the red light emitting body having a wide emission bandwidth in the green light region. At this time, we can understand that the red phosphor portion realizes the function of the red light generating portion and partially contributes to the green light emission, that is, the green light generating portion is composed of the green light phosphor and the red light phosphor.
  • the blue light generating portion 1041 is a blue LED and the green light generating portion 1042 is green light.
  • the phosphor, the red light generating portion 1043 is a red phosphor, and the light source module 104 is a packaged white LED chip, which forms a white spectrum, the color temperature is between 2500K and 3600K, and the color rendering parameter of the spectrum is CRI. , R9, Rf and gamut index Rg have higher values.
  • the spectral distribution corresponding to the blue light generating portion, the red light generating portion, and the green light generating portion light source module 104 has two distinct spectral emission peaks, and the first emission peak wavelength is located at 430 to 470 nm, which is generated by the blue light generating portion.
  • the half width of the emission spectrum is 15 to 35 nm.
  • the green light is generated by the green light generating portion to form a light emitting region distributed at 510 to 580 nm, and the green light spectrum is gently distributed, with a measurement interval of 5 nm, and a relative difference in spectral intensity between adjacent 5 nm wavelength widths is less than 15%.
  • the second emission peak is at a wavelength of 620 to 660 nm, which is generated by blue light excitation of the red phosphor, and the spectral intensity of the second peak is the maximum value in the entire spectrum.
  • the peak intensity of the blue light, that is, the first peak is 40% to 60% of the peak intensity of the red light, that is, the second peak.
  • the half width of the emission spectrum of the red phosphor is in the range of 70 to 105 nm. In a specific embodiment, the half width of most of the red phosphors of the present invention falls within the range of 70 to 85 nm and 95 to 105 nm. Therefore these two values are more preferred.
  • the rate of change of the spectral intensity of the adjacent wavelength of the light-emitting spectrum of the light source module 104 by A1( ⁇ ), represented by A2( ⁇ ) and the color temperature of the light source module 104.
  • A1( ⁇ ) the rate of change of the spectral intensity of the adjacent wavelength of the same Planck blackbody radiant heat radiation spectrum
  • the difference A( ⁇ ) between A1( ⁇ ) and A2( ⁇ ) is in the interval [-3.0, 3.0], ie - 3.0 ⁇ A1 ( ⁇ ) - A2 ( ⁇ ) ⁇ 3.0, and in a more preferred embodiment - 1.5 ⁇ A1 ( ⁇ ) - A2 ( ⁇ ) ⁇ 1.5.
  • the adjacentness described here is a calculation interval of 5 nm, that is, when calculating the rate of change of the spectral intensity of adjacent wavelengths, we calculate at intervals of 5 nm, with respect to A1( ⁇ ) and A2( ⁇ ).
  • the specific operation formula is as follows:
  • P( ⁇ ) is the luminescence spectrum of the light source module
  • R( ⁇ ) is the luminescence spectrum of the heat radiator having the same color temperature as the light source module in the visible light interval
  • V( ⁇ ) is the bright vision spectrum Light efficiency function
  • the thermal radiation spectrum is calculated according to the Planck blackbody radiation formula, and the calculation formula is as follows:
  • CCT is the spectral color temperature value
  • h Planck's constant 6.626E-34 joules*second
  • c is the speed of light 3.000E8m/s
  • k is the Boltzmann constant coefficient 1.18065EE-23kg*s -2 *K -1 .
  • the color rendering parameters CRI and Rf of this spectrum are not less than 90.0, R9 is not less than 70.0, and the color gamut index Rg is not less than 100.0.
  • a blue LED chip having a peak wavelength of 450 ⁇ 5 nm is disposed on the light source module 104 as a blue light generating portion, and a red light phosphor that can convert blue light emitted from a part of the blue light generating portion into red light is used as a red light generating portion. And a green light phosphor that can convert blue light emitted from a part of the blue light generating portion into green light as a green light generating portion.
  • the blue LED chip is a blue light generating portion, and is also an excitation light source of the red light generating portion and the green light generating portion.
  • 2 is a relative spectral energy distribution diagram of Embodiment 1.
  • the blue light emitted by the blue LED chip has a first peak having a peak wavelength of 450 nm and a half width FWHM of 21.8 ⁇ 5 nm (of which 21.8 is a light source module).
  • the measured value in the actual production, the measured value of the half width of each light source module in the same batch may be slightly deviated, so there will be a positive and negative interval, the subsequent values are the same).
  • the green phosphor converts part of the blue light emitted by the blue LED chip into green light. In the interval of 510-580 nm, 5 nm is a measurement interval, and the maximum value of the relative intensity difference of the adjacent two broadband wavelengths is 0.11.
  • the red phosphor (nitride phosphor in this embodiment) converts part of the blue light emitted by the blue LED chip into red light, forming a second peak in FIG. 2, the emission peak wavelength is at 635 nm, and the half width FWHM is 83.2 ⁇ 5 nm.
  • the peak intensity of the first peak is about 47.6% of the second peak intensity.
  • a blue LED chip having a peak wavelength of 455 ⁇ 5 nm is disposed on the light source module 104 as a blue light generating portion, and a red light phosphor that can convert blue light emitted from a part of the blue light generating portion into red light is used as a red light generating portion. And a green light phosphor that can convert blue light emitted from a part of the blue light generating portion into green light as a green light generating portion.
  • the blue LED chip is a blue light generating portion, and is also an excitation light source of the red light generating portion and the green light generating portion. 4 is a relative spectral energy distribution diagram of Example 2.
  • the blue light emitted by the blue LED chip has a first peak having a peak wavelength of 455 nm and a half width FWHM of 22.3 ⁇ 5 nm.
  • the green phosphor (Ga-YAG in the aluminate system in this embodiment) converts part of the blue light emitted by the blue LED chip into green light. In the interval of 510-580 nm, 5 nm is used as a measurement interval, and adjacent two The maximum value of the spectral intensity relative percentage difference of the same wavelength broadband is 0.09.
  • the red phosphor (nitride phosphor in this embodiment) converts part of the blue light emitted by the blue LED chip into red light, forming a second peak in FIG.
  • Example 2 The emission peak wavelength is at 635 nm, and the half width FWHM is 80.0 ⁇ 5 nm.
  • the peak intensity of the first peak is about 51.6% of the second peak intensity.
  • a blue LED chip having a peak wavelength of 450 ⁇ 5 nm is disposed on the light source module 104 as a blue light generating portion, and a red light phosphor that can convert blue light emitted from a part of the blue light generating portion into red light is used as a red light generating portion. And a green light phosphor that can convert blue light emitted from a part of the blue light generating portion into green light as a green light generating portion.
  • the blue LED chip is a blue light generating portion, and is also an excitation light source of the red light generating portion and the green light generating portion. 6 is a relative spectral energy distribution diagram of Example 3.
  • the blue light energy emitted by the blue LED chip has a peak wavelength of 450 nm at a first peak and a half width FWHM of 21.8 ⁇ 5 nm.
  • the green phosphor (Lu-AG in the aluminate system in this embodiment) converts part of the blue light emitted by the blue LED chip into green light, and in the range of 510-580 nm, 5 nm is a measurement interval, and adjacent two The maximum value of the spectral intensity relative percentage difference of the same wavelength broadband is 0.08.
  • the red phosphor (nitride phosphor in this embodiment) converts part of the blue light emitted by the blue LED chip into red light, forming a second peak in FIG.
  • Example 6 the peak wavelength of the light is at 635 nm, and the half width FWHM is 80.6 ⁇ 5 nm.
  • the peak intensity of the first peak is about 52.1% of the second peak intensity.
  • a blue LED chip having a peak wavelength of 450 ⁇ 5 nm is disposed on the light source module 104 as a blue light generating portion, and a red light phosphor that can convert blue light emitted from a part of the blue light generating portion into red light is used as a red light generating portion. And a green light phosphor that can convert blue light emitted from a part of the blue light generating portion into green light as a green light generating portion.
  • the blue LED chip is a blue light generating portion, and is also an excitation light source of the red light generating portion and the green light generating portion.
  • 8 is a relative spectral energy distribution diagram of Example 4.
  • the blue light energy emitted by the blue LED chip has a peak wavelength of 450 nm at a first peak and a half width FWHM of 21.8 ⁇ 5 nm.
  • the green phosphor (Ga-YAG in the aluminate system in this embodiment) converts part of the blue light emitted by the blue LED chip into green light. In the interval of 510-580 nm, 5 nm is used as a measurement interval, and adjacent two The maximum value of the spectral intensity relative percentage difference of the same wavelength broadband is 0.06.
  • the red phosphor (nitride phosphor in this embodiment) converts part of the blue light emitted by the blue LED chip into red light, forming a second peak in FIG.
  • Example 4 the emission peak wavelength is 640 nm, and the half width FWHM is 96.4 ⁇ 5 nm.
  • the peak intensity of the first peak is about 50.3% of the second peak intensity.
  • a blue LED chip having a peak wavelength of 450 ⁇ 5 nm is disposed on the light source module 104 as a blue light generating portion, and a red light phosphor capable of converting blue light emitted from a part of the blue light generating portion into red light is used as a red light generating portion. And a green light phosphor that can convert blue light emitted from a part of the blue light generating portion into green light as a green light generating portion.
  • the blue LED chip is a blue light generating portion, and is also an excitation light source of the red light generating portion and the green light generating portion.
  • 10 is a relative spectral energy distribution diagram of Example 5.
  • the blue light energy emitted by the blue LED chip has a peak wavelength of 450 nm at a first peak and a half width FWHM of 21.8 ⁇ 5 nm.
  • the green phosphor converts part of the blue light emitted by the blue LED chip into green light. In the interval of 510-580 nm, 5 nm is a measurement interval, and the maximum value of the relative intensity difference of the adjacent two broadband wavelengths is 0.06.
  • the red phosphor (nitride phosphor in this embodiment) converts part of the blue light emitted by the blue LED chip into red light, forming a second peak in FIG. 10, the emission peak wavelength is at 635 nm, and the half width FWHM is 80.0 ⁇ 5 nm.
  • the peak intensity of the first peak is about 52.1% of the second peak intensity.
  • the light color of the light source module of the invention is standard white light, and the Duv is between positive and negative 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Led Device Packages (AREA)

Abstract

一种光源模组(104)和使用光源模组(104)的照明装置,通过调整光源模组(104)所发出照射光中蓝光、红光和绿光的峰值波长、峰值强度和色坐标至预设范围内,使得光源模组(104)所发出照射光具有特定的光谱分布,不仅考虑了颜色理论对照明效果的评价,还考虑光谱对实际照明效果的影响,同时考虑了发光材料对光谱的影响,得到了一种被照物喜好性高和鲜艳度高的,高显色指数和高色域指数,与陶瓷金卤灯比较,效果相近的光源。

Description

一种光源模组及包括该光源模组的照明装置 技术领域
本发明涉及一种光源模组及包括该光源模组的照明装置。
背景技术
随着第三次照明技术革命的到来和发展,LED照明器具被广泛的使用,而人们对LED照明的光品质也越来越高。一直以来,对于光品质的研究都集中在CRI这单一指标上,并未有更深层次的研究。
然而,照明界发现CRI Ra对LED光源的显色评价与视觉感受不相符合;而且对色彩饱和度较高的环境,CRI数值也往往与人的视觉感受不相符合。[2007年CIE的报告也中指出CRI Ra不适宜用来评价LED光源的显色性。]CIE及IES等组织相继推出了GAI、CQS等光源显色能力评价方法,以补充CRI的不足。北美照明学会(IES)在2015年5月18日正式发布了对于光源显色能力的新的评价方法——IES TM-30-15IES Method for Evaluating Light Source Color Rendition。各家芯片封装厂商与应用厂商也纷纷推出除CRI指标外,更高GAI指标、更高CQS指数,或更好的TM30-15指数的产品,但具体指标与产品的视觉表现之间关系仍有待验证。
发明内容
本发明的目的是为了解决上述问题,针对CRI、GAI、CQS、TM30-15等指标,寻求一种鲜艳度更高的LED光源。
本发明为实现上述功能,所采用的技术方案是提供一种光源模组,包括:
蓝光发生部,用于发出蓝光;
绿光发生部,用于发出绿光;
红光发生部,用于发出红光;
所述蓝光的峰值波长在430~470nm范围内,发射光谱的半宽度在15~35nm范围内;
所述红光的峰值波长在620~660nm范围内,发射光谱的半宽度在 70~105nm范围内,所述蓝光的峰值强度为所述红光的峰值强度的40%~60%;
所述绿光在510~580nm范围内光谱以5nm为一个测量区间,相邻5nm波长宽度内的光谱强度相对差小于15%;
所述光源模组所发出照射光符合CIE1931色坐标系中的如下条件:
横坐标X在0.410~0.450范围内;所述纵坐标Y在0.375~0.415范围内。
进一步的,所述光源模组所发出的光还满足如下条件:在同一波长下,所述光源模组发光光谱其相邻波长光谱强度的变化率A1(λ),和所述光源模组色温相同的普朗克黑体辐射热辐射光谱的相邻波长光谱强度的变化率A2(λ)之间的差值A(λ)在[-3.0,3.0]区间内。
进一步的,所述A(λ)在[-1.5,1.5]区间内。
进一步的,所述红光的发射光谱的半宽度在70~85nm或95~105nm范围内。
进一步的,所述蓝光发生部为蓝光LED芯片。
进一步的,所述绿光发生部包含吸收所述蓝光发生部所发出的光并通过波长转换而发出绿光的绿光荧光体。
进一步的,所述红光发生部包含吸收所述蓝光发生部所发出的光并通过波长转换而发出红光的红光荧光体。
进一步的,所述蓝光发生部、绿光发生部、红光发生部封装成为一体,其中蓝光发生部为蓝光LED,绿光发生部为吸收所述蓝光发生部所发出的光并通过波长转换而发出绿光的绿光荧光体,红光发生部为吸收所述蓝光发生部所发出的光并通过波长转换而发出红光的红光荧光体。
进一步的,所述绿光荧光体为铝酸盐体系,或者硅酸盐体系,或者氮化物体系,或者氮氧化物体系,或以上任意两种的组合。
进一步的,所述红光荧光体为氮化物体系,或硅酸盐体系,或为以上两者的组合。
进一步的,横坐标X在0.420~0.440范围内;所述纵坐标Y在0.385~0.405范围内。
进一步的,横坐标X在0.425~0.435范围内;所述纵坐标Y在0.390~0.400范围内。
进一步的,所述光源模组所发出的光的色温在2500K~3600K这一范围内。
进一步的,所述光源模组所发出的光的显色性参数CRI大于90。
进一步的,所述光源模组所发出的光的显色指数Rf大于90。
进一步的,所述光源模组所发出的光的显色指数R9大于70。
进一步的,所述光源模组所发出的光的色域指数Rg大于100。
本发明还提供一种照明装置,包括:
如上所述的光源模组;
电源模组,连接所述光源模组,为所述光源模组提供工作所需电力。
进一步的,所述照明装置还包括控制器,所述控制器连接所述光源模组,用于调整所述光源模组所发出照射光。
本发明所提供的光源模组具有特定的光谱分布,不仅考虑了颜色理论对照明效果的评价,还考虑光谱对实际照明效果的影响,同时考虑了发光材料对光谱影响,得到了一种被照物喜好性高和鲜艳度高的,高显色指数和高色域指数,与陶瓷金卤灯比较,效果相近的光源。
附图说明
图1是本发明照明装置的结构示意图;
图2是本发明实施例1的相对光谱能量分布图;
图3是本发明实施例1中A(λ)的分布图;
图4是本发明实施例2的相对光谱能量分布图;
图5是本发明实施例2中A(λ)的分布图;
图6是本发明实施例3的相对光谱能量分布图;
图7是本发明实施例3中A(λ)的分布图;
图8是本发明实施例4的相对光谱能量分布图;
图9是本发明实施例4中A(λ)的分布图;
图10是本发明实施例5的相对光谱能量分布图;
图11是本发明实施例5中A(λ)的分布图;
图12是本发明实施例1~5的CIE1931色坐标图;
图13是本发明光源模组的结构示意图。
具体实施方式
以下结合附图和具体实施例对本发明提出的一种光源模组及照明装置作进一步详细的说明。
本发明提供的光源模组是色温在2500K~3600K之间的暖白光源,其可应用于如图1所示照明灯具101中用以日常照明。照明灯具101包括电源驱动器(未图示)和控制器102、散热装置103、照明模组104和灯罩105等。控制器可用于调整照明模组104的光色及光强,而灯罩105在其他实施例中可以根据灯具的设计替换成为其他光学元件,如透镜、扩散元件、光导等,其中也可以不包括散热器。其中光源模组104包括输出蓝色光成分的蓝光发生部、输出黄绿色光成分的绿色光发生部、输出红色光成分的红光发生部。
光源模组104中的这些不同色光的发光部可以是LED芯片或者是可以将光的波长进行转换的荧光体材料,或者为LED芯片和荧光体材料的组合,荧光体材料可以根据发出的光色不同选择不同体系的荧光粉。对于蓝光发生部,可以采用单色LED芯片,这里所指的单色LED芯片是指由半导体材料直接激发发光,不带有荧光体的LED芯片,另外蓝光发生部也可以采用LED芯片配合荧光体的模式,即蓝光发生部包含吸收半导体发光元件(LED芯片)所发出的光并通过波长转换而发出蓝光的蓝光荧光体,这里的半导体发光元件可以为发出紫外光的单色LED芯片。红光发生部与蓝光发生部类似,其可以采用单色的LED芯片,不过在一个优选的方案中红光发生部包含吸收半导体发光元件所发出的光并通过波长转换而发出红光的红光荧光体。而绿光发生部包括吸收半导体发光元件所发出的光并通过波长转换而发出绿光的绿光荧光体,绿光荧光体的种类包括铝酸盐体系,如YAG,Ga-YAG,Lu-AG,TbAG等,或者为硅酸盐体系、氮化物体系、氮氧化物体系灯。绿光发生部可以由一种荧光体激发产生绿光,也可以采用两种以上荧光体组合,甚至可以由多种峰值波长的荧光体组合而成,当由多种荧光体组合时,这些荧光体并不限定在一个元器件中,例如可以是两个白光LED中的不同的绿光荧光体,由他们产生的光谱叠加获得我们需要的510-580nm间的光谱强度。这种荧光体的组合并不局限于绿光发生部,当蓝光发生部、红光发生部包含荧光体时,也可以采用多种成分的荧光体,并且这些荧光体可以分布在不同的器件中。需要说明的 是,在这里红光发生部及绿光发生部仅是为了说明本发明而采用的一种描述,就如红光荧光体的发射带宽较宽的必定有部分能量在绿光区域,这个时候我们可以理解为红光荧光体部分实现了红光发生部的功能,部分为绿光发射作贡献,即绿光发生部是由绿光荧光体和红光荧光体组成的。
通过不同发生部的特定比例设计,结合视觉实验的数据,我们最终确定了光源模组104的设计方案,如图15所示,其中蓝光发生部1041为蓝光LED,绿光发生部1042为绿光荧光粉,红光发生部1043为红光荧光粉,光源模组104为封装而成的白光LED芯片,其形成一种白色的光谱,色温在2500K~3600K之间,光谱的显色性参数CRI、R9、Rf和色域指数Rg等都有较高的值。对应于蓝光发生部、红光发生部、绿光发生部光源模组104的光谱分布具有较明显的两个光谱发射峰,第一个发射峰波长位置在430~470nm,由蓝光发生部产生,发射光谱的半宽度15~35nm。由绿光发生部产生绿光形成发光区域分布在在510~580nm,绿光光谱分布平缓,以5nm为一个测量区间,相邻5nm波长宽度内的光谱强度相对差小于15%。第二个发射峰波长位置在620~660nm,由蓝光激发红色荧光粉产生,第二峰的光谱强度为整个光谱中的最大值。蓝光即第一峰的峰值强度为红光即第二峰的峰值强度的40%~60%。红色荧光粉的发射光谱的半宽度在70~105nm这一区间内,在具体实施例中,本发明大部分红色荧光体的半宽度均落在70~85nm、95~105nm这两个范围内,因此这两段值是更为优选的。
作为本发明的一个特征,在波长相同的情况下,我们以A1(λ)表示光源模组104的发光光谱其相邻波长光谱强度的变化率,以A2(λ)表示和光源模组104色温相同的普朗克黑体辐射热辐射光谱的相邻波长光谱强度的变化率,A1(λ)和A2(λ)之间的差值A(λ)在[-3.0,3.0]区间内,即-3.0≤A1(λ)-A2(λ)≤3.0,在更为优选的实施方式中-1.5≤A1(λ)-A2(λ)≤1.5。
在我们这里所述的相邻是以5nm为一个计算区间的,即在计算相邻波长光谱强度的变化率时,我们以5nm为间隔来进行计算,关于A1(λ)和A2(λ)的具体运算公式如下:
Figure PCTCN2018081969-appb-000001
Figure PCTCN2018081969-appb-000002
其中:P(λ)为所述光源模组的发光光谱,R(λ)为和所述光源模组具有相同色温的热辐射体在可见光区间内的发光光谱,V(λ)是明视觉光谱光视效率函数。
热辐射光谱按普朗克黑体辐射公式计算得到,计算公式如下:
R(λ)=A/(exp(B)-1);
A=(2*h*c*c)/λ^ 5
B=(h*c)/(λ*k*CCT);
CCT是光谱色温值,h为普朗克常数6.626E-34焦耳*秒,c为光速3.000E8m/s,k是波耳兹曼常数系数1.38065E-23kg*s -2*K -1
光源模组104的这种光色的色坐标范围在x=0.410~0.450,y=0.375~0.415;优选的色坐标范围在x=0.420~0.440,y=0.385~0.405;最优选的范围在x=0.425~0.435,y=0.390~0.400。这种光谱的显色性参数CRI、Rf均不小于90.0,R9不小于70.0,色域指数Rg不小于100.0。
以下我们介绍光源模组104的几个较佳的实施例。
实施例1,在光源模组104上设置有峰值波长为450±5nm的蓝光LED芯片作为蓝光发生部、可以将部分蓝光发生部发出的蓝光转换为红光的红光荧光体作为红光发生部,以及可以将部分蓝光发生部发出的蓝光转换为绿光的绿光荧光体作为绿光发生部。在本实施例中蓝光LED芯片即作为蓝光发生部,又是红光发生部、绿光发生部的激发光源。图2为实施例1的相对光谱能量分布图,蓝光LED芯片发出的蓝光能量在图中形成第一峰的发光峰值波长位于450nm,半宽度FWHM为21.8±5nm(其中21.8为一个光源模组的测得值,在实际生产中同批次中每一个光源模组半宽度实测值可能都会稍有偏差,因此会有一个正负区间,后续数值同理)。绿光荧光体将蓝光LED芯片发出的部分蓝光转化为绿光,在510~580nm区间内,以5nm为一个测量区间,相邻两个同波长宽带的光谱强度相对百分值差的最大值是0.11。红光荧光体(本实施例中为氮化物荧光粉)将蓝光LED芯片发出的部分蓝光转化为红光,在图2中形成第二峰,发光峰值波长位于635nm,半宽度FWHM为83.2±5nm,第一峰的峰值强度约为第二峰值强度的47.6%。 实施例1的A(λ)分布如图3所示,其中A(λ)=A1(λ)-A2(λ),从图中可见A(λ)的值在-0.78~0.85之间。实施例1的色坐标为x=0.4337,y=0.3919,色温2964K,显色指数CRI=95.6,R9=95.8,Rf=93.4,色域指数Rg=105.6。
实施例2,在光源模组104上设置有峰值波长为455±5nm的蓝光LED芯片作为蓝光发生部、可以将部分蓝光发生部发出的蓝光转换为红光的红光荧光体作为红光发生部,以及可以将部分蓝光发生部发出的蓝光转换为绿光的绿光荧光体作为绿光发生部。在本实施例中蓝光LED芯片即作为蓝光发生部,又是红光发生部、绿光发生部的激发光源。图4为实施例2的相对光谱能量分布图,蓝光LED芯片发出的蓝光能量在图中形成第一峰的发光峰值波长位于455nm,半宽度FWHM为22.3±5nm。绿光荧光体(本实施例中为铝酸盐体系中的Ga-YAG)将蓝光LED芯片发出的部分蓝光转化为绿光,在510~580nm区间内,以5nm为一个测量区间,相邻两个同波长宽带的光谱强度相对百分值差的最大值是0.09。红光荧光体(本实施例中为氮化物荧光粉)将蓝光LED芯片发出的部分蓝光转化为红光,在图4中形成第二峰,发光峰值波长位于635nm,半宽度FWHM为80.0±5nm,第一峰的峰值强度约为第二峰值强度的51.6%。实施例2的A(λ)分布如图5所示,其中A(λ)=A1(λ)-A2(λ),从图中可见A(λ)的值在-1.16~1.40之间。实施例2的色坐标为x=0.4438,y=0.3835,色温2728K,显色指数CRI=90.3,R9=80.9,Rf=91.6,色域指数Rg=107.2。
实施例3,在光源模组104上设置有峰值波长为450±5nm的蓝光LED芯片作为蓝光发生部、可以将部分蓝光发生部发出的蓝光转换为红光的红光荧光体作为红光发生部,以及可以将部分蓝光发生部发出的蓝光转换为绿光的绿光荧光体作为绿光发生部。在本实施例中蓝光LED芯片即作为蓝光发生部,又是红光发生部、绿光发生部的激发光源。图6为实施例3的相对光谱能量分布图,蓝光LED芯片发出的蓝光能量在图中形成第一峰的发光峰值波长位于450nm,半宽度FWHM为21.8±5nm。绿光荧光体(本实施例中为铝酸盐体系中的Lu-AG)将蓝光LED芯片发出的部分蓝光转化为绿光,在510~580nm区间内,以5nm为一个测量区间,相邻两个同波长宽带的光谱强度相对百分值差的最大值是0.08。红光荧光体(本实施例中为氮化物荧光粉)将蓝光LED芯片发出的部分蓝光转化为红光,在图6中形成第二峰,发光峰 值波长位于635nm,半宽度FWHM为80.6±5nm,第一峰的峰值强度约为第二峰值强度的52.1%。实施例3的A(λ)分布如图7所示,其中A(λ)=A1(λ)-A2(λ),从图中可见A(λ)的值在-1.11~1.15之间。实施例3的色坐标为x=0.4348,y=0.4014,色温3014K,显色指数CRI=96.6,R9=97.5,Rf=95.5,色域指数Rg=103.0。
实施例4,在光源模组104上设置有峰值波长为450±5nm的蓝光LED芯片作为蓝光发生部、可以将部分蓝光发生部发出的蓝光转换为红光的红光荧光体作为红光发生部,以及可以将部分蓝光发生部发出的蓝光转换为绿光的绿光荧光体作为绿光发生部。在本实施例中蓝光LED芯片即作为蓝光发生部,又是红光发生部、绿光发生部的激发光源。图8为实施例4的相对光谱能量分布图,蓝光LED芯片发出的蓝光能量在图中形成第一峰的发光峰值波长位于450nm,半宽度FWHM为21.8±5nm。绿光荧光体(本实施例中为铝酸盐体系中的Ga-YAG)将蓝光LED芯片发出的部分蓝光转化为绿光,在510~580nm区间内,以5nm为一个测量区间,相邻两个同波长宽带的光谱强度相对百分值差的最大值是0.06。红光荧光体(本实施例中为氮化物荧光粉)将蓝光LED芯片发出的部分蓝光转化为红光,在图8中形成第二峰,发光峰值波长位于640nm,半宽度FWHM为96.4±5nm,第一峰的峰值强度约为第二峰值强度的50.3%。实施例4的A(λ)分布如图9所示,其中A(λ)=A1(λ)-A2(λ),从图中可见A(λ)的值在-1.06~1.10之间。实施例4的色坐标为x=0.4325,y=0.4045,色温3080K,显色指数CRI=97.3,R9=97.0,Rf=95.5,色域指数Rg=103.0。
实施例5,在光源模组104上设置有峰值波长为450±5nm的蓝光LED芯片作为蓝光发生部、可以将部分蓝光发生部发出的蓝光转换为红光的红光荧光体作为红光发生部,以及可以将部分蓝光发生部发出的蓝光转换为绿光的绿光荧光体作为绿光发生部。在本实施例中蓝光LED芯片即作为蓝光发生部,又是红光发生部、绿光发生部的激发光源。图10为实施例5的相对光谱能量分布图,蓝光LED芯片发出的蓝光能量在图中形成第一峰的发光峰值波长位于450nm,半宽度FWHM为21.8±5nm。绿光荧光体将蓝光LED芯片发出的部分蓝光转化为绿光,在510~580nm区间内,以5nm为一个测量区间,相邻两个同波长宽带的光谱强度相对百分值差的最大值是0.06。红光荧光体(本 实施例中为氮化物荧光粉)将蓝光LED芯片发出的部分蓝光转化为红光,在图10中形成第二峰,发光峰值波长位于635nm,半宽度FWHM为80.0±5nm,第一峰的峰值强度约为第二峰值强度的52.1%。实施例5的A(λ)分布如图11所示,,其中A(λ)=A1(λ)-A2(λ),从图中可见A(λ)的值在-0.71~0.93之间。实施例5的色坐标为x=0.4194,y=0.3840,色温3163K,显色指数CRI=92.4,R9=78.9,Rf=93.8,色域指数Rg=104.8。
本发明光源模组的光色为标准白光,其Duv在正负5之间。图12显示了实施例1~5中各光源模组104在在CIE1931色坐标中的光色坐标值,可以发现这些点均落在x=0.410~0.450,y=0.375~0.415这一坐标范围内。其中我们发现实施例1、实施例3、实施例4效果较佳,其色坐标范围在x=0.420~0.440,y=0.385~0.405。而最佳的范围为x=0.425~0.435,y=0.390~0.400,实施例1即在该范围内。
上文对本发明优选实施例的描述是为了说明和描述,并非想要把本发明穷尽或局限于所公开的具体形式,显然,可能做出许多修改和变化,这些修改和变化可能对于本领域技术人员来说是显然的,应当包括在由所附权利要求书定义的本发明的范围之内。

Claims (19)

  1. 一种光源模组,包括:
    蓝光发生部,用于发出蓝光;
    绿光发生部,用于发出绿光;
    红光发生部,用于发出红光;
    所述蓝光的峰值波长在430~470nm范围内,发射光谱的半宽度在15~35nm范围内;
    所述红光的峰值波长在620~660nm范围内,发射光谱的半宽度在70~105nm范围内,所述蓝光的峰值强度为所述红光的峰值强度的40%~60%;
    所述绿光在510~580nm范围内光谱以5nm为一个测量区间,相邻5nm波长宽度内的光谱强度相对差小于15%;
    所述光源模组所发出照射光符合CIE1931色坐标系中的如下条件:
    横坐标X在0.410~0.450范围内;所述纵坐标Y在0.375~0.415范围内。
  2. 如权利要求1所述的光源模组,其中,所述光源模组所发出的光还满足如下条件:在同一波长下,所述光源模组发光光谱其相邻波长光谱强度的变化率A1(λ),和所述光源模组色温相同的普朗克黑体辐射热辐射光谱的相邻波长光谱强度的变化率A2(λ)之间的差值A(λ)在[-3.0,3.0]区间内。
  3. 如权利要求2所述的光源模组,其中,所述A(λ)在[-1.5,1.5]区间内。
  4. 如权利要求2所述的光源模组,其中,所述红光的发射光谱的半宽度在70~85nm或95~105nm范围内。
  5. 如权利要求2所述的光源模组,其中,所述蓝光发生部为蓝光LED芯片。
  6. 如权利要求2所述的光源模组,其中,所述绿光发生部包含吸收所述蓝光发生部所发出的光并通过波长转换而发出绿光的绿光荧光体。
  7. 如权利要求2所述的光源模组,其中,所述红光发生部包含吸收所述蓝光发生部所发出的光并通过波长转换而发出红光的红光荧光 体。
  8. 如权利要求2所述的光源模组,其中,所述蓝光发生部、绿光发生部、红光发生部封装成为一体,其中蓝光发生部为蓝光LED,绿光发生部为吸收所述蓝光发生部所发出的光并通过波长转换而发出绿光的绿光荧光体,红光发生部为吸收所述蓝光发生部所发出的光并通过波长转换而发出红光的红光荧光体。
  9. 如权利要求6或8所述的光源模组,其中,所述绿光荧光体为铝酸盐体系,或者硅酸盐体系,或者氮化物体系,或者氮氧化物体系,或以上任意两种的组合。
  10. 如权利要求7或8所述的光源模组,其中,所述红光荧光体为氮化物体系,或硅酸盐体系,或为以上两者的组合。
  11. 如权利要求1所述的光源模组,其中,横坐标X在0.420~0.440范围内;所述纵坐标Y在0.385~0.405范围内。
  12. 如权利要求11所述的光源模组,其中,横坐标X在0.425~0.435范围内;所述纵坐标Y在0.390~0.400范围内。
  13. 如权利要求2所述的光源模组,其中,所述光源模组所发出的光的色温在2500K~3600K这一范围内。
  14. 如权利要求2所述的光源模组,其中,所述光源模组所发出的光的显色性参数CRI大于90。
  15. 如权利要求2所述的光源模组,其中,所述光源模组所发出的光的显色指数Rf大于90。
  16. 如权利要求2所述的光源模组,其中,所述光源模组所发出的光的显色指数R9大于70。
  17. 如权利要求2所述的光源模组,其中,所述光源模组所发出的光的色域指数Rg大于100。
  18. 一种照明装置,包括:
    如权利要求1至17中任意一项所述的光源模组;
    电源模组,连接所述光源模组,为所述光源模组提供工作所需电力。
  19. 如权利要求18所述的照明装置,其中,所述照明装置还包括控制器,所述控制器连接所述光源模组,用于调整所述光源模组所发出照射光。
PCT/CN2018/081969 2017-04-07 2018-04-04 一种光源模组及包括该光源模组的照明装置 WO2018184575A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18781536.0A EP3575670B1 (en) 2017-04-07 2018-04-04 Light source module, and illumination device comprising light source module
US16/594,808 US20200044123A1 (en) 2017-04-07 2019-10-07 Light source and illuminating device comprising the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710222531.9 2017-04-07
CN201720356384.X 2017-04-07
CN201710222531.9A CN106931332A (zh) 2017-04-07 2017-04-07 一种光源模组及包括该光源模组的照明装置
CN201720356384.XU CN206708776U (zh) 2017-04-07 2017-04-07 一种光源模组及包括该光源模组的照明装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/594,808 Continuation US20200044123A1 (en) 2017-04-07 2019-10-07 Light source and illuminating device comprising the same

Publications (1)

Publication Number Publication Date
WO2018184575A1 true WO2018184575A1 (zh) 2018-10-11

Family

ID=63712391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081969 WO2018184575A1 (zh) 2017-04-07 2018-04-04 一种光源模组及包括该光源模组的照明装置

Country Status (3)

Country Link
US (1) US20200044123A1 (zh)
EP (1) EP3575670B1 (zh)
WO (1) WO2018184575A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046288A1 (ja) * 2010-10-04 2012-04-12 電気化学工業株式会社 β型サイアロン蛍光体とその製造方法、およびその用途
CN105737090A (zh) * 2016-02-03 2016-07-06 欧普照明股份有限公司 光源模组和照明装置
CN105737091A (zh) * 2016-02-03 2016-07-06 欧普照明股份有限公司 光源模组和照明装置
CN205640712U (zh) * 2016-02-03 2016-10-12 欧普照明股份有限公司 光源模组和照明装置
CN106931332A (zh) * 2017-04-07 2017-07-07 欧普照明股份有限公司 一种光源模组及包括该光源模组的照明装置
CN206708776U (zh) * 2017-04-07 2017-12-05 欧普照明股份有限公司 一种光源模组及包括该光源模组的照明装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2432037B1 (en) * 2009-08-26 2019-05-22 Mitsubishi Chemical Corporation Semiconductor white light-emitting device
US8643038B2 (en) * 2010-03-09 2014-02-04 Cree, Inc. Warm white LEDs having high color rendering index values and related luminophoric mediums
JP2012060097A (ja) * 2010-06-25 2012-03-22 Mitsubishi Chemicals Corp 白色半導体発光装置
JP2013201274A (ja) * 2012-03-23 2013-10-03 Toshiba Lighting & Technology Corp 照明装置
JP6363061B2 (ja) * 2012-04-06 2018-07-25 フィリップス ライティング ホールディング ビー ヴィ 白色発光モジュール
US9406849B2 (en) * 2012-08-10 2016-08-02 Koninklijke Philips N.V. Phosphor converted light emitting diode, a lamp and a luminaire
WO2015066099A2 (en) * 2013-10-28 2015-05-07 Ge Lighting Solutions, L.L.C. Lamps for enhanced optical brightening and color preference

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046288A1 (ja) * 2010-10-04 2012-04-12 電気化学工業株式会社 β型サイアロン蛍光体とその製造方法、およびその用途
CN105737090A (zh) * 2016-02-03 2016-07-06 欧普照明股份有限公司 光源模组和照明装置
CN105737091A (zh) * 2016-02-03 2016-07-06 欧普照明股份有限公司 光源模组和照明装置
CN205640712U (zh) * 2016-02-03 2016-10-12 欧普照明股份有限公司 光源模组和照明装置
CN106931332A (zh) * 2017-04-07 2017-07-07 欧普照明股份有限公司 一种光源模组及包括该光源模组的照明装置
CN206708776U (zh) * 2017-04-07 2017-12-05 欧普照明股份有限公司 一种光源模组及包括该光源模组的照明装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3575670A4 *

Also Published As

Publication number Publication date
US20200044123A1 (en) 2020-02-06
EP3575670B1 (en) 2022-08-10
EP3575670A4 (en) 2020-09-09
EP3575670A1 (en) 2019-12-04

Similar Documents

Publication Publication Date Title
RU2444813C2 (ru) Светодиодный модуль, светодиодный источник света и светодиодный светильник для энергоэффективного воспроизведения белого света
EP3064039B1 (en) Lamps for enhanced optical brightening and color preference
US8884508B2 (en) Solid state lighting device including multiple wavelength conversion materials
US8033692B2 (en) Lighting device
US8403531B2 (en) Lighting device and method of lighting
US9642208B2 (en) Variable correlated color temperature luminary constructs
EP3791430B1 (en) Lumiphor-converted solid state lighting devices providing spectral power distribution with enhanced perceived brightness
JP2013536564A (ja) 任意の光源に対して調色したledベース照明モジュール
JP2022540191A (ja) フルスペクトル白色発光デバイス
CN105737090A (zh) 光源模组和照明装置
CN106931332A (zh) 一种光源模组及包括该光源模组的照明装置
CN206708776U (zh) 一种光源模组及包括该光源模组的照明装置
US10462870B2 (en) Light source circuit and illumination apparatus
JP6045727B2 (ja) 調光可能な発光装置
TWI678002B (zh) 發光二極體混光結構
WO2018184575A1 (zh) 一种光源模组及包括该光源模组的照明装置
US9905735B1 (en) High brightness, low-cri semiconductor light emitting devices including narrow-spectrum luminescent materials
TW201338218A (zh) 光源模組
WO2018184576A1 (zh) 一种光源模组及包括该光源模组的照明装置
EP3412961B1 (en) Light source module and illumination device
CN106870976B (zh) 一种光源模组及包括该光源模组的照明装置
KR20190106392A (ko) 발광소자 패키지
TWM519815U (zh) 發光裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781536

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018781536

Country of ref document: EP

Effective date: 20190828

NENP Non-entry into the national phase

Ref country code: DE