WO2018182122A1 - 직류 전력케이블 중간접속 시스템 - Google Patents

직류 전력케이블 중간접속 시스템 Download PDF

Info

Publication number
WO2018182122A1
WO2018182122A1 PCT/KR2017/012515 KR2017012515W WO2018182122A1 WO 2018182122 A1 WO2018182122 A1 WO 2018182122A1 KR 2017012515 W KR2017012515 W KR 2017012515W WO 2018182122 A1 WO2018182122 A1 WO 2018182122A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
cable
conductor
insulating layer
insulation layer
Prior art date
Application number
PCT/KR2017/012515
Other languages
English (en)
French (fr)
Inventor
채병하
Original Assignee
엘에스전선 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스전선 주식회사 filed Critical 엘에스전선 주식회사
Publication of WO2018182122A1 publication Critical patent/WO2018182122A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/08Cable junctions
    • H02G15/10Cable junctions protected by boxes, e.g. by distribution, connection or junction boxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/20Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances liquids, e.g. oils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0208Cables with several layers of insulating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients
    • H01B9/027Power cables with screens or conductive layers, e.g. for avoiding large potential gradients composed of semi-conducting layers

Definitions

  • the present invention relates to a DC power cable intermediate connection system.
  • a power cable is used to supply power to a desired place through the ground, the ground or the sea floor by using a conductor that supplies the power.
  • the power cable is connected by an intermediate junction box (Joint box) at intervals of several hundred meters or tens of kilometers, and the end of the power cable is connected to the overhead line by a termination connection box.
  • the conductor is first connected to the crimp sleeve while the insulation layer of the cable is exposed, and the reinforcing insulation layer is supported by supporting the insulation paper impregnated with insulation oil on the surface of the insulation layer.
  • the insulating paper is supported, and then the outer semiconducting layer, the metal sheath and / or the anticorrosive layer are restored.
  • the insulation oil viscosity decreases as the conductor is heated, and thus, copper may flow out of the conductor wire in the direction of gravity, and may flow into the reinforced insulation layer.
  • the conductor connecting portion includes a slope surface, wherein the insulation paper of the cable insulation layer and the insulation paper constituting the insulation layer of the intermediate junction box are not continuous on the slope surface.
  • An object of the present invention is to provide a DC power cable intermediate connection system that can alleviate the electric field concentration between the first reinforced insulating layer and the second reinforced insulating layer constituting the reinforced insulating layer.
  • a pair of DC power cables having a conductor, an internal semiconducting layer, a cable insulation layer, and an external semiconducting layer may be connected to each other.
  • the pair of DC power cables are provided so that each end of the conductor, the inner semiconducting layer, the cable insulation layer and the outer semiconducting layer are sequentially exposed to each other.
  • the intermediate junction box may include: a conductor connecting portion electrically connecting the conductors of the pair of cables to each other; And a first reinforcing insulating layer wound around the conductor connecting portion, the exposed internal semiconducting layer and the cable insulating layer, and formed up to the outer diameter of the cable insulating layer, the first reinforcing insulating layer having inclined surfaces at both ends in the longitudinal direction, and the first reinforcing insulating layer.
  • a reinforcing insulating layer including a second reinforcing insulating layer having a decreasing slope portion; And an electric field relaxation layer formed of a material having a lower volume resistivity than the first reinforcing insulating layer between the first reinforcing insulating layer and the conductor connecting portion to the inner semiconducting layer.
  • the electric-field stress-control layer has a volume resistivity than that of the first insulating layer may be lower than 10 twice.
  • the field relaxation layer is a thickness of the field relaxation layer formed on the conductor connection portion may be 1.6 ⁇ 96% of the total thickness of the field relaxation layer.
  • the cable insulation layer may include: a first cable insulation layer surrounding the inner semiconductive layer and made of kraft paper impregnated with insulating oil; A second cable insulating layer surrounding the first cable insulating layer, the second cable insulating layer made of a composite insulating paper impregnated with insulating oil; And a third cable insulating layer surrounding the second cable insulating layer, the third cable insulating layer made of kraft paper impregnated with insulating oil, wherein the cable insulating layer includes the inner semiconducting layer, the first cable insulating layer, and the second cable insulating layer.
  • a first penciling stage consisting of a portion;
  • a second penciling stage having a step on the first penciling stage and comprising the second cable insulation layer;
  • a third penciling stage having a step on the second penciling stage and comprising a portion of the second cable insulating layer and a third cable insulating layer;
  • the height difference between the maximum height of the field relaxation layer and the height of the first cable insulation layer may be 430% or less of the height of the first cable insulation layer.
  • the height (or thickness) of the first cable insulation layer may be 1 to 10% of the total thickness of the cable insulation layer.
  • the maximum height of the field relaxation layer may be substantially the same as the height of the first penciling end.
  • the conductor connecting portion is a conductor crimp sleeve that grips the conductors of the pair of power cables and electrically connects each other
  • the intermediate junction box is disposed between the conductor crimp sleeve and the conductor and is separated from the conductor.
  • Copper outflow prevention unit for preventing the flow of copper ( ⁇ ) that can occur; It may be provided.
  • the copper powder leakage preventing unit Copper powder leakage preventing plate disposed between the conductor crimp sleeve and the conductor; A first electric field homogenization layer disposed between the conductor crimp sleeve and the conductor or between the reinforcement insulating layer and the conductor; A second field uniformity layer disposed between the reinforcement insulating layer and the conductor crimp sleeve, or between the reinforcement insulating layer and the first field uniformity layer; And a pressing layer disposed between the reinforcing insulating layer and the conductor crimp sleeve, or between the reinforcing insulating layer and the conductor. It may include.
  • the conductor crimping sleeve includes a body portion having at least two wrinkles formed to protrude from the inner surface and at least one wrinkled bone formed between the wrinkles, wherein the copper powder leakage preventing plate is the body portion and the It can be arranged between the conductors.
  • the copper powder leakage preventing plate may be arranged from one end of the conductor pressing sleeve to beyond the corrugated acid.
  • the copper powder leakage preventing plate may be disposed between the body portion and the conductor to reach from one end to the other end of the conductor pressing sleeve.
  • the copper powder leakage preventing plate may be terminated in the longitudinal direction of the conductor.
  • the copper powder leakage preventing plate may be made of a metal or alloy of the same series as the conductor.
  • the first field homogenization layer may be made of a semi-conducting tape transversely wound so as to be spaced apart in the longitudinal direction of the DC power cable.
  • the first field homogenization layer may be formed by transversely winding the semiconductive tape so as to overlap the conductor of the cable in the longitudinal direction of the cable.
  • the first field homogenization layer may be formed by transversely winding a plurality of semiconductive tapes so as to overlap the conductor of the cable in the longitudinal direction of the cable.
  • the at least one portion of the first copper homogenizing layer and the at least one portion of the copper leakage plate may overlap each other.
  • the copper powder leakage preventing part may overlap at least a portion of the copper powder leakage preventing plate and at least a portion of the first electric field uniformization layer in the corrugated acid of the conductor pressing sleeve.
  • the copper powder outflow prevention portion may overlap each other between the one end of the conductor crimp sleeve and the vertex of the wrinkles formed on one end of the conductor crimp sleeve.
  • the first field homogenization layer may be formed continuously extending from the inner semiconducting layer of the cable.
  • the outer surface of the conductor crimp sleeve may further include a second electric field homogenization layer surrounding the first electric field homogenization layer.
  • the second field homogenization layer may be formed of a semiconductive tape having wrinkles formed therein.
  • the copper powder leakage preventing part may further include a pressure layer formed to surround the first electric field uniformization layer, the copper powder leakage preventing plate, the conductor crimp sleeve, and the second electric field uniform layer.
  • the pressing layer may be made of insulating paper.
  • the pressure layer may have a volume resistance of 10 2 or more lower than that of the reinforcing insulating layer.
  • electric field concentration between the first and second reinforcing insulating layers forming the reinforcing insulating layer may be alleviated.
  • FIG. 1 is a perspective view showing an internal configuration of a power cable.
  • FIG. 2 is a partial cutaway view schematically showing a cable connected by an intermediate connection.
  • FIG. 3 is an enlarged view of a portion C of FIG. 2.
  • FIG. 4 is a cross-sectional view showing a conductor crimp sleeve before crimping.
  • FIG. 5 is a cross-sectional view showing a conductor crimp sleeve after crimping.
  • FIG. 6 is a cross-sectional view illustrating in detail the first reinforcing insulating layer and the second reinforcing insulating layer of the intermediate junction box shown in FIG. 2.
  • FIG. 7 is an enlarged view of a portion B of FIG. 6.
  • 8 to 12 are cross-sectional views of various embodiments showing conductor crimp sleeves after crimping.
  • the oil-impregnated cable is connected by intermediate connection at intervals of several hundred m or several km, and the end of the insulation-impregnated cable is connected to the overhead line by terminating the connection.
  • the configuration of the insulation oil-impregnated power cable will be described first, and then the connection process of the junction box will be described.
  • FIG. 1 is a partially cutaway perspective view illustrating an internal configuration of an ultra high voltage power cable.
  • the power cable 100 includes a conductor 11, an inner semiconducting layer 12, a cable insulation layer 14, and an outer semiconducting layer 16, along a cable length direction along the conductor 11. It is provided with a cable core portion 10 that transmits power only in such a way that a current does not leak in the cable radial direction.
  • the conductor 11 serves as a passage through which current flows to transmit power, and has a high conductivity to minimize power loss, and a material having strength and flexibility suitable for cable production and use, for example, copper or aluminum. Can be made.
  • the conductor 11 has a flat element layer 11C including a circular element element 11a and a flat element element 11b twisted and enclosed to enclose the element element 11a.
  • It may be a flat conductor having a circular cross section as a whole, and may be a circular compressed conductor compressed in a circular shape by twisting a plurality of circular wires as another example.
  • the flat conductor has an advantage of reducing the outer diameter of the cable due to a relatively high drop ratio compared to the circular compression conductor.
  • the conductor 11 is formed by stranding a plurality of element wires, the surface thereof is not smooth, so that an electric field may be uneven, and corona discharge is likely to occur partially.
  • the insulation performance may be reduced.
  • an inner semiconducting layer 12 may be formed outside the conductor 11.
  • the inner semiconducting layer 12 may have semiconductivity by adding conductive particles such as carbon black, carbon nanotubes, carbon nanoplates, and graphite to an insulating material.
  • the inner semiconducting layer 12 functions to stabilize the insulation performance by preventing a sudden electric field change between the conductor 11 and the cable insulation layer 14 to be described later. In addition, by suppressing uneven charge distribution on the conductor surface, the electric field is made uniform and the gap between the conductor 11 and the cable insulation layer 14 is prevented from forming so as to suppress corona discharge and insulation breakdown. do.
  • the cable insulation layer 14 is provided outside the inner semiconducting layer 12 to electrically insulate the outside from the current flowing along the conductor 11 so as not to leak to the outside.
  • the cable insulating layer 14 may be formed of insulating paper impregnated with insulating oil. That is, the cable insulating layer 14 may be formed by winding insulating paper in multiple layers so as to surround the internal semiconducting layer 12, and then impregnating the cable core with an insulating oil. As the insulating oil is absorbed into the insulating paper as described above, the insulating property of the cable insulating layer 14 may be improved.
  • the insulating oil is filled in the gaps between the inside of the insulating paper and the gap formed by winding the insulating paper to improve the insulating property, and to reduce the frictional force between the insulating paper during bending of the cable to improve the bending characteristics of the cable.
  • the type of the insulating oil is not particularly limited, the insulating oil should not be oxidized by heat in contact with the copper or aluminum constituting the conductor 11, and the impregnation temperature, for example, 100 ° C., may be used to easily impregnate the insulating paper.
  • the insulating oil may be one or more insulating oils selected from the group consisting of naphthenic insulating oils, polystyrene insulating oils, mineral oils, alkyl benzene or polybutene synthetic oils, heavy alkates, and the like.
  • the insulating paper may be kraft paper from which the organic electrolyte in the pulp is removed using kraft pulp as a raw material, or a composite insulating paper in which kraft paper is adhered to one or both surfaces of a plastic film.
  • the plastic film has a higher resistivity than kraft paper adhered to one or both sides thereof, so that even if bubbles are generated in kraft paper according to the flow of insulating oil during an impregnation process or a cable operation, the voltage applied to the bubbles can be alleviated, and polyethylene (Polyethylen) ), Polypropylene resins such as polypropylene, polybutylene, tetrafluoroethylene-hexaxafluoropropylene copolymer, ethylene-tetrafluoroethylene air It may be made of a fluororesin such as coalescing, and preferably made of a polypropylene homopolymer resin having excellent heat resistance.
  • the cable insulation layer 14 may be formed by winding only the kraft and impregnating the insulation oil.
  • the insulating oil flows in the cable load direction, and voids may occur.
  • the thermoplastic resin such as the polypropylene resin is not impregnated with the insulating oil, the impregnation temperature at the time of cable production or at the time of cable operation Thermal expansion occurs depending on the operating temperature.
  • the surface pressure is applied to the kraft paper stacked thereon to narrow the passage of the insulating oil, so that the flow of the insulating oil may be suppressed in the contraction / expansion of the insulating oil due to gravity or the temperature of the insulating oil.
  • the composite insulating paper has a higher insulation strength than kraft paper has the advantage of reducing the cable outer diameter.
  • the insulating oil of the cable insulating layer ie, the cable insulating layer formed on the inner semiconducting layer 12, which belongs to the upper section of the conductor is lowered in viscosity and thermally expands to move outward, and moves when the cable temperature falls.
  • the viscosity of the insulating oil becomes high and does not return to the original state, voids may occur in a portion of the cable insulating layer in the section immediately above the conductor.
  • a high electric field acts on the cable insulation layer formed in the direction of the outer semiconducting layer 16, which belongs to the cable insulation layer directly below the metal sheath, in which the electric field is gradually reversed according to the temperature difference and the electric field gradually increases.
  • the upper section of the conductor and the lower section of the metal sheath may have a high possibility of voids, and may act as a weak part of insulation, which is a starting point of partial discharge, insulation breakdown, etc., as a region in which a high electric field acts according to a temperature change inside the cable.
  • the kraft may be used as the insulating paper in the area including the weak insulation of the cable insulating layer (14). That is, the cable insulation layer 14 is divided into a first cable insulation layer, a second cable insulation layer, and a third cable insulation layer in a direction from the inner semiconducting layer 12 to the outer semiconducting layer 16 described later. Only kraft may be used for the cable insulation layer and / or the third cable insulation layer, and the composite insulation may be used for the second cable insulation layer.
  • a resistivity difference occurs between the second cable insulation layer wound with the composite insulation paper and the first cable insulation layer and / or the third cable insulation layer wound with the kraft paper, and the cable insulation layer wound with the kraft paper having a low resistivity (
  • the first cable insulation layer and / or the third cable insulation layer of 14) has a relatively low resistivity, and serves to alleviate an electric field distributed to the weak insulation portion.
  • a high electric field acts on the second cable insulating layer on which the composite insulating paper having high resistivity is wound due to the resistive electric field distribution characteristic of the DC cable in which the electric field is distributed according to the resistivity, and the first cable insulating layer and / or the third cable Since a relatively low electric field acts on the section immediately above the conductor and / or the section directly below the metal sheath included in the insulating layer, the electric field acting on the weak part of the insulation can be alleviated to stabilize the insulation performance.
  • the cable insulation layer 14 may form a third cable insulation layer thicker than the first cable insulation layer.
  • the metal sheath 22, which will be described later, is formed on the outside of the cable insulation layer 14, or when the cable core part is connected to two power cables sequentially exposed from the inside, and then the metal sheath 22 is restored. Since losing heat is applied to the second cable insulating layer of the cable insulating layer 14 to cause deformation of the plastic film, the second cable insulating layer is formed by forming a second cable insulating layer thicker than the first cable insulating layer. It is desirable to protect the plastic film from heat. In this case, the thickness of the first cable insulation layer may be selected in consideration of the impulse surge voltage required for the power cable.
  • An external semiconducting layer 16 may be provided outside the cable insulation layer 14.
  • the outer semiconducting layer 16 is formed of a material having semiconductivity by adding conductive particles, such as carbon black, carbon nanotubes, carbon nanoplates, graphite, etc., to an insulating material like the inner semiconducting layer. The nonuniform charge distribution between the layer 14 and the metal sheath 22 described later is suppressed to stabilize the insulation performance.
  • the outer semiconducting layer 16 smoothes the surface of the cable insulating layer 14 in the cable to mitigate electric field concentration to prevent corona discharge, and also physically protects the cable insulating layer 14. Can be done.
  • the outer semiconducting layer 16 may further include a metallized paper.
  • the metallized paper may be formed by stacking a thin aluminum film on kraft paper, and a plurality of perforations may exist to facilitate the impregnation of the insulating film of the cable insulating layer 14.
  • the cable core part 10 may further include a moisture absorbing part 21 for preventing moisture from penetrating into the cable.
  • the moisture absorbing portion may be formed between the stranded wires of the conductor 11 and / or outside of the conductor 11, and has a high speed of absorbing moisture penetrating into the cable and excellent ability to maintain the absorption state. It is configured in the form of powder, tape, coating layer or film including a super absorbent polymer (SAP), and serves to prevent moisture from penetrating in the longitudinal direction of the cable.
  • the moisture absorbing portion may have a semiconductivity to prevent a sudden electric field change.
  • the cable protection part 20 is provided outside the cable core part 10, and the power cable laid on the sea floor may further include a cable outer part 30.
  • the cable protector and the cable sheath protect the core from various environmental factors such as moisture penetration, mechanical trauma, and corrosion, which can affect the power transmission performance of the cable.
  • the cable protection unit 20 includes a metal sheath 22 and a polymer sheath 24 to protect the cable from accidental current, external force or other external environmental factors.
  • the metal sheath 22 may be formed to surround the core part 10.
  • the power cable when installed in an environment such as the seabed, it may be formed to seal the cable core portion 10 in order to prevent foreign substances such as moisture from entering the cable core portion 10,
  • the molten metal is extruded to the outside of the cable core 10 so as to have a seamless outer surface so that the ordering performance can be excellent.
  • Lead or aluminum is used as the metal, and in the case of a power cable installed on the sea floor, it is preferable to use lead having excellent corrosion resistance to seawater, and alloy lead containing a metal element to supplement mechanical properties. It is more preferable to use (Lead alloy).
  • the metal sheath 22 is grounded at the end of the power cable and serves as a passage through which an accident current flows in case of an accident such as a ground fault or a short circuit, and protects the cable from external shocks and prevents the electric field from being discharged to the outside of the cable. Can be.
  • the metal sheath 22 may be coated with an anti-corrosion compound, for example, blown asphalt, etc. on the surface to further improve the corrosion resistance, water resistance, and the like of the cable and to improve adhesion to the polymer sheath 24. Can be.
  • an anti-corrosion compound for example, blown asphalt, etc.
  • the copper sheath tape or the moisture absorbing layer 21 may be additionally provided between the metal sheath 22 and the cable core 10.
  • the copper wire direct tape consists of a copper wire and a nonwoven tape to facilitate electrical contact between the outer semiconducting layer 16 and the metal sheath 22, and the moisture absorbing layer absorbs moisture that has penetrated the cable. It is formed in the form of powder, tape, coating layer or film including super absorbent polymer (SAP) which has a high speed and excellent ability to maintain an absorbent state. Play a role.
  • the copper wire direct tape and the water absorbing layer preferably has a semi-conductivity in order to prevent a sudden electric field change, it may be configured to include a copper wire in the water absorbing layer so that both conduction and water absorption.
  • the polymer sheath 24 is formed on the outside of the metal sheath 22 to improve the corrosion resistance, degree of ordering, etc. of the cable, and to protect the cable from mechanical trauma and other external environmental factors such as heat and ultraviolet rays. Can be.
  • the polymer sheath 24 may be formed of a resin such as polyvinyl chloride (PVC), polyethylene, or the like, and in the case of a power cable installed on the sea floor, it is preferable to use a polyethylene resin having excellent water repellency, and flame retardancy is required. It is preferable to use polyvinyl chloride resin in an environment.
  • the power cable 100 includes a metal reinforcing layer 26 made of a galvanized steel cape or the like inside or outside the polymer sheath, and the metal sheath 22 is expanded by the expansion of the insulating oil. You can prevent it.
  • the upper and / or lower portion of the metal reinforcing layer 26 may be provided with a bedding layer (not shown) made of a semi-conductive nonwoven tape or the like to buffer the external force applied to the power cable, polyvinyl chloride to polyethylene, etc.
  • the outer sheath 28 made of resin can be further provided to further improve the corrosion resistance, water resistance, etc. of the power cable, and further protect the cable from mechanical trauma and other external environmental factors such as heat and ultraviolet rays.
  • the power cable installed on the seabed is easy to be traumatized by the anchor of the ship, and may be damaged by bending force caused by currents or waves, friction with the sea bottom, etc. 30 may be further provided.
  • the cable sheath may include an armor layer 34 and a serving layer 38.
  • the armor layer 34 may be made of steel, galvanized steel, copper, brass, bronze, and the like, and may be configured by at least one layer by cross winding a wire having a circular cross section or the like, and the mechanical characteristics of the power cable It not only functions to enhance performance, but also protects cables from external forces.
  • the serving layer 38 formed of polypropylene yarn or the like is formed in one or more layers on the upper and / or lower portion of the armor layer 34 to protect the cable, and the serving layer 34 formed on the outermost part is colored. It is composed of two or more different materials to ensure visibility of cables laid on the sea floor.
  • FIG. 2 is a partial cutaway view schematically showing a cable connected by an intermediate connection.
  • it is a partial cutaway view schematically showing a state in which the DC power cables 100A and 100B having the configuration as shown in FIG. 1 are connected to each other by the intermediate junction box 200.
  • 3 is an enlarged view of a portion C of FIG. 2.
  • first of the pair of DC power cables 100A and 100B, the cable insulation layers 14A and 14B and the conductors 11A and 11B are exposed to each other.
  • Each end of the conductors 11A and 11B may be electrically connected to form a conductor connecting portion.
  • the conductor connection serves as a path for current by the electrically connected conductors 11A and 11B, through which power can be transferred.
  • the conductor connecting portion is electrically connected to each other by crimping or welding the conductors 11A and 11B to the conductor crimp sleeve 1P.
  • the cable insulation layer 14A may include the first cable insulation layer 14A1, the second cable insulation layer 14A2, and the third cable insulation layer 14A3.
  • the cable insulation layer 14A can be penciled to have a multi-stage structure.
  • the cable insulation layer 14A may have a multistage structure of a first fencing stage 14a1, a second fencing stage 14a2, and a third fencing stage 14a3. It can be penciled.
  • the first penciling end 14a1 is composed of an inner semiconducting layer 12, a first cable insulating layer 14A1, and a part of the second cable insulating layer 14A2, and the second penciling end 14a2 is a second cable.
  • the insulating layer 14A2 may be formed, and the third penciling end 14a3 may include a portion of the second cable insulating layer 14A2 and the third cable insulating layer 14A3. This will be described later together with the reinforcement insulating layer.
  • a copper powder leakage preventing part PC may be disposed between the conductor crimp sleeve 1P and the conductors 11A and 11B to prevent the copper powder from the conductors 11A and 11B from flowing out.
  • the copper powder leakage preventing part (PC) is between the conductor crimp sleeve (1P) and the conductor (11A, 11B), and / or the innermost layer (2101A) of the first reinforcing insulating layer (2101) and By being disposed between the conductors 11A and 11B, it is possible to prevent the copper generated in the conductors 11A and 11B from leaking into the reinforcing insulating layer 210.
  • the copper powder leakage preventing part PC is, for example, a first electric field uniformization layer 12 positioned on the conductor 11A exposed between the first penciling end 14a1 of the cable 100A and the conductor crimp sleeve 1P. ), And a copper powder leakage preventing plate 211 disposed between the conductor pressing sleeve 1P and the conductor 11A.
  • the first electric field uniformization layer 12 may be disposed between the conductor crimp sleeve and the conductor, and between the reinforcement insulating layer and the conductor. That is, the first electric field uniformization layer 12 may extend not only between the first cable insulation layer 14A1 and the conductor crimp sleeve 1P but also extend between the conductor crimp sleeve 1P and the conductor 11A.
  • the first electric field homogenization layer 12 may be formed by extending the inner semiconducting layer of the cable 100A. That is, the first electric field homogenization layer 12 is formed by removing the inner semiconducting layer itself as the inner semiconducting layer itself with the first cable insulation layer 14A1 and leaving a predetermined length. After this removal, the conductor 11A is exposed.
  • the first field homogenization layer 12 may be formed by winding at least one insulating sheet on the conductor 11A, but the first two sheets may be formed as a void and then as a gap winding.
  • the first electric field uniformization layer 12 has a plurality of semiconducting properties so as to overlap the innermost layer adjacent to the conductors 11A and 11B of the DC power cables 100A and 100B in the air, that is, in the longitudinal direction of the cable. It is formed by winding the tape, and after the winding, it can be made by the gap winding, that is, by winding the semiconducting tape which is a kind of insulating paper so as to be spaced apart in the longitudinal direction of the DC power cables 100A, 100B.
  • the first electric field uniformization layer 12 wraps the innermost layer adjacent to the conductors of the DC power cables 100A and 100B, that is, on the conductors 11A and 11B of the DC power cables 100A and 100B.
  • a sheet of carbon paper which is a kind of insulating paper, is superposed on one side of the DC power cables 100A and 100B to form a transverse winding in the longitudinal direction of the DC power cables. It is formed by the air space, and can be made by the side winding so that the gap winding, that is, a semi-conducting tape (carbon paper), which is a kind of insulating paper, is spaced apart in the longitudinal direction of the DC power cables 100A and 100B.
  • carbon paper which is a kind of insulating paper
  • the first electric field uniformization layer 12 is formed as a gap winding after the voiding space, it is possible to minimize the leakage of copper powder by minimizing the voids of the plurality of insulating papers (carbon paper). In addition, since a plurality of insulating papers (carbon papers) are blanked and then supported by a gap winding, bending characteristics can be improved.
  • the first electric field homogenization layer 12 may be extended between the conductor crimp sleeve 1P and the conductor 11A by exposing the inner semiconducting layer of the exposed cable 100A by removing the first cable insulation layer 14A1. . That is, one end of the first electric field uniformization layer 12 may be located between the conductor crimp sleeve 1P and the conductor 11A.
  • the first electric field homogenization layer 12 is, for example, a position at which a crimp (1Pa 'in FIG. 5) of the inner surface of the conductor crimp sleeve 1P formed by crimping the conductor crimp sleeve 1P starts, that is, conductor crimping. It may extend to one end of the sleeve 1P. As another example, as shown in FIG. 5, the first field homogenization layer 12 may extend to just before the highest ridge T in the corrugated acid (1Pa ′ in FIG. 5). This extension ensures a sufficient current path between the conductor 11A of the cable and the conductor crimp sleeve 1Pa. As another example, as shown in FIG. 6, the first field homogenization layer 12 may extend beyond the highest ridge T in the corrugated acid (1Pa ′ in FIG. 5). This will be described later.
  • the copper powder leakage preventing plate 211 may be disposed between the conductor crimp sleeve 1P and the conductor 11A. That is, the copper powder leakage preventing plate 211 may be disposed to correspond to the inside of the conductor compression sleeve 1P and may not exceed the conductor compression sleeve 1P. As another example, as shown in FIGS. 9 and 10, the copper flux leakage preventing plate 211 ′′ may extend beyond both ends of the conductor compression sleeve 1P as well as between the conductor compression sleeve 1P and the conductor 11A. .
  • the copper powder leakage preventing plate 211 may be formed of a material having a structure that is dense so that copper powder may not penetrate, and preferably, may be formed of a metal material capable of withstanding the force acting when the compression sleeve is pressed.
  • the copper powder leakage preventing plate 211 may be made of copper, aluminum, a copper alloy, or an aluminum alloy to correspond to the material of the conductors 11A and 11B of the cables 100A and 100B.
  • the copper powder leakage preventing plate 211 may be formed by, for example, wrapping a portion of the first electric field homogenization layer 12 and the conductor 11A with copper tape and ending or soldering the end portions of the copper tape which are in contact with each other. When both ends of the copper tape are soldered to form the copper leakage prevention plate 211, it is preferable to smoothly process the connection part of the solder so that no edge is generated.
  • the copper leakage prevention plate 211 is formed between the conductor pressing sleeve 1P and the conductor 11A so as to surround the cable conductor 11A by the end, so that the outflow path of the copper generated in the conductor 11A is minimized. As a result, the copper powder may be blocked by the copper powder leakage preventing plate 211.
  • One end of the copper powder leakage preventing plate 211 facing the end of the cable conductor 11A is over the corrugated peak 1Pa 'formed on its inner side by crimping the conductor crimp sleeve 1P to the corrugated bone 1Pb'.
  • the pressing force to the conductor crimp sleeve 1P can be applied.
  • the copper flow-out prevention plate 211 preferably extends beyond the ridgeline T, which is the highest point in the corrugated mountain 1Pa '.
  • the other end a2 of the copper powder leakage preventing plate 211 toward the first cable insulation layer 14A1 of the cable may protrude from the conductor crimp sleeve 1P and may not act as an edge.
  • 4 and 5 are cross-sectional views showing a state in which a pair of conductors 11A and 11B are electrically connected to each other by a conductor crimp sleeve.
  • 4 is a cross-sectional view showing a conductor crimp sleeve before the crimping
  • FIG. 5 is a cross-sectional view showing a conductor crimp sleeve after the crimping.
  • each end of the pair of conductors 11A and 11B is fitted to the conductor receiving portion of the conductor crimp sleeve 1P.
  • the outer surface of the conductor pressing sleeve is crimped by a crimping device to firmly support the connection state by holding the pair of conductors, and after pressing, the outer surface of the conductor pressing sleeve is smoothly trimmed to obtain a flat surface. Is formed.
  • the conductor crimp sleeve 1P has at least two protrusions 1Pa protruding from the outer surface and at least one recess 1Pb formed between the protrusions 1Pa, as shown in FIG. 5. And a region in which the protrusion 1Pa is formed as shown in FIG. 5 is compressed by the pressing device to protrude to the inside of the conductor pressing sleeve 1P to form a wrinkled peak 1Pa '. As a result, the end of each conductor is gripped, and the outer surface of the conductor pressing sleeve 1P which is uneven by pressing can be smoothed to prevent electric field concentration, corona discharge, etc. of the outer surface of the conductor pressing sleeve.
  • the first electric field homogenization layer 12 extends in the direction from the inner semiconducting layer of the cable 100A toward the conductor crimp sleeve 1P so that one end thereof is between the conductor crimp sleeve 1P and the conductor 11A.
  • the copper powder leakage preventing plate 211 has one end portion facing the end of the conductor 11A and the other end portion facing the first cable insulation layer 14A1 of the cable 100A does not protrude from the conductor crimp sleeve 1P. It can extend to the length of.
  • a wrinkle acid 1Pa ' is formed on the inner surface of the conductor crimp sleeve 1P, and the first electric field uniformization layer 12 is formed of the crimp acid ( 5, 1Pa ') extends to just before the highest ridge T, and the copper flow prevention plate 211 extends beyond the ridge T which is the highest point of the corrugated mountain 1Pa'. Can be.
  • FIG 8 to 12 are views showing various modifications of the first electric field homogenization layer and the copper powder leakage preventing plate.
  • the first electric field uniformization layer 121 extends from the inner semiconducting layer of the cable 100A toward the conductor crimp sleeve 1P so that one end thereof is the conductor crimp sleeve 1P and the conductor 11A. ), And the other part of the copper leakage preventing plate 211 facing the first cable insulation layer 14A1 of the cable 100A does not protrude from the conductor crimp sleeve 1P and faces the end of the conductor 11A. One end may extend to a predetermined length.
  • a wrinkled peak 1Pa ' is formed on the inner surface of the conductor crimp sleeve 1P, and the first electric field uniformization layer 121 is formed of the corrugated peak ( 1Pa ') extends beyond the highest ridge (T), the copper flow prevention plate 211 may extend beyond the ridge (T), the highest point in the corrugated mountain (1Pa').
  • the first electric field uniformization layer 122 extends from the inner semiconducting layer of the cable 100A toward the conductor crimp sleeve 1P so that one end thereof is the conductor crimp sleeve 1P and the conductor 11A. It is disposed between, and the copper powder outflow prevention plate 211 'may be disposed over the entire surface between the conductor pressing sleeve (1P) and the conductor (11A). That is, in Fig. 5, one copper powder leakage preventing plate 211 is disposed between the conductor 11A and the conductor pressing sleeve 1P, and another copper powder leakage between the conductor 11B and the conductor pressing sleeve 1P.
  • the prevention plate 211 is arranged, but in the embodiment shown in FIG. 11, one copper flux leakage prevention plate 211 'is disposed between the conductor crimp sleeve 1P and the conductors 11A and 11B.
  • the copper leakage prevention plate 211 ′ has both ends, that is, an end facing the first cable insulation layer 14A1 of the cable 100A and an end facing the first cable insulation layer 14a1 of the cable 100A. It may be disposed between the conductor crimp sleeve 1P and the conductors 11A and 11B without protruding from the sleeve 1P.
  • a wrinkle acid 1Pa ' is formed on the inner surface of the conductor crimping sleeve 1P, and the first electric field uniformizing layer 122 is formed of the corrugated acid ( 1 Pa ') can extend beyond the highest ridge T.
  • the first electric field uniformization layer 123 extends from the inner semiconducting layer of the cable 100A toward the conductor crimp sleeve 1P so that one end thereof is the conductor crimp sleeve 1P and the conductor 11A. It is disposed between, and the copper powder outflow prevention plate 211 'may be disposed over the entire surface between the conductor pressing sleeve (1P) and the conductor (11A). That is, in Figs. 5 and 8, one copper flux preventing plate 211 is disposed between the conductor 11A and the conductor pressing sleeve 1P, and another one between the conductor 11B and the conductor pressing sleeve 1P.
  • the copper powder leakage preventing plate 211 is arranged, but in the embodiment shown in FIG. 10, one copper powder leakage preventing plate 211 'is disposed between the conductor crimp sleeve 1P and the conductors 11A and 11B.
  • the copper leakage prevention plate 211 ′ has both ends, that is, an end facing the first cable insulation layer 14A1 of the cable 100A and an end facing the first cable insulation layer 14a1 of the cable 100A. It may be disposed between the conductor crimp sleeve 1P and the conductors 11A and 11B without protruding from the sleeve 1P.
  • a wrinkled peak 1Pa ' is formed on the inner surface of the conductor crimp sleeve 1P, and the first electric field uniformizing layer 123 is formed of the corrugated peak ( 1 Pa ') can be extended to just before the highest ridge T.
  • the first electric field uniformization layer 124 extends in the direction from the inner semiconducting layer of the cable 100A toward the conductor pressing sleeve 1P so that one end thereof is the conductor pressing sleeve 1P and the conductor 11A. Disposed between, the other end portion of the copper leakage preventing plate 211 ", which faces the first cable insulation layer 14A1 of the cable 100A, protrudes from the conductor crimp sleeve 1P and extends to the end of the conductor 11A. The one end facing toward the side may extend to a predetermined length.
  • a portion of the copper flux leakage preventing plate 211 " is disposed between the conductor crimp sleeve 1P and the conductors 11A and 11B and the other portion of the conductor crimp sleeve ( It may extend beyond 1P) toward the cable insulation layer 14A.
  • crimping of the conductor crimp sleeve 1P forms a wrinkle acid 1Pa 'on the inner surface of the conductor crimp sleeve 1P
  • the first electric field uniformizing layer 124 is formed of the corrugated acid ( 1Pa ') extends beyond the highest ridge (T)
  • the copper flow prevention plate 211 may extend beyond the ridge (T), the highest point in the corrugated mountain (1Pa').
  • another portion of the copper leakage preventing plate 211 ′′ and the first electric field homogenization layer 124 may overlap each other.
  • the first electric field uniformization layer 125 extends from the inner semiconducting layer of the cable 100A toward the conductor pressing sleeve 1P so that one end thereof is the conductor pressing sleeve 1P and the conductor 11A. Disposed between, the other end portion of the copper leakage preventing plate 211 ", which faces the first cable insulation layer 14A1 of the cable 100A, protrudes from the conductor crimp sleeve 1P and extends to the end of the conductor 11A. The one end facing toward the side may extend to a predetermined length.
  • a portion of the copper flux leakage preventing plate 211 " is disposed between the conductor crimp sleeve 1P and the conductors 11A and 11B and the other portion of the conductor crimp sleeve ( It may extend beyond 1P) toward the cable insulation layer 14A.
  • a wrinkle acid 1Pa ' is formed on the inner surface of the conductor crimp sleeve 1P, and the first electric field uniformizing layer 124 is formed of the crimp mountain ( 1 Pa ') is less than the highest ridge (T) extends to just before that, the copper flow prevention plate 211 may extend beyond the ridge (T), the highest point in the corrugated mountain (1Pa').
  • the other portion of the copper flux leakage preventing plate 211 ′′ and the first electric field uniformization layer 125 may overlap each other.
  • the copper outflow prevention part PC may include a second field homogenization layer surrounding the first field uniformization layer 12, the copper outflow prevention plate 211, and the conductor compression sleeve 1P. 212 and a pressure layer 213 wound on the second electric field homogenization layer 212 may be further included.
  • the second electric field homogenization layer 212 wraps a carbon crepe to surround the first electric field homogenization layer 12, the copper powder leakage preventing plate 211, and the conductor crimp sleeve 1P so as to surround the first electric field homogenization layer 212.
  • the layer 12 By strongly adhering the layer 12, the copper powder outflow prevention plate 211, and the conductor crimp sleeve 1P, it is possible to further prevent the copper outflow. That is, it is difficult to maintain the high degree of smoothness after pressing the conductor crimp sleeve 1P and finishing the surface.
  • the second electric field homogenization layer 212 can uniform the surface by wrapping the outer circumferential surface of the polished conductor crimp sleeve 1P to make the electric field at the outer circumferential surface of the conductor crimp sleeve 1P uniform.
  • the second field uniform layer 212 may press the first field uniform layer 212 and the copper powder leakage preventing plate 211.
  • the second electric field uniformization layer 212 may support carbon creep paper as a wrap winding. That is, the second electric field uniformization layer 212 may be formed by supporting carbon creep paper so as to overlap in the longitudinal direction of the cable.
  • the second field homogenization layer 212 may be made of carbon paper as another example.
  • the second electric field homogenization layer 212 is preferably made of corrugated carbon paper when considering the step at both ends of the conductor crimp sleeve 1P.
  • the second electric field uniformization layer 212 is semiconductive, it is possible to prevent a sudden electric field change between the conductor crimp sleeve 1P and the reinforcement insulating layer 210.
  • the pressure layer 213 may be wound on the second field uniform layer 212.
  • the pressurized layer 213 can be more reliably prevented from leaking copper powder by bringing the first electric field uniformizing layer 12, the copper outflow preventing plate 211, the conductor crimp sleeve 1P, and the second electric field uniformizing layer 212 into close contact with each other. Can be.
  • the pressing layer 213 is preferably supported on the second field homogenization layer 212 in a gap winding in consideration of bending characteristics. That is, the pressure layer 213 may be formed by transversely winding the kraft paper in the longitudinal direction of the cable as an example.
  • the pressing layer 213 may be wound with insulating paper to relieve the electric field on the conductor crimp sleeve 1P, which takes a high electric field when the cable is energized.
  • the pressing layer 213 may have a volume resistance of 10 2 or more lower than that of the reinforcing insulating layer 2110.
  • FIG. 6 is a cross-sectional view illustrating in detail the first reinforcing insulating layer and the second reinforcing insulating layer of the intermediate junction box shown in FIG. 2.
  • each conductor of the DC power cables 100A and 100B is crimped and connected with a conductor crimp sleeve 1P to form a copper powder leakage preventing part PC, and then the conductors 11A and 11B.
  • the reinforcing insulation layer 210 is formed to surround at least a portion of the cable insulation layers 14A1, 14A2, and 14A3 including the connection portions of the layers.
  • the reinforcing insulating layer 210 may be formed of a field relaxation layer 214, a first reinforcing insulating layer 2101, and a second reinforcing insulating layer 2102.
  • the field relaxation layer 214 may be formed up to an outer diameter of the first insulating layer 14A1 of the cable 100A.
  • the first reinforcement insulating layer 2101 is formed on the field relaxation layer 214 up to the outer diameter of the third insulating layer 14A3 of the cable 100A, and may be formed of a first intermediate layer 2101B and a second intermediate layer 2101C. have.
  • the second reinforcement insulating layer 2102 may be formed on the first reinforcement insulating layer 2101. That is, the second reinforcement insulating layer 2102 may be stacked in the radial direction of the first reinforcement insulating layer 2101.
  • the second reinforcement insulating layer 2102 may be the outermost layer 2101D of the reinforcement insulating layer 210.
  • the interface length between the first reinforcing insulation layer 2101 and the cable insulation layer 14A may be increased by penciling the cable insulation layer 14A in multiple stages and forming an inclined surface at the end thereof. Can be. Furthermore, by reducing the angle of the inclined surface of each end of the cable insulation layer 14A, the interface length between the first reinforcing insulation layer 2101 and the cable insulation layer 14A can be further increased. As the interface length increases, the creeping electric field characteristics between the field relaxation layer 214, the first reinforcement insulating layer 2101, and the cable insulating layer 14A may be further improved.
  • the length of the intermediate junction box cannot be configured to be longer than the limit in accordance with the customer's requirements, specifications, or manufacturing cost.
  • Electric-field stress-control layer 214 is a volume resistivity than that of the first insulating layer 2101 may be less than 10 2 times.
  • the field relaxation layer 214 is formed to surround a portion where the conductors 11A and 11B of the two cables 100A and 100B connect to each other, and its volume resistivity is 10 to 2 times lower than that of the first reinforcement insulating layer 2101.
  • the electric field relaxation layer 214 having a low resistivity is formed at a portion to which the conductors 11A and 11B are connected to thereby relatively volume.
  • the electric field may be dispersed by the first reinforced insulating layer 2101 having a large resistance.
  • the height difference h2 between the maximum height t1 of the field relaxation layer 214 and the height h1 of the first cable insulation layer 14A1 is equal to or less than 430% of the height h1 of the first cable insulation layer 14A1. Can be.
  • the difference in height exceeds 430%, the outermost edge portion of the first reinforcement insulation portion 2101, that is, the interface between the first reinforcement insulation portion 2101 and the second insulation reinforcement portion 2102 is electric field concentrated and the edge Insulation breakdown may occur in the unit.
  • the height (or thickness) h1 of the first cable insulation layer 14A1 may be 1 to 10% of the total thickness of the cable insulation layer 14A.
  • the thickness t2 of the field relaxation layer 214 formed on the conductor crimp sleeve 1P may be 1.6 to 96% of the total thickness of the field relaxation layer 214.
  • the thickness t2 of the field relaxation layer 214 formed on the conductor crimp sleeve 1P is less than 1.6% of the total thickness of the field relaxation layer 214, the field relaxation layer 214 overlies the conductor crimp sleeve 1P.
  • the thickness t2 of the field relaxation layer 214 formed on the conductor compression sleeve 1P exceeds 96% of the total thickness of the field relaxation layer 214, the conductor compression sleeve 1P is relatively undistributed. ) Is too thin, the mechanical properties of the portion to which the conductors (11a, 11b) is connected may be lowered, which may not satisfy the allowable tensile strength level required for the cable.
  • the maximum height t1 of the field relaxation layer 214 may be approximately equal to the height of the first penciling end 14a1.
  • the electric field relaxation layer 214, the first reinforcing insulating layer 2101, and the second reinforcing insulating layer 2102 are insulating paper layers divided in the intermediate junction box radial direction because the insulating paper having a predetermined length is not continuous in the longitudinal direction.
  • the first reinforcement insulating layer 2101 and the second reinforcement insulating layer 2102 may be formed of a plurality of insulating paper layers. That is, it is supported by using an insulating paper roll wound with insulating paper having a predetermined length. When all the insulating paper having the predetermined length is wound, the process of winding the insulating paper again using a new insulating paper roll is repeated to form a plurality of insulating paper layers. do.
  • the insulating paper layer constitutes the electric field relaxation layer 214, the first reinforcement insulating layer 2101, and the second reinforcement insulating layer 2102, and the height of the field relaxation layer 214 and the height of the first penciling end. If is different from each other, it is difficult to precisely control the height of the plurality of insulating paper layers constituting the first reinforcing insulating layer 2101 and the second reinforcing insulating layer 2102.
  • the second reinforcement insulating layer 2102 may be made of a composite insulating paper having an excellent insulating strength compared to the insulating paper.
  • the second reinforcement insulating layer 2102 may be made of PPLP, which is a kind of composite insulating paper.
  • the second reinforcing insulating layer 2102 which is the outermost layer 2101D of the reinforcing insulating layer 210, may be formed of a straight portion 210A and a slope portion 210B.
  • the straight portion 210A is formed on the first reinforcing insulation layer 2101 formed on the conductor crimp sleeve 1P to the outer diameter of the cable insulation layer 14A and configured to be parallel to the longitudinal direction of the cable 100A. Can be.
  • the slope portion 210B may be formed so that the width in the longitudinal direction thereof becomes narrow in the radial direction of the cable 100A at both ends of the straight portion 210A.
  • the junction box outer semiconducting layer 230 formed by restoring the outer semiconducting layer 16 of the cable 14A is formed along the outer surface of the slope portion 210B of the second reinforcing insulation layer 2102 and has a second reinforcement. It may be formed to cover the straight portion 210A of the insulating layer 2102.
  • the junction box outer semiconducting layer 230 formed on the outer side of the slope portion 210B has a slope shape by itself, and an equipotential line continuous from the cable insulation layer 14A to the intermediate junction box 200 is slope-shaped. It may be distributed according to the geometric shape of the junction box outer semiconducting layer 230 having a. That is, the electric field distribution can be controlled according to the slope shape of the junction box outer semiconducting layer 230.
  • the first reinforcement insulating layer 2101 and the second reinforcement insulating layer 2102 may be formed of a plurality of insulating paper layers 212L.
  • the insulating paper layer 212L is formed by winding the insulating paper in the radial direction of the intermediate junction box 210, and each of the insulating paper layers 212L is not wound with the continuous insulating paper. That is, the insulating paper constituting the insulating paper layer 212L of the same layer is made of continuous insulating paper, but the insulating paper layer 212L of the other layer is not continuous.
  • the insulating paper layer 212L refers to a layer divided in the radial direction of the intermediate junction box 200 because the insulating paper having a predetermined width and length is not continuous in its length direction.
  • the first reinforcing insulating layer 2101 and the second reinforcing insulating layer 2102 are supported by using an insulating paper roll wrapped with insulating paper having a predetermined length. When all the insulating paper having the predetermined length is wound, a new insulating paper roll is again applied. Repeating the process of winding the insulating paper using the to form a plurality of insulating paper layer (212L). Since the reinforcing insulating layer 210 may be formed using insulating paper having different widths / lengths from each of the insulating paper layers 212L, the sizes of the first reinforcing insulating layer 2101 and the second reinforcing insulating layer 2102 may be formed. It can be configured in various ways.
  • the slope portion 210B at both ends of the second reinforcement insulating layer 2102 may be formed such that the slope of the slope portion 210B increases gradually toward the ends of the cable conductors 11A and 11B. That is, since insulator paper having different widths and lengths is used for each of the insulator paper layers 212L, the slope of the slope portion 210B can be precisely controlled.
  • the reinforcement insulating layer 210 may be made of insulating paper and / or composite insulating paper as described above.
  • a predetermined space is provided between the conductor crimp sleeve 1P and the first cable insulation layer 14A1 located at the innermost side of the cable insulation layer 14A of the cable 100A. This may remain.
  • the space remaining between the crimp sleeve 1P and the first penciling end 14a1 located at the innermost side of the cable insulation layer 14 may be filled with the field relaxation layer 214 as described above.
  • the field relaxation layer 214 may be kraft paper.
  • the outer surface of the field relaxation layer 214 made of insulating paper of the reinforcing insulating layer 210 is approximately the same distance from the outermost surface of the first penciling end 14a1 and the longitudinal central axis of the cable. Will be located.
  • the outer surface of the compression sleeve (1P) may be surrounded by a semi-conductive tape in order to uniform the electric field distribution.
  • the electric field relaxation may be formed such that it is located approximately the same distance from the longitudinal central axis of the cable.
  • the outer surface of the electric field relaxation layer 214 made of insulating paper and the first penciling end 14a1 located at the innermost side of the multi-stage structure of the cable insulation layer 14A is about the same distance from the longitudinal central axis of the cable If a step occurs because it is not located at, the step where the step occurs acts as an electric field weakness and the electric field is concentrated to cause breakdown.
  • the outermost layer 2101D of the reinforcing insulating layer 210 is formed above the outer diameter of the exposed cable insulating layer 14A of the cable 100. Since the exposed conductor 11A of the cable is connected by the crimping sleeve 1P, not only the height of the conductor section is increased by the thickness of the crimping sleeve 1P but also a lot of heat is generated when the cable is energized. In addition, since the reinforcing insulating layer 210 is formed by winding a plurality of insulating papers or composite insulating papers and is relatively weak to insulation, the outermost layer 2101D of the reinforcing insulating layer 210 may have an outer diameter of the cable insulating layer 14A. It is necessary to form in the above and to reinforce insulation performance.
  • the outermost layer 2101D of the reinforcing insulating layer 210 is composed of a composite insulating paper having an excellent insulating strength compared to the insulating paper.
  • the electric field concentrated up to) may be distributed to the outermost layer 2101D of the reinforcing insulating layer 210.
  • intermediate layers 210B and 210C formed of a composite insulating paper layer may be provided between the field relaxation layer 214 and the outermost layer 2101D of the reinforcing insulating layer 210.
  • the intermediate layer of the reinforcing insulating layer 210 may include a first intermediate layer 2101B and a second intermediate layer 2101C sequentially from the inner side to the outer side between the field relaxation layer 214 and the outermost layer 2101D. have.
  • the field relaxation layer 214 is made of insulating paper, and the first intermediate layer 2101B, the second intermediate layer 2101C, and the outermost layer 2101D of the reinforcing insulating layer 210 are all made of composite insulating paper. Can be.
  • the field relaxation layer 214 is made of an insulating paper layer, and the first intermediate layer 2101B and the second intermediate layer 2101C are composed of composite insulating paper, the resistive electric field of the DC power cable in which the electric field is distributed according to the resistivity According to the distribution characteristic, the electric field is distributed more in the first intermediate layer 2101B and the second intermediate layer 2101C which are formed of a composite insulating paper having a relatively higher resistivity than kraft paper which is an insulating paper of the field relaxation layer 214.
  • the cable becomes relatively hot and the shrinkage / expansion of the insulating oil is relatively high, and thus bubbles are likely to occur, and the electric field that is distributed to the innermost layer 2101A, which is relatively vulnerable to insulation due to its large electric field strength, can be alleviated. As a result, the insulation performance of the intermediate junction box can be stabilized.
  • the reinforcement insulating layer 210 may include a first intermediate layer 2101B made of a composite insulating paper and a second intermediate layer 2101C made of an insulating paper.
  • the first intermediate layer 2101B and the second intermediate layer 210C provided between the field relaxation layer 214 and the outermost layer 2101D are respectively the second penciling end 14a2 and the third penciling end ( 14a3) may be disposed at the same distance from the center of the cable 100A.
  • the innermost layer 2101A of the reinforcing insulating layer 210 is made of an insulating paper layer
  • the first intermediate layer 2101B is made of a composite insulating paper
  • the electric field is distributed in the first intermediate layer 2101B formed of a composite insulating paper having a relatively higher resistivity than the kraft paper forming the field relaxation layer 214. Therefore, as the cable becomes relatively high temperature and contraction / expansion of the insulating oil is relatively active, bubbles are likely to occur, and the electric field distributed to the field relaxation layer 214, which is relatively vulnerable to insulation due to its large electric field strength, can be alleviated. Since the insulation performance can be stabilized.
  • the junction box outer semiconducting layer 230 may be formed on the outer surface of the slope portion 210B and the straight portion 210A of the second reinforcement insulating layer 2102.
  • the junction box outer semiconducting layer 230 may be energized with the outer semiconducting layer 16 to the metal sheath layer 22 of the cable 100.
  • the spacer 250 may be inserted outside the reinforcing insulating layer 210 through the through hole to maintain a gap between the copper tube 240 and the reinforcing insulating layer 210.
  • the spacer 250 has a through hole therein, and a plurality of recesses in the radial direction may be spaced apart from each other.
  • the insulating oil in the copper tube 240 passes through the recess. That is, the insulating oil injected into the copper tube 240 when the insulating oil is impregnated can smoothly move in the longitudinal direction of the intermediate junction box 200 through the recess. When there is no insulating oil passage such as the recess 251, the spacer 250 may move when the insulating oil is injected. In order to prevent the movement of the spacer 250, additional wires may be wound around the spacer 250 to fix the metal wire. Can be.
  • the spacer 250 may be formed of aluminum.
  • the protective copper tube 240 may protect the inside of the junction box from the outside, and may be energized with the metal sheath 22 of the cable 100 to serve as a passage for the accident current.

Abstract

본 발명은 도체, 내부반도전층, 케이블 절연층 및 외부반도전층을 구비하는 한 쌍의 직류 전력케이블과 한 쌍의 직류 전력케이블을 서로 연결시키는 중간접속함을 포함하는 직류 전력케이블 중간접속 시스템에 있어서, 한 쌍의 직류 전력케이블은 도체, 내부반도전층, 케이블 절연층 및 외부반도전층이 순차적으로 노출된 각 단부가 서로 대향하도록 구비되고, 중간접속함은 한 쌍의 케이블의 도체를 서로 전기적으로 연결하는 도체 접속부 및 도체 접속부, 노출된 내부반도전층 및 케이블 절연층을 둘러싸도록 절연지가 권취되어 케이블 절연층 외경까지 형성되고, 길이방향에서의 양 단부에 경사면을 갖는 제1 보강절연층과, 제1 보강절연층과 및 노출된 케이블 절연층을 둘러싸며 케이블 길이방향으로의 폭이 일정한 직선부와 직선부의 양단에 형성되며 케이블 길이방향으로의 폭이 케이블의 방사방향으로 감소하는 슬로프부를 구비한 제2 보강절연층을 포함하는 보강절연층을 포함하고, 제1 보강절연층과 도체 접속부 내지 내부반도전층 사이에 제1 보강절연층보다 체적저항률이 낮은 재질로 형성된 전계완화층을 구비하는 직류 전력케이블 중간접속 시스템에 관한 것이다.

Description

직류 전력케이블 중간접속 시스템
본 발명은 직류 전력케이블 중간접속 시스템에 관한 것이다.
일반적으로 전력케이블은 전력을 공급하는 도체를 이용하여 지중, 지상 또는 해저를 통하여 원하는 장소로 전력을 공급하도록 사용된다.
상기 전력케이블은 수백m 또는 수십km 간격으로 중간접속함(Joint box)에 의해 접속이 이루어지며, 상기 전력케이블의 말단은 종단접속함(Termination connection box)에 의해 가공선과 접속이 이루어지게 된다. 상기 중간접속함 또는 종단접속함에서 전력케이블을 연결하는 경우에 케이블의 절연층이 노출된 상태에서 압착 슬리브로 도체를 먼저 연결하고 상기 절연층 표면에 절연유에 함침된 절연지를 지권하여 보강절연층을 형성한다. 이 경우, 상기 절연지를 감는 도중, 즉, 절연지 사이에 절연유를 도포하면서 상기 절연지를 지권하고, 이어서 외부반도전층, 금속시스 및/또는 방식층을 복원하게 된다.
케이블 포설시 케이블 하중 등에 의하여 케이블에는 일정 수준 이상의 장력이 작용하므로 상기 압착 슬리브로 접속된 전력케이블의 도체 접속부에는 일정 수준 이상의 항장력이 요구된다. 하지만, 상기 도체 접속부는 압착 슬리브 압착 후, 상기 압착 슬리브의 표면을 일정 두께로 다듬질하는 과정을 거치게 되는데, 이 과정에서 압착 슬리브의 단면적이 줄어들게 되므로 항장력이 감소하게 된다. 또한 상기 압착 슬리브 내부에 삽입된 도체 단부가 압착 시에는 서로 이격되어 전류가 통하는 통로(path)가 줄어들게 되어 국부적인 발열이 발생하여 열화에 의한 중간접속함의 수명 단축의 문제가 있다.
케이블 통전시 도체가 가열됨에 따른 절연유 점도가 저하되어 도체 소선 사이에 있던 동분이 중력방향으로 유출되어 보강절연지층으로 유출되는 문제가 또한 발생할 수 있다.
이와 더불어, 상기 도체 접속부는 슬로프면을 포함하는데, 상기 슬로프면에서는 케이블 절연층의 절연지와 중간접속함의 절연층을 이루는 절연지가 연속되지 않는다. 케이블 절연층의 절연지와 중간접속함의 절연층이 맞닿는 부분은 케이블 통전시 도체에 흐르는 전류에 의해 형성되는 높은 전계가 인가되는 부분으로, 도체 접속부 부근의 절연층에 상술한 바와 같은 미세한 공극에 의해서도 절연파괴가 발생할 우려가 있다.
따라서, 도체 접속부의 기계적/전기적 특성, 도체 접속부와 인접한 절연층의 전기적 특성을 강화할 필요가 있다.
본 발명의 목적은 보강절연층을 이루는 제1 보강절연층과 제2 보강절연층 사이에서의 전계집중을 완화할 수 있는 직류 전력케이블 중간접속 시스템을 제공하는 것이다.
본 발명의 일 실시예에 따른 직류 전력케이블 중간접속 시스템은, 도체, 내부반도전층, 케이블 절연층 및 외부반도전층을 구비하는 한 쌍의 직류 전력케이블과 상기 한 쌍의 직류 전력케이블을 서로 연결시키는 중간접속함을 포함하는 직류 전력케이블 중간접속 시스템에 있어서, 상기 한 쌍의 직류 전력케이블은 상기 도체, 내부반도전층, 케이블 절연층 및 외부반도전층이 순차적으로 노출된 각 단부가 서로 대향하도록 구비되고, 상기 중간접속함은, 상기 한 쌍의 케이블의 도체를 서로 전기적으로 연결하는 도체 접속부; 및 상기 도체 접속부, 상기 노출된 내부반도전층 및 케이블 절연층을 둘러싸도록 절연지가 권취되어 상기 케이블 절연층 외경까지 형성되고, 길이방향에서의 양 단부에 경사면을 갖는 제1 보강절연층과, 상기 제1 보강절연층 및 상기 노출된 케이블 절연층을 둘러싸며 상기 케이블 길이방향으로의 폭이 방사방향으로 일정한 직선부와 상기 직선부의 양단에 형성되며 상기 케이블 길이방향으로의 폭이 상기 케이블의 방사방향으로 감소하는 슬로프부를 구비한 제2 보강절연층을 포함하는 보강절연층; 을 포함하고, 상기 제1 보강절연층과 상기 도체 접속부 내지 상기 내부반도전층 사이에 상기 제1 보강절연층보다 체적저항률이 낮은 재질로 형성된 전계완화층을 구비할 수 있다.
본 발명에 있어서, 상기 전계완화층은 상기 제1 보강절연층 보다 체적저항률이 102배 이상 낮을 수 있다.
본 발명에 있어서, 상기 전계완화층은 상기 도체 접속부 위에 형성된 상기 전계완화층의 두께는 상기 전계완화층 전체 두께의 1.6~96%일 수 있다.
본 발명에 있어서, 상기 케이블 절연층은, 상기 내부반도전층을 둘러싸며, 절연유에 함침된 크래프트지로 이루어진 제1 케이블 절연층; 상기 제1 케이블 절연층을 둘러싸며, 절연유에 함침된 복합절연지로 이루어진 제2 케이블 절연층; 및 상기 제2 케이블 절연층을 둘러싸며, 절연유에 함침된 크래프트지로 이루어진 제3 케이블 절연층을 포함하고, 상기 케이블 절연층은, 상기 내부반도전층, 제1 케이블 절연층, 및 제2 케이블 절연층 일부로 이루어지는 제1 펜슬링 단; 상기 제1 펜슬링 단 상에 단차를 가지며 상기 제2 케이블 절연층으로 이루어지는 제2 펜슬링 단; 및 상기 제2 펜슬링 단 상에 단차를 가지며 상기 제2 케이블 절연층 일부와 제3 케이블 절연층으로 이루어지는 제3 펜슬링 단; 으로 펜슬링되며, 상기 전계완화층의 최대 높이와 상기 제1 케이블 절연층의 높이의 높이 차이는 상기 제1 케이블 절연층의 높이의 430% 이하일 수 있다.
본 발명에 있어서, 상기 제1 케이블 절연층의 높이(또는 두께)는 상기 케이블 절연층의 전체 두께의 1~10%일 수 있다.
본 발명에 있어서, 상기 전계완화층의 최대 높이는 상기 제1 펜슬링 단의 높이와 실질적으로 동일할 수 있다.
본 발명에 있어서, 상기 도체 접속부는 상기 한 쌍의 전력케이블의 도체를 파지하며 서로 전기적으로 연결하는 도체 압착슬리브이며, 상기 중간접속함은, 상기 도체 압착슬리브와 상기 도체 사이에 배치되어 상기 도체로부터 발생할 수 있는 동분(銅粉)이 유출되는 것을 방지하는 동분유출방지부; 를 구비할 수 있다.
본 발명에 있어서, 상기 동분유출방지부는, 상기 도체 압착슬리브와 상기 도체 사이에 배치되는 동분유출방지판; 상기 도체 압착슬리브와 상기 도체 사이, 또는 상기 보강절연층과 상기 도체 사이에 배치되는 제1 전계균일화층; 상기 보강절연층과 상기 도체 압착슬리브 사이, 또는 상기 보강절연층과 상기 제1 전계균일화층 사이에 배치되는 제2 전계균일화층; 및 상기 보강절연층과 상기 도체 압착슬리브 사이, 또는 상기 보강절연층과 상기 도체 사이에 배치되는 가압층; 을 포함할 수 있다.
본 발명에 있어서, 상기 도체 압착슬리브는 내면에서 돌출되어 형성된 적어도 두 개의 주름산과 상기 주름산 사이에 형성되는 적어도 하나의 주름골을 갖는 몸체부를 포함하며, 상기 동분유출방지판은 상기 몸체부와 상기 도체 사이에 배치될 수 있다.
본 발명에 있어서, 상기 동분유출방지판은 상기 도체 압착슬리브의 일단에서 상기 주름산을 넘어서까지 배치될 수 있다.
본 발명에 있어서, 상기 동분유출방지판은 상기 도체 압착슬리브의 일단에서 타단에 이르도록 상기 몸체부와 상기 도체 사이에 배치될 수 있다.
본 발명에 있어서, 상기 동분유출방지판은 상기 도체의 길이방향으로 종첨될 수 있다.
본 발명에 있어서, 상기 동분유출방지판은 상기 도체와 같은 계열의 금속 내지 합금으로 이루어질 수 있다.
본 발명에 있어서, 상기 제1 전계균일화층은 상기 직류 전력 케이블의 길이방향으로 이격되도록 횡권된 반도전 테이프로 이루어질 수 있다.
본 발명에 있어서, 상기 제1 전계균일화층은 상기 케이블의 도체에 인접하여서는 상기 케이블의 길이방향으로 중첩되도록 반도전성 테이프를 횡권하여 형성될 수 있다.
본 발명에 있어서, 상기 제1 전계균일화층은 상기 케이블의 도체에 인접하여서는 상기 케이블의 길이방향으로 중첩되도록 복수 매의 반도전성 테이프를 횡권하여 형성될 수 있다.
본 발명에 있어서, 상기 동분유출방지부는 상기 제1 전계균일화층의 적어도 일부와 상기 동분유출방지판의 적어도 일부가 서로 중첩될 수 있다.
본 발명에 있어서, 상기 동분유출방지부는 상기 도체 압착슬리브의 상기 주름산에서 상기 동분유출방지판의 적어도 일부와 상기 제1 전계균일화층의 적어도 일부가 중첩될 수 있다.
본 발명에 있어서, 상기 동분유출방지부는 상기 도체 압착슬리브의 일단부와 상기 도체 압착슬리브 일단부 측에 형성된 주름산의 꼭지점 사이에서 서로 중첩될 수 있다.
본 발명에 있어서, 상기 제1 전계균일화층은 상기 케이블의 내부반도전층에서 연속적으로 연장되어 형성될 수 있다.
본 발명에 있어서, 상기 도체 압착슬리브의 외면 상기 제1 전계균일화층을 감싸는 제2 전계균일화층을 더 구비할 수 있다.
본 발명에 있어서, 상기 제2 전계균일화층은 주름이 형성된 반도전 테이프로 형성될 수 있다.
본 발명에 있어서, 상기 동분유출방지부는, 상기 제1 전계균일화층, 상기 동분유출방지판, 상기 도체 압착슬리브, 및 제2 전계균일화층을 둘러싸도록 형성된 가압층을 더 포함할 수 있다.
본 발명에 있어서, 상기 가압층은 절연지로 이루어질 수 있다.
본 발명에 있어서, 상기 가압층은 상기 보강절연층보다 체적저항이 102 이상 낮을 수 있다.
본 발명의 일 실시예에 따르면, 보강절연층을 이루는 제1 보강절연층과 제2 보강절연층 사이에서의 전계집중을 완화할 수 있다.
도 1은 전력케이블의 내부 구성을 도시한 사시도이다.
도 2는 중간접속함에 의해 접속된 케이블을 개략적으로 나타내는 부분 절개도이다.
도 3은 도 2의 C를 확대한 도면이다.
도 4는 압착 전 도체 압착슬리브를 나타내는 단면도이다.
도 5는 압착 후 도체 압착슬리브를 나타내는 단면도이다.
도 6은 도 2에 도시된 중간접속함의 제1 보강절연층과 제2 보강절연층을 보다 상세하게 도시한 단면도이다.
도 7은 도 6의 B를 확대한 도면이다.
도 8 내지 12는 압착 후 도체 압착슬리브를 나타내는 다양한 실시예들의 단면도이다.
이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명하기로 한다. 그러나, 본 발명은 여기서 설명된 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록, 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
일반적으로 절연유 함침 케이블은 수백m 내지는 수km 간격으로 중간접속함에 의해 접속이 이루어지며, 절연유 함침 케이블의 말단은 종단접속함에 의해 가공선과 접속이 이루어지게 된다. 이하에서는 먼저 절연유 함침 전력케이블의 구성에 대해서 살펴보고, 이어서 접속함의 연결과정을 살펴보기로 한다.
도 1은 초고압 전력 케이블의 내부 구성을 도시한 일부 절개 사시도이다.
도 1을 참조하면, 전력케이블(100)은 도체(11), 내부반도전층(12), 케이블 절연층(14), 외부반도전층(16)을 포함하여, 도체(11)를 따라 케이블 길이 방향으로만 전력을 전송하고, 케이블 반경 방향으로는 전류가 누설되지 않도록 하는 케이블 코어부(10)를 구비한다.
상기 도체(11)는 전력을 전송하기 위해 전류가 흐르는 통로 역할을 하며, 전력 손실을 최소화할 수 있도록 도전율이 우수하고 케이블 제조 및 사용에 적절한 강도와 유연성을 가진 소재, 예를 들어 구리 또는 알루미늄 등으로 이루어질 수 있다.
상기 도체(11)는 도 1에 도시된 바와 같이, 원형의 중심소선(11a)과 상기 원형 중심소선(11a)을 감싸도록 연선된 평각소선(11b)으로 이루어진 평각소선층(11C)을 구비하며 전체적으로 원형의 단면을 가지는 평각도체일 수 있으며, 다른 예로서 복수개의 원형소선을 연선하여 원형으로 압축한 원형 압축도체일 수 있다. 상기 평각도체는 원형 압축도체에 비하여 점적율이 상대적으로 높아 케이블 외경을 축소할 수 있는 장점이 있다.
상기 도체(11)는 복수개의 소선이 연선되어 형성되므로 그 표면이 평활하지 않아 전계가 불균일할 수 있으며, 부분적으로 코로나 방전이 일어나기 쉽다. 또한, 도체(11) 표면과 후술하는 케이블 절연층(14) 사이에 공극이 생기게 되면 절연성능이 저하될 수 있다.
상기와 같은 문제점을 해결하기 위하여 상기 도체(11) 외부에는 내부반도전층(12)이 형성될 수 있다. 상기 내부반도전층(12)은 절연성 물질에 카본블랙, 카본 나노튜브, 카본나노플레이트, 그라파이트 등의 도전성 입자가 첨가되어 반도전성을 가질 수 있다.
상기 내부반도전층(12)은 상기 도체(11)와 후술하는 케이블 절연층(14) 사이에서 급격한 전계변화가 발생하는 것을 방지하여 절연성능을 안정화하는 기능을 수행한다. 또한, 도체면의 불균일한 전하분포를 억제함으로써 전계를 균일하게 하고, 도체(11)와 케이블 절연층(14) 사이에 간격이 형성되는 것을 방지하여 코로나 방전, 절연파괴 등을 억제하는 역할도 하게 된다.
상기 케이블 절연층(14)은 상기 내부반도전층(12)의 바깥쪽에 구비되어 도체(11)를 따라 흐르는 전류가 외부로 누설되지 않도록 외부와 전기적으로 절연시켜 준다.
상기 케이블 절연층(14)은 절연유에 함침된 절연지로 형성될 수 있다. 즉, 상기 케이블 절연층(14)은 상기 내부반도전층(12)을 둘러싸도록 절연지가 다층으로 권취되고, 상기 케이블 코어부가 형성된 후 절연유에 함침시킴으로써 형성될 수 있다. 이와 같이 절연유가 절연지에 흡수되는바, 케이블 절연층(14)의 절연 특성이 향상될 수 있다.
상기 절연유는 상기 절연지 내부의 공극 및 상기 절연지를 권취하여 형성된 층간의 틈에 충진되어 절연특성을 향상시키며, 케이블의 굽힘시 상기 절연지 간의 마찰력을 저감시켜 케이블의 굴곡 특성을 향상시킨다. 상기 절연유는 그 종류가 특별히 제한되지는 않지만, 상기 도체(11)를 구성하는 구리 또는 알루미늄과 접촉하여 열에 의해 산화되지 않아야 하며, 상기 절연지를 용이하게 함침할 수 있도록 함침온도, 예를 들어 100℃에서는 충분히 낮은 점도를 가지며, 60℃에서의 동점도가 10~500 센티스토크(centistoke)인 중점도 절연유 또는 60℃에서의 동점도가 500 센티스토크 이상인 고점도의 절연유를 사용하는 것이 바람직하다.
상대적으로 점도가 낮은 저점도 절연유를 사용하는 경우, 절연지가 절연유에 함침된 상태를 유지시키고, 절연유의 유동에 의해 케이블 절연층에 공극이 생기는 것을 방지하기 위해 급유설비 등을 사용하여 절연유를 가압할 필요가 있다. 하지만, 중점도 또는 고점도 절연유를 사용하는 경우에는 절연유의 유동이 적기 때문에 절연유를 가압하기 위한 급유설비가 필요없거나, 필요한 급유설비의 수를 줄일 수 있어 케이블 연장길이를 길게 할 수 있는 장점이 있다. 예를 들어, 상기 절연유는 나프텐계 절연유, 폴리스틸렌계 절연유, 광유, 알킬 벤젠이나 폴리부텐계 합성유, 중질 알켈레이트 등으로 이루어진 그룹으로부터 선택된 1종 이상의 절연유를 사용할 수 있다.
상기 절연지는 크래프트 펄프(Kraft pulp)를 원료로 하여 펄프 중의 유기 전해질을 제거한 크래프트지(Kraft paper) 또는 플라스틱 필름의 일면 또는 양면에 크래프트지를 접착한 복합절연지일 수 있다. 상기 플라스틱 필름은 그 일면 또는 양면에 접착되는 크래프트지 보다 큰 저항률을 가져 함침공정 또는 케이블 작동시 절연유의 유동에 따라 크래프트지에 기포가 생성되더라도 그 기포에 분담되는 전압을 완화할 수 있으며, 폴리에틸렌(Polyethylen), 폴리프로필렌(Polypropylene), 폴리부틸렌(Polybutylen) 등의 폴리올레핀계 수지나 테트라플루오로에틸렌-헥사플루오로폴리프로필렌(Tetrafluoroethylene-Hexafluoropropylene) 공중합체, 에틸렌-테트라플루오로에틸렌(Ethylen-tetrafluoroethylene) 공중합체 등의 불소 수지로 이루어질 수 있고, 바람직하게는 내열성이 우수한 폴리프로필렌 단독중합체 수지로 이루어질 수 있다.
구체적으로, 상기 케이블 절연층(14)은 크래프트지만을 권취하고, 절연유에 함침시켜 형성될 수 있다. 이 경우 상기 절연유가 케이블 하중방향으로 절연유가 유동하여 공극이 발생할 수 있다. 반면, 복합 절연지를 권취하고, 절연유에 함침시켜 상기 케이블 절연층(14)을 형성하는 경우, 상기 폴리프로필렌 수지 등과 같은 열가소성 수지는 절연유에 함침되지 않으며, 케이블 제조시의 함침 온도 또는 케이블 작동시의 작동 온도에 따라 열팽창을 하게 된다. 열가소성 수지가 열팽창을 하게 되면 이에 적층된 크래프트지에 면압을 가하게 되어 절연유의 이동 통로를 협소하게 하므로 중력에 따른 절연유 유동 또는 온도에 따른 절연유의 수축/팽창에 유동을 억제할 수 있는 효과가 있다. 뿐만 아니라, 상기 복합 절연지는 크래프트지 보다 절연내력이 높아 케이블 외경을 축소할 수 있는 장점이 있다.
한편, 상기 전력 케이블을 통전시키는 경우, 전류가 흐르는 통로 역할을 하는 도체에 열이 발생하며, 케이블 반경방향으로 내측에서 외측을 향해 온도가 점차 낮아지게 되어 상기 케이블 절연층(14)에서도 온도 차이가 발생한다. 따라서, 상기 도체 직상구간에 속하는 케이블 절연층, 즉 내부반도전층(12) 상에 형성되는 케이블 절연층의 절연유는 점도가 낮아지고 열팽창을 하여 바깥방향으로 이동하게 되며, 케이블 온도 하강시에는 이동한 절연유의 점도가 높아지고 원래대로 되돌아가지 않게 되어 도체 직상 구간의 케이블 절연층 부분에 공극이 발생하게 될 수 있다.
또한, 상기 온도 차이에 따라 점차 전계가 역전되어 작용하는 전계가 점차 높아지는 금속시스 직하구간에 속하는 케이블 절연층, 즉 외부반도전층(16) 방향으로 형성되는 케이블 절연층에는 높은 전계가 작용하게 된다. 상기 도체 직상구간 및 금속시스 직하구간은 공극이 발생할 가능성이 높고, 케이블 내부의 온도 변화에 따라 고전계가 작용하는 영역으로 부분방전, 절연파괴 등의 기점이 되는 절연 취약부로 작용할 수 있다.
상술한 문제점을 해결하기 위해, 상기 케이블 절연층(14) 중 상기 절연 취약부를 포함하는 영역에는 절연지로 크래프트지만을 사용할 수 있다. 즉, 상기 케이블 절연층(14)을 상기 내부반도전층(12)에서 후술하는 외부반도전층(16) 방향으로 제1 케이블 절연층, 제2 케이블 절연층 및 제3 케이블 절연층으로 구분하여 제1 케이블 절연층 및/또는 제3 케이블 절연층에는 크래프트지만을 사용하며, 제2 케이블 절연층에는 상기 복합 절연지를 사용할 수 있다.
이 경우, 복합절연지가 권취된 제2 케이블 절연층과 크래프트지가 권취된 제1 케이블 절연층 및/또는 제3 케이블 절연층 간에 저항률 차이가 발생하며, 저항률이 낮은 크래프트지가 권취된 상기 케이블 절연층(14)의 제1 케이블 절연층 및/또는 제3 케이블 절연층은 저항률이 상대적으로 낮아 상기 절연 취약부에 분담되는 전계를 완화하는 작용을 한다. 구체적으로, 저항률에 따라 전계가 분포되는 직류 케이블의 저항성 전계분포 특성상 저항률이 높은 복합 절연지가 권취된 상기 제2 케이블 절연층에 높은 전계가 작용하며, 상기 제1 케이블 절연층 및/또는 제3 케이블 절연층에 포함된 도체 직상구간 및/또는 금속시스 직하구간에 상대적으로 낮은 전계가 작용하므로 절연 취약부에 작용하는 전계가 완화되어 절연 성능을 안정화할 수 있다.
또한, 상기 케이블 절연층(14)은 제3 케이블 절연층을 제1 케이블 절연층 보다 두껍게 형성할 수 있다. 상기 케이블 절연층(14)의 외부에 후술하는 금속시스(22)를 형성하거나, 케이블 코어부가 내측부터 순차적으로 노출된 두 개의 전력 케이블을 접속한 후 금속시스(22)을 복원하는 경우 등에 있어서 가해지는 열이 상기 케이블 절연층(14)의 제2 케이블 절연층에 인가되어 상기 플라스틱 필름의 변형이 발생할 수 있기 때문에 상기 제1 케이블 절연층보다 제2 케이블 절연층을 두껍게 형성하여 제2 케이블 절연층의 플라스틱 필름을 열로부터 보호하는 것이 바람직하다. 이 경우, 상기 제1 케이블 절연층의 두께는 전력 케이블에 요구되는 임펄스 서지 전압 등을 고려하여 선정할 수 있다.
상기 케이블 절연층(14)의 외부에는 외부반도전층(16)이 구비될 수 있다. 상기 외부반도전층(16)은 내부반도전층과 같이 절연성 물질에 도전성 입자, 예를 들면 카본블랙, 카본나뉴튜브, 카본나노플레이트, 그라파이트 등이 첨가되어 반도전성을 가지는 물질로 형성되어, 상기 케이블 절연층(14)과 후술하는 금속시스(22) 사이의 불균일한 전하 분포를 억제하여 절연 성능을 안정화한다. 또한, 상기 외부반도전층(16)은 케이블에 있어서 케이블 절연층(14)의 표면을 평활하게 하여 전계집중을 완화시켜 코로나 방전을 방지하며, 상기 케이블 절연층(14)을 물리적으로 보호하는 기능도 수행할 수 있다. 또한, 상기 외부반도전층(16)은 금속화지를 추가로 구비할 수 있다. 상기 금속화지는 크래프트지에 알루미늄 박막을 적층하여 형성할 수 있으며, 상기 케이블 절연층(14)의 절연유 함침이 용이하도록 복수개의 천공이 존재할 수 있다.
상기 케이블 코어부(10)는 케이블에 수분이 침투하는 것을 방지하기 위한 수분 흡수부(21)를 추가적으로 구비할 수 있다. 상기 수분 흡수부는 상기 도체(11)의 연선된 소선 사이 및/또는 상기 도체(11)의 외부에 형성될 수 있으며, 케이블에 침투한 수분을 흡수하는 속도가 빠르고, 흡수 상태를 유지하는 능력이 우수한 고흡수성 수지(super absorbent polymer; SAP)를 포함하는 분말, 테이프, 코팅층 또는 필름 등의 형태로 구성되어 케이블 길이방향으로 수분이 침투하는 것을 방지하는 역할을 한다. 또한, 상기 수분 흡수부는 급격한 전계 변화를 방지하기 위하여 반도전성을 가질 수 있다.
상기 케이블 코어부(10)의 외부에는 케이블 보호부(20)가 구비되며, 해저에 포설되는 전력케이블은 케이블 외장부(30)를 추가적으로 구비할 수 있다. 상기 케이블 보호부 및 케이블 외장부는 케이블의 전력 전송 성능에 영향을 미칠 수 있는 수분침투, 기계적 외상, 부식 등의 다양한 환경요인으로부터 코어부를 보호한다.
상기 케이블 보호부(20)는 금속시스(22)와 고분자 시스(24)를 포함하여, 사고전류, 외력 내지 기타 외부환경 요인으로부터 케이블을 보호한다.
상기 금속시스(22)는 상기 코어부(10)를 둘러싸도록 형성할 수 있다. 특히, 상기 전력 케이블이 해저와 같은 환경에 포설되는 경우, 수분과 같은 이물질이 상기 케이블 코어부(10)에 침입하는 것을 방지하기 위해 상기 케이블 코어부(10)를 실링하도록 형성할 수 있으며, 상기 케이블 코어부(10) 외부에 용융된 금속을 압출하여 이음새가 없는 연속적인 외면을 가지도록 형성하여 차수성능이 우수하게 할 수 있다. 상기 금속으로는 납(Lead) 또는 알루미늄을 사용하며, 해저에 포설되는 전력 케이블의 경우에는 해수에 대한 내식성이 우수한 납을 사용하는 것이 바람직하고, 기계적 성질을 보완하기 위해 금속 원소를 첨가한 합금연(Lead alloy)을 사용하는 것이 더욱 바람직하다. 또한, 상기 금속시스(22)는 전력 케이블 단부에서의 접지되어 지락 또는 단락 등의 사고 발생시 사고 전류가 흐르는 통로 역할을 하며, 외부의 충격으로부터 케이블을 보호하고, 전계가 케이블 외부로 방전되지 못하도록 할 수 있다.
또한, 상기 금속시스(22)는 케이블의 내식성, 차수성 등을 추가로 향상시키고 상기 고분자 시스(24)와의 접착력을 향상시키기 위해 표면에 부식 방지 컴파운드, 예를 들어, 블로운 아스팔트 등이 도포될 수 있다.
뿐만 아니라, 상기 금속 시스(22)와 상기 케이블 코어부(10) 사이에는 동선직입 테이프 내지 수분 흡수층(21)이 추가적으로 구비될 수 있다. 상기 동선직입 테이프는 동선(Copper wire)과 부직포 테이프 등으로 구성되어 외부반도전층(16)과 금속시스(22)간의 전기적 접촉을 원활히 하는 작용을 하며, 상기 수분흡수층은 케이블에 침투한 수분을 흡수하는 속도가 빠르고, 흡수 상태를 유지하는 능력이 우수한 고흡수성 수지(super absorbent polymer; SAP)를 포함하는 분말, 테이프, 코팅층 또는 필름 등의 형태로 구성되어 케이블 길이방향으로 수분이 침투하는 것을 방지하는 역할을 한다. 또한, 상기 동선직입 테이프와 수분 흡수층은 급격한 전계 변화를 방지하기 위해 반도전성을 가지는 것이 바람직하며, 통전 및 수분흡수 작용을 모두 할 수 있도록, 수분 흡수층에 동선을 포함시켜 구성할 수도 있다.
상기 고분자 시스(24)는 상기 금속시스(22)의 외부에 형성되어 케이블의 내식성, 차수성 등을 향상시키고, 기계적 외상 및 열, 자외선 등의 기타 외부 환경 요인으로부터 케이블을 보호하는 기능을 수행할 수 있다. 상기 고분자 시스(24)는 폴리염화비닐(PVC), 폴리에틸렌 등과 같은 수지로 형성될 수 있으며, 해저에 포설되는 전력 케이블의 경우에는 차수성이 우수한 폴리에틸렌 수지를 사용하는 것이 바람직하며, 난연성이 요구되는 환경에서는 폴리염화비닐 수지를 사용하는 것이 바람직하다.
상기 전력 케이블(100)은 상기 고분자 시스의 내측 또는 외측에 아연도금 처리된 강철 케이프 등으로 구성되는 금속 보강층(26)을 구비하여, 상기 절연유의 팽창에 의해 상기 금속시스(22)가 팽창하는 것을 방지할 수 있다. 또한, 상기 금속 보강층(26)의 상부 및/또는 하부에는 반도전성 부직포 테이프 등으로 이루어져 전력 케이블에 가해지는 외력을 완충하는 베딩층(미도시)을 구비할 수 있으며, 폴리염화비닐 내지 폴리에틸렌 등의 수지로 구성되는 외부 시스(28)를 더 구비하여 전력 케이블의 내식성, 차수성 등을 더욱 향상시키고, 기계적 외상 및 열, 자외선 등의 기타 외부 환경 요인으로부터 케이블을 추가적으로 보호할 수 있다.
또한, 해저에 포설되는 전력 케이블은 선박의 닻 등에 의해 외상을 입기 쉬우며, 해류나 파랑 등에 의한 굽힘력, 해저면과의 마찰력 등에 의해서도 파손될 수 있으므로 이를 막기 위하여 상기 케이블 보호부의 외부에 케이블 외장부(30)를 추가로 구비할 수 있다.
상기 케이블 외장부는 아머층(34) 및 써빙층(38)을 포함할 수 있다. 상기 아머층(34)은 강철, 아연도금강, 구리, 황동, 청동 등으로 이루어지고 단면 형태가 원형, 평각형 등인 와이어를 횡권하여 적어도 1층 이상으로 구성할 수 있으며, 상기 전력 케이블의 기계적 특성과 성능을 강화하는 기능을 수행할 뿐만아니라 외력으로부터 케이블을 추가적으로 보호한다.
폴리프로필렌 얀 등으로 구성되는 상기 써빙층(38)은 상기 아머층(34)의 상부 및/또는 하부에 1층 이상으로 형성되어 케이블을 보호하며, 최외곽에 형성되는 써빙층(34)은 색상이 다른 2종 이상의 재료로 구성되어 해저에서 포설된 케이블의 가시성을 확보할 수 있다.
도 2는 중간접속함에 의해 접속된 케이블을 개략적으로 나타내는 부분 절개도이다. 상세하게는 중간접속함(200)에 의해 도 1과 같은 구성을 가지는 직류 전력 케이블(100A, 100B)이 서로 접속된 상태를 개략적으로 도시한 부분절개도이다. 도 3은 도 2의 C를 확대한 도면이다.
도 2 및 3을 참조하면, 먼저 한 쌍의 직류 전력케이블(100A, 100B)에서 케이블 절연층(14A, 14B) 및 도체(11A, 11B)가 노출된 상태에서 직류 전력 케이블(100A, 100B)의 도체(11A, 11B)의 각 단부를 전기적으로 연결되어 도체 접속부를 형성할 수 있다. 도체 접속부는 전기적으로 연결된 도체(11A, 11B)에 의해 전류의 통로 역할을 하며, 이를 통해 전력이 전달될 수 있다. 도체 접속부는 도체(11A, 11B)를 도체 압착슬리브(1P)에 끼워 압착하거나 용접하여 서로 전기적으로 연결한다.
케이블 절연층(14A)은 상술한 바와 같이 제1 케이블 절연층(14A1), 제2 케이블 절연층(14A2), 제3 케이블 절연층(14A3)으로 이루어질 수 있다. 케이블 절연층(14A)은 다단 구조를 갖도록 펜슬링될 수 있다. 일 예로서 도 2 및 6에 도시된 바와 같이 케이블 절연층(14A)은 제1 펜슬링 단(14a1), 제2 펜슬링 단(14a2), 제3 펜슬링 단(14a3)의 다단 구조를 갖도록 펜슬링될 수 있다. 제1 펜슬링 단(14a1)은 내부반도전층(12), 제1 케이블 절연층(14A1), 및 제2 케이블 절연층(14A2) 일부로 이루어지며, 제2 펜슬링 단(14a2)은 제2 케이블 절연층(14A2)으로 이루어지고, 제3 펜슬링 단(14a3)은 제2 케이블 절연층(14A2) 일부와 제3 케이블 절연층(14A3)으로 이루어질 수 있다. 이에 대해서는 보강절연층과 함께 후술한다.
도체 압착슬리브(1P)와 도체(11A, 11B) 사이에는 상기 도체(11A, 11B)로부터 발생하는 동분(銅粉)이 유출되는 것을 방지하는 동분유출방지부(PC)가 위치할 수 있다.
중간접속함에 의해 한 쌍의 케이블, 예를 들어 직류 전력 케이블이 접속되는 경우 케이블에 전류가 흐름에 따라 케이블 내 도체가 가열되어 케이블 내의 절연유의 점도가 감소하여 도체 소선 사이에 있던 동분들이 중력방향으로 이동할 수 있다. 중력방향으로 이동하는 동분들은 보강절연층으로 유출되고, 보강절연층으로 유출된 동분에서 절연파괴가 발생하는 문제점이 있다.
본 발명의 일 실시예에 따르면, 동분유출방지부(PC)는 도체 압착슬리브(1P)와 도체(11A, 11B) 사이, 또는/및 제1 보강절연층(2101)의 최내층(2101A)과 도체(11A, 11B) 사이에 배치됨으로써 도체(11A, 11B)에서 발생한 동분이 보강절연층(210)으로 유출되는 것을 방지할 수 있다.
동분유출방지부(PC)는 일 예로서 케이블(100A)의 제1 펜슬링 단(14a1)과 도체 압착슬리브(1P) 사이에 노출된 도체(11A) 상에 위치하는 제1 전계균일화층(12)과, 상기 도체 압착슬리브(1P)와 도체(11A) 사이에 배치되는 동분유출방지판(211)으로 이루어질 수 있다.
제1 전계균일화층(12)은 도체 압착슬리브와 상기 도체 사이, 및 상기 보강절연층과 상기 도체 사이에 배치될 수 있다. 즉 제1 전계균일화층(12)은 제1 케이블 절연층(14A1)과 도체 압착슬리브(1P) 사이 뿐만 아니라 더 연장되어 도체 압착슬리브(1P)와 도체(11A) 사이에까지 이어질 수 있다.
제1 전계균일화층(12)은 일 예로서 케이블(100A)의 내부반도전층이 연장됨으로써 이루어질 수 있다. 즉, 제1 전계균일화층(12)은 케이블(100A)의 내부반도전층 그 자체로서 제1 케이블 절연층(14A1)과 함께 제거되지 않고 소정의 길이를 남겨 두고 제거되어 이루어지며, 상기 내부반도전층이 제거된 후에 도체(11A)가 노출된다.
제1 전계균일화층(12)은 적어도 한 매의 절연지를 도체(11A) 상에 지권하여 형성하되 최초 2매는 공권으로, 이후 갭권으로 형성될 수 있다.
상세하게는, 제1 전계균일화층(12)은 상기 직류 전력 케이블(100A, 100B)의 도체(11A, 11B)에 인접한 최내층을 공권 즉, 상기 케이블의 길이방향으로 중첩되도록 복수 매의 반도전성 테이프를 횡권하여 형성되고, 공권 이후에는 갭권, 즉 절연지의 일종인 반도전 테이프를 직류 전력 케이블(100A, 100B)의 길이방향으로 이격되도록 횡권함으로써 이루어질 수 있다.
또한 다른 예로서, 제1 전계균일화층(12)은 상기 직류 전력 케이블(100A, 100B)의 도체에 인접한 최내층을 랩권, 즉 상기 직류 전력 케이블(100A, 100B)의 도체(11A, 11B) 상에 절연지의 일종인 카본지 1매를 중첩시켜 상기 직류 전력 케이블(100A, 100B)의 길이방향으로 횡권하여 형성하고, 랩권 이후에는 케이블의 길이방향으로 중첩되도록 복수 매의 반도전성 테이프인 카본지를 횡권하는 공권으로 형성하며, 공권 후 갭권, 즉 절연지의 일종인 반도전 테이프(카본지)를 직류 전력 케이블(100A, 100B)의 길이방향으로 이격되도록 횡권함으로써 이루어질 수 있다.
제1 전계균일화층(12)이 공권 이후 갭권으로 형성되는바 복수 매의 절연지(카본지)의 공극을 최소화하여 동분유출을 1차적으로 막을 수 있다. 또한 복수 매의 절연지(카본지)를 공권한 후 갭권하여 지권하므로 벤딩 특성을 향상시킬 수 있다.
제1 전계균일화층(12)은 제1 케이블 절연층(14A1)이 제거되어 노출된 케이블(100A)의 내부반도전층이 노출되고 도체 압착슬리브(1P)와 도체(11A) 사이에까지 연장될 수 있다. 즉 제1 전계균일화층(12)은 그 일단이 도체 압착슬리브(1P)와 도체(11A) 사이에 위치할 수 있다.
제1 전계균일화층(12)은 일 예로서 도체 압착슬리브(1P)의 압착에 의해 형성되는 도체 압착슬리브(1P) 내측면의 주름산(도 5의 1Pa')이 시작하는 위치, 즉 도체 압착슬리브(1P)의 일단까지 연장될 수 있다. 다른 예로서 도 5에 도시된 바와 같이 제1 전계균일화층(12)은 상기 주름산(도 5의 1Pa')에서 가장 높은 산마루(T)를 넘지 않고 그 직전까지 연장될 수 있다. 이와 같이 연장됨으로써 케이블의 도체(11A)와 도체 압착슬리브(1Pa) 간의 충분한 전류 경로를 확보할 수 있다. 또 다른 예로서 도 6에 도시된 바와 같이 제1 전계균일화층(12)은 상기 주름산(도 5의 1Pa')에서 가장 높은 산마루(T)를 넘어서까지 연장될 수 있다. 이에 대해서는 후술한다.
동분유출방지판(211)은 도체 압착슬리브(1P)와 도체(11A) 사이에 배치될 수 있다. 즉 동분유출방지판(211)은 도체 압착슬리브(1P)의 내측에 대응되도록 배치되고, 도체 압착슬리브(1P)을 넘지 않을 수 있다. 다른 예로서 도 9 및 10에 도시된 바와 같이 동분유출방지판(211")은 도체 압착슬리브(1P)와 도체(11A) 사이 뿐만 아니라 도체 압착슬리브(1P)의 양단을 넘어서까지 연장될 수 있다.
동분유출방지판(211)은 동분이 투과할 수 없을 정도로 치밀한 조직을 가지는 재질을 사용할 수 있으며, 바람직하게는 압착슬리브의 압착시에 작용하는 힘에 견딜 수 있는 금속재질로 형성될 수 있다. 동분유출방지판(211)은 케이블(100A, 100B)의 도체(11A, 11B)의 재질에 대응하도록 구리, 알루미늄, 구리합금, 또는 알루미늄합금 재질로 이루어질 수 있다.
동분유출방지판(211)은 일 예로서 구리테이프로 제1 전계균일화층(12)의 일부와 도체(11A)를 감싸고, 서로 맞닿는 구리테이프의 단부를 종첨이나 납땜하여 이루어질 수 있다. 구리테이프의 양단을 납땜하여 동분유출방지판(211)을 형성하는 경우에는 납땜의 연결부를 매끈하게 처리하여 에지가 발생하지 않도록 하는 것이 바람직하다.
이와 같이 도체 압착슬리브(1P)와 도체(11A) 사이에서 동분유출방지판(211)이 종첨에 의해 케이블 도체(11A)를 감싸도록 형성되는바 도체(11A)에서 발생하는 동분의 유출경로가 최소화되고 이에 따라 동분은 동분유출방지판(211)에 의해 차단될 수 있다.
케이블 도체(11A)의 단부를 향하는 동분유출방지판(211)의 일단부는 도체 압착슬리브(1P)의 압착에 의해 그 내측면에 형성되는 주름산(1Pa')을 넘어 주름골(1Pb')에 인접하는 위치(a1)에서 시작하여 제1 케이블 절연층(14A1)을 향하여 연장됨으로써 도체 압착슬리브(1P)으로의 압착력을 받을 수 있다. 일 예로서 도 5에 도시된 바와 같이 동분유출방지판(211)은 주름산(1Pa')에서 가장 높은 지점인 산마루(T)를 넘어서까지 연장되는 것이 바람직하다.
또한 케이블의 제1 케이블 절연층(14A1)을 향하는 동분유출방지판(211)의 타단부(a2)는 도체 압착슬리브(1P)에서 돌출되어 에지로 작용하지 않을 수 있다.
도 4 및 5를 참조하여 제1 전계균일화층(12)과 동분유출방지판(211)의 배치를 설명하면 다음과 같다.
도 4 및 도 5는 도체 압착슬리브로 한 쌍의 도체(11A, 11B)를 전기적으로 연결하는 상태를 도시한 단면도이다. 즉 도 4는 압착 전 도체 압착슬리브를 나타내는 단면도이고, 도 5는 압착 후 도체 압착슬리브를 나타내는 단면도이다.
도 4를 참고하면, 상기 한 쌍의 도체(11A, 11B)를 전기적으로 접속하는 경우, 도체 압착슬리브(1P)의 도체 수용부에 상기 한 쌍의 도체(11A, 11B)의 각 단부가 끼워지며, 도 5에서와 같이 상기 도체 압착슬리브의 외면이 압착 장치에 의해 압착되어 상기 한 쌍의 도체를 파지함으로써 접속 상태를 견고히 지지하게 되며, 압착 후에 상기 도체 압착슬리브의 외면이 고르게 다듬질되어 평평한 표면이 형성된다.
구체적으로, 상기 도체 압착슬리브(1P)는 도 5에 도시된 바와 같이 외면에 돌출되어 형성되는 적어도 두 개 이상의 돌출부(1Pa)와 상기 돌출부(1Pa) 사이에 형성되는 적어도 하나 이상의 오목부(1Pb)를 면에 구비하고, 도 5에 도시된 바와 같이 상기 돌출부(1Pa)이 형성된 영역이 상기 압착 장치에 의하여 압착되어 상기 도체 압착슬리브(1P)의 내측으로 돌출되어 주름산(1Pa')을 형성하게 됨으로써 각 도체의 단부를 파지하게 되며, 압착에 의해 불균일해진 상기 도체 압착슬리브(1P)의 외면은 평탄하게 다듬질되어 상기 도체 압착슬리브 외면의 전계집중 내지 코로나 방전 등을 방지할 수 있다.
제1 전계균일화층(12)은 상술한 바와 같이 케이블(100A)의 내부반도전층에서 도체 압착슬리브(1P)를 향하는 방향으로 연장되어 그 일단이 도체 압착슬리브(1P)와 도체(11A) 사이에 배치되고, 동분유출방지판(211)은 케이블(100A)의 제1 케이블 절연층(14A1)을 향하는 타단부가 도체 압착슬리브(1P)에서 돌출되지 않으며 도체(11A)의 단부를 향하는 일단부는 소정의 길이로 연장될 수 있다.
도체 압착슬리브(1P)의 압착에 의해 도 5에 도시된 바와 같이 도체 압착슬리브(1P)의 내측면에 주름산(1Pa')이 형성되고, 제1 전계균일화층(12)은 상기 주름산(도 5의 1Pa')에서 가장 높은 산마루(T)를 넘지 않고 그 직전까지 연장되며, 동분유출방지판(211)은 주름산(1Pa')에서 가장 높은 지점인 산마루(T)를 넘어서까지 연장될 수 있다.
도 8 내지 도 12는 제1 전계균일화층과 동분유출방지판의 다양한 변형예를 나타내는 도면이다.
*도 8을 참조하면, 제1 전계균일화층(121)은 케이블(100A)의 내부반도전층에서 도체 압착슬리브(1P)를 향하는 방향으로 연장되어 그 일단이 도체 압착슬리브(1P)와 도체(11A) 사이에 배치되고, 동분유출방지판(211)은 케이블(100A)의 제1 케이블 절연층(14A1)을 향하는 타단부가 도체 압착슬리브(1P)에서 돌출되지 않으며 도체(11A)의 단부를 향하는 일단부는 소정의 길이로 연장될 수 있다.
도체 압착슬리브(1P)의 압착에 의해 도 8에 도시된 바와 같이 도체 압착슬리브(1P)의 내측면에 주름산(1Pa')이 형성되고, 제1 전계균일화층(121)은 상기 주름산(1Pa')에서 가장 높은 산마루(T)를 넘어서까지 연장되며, 동분유출방지판(211)은 주름산(1Pa')에서 가장 높은 지점인 산마루(T)를 넘어서까지 연장될 수 있다.
도 9를 참조하면, 제1 전계균일화층(122)은 케이블(100A)의 내부반도전층에서 도체 압착슬리브(1P)를 향하는 방향으로 연장되어 그 일단이 도체 압착슬리브(1P)와 도체(11A) 사이에 배치되고, 동분유출방지판(211')은 도체 압착슬리브(1P)와 도체(11A) 사이 전면에 걸쳐 배치될 수 있다. 즉 도 5에서는 도체(11A)와 도체 압착슬리브(1P) 사이에 한 개의 동분유출방지판(211)이 배치되고, 또한 도체(11B)와 도체 압착슬리브(1P) 사이에 또 다른 한 개의 동분유출방지판(211)이 배치되나, 도 11에 도시된 실시예에서는 하나의 동분유출방지판(211')이 도체 압착슬리브(1P)와 도체(11A, 11B) 사이에 배치된다. 상기 동분유출방지판(211')은 양 단부, 즉 케이블(100A)의 제1 케이블 절연층(14A1)을 향하는 단부와 케이블(100A)의 제1 케이블 절연층(14a1)을 향하는 단부가 도체 압착슬리브(1P)에서 돌출되지 않고, 도체 압착슬리브(1P)와 도체(11A, 11B) 사이에 배치될 수 있다.
도체 압착슬리브(1P)의 압착에 의해 도 9에 도시된 바와 같이 도체 압착슬리브(1P)의 내측면에 주름산(1Pa')이 형성되고, 제1 전계균일화층(122)은 상기 주름산(1Pa')에서 가장 높은 산마루(T)를 넘어서까지 연장될 수 있다.
도 10을 참조하면, 제1 전계균일화층(123)은 케이블(100A)의 내부반도전층에서 도체 압착슬리브(1P)를 향하는 방향으로 연장되어 그 일단이 도체 압착슬리브(1P)와 도체(11A) 사이에 배치되고, 동분유출방지판(211')은 도체 압착슬리브(1P)와 도체(11A) 사이 전면에 걸쳐 배치될 수 있다. 즉 도 5 및 8에서는 도체(11A)와 도체 압착슬리브(1P) 사이에 한 개의 동분유출방지판(211)이 배치되고, 또한 도체(11B)와 도체 압착슬리브(1P) 사이에 또 다른 한 개의 동분유출방지판(211)이 배치되나, 도 10에 도시된 실시예에서는 하나의 동분유출방지판(211')이 도체 압착슬리브(1P)와 도체(11A, 11B) 사이에 배치된다. 상기 동분유출방지판(211')은 양 단부, 즉 케이블(100A)의 제1 케이블 절연층(14A1)을 향하는 단부와 케이블(100A)의 제1 케이블 절연층(14a1)을 향하는 단부가 도체 압착슬리브(1P)에서 돌출되지 않고, 도체 압착슬리브(1P)와 도체(11A, 11B) 사이에 배치될 수 있다.
도체 압착슬리브(1P)의 압착에 의해 도 10에 도시된 바와 같이 도체 압착슬리브(1P)의 내측면에 주름산(1Pa')이 형성되고, 제1 전계균일화층(123)은 상기 주름산(1Pa')에서 가장 높은 산마루(T)를 넘지 않고 그 직전까지 연장될 수 있다.
도 11을 참조하면, 제1 전계균일화층(124)은 케이블(100A)의 내부반도전층에서 도체 압착슬리브(1P)를 향하는 방향으로 연장되어 그 일단이 도체 압착슬리브(1P)와 도체(11A) 사이에 배치되고, 동분유출방지판(211")은 케이블(100A)의 제1 케이블 절연층(14A1)을 향하는 타단부가 도체 압착슬리브(1P)에서 돌출되어 연장되며, 도체(11A)의 단부를 향하는 일단부는 소정의 길이로 연장될 수 있다. 즉 동분유출방지판(211")은 그 일부분이 도체 압착슬리브(1P)와 도체(11A, 11B) 사이에 배치되고 다른 일부분은 도체 압착슬리브(1P)를 넘어서 케이블 절연층(14A)을 향하여 연장될 수 있다.
도체 압착슬리브(1P)의 압착에 의해 도 11에 도시된 바와 같이 도체 압착슬리브(1P)의 내측면에 주름산(1Pa')이 형성되고, 제1 전계균일화층(124)은 상기 주름산(1Pa')에서 가장 높은 산마루(T)를 넘어서까지 연장되며, 동분유출방지판(211)은 주름산(1Pa')에서 가장 높은 지점인 산마루(T)를 넘어서까지 연장될 수 있다. 도체 압착슬리브(1P)를 넘어서는 영역에서 동분유출방지판(211")의 다른 일부분과 제1 전계균일화층(124)이 중첩되어 배치될 수 있다.
도 12를 참조하면, 제1 전계균일화층(125)은 케이블(100A)의 내부반도전층에서 도체 압착슬리브(1P)를 향하는 방향으로 연장되어 그 일단이 도체 압착슬리브(1P)와 도체(11A) 사이에 배치되고, 동분유출방지판(211")은 케이블(100A)의 제1 케이블 절연층(14A1)을 향하는 타단부가 도체 압착슬리브(1P)에서 돌출되어 연장되며, 도체(11A)의 단부를 향하는 일단부는 소정의 길이로 연장될 수 있다. 즉 동분유출방지판(211")은 그 일부분이 도체 압착슬리브(1P)와 도체(11A, 11B) 사이에 배치되고 다른 일부분은 도체 압착슬리브(1P)를 넘어서 케이블 절연층(14A)을 향하여 연장될 수 있다.
도체 압착슬리브(1P)의 압착에 의해 도 12에 도시된 바와 같이 도체 압착슬리브(1P)의 내측면에 주름산(1Pa')이 형성되고, 제1 전계균일화층(124)은 상기 주름산(1Pa')에서 가장 높은 산마루(T)에 못 미쳐 그 직전까지 연장되며, 동분유출방지판(211)은 주름산(1Pa')에서 가장 높은 지점인 산마루(T)를 넘어서까지 연장될 수 있다. 또한 도체 압착슬리브(1P)를 넘어서는 영역에서 동분유출방지판(211")의 다른 일부분과 제1 전계균일화층(125)이 중첩되어 배치될 수 있다.
상기 동분유출방지부(PC)는 도 3을 참조하면, 상기 제1 전계균일화층(12), 상기 동분유출방지판(211), 및 상기 도체 압착슬리브(1P)를 둘러싸는 제2 전계균일화층(212)과, 상기 제2 전계균일화층(212) 상에 권취되는 가압층(213)을 더 포함할 수 있다.
제2 전계균일화층(212)은 상기 제1 전계균일화층(12), 동분유출방지판(211) 및 도체 압착슬리브(1P)를 둘러싸도록 카본 크리프지(crepe)를 랩권하여 상기 제1 전계균일화층(12), 동분유출방지판(211), 도체 압착슬리브(1P)를 강하게 밀착시킴으로써 동분이 유출되는 것을 추가적으로 방지할 수 있다. 즉 도체 압착슬리브(1P)를 압착한 후 그 표면을 다듬질하지만 높은 정도의 평활도를 유지하는 것이 곤란하다. 제2 전계균일화층(212)은 다듬질된 도체 압착슬리브(1P)의 외주면을 감싸서 표면을 고르게 함으로써 도체 압착슬리브(1P) 외주면에서의 전계를 균일하게 할 수 있다.
또한 제2 전계균일화층(212)은 제1 전계균일화층(212) 및 동분유출방지판(211)을 가압할 수 있다.
제2 전계균일화층(212)은 일 예로서 카본 크리프지를 랩권으로 지권할 수 있다. 즉 제2 전계균일화층(212)은 카본 크리프지를 케이블의 길이방향으로 중첩되도록 지권하여 형성될 수 있다.
제2 전계균일화층(212)은 다른 예로서 카본지로 이루어질 수 있다. 제2 전계균일화층(212)은 도체 압착슬리브(1P) 양단에서의 단차를 고려할 때 주름진 카본지로 이루어지는 것이 바람직하다.
제2 전계균일화층(212)은 반도전성이므로, 도체 압착슬리브(1P)와 보강절연층(210) 사이에서 급격한 전계 변화가 발생하는 것을 방지할 수 있다.
제2 전계균일화층(212) 상에는 가압층(213)가 권취될 수 있다. 상기 가압층(213)는 제1 전계균일화층(12), 동분유출방지판(211), 도체 압착슬리브(1P), 제2 전계균일화층(212)를 서로 밀착시킴으로써 동분 유출을 보다 확실히 방지할 수 있다.
가압층(213)는 벤딩 특성을 고려하여 갭권으로 제2 전계균일화층(212) 상에 지권되는 것이 바람직하다. 즉 가압층(213)은 일 예로서 크래프트지를 상기 케이블의 길이방향으로 중첩되도록 횡권함으로써 형성될 수 있다.
케이블 통전시 고전계가 걸리는 도체 압착슬리브(1P) 상의 전계를 완화하기 위해 가압층(213)는 절연지로 권취될 수 있다.
상기 가압층(213)은 상기 보강절연층(2110)보다 체적저항이 102 이상 낮을 수 있다.
도 6은 도 2에 도시된 중간접속함의 제1 보강절연층과 제2 보강절연층을 보다 상세하게 도시한 단면도이다.
도 6을 참조하면, 상기 직류 전력 케이블(100A, 100B)의 각 도체를 도체 압착슬리브(1P)로 압착하여 접속하고, 동분유출방지부(PC)를 형성한 다음, 상기 도체(11A, 11B)의 접속부위를 비롯한 케이블 절연층(14A1, 14A2, 14A3)의 적어도 일부를 감싸는 보강절연층(210)을 형성하게 된다.
상기 보강절연층(210)은 전계완화층(214), 제1 보강절연층(2101)과 제2 보강절연층(2102)으로 이루어질 수 있다.
전계완화층(214)은 케이블(100A)의 제1 절연층(14A1) 외경까지 형성될 수 있다. 제1 보강절연층(2101)은 상기 전계완화층(214) 상에서 케이블(100A)의 제3 절연층(14A3) 외경까지 형성되며, 제1 중간층(2101B) 및 제2 중간층(2101C)으로 이루어질 수 있다. 제2 보강절연층(2102)은 제1 보강절연층(2101) 상에 형성될 수 있다. 즉 제2 보강절연층(2102)은 상기 제1 보강절연층(2101)의 방사 방향으로 적층될 수 있다. 제2 보강절연층(2102)은 보강절연층(210)의 최외층(2101D)일 수 있다.
도 2 및 6에 도시된 바와 같이 케이블 절연층(14A)을 다단으로 펜슬링하고 그 단부에 경사면을 형성함으로써 제1 보강절연층(2101)과 케이블 절연층(14A) 사이의 계면길이를 증가시킬 수 있다. 더 나아가 케이블 절연층(14A)의 각 단의 경사면의 각도를 작게 함으로써 제1 보강절연층(2101)과 케이블 절연층(14A) 사이의 계면길이를 더욱 증가시킬 수 있다. 상기 계면길이의 증가로 전계완화층(214) 및 제1 보강절연층(2101)과, 케이블 절연층(14A) 사이의 연면전계 특성은 더욱 향상될 수 있다.
고객사의 요구, 스팩, 또는 제조 단가 상 중간접속함의 길이를 제한없이 길게 구성할 수 없다. 상술한 바와 같이 본 발명에 따르면 중간접속함의 길이를 증가시키지 않고 정해진 중간접속함 길이 내에서 전계완화층(214) 및 제1 보강절연층(2101)과 케이블 절연층(14A)이 접하는 경사면의 각도를 작게 하여 전계완화층(214) 및 제1 보강절연층(2101)과 케이블 절연층(14A) 사이의 계면길이를 길게 함으로써 중간접속함의 전체 길이 증가 없이도 일정한 연면전계 수준을 유지할 수 있다. 이와 같이 일정 수준의 연면전계를 유지하면서도 중간접속함의 길이를 보다 짧게 유지할 수 있으며, 이에 따라 중간접속함의 제조 단가를 낮출 수 있다.
전계완화층(214)은 제1 보강절연층(2101) 보다 체적저항률이 102배 이상 낮을 수 있다. 전계완화층(214)은 두 케이블(100A, 100B)의 도체(11A, 11B)가 접속하는 부분을 둘러싸도록 형성되며, 제1 보강절연층(2101) 보다 그 체적저항률이 102배 이상 낮은바, 절연체의 체적저항에 따라 전계가 분포되는 저항성 전계분포 특성을 가지는 직류 송전의 특성에 따라, 도체(11A, 11B)가 접속하는 부분에 저항률이 낮은 전계완화층(214)을 형성하여 상대적으로 체적저항이 큰 제1 보강절연층(2101)으로 전계를 분산시킬 수 있다.
전계완화층(214)의 최대 높이(t1)와 제1 케이블 절연층(14A1)의 높이(h1)의 높이 차이(h2)는 제1 케이블 절연층(14A1)의 높이(h1)의 430% 이하일 수 있다. 상기 높이 차이가 430% 초과하는 경우 제1 보강절연부(2101)의 최외곽 에지부 즉, 제1 보강절연부(2101)과 제2 절연보강부(2102) 사이의 계면에 전계집중되어 상기 에지부에서 절연파괴가 발생할 수 있다.
제1 케이블 절연층(14A1)의 높이(또는 두께)(h1)는 케이블 절연층(14A)의 전체 두께의 1~10% 일 수 있다.
도체 압착슬리브(1P) 위에 형성된 전계완화층(214)의 두께(t2)는 전계완화층(214) 전체 두께의 1.6~96%일 수 있다. 도체 압착슬리브(1P) 위에 형성된 전계완화층(214)의 두께(t2)가 전계완화층(214) 전체 두께의 1.6% 미만인 경우, 도체 압착슬리브(1P) 위에서 전계완화층(214)이 전계를 분산시키는 역할을 하지 못하며, 도체 압착슬리브(1P) 위에 형성된 전계완화층(214)의 두께(t2)가 전계완화층(214) 전체 두께의 96%를 초과하는 경우에는 상대적으로 도체 압착슬리브(1P)의 두께가 지나치게 얇아지게 되어 상기 도체들(11a, 11b)이 접속되는 부분의 기계적 성질이 저하되어 케이블에 요구되는 허용항장력 수준을 만족하지 못할 수 있다.
전계완화층(214)의 최대 높이(t1)는 제1 펜슬링 단(14a1)의 높이와 대략 동일할 수 있다.
전계완화층(214), 제1 보강절연층(2101), 및 제2 보강절연층(2102)은 소정의 길이를 가지는 절연지가 길이 방향으로 연속되지 않아서 중간접속함 반경방향으로 구분되는 절연지층으로 이루어지며, 작업성을 고려 제1 보강절연층(2101) 및 제2 보강절연층(2102)은 복수개의 절연지층으로 형성될 수 있다. 즉 소정의 길이를 가지는 절연지가 감긴 절연지롤을 사용하여 지권하며, 상기 소정의 길이를 가지는 절연지를 모두 권취하면, 다시 새로운 절연지롤을 사용하여 절연지를 권취하는 과정을 반복하여 복수개의 절연지층을 형성한다.
이와 같이 상기 절연지층으로 전계완화층(214), 제1 보강절연층(2101), 및 제2 보강절연층(2102)을 구성하는데, 전계완화층(214) 높이와 제1 펜슬링 단의 높이가 서로 차이가 있다면, 제1 보강절연층(2101) 및 제2 보강절연층(2102)을 구성하는 복수개의 절연지층의 높이를 정밀하게 제어하기가 곤란하다.
제2 보강절연층(2102)은 절연지에 비해 절연내력이 우수한 복합 절연지로 이루어질 수 있다. 일 예로서 제2 보강절연층(2102)은 복합 절연지의 일종인 PPLP로 이루어질 수 있다. 이 경우, 상기 케이블(100)의 동작 시에 상대적으로 온도가 높은 케이블(100)의 절연층(14) 및 제1 보강절연층(2101)에 집중되는 전계를 상기 제2 보강절연층(211)으로 분산시킬 수 있으며, 이에 따라 중간접속함(200)의 절연성능을 강화할 수 있다.
보강절연층(210)의 최외층(2101D)인 제2 보강절연층(2102)은 직선부(210A)와 슬로프부(210B)로 이루어질 수 있다.
직선부(210A)는 상기 도체 압착슬리브(1P)) 상에서 상기 케이블 절연층(14A) 외경까지 형성되는 제1 보강절연층(2101) 상에 형성되며 상기 케이블(100A)의 길이방향과 평행하게 구성될 수 있다. 슬로프부(210B)는 상기 직선부(210A)의 양단에서 상기 케이블(100A)의 반경방향으로 그 길이방향에서의 폭이 좁아지도록 형성될 수 있다.
케이블(14A)의 외부반도전층(16)을 복원하여 형성하는 접속함 외부반도전층(230)은 제2 보강절연층(2102)의 슬로프부(210B)의 외측면을 따라 형성되며, 제2 보강절연층(2102)의 직선부(210A) 상을 덮도록 형성될 수 있다. 슬로프부(210B)의 외측면에 형성되는 접속함 외부반도전층(230)은 그 자체로 슬로프 형상을 가지는바, 케이블 절연층(14A)에서 중간접속함(200)으로 연속되는 등전위선이 슬로프 형상을 갖는 접속함 외부반도전층(230)의 기하학적인 형상에 따라 분포될 수 있다. 즉 접속함 외부반도전층(230)의 슬로프 형상에 따라 전계 분포의 제어가 가능하다.
제1 보강절연층(2101) 및 제2 보강절연층(2102)은 도 6에 도시된 바와 같이 복수의 절연지층(212L)으로 형성할 수 있다. 상기 절연지층(212L)은 절연지가 중간접속함(210)의 반경방향으로 권취되어 형성되는 것으로서, 각각의 절연지층(212L)은 권취된 절연지가 연속되지 않는다. 즉 동일층의 절연지층(212L)을 구성하는 절연지는 연속된 절연지로 이루어지나, 다른 층의 절연지층(212L)은 절연지가 연속되지 않는다. 다시 말하면, 상기 절연지층(212L)은 일정한 폭과 길이를 가지는 절연지가 그 길이 방향으로 연속되지 않아서 중간접속함(200)의 반경방향으로 구분되는 층을 의미한다.
제1 보강절연층(2101)과 제2 보강절연층(2102)은 소정의 길이를 가지는 절연지가 감긴 절연지롤을 사용하여 지권하며, 상기 소정의 길이를 가지는 절연지를 모두 권취하면, 다시 새로운 절연지롤을 사용하여 절연지를 권취하는 과정을 반복하여 복수개의 절연지층(212L)을 형성한다. 상기 각 절연지층(212L)마다 서로 폭/길이가 상이한 절연지를 사용하여 보강절연층(210)을 형성할 수 있으므로, 상기 제1 보강절연층(2101) 및 제2 보강절연층(2102)의 크기와 형태를 다양하게 구성할 수 있다. 특히, 상기 제2 보강절연층(2102) 양단의 슬로프부(210B)는 케이블 도체(11A, 11B) 단부 방향으로 갈수록 슬로프부(210B)의 기울기가 점점 커지도록 형성할 수 있다. 즉 절연지층(212L)마다 서로 폭과 길이가 상이한 절연지를 사용하므로 슬로프부(210B)의 기울기를 정밀하게 제어할 수 있다.
상기 보강절연층(210)은 상술한 바와 같이 절연지 및/또는 복합절연지로 이루어질 수 있다.
이하, 구체적으로 살펴본다. 일 실시예에서 도 2에 도시된 바와 같이, 상기 도체 압착슬리브(1P)와 상기 케이블(100A)의 케이블 절연층(14A)의 제일 안쪽에 위치한 제1 케이블 절연층(14A1) 사이에는 소정의 공간이 잔존할 수 있다. 상기 압착슬리브(1P)와 상기 케이블 절연층(14)의 제일 안쪽에 위치한 제1 펜슬링 단(14a1) 사이에 남아있는 공간은 상술한 바와 같이 전계완화층(214)으로 메꿔질 수 있다. 전계완화층(214)은 크래프트지일 수 있다.
이 경우, 상기 보강절연층(210)의 절연지로 이루어진 전계완화층(214)의 바깥면은 제1 펜슬링 단(14a1)의 제일 바깥면과 상기 케이블의 길이방향 중심축으로부터 대략적으로 동일한 거리에 위치하게 된다.
또한, 상기 압착슬리브(1P)의 바깥면은 전계분포를 균일하게 하기 위하여 반도전 테이프로 둘러싸일 수 있다. 이때, 상기 반도전 테이프의 바깥면이 케이블의 절연층(14A)의 제일 안쪽에 위치한 제1 펜슬링 단(14a1)의 바깥면보다 상기 케이블의 길이방향 중심축으로부터 가까운 거리에 위치하는 경우, 전계완화층(214)의 바깥면이 상기 케이블의 길이방향 중심축으로부터 대략 동일한 거리에 위치하도록 형성될 수 있다.
만약, 절연지로 이루어진 전계완화층(214)과 상기 케이블 절연층(14A)의 다단 구조 중 제일 안쪽에 위치한 제1 펜슬링 단(14a1)의 바깥면이 상기 케이블의 길이방향 중심축으로부터 대략 동일한 거리에 위치하지 않아서 단차가 발생한다면, 상기 단차가 발생한 부분은 전계취약점으로 작용하여 전계가 집중되어 절연파괴를 야기할 수 있다.
한편, 상기 보강절연층(210)의 최외층(2101D)은 상기 케이블(100)의 노출된 케이블 절연층(14A)의 외경 이상에서 형성된다. 상기 케이블의 노출된 도체(11A)가 압착슬리브(1P)에 의해 접속되었으므로, 상기 압착슬리브(1P)의 두께만큼 도체 구간의 높이가 증가하였을 뿐만 아니라 케이블 통전 시 상대적으로 열이 많이 발생하게 된다. 또한, 상기 보강절연층(210)은 복수의 절연지 내지 복합절연지를 권취하여 형성되어 상대적으로 절연에 취약한 부분이므로 상기 보강절연층(210)의 최외층(2101D)을 케이블 절연층(14A)의 외경 이상에서 형성하여 절연성능을 보강할 필요가 있다.
상기 보강절연층(210)의 최외층(2101D)은 절연지에 비해 절연내력이 우수한 복합 절연지로 구성된다. 이 경우, 상기 케이블(100)의 동작 시에 상대적으로 온도가 높은 케이블(100)의 절연층(14) 및 상기 보강절연층(210)의 최외층(2101D)의 안쪽에 위치한 영역(210A ~ 210C)까지에 집중되는 전계를 상기 보강절연층(210)의 최외층(2101D)으로 분산시킬 수 있다.
한편, 상기 보강절연층(210)의 전계완화층(214)과 최외층(2101D) 사이에 복합절연지층로 이루어진 중간층(210B, 210C)을 구비할 수 있다. 이때, 상기 보강절연층(210)의 중간층은 상기 전계완화층(214)과 최외층(2101D) 사이에서 내측에서 외측으로 순차적으로 제1 중간층(2101B)과 제2 중간층(2101C)을 구비할 수 있다.
일 실시예로서 상기 전계완화층(214)은 절연지로 이루어지고, 상기 보강절연층(210)의 제1 중간층(2101B), 제2 중간층(2101C) 및 최외층(2101D)은 모두 복합절연지로 이루어질 수 있다.
즉, 상기 전계완화층(214)이 절연지층으로 이루어지고, 상기 제1 중간층(2101B) 및 제2 중간층(2101C)이 복합절연지로 구성된 경우, 저항률에 따라 전계가 분포되는 직류 전력 케이블의 저항성 전계분포 특성에 따라, 전계완화층(214)의 절연지인 크래프트지보다 저항률이 상대적으로 큰 복합절연지로 형성되는 상기 제1 중간층(2101B) 및 제2 중간층(2101C)에 전계가 보다 많이 분포된다. 따라서, 케이블 작동 시 상대적으로 고온이 되어 절연유의 수축/팽창이 비교적 활발히 발생함에 따라 기포가 발생할 가능성이 높으며, 전계 강도가 커서 상대적으로 절연에 취약한 최내층(2101A)에 분담되는 전계를 완화시킬 수 있게 되므로 중간접속함의 절연성능의 안정화를 꾀할 수 있다.
또한, 전계완화층(214)을 제외한 나머지 영역(210B ~ 210D)을 모두 복합 절연지로 지권하게 되므로 작업능률이 향상되어 생산성을 현저히 향상시킬 수 있으며, 나아가 불량율을 줄일 수 있다.
한편, 다른 실시예에서 상기 보강절연층(210)은 복합절연지로 이루어진 제1 중간층(2101B)과 절연지로 이루어진 제2 중간층(2101C)을 구비할 수 있다.
이때, 상기 전계완화층(214)과 최외층(2101D) 사이에 구비되는 상기 제1 중간층(2101B)과 제2중간층(210C)은 각각 제2 펜슬링 단(14a2) 및 제3 펜슬링 단(14a3)과 상기 케이블(100A)의 중심에서 동일한 거리에 배치될 수 있다.
이 경우, 상기 보강절연층(210)의 최내층(2101A)이 절연지층으로 이루어지고, 상기 제1 중간층(2101B)이 복합절연지로 구성되므로, 저항률에 따라 전계가 분포되는 직류 전력 케이블의 저항성 전계분포 특성에 따라 전계완화층(214)을 이루는 크래프트지보다 저항률이 상대적으로 큰 복합절연지로 형성되는 상기 제1 중간층(2101B)에 전계가 많이 분포된다. 따라서, 케이블 작동 시 상대적으로 고온이 되어 절연유의 수축/팽창이 비교적 활발히 발생함에 따라 기포가 발생할 가능성이 높으며 전계 강도가 커서 상대적으로 절연에 취약한 전계완화층(214)에 분담되는 전계를 완화시킬 수 있게 되므로 절연성능의 안정화를 꾀할 수 있다.
접속함 외부반도층(230)은 제2 보강절연층(2102)의 슬로프부(210B) 외면 및 직선부(210A) 상에 형성될 수 있다. 접속함 외부반도층(230)은 케이블(100)의 외부반도전층(16) 내지 금속시스층(22)과 통전될 수 있다.
스페이서(250)는 상기 관통공을 통해 보강절연층(210) 외측에 끼워져서 상기 동관(240)과 보강절연층(210) 사이의 간격을 유지시킬 수 있다. 특히 스페이서(250)는 그 내부에 내부에 관통공을 가지며, 외측면에는 반경방향으로 복수 개의 오목부가 서로 이격되어 형성될 수 있다. 상기 오목부를 통해 동관(240) 내의 절연유가 통과하게 된다. 즉 절연유 함침시 동관(240)에 주입되는 절연유가 상기 오목부를 통해 중간접속함(200)의 길이방향으로 원활히 이동할 수 있다. 상기 오목부(251)와 같은 절연유 통로가 없는 경우 절연유 주입시 스페이서(250)가 움직일 수 있는바, 스페이서(250)의 움직임을 방지하기 위해 상기 스페이서(250) 양측에 추가적으로 금속선재를 감아 고정시킬 수 있다.
스페이서(250)는 알루미늄으로 형성될 수 있다.
이어서, 보호동관(240)이 씌워진다. 상기 보호동관(240)은 외부로부터 접속함 내부를 보호하고, 상기 케이블(100)의 금속시스(22)와 통전되어 사고 전류의 통로 역할을 할 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다.
따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다.
본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (25)

  1. 도체, 내부반도전층, 케이블 절연층 및 외부반도전층을 구비하는 한 쌍의 직류 전력케이블과 상기 한 쌍의 직류 전력케이블을 서로 연결시키는 중간접속함을 포함하는 직류 전력케이블 중간접속 시스템에 있어서,
    상기 한 쌍의 직류 전력케이블은 상기 도체, 내부반도전층, 케이블 절연층 및 외부반도전층이 순차적으로 노출된 각 단부가 서로 대향하도록 구비되고,
    상기 중간접속함은,
    상기 한 쌍의 케이블의 도체를 서로 전기적으로 연결하는 도체 접속부; 및
    상기 도체 접속부, 상기 노출된 내부반도전층 및 케이블 절연층을 둘러싸도록 절연지가 권취되어 상기 케이블 절연층 외경까지 형성되고, 길이방향에서의 양 단부에 경사면을 갖는 제1 보강절연층과, 상기 제1 보강절연층 및 상기 노출된 케이블 절연층을 둘러싸며 상기 케이블 길이방향으로의 폭이 방사방향으로 일정한 직선부와 상기 직선부의 양단에 형성되며 상기 케이블 길이방향으로의 폭이 상기 케이블의 방사방향으로 감소하는 슬로프부를 구비한 제2 보강절연층을 포함하는 보강절연층; 을 포함하고,
    상기 제1 보강절연층과 상기 도체 접속부 내지 상기 내부반도전층 사이에 상기 제1 보강절연층보다 체적저항률이 낮은 재질로 형성된 전계완화층을 구비하는 것을 특징으로 하는 직류 전력케이블 중간접속시스템.
  2. 제1항에 있어서,
    상기 전계완화층은 상기 제1 보강절연층 보다 체적저항률이 102배 이상 낮은 것을 특징으로 하는 직류 전력케이블 중간접속시스템.
  3. 제1항에 있어서,
    상기 전계완화층은 상기 도체 접속부 위에 형성된 상기 전계완화층의 두께는 상기 전계완화층 전체 두께의 1.6~96% 인 것을 특징으로 하는 직류 전력케이블 중간접속시스템.
  4. 제1항에 있어서,
    상기 케이블 절연층은, 상기 내부반도전층을 둘러싸며, 절연유에 함침된 크래프트지로 이루어진 제1 케이블 절연층; 상기 제1 케이블 절연층을 둘러싸며, 절연유에 함침된 복합절연지로 이루어진 제2 케이블 절연층; 및 상기 제2 케이블 절연층을 둘러싸며, 절연유에 함침된 크래프트지로 이루어진 제3 케이블 절연층을 포함하고,
    상기 케이블 절연층은, 상기 내부반도전층, 제1 케이블 절연층, 및 제2 케이블 절연층 일부로 이루어지는 제1 펜슬링 단; 상기 제1 펜슬링 단 상에 단차를 가지며 상기 제2 케이블 절연층으로 이루어지는 제2 펜슬링 단; 및 상기 제2 펜슬링 단 상에 단차를 가지며 상기 제2 케이블 절연층 일부와 제3 케이블 절연층으로 이루어지는 제3 펜슬링 단; 으로 펜슬링되며,
    상기 전계완화층의 최대 높이와 상기 제1 케이블 절연층의 높이의 높이 차이는 상기 제1 케이블 절연층의 높이의 430% 이하인 것을 특징으로 하는 직류 전력케이블 중간접속시스템.
  5. 제4항에 있어서,
    상기 제1 케이블 절연층의 높이(또는 두께)는 상기 케이블 절연층의 전체 두께의 1~10% 인 것을 특징으로 하는 직류 전력케이블 중간접속시스템.
  6. 제4항에 있어서,
    상기 전계완화층의 최대 높이는 상기 제1 펜슬링 단의 높이와 실질적으로 동일한 것을 특징으로 하는 직류 전력케이블 중간접속시스템.
  7. 제1항에 있어서,
    상기 도체 접속부는 상기 한 쌍의 전력케이블의 도체를 파지하며 서로 전기적으로 연결하는 도체 압착슬리브이며,
    상기 중간접속함은,
    상기 도체 압착슬리브와 상기 도체 사이에 배치되어 상기 도체로부터 발생할 수 있는 동분(銅粉)이 유출되는 것을 방지하는 동분유출방지부; 를 구비하는 것을 특징으로 하는 직류 전력케이블 중간접속시스템.
  8. 제7항에 있어서,
    상기 동분유출방지부는,
    상기 도체 압착슬리브와 상기 도체 사이에 배치되는 동분유출방지판;
    상기 도체 압착슬리브와 상기 도체 사이, 또는 상기 보강절연층과 상기 도체 사이에 배치되는 제1 전계균일화층;
    상기 보강절연층과 상기 도체 압착슬리브 사이, 또는 상기 보강절연층과 상기 제1 전계균일화층 사이에 배치되는 제2 전계균일화층; 및
    상기 보강절연층과 상기 도체 압착슬리브 사이, 또는 상기 보강절연층과 상기 도체 사이에 배치되는 가압층; 을 포함하는 것을 특징으로 하는 직류 전력케이블 중간접속 시스템.
  9. 제8항에 있어서,
    상기 도체 압착슬리브는 내면에서 돌출되어 형성된 적어도 두 개의 주름산과 상기 주름산 사이에 형성되는 적어도 하나의 주름골을 갖는 몸체부를 포함하며,
    상기 동분유출방지판은 상기 몸체부와 상기 도체 사이에 배치되는 것을 특징으로 하는 직류 전력케이블 중간접속 시스템.
  10. 제9항에 있어서,
    상기 동분유출방지판은 상기 도체 압착슬리브의 일단에서 상기 주름산을 넘어서까지 배치되는 것을 특징으로 하는 직류 전력케이블 중간접속 시스템.
  11. 제8항에 있어서,
    상기 동분유출방지판은 상기 도체 압착슬리브의 일단에서 타단에 이르도록 상기 몸체부와 상기 도체 사이에 배치되는 것을 특징으로 하는 직류 전력케이블 중간접속 시스템.
  12. 제9항에 있어서,
    상기 동분유출방지판은 상기 도체의 길이방향으로 종첨된 것을 특징으로 하는 직류 전력케이블 중간접속 시스템.
  13. 제9항에 있어서,
    상기 동분유출방지판은 상기 도체와 같은 계열의 금속 내지 합금으로 이루어진 것을 특징으로 하는 직류 전력케이블 중간접속 시스템.
  14. 제8항에 있어서,
    상기 제1 전계균일화층은 상기 직류 전력 케이블의 길이방향으로 이격되도록 횡권된 반도전 테이프로 이루어지는 것을 특징으로 하는 직류 전력케이블 중간접속 시스템.
  15. 제14항에 있어서,
    상기 제1 전계균일화층은 상기 케이블의 도체에 인접하여서는 상기 케이블의 길이방향으로 중첩되도록 반도전성 테이프를 횡권하여 형성되는 것을 특징으로 하는 직류 전력케이블 중간접속 시스템.
  16. 제14항에 있어서,
    상기 제1 전계균일화층은 상기 케이블의 도체에 인접하여서는 상기 케이블의 길이방향으로 중첩되도록 복수 매의 반도전성 테이프를 횡권하여 형성되는 것을 특징으로 하는 직류 전력케이블 중간접속 시스템.
  17. 제8항에 있어서,
    상기 동분유출방지부는 상기 제1 전계균일화층의 적어도 일부와 상기 동분유출방지판의 적어도 일부가 서로 중첩되는 것을 특징으로 하는 직류 전력케이블 중간접속 시스템.
  18. 제9항에 있어서,
    상기 동분유출방지부는 상기 도체 압착슬리브의 상기 주름산에서 상기 동분유출방지판의 적어도 일부와 상기 제1 전계균일화층의 적어도 일부가 중첩되는 것을 특징으로 하는 직류 전력케이블 중간접속 시스템.
  19. 제9항에 있어서,
    상기 동분유출방지부는 상기 도체 압착슬리브의 일단부와 상기 도체 압착슬리브 일단부 측에 형성된 주름산의 꼭지점 사이에서 서로 중첩되는 것을 특징으로 하는 직류 전력케이블 중간접속 시스템.
  20. 제8항에 있어서,
    상기 제1 전계균일화층은 상기 케이블의 내부반도전층에서 연속적으로 연장되어 형성된 것을 특징으로 하는 직류 전력케이블 중간접속 시스템.
  21. 제8항에 잇어서,
    상기 도체 압착슬리브의 외면 상기 제1 전계균일화층을 감싸는 제2 전계균일화층을 더 구비하는 것을 특징으로 하는 직류 전력케이블 중간접속 시스템.
  22. 제21항에 있어서,
    상기 제2 전계균일화층은 주름이 형성된 반도전 테이프로 형성된 것을 특징으로 하는 직류 전력케이블 중간접속 시스템.
  23. 제8항에 있어서,
    상기 동분유출방지부는,
    상기 제1 전계균일화층, 상기 동분유출방지판, 상기 도체 압착슬리브, 및 제2 전계균일화층을 둘러싸도록 형성된 가압층을 더 포함하는 것을 특징으로 하는 직류 전력케이블 중간접속 시스템.
  24. 제23항에 있어서,
    상기 가압층은 절연지로 이루어지는 것을 특징으로 하는 직류 전력케이블 중간접속 시스템.
  25. 제23항에 있어서,
    상기 가압층은 상기 보강절연층보다 체적저항이 102 이상 낮은 것을 특징으로 하는 직류 전력케이블 중간접속 시스템.
PCT/KR2017/012515 2017-03-31 2017-11-07 직류 전력케이블 중간접속 시스템 WO2018182122A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170042279A KR101830033B1 (ko) 2017-03-31 2017-03-31 직류 전력케이블 중간접속 시스템
KR10-2017-0042279 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018182122A1 true WO2018182122A1 (ko) 2018-10-04

Family

ID=61387557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012515 WO2018182122A1 (ko) 2017-03-31 2017-11-07 직류 전력케이블 중간접속 시스템

Country Status (2)

Country Link
KR (1) KR101830033B1 (ko)
WO (1) WO2018182122A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3029203B2 (ja) * 1989-11-15 2000-04-04 株式会社フジクラ 架橋ポリエチレン電力ケーブルの接続部及び端末部
KR20110123906A (ko) * 2010-05-10 2011-11-16 대한전선 주식회사 이종의 전력 케이블을 접속하기 위한 도체 슬리브 및 코로나 쉴드의 구조, 이를 포함한 프리몰드 접속함, 및 이종의 전력 케이블의 접속 방법
WO2013157513A1 (ja) * 2012-04-19 2013-10-24 古河電気工業株式会社 超電導ケーブルの接続構造
KR20150010663A (ko) * 2013-07-18 2015-01-28 주식회사 엘지화학 분리벽형 증류탑
KR20160084920A (ko) * 2015-01-06 2016-07-15 엘에스전선 주식회사 중간접속함

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4374613B2 (ja) * 2004-06-09 2009-12-02 住友電気工業株式会社 超電導ケーブルの中間接続構造

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3029203B2 (ja) * 1989-11-15 2000-04-04 株式会社フジクラ 架橋ポリエチレン電力ケーブルの接続部及び端末部
KR20110123906A (ko) * 2010-05-10 2011-11-16 대한전선 주식회사 이종의 전력 케이블을 접속하기 위한 도체 슬리브 및 코로나 쉴드의 구조, 이를 포함한 프리몰드 접속함, 및 이종의 전력 케이블의 접속 방법
WO2013157513A1 (ja) * 2012-04-19 2013-10-24 古河電気工業株式会社 超電導ケーブルの接続構造
KR20150010663A (ko) * 2013-07-18 2015-01-28 주식회사 엘지화학 분리벽형 증류탑
KR20160084920A (ko) * 2015-01-06 2016-07-15 엘에스전선 주식회사 중간접속함

Also Published As

Publication number Publication date
KR101830033B1 (ko) 2018-02-19

Similar Documents

Publication Publication Date Title
KR101830030B1 (ko) 직류 전력케이블 중간접속 시스템 및 직류 전력케이블용 중간접속함
WO2018174330A1 (ko) 전력 케이블
EP3879652A1 (en) Power cable joint system
WO2020096243A1 (ko) 전력케이블 중간접속 시스템
WO2018151371A1 (ko) 전력 케이블
WO2020096242A1 (ko) 전력케이블 중간접속구조
WO2020096241A1 (ko) 전력케이블의 중간접속 시스템
WO2018182122A1 (ko) 직류 전력케이블 중간접속 시스템
WO2018182080A1 (ko) 직류 전력케이블 중간접속 시스템
KR20180089837A (ko) 중간접속함 압력 보상 장치, 이를 이용한 중간접속함 압력 보상 시스템, 및 중간접속함 압력 보상 방법
WO2018182121A1 (ko) 직류 전력케이블 중간접속 시스템
WO2018182078A1 (ko) 직류 전력케이블 중간접속 시스템
WO2018182079A1 (ko) 직류 전력케이블 중간접속 시스템
KR101830032B1 (ko) 직류 전력케이블 중간접속 시스템 및 직류 전력케이블용 중간접속함
WO2018182076A1 (ko) 전력 케이블용 중간접속함을 이용한 직류 전력케이블 중간접속 시스템 및 직류 전력케이블 접속 방법
KR20180111459A (ko) 전력 케이블용 중간접속함을 이용한 직류 전력케이블 중간접속 시스템 및 직류 전력케이블 접속 방법
KR102216120B1 (ko) 직류 전력케이블 중간접속 시스템
WO2018135700A1 (ko) 전력 케이블
EP3879653A1 (en) Joint system of power cable
WO2020171575A1 (ko) 전력케이블의 중간접속구조
KR20200101857A (ko) 전력케이블의 중간접속구조
WO2015129968A1 (ko) 종단접속부를 구비한 전력케이블
WO2018221804A1 (ko) 초고압 직류 전력케이블의 중간접속시스템
WO2017003127A1 (ko) 초전도 선재
WO2020101161A1 (ko) 초고압 직류 전력케이블의 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904072

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17904072

Country of ref document: EP

Kind code of ref document: A1