WO2018221804A1 - 초고압 직류 전력케이블의 중간접속시스템 - Google Patents

초고압 직류 전력케이블의 중간접속시스템 Download PDF

Info

Publication number
WO2018221804A1
WO2018221804A1 PCT/KR2017/014070 KR2017014070W WO2018221804A1 WO 2018221804 A1 WO2018221804 A1 WO 2018221804A1 KR 2017014070 W KR2017014070 W KR 2017014070W WO 2018221804 A1 WO2018221804 A1 WO 2018221804A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
cable
intermediate connection
ultra
high voltage
Prior art date
Application number
PCT/KR2017/014070
Other languages
English (en)
French (fr)
Inventor
이수봉
정의환
이욱진
홍성표
조동식
Original Assignee
엘에스전선 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170155740A external-priority patent/KR102499648B1/ko
Application filed by 엘에스전선 주식회사 filed Critical 엘에스전선 주식회사
Priority to CN201780091383.XA priority Critical patent/CN110709946B/zh
Priority to US16/614,671 priority patent/US10749277B2/en
Priority to EP17912243.7A priority patent/EP3633688A4/en
Publication of WO2018221804A1 publication Critical patent/WO2018221804A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients

Definitions

  • the present invention relates to an intermediate connection system of an ultra high voltage direct current power cable. Specifically, the present invention simultaneously reduces the electric field distortion, the DC insulation strength and the impulse breakdown strength due to the accumulation of space charge in the insulation layer of the cable and the insulation of the intermediate connection in the intermediate connection system of the ultra high voltage DC power cable. An intermediate connection system of an ultra high voltage direct current power cable that can be prevented or minimized.
  • the power transmission method can be largely divided into an AC power transmission method and a DC power transmission method.
  • the DC power transmission method refers to the transmission of electrical energy by direct current. Specifically, the DC power transmission method first converts the AC power of the power transmission side to a suitable voltage, converts it to DC by a forward conversion device, and then sends it to the power receiver through the power transmission line. This is how you convert it.
  • the DC transmission method is advantageous in transporting a large amount of power over a long distance and can be interconnected with the asynchronous power system, and is widely used because DC has less power loss and higher stability than AC in long distance transmission. There is a situation.
  • the insulator of the (ultra) high voltage direct current transmission cable used in the DC transmission method may be formed from an insulation composition impregnated with insulating oil or an insulation composition based on a polyolefin resin, and recently, the cable may be operated at a relatively high temperature. Insulators formed of an insulating composition containing a polyolefin resin that can increase the transmission capacity and have no fear of insulating oil leakage have been widely used.
  • the polyolefin resin has a linear molecular chain structure, it is applied to the cable insulation layer by improving mechanical and thermal properties through a crosslinking process, and the cable insulation is insulated due to the crosslinking by-products inevitably decomposed during the crosslinking process. There is a problem of accumulating space charge in the layer, and the space charge may distort the electric field in the (ultra) high voltage direct current transmission cable insulator and cause insulation breakdown at a voltage lower than the first designed breakdown voltage.
  • these (ultra) high voltage direct current transmission cables are connected to each other by intermediate connections in the tens to hundreds of meters, and the insulation provided in the intermediate connections also has the effect of cross-linking by-products, which are inevitably decomposed during cross-linking.
  • space charges are accumulated in the insulating material, thereby distorting the electric field in the insulating material and causing dielectric breakdown at a voltage lower than the dielectric breakdown voltage originally designed at the intermediate connection portion.
  • inorganic additives such as magnesium oxide are uniformly dispersed in an insulating layer to solve the above problems, and the inorganic The additive is polarized and traps space charges, thereby minimizing electric field distortion due to space charge accumulation.
  • VSC voltage-type direct current transmission
  • polarity inversion is unnecessary, and an insulation composition with an organic additive added to optimize the electrical stress applied to the cable insulator requires precise control of the space charge content in the insulation layer.
  • the intermediate connection system of the ultra-high voltage DC power cable which can simultaneously prevent or minimize the electric field distortion, the decrease in the DC insulation strength and the decrease in the impulse breakdown strength due to the accumulation of space charge in the insulation of the cable insulation layer or the intermediate connection portion. This situation is urgent required.
  • An object of the present invention is to provide an intermediate connection system for an ultra-high voltage DC power cable that can simultaneously prevent or minimize electric field distortion, a decrease in DC dielectric strength and a decrease in impulse breakdown strength due to space charge accumulation.
  • An intermediate voltage connection system for an ultra high voltage DC power cable comprising: a conductor in which a plurality of wires are stranded, a cable inner semiconducting layer surrounding the conductor, the cable insulating layer, and a cable outer semiconducting layer, wherein the conductor, cable inner semiconducting layer, and cable insulation
  • a conductor for electrically and mechanically connecting a pair of DC power cables provided with layers and ends of the cable outer semiconducting layer facing each other, and the conductors exposed at each end of the pair of DC power cables.
  • Intermediate connection inner semiconductive layer surrounding the conductor connecting portion An intermediate junction insulating layer surrounding the layer, an intermediate junction outer semiconducting layer surrounding the intermediate junction insulating layer, and an intermediate junction protective sheath layer surrounding the intermediate junction outer semiconducting layer, wherein the intermediate junction insulating layer is divided into three equal thicknesses It is divided into an inner layer, a middle layer and an outer layer, and ⁇ -cumyl alcohol ( ⁇ -cumyl alcohol; ⁇ -CA), acetophenone (AP) and ⁇ -methyl styrene ( ⁇ -methyl styrene) among the crosslinking by-products included in the inner layer.
  • ⁇ -cumyl alcohol ⁇ -cumyl alcohol
  • AP acetophenone
  • ⁇ -MS the total content of ⁇ -cumyl alcohol ( ⁇ -CA), ⁇ -cumyl alcohol ( ⁇ -CA), acetophenone in the cross-linked by-product included in the middle layer AP) and the total content of ⁇ -methyl styrene ( ⁇ -MS) ⁇ -cumyl alcohol ( ⁇ -CA) and ⁇ -cumyl alcohol ( ⁇ ) in the crosslinked by-products included in the outer layer.
  • ⁇ -CA -cumyl alcohol
  • AP acetophenone
  • ⁇ -MS ⁇ -methyl styrene
  • the average content of each cross-linked by-product contained in the inner layer, middle layer and outer layer is 3000 ppm or less.
  • the present invention also provides an intermediate connection system for an ultra high voltage direct current power cable, wherein an insulation breakdown voltage of the intermediate connection insulation layer is 560 kV / mm or more.
  • the polyolefin resin provides an intermediate connection system of ultra-high voltage DC power cable, characterized in that containing a polyethylene resin.
  • the crosslinking agent provides an intermediate connection system of an ultra-high voltage direct current power cable, characterized in that the peroxide-based crosslinking agent.
  • the peroxide crosslinking agent dicumyl peroxide, benzoyl peroxide, lauryl peroxide, t- butyl cumyl peroxide, di (t- butyl peroxy isopropyl) benzene, 2,5-dimethyl-2,5-di It provides an intermediate connection system of ultra-high voltage direct current power cable, characterized in that it comprises one or more selected from the group consisting of (t-butyl peroxy) hexane and di-t-butyl peroxide.
  • the insulating composition further provides an intermediate connection system for an ultra high voltage direct current power cable, characterized in that it further comprises one or more additives selected from the group consisting of antioxidants, extrudability enhancers and crosslinking aids.
  • the intermediate connection insulating layer provides an intermediate connection system of ultra-high voltage direct current power cable, characterized in that formed by cross-linking after the cross-winding of the non-crosslinking insulating tape including the insulating composition.
  • the conductor connecting portion is formed by welding a pair of conductor ends to each other, to provide an intermediate connection system for an ultra high voltage direct current power cable.
  • the semiconducting composition forming the intermediate connection inner semiconducting layer or the intermediate connection outer semiconducting layer is characterized in that the content of the crosslinking agent is 0.1 to 5 parts by weight based on 100 parts by weight of the base resin, the middle of the ultra-high voltage DC power cable Provide a connection system.
  • the base resin is ethylene vinyl acetate (EVA), ethylene methyl acrylate (EMA), ethylene methyl methacrylate (EMMA), ethylene ethyl acrylate (EEA), ethylene ethyl methacrylate (EEMA), ethylene (iso) Propyl acrylate (EPA), ethylene (iso) propyl methacrylate (EPMA), ethylene butyl acrylate (EBA) and ethylene butyl methacrylate (EBMA)
  • EVA ethylene vinyl acetate
  • EMA ethylene methyl acrylate
  • EMMA ethylene methyl methacrylate
  • EEMA ethylene ethyl acrylate
  • EEMA ethylene ethyl methacrylate
  • EEMA ethylene ethyl methacrylate
  • EPA ethylene ethyl methacrylate
  • EPMA ethylene butyl acrylate
  • EBMA ethylene butyl methacrylate
  • the cable insulation layer is formed from an insulation composition comprising a polyolefin resin and a crosslinking agent, the insulation layer is divided into three by its thickness when divided into the inner layer, middle layer and outer layer ⁇ - cumyl alcohol of the cross-linking by-products included in each layer
  • the average value of the total contents of the three specific crosslinking byproducts of ( ⁇ -cumyl alcohol; ⁇ -CA), acetophenone (AP) and ⁇ -methyl styrene ( ⁇ -MS) was 3,890 ppm or less.
  • An intermediate connection system of an ultra high voltage direct current power cable is provided.
  • the total content of the three specific cross-linked by-products included in the inner layer of the cable insulation layer is 3,990 ppm or less, provides an intermediate connection system of ultra-high voltage DC power cable.
  • FEF Field Enhancement Factor
  • FEF (maximumly increased field on insulated specimen / field applied to insulated specimen) * 100
  • the insulation specimen is a specimen prepared by crosslinking the insulation composition forming the cable insulation layer and having a thickness of 120 ⁇ m,
  • the electric field applied to the insulated specimen is 50 kV / mm as a direct current applied to electrodes connected to the surfaces facing each other in the insulated specimen,
  • the maximum increased electric field in the insulated specimen is the maximum value of the increased electric field during the application of a 50 kV / mm direct current electric field to the insulated specimen for one hour.
  • the polyolefin resin provides an intermediate connection system of an ultra high voltage direct current power cable, characterized in that it comprises a polyethylene resin.
  • the crosslinking agent provides an intermediate connection system of an ultra-high voltage direct current power cable, characterized in that the peroxide-based crosslinking agent.
  • the peroxide crosslinking agent is dicumyl peroxide, benzoyl peroxide, lauryl peroxide, t-butyl cumyl peroxide, di (t-butyl peroxy isopropyl) benzene, 2,5-dimethyl-2,5-di
  • It provides an intermediate connection system of ultra-high voltage direct current power cable, characterized in that it comprises one or more selected from the group consisting of (t-butyl peroxy) hexane and di-t-butyl peroxide.
  • the insulating composition provides an intermediate connection system of an ultra-high voltage direct current power cable, characterized in that it further comprises one or more additives selected from the group consisting of antioxidants, extrudability enhancers and crosslinking aids.
  • the semiconductive composition forming the inner and outer semiconducting layer provides an intermediate connection system of ultra-high voltage DC power cable, characterized in that the content of the cross-linking agent is 0.1 to 5 parts by weight based on 100 parts by weight of the base resin.
  • the base resin is ethylene vinyl acetate (EVA), ethylene methyl acrylate (EMA), ethylene methyl methacrylate (EMMA), ethylene ethyl acrylate (EEA), ethylene ethyl methacrylate (EEMA), ethylene (iso) Propyl acrylate (EPA), ethylene (iso) propyl methacrylate (EPMA), ethylene butyl acrylate (EBA) and ethylene butyl methacrylate (EBMA)
  • EVA ethylene vinyl acetate
  • EMA ethylene methyl acrylate
  • EMMA ethylene methyl methacrylate
  • EEMA ethylene ethyl acrylate
  • EEMA ethylene ethyl methacrylate
  • EEMA ethylene ethyl methacrylate
  • EPA ethylene ethyl methacrylate
  • EPMA ethylene butyl acrylate
  • EBMA ethylene butyl methacrylate
  • the content of the crosslinking agent added to the insulating layer of the cable and the insulating material of the intermediate connection, and the content of a specific crosslinking by-product generated during crosslinking by controlling the degree of crosslinking by appropriate modification of the base resin.
  • Figure 1 schematically shows a cross-sectional structure of an embodiment of an ultra high voltage DC power cable applied to the intermediate connection system of the ultra high voltage DC power cable according to the present invention.
  • FIG. 2 schematically shows a structure of an embodiment of an intermediate connection system of an ultra-high voltage direct current power cable according to the present invention.
  • Figure 3 is a graph showing the results of measuring the electric field rise coefficient (FEF) for the insulation layer specimens of the ultra-high voltage DC power cable in the intermediate connection system of the ultra-high voltage DC power cable according to the embodiment.
  • FEF electric field rise coefficient
  • Figure 1 schematically shows a cross-sectional structure of an embodiment of an ultra high voltage DC power cable applied to the intermediate connection system of the ultra high voltage DC power cable according to the present invention.
  • the power cable 200 includes a conductor 210 formed by connecting a plurality of wires, an inner semiconducting layer 212 surrounding the conductor, an insulating layer 214 surrounding the inner semiconducting layer 212, Including an outer semiconducting layer 216 surrounding the insulating layer 214, and transmits power only in the cable length direction along the conductor 210, and has a cable core portion to prevent current leakage in the cable radial direction do.
  • the conductor 210 serves as a passage through which current flows to transmit power, and has a high conductivity to minimize power loss and a material having strength and flexibility suitable for cable production and use, for example, copper or aluminum. It may be configured as.
  • the conductor 210 may be a circular compressed conductor compressed in a circular shape by twisting a plurality of circular small wires, and may be a flat rectangular wire 210B twisted to surround a circular center element wire 210A and the circular center element wire 210A. It may be a flat conductor having a flat rectangular wire layer 210C and having a circular cross section as a whole.
  • the flat conductor has an advantage of reducing the outer diameter of a cable due to a relatively high drop ratio compared to a circular compressed conductor.
  • the conductor 210 is formed by twisting a plurality of element wires, the surface thereof is not smooth, so that an electric field may be uneven, and corona discharge is likely to occur partially.
  • insulation performance may be degraded.
  • the inner semiconducting layer 212 is formed outside the conductor 210.
  • the inner semiconducting layer 212 has semiconductivity by adding conductive particles such as carbon black, carbon nanotubes, carbon nanoplates, graphite, and the like to an insulating material, between the conductor 210 and the insulating layer 214 to be described later. It prevents a sudden electric field change and stabilizes insulation performance. In addition, by suppressing non-uniform charge distribution on the conductor surface, the electric field is made uniform, and the gap between the conductor 210 and the insulating layer 214 is prevented to prevent corona discharge and insulation breakdown.
  • conductive particles such as carbon black, carbon nanotubes, carbon nanoplates, graphite, and the like
  • An insulating layer 214 is provided on the outer side of the inner semiconducting layer 212 to electrically insulate the outside so that current flowing along the conductor 210 does not leak to the outside.
  • the insulating layer 214 has a high breakdown voltage and should be able to be stably maintained for a long time.
  • the dielectric loss is low and must have heat resistance such as heat resistance.
  • the insulating layer 214 may be a polyolefin resin such as polyethylene and polypropylene, and further preferably, polyethylene resin.
  • the polyethylene resin may be made of a crosslinked resin.
  • An outer semiconducting layer 216 is provided outside the insulating layer 214.
  • the outer semiconducting layer 216 is formed of a material having semiconductivity by adding conductive particles, such as carbon black, carbon nanotubes, carbon nanoplates, graphite, etc., to an insulating material like the inner semiconducting layer 212, Insulating charge distribution between the insulating layer 214 and the metal sheath 218 described later is suppressed to stabilize the insulating performance.
  • the outer semiconducting layer 216 smoothes the surface of the insulating layer 214 in the cable to mitigate electric field concentration to prevent corona discharge, and also physically protects the insulating layer 214. .
  • the cable core part in particular, the inner semiconducting layer 212, the insulating layer 214, and the outer semiconducting layer 216 are most concerned with electric field distortion caused by the generation, accumulation, and injection of the above-mentioned space charges and the resulting insulation breakdown. Detailed description thereof as a part will be described later.
  • the core part may further include a moisture absorbing layer for preventing moisture from penetrating the cable.
  • the moisture absorbing layer may be formed between stranded wires and / or outside the conductor 210, and has a high rate of absorbing moisture penetrating into the cable and a super absorbent polymer having excellent ability to maintain an absorbing state. It is formed in the form of a powder, a tape, a coating layer or a film including SAP) serves to prevent the penetration of moisture in the cable longitudinal direction.
  • the moisture absorbing layer may have a semiconductivity to prevent a sudden electric field change.
  • a protection sheath part is provided outside the core part, and a power cable installed in an environment in which water is exposed to moisture, such as the seabed, further includes an exterior part.
  • the protective sheath and the sheath protect the cable core from various environmental factors such as moisture penetration, mechanical trauma, and corrosion, which can affect the power transmission performance of the cable.
  • the protective sheath portion includes a metal sheath layer 218 and an inner sheath 220 to protect the cable core portion from accidental currents, external forces or other external environmental factors.
  • the metal sheath layer 218 is grounded at the end of the power cable to serve as a passage through which an accident current flows in case of an accident such as a ground fault or a short circuit, to protect the cable from external shocks, and to prevent the electric field from being discharged to the outside of the cable. have.
  • the metal sheath layer 218 is formed to seal the core part, thereby preventing foreign matter such as moisture from invading and deteriorating insulation performance.
  • the molten metal may be extruded to the outside of the core to be formed to have a seamless outer surface so that the ordering performance may be excellent.
  • Lead or aluminum is used as the metal, and in particular, in the case of submarine cables, it is preferable to use lead having excellent corrosion resistance to seawater, and lead alloy containing a metal element to complement mechanical properties. More preferably).
  • the metal sheath layer 218 is coated with an anti-corrosion compound, for example, blown asphalt, etc. on the surface in order to further improve the corrosion resistance, water resistance, etc. of the cable and to improve adhesion to the inner sheath 220.
  • an anti-corrosion compound for example, blown asphalt, etc.
  • a copper wire straight tape (not shown) to a moisture absorbing layer may be further provided between the metal sheath layer 218 and the core part.
  • the copper wire direct tape consists of a copper wire and a nonwoven tape to facilitate electrical contact between the outer semiconducting layer 216 and the metal sheath layer 218, and the moisture absorbing layer absorbs moisture that has penetrated the cable.
  • SAP super absorbent polymer
  • the inner sheath 220 made of a resin such as polyvinyl chloride (PVC), polyethylene, etc. is formed outside the metal sheath layer 218 to improve corrosion resistance, water resistance, and the like of the mechanical trauma and heat, It can also protect the cable from other external environmental factors such as UV light.
  • PVC polyvinyl chloride
  • polyethylene resin having excellent degree of orderability
  • polyvinyl chloride resin is preferably used in an environment where flame retardancy is required.
  • the protective sheath portion is made of a semi-conductive nonwoven tape or the like further includes an outer sheath made of a resin such as a metal reinforcing layer for buffering the external force applied to the power cable, polyvinyl chloride to polyethylene, etc. to further improve corrosion resistance and water resistance of the power cable. And further protect the cable from mechanical trauma and other external environmental factors such as heat and ultraviolet radiation.
  • the power cable installed on the seabed is easy to be damaged by anchors of ships, and may be damaged by bending force due to currents or waves, friction with the sea bottom, etc. Can be.
  • the exterior part may include an armor layer and a serving layer.
  • the armor layer may be made of steel, galvanized steel, copper, brass, bronze, and the like, and may be constituted by at least one layer by cross winding a wire having a circular cross section or the like.
  • the armor layer not only serves to enhance the mechanical properties and performance of the cable, but also additionally protects the cable from external forces.
  • the serving layer made of polypropylene yarn or the like is formed in one or more layers on the upper and / or lower portion of the armor layer to protect the cable, and the outermost serving layer is made of two or more materials of different colors. Visibility of cables laid on the sea floor can be ensured.
  • the above-described inner semiconducting layer 212 and outer semiconducting layer 216 have conductive particles such as carbon black, carbon nanotubes, carbon nanoplates, graphite, and the like dispersed in a base resin, and a crosslinking agent, an antioxidant, a scorch inhibitor, and the like are added. It is formed by the extrusion of the semiconducting composition added thereto.
  • the base resin may be a olefin resin of a similar series to the base resin of the insulating composition for forming the insulating layer 214 for the interlayer adhesion between the semiconductive layers 212 and 216 and the insulating layer 214, More preferably, in consideration of compatibility with the conductive particles, olefins and polar monomers such as ethylene vinyl acetate (EVA), ethylene methyl acrylate (EMA), ethylene methyl methacrylate (EMMA), ethylene ethyl acryl Elate, Ethylene Ethyl Methacrylate (EEMA), Ethylene (Iso) propyl Acrylate (EPA), Ethylene (Iso) propyl Methacrylate (EPMA), Ethylene Butyl Acrylate (EBA), Ethylene Butyl Methacrylate It is preferable to use (EBMA) or the like.
  • EVA ethylene vinyl acetate
  • EMA ethylene methyl acrylate
  • EMMA
  • the crosslinking agent is a silane crosslinking agent, or dicumyl peroxide, benzoyl peroxide, lauryl peroxide, t-butyl cumyl peroxide, di (t-) according to the crosslinking method of the base resin included in the semiconductive layers 212 and 216.
  • Organic peroxide crosslinking agents such as butyl peroxy isopropyl) benzene, 2,5-dimethyl-2,5-di (t-butyl peroxy) hexane and di-t-butyl peroxide.
  • the semiconducting compositions forming the inner and outer semiconducting layers 212 and 216 may include 45 to 70 parts by weight of conductive particles such as carbon black based on 100 parts by weight of the base resin.
  • conductive particles such as carbon black
  • the content of the conductive particles is less than 45 parts by weight, sufficient semiconducting properties may not be realized, whereas when the content of the conductive particles is greater than 70 parts by weight, the extrudability of the inner and outer semiconducting layers 212 and 216 may be deteriorated, resulting in deterioration of surface properties or cable productivity There is a problem of deterioration.
  • the semiconducting compositions forming the inner and outer semiconducting layers 212 and 216 may be precisely adjusted to 0.1 to 5 parts by weight, preferably 0.1 to 1.5 parts by weight based on 100 parts by weight of the base resin. have.
  • the content of the crosslinking agent is greater than 5 parts by weight, the content of crosslinking by-products which are essentially generated when crosslinking the base resin included in the semiconducting composition is excessive, and the crosslinking byproducts are separated from the semiconducting layers 212 and 216.
  • the distortion of the electric field may be increased, causing a problem of lowering the dielectric breakdown voltage of the insulating layer 214.
  • the mechanical properties, heat resistance and the like of the semiconducting layers (212,216) may be insufficient.
  • the insulating layer 214 may be, for example, a polyolefin resin such as polyethylene or polypropylene as a base resin, and may be preferably formed by extrusion of an insulating composition containing a polyethylene resin.
  • the polyethylene resin may be ultra low density polyethylene (ULDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), or a combination thereof.
  • the polyethylene resin may be a homopolymer, a random or block copolymer of ethylene and an ⁇ -olefin such as propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, or a combination thereof.
  • the insulating composition for forming the insulating layer 214 includes a crosslinking agent, so that the insulating layer 214 is crosslinked polyolefin (XLPO), preferably crosslinked polyethylene (XLPE) by a separate crosslinking process during or after extrusion. It can be made of).
  • the insulation composition may further include other additives such as antioxidants, extrusion enhancers, crosslinking aids, and the like.
  • the crosslinking agent included in the insulating composition may be the same as the crosslinking agent included in the semiconductive composition.
  • a silane crosslinking agent or dicumyl peroxide, benzoyl peroxide, and lauryl peroxide depending on the crosslinking method of the polyolefin.
  • organic compounds such as t-butyl cumyl peroxide, di (t-butyl peroxy isopropyl) benzene, 2,5-dimethyl-2,5-di (t-butyl peroxy) hexane and di-t-butyl peroxide It may be a peroxide crosslinking agent.
  • the crosslinking agent included in the insulation composition may be included in an amount of less than 1% by weight, for example, 0.1% by weight or more and less than 1% by weight based on the total weight of the insulation composition.
  • crosslinking by-products that cause space charge generation among crosslinking by-products inevitably generated during crosslinking of the insulating layer 214 include ⁇ -cumyl alcohol ( ⁇ -CA), acetophenone (AP), and acetophenone (AP).
  • ⁇ -CA ⁇ -cumyl alcohol
  • AP acetophenone
  • AP acetophenone
  • ⁇ -methyl styrene ( ⁇ -MS) and the content of the crosslinking agent included in the insulating composition forming the insulating layer 214 is limited to less than 1 wt% and the insulating layer Degasing after crosslinking of (214) may limit the content of the specific crosslinking byproduct, and in particular, may limit the content of the specific crosslinking byproduct by position in the thickness of the insulating layer, Due to the limitation of the content, it is possible to significantly reduce the space charge generation and the electric field distortion, and consequently to prevent the decrease in the DC dielectric strength and the impulse breakdown strength of the insulating layer 214 at the same time. By experimentally it confirmed that it is possible to digest the present invention has been completed.
  • the inventors of the present invention have a problem that the degree of crosslinking of the insulating layer 214 is lowered because the content of the crosslinking agent is limited to less than 1% by weight, and as a result, the mechanical and thermal properties of the insulating layer 214 may be lowered.
  • the present invention was completed by experimentally confirming that by increasing the vinyl group content of the base resin included in the insulating composition forming (214), a degree of crosslinking of 60% or more, for example, 60 to 70% can be achieved and solved.
  • the insulating layer 214 is divided into three layers of the inner layer, the lower layer disposed directly on the conductor 210, the middle layer disposed on the inner layer, and the outer layer disposed on the middle layer.
  • the average value of the total contents of the three specific crosslinking by-products is adjusted to 3,890 ppm or less so that the generation of space charges in the insulating layer 214 is suppressed, thereby indicating the degree of electric field distortion in the insulating layer 214.
  • Field Enhancement Factor (FEF) of Equation 1 is adjusted to about 140% or less, and as a result, it is possible to simultaneously prevent or minimize the reduction of the DC dielectric strength and the impulse breakdown strength of the insulating layer 214. .
  • FEF (maximumly increased field on insulated specimen / field applied to insulated specimen) * 100
  • the insulating specimen is a specimen prepared by crosslinking the insulating composition forming the insulating layer 214 and having a thickness of 120 ⁇ m,
  • the electric field applied to the insulated specimen is 50 kV / mm as a direct current applied to electrodes connected to the surfaces facing each other in the insulated specimen,
  • the maximum increased electric field in the insulated specimen is the maximum value of the increased electric field during the application of a 50 kV / mm direct current electric field to the insulated specimen for one hour.
  • the inner layer of the insulating layer 214 is disposed directly on the conductor 210 to form a heterogeneous interface with the inner semiconducting layer 212, and is included in the inner layer because a relatively high field is applied to the insulating layer. More preferably, the total content of the three specific crosslinking byproducts is controlled to 3,990 ppm or less.
  • FIG. 2 schematically shows a structure of an embodiment of an intermediate connection system of an ultra-high voltage direct current power cable according to the present invention.
  • the conductor 210, the inner semiconducting layer 212, the insulating layer 214, the outer semiconducting layer 216 are sequentially exposed. Ends of the pair of direct current power cables are provided to face each other, and a conductor connection part 400 electrically and mechanically connects the conductors 210 exposed at each end of the pair of direct current power cables to each other.
  • the conductor connecting portion 400 is fitted to the pair of conductors 210 and the sleeve outer circumferential surface, or a pair of conductors 210 inserted into the sleeve with a bolt through the sleeve,
  • the ends of the pair of conductors 210 may be formed by welding each other.
  • the intermediate connecting part 300 can be compactly formed by minimizing the thickness of the conductor connecting part.
  • the intermediate connector 300 may include an intermediate connector inner semiconducting layer 310, an intermediate connector insulating layer 320, an intermediate connector external semiconducting layer 330, and an intermediate connector protective sheath layer 340.
  • the intermediate connection inner semiconducting layer 310, the external semiconducting layer 330, and the intermediate connection protection sheath layer 340 are the inner semiconducting layer 212 and the outer semiconducting layer 214 of the cable sequentially separated from the cable connection. And the components restoring the function of the inner sheath 220, each of which is made of the same material as that of the inner semiconducting layer 212, the outer semiconducting layer 214, and the inner sheath 220 of the cable to be restored.
  • the intermediate connection inner semiconducting layer 310 may be formed by cross-linking after cross winding of a non-crosslinking tape made of the same material as the cable inner semiconducting layer, and the protective sheath layer 340 may be It may be formed using a heat shrink tube made of the same material as the cable inner semiconducting layer.
  • the intermediate connection inner semiconducting layer 310 surrounds the exposed conductor 210 including the conductor connecting part 400 and partially wraps the exposed cable inner semiconducting layer 212 by peeling the cable insulating layer 214.
  • the intermediate connection outer semiconducting layer 330 may be exposed by exfoliating a metal sheath layer 218, an inner sheath 220, and the like that surround the intermediate connection insulation layer 320 and the exposed cable insulation layer 214.
  • the cable outer semiconducting layer 216 may be partially wrapped, and the intermediate connection protection sheath layer 340 surrounds the intermediate connection outer semiconducting layer 330 and the metal sheath layer 218 and the inner sheath 220 of the cable. And the like at least partially.
  • the intermediate connector insulating layer 320 surrounds the inner semiconducting layer 310 and the inner semiconducting layer 212 of the exposed cable, and the cable outer semiconducting layer 216 is peeled off to expose the exposed cable insulating layer 214. It may be wrapped, and may be formed of the same material as the cable insulation layer, and preferably crosslinked after cross-winding the non-crosslinking insulation tape made of the same material as the cable insulation layer.
  • the intermediate connecting portion insulating layer 320 may have inclined surfaces formed at both ends thereof in a cable length direction.
  • the end of the cable insulation layer 214 is penciled in the cable length direction as shown in FIG.
  • the insulating layer 320 may have an inclined surface corresponding to the shape of the end of the penciled cable insulating layer at both ends to increase the interface length between the cable insulating layer and the intermediate connection insulating layer, thereby improving insulation performance.
  • the present inventors found that specific crosslinking by-products that cause space charge generation among crosslinking by-products inevitably generated during crosslinking of the intermediate junction insulating layer 320 are ⁇ -cumyl alcohol ( ⁇ -CA) and acetophenone. AP) and ⁇ -methyl styrene ( ⁇ -MS) were experimentally confirmed, and the content of the crosslinking agent included in the insulating composition forming the intermediate junction insulating layer 320 is limited to less than 1% by weight. The content of the specific crosslinking byproduct may be limited through degasing after crosslinking of the intermediate junction insulating layer 320, and in particular, the content of the specific crosslinking byproduct by position in the thickness of the intermediate junction insulating layer 320.
  • ⁇ -CA ⁇ -cumyl alcohol
  • ⁇ -MS ⁇ -methyl styrene
  • the inventors of the present invention have a problem that the degree of crosslinking of the intermediate connection insulating layer 320 may be reduced by limiting the content of the crosslinking agent to less than 1% by weight, and as a result, the mechanical and thermal properties of the intermediate connection insulating layer 320 may be reduced.
  • the vinyl group content of the base resin included in the insulating composition forming the intermediate connection part 320 can be solved by achieving a crosslinking degree of 60% or more, for example, 60 to 70%. The present invention has been completed.
  • the intermediate connection insulating layer 320 is divided into three equal thicknesses, and may be divided into an inner layer, a middle layer disposed on the inner layer, and an outer layer disposed on the middle layer.
  • the content of each of the three specific crosslinking by-products included in each layer is 4000 ppm or less, and the average content of each of the three specific crosslinking by-products included in the inner, middle and outer layers is adjusted to 3000 ppm or less.
  • the third portion of the intermediate connecting portion insulating layer 320 is divided into three portions based on the thickness of the portion of the insulating layer 320 having a predetermined length among the intermediate connecting portion insulating layer 320.
  • the cable insulation specimens each having a thickness of about 120 ⁇ m and whose crosslinking byproducts according to layer / crosslinking byproduct type after crosslinking were controlled according to the content of the crosslinking agent and the degassing time, respectively.
  • the intermediate interconnect insulation layer specimens each having a thickness of about 120 ⁇ m and whose crosslinking byproducts by layer / crosslinked byproduct type after crosslinking were adjusted according to the content of the crosslinking agent and the degassing time, respectively, were prepared.
  • the insulation specimens of Comparative Examples 1 to 3 in which the content of three specific crosslinking by-products are not controlled, have an electric field increase coefficient (FEF) of 160%, indicating electric field distortion due to generation of space charge. It was found to be close to, which is expected to significantly reduce the dielectric strength.
  • FEF electric field increase coefficient
  • the content of three specific cross-linked by-products is precisely controlled, thereby suppressing the generation of space charges, which results in an electric field increase coefficient (FEF) of less than 140%.
  • FEF electric field increase coefficient
  • the insulation layer specimens of Comparative Examples 4 to 7 in which the layer-specific content and the average value of the three specific cross-linked by-products exceed the specific levels have a large dielectric strength due to electric field distortion caused by space charge generation. It was confirmed that it was degraded.
  • the insulation specimens of Examples 4 to 6 according to the present invention are adjusted by the average value of the layer-specific content and the layer-specific content of the three specific cross-linking by-products below a certain level to minimize the electric field distortion caused by the generation of space charge insulation strength is 510 It was confirmed that it was maintained above kV / mm.

Abstract

본 발명은 초고압 직류 전력케이블의 중간접속시스템에 관한 것이다. 구체적으로, 본 발명은 초고압 직류 전력케이블의 중간접속시스템에서 케이블의 절연층 및 중간접속부의 절연재 내의 공간전하(space charge) 축적에 의한 전계왜곡과 직류 절연내력의 저하 및 임펄스 파괴강도의 저하를 동시에 방지하거나 최소화할 수 있는 초고압 직류 전력케이블의 중간접속시스템에 관한 것이다.

Description

초고압 직류 전력케이블의 중간접속시스템
본 발명은 초고압 직류 전력케이블의 중간접속시스템에 관한 것이다. 구체적으로, 본 발명은 초고압 직류 전력케이블의 중간접속시스템에서 케이블의 절연층 및 중간접속부의 절연재 내의 공간전하(space charge) 축적에 의한 전계왜곡과 직류 절연내력의 저하 및 임펄스 파괴강도의 저하를 동시에 방지하거나 최소화할 수 있는 초고압 직류 전력케이블의 중간접속시스템에 관한 것이다.
일반적으로 대용량과 장거리 송전이 요망되는 대형 전력계통에서는 전력손실의 감소, 건설용지 문제, 송전용량 증대 등의 관점에서 송전전압을 높이는 고압송전이 필수적이라 할 수 있다.
송전방식은 크게 교류송전방식과 직류송전방식으로 구분될 수 있으며, 이 중 직류송전방식은 직류로 전기 에너지를 보내는 것을 말한다. 구체적으로, 상기 직류송전방식은 먼저 송전 쪽의 교류전력을 적당한 전압으로 바꾸고 순변환장치에 의해 직류로 변환한 뒤 송전선로를 통해 수전 쪽으로 보내면, 수전 쪽에서는 역변환장치에 의해 직류전력을 다시 교류전력으로 변환하는 방식이다.
특히, 상기 직류전송방식은 대용량의 전력을 장거리 수송하는데 유리하고 비동기 전력계통의 상호 연계가 가능하다는 장점이 있을 뿐만 아니라, 장거리 송전에 있어서 직류가 교류보다 전력 손실이 적고 안정도가 높으므로 많이 이용되고 있는 실정이다.
상기 직류송전방식에 사용되는 (초)고압 직류 송전 케이블의 절연체는 절연유에 함침된 절연지 또는 폴리올레핀 수지를 베이스 수지로 하는 절연 조성물로부터 형성될 수 있는데, 최근에는 상대적으로 고온에서 케이블을 작동시킬 수 있어 송전용량을 증가시킬 수 있고 절연유 누유의 우려가 없는 폴리올레핀 수지를 포함하는 절연 조성물로 형성된 절연체가 많이 사용되고 있다.
그러나, 상기 폴리올레핀 수지는 직선형 분자쇄 구조를 갖고 있어 가교 과정을 통해 기계적, 열적 특성을 향상시켜 케이블 절연층에 적용되며, 상기 가교과정에서 가교제가 분해되며 필연적으로 발생하는 가교 부산물의 영향으로 케이블 절연층에 공간전하가 축적되는 문제가 있고, 상기 공간전하는 (초)고압 직류 송전 케이블 절연체 내의 전기장을 왜곡시켜 최초 설계된 절연 파괴전압보다 낮은 전압에서 절연 파괴를 일으킬 수 있다.
또한, 이러한 (초)고압 직류 송전 케이블은 수십 내지 수백 미터 단위로 중간접속부에 의해 서로 접속되어 포설되는데, 상기 중간접속부에 구비된 절연재 역시 가교과정에서 가교제가 분해되며 필연적으로 발생하는 가교 부산물의 영향으로 상기 절연재 내에 공간전하가 축적되고, 이로써 상기 절연재 내의 전기장이 왜곡되어 상기 중간접속부에서 최초 설계된 절연 파괴전압보다 낮은 전압에서 절연 파괴를 일으킬 수 있다.
송전 방향 전환을 위해 극성반전이 필요한 전류형 직류송전(LCC)에 사용되는 케이블의 경우에는 상술한 문제를 해결하기 위하여 산화마그네슘 등과 같은 무기 첨가제가 절연층에 골고루 분산되어 있고, 직류 전기장 하에서 상기 무기 첨가제가 분극화되며 공간전하를 트랩(trap)하여 공간전하 축적에 의한 전계왜곡을 최소화할 수 있다. 하지만, 전압형 직류송전(VSC)의 경우에는 극성반전이 불필요하며, 케이블 절연체가 받는 전기적 응력에 최적화되도록 유기 첨가제가 첨가된 절연 조성물을 사용하는바 절연층에서의 공간전하 함량을 정밀히 제어할 필요가 있다.
따라서, 케이블 절연층 내지 중간접속부의 절연재 내의 공간전하(space charge) 축적에 의한 전계왜곡과 직류 절연내력의 저하 및 임펄스 파괴강도의 저하를 동시에 방지하거나 최소화할 수 있는 초고압 직류 전력케이블의 중간접속시스템이 절실히 요구되고 있는 실정이다.
본 발명은 공간전하(space charge) 축적에 의한 전계왜곡과 직류 절연내력의 저하 및 임펄스 파괴강도의 저하를 동시에 방지하거나 최소화할 수 있는 초고압 직류 전력케이블의 중간접속시스템을 제공하는 것을 목적으로 한다.
상기 과제를 해결하기 위해, 본 발명은,
초고압 직류 전력케이블 중간접속 시스템으로서, 복수개의 소선이 연선된 도체, 상기 도체를 둘러싸는 케이블 내부반도전층, 상기 케이블 절연층 및 케이블 외부반도전층을 포함하며, 상기 도체, 케이블 내부반도전층, 케이블 절연층, 케이블 외부반도전층이 순차적으로 노출된 단부가 서로 대향하도록 구비되는 한 쌍의 직류 전력케이블과, 상기 한 쌍의 직류 전력케이블의 각 단부에서 노출된 상기 도체를 서로 전기적, 기계적으로 연결하는 도체접속부와, 상기 도체접속부와 상기 도체, 케이블 내부반도전층, 케이블 절연층 및 케이블 외부반도전층이 순차적으로 노출된 상기 한 쌍의 직류 전력케이블의 각 단부를 둘러싸는 중간접속부를 구비하며, 상기 중간접속부는 상기 도체접속부를 감싸는 중간접속부 내부반도전층, 상기 중간접속부 내부반도전층을 감싸는 중간접속부 절연층, 상기 중간접속부 절연층을 감싸는 중간접속부 외부반도전층, 및 상기 중간접속부 외부반도전층을 감싸는 중간접속부 보호시스층을 포함하고, 상기 중간접속부 절연층은 이의 두께를 3등분하여 내층, 중층 및 외층으로 구분되며, 상기 내층에 포함된 가교부산물 중 α-쿠밀알코올(α-cumyl alcohol; α-CA), 아세토페논(acetophenone; AP) 및 α-메틸스티렌(α-methyl styrene; α-MS)α-쿠밀알코올(α-cumyl alcohol; α-CA)의 총 함량, 상기 중층에 포함된 가교부산물 중 α-쿠밀알코올(α-cumyl alcohol; α-CA), 아세토페논(acetophenone; AP) 및 α-메틸스티렌(α-methyl styrene; α-MS)α-쿠밀알코올(α-cumyl alcohol; α-CA)의 총 함량 및 상기 외층에 포함된 가교부산물 중 α-쿠밀알코올(α-cumyl alcohol; α-CA), 아세토페논(acetophenone; AP) 및 α-메틸스티렌(α-methyl styrene; α-MS)α-쿠밀알코올(α-cumyl alcohol; α-CA)의 총 함량 각각이 4,000 ppm 이하인 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템을 제공한다.
여기서, 상기 내층, 중층 및 외층에 포함된 상기 각각의 가교 부산물의 평균함량이 3000 ppm 이하인 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템을 제공한다.
또한, 상기 중간접속부 절연층의 절연파괴전압이 560 kV/mm 이상인 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템을 제공한다.
한편, 상기 폴리올레핀 수지는 폴리에틸렌 수지를 포함하는 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템을 제공한다.
그리고, 상기 가교제는 과산화물계 가교제인 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템을 제공한다.
또한, 상기 과산화물계 가교제는 디큐밀퍼옥사이드, 벤조일퍼옥사이드, 라우릴퍼옥사이드, t-부틸 큐밀퍼옥사이드, 디(t-부틸 퍼옥시 아이소프로필) 벤젠, 2,5-디메틸-2,5-디(t-부틸 퍼옥시)헥산 및 디-t-부틸 퍼옥사이드로 이루어진 그룹으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템을 제공한다.
나아가, 상기 절연 조성물은 산화방지제, 압출성 향상제 및 가교조제로 이루어진 그룹으로부터 선택된 1종 이상의 첨가제를 추가로 포함하는 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템을 제공한다.
또한, 상기 중간접속부 절연층은 상기 절연 조성물을 포함하는 비가교 절연 테이프의 횡권 후 가교에 의해 형성되는 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템을 제공한다.
그리고, 상기 도체접속부는 한 쌍의 도체 단부를 서로 용접함으로써 형성되는 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템을 제공한다.
또한, 상기 중간접속부 내부반도전층 또는 상기 중간접속부 외부반도전층을 형성하는 반도전 조성물은 이의 베이스 수지 100 중량부를 기준으로 가교제의 함량이 0.1 내지 5 중량부인 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템을 제공한다.
여기서, 상기 베이스 수지는 에틸렌 비닐 아세테이트(EVA), 에틸렌 메틸 아크릴레이트(EMA), 에틸렌 메틸 메타크릴레이트(EMMA), 에틸렌 에틸 아크릴레이트(EEA), 에틸렌 에틸 메타크릴레이트(EEMA), 에틸렌 (이소)프로필 아크릴레이트(EPA), 에틸렌 (이소)프로필 메타크릴레이트(EPMA), 에틸렌 부틸 아크릴레이트(EBA) 및 에틸렌 부틸 메타크릴레이트(EBMA)로 이루어진 그룹으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템을 제공한다.
한편, 상기 케이블 절연층은 폴리올레핀 수지 및 가교제를 포함하는 절연 조성물로부터 형성되며, 상기 절연층은 이의 두께를 3등분하여 내층, 중층 및 외층으로 구분할 때 각 층에 포함된 가교 부산물 중 α-쿠밀알코올(α-cumyl alcohol; α-CA), 아세토페논(acetophenone; AP) 및 α-메틸스티렌(α-methyl styrene; α-MS)의 3종의 특정한 가교 부산물의 총 함량들의 평균값이 3,890 ppm 이하인 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템을 제공한다.
여기서, 상기 케이블 절연층 중 상기 내층에 포함된 상기 3종의 특정한 가교 부산물의 총 함량이 3,990 ppm 이하인 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템을 제공한다.
또한, 아래 수학식 1로 정의되는 전계상승계수(Field Enhancement Factor; FEF)가 140% 이하인 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템을 제공한다.
[수학식 1]
FEF=(절연 시편에서 최대로 증가된 전계/절연 시편에 인가된 전계)*100
상기 수학식 1에서,
상기 절연 시편은 상기 케이블 절연층을 형성하는 절연 조성물의 가교에 의해 제조되고 두께가 120 ㎛인 시편이고,
상기 절연 시편에 인가된 전계는 상기 절연 시편에서 서로 마주보는 면에 각각 연결된 전극에 인가된 직류 전계로서 50kV/mm이고,
상기 절연 시편에서 최대로 증가된 전계는 상기 절연 시편에 1시간 동안 50kV/mm의 직류 전계를 인가하는 과정에서 증가된 전계 중 최대값이다.
나아가, 상기 폴리올레핀 수지는 폴리에틸렌 수지를 포함하는 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템을 제공한다.
그리고, 상기 가교제는 과산화물계 가교제인 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템을 제공한다.
여기서, 상기 과산화물계 가교제는 디큐밀퍼옥사이드, 벤조일퍼옥사이드, 라우릴퍼옥사이드, t-부틸 큐밀퍼옥사이드, 디(t-부틸 퍼옥시 아이소프로필) 벤젠, 2,5-디메틸-2,5-디(t-부틸 퍼옥시)헥산 및 디-t-부틸 퍼옥사이드로 이루어진 그룹으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템을 제공한다.
또한, 상기 절연 조성물은 산화방지제, 압출성 향상제 및 가교조제로 이루어진 그룹으로부터 선택된 1종 이상의 첨가제를 추가로 포함하는 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템을 제공한다.
한편, 상기 내부 및 외부 반도전층을 형성하는 반도전 조성물은 이의 베이스 수지 100 중량부를 기준으로 가교제의 함량이 0.1 내지 5 중량부인 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템을 제공한다.
여기서, 상기 베이스 수지는 에틸렌 비닐 아세테이트(EVA), 에틸렌 메틸 아크릴레이트(EMA), 에틸렌 메틸 메타크릴레이트(EMMA), 에틸렌 에틸 아크릴레이트(EEA), 에틸렌 에틸 메타크릴레이트(EEMA), 에틸렌 (이소)프로필 아크릴레이트(EPA), 에틸렌 (이소)프로필 메타크릴레이트(EPMA), 에틸렌 부틸 아크릴레이트(EBA) 및 에틸렌 부틸 메타크릴레이트(EBMA)로 이루어진 그룹으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템을 제공한다.
본 발명에 따른 초고압 직류 전력케이블의 중간접속시스템은 케이블의 절연층 및 중간접속부의 절연재에 첨가되는 가교제의 함량과 베이스 수지의 적절한 개질에 의한 가교도 조절을 통해 가교시 생성되는 특정 가교 부산물의 함량을 정밀하게 제어함으로써 절연층 및 절연재 내의 공간전하 축적에 의한 전계왜곡과 직류 절연내력의 저하 및 임펄스 파괴강도의 저하를 동시에 방지하거나 최소화할 수 있는 우수한 효과를 나타낸다.
도 1은 본 발명에 따른 초고압 직류 전력케이블의 중간접속시스템에 적용되는 초고압 직류 전력케이블의 실시예에 관한 단면 구조를 개략적으로 도시한 것이다.
도 2는 본 발명에 따른 초고압 직류 전력케이블의 중간접속시스템의 실시예에 관한 구조를 개략적으로 도시한 것이다.
도 3은 실시예에서 본 발명에 따른 초고압 직류 전력케이블의 중간접속시스템에서 초고압 직류 전력케이블의 절연층 시편에 대한 전계상승계수(FEF)를 측정한 결과를 그래프로 도시한 것이다.
이하, 본 발명의 바람직한 실시예들을 상세히 설명하기로 한다. 그러나, 본 발명은 여기서 설명된 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록, 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되어지는 것이다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
도 1은 본 발명에 따른 초고압 직류 전력케이블의 중간접속시스템에 적용되는 초고압 직류 전력케이블의 실시예에 관한 단면 구조를 개략적으로 도시한 것이다.
도 1을 참조하면, 전력케이블(200)은 복수의 소선이 연선되어 형성된 도체(210), 상기 도체를 감싸는 내부반도전층(212), 상기 내부반도전층(212)을 감싸는 절연층(214), 상기 절연층(214)을 감싸는 외부반도전층(216)을 포함하여, 상기 도체(210)를 따라 케이블 길이 방향으로만 전력을 전송하고, 케이블 반경 방향으로는 전류가 누설되지 않도록 하는 케이블 코어부를 구비한다.
상기 도체(210)는 전력을 전송하기 위해 전류가 흐르는 통로 역할을 하며, 전력 손실을 최소화할 수 있도록 도전율이 우수하고 케이블 제조 및 사용에 적절한 강도와 유연성을 가진 소재, 예를 들어 구리 또는 알루미늄 등으로 구성될 수 있다. 상기 도체(210)는 복수개의 원형소선을 연선하여 원형으로 압축한 원형 압축도체일 수 있고, 원형의 중심소선(210A)과 상기 원형 중심소선(210A)을 감싸도록 연선된 평각소선(210B)으로 이루어진 평각소선층(210C)을 구비하며 전체적으로 원형의 단면을 가지는 평각도체일 수 있으며, 상기 평각도체는 원형 압축도체에 비하여 점적율이 상대적으로 높아 케이블 외경을 축소할 수 있는 장점이 있다.
그런데, 도체(210)는 복수의 소선을 연선하여 형성되므로 그 표면이 평활하지 않아 전계가 불균일할 수 있으며, 부분적으로 코로나 방전이 일어나기 쉽다. 또한, 도체(210) 표면과 후술하는 절연층(214) 사이에 공극이 생기게 되면 절연성능이 저하될 수 있다. 상기와 같은 문제점을 해결하기 위하여 도체(210) 외부에는 내부반도전층(212)이 형성된다.
상기 내부반도전층(212)은 절연성 물질에 카본블랙, 카본 나노튜브, 카본나노플레이트, 그라파이트 등의 도전성 입자가 첨가되어 반도전성을 가지게 되며, 상기 도체(210)와 후술하는 절연층(214) 사이에서 급격한 전계변화가 발생하는 것을 방지하여 절연성능을 안정화하는 기능을 수행한다. 또한, 도체면의 불균일한 전하분포를 억제함으로써 전계를 균일하게 하고, 도체(210)와 절연층(214) 간의 공극 형성을 방지하여 코로나 방전, 절연파괴 등을 억제하는 역할도 하게 된다.
상기 내부반도전층(212)의 바깥쪽에는 절연층(214)이 구비되어 도체(210)를 따라 흐르는 전류가 외부로 누설되지 않도록 외부와 전기적으로 절연시켜 준다. 일반적으로 상기 절연층(214)은 파괴전압이 높고, 절연성능이 장기간 안정적으로 유지될 수 있어야 한다. 나아가 유전손실이 적으며 내열성 등의 열에 대한 저항 성능을 지니고 있어야 한다. 따라서, 상기 절연층(214)은 폴리에틸렌 및 폴리프로필렌 등의 폴리올레핀 수지가 사용될 수 있으며, 나아가 폴리에틸렌 수지가 바람직하다. 여기서, 상기 폴리에틸렌 수지는 가교수지로 이루어질 수 있다.
상기 절연층(214)의 외부에는 외부반도전층(216)이 구비된다. 상기 외부반도전층(216)은 내부반도전층(212)과 같이 절연성 물질에 도전성 입자, 예를 들면 카본블랙, 카본나뉴튜브, 카본나노플레이트, 그라파이트 등이 첨가되어 반도전성을 가지는 물질로 형성되어, 상기 절연층(214)과 후술하는 금속시스(218) 사이의 불균일한 전하 분포를 억제하여 절연 성능을 안정화한다. 또한, 상기 외부반도전층(216)은 케이블에 있어서 절연층(214)의 표면을 평활하게 하여 전계집중을 완화시켜 코로나 방전을 방지하며, 상기 절연층(214)을 물리적으로 보호하는 기능도 수행한다.
상기 케이블 코어부, 특히 상기 내부반도전층(212), 절연층(214) 내지 외부반도전층(216)은 전술한 공간전하의 생성, 축적 내지 주입에 따른 전계왜곡 및 이로 인한 절연파괴가 가장 우려되는 부분으로서 이에 대한 구체적인 설명은 별도로 후술한다.
상기 코어부는 케이블에 수분이 침투하는 것을 방지하기 위한 수분흡수층을 추가적으로 구비할 수 있다. 상기 수분흡수층은 연선된 소선 사이 및/또는 도체(210)의 외부에 형성될 수 있으며, 케이블에 침투한 수분을 흡수하는 속도가 빠르고, 흡수 상태를 유지하는 능력이 우수한 고흡수성 수지(super absorbent polymer; SAP)를 포함하는 분말, 테이프, 코팅층 또는 필름 등의 형태로 구성되어 케이블 길이방향으로 수분이 침투하는 것을 방지하는 역할을 한다. 또한, 상기 수분흡수층은 급격한 전계 변화를 방지하기 위하여 반도전성을 가질 수 있다.
상기 코어부의 외부에는 보호시스부가 구비되며, 해저와 같이 수분에 노출이 많이 되는 환경에 포설되는 전력케이블은 외장부를 추가적으로 구비한다. 상기 보호시스부 및 외장부는 케이블의 전력 전송 성능에 영향을 미칠 수 있는 수분침투, 기계적 외상, 부식 등의 다양한 환경요인으로부터 상기 케이블 코어부를 보호한다.
상기 보호시스부는 금속 시스층(218)와 내부 시스(220)를 포함하여, 사고전류, 외력 내지 기타 외부환경 요인으로부터 상기 케이블 코어부를 보호한다.
상기 금속 시스층(218)는 전력케이블 단부에서의 접지되어 지락 또는 단락 등의 사고 발생시 사고 전류가 흐르는 통로 역할을 하며, 외부의 충격으로부터 케이블을 보호하고, 전계가 케이블 외부로 방전되지 못하도록 할 수 있다. 또한, 해저 등의 환경에 부설되는 케이블의 경우, 상기 금속 시스층(218)이 상기 코어부를 실링하도록 형성되어 수분과 같은 이물질이 침입하여 절연 성능이 저하되는 것을 방지할 수 있다. 예를 들면, 상기 코어부 외부에 용융된 금속을 압출하여 이음새가 없는 연속적인 외면을 가지도록 형성하여 차수성능이 우수하게 할 수 있다. 상기 금속으로는 납(Lead) 또는 알루미늄을 사용하며, 특히 해저 케이블의 경우에는 해수에 대한 내식성이 우수한 납을 사용하는 것이 바람직하고, 기계적 성질을 보완하기 위해 금속 원소를 첨가한 합금연(Lead alloy)을 사용하는 것이 더욱 바람직하다.
또한, 상기 금속 시스층(218)은 케이블의 내식성, 차수성 등을 추가로 향상시키고 상기 내부 시스(220)와의 접착력을 향상시키기 위해 표면에 부식 방지 컴파운드, 예를 들어, 블로운 아스팔트 등이 도포될 수 있다. 뿐만 아니라, 상기 금속 시스층(218)과 상기 코어부 사이에는 동선직입 테이프(미도시) 내지 수분 흡수층이 추가적으로 구비될 수 있다. 상기 동선직입 테이프는 동선(Copper wire)과 부직포 테이프 등으로 구성되어 외부반도전층(216)과 금속 시스층(218)간의 전기적 접촉을 원활히 하는 작용을 하며, 상기 수분흡수층은 케이블에 침투한 수분을 흡수하는 속도가 빠르고, 흡수 상태를 유지하는 능력이 우수한 고흡수성 수지(super absorbent polymer; SAP)를 포함하는 분말, 테이프, 코팅층 또는 필름 등의 형태로 구성되어 케이블 길이방향으로 수분이 침투하는 것을 방지하는 역할을 한다. 또한, 상기 수분흡수층에서의 급격한 전계 변화를 방지하기 위해 수분 흡수층에 동선을 포함시켜 구성할 수도 있다.
상기 금속 시스층(218)의 외부에는 폴리염화비닐(PVC), 폴리에틸렌(polyethylene) 등과 같은 수지로 구성된 내부 시스(220)가 형성되어 케이블의 내식성, 차수성 등을 향상시키고, 기계적 외상 및 열, 자외선 등의 기타 외부 환경 요인으로 부터 케이블을 보호하는 기능을 수행할 수 있다. 특히, 해저에 포설되는 전력케이블의 경우에는 차수성이 우수한 폴리에틸렌 수지를 사용하는 것이 바람직하며, 난연성이 요구되는 환경에서는 폴리염화비닐 수지를 사용하는 것이 바람직하다.
상기 보호 시스부는 반도전성 부직포 테이프 등으로 이루어져 전력케이블에 가해지는 외력을 완충하는 금속보강층, 폴리염화비닐 내지 폴리에틸렌 등의 수지로 구성되는 외부 시스를 더 구비하여 전력케이블의 내식성, 차수성 등을 더욱 향상시키고, 기계적 외상 및 열, 자외선 등의 기타 외부 환경 요인으로 부터 케이블을 추가적으로 보호할 수 있다.
또한, 해저에 포설되는 전력케이블은 선박의 닻 등에 의해 외상을 입기 쉬우며, 해류나 파랑 등에 의한 굽힘력, 해저면과의 마찰력 등에 의해서도 파손될 수 있으므로 이를 막기 위하여 상기 보호 시스부의 외부에는 외장부가 형성될 수 있다.
상기 외장부는 아머층 및 써빙층을 포함할 수 있다. 상기 아머층은 강철, 아연도금강, 구리, 황동, 청동 등으로 이루어지고 단면 형태가 원형, 평각형 등인 와이어를 횡권하여 적어도 1층 이상으로 구성할 수 있다. 상기 아머층은 케이블의 기계적 특성과 성능을 강화하는 기능을 수행할 뿐만 아니라 외력으로부터 케이블을 추가적으로 보호한다. 폴리프로필렌 얀 등으로 구성되는 상기 써빙층은 상기 아머층의 상부 및/또는 하부에 1층 이상으로 형성되어 케이블을 보호하며, 최외곽에 형성되는 써빙층은 색상이 다른 2종 이상의 재료로 구성되어 해저에서 포설된 케이블의 가시성을 확보할 수 있다.
상술한 내부 반도전층(212) 및 외부 반도전층(216)은 베이스 수지에 카본블랙, 카본나뉴튜브, 카본나노플레이트, 그라파이트 등의 전도성 입자가 분산되어 있고, 가교제, 산화방지제, 스코치 억제제 등이 추가로 첨가된 반도전 조성물의 압출에 의해 형성된다.
여기서, 상기 베이스 수지는 상기 반도전층(212,216)과 상기 절연층(214)의 층간 접착력을 위해 상기 절연층(214)을 형성하는 절연 조성물의 베이스 수지와 유사한 계열의 올레핀 수지를 사용하는 것이 바람직하고, 더욱 바람직하게는 상기 전도성 입자와의 상용성을 고려하여 올레핀과 극성 단량체, 예를 들어 에틸렌 비닐 아세테이트(EVA), 에틸렌 메틸 아크릴레이트(EMA), 에틸렌 메틸 메타크릴레이트(EMMA), 에틸렌 에틸 아크릴레이트(EEA), 에틸렌 에틸 메타크릴레이트(EEMA), 에틸렌 (이소)프로필 아크릴레이트(EPA), 에틸렌 (이소)프로필 메타크릴레이트(EPMA), 에틸렌 부틸 아크릴레이트(EBA), 에틸렌 부틸 메타크릴레이트(EBMA) 등을 사용하는 것이 바람직하다.
또한, 상기 가교제는 상기 반도전층(212,216)에 포함된 베이스 수지의 가교방식에 따라 실란계 가교제, 또는 디큐밀퍼옥사이드, 벤조일퍼옥사이드, 라우릴퍼옥사이드, t-부틸 큐밀퍼옥사이드, 디(t-부틸 퍼옥시 아이소프로필) 벤젠, 2,5-디메틸-2,5-디(t-부틸 퍼옥시)헥산, 디-t-부틸 퍼옥사이드 등의 유기과산화물계 가교제일 수 있다.
그리고, 상기 내부 및 외부 반도전층(212,216)을 형성하는 반도전 조성물은 이의 베이스 수지 100 중량부를 기준으로 카본블랙 등의 전도성 입자를 45 내지 70 중량부로 포함할 수 있다. 상기 전도성 입자의 함량이 45 중량부 미만인 경우 충분한 반도전 특성이 구현될 수 없는 반면, 70 중량부 초과시 상기 내부 및 외부 반도전층(212,216)의 압출성이 저하되어 표면특성이 저하되거나 케이블의 생산성이 저하되는 문제가 있다.
또한, 상기 내부 및 외부 반도전층(212,216)을 형성하는 반도전 조성물은 이의 베이스 수지 100 중량부를 기준으로 상기 가교제의 함량이 0.1 내지 5 중량부, 바람직하게는 0.1 내지 1.5 중량부로 정밀하게 조절될 수 있다.
여기서, 상기 가교제의 함량이 5 중량부 초과인 경우 상기 반도전 조성물에 포함된 베이스 수지의 가교시 필수적으로 생성되는 가교부산물의 함량이 과다하고, 이러한 가교부산물이 상기 반도전층(212,216)과 상기 절연층(214) 사이의 계면을 통해 상기 절연층(214) 내부로 이동하여 이종전하(heterocharge)를 축적시킴으로써 전계의 왜곡을 가중시켜 상기 절연층(214)의 절연파괴 전압을 저하시키는 문제를 유발할 수 있는 반면, 0.1 중량부 미만인 경우 가교도가 불충분하여 상기 반도전층(212,216)의 기계적 특성, 내열성 등이 불충분할 수 있다.
상기 절연층(214)은 예를 들어 베이스 수지로서 폴리에틸렌, 폴리프로필렌 등의 폴리올레핀 수지일 수 있고, 바람직하게는 폴리에틸렌 수지를 포함하는 절연 조성물의 압출에 의해 형성될 수 있다.
상기 폴리에틸렌 수지는 초저밀도 폴리에틸렌(ULDPE), 저밀도 폴리에틸렌(LDPE), 선형 저밀도 폴리에틸렌(LLDPE), 중밀도 폴리에틸렌(MDPE), 고밀도 폴리에틸렌(HDPE), 또는 이들의 조합일 수 있다. 또한, 상기 폴리에틸렌 수지는 단독중합체, 에틸렌과 프로필렌, 1-부텐, 1-펜텐, 1-헥센, 1-옥텐 등의 α-올레핀과의 랜덤 또는 블록 공중합체, 또는 이들의 조합일 수 있다.
또한, 상기 절연층(214)을 형성하는 절연 조성물은 가교제를 포함함으로써, 상기 절연층(214)은 압출시 또는 압출 후 별도의 가교 공정에 의해 가교 폴리올레핀(XLPO), 바람직하게는 가교 폴리에틸렌(XLPE)으로 이루어질 수 있다. 또한, 상기 절연 조성물은 산화방지제, 압출성향상제, 가교조제 등의 기타 첨가제를 추가로 포함할 수 있다.
상기 절연 조성물에 포함되는 가교제는 상기 반도전 조성물에 포함되는 가교제와 동일할 수 있고, 예를 들어, 상기 폴리올레핀의 가교방식에 따라 실란계 가교제, 또는 디큐밀퍼옥사이드, 벤조일퍼옥사이드, 라우릴퍼옥사이드, t-부틸 큐밀퍼옥사이드, 디(t-부틸 퍼옥시 아이소프로필) 벤젠, 2,5-디메틸-2,5-디(t-부틸 퍼옥시)헥산, 디-t-부틸 퍼옥사이드 등의 유기과산화물계 가교제일 수 있다. 여기서, 상기 절연 조성물에 포함되는 가교제는 상기 절연 조성물의 총 중량을 기준으로 1 중량% 미만, 예를 들어, 0.1 중량% 이상 1 중량% 미만의 함량으로 포함될 수 있다.
본 발명자들은 상기 절연층(214)의 가교시 불가피하게 생성되는 가교 부산물 중 공간전하 생성을 유발하는 특정한 가교 부산물이 α-쿠밀알코올(α-cumyl alcohol; α-CA), 아세토페논(acetophenone; AP) 및 α-메틸스티렌(α-methyl styrene; α-MS)임을 실험적으로 확인했고, 상기 절연층(214)을 형성하는 절연 조성물에 포함되는 가교제의 함량을 1 중량% 미만으로 제한하고 상기 절연층(214)의 가교 후 탈가스화(degasing)를 통해 상기 특정한 가교 부산물의 함량을 제한할 수 있고, 특히 절연층의 두께에서 위치별로 상기 특정한 가교 부산물의 함량을 제한할 수 있으며, 이러한 특정한 가교 부산물의 함량의 제한에 의해 공간전하 생성과 전계왜곡을 현저히 저감시킬 수 있고, 결과적으로 상기 절연층(214)의 직류 절연내력의 저하 및 임펄스 파괴강도의 저하를 동시에 방지하거나 최소화할 수 있음을 실험적으로 확인함으로써 본 발명을 완성하였다.
나아가, 본 발명자들은 가교제의 함량이 1 중량% 미만으로 제한됨으로써 절연층(214)의 가교도가 저하되고, 결과적으로 상기 절연층(214)의 기계적, 열적 특성이 저하될 수 있는 문제는 상기 절연층(214)을 형성하는 절연 조성물에 포함되는 베이스 수지의 비닐기 함량을 증가시켜 60% 이상, 예를 들어 60 내지 70%의 가교도를 달성하여 해결할 수 있음을 실험적으로 확인함으로써 본 발명을 완성하였다.
구체적으로, 상기 절연층(214)은 이의 두께를 3등분하여 도체(210) 직상에 배치되는 하층인 내층, 상기 내층 위에 배치되는 중층 및 상기 중층 위에 배치되는 외층으로 구분할 때, 각 층에 포함된 상기 3종의 특정한 가교 부산물의 총 함량들의 평균값이 3,890 ppm 이하로 조절되어 상기 절연층(214) 내의 공간전하 생성이 억제됨으로써, 상기 절연층(214) 내에서의 전계왜곡의 정도를 나타내는 아래 수학식 1의 전계상승계수(Field Enhancement Factor; FEF)가 약 140% 이하로 조절되고, 결과적으로 상기 절연층(214)의 직류 절연내력의 저하 및 임펄스 파괴강도의 저하를 동시에 방지하거나 최소화할 수 있다.
[수학식 1]
FEF=(절연 시편에서 최대로 증가된 전계/절연 시편에 인가된 전계)*100
상기 수학식 1에서,
상기 절연 시편은 상기 절연층(214)을 형성하는 절연 조성물의 가교에 의해 제조되고 두께가 120 ㎛인 시편이고,
상기 절연 시편에 인가된 전계는 상기 절연 시편에서 서로 마주보는 면에 각각 연결된 전극에 인가된 직류 전계로서 50kV/mm이고,
상기 절연 시편에서 최대로 증가된 전계는 상기 절연 시편에 1시간 동안 50kV/mm의 직류 전계를 인가하는 과정에서 증가된 전계 중 최대값이다.
나아가, 상기 절연층(214) 중 상기 내층은 도체(210) 직상에 배치되어 내부반도전층(212)과의 이종계면을 형성하며, 상대적으로 고전계가 인가되어 절연에 취약한 부분이므로 상기 내층에 포함된 상기 3종의 특정한 가교 부산물의 총 함량이 3,990 ppm 이하로 조절되는 것이 더욱 바람직하다.
도 2는 본 발명에 따른 초고압 직류 전력케이블의 중간접속시스템의 실시예에 관한 구조를 개략적으로 도시한 것이다.
도 2에 도시된 바와 같이, 본 발명에 따른 초고압 직류 전력케이블의 중간접속시스템은 도체(210), 내부반도전층(212), 절연층(214), 외부반도전층(216) 등이 순차적으로 노출된 상기 한 쌍의 직류 전력케이블의 단부가 서로 대향하도록 구비되고, 상기 한 쌍의 직류 전력케이블의 각 단부에서 노출된 상기 도체(210)를 서로 전기적, 기계적으로 연결하는 도체접속부(400)를 구비하며, 상기 도체접속부(400)를 비롯하여 상기 도체(210), 케이블 내부반도전층(212), 케이블 절연층(214) 및 케이블 외부반도전층(216)이 순차적으로 노출된 상기 한 쌍의 직류 전력케이블의 각 단부를 둘러싸는 중간접속부(300)를 를 포함할 수 있다.
여기서, 상기 도체접속부(400)는 상기 한 쌍의 도체(210)에 슬리브를 끼우고 슬리브 외주면을 압착하거나, 슬리브에 삽입되는 한 쌍의 도체(210)를 상기 슬리브를 관통하는 볼트로 고정하거나, 한 쌍의 도체(210) 단부를 서로 용접하여 형성할 수 있다. 바람직하게는 압착 및 다듬질 후에 상기 슬리브의 외경을 상기 케이블 도체(210)의 외경과 유사하게 할 수 있는 동경 압착슬리브를 사용하거나 용접을 한 후 상기 도체접속부(400)와 상기 도체(210)의 외경이 유사해지도록 다듬질함으로써 상기 도체접속부의 두께를 최소화하여 상기 중간접속부(300)를 컴팩트하게 형성할 수 있다.
한편, 상기 중간접속부(300)는 중간접속부 내부반도전층(310), 중간접속부 절연층(320), 중간접속부 외부반도전층(330), 중간접속부 보호시스층(340) 등을 포함할 수 있다.
상기 중간접속부 내부반도전층(310), 외부반도전층(330) 및 상기 중간접속부 보호시스층(340)은 상기 케이블 연결부에서 순차적으로 박리된 케이블의 내부반도전층(212), 외부반도전층(214) 및 내부시스(220)의 기능을 복원하는 구성들로서 이들 각각의 구성은 기능을 복원하고자 하는 케이블의 내부반도전층(212), 외부반도전층(214) 및 내부시스(220)의 소재와 동일한 소재로 이루어질 수 있고, 예를 들어, 상기 중간접속부 내부반도전층(310)은 상기 케이블 내부반도전층과 동일한 소재로 이루어진 비가교 테이프의 횡권 후 가교에 의해 형성될 수 있으며, 상기 보호시스층(340)은 상기 케이블 내부반도전층과 동일한 소재로 이루어진 열수축 튜브를 이용하여 형성될 수 있다.
또한, 상기 중간접속부 내부반도전층(310)은 상기 도체접속부(400)를 비롯하여 노출된 도체(210)를 감싸고 케이블 절연층(214)이 박리되어 노출된 케이블 내부반도전층(212)을 부분적으로 감쌀 수 있으며, 상기 중간접속부 외부반도전층(330)은 상기 중간접속부 절연층(320) 및 노출된 케이블의 절연층(214)을 감싸는 금속시스층(218), 내부시스(220) 등이 박리되어 노출된 케이블 외부반도전층(216)을 부분적으로 감쌀 수 있으며, 상기 중간접속부 보호시스층(340)은 상기 중간접속부 외부반도전층(330)을 감싸고 케이블의 금속시스층(218), 내부시스(220) 등을 적어도 부분적으로 감쌀 수 있다.
상기 중간접속부 절연층(320)은 상기 중간접속부 내부반도전층(310) 및 노출된 케이블의 내부반도전층(212)을 감싸고 케이블 외부반도전층(216)이 박리되어 노출된 케이블 절연층(214)을 감쌀 수 있으며, 상기 케이블 절연층과 동일한 소재로 형성될 수 있고, 바람직하게는 상기 케이블 절연층과 동일한 소재로 이루어진 비가교 절연테이프를 횡권한 후 가교하여 형성될 수 있다.
그리고, 상기 중간접속부 절연층(320)은 양단부에 케이블 길이방향으로 형성된 경사면을 가질 수 있다. 상기 케이블 절연층(214)을 박리하여 케이블 내부반도전층(212)을 노출시키는 경우, 도 3에 도시된 바와 같이 상기 케이블 절연층(214)의 단부를 케이블 길이방향으로 펜슬링하며, 상기 중간접속부 절연층(320)은 상기 펜슬링된 케이블 절연층 단부의 형상에 대응하는 경사면을 양단부에 가지도록 하여 케이블 절연층과 중간접속부 절연층 간의 계면길이를 증가시킴으로써 절연성능을 향상시킬 수 있다.
본 발명자들은 상기 중간접속부 절연층(320)의 가교시 불가피하게 생성되는 가교 부산물 중 공간전하 생성을 유발하는 특정한 가교 부산물이 α-쿠밀알코올(α-cumyl alcohol; α-CA), 아세토페논(acetophenone; AP) 및 α-메틸스티렌(α-methyl styrene; α-MS)임을 실험적으로 확인했고, 상기 중간접속부 절연층(320)을 형성하는 절연 조성물에 포함되는 가교제의 함량을 1 중량% 미만으로 제한하고 상기 중간접속부 절연층(320)의 가교 후 탈가스화(degasing)를 통해 상기 특정한 가교 부산물의 함량을 제한할 수 있고, 특히 중간접속부 절연층(320)의 두께에서 위치별로 상기 특정한 가교 부산물의 함량을 제한할 수 있으며, 이러한 특정한 가교 부산물의 함량의 제한에 의해 공간전하 생성과 전계왜곡을 현저히 저감시킬 수 있고, 결과적으로 상기 중간접속부 절연층(320)의 직류 절연내력의 저하 및 임펄스 파괴강도의 저하를 동시에 방지하거나 최소화할 수 있음을 실험적으로 확인함으로써 본 발명을 완성하였다.
나아가, 본 발명자들은 가교제의 함량이 1 중량% 미만으로 제한됨으로써 중간접속부 절연층(320)의 가교도가 저하되고, 결과적으로 상기 중간접속부 절연층(320)의 기계적, 열적 특성이 저하될 수 있는 문제는 상기 중간접속부 절연층(320)을 형성하는 절연 조성물에 포함되는 베이스 수지의 비닐기 함량을 증가시켜 60% 이상, 예를 들어 60 내지 70%의 가교도를 달성하여 해결할 수 있음을 실험적으로 확인함으로써 본 발명을 완성하였다.
구체적으로, 상기 중간접속부 절연층(320)은 이의 두께를 3등분하여 상기 중간접속부 내부반도전층(310) 직상에 배치되는 하층인 내층, 상기 내층 위에 배치되는 중층 및 상기 중층 위에 배치되는 외층으로 구분할 때, 각 층에 포함된 상기 3종의 특정한 가교 부산물 각각의 함량이 4000 ppm 이하이고, 내층, 중층 및 외층에 각각 포함된 상기 3종의 특정한 가교 부산물 각각의 평균함량이 3000 ppm 이하로 조절되어 상기 중간접속부 절연층(320) 내의 공간전하 생성이 억제됨으로써, 상기 중간접속부 절연층(320) 내에서의 전계왜곡이 억제되고, 결과적으로 케이블 연결부에서의 직류 절연내력의 저하 및 임펄스 파괴강도의 저하를 동시에 방지하거나 최소화할 수 있다.
여기서, 상기 중간접속부 절연층(320)의 3등분은 상기 중간접속부 절연층(320) 중 두께가 일정한 일정 길이의 절연층(320) 부분에서 두께를 기준으로 3등분하는 것이다.
[실시예]
1. 케이블 절연 시편의 제조예
두께가 약 120 ㎛이고 가교제의 함량 및 탈가스화 시간의 조절에 따라 가교 후 층별/가교 부산물 종류별 가교 부산물의 함량이 아래 표 1에 나타난 바와 같이 조절된 케이블 절연 시편을 각각 제조했다.
가교부산물 함량(ppm)
α-CA AP α-MS 총합
비교예 1 내층 3112 1163 149 4424
중층 3037 1406 568 5011
외층 1919 1011 569 3499
평균 2689.3 1193.3 428.7 4311.3
비교예 2 내층 2947 1159 181 4287
중층 2885 1443 641 4969
외층 1667 853 475 2995
평균 2499.7 1151.7 432.3 4083.7
비교예 3 내층 2658 1073 261 3992
중층 2595 1378 722 4695
외층 1730 835 476 3041
평균 2327.7 1095.3 486.3 3909.3
실시예 1 내층 2681 1052 257 3990
중층 2509 1278 737 4524
외층 1799 859 498 3156
평균 2329.7 1063.0 497.3 3890.0
실시예 2 내층 2412 896 274 3582
중층 2359 1046 553 3958
외층 1463 540 373 2376
평균 2078.0 827.3 400.0 3305.3
실시예 3 내층 2254 854 259 3367
중층 2501 1065 507 4073
외층 1593 610 394 2597
평균 2116.0 843.0 386.7 3345.7
2. 중간접속부 절연층 시편의 제조예
두께가 약 120 ㎛이고 가교제의 함량 및 탈가스화 시간의 조절에 따라 가교 후 층별/가교 부산물 종류별 가교 부산물의 함량이 아래 표 2에 나타난 바와 같이 조절된 중간접속부 절연층 시편을 각각 제조했다.
가교부산물 함량(ppm)
α-CA AP α-MS 총합 평균
비교예 4 내층 8480 2403 445 11328 9904.67
중층 7831 2394 877 11102
외층 4326 1633 1325 7284
비교예 5 내층 4522 1896 1840 8258 4993
중층 650 1329 3005 4984
외층 34 360 1343 1737
비교예 6 내층 2502 893 323 3718 4214.67
중층 2808 1553 1364 5725
외층 847 1097 1257 3201
비교예 7 내층 2995 799 1084 4878 4030.67
중층 3383 783 479 4645
외층 1084 831 654 2569
실시예 4 내층 2389 918 689 3996 2998.67
중층 2769 659 571 3999
외층 168 428 405 1001
실시예 5 내층 2091 703 382 3176 2638.67
중층 1929 759 554 3242
외층 647 487 364 1498
실시예 6 내층 1567 752 676 2995 1797
중층 437 382 493 1312
외층 156 353 575 1084
2. 물성 평가
1) 케이블 절연 시편의 전계상승계수(FEF) 측정
비교예 1 내지 3 및 실시예 1 내지 3 각각의 절연 시편에서 서로 마주보는 각각의 면에 전극을 연결하여 직류 전계 50 kV/mm를 1시간 동안 인가하면서 수학식 1의 전계상승계수(FEF)를 측정했고, 측정 결과는 아래 표 3 및 도 3에 나타난 바와 같다.
FEF(%)
비교예 1 159
비교예 2 157
비교예 3 165
실시예 1 137
실시예 2 135
실시예 3 132
상기 표 3 및 도 3에 나타난 바와 같이, 3종의 특정 가교 부산물의 함량이 조절되지 않은 비교예 1 내지 3의 절연 시편은 공간전하 생성에 의한 전계왜곡을 나타내는 전계상승계수(FEF)가 160%에 가깝게 높게 나타났고, 이로써 절연내력이 크게 저하될 것으로 예측되었다.
반면, 본 발명에 따른 실시예 1 내지 3의 절연 시편은 3종의 특정 가교 부산물의 함량이 정밀하게 제어됨으로써 공간전하 생성이 억제되고 이로써 전계왜곡을 나타내는 전계상승계수(FEF)가 140% 이하로 낮게 조절되었고 결과적으로 절연내력의 저하가 최소화될 것으로 예측되었다.
2) 중간접속부 절연층 시편의 절연파괴전압(BDV) 측정
비교예 4 내지 7 및 실시예 4 내지 6 각각의 절연층 시편에서 서로 마주보는 각각의 면에 전극을 연결하여 전압을 인가하고 1kV/s의 속도로 승압시켜 절연파괴가 일어나는 시점의 인가된 전압을 측정했고, 측정 결과는 아래 표 4에 나타난 바와 같다.
BDV(kV/mm)
비교예 4 412.5
비교예 5 420.8
비교예 6 419.1
비교예 7 420.5
실시예 4 515.7
실시예 5 531.3
실시예 6 520.9
상기 표 4에 나타난 바와 같이, 3종의 특정 가교 부산물의 층별 함량 및 층별 함량의 평균값이 특정 수준을 초과하는 비교예 4 내지 7의 절연층 시편은 공간전하 생성에 의한 전계왜곡으로 절연내력이 크게 저하된 것으로 확인되었다.
반면, 본 발명에 따른 실시예 4 내지 6의 절연 시편은 3종의 특정 가교 부산물의 층별 함량 및 층별 함량의 평균값이 특정 수준 이하로 조절됨으로써 공간전하 생성에 의한 전계왜곡이 최소화되어 절연내력이 510 kV/mm 이상으로 유지된 것으로 확인되었다.
본 명세서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야의 당업자는 이하에서 서술하는 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경 실시할 수 있을 것이다. 그러므로 변형된 실시가 기본적으로 본 발명의 특허청구범위의 구성요소를 포함한다면 모두 본 발명의 기술적 범주에 포함된다고 보아야 한다.

Claims (20)

  1. 초고압 직류 전력케이블 중간접속 시스템으로서,
    복수개의 소선이 연선된 도체, 상기 도체를 둘러싸는 케이블 내부반도전층, 상기 케이블 절연층 및 케이블 외부반도전층을 포함하며, 상기 도체, 케이블 내부반도전층, 케이블 절연층, 케이블 외부반도전층이 순차적으로 노출된 단부가 서로 대향하도록 구비되는 한 쌍의 직류 전력케이블과,
    상기 한 쌍의 직류 전력케이블의 각 단부에서 노출된 상기 도체를 서로 전기적, 기계적으로 연결하는 도체접속부와,
    상기 도체접속부와 상기 도체, 케이블 내부반도전층, 케이블 절연층 및 케이블 외부반도전층이 순차적으로 노출된 상기 한 쌍의 직류 전력케이블의 각 단부를 둘러싸는 중간접속부를 구비하며,
    상기 중간접속부는 상기 도체접속부를 감싸는 중간접속부 내부반도전층, 상기 중간접속부 내부반도전층을 감싸는 중간접속부 절연층, 상기 중간접속부 절연층을 감싸는 중간접속부 외부반도전층, 및 상기 중간접속부 외부반도전층을 감싸는 중간접속부 보호시스층을 포함하고,
    상기 중간접속부 절연층은 폴리올레핀 수지 및 가교제를 포함하는 절연 조성물로부터 형성되며,
    상기 중간접속부 절연층은 이의 두께를 3등분하여 내층, 중층 및 외층으로 구분되며, 상기 내층에 포함된 가교부산물 중 α-쿠밀알코올(α-cumyl alcohol; α-CA), 아세토페논(acetophenone; AP) 및 α-메틸스티렌(α-methyl styrene; α-MS)α-쿠밀알코올(α-cumyl alcohol; α-CA)의 총 함량, 상기 중층에 포함된 가교부산물 중 α-쿠밀알코올(α-cumyl alcohol; α-CA), 아세토페논(acetophenone; AP) 및 α-메틸스티렌(α-methyl styrene; α-MS)α-쿠밀알코올(α-cumyl alcohol; α-CA)의 총 함량 및 상기 외층에 포함된 가교부산물 중 α-쿠밀알코올(α-cumyl alcohol; α-CA), 아세토페논(acetophenone; AP) 및 α-메틸스티렌(α-methyl styrene; α-MS)α-쿠밀알코올(α-cumyl alcohol; α-CA)의 총 함량 각각이 4,000 ppm 이하인 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템.
  2. 제1항에 있어서,
    상기 내층, 중층 및 외층에 포함된 상기 각각의 가교 부산물의 평균함량이 3000 ppm 이하인 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템.
  3. 제1항 또는 제2항에 있어서,
    상기 중간접속부 절연층의 절연파괴전압이 510 kV/mm 이상인 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템.
  4. 제1항 또는 제2항에 있어서,
    상기 폴리올레핀 수지는 폴리에틸렌 수지를 포함하는 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템.
  5. 제1항 또는 제2항에 있어서,
    상기 가교제는 과산화물계 가교제인 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템.
  6. 제5항에 있어서,
    상기 과산화물계 가교제는 디큐밀퍼옥사이드, 벤조일퍼옥사이드, 라우릴퍼옥사이드, t-부틸 큐밀퍼옥사이드, 디(t-부틸 퍼옥시 아이소프로필) 벤젠, 2,5-디메틸-2,5-디(t-부틸 퍼옥시)헥산 및 디-t-부틸 퍼옥사이드로 이루어진 그룹으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템.
  7. 제1항 또는 제2항에 있어서,
    상기 절연 조성물은 산화방지제, 압출성 향상제 및 가교조제로 이루어진 그룹으로부터 선택된 1종 이상의 첨가제를 추가로 포함하는 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템.
  8. 제1항 또는 제2항에 있어서,
    상기 중간접속부 절연층은 상기 절연 조성물을 포함하는 비가교 절연 테이프의 횡권 후 가교에 의해 형성되는 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템.
  9. 제1항 또는 제2항에 있어서,
    상기 도체접속부는 한 쌍의 도체 단부를 서로 용접함으로써 형성되는 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템.
  10. 제1항 또는 제2항에 있어서,
    상기 중간접속부 내부반도전층 또는 상기 중간접속부 외부반도전층을 형성하는 반도전 조성물은 이의 베이스 수지 100 중량부를 기준으로 가교제의 함량이 0.1 내지 5 중량부인 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템.
  11. 제10항에 있어서,
    상기 베이스 수지는 에틸렌 비닐 아세테이트(EVA), 에틸렌 메틸 아크릴레이트(EMA), 에틸렌 메틸 메타크릴레이트(EMMA), 에틸렌 에틸 아크릴레이트(EEA), 에틸렌 에틸 메타크릴레이트(EEMA), 에틸렌 (이소)프로필 아크릴레이트(EPA), 에틸렌 (이소)프로필 메타크릴레이트(EPMA), 에틸렌 부틸 아크릴레이트(EBA) 및 에틸렌 부틸 메타크릴레이트(EBMA)로 이루어진 그룹으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템.
  12. 제1항 또는 제2항에 있어서,
    상기 케이블 절연층은 폴리올레핀 수지 및 가교제를 포함하는 절연 조성물로부터 형성되며,
    상기 케이블 절연층은 이의 두께를 3등분하여 내층, 중층 및 외층으로 구분할 때 각 층에 포함된 가교 부산물 중 α-쿠밀알코올(α-cumyl alcohol; α-CA), 아세토페논(acetophenone; AP) 및 α-메틸스티렌(α-methyl styrene; α-MS)의 3종의 특정한 가교 부산물의 총 함량들의 평균값이 3,890 ppm 이하인 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템.
  13. 제12항에 있어서,
    상기 케이블 절연층 중 상기 내층에 포함된 상기 3종의 특정한 가교 부산물의 총 함량이 3,990 ppm 이하인 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템.
  14. 제13항에 있어서,
    아래 수학식 1로 정의되는 전계상승계수(Field Enhancement Factor; FEF)가 140% 이하인 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템.
    [수학식 1]
    FEF=(절연 시편에서 최대로 증가된 전계/절연 시편에 인가된 전계)*100
    상기 수학식 1에서,
    상기 절연 시편은 상기 케이블 절연층을 형성하는 절연 조성물의 가교에 의해 제조되고 두께가 120 ㎛인 시편이고,
    상기 절연 시편에 인가된 전계는 상기 절연 시편에서 서로 마주보는 면에 각각 연결된 전극에 인가된 직류 전계로서 50kV/mm이고,
    상기 절연 시편에서 최대로 증가된 전계는 상기 절연 시편에 1시간 동안 50kV/mm의 직류 전계를 인가하는 과정에서 증가된 전계 중 최대값이다.
  15. 제12항에 있어서,
    상기 폴리올레핀 수지는 폴리에틸렌 수지를 포함하는 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템.
  16. 제12항에 있어서,
    상기 가교제는 과산화물계 가교제인 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템.
  17. 제16항에 있어서,
    상기 과산화물계 가교제는 디큐밀퍼옥사이드, 벤조일퍼옥사이드, 라우릴퍼옥사이드, t-부틸 큐밀퍼옥사이드, 디(t-부틸 퍼옥시 아이소프로필) 벤젠, 2,5-디메틸-2,5-디(t-부틸 퍼옥시)헥산 및 디-t-부틸 퍼옥사이드로 이루어진 그룹으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템.
  18. 제12항에 있어서,
    상기 절연 조성물은 산화방지제, 압출성 향상제 및 가교조제로 이루어진 그룹으로부터 선택된 1종 이상의 첨가제를 추가로 포함하는 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템.
  19. 제1항 또는 제2항에 있어서,
    상기 전력케이블의 상기 내부 및 외부 반도전층을 형성하는 반도전 조성물은 이의 베이스 수지 100 중량부를 기준으로 가교제의 함량이 0.1 내지 5 중량부인 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템.
  20. 제19항에 있어서,
    상기 베이스 수지는 에틸렌 비닐 아세테이트(EVA), 에틸렌 메틸 아크릴레이트(EMA), 에틸렌 메틸 메타크릴레이트(EMMA), 에틸렌 에틸 아크릴레이트(EEA), 에틸렌 에틸 메타크릴레이트(EEMA), 에틸렌 (이소)프로필 아크릴레이트(EPA), 에틸렌 (이소)프로필 메타크릴레이트(EPMA), 에틸렌 부틸 아크릴레이트(EBA) 및 에틸렌 부틸 메타크릴레이트(EBMA)로 이루어진 그룹으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는, 초고압 직류 전력케이블의 중간접속시스템.
PCT/KR2017/014070 2017-05-31 2017-12-04 초고압 직류 전력케이블의 중간접속시스템 WO2018221804A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780091383.XA CN110709946B (zh) 2017-05-31 2017-12-04 超高压直流电力电缆的中间连接系统
US16/614,671 US10749277B2 (en) 2017-05-31 2017-12-04 Intermediate connection system for ultra-high-voltage direct current power cable
EP17912243.7A EP3633688A4 (en) 2017-05-31 2017-12-04 INTERMEDIATE CONNECTION SYSTEM FOR AN ULTRA-HIGH VOLTAGE DIRECT CURRENT CABLE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170067567 2017-05-31
KR10-2017-0067567 2017-05-31
KR10-2017-0155740 2017-11-21
KR1020170155740A KR102499648B1 (ko) 2017-05-31 2017-11-21 초고압 직류 전력케이블의 중간접속시스템

Publications (1)

Publication Number Publication Date
WO2018221804A1 true WO2018221804A1 (ko) 2018-12-06

Family

ID=64455847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/014070 WO2018221804A1 (ko) 2017-05-31 2017-12-04 초고압 직류 전력케이블의 중간접속시스템

Country Status (1)

Country Link
WO (1) WO2018221804A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113158383A (zh) * 2021-02-24 2021-07-23 西安交通大学 利用同轴简化模型准确评估直流电缆接头实际场强的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120103497A (ko) * 2011-03-08 2012-09-19 넥쌍 중압 또는 고압 전기 케이블
KR20150016500A (ko) * 2012-05-10 2015-02-12 다우 글로벌 테크놀로지스 엘엘씨 폴리부타디엔 가교 조제를 사용하여 제조한 에틸렌 중합체 전도체 코팅
JP5697037B2 (ja) * 2011-07-22 2015-04-08 株式会社ビスキャス 直流電力ケーブル及び直流電力線路の製造方法
KR20160084920A (ko) * 2015-01-06 2016-07-15 엘에스전선 주식회사 중간접속함
KR20160088780A (ko) * 2015-01-15 2016-07-26 엘에스전선 주식회사 조인트슬리브 및 중간접속구조

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120103497A (ko) * 2011-03-08 2012-09-19 넥쌍 중압 또는 고압 전기 케이블
JP5697037B2 (ja) * 2011-07-22 2015-04-08 株式会社ビスキャス 直流電力ケーブル及び直流電力線路の製造方法
KR20150016500A (ko) * 2012-05-10 2015-02-12 다우 글로벌 테크놀로지스 엘엘씨 폴리부타디엔 가교 조제를 사용하여 제조한 에틸렌 중합체 전도체 코팅
KR20160084920A (ko) * 2015-01-06 2016-07-15 엘에스전선 주식회사 중간접속함
KR20160088780A (ko) * 2015-01-15 2016-07-26 엘에스전선 주식회사 조인트슬리브 및 중간접속구조

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3633688A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113158383A (zh) * 2021-02-24 2021-07-23 西安交通大学 利用同轴简化模型准确评估直流电缆接头实际场强的方法
CN113158383B (zh) * 2021-02-24 2022-10-28 西安交通大学 利用同轴简化模型评估直流电缆接头实际场强的方法

Similar Documents

Publication Publication Date Title
WO2012060662A2 (ko) 절연 조성물 및 이를 포함하는 전기 케이블
KR102012603B1 (ko) 초고압 직류 전력케이블
CA2296361C (en) Optical fibre cable having high tracking resistance
KR20150022988A (ko) 공간 전하 트랩 층을 포함하는 디바이스
KR102499648B1 (ko) 초고압 직류 전력케이블의 중간접속시스템
WO2018221804A1 (ko) 초고압 직류 전력케이블의 중간접속시스템
US20210118593A1 (en) Direct current power cable
KR102256323B1 (ko) 초고압 직류 전력케이블
KR102256351B1 (ko) 초고압 직류 전력케이블
WO2018221803A1 (ko) 초고압 직류 전력케이블
WO2022010244A1 (ko) 고전압 전력 케이블
WO2020101161A1 (ko) 초고압 직류 전력케이블의 시스템
WO2018221802A1 (ko) 초고압 직류 전력케이블
KR20180130161A (ko) 초고압 직류 전력케이블용 중간접속함 및 이를 포함하는 초고압 직류 전력케이블 접속시스템
CN209880229U (zh) 一种防水可直埋光伏电缆
WO2023090466A1 (ko) 고전압 전력 케이블
KR20200078402A (ko) 용이하게 박리가능한 반도전층을 포함하는 케이블
WO2018135700A1 (ko) 전력 케이블
WO2023249399A1 (ko) 직류 전력케이블 시스템
EP3772069B1 (fr) Câble électrique présentant une conductivité thermique améliorée
WO2020171575A1 (ko) 전력케이블의 중간접속구조
WO2016104888A1 (ko) 내유성 및 내한성이 우수한 비할로겐계 절연 조성물 및 이로부터 형성된 절연층을 포함하는 전선
WO2018182073A1 (ko) 전력 케이블
WO2018147707A1 (ko) 유연성이 향상된 절연층을 구비한 전력케이블
WO2018182071A1 (ko) 전력 케이블

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17912243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017912243

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017912243

Country of ref document: EP

Effective date: 20200102