WO2018182111A1 - Carbon nanotube dispersion solution and preparation method therefor - Google Patents

Carbon nanotube dispersion solution and preparation method therefor Download PDF

Info

Publication number
WO2018182111A1
WO2018182111A1 PCT/KR2017/009612 KR2017009612W WO2018182111A1 WO 2018182111 A1 WO2018182111 A1 WO 2018182111A1 KR 2017009612 W KR2017009612 W KR 2017009612W WO 2018182111 A1 WO2018182111 A1 WO 2018182111A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
nanotube dispersion
weight
dispersion
carbon nanotubes
Prior art date
Application number
PCT/KR2017/009612
Other languages
French (fr)
Korean (ko)
Inventor
황창순
이경희
이애리
Original Assignee
태양쓰리시 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 태양쓰리시 주식회사 filed Critical 태양쓰리시 주식회사
Publication of WO2018182111A1 publication Critical patent/WO2018182111A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • C09D5/024Emulsion paints including aerosols characterised by the additives
    • C09D5/027Dispersing agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present invention relates to a carbon nanotube dispersion and a preparation method thereof.
  • the present invention is the result of the research carried out in support of the "Small and Medium Business Technology Innovation Development” of the Small and Medium Business Administration and Technology Information Agency (task unique number: 1425104887, detailed task number: S2312152).
  • the present invention is the result of research conducted by the Ministry of Trade, Industry and Energy and the Gangwon Regional Project Evaluation Team to support "Regional latest development project (non-R & D)" (task unique number: R0005121).
  • Carbon nanotubes are small molecules of 1 nanometer in diameter, in which carbons connected by hexagonal rings form a long shape, and have excellent electrical properties such as conductivity, reflectance, conductivity, and physical properties such as adhesion, durability, abrasion resistance, and bendability. And linear conductivity. Accordingly, the utilization of such materials as flat panel display devices, highly integrated memory devices, secondary batteries, ultracapacitors, hydrogen storage materials, electrochemical sensors, electromagnetic shielding, wires (cables), and the like is increasing.
  • carbon nanotubes may be applied by preparing a carbon nanotube dispersion in which carbon nanotubes are uniformly dispersed in a solvent or a polymer, and coating or spraying the same on an electrochemical device or component to form a carbon nanotube (film) layer.
  • carbon nanotubes are composed of only a few dozen carbon atoms in the circumference of several micrometers in length and have a very high aspect ratio, and due to attraction between carbon nanotubes, agglomeration occurs and dispersibility and dispersion stability. This is a low problem.
  • a super-rope carbon nanotube bundle ( Bundle) is prepared by dry milling, wet milling and mixing with a solvent to provide a carbon nanotube dispersion having a high concentration and high dispersion characteristics, but a separate device for dry milling and wet milling the carbon nanotubes;
  • the equipment is required, there is a problem that the dispersion of the carbon nanotube bundle is not complete, so that the dispersibility and dispersion stability improvement effect is insignificant.
  • the Republic of Korea Patent Publication No. 10-2012-0021807 surface-treated carbon nanotubes the surface of the carbon nanotubes surface-treated to include 0.1 to 10% by weight of functional groups including oxygen, nitrogen and sulfur or mixtures thereof
  • the present invention provides a high concentration of carbon nanotube dispersion with improved dispersibility and dispersion stability.
  • the surface modification of the carbon nanotube is required, the cost is increased and the effect of improving dispersibility and dispersion stability is insignificant. There was a problem.
  • the second object of the present invention is carbon nanotubes.
  • the present invention provides a method for preparing a nanotube dispersion.
  • the object of the present invention is not limited to the technical problem as described above, another technical problem can be derived from the following description.
  • a carbon nanotube dispersion comprising a surfactant, polyvinyl butyral and a solvent is provided.
  • the carbon nanotube dispersion is 1 to 8% by weight of the carbon nanotubes, 1 to 5% by weight of the surfactant, 3 to 25% by weight of the polyvinyl butyral and the solvent 65 to 90 based on the total weight of the carbon nanotube dispersion It may include weight percent.
  • the carbon nanotube dispersion may further include nano clays.
  • the carbon nanotube dispersion may include 0.01 to 0.1 wt% of the nano clay based on the total weight of the carbon nanotube dispersion.
  • the carbon nanotubes may have a particle diameter of 8 nanometers or less.
  • the carbon nanotubes may be mixed with a carbon nanotube having a particle size of 1 to 4 nanometers and carbon nanotubes having a particle size of 5 to 8 nanometers in a weight ratio of 1: 0.2 to 1.
  • the average degree of polymerization of the polyvinyl butyral may be 300 to 700.
  • the surfactant may be at least one selected from the group consisting of sodium dodecyl sulfate, sodium cholate hydrate, and sodium dodecyl benzene sulfonate.
  • the solvent is water, acetone, dimethyl sulfoxide, dimethylformamide, dimethylformamid, benzene, toluene, xylene, chloroform, pyridine, pyridine. It may include any one or more selected from the group consisting of, tetrahydrofuran (Tetrahydrofuran), methyl ethyl ketone, N-methyl-2-piperidone (N-Methyl-2-pyrrolidone).
  • the present invention is carbon nanotubes to achieve the second object.
  • the carbon nanotube dispersion is 1 to 8% by weight of the carbon nanotubes, 1 to 5% by weight of the surfactant, 3 to 25% by weight of the polyvinyl butyral and the solvent 65 to 90 based on the total weight of the carbon nanotube dispersion It may include weight percent.
  • the first step may further comprise a nanoclay.
  • the carbon nanotube dispersion may include 0.01 to 0.1 wt% of the nano clay based on the total weight of the carbon nanotube dispersion.
  • the carbon nanotubes may have a particle diameter of 8 nanometers or less.
  • the carbon nanotubes may be a mixture of carbon nanotubes having a particle diameter of 1 to 4 nanometers and carbon nanotubes having a particle diameter of 5 to 8 nanometers in a weight ratio of 1: 0.2 to 1.
  • the average degree of polymerization of the polyvinyl butyral may be 300 to 700.
  • the carbon nanotube dispersion of the present invention includes carbon nanotubes, a surfactant, polyvinyl butyral and a solvent, so that dispersibility, dispersion stability, and adhesion can be simultaneously improved.
  • Carbon nanotube dispersion method of the present invention is a carbon nanotube.
  • Nanotube dispersions can be provided.
  • Example 1 shows the measured UV absorbance of Example 1, Example 2, Comparative Example 1 and Comparative Example 2 of the present invention.
  • Example 2 is a view showing a state immediately after the preparation of the carbon nanotube dispersion prepared according to Example 2, Example 4, Comparative Example 11 and Comparative Example 12 and after 48 hours.
  • FIG 3 is a view showing a state immediately after the preparation of the carbon nanotube dispersion liquid of Examples 1 and 2, 1 hour after the preparation, 6 hours after, 12 hours after the preparation.
  • FIG. 4 is a view showing a state immediately after preparation of the carbon nanotube dispersion liquids of Comparative Examples 1, 2 and 16, 1 hour after preparation, 6 hours later, and 12 hours later.
  • a and / or B means A or B, or A and B.
  • the present invention provides a carbon nanotube dispersion.
  • Carbon nanotube dispersion according to an embodiment of the present invention is carbon nanotubes. It includes a surfactant, polyvinyl butyral and a solvent, thereby improving the dispersibility, dispersion stability and adhesion at the same time can provide a carbon nanotube dispersion having excellent dispersibility, dispersion stability and adhesion .
  • the carbon nanotube dispersion of the present embodiment is carbon nanotubes.
  • the carbon nanotubes may have a particle diameter of 8 nanometers or less, and when the particle diameter of the carbon nanotubes exceeds 8 nanometers, the weight of the carbon nanotubes increases as well as the carbon nanotube particles. There may be a problem that the cohesive force between them is reduced so that the dispersibility and dispersion stability of the carbon nanotube dispersion.
  • carbon nanotubes having a particle diameter of 8 nanometers or less may be used, and carbon nanotubes having a particle size of 1 to 4 nanometers and carbon nanotubes having a particle size of 5 to 8 nanometers may be mixed.
  • carbon nanotubes having different particle diameters are mixed and used, not only the aggregation between the carbon nanotube particles is reduced, but the carbon nanotubes having a relatively light particle diameter of 1 to 4 nanometers in the dispersion even after a certain time. Is positioned at the top and the carbon nanotubes having a relatively heavy particle diameter of 5 to 8 nanometers are positioned at the bottom to maintain a uniformly dispersed state.
  • the carbon nanotubes having a particle diameter of 1 to 4 nanometers and the carbon nanotubes having a particle diameter of 5 to 8 nanometers may be mixed in a weight ratio of 1: 0.2 to 1, preferably in a weight ratio of 1: 0.3 to 0.8, more Preferably it may be mixed in a weight ratio of 1: 0.5 to 0.6.
  • the carbon nanotube particles may be aggregated to reduce dispersibility and dispersion stability.
  • the weight ratio of the carbon nanotubes having a particle diameter of 5 to 8 nanometers is greater than 1, the carbon nanotubes that sink to the lower part of the dispersion are increased. Dispersibility and dispersion stability of the carbon nanotube dispersion may be lowered.
  • the carbon nanotube dispersion of the present embodiment may include 1 to 8% by weight, preferably 1 to 6% by weight, more preferably 2 to 5% by weight of the carbon nanotubes based on the total weight of the carbon nanotube dispersions. If the carbon nanotube dispersion contains less than 1 wt% of carbon nanotubes based on the total weight of the carbon nanotube dispersion, even if the carbon nanotube dispersion is applied to an electrochemical device or a component, the carbon nanotube dispersion does not exhibit electrical characteristics, and thus it may be meaningless. If the carbon nanotubes contain more than 8% by weight based on the total weight of the nanotube dispersion, there may be a problem in that the carbon nanotubes that do not disperse in the solvent and sink.
  • the surfactant may include any one or more selected from the group consisting of sodium dodecyl sulfate, sodium cholate hydrate, and sodium dodecyl benzene sulfonate. have.
  • sodium dodecyl sulfate as the surfactant, it is possible to further improve the dispersibility, dispersion stability and adhesion of the carbon nanotube dispersion.
  • the carbon nanotube dispersion of the present embodiment may include 1 to 5% by weight, preferably 1 to 4% by weight, more preferably 1.5 to 3% by weight of the surfactant based on the total weight of the carbon nanotube dispersion. If the carbon nanotube dispersion contains less than 1 wt% of surfactant based on the total weight of the carbon nanotube dispersion, not only the effect of improving the dispersibility, dispersion stability and adhesion of the carbon nanotube dispersion is generated but also agglomeration between the carbon nanotube particles occurs. There may be a problem that, if the surfactant contains more than 5% by weight based on the total weight of the carbon nanotube dispersion, there may be a problem that the electrostatic properties of the carbon nanotube is reduced.
  • Polyvinyl butyral also called polyvinyl butyral, is a resin synthesized by reacting polyvinyl alcohol with butyl aldehyde under an acid catalyst.
  • a polyvinyl butyral polymerization degree of 300 to 700 and a butylation degree of about 60 to 65 mol% may be used. If the degree of polymerization of the polyvinyl butyral is less than 300, there may be a problem that the adhesion of the carbon nanotube dispersion is lowered. If the degree of polymerization exceeds 700, the adhesion is improved but the dispersibility and dispersion stability are deteriorated. There may be.
  • Carbon nanotube dispersion of the present embodiment may include 3 to 25% by weight of the polyvinyl butyral based on the total weight of the carbon nanotube dispersion, preferably 4 to 20% by weight, more preferably 6 to 18% by weight May contain%. If the carbon nanotube dispersion contains less than 3% by weight of polyvinyl butyral based on the total weight of the carbon nanotube dispersion, the adhesion improvement effect may be insignificant, and the polyvinyl butyral based on the total weight of the carbon nanotube dispersion may be used.
  • the viscosity of the carbon nanotube dispersion becomes high, making it difficult to disperse or apply the carbon nanotube dispersion to the electrochemical device or component, and the viscosity of the polyvinyl butyral causes the carbon nanotube particles to clump. There may be a problem forming.
  • the carbon nanotube dispersion of the present embodiment as described above may further comprise a nano (clay), preferably may be a nano clay having a particle diameter of 1 to 100 nanometers.
  • the nanoclays of this embodiment may be natural clays, synthetic clays, and mixtures thereof, and for example, laponite, montmorillonite, hectorite, saponite, and baydelite ( Maudelite), nontronite (Nontronite) and the like, but is not limited thereto.
  • the nanoclay has an antistatic performance, it is possible to prevent the attraction of the carbon nanotube particles to aggregate by preventing the charging of the carbon nanotubes in the carbon nanotube dispersion of the present embodiment.
  • the nanoclay is viscous in the wet state, it can be entangled with carbon nanotubes to form agglomerates, and it is preferable to use a small amount because the nanoclay can be adsorbed with carbon nanotubes to form agglomerates.
  • the carbon nanotube dispersion of the present embodiment may include 0.01 to 0.1% by weight, preferably 0.02 to 0.08% by weight, more preferably 0.03 to 0.05% by weight, based on the total weight of the carbon nanotube dispersion. If the carbon nanotube dispersion contains less than 0.01% by weight of nanoclays based on the total weight of the carbon nanotube dispersion, the antistatic effect of the carbon nanotube may be low, and thus the effect of improving the dispersibility and dispersion stability of the carbon nanotube dispersion may be insignificant.
  • nanodispersion is contained in an amount of more than 0.1% by weight based on the total weight of the tube dispersion, carbon nanotubes and nanoclays may be entangled to form lumps, thereby forming a precipitate, which may cause a problem in that dispersibility and dispersion stability are deteriorated. have.
  • the solvent is water, acetone, dimethyl sulfoxide, dimethylformamide, benzene, benzene, toluene, xylene, chloroform, pyridine, pyridine, Tetrahydrofuran (Tetrahydrofuran), methyl ethyl ketone (methyl ethyl ketone), N-methyl-2- piperidone (N-Methyl-2-pyrrolidone), including but not limited to any one or more selected from the group consisting of carbon Anything that can be applied to the preparation of the nanotube dispersion can be used without limitation.
  • Carbon nanotube dispersion of the present embodiment may include 65 to 90% by weight, preferably 70 to 90% by weight, more preferably 75 to 90% by weight of the solvent based on the total weight of the carbon nanotube dispersion. If the solvent contains less than 65% by weight of the carbon nanotube dispersion, the viscosity of the carbon nanotube dispersion is increased, so that the usability decreases and a space (solvent) in which the carbon nanotube is uniformly dispersed. There may be a problem that the dispersibility and dispersion stability is not enough due to insufficient, and when the solvent contains more than 90% by weight based on the total weight of the carbon nanotube dispersion, the concentration of carbon nanotubes in the carbon nanotube dispersion is low Chemical properties may be lowered.
  • Carbon nanotube dispersion according to an embodiment of the present invention as described above is an antistatic material, electrostatic dispersion material, conductive material, electromagnetic shielding material, electromagnetic wave absorber, RF (Radio frequency) absorber, solar cell material, fuel material for electrode material , Electronic device material, semiconductor device material, optoelectronic device material, notebook component material, computer component material, mobile phone component material, PDA component material, PSP component material, game machine component material, housing material, transparent electrode material, opaque electrode material, electric field Emission display material, BLU (back light unit) material, liquid crystal display material, plasma display panel material, light emitting diode material, touch panel material, electronic board material, billboard material, display material, heating element, radiator, plating material, catalyst, bath Catalyst, oxidizing agent, reducing agent, automobile parts material, ship parts material, aircraft parts material, protective tape material, adhesive material, tray Materials, Clean Room Materials, Transportation Equipment Parts Materials, Flame Retardant Materials, Antibacterial Materials, Metal Composites, Non-Ferrous Metal Composites, Medical Device
  • the present invention provides a method for producing a carbon nanotube dispersion.
  • Carbon nanotube dispersion method is carbon nanotubes.
  • the present embodiment further comprises a clay in the carbon nanotubes, the surfactant, polyvinyl butyral and the solvent, the carbon nanotubes having a particle diameter of 1 to 4 nanometers and the particle diameter of 5 to 8 nanometers Dispersibility and dispersion stability and adhesion can be further improved by using a mixture of carbon nanotubes in a weight ratio of 1: 0.2 to 1 while using a polymerization degree of polyvinyl butyral of 300 to 1000.
  • a mixture is prepared by mixing a surfactant, polyvinyl butyral and a solvent.
  • a mixture is prepared by mixing the carbon nanotubes, the surfactant, the polyvinyl butyral, and the solvent, wherein the nano clay may be further mixed with the mixture.
  • the carbon nanotube dispersion is based on the total weight of the carbon nanotubes 1 to 8% by weight, surfactant 1 to 5% by weight, polyvinyl butyral 3 to 25% by weight, solvent 65 to 90% by weight and nano It may include 0.01 to 0.1% by weight of clay, the material constituting the mixture with the carbon nanotube dispersion in the first step of the present embodiment and their weight ratio (wt%) is the same.
  • agitation may be performed for uniform mixing of carbon nanotubes, a surfactant, polyvinylurethane, a solvent, and clay, and a stirring speed may be 200 to 500 rpm, but is not limited thereto.
  • the carbon nanotubes may have a particle diameter of 8 nanometers or less, and when the particle diameter of the carbon nanotubes exceeds 8 nanometers, the weight of the carbon nanotubes increases as well as the carbon nanotube particles. There may be a problem that the cohesive force between them is reduced so that the dispersibility and dispersion stability of the carbon nanotube dispersion.
  • carbon nanotubes having a particle diameter of 8 nanometers or less may be used, and carbon nanotubes having a particle size of 1 to 4 nanometers and carbon nanotubes having a particle size of 5 to 8 nanometers may be mixed.
  • carbon nanotubes having different particle diameters are mixed and used, not only the aggregation between the carbon nanotube particles is reduced, but the carbon nanotubes having a relatively light particle diameter of 1 to 4 nanometers in the dispersion even after a certain time. Is positioned at the top and the carbon nanotubes having a relatively heavy particle diameter of 5 to 8 nanometers are positioned at the bottom to maintain a uniformly dispersed state.
  • the carbon nanotubes having a particle diameter of 1 to 4 nanometers and the carbon nanotubes having a particle diameter of 5 to 8 nanometers may be mixed in a weight ratio of 1: 0.2 to 1, preferably in a weight ratio of 1: 0.3 to 0.8, more Preferably it may be mixed in a weight ratio of 1: 0.5 to 0.6.
  • the carbon nanotube particles may be aggregated to reduce dispersibility and dispersion stability.
  • the weight ratio of the carbon nanotubes having a particle diameter of 5 to 8 nanometers is greater than 1, the carbon nanotubes that sink to the lower part of the dispersion are increased. Dispersibility and dispersion stability of the carbon nanotube dispersion may be lowered.
  • the carbon nanotube dispersion of the present embodiment may include 1 to 8% by weight, preferably 1 to 6% by weight, more preferably 2 to 5% by weight of the carbon nanotubes based on the total weight of the carbon nanotube dispersions . If the carbon nanotube dispersion contains less than 1 wt% of carbon nanotubes based on the total weight of the carbon nanotube dispersion, even if the carbon nanotube dispersion is applied to an electrochemical device or a component, the carbon nanotube dispersion does not exhibit electrical characteristics, and thus it may be meaningless. If the carbon nanotubes contain more than 8% by weight based on the total weight of the nanotube dispersion, there may be a problem in that the carbon nanotubes that do not disperse in the solvent and sink.
  • the surfactant may include any one or more selected from the group consisting of sodium dodecyl sulfate, sodium cholate hydrate, and sodium dodecyl benzene sulfonate. have.
  • sodium dodecyl sulfate as the surfactant, it is possible to further improve the dispersibility, dispersion stability and adhesion of the carbon nanotube dispersion.
  • the carbon nanotube dispersion of the present embodiment may include 1 to 5% by weight, preferably 1 to 4% by weight, more preferably 1.5 to 3% by weight of the surfactant based on the total weight of the carbon nanotube dispersion. If the carbon nanotube dispersion contains less than 1 wt% of surfactant based on the total weight of the carbon nanotube dispersion, not only the effect of improving the dispersibility, dispersion stability and adhesion of the carbon nanotube dispersion is generated but also agglomeration between the carbon nanotube particles occurs. There may be a problem that, if the surfactant contains more than 5% by weight based on the total weight of the carbon nanotube dispersion, there may be a problem that the electrostatic properties of the carbon nanotube is reduced.
  • Polyvinyl butyral also called polyvinyl butyral, is a resin synthesized by reacting polyvinyl alcohol with butyl aldehyde under an acid catalyst.
  • a polyvinyl butyral polymerization degree of 300 to 700 and a butylation degree of about 60 to 65 mol% may be used. If the degree of polymerization of the polyvinyl butyral is less than 300, there may be a problem that the adhesion of the carbon nanotube dispersion is lowered. If the degree of polymerization exceeds 700, the adhesion is improved but the dispersibility and dispersion stability are deteriorated. There may be.
  • Carbon nanotube dispersion of the present embodiment may include 3 to 25% by weight of the polyvinyl butyral based on the total weight of the carbon nanotube dispersion, preferably 4 to 20% by weight, more preferably 6 to 18% by weight May contain%. If the carbon nanotube dispersion contains less than 3% by weight of polyvinyl butyral based on the total weight of the carbon nanotube dispersion, the adhesion improvement effect may be insignificant, and the polyvinyl butyral based on the total weight of the carbon nanotube dispersion may be used.
  • the viscosity of the carbon nanotube dispersion becomes high, making it difficult to disperse or apply the carbon nanotube dispersion to the electrochemical device or component, and the viscosity of the polyvinyl butyral causes the carbon nanotube particles to clump. It may form or have a problem.
  • the first step of the present embodiment may further include a nano clay (clay), preferably may be nano clay having a particle diameter of 1 to 100 nanometers.
  • the nanoclays of this embodiment may be natural clays, synthetic clays, and mixtures thereof, and for example, laponite, montmorillonite, hectorite, saponite, and baydelite ( Crusherllite), nontronite (Nontronite) and the like, but is not limited thereto.
  • the nanoclay has an antistatic performance, it is possible to prevent the attraction of the carbon nanotubes in the carbon nanotube dispersion of the present embodiment to agglomeration generated by the attraction of the carbon nanotube particles.
  • the nanoclay since the nanoclay is viscous in the wet state, it can be entangled with carbon nanotubes to form agglomerates, and it is preferable to use a small amount because the nanoclay can be adsorbed with carbon nanotubes to form agglomerates.
  • the carbon nanotube dispersion of the present embodiment may include 0.01 to 0.1% by weight, preferably 0.02 to 0.08% by weight, more preferably 0.03 to 0.05% by weight, based on the total weight of the carbon nanotube dispersion. If the carbon nanotube dispersion contains less than 0.01% by weight of nanoclays based on the total weight of the carbon nanotube dispersion, the antistatic effect of the carbon nanotube may be low, and thus the effect of improving the dispersibility and dispersion stability of the carbon nanotube dispersion may be insignificant.
  • nanodispersion is contained in an amount of more than 0.1% by weight based on the total weight of the tube dispersion, carbon nanotubes and nanoclays may be entangled to form lumps, thereby forming a precipitate, which may cause a problem in that dispersibility and dispersion stability are deteriorated. have.
  • the solvent is water, acetone, dimethyl sulfoxide, dimethylformamide, benzene, benzene, toluene, xylene, chloroform, pyridine, pyridine, Tetrahydrofuran (Tetrahydrofuran), methyl ethyl ketone (methyl ethyl ketone), N-methyl-2- piperidone (N-Methyl-2-pyrrolidone), including but not limited to any one or more selected from the group consisting of carbon Anything that can be applied to the preparation of the nanotube dispersion can be used without limitation.
  • Carbon nanotube dispersion of the present embodiment may include 65 to 90% by weight, preferably 70 to 90% by weight, more preferably 75 to 90% by weight of the solvent based on the total weight of the carbon nanotube dispersion. If the solvent contains less than 65% by weight of the carbon nanotube dispersion, the viscosity of the carbon nanotube dispersion is increased, so that the usability decreases and a space (solvent) in which the carbon nanotube is uniformly dispersed. There may be a problem that the dispersibility and dispersion stability is not enough due to insufficient, and when the solvent contains more than 90% by weight based on the total weight of the carbon nanotube dispersion, the concentration of carbon nanotubes in the carbon nanotube dispersion is low Chemical properties may be lowered.
  • the mixture of the carbon nanotubes, the surfactant, the polyvinyl butyral, the nanoclay, and the solvent prepared in the first step according to the present embodiment may be sonicated for uniform dispersion of the carbon nanotubes.
  • the sonication may be carried out at 20 to 70 kHz, preferably at 20 to 45 kHz, more preferably at 30 to 40 kHz. If the sound wave treatment of the mixture is less than 20 kHz, there may be a problem that the carbon nanotubes are not uniformly dispersed and the dispersibility and dispersion stability is lowered, and the sound wave treatment is performed in excess of 70 kHz. There may be a problem in that the structure of the carbon nanotubes is deformed to deteriorate the characteristics of the carbon nanotubes themselves.
  • the carbon nanotube dispersion can be prepared by performing a sonic treatment on the mixture as described above. Meanwhile, a separate heating process may be performed in the first and second steps, and the heating may be performed within a range that does not affect the curing of the polyvinyl butyral.
  • Carbon nanotube dispersion of the embodiment of the present invention prepared as described above is an antistatic material, electrostatic dispersion material, conductive material, electromagnetic shielding material, electromagnetic wave absorbing material, RF (Radio frequency) absorbing material, solar cell material, fuel sensitive battery electrode material , Electronic device material, semiconductor device material, optoelectronic device material, notebook component material, computer component material, mobile phone component material, PDA component material, PSP component material, game machine component material, housing material, transparent electrode material, opaque electrode material, electric field Emission display material, BLU (back light unit) material, liquid crystal display material, plasma display panel material, light emitting diode material, touch panel material, electronic board material, billboard material, display material, heating element, radiator, plating material, catalyst, bath Catalyst, oxidizing agent, reducing agent, automobile parts material, ship parts material, aircraft parts material, protective tape material, adhesive material, tray Materials, Clean Room Materials, Transportation Equipment Parts Materials, Flame Retardant Materials, Antibacterial Materials, Metal Composites, Non-Ferrous Metal Composites,
  • NMP N-methyl-2piperidone
  • NMP N-methyl-2 piperidone
  • Nanoclay (hectorite) was prepared in the same manner as in Example 2 except for including 1 g and 77.2 g of NMP.
  • Nanoclay (hectorite) was prepared in the same manner as in Example 2 except for 5 g and NMP 73.2 g.
  • Carbon nanotubes were prepared in the same manner as in Example 2 except for using only those having a particle diameter of 10 nanometers.
  • Carbon nanotubes were prepared in the same manner as in Example 2 except for using only 100 nanometers in particle size.
  • Carbon nanotubes were prepared in the same manner as in Example 2 except that 0.5 g and NMP 81.95 g were used.
  • Carbon nanotubes were prepared in the same manner as in Example 2, except that 10 g and NMP 72.95 g were used.
  • Sodium dodecyl sulfate was prepared in the same manner as in Example 2 except that 0.5 g and NMP 79.65 g were used.
  • a sodium dodecyl sulfate was prepared in the same manner as in Example 2 except for using 4 g and NMP 76.15 g.
  • Polyvinylbutyral was prepared in the same manner as in Example 2 except for using 2 g and NMP 91.15 g.
  • Polyvinylbutyral was prepared in the same manner as in Example 2, except that 30 g and NMP 63.15 g were used.
  • a polyvinyl butyral was prepared in the same manner as in Example 2 except that the polymerization degree was 100.
  • a polyvinyl butyral was prepared in the same manner as in Example 2 except that the polymerization degree was 1000.
  • the surface resistance when using the carbon nanotube dispersion according to the embodiment has a value of about 7 to 13
  • the surface resistance when using the carbon nanotube dispersion according to the comparative example is about 27 ⁇ 100
  • Comparative Example 14 can be confirmed that the measurement of the surface resistance due to the viscosity, which means that the dispersion, dispersion stability and adhesion of the carbon nanotube dispersion according to the embodiment of the present invention is remarkably excellent do.
  • Particle size analyzer Particle Size Analyzer
  • UV absorbance of Example 1, Example 2, Comparative Example 1 and Comparative Example 2 was measured and shown in FIG.
  • the carbon nanotube dispersions according to Examples 1, 2, Comparative Example 1 and Comparative Example 2 were diluted 100-fold using N-methyl-2piperidone (NMP), and then UV-Visible spectrometer (LAMBDA 750 from Perkinelmer). Model: 190nm ⁇ 2100nm can be analyzed) their UV absorbance was measured.
  • NMP N-methyl-2piperidone
  • LAMBDA 750 UV-Visible spectrometer
  • design A refers to Comparative Example 2
  • Design B refers to Comparative Example 1
  • Design C refers to Example 1
  • Design D refers to Example 2.
  • the absorbance (the degree of light absorption) is proportional to the concentration of the material, so high absorbance means that the carbon nanotubes that can absorb UV are evenly dispersed in a high concentration.
  • Example 2 sodium dodecyl sulfate
  • Example 4 sodium cholate hydrate
  • Comparative Example 11 Triton X-100
  • Comparative Example 12 Triton X-405
  • the carbon nanotube dispersions prepared according to Examples 2 (sodium dodecyl sulfate) and Example 4 (sodium cholate hydrate) are excellent in both dispersibility and dispersion stability immediately after preparation and after 48 hours. Bar, according to this embodiment means that both dispersibility and dispersion stability are excellent.
  • Comparative Example 11 Triton X-100
  • Comparative Example 12 (Triton X-405) showed a dispersibility similar to that of the Example immediately after preparation, but after 48 hours it can be seen that the layer is separated, it can be seen that the dispersion stability is significantly reduced.
  • Example 1 Example 2, Comparative Example 1, Comparative Example 2, Comparative Example 16 containing the carbon nanotube dispersion in a vial bottle, immediately after shaking about 10 to 30 times, after 1 hour, after 6 hours, The state after 12 hours is shown in FIGS. 3 and 4.
  • Example 1 looking at Examples 1 and 2, it can be seen that the dispersibility and dispersion stability of Example 2 including the nano clay is better, which means that the dispersibility and dispersion stability is improved according to the use of the nano clay.
  • Examples 1 and 2 and Comparative Examples 1 and 2 it can be seen that when the nanoclay is added, but exceeds the weight% presented in the present invention, the dispersibility and dispersion stability is rather reduced.
  • Example 2 it can be seen from the comparison between Example 2 and Comparative Example 16 that the degree of dispersibility and dispersion stability is lowered when the degree of polymerization of polyvinyl butyral does not satisfy the range set forth in the present invention.

Abstract

The present invention relates to a carbon nanotube dispersion solution and a preparation method therefor. The carbon nanotube dispersion solution of the present invention comprises a carbon nanotube, a surfactant, a polyvinyl butyral, and a solvent and, particularly, further comprises clay, and can have excellent dispersibility, dispersion stability, and adhesive strength according to the use of a polyvinyl butyral having a degree of polymerization of 300-1,000 while using, as the carbon nanotube, a mixture of a carbon nanotube having a diameter of 1-4 nm and a carbon nanotube having a diameter of 5-8 nm in a weight ratio of 1:0.2-1. In addition, the method for preparing the carbon nanotube dispersion solution, of the present invention, comprises: a first step of preparing a mixture by mixing a carbon nanotube, a surfactant, a polyvinyl butyral, and a solvent; and a second step of sonicating the mixture, and thus a carbon nanotube dispersion solution having excellent dispersibility, dispersion stability, and adhesive strength can be prepared.

Description

탄소나노튜브 분산액 및 이의 제조방법Carbon nanotube dispersion and its manufacturing method
본 발명은 탄소나노튜브 분산액 및 이의 제조방법에 관한 것이다.The present invention relates to a carbon nanotube dispersion and a preparation method thereof.
본 발명은 중소기업청과 기술정보진흥원의 "중소기업기술혁신개발" 지원으로 수행된 연구 결과이다(과제고유번호 : 1425104887, 세부과제번호 : S2312152). 또한, 본 발명은 산업통상자원부와 강원지역사업평가단의 "지역주력육성사업(비R&D)"지원으로 수행된 연구 결과이다(과제고유번호 : R0005121).The present invention is the result of the research carried out in support of the "Small and Medium Business Technology Innovation Development" of the Small and Medium Business Administration and Technology Information Agency (task unique number: 1425104887, detailed task number: S2312152). In addition, the present invention is the result of research conducted by the Ministry of Trade, Industry and Energy and the Gangwon Regional Project Evaluation Team to support "Regional flagship development project (non-R & D)" (task unique number: R0005121).
탄소나노튜브는 6각형 고리로 연결된 탄소들이 긴 대롱 모양을 이루는 지름 1 나노미터의 미세한 분자로, 전도성, 반사율, 전도성 등의 전기적 특성과 접착력, 내구성, 내마모성, 굴곡성 등의 물리적 특성이 우수하면서도 균일하고 선형적인 전도도를 가진다. 이에 따라, 평면표시소자, 고집적 메모리소자, 이차전지, 초고용량 캐패시터, 수소저장 소재, 전기화학 센서, 전자파 차폐, 전선(케이블) 등 전기화학 장치 내지 부품의 재료로서 활용도가 높아지고 있다.Carbon nanotubes are small molecules of 1 nanometer in diameter, in which carbons connected by hexagonal rings form a long shape, and have excellent electrical properties such as conductivity, reflectance, conductivity, and physical properties such as adhesion, durability, abrasion resistance, and bendability. And linear conductivity. Accordingly, the utilization of such materials as flat panel display devices, highly integrated memory devices, secondary batteries, ultracapacitors, hydrogen storage materials, electrochemical sensors, electromagnetic shielding, wires (cables), and the like is increasing.
일반적으로 탄소나노튜브는 탄소나노튜브가 용매 또는 고분자 내에 균일하게 분산된 탄소나노튜브 분산액을 제조하고, 이를 전기화학 장치 내지 부품에 도포 내지 분사하여 탄소나노튜브(필름)층을 형성함으로써 적용될 수 있다. 그러나, 탄소나노튜브는 원주가 불과 수십 개의 탄소 원자로 이루어진 반면 길이는 수 마이크로미터에 달해 종횡비(Aspect ratio)가 매우 크며, 탄소나노튜브 사이의 인력으로 인해 응집되는 현상이 발생되어 분산성 및 분산 안정성이 낮은 문제가 있다. 이로 인해, 탄소나노튜브가 용매 또는 고분자 내에 균일하게 분산된 형태의 탄소나노튜브 분산액의 제조가 어려울 뿐 아니라, 탄소나노튜브가 균일하게 분산된 탄소나노튜브(필름)층을 형성할 수 없어 전기화학 특성이 충분히 향상되지 못하는 문제가 있었다.In general, carbon nanotubes may be applied by preparing a carbon nanotube dispersion in which carbon nanotubes are uniformly dispersed in a solvent or a polymer, and coating or spraying the same on an electrochemical device or component to form a carbon nanotube (film) layer. . However, carbon nanotubes are composed of only a few dozen carbon atoms in the circumference of several micrometers in length and have a very high aspect ratio, and due to attraction between carbon nanotubes, agglomeration occurs and dispersibility and dispersion stability. This is a low problem. As a result, it is difficult to prepare a carbon nanotube dispersion in which carbon nanotubes are uniformly dispersed in a solvent or a polymer, and cannot form a carbon nanotube (film) layer in which carbon nanotubes are uniformly dispersed. There was a problem that the characteristics were not sufficiently improved.
이러한 문제를 해결하기 위해, 탄소나노튜브의 분산성 및 분산 안정성을 향상시키기 위한 다양한 방법이 시도되고 있으며, 대한민국 공개특허 제10-2013-0053015호에서는 수퍼 로프(Super-rope) 탄소나노튜브 번들(Bundle)을 건식 분쇄하고, 이를 습식 분쇄한 뒤 용매와 혼합함으로써 제조되어, 고농도 및 고분산 특성을 가지는 탄소나노튜브 분산액을 제공하고 있으나, 탄소나노튜브를 건식 분쇄 및 습식 분쇄하기 위한 별도의 장치 내지 장비가 요구되는 문제가 있으며, 탄소나노튜브 번들의 분쇄가 완전하지 않아 분산성 및 분산 안정성 향상 효과가 미미한 문제가 있었다.In order to solve this problem, various methods for improving the dispersibility and dispersion stability of carbon nanotubes have been attempted, and in Korean Patent Laid-Open No. 10-2013-0053015, a super-rope carbon nanotube bundle ( Bundle) is prepared by dry milling, wet milling and mixing with a solvent to provide a carbon nanotube dispersion having a high concentration and high dispersion characteristics, but a separate device for dry milling and wet milling the carbon nanotubes; There is a problem that the equipment is required, there is a problem that the dispersion of the carbon nanotube bundle is not complete, so that the dispersibility and dispersion stability improvement effect is insignificant.
또한, 대한민국 공개특허 제10-2012-0021807호에서는 탄소나노의 표면을 표면처리하여, 산소, 질소 및 황 또는 이들의 혼합물을 포함하는 작용기가 0.1 ~ 10 중량%로 포함되도록 표면처리된 탄소나노튜브를 제조하고, 이를 이용하여 분산성 및 분산 안정성이 향상된 고농도 탄소나노튜브 분산액을 제공하고 있으나, 탄소나노튜브의 표면 개질이 필요함에 따라 비용이 증가될 뿐 아니라 분산성 및 분산 안정성 향상 효과가 미미하다는 문제가 있었다. 게다가, 상기의 특허들은 탄소나노튜브 분산액의 분성성 향상에 대해서만 고려하고 있을 뿐, 탄소나노튜브 분산액의 접착력 향상에 대해서는 전혀 고려하고 있지 않아, 탄소나노튜브 분산액의 분산성 및 분산 안정성과 접착력이 동시에 향상될 수 있는 기술의 개발이 요구되고 있다.In addition, the Republic of Korea Patent Publication No. 10-2012-0021807 surface-treated carbon nanotubes, the surface of the carbon nanotubes surface-treated to include 0.1 to 10% by weight of functional groups including oxygen, nitrogen and sulfur or mixtures thereof The present invention provides a high concentration of carbon nanotube dispersion with improved dispersibility and dispersion stability. However, as the surface modification of the carbon nanotube is required, the cost is increased and the effect of improving dispersibility and dispersion stability is insignificant. There was a problem. In addition, the above patents only consider the improvement of the powder property of the carbon nanotube dispersion, but do not consider the improvement of the adhesion of the carbon nanotube dispersion, so that the dispersibility, dispersion stability and adhesion of the carbon nanotube dispersion are simultaneously There is a need for development of techniques that can be improved.
본 발명의 첫 번째 목적은 탄소나노튜브, 계면활성제, 폴리비닐부티랄 및 용매를 포함함으로써, 분산성 및 분산 안정성과 접착력이 동시에 향상되는 탄소나노튜브 분산액을 제공하는 데에 있다.It is a first object of the present invention to provide a carbon nanotube dispersion in which dispersibility, dispersion stability and adhesion are simultaneously improved by including carbon nanotube, a surfactant, polyvinyl butyral and a solvent.
본 발명의 두 번째 목적은 탄소나노튜브. 계면활성제, 폴리비닐부티랄(Polyvinyl butyral) 및 용매를 혼합하여 혼합물을 제조하는 제 1 단계 및 상기 혼합물을 음파처리하는 제 2 단계를 포함함에 따라, 분산성 및 분산 안정성과 접착력이 동시에 향상되는 탄소나노튜브 분산액의 제조방법을 제공하는 데에 있다.The second object of the present invention is carbon nanotubes. A first step of preparing a mixture by mixing a surfactant, polyvinyl butyral and a solvent, and a second step of sonicating the mixture, thereby improving carbon dispersibility and dispersion stability and adhesion at the same time. The present invention provides a method for preparing a nanotube dispersion.
본 발명의 목적은 상기된 바와 같은 기술적 과제로 한정되지 않으며, 이하의 설명으로부터 또 다른 기술적 과제가 도출될 수 있다.The object of the present invention is not limited to the technical problem as described above, another technical problem can be derived from the following description.
상기 첫 번째 목적을 달성하기 위하여 본 발명은 탄소나노튜브. 계면활성제, 폴리비닐부티랄(Polyvinyl butyral) 및 용매를 포함하는 탄소나노튜브 분산액을 제공한다.The present invention to achieve the first object carbon nanotubes. A carbon nanotube dispersion comprising a surfactant, polyvinyl butyral and a solvent is provided.
상기 탄소나노튜브 분산액은 상기 탄소나노튜브 분산액 총 중량 기준으로 상기 탄소나노튜브 1 ~ 8 중량%, 상기 계면활성제 1 ~ 5 중량%, 상기 폴리비닐부티랄 3 ~ 25 중량% 및 상기 용매 65 ~ 90 중량%를 포함할 수 있다.The carbon nanotube dispersion is 1 to 8% by weight of the carbon nanotubes, 1 to 5% by weight of the surfactant, 3 to 25% by weight of the polyvinyl butyral and the solvent 65 to 90 based on the total weight of the carbon nanotube dispersion It may include weight percent.
상기 탄소나노튜브 분산액은 나노 클레이(Clay)를 더 포함할 수 있다.The carbon nanotube dispersion may further include nano clays.
상기 탄소나노튜브 분산액은 상기 탄소나노튜브 분산액 총 중량 기준으로 상기 나노 클레이를 0.01 ~ 0.1 중량%를 포함할 수 있다.The carbon nanotube dispersion may include 0.01 to 0.1 wt% of the nano clay based on the total weight of the carbon nanotube dispersion.
상기 탄소나노튜브는 입경이 8 나노미터 이하일 수 있다.The carbon nanotubes may have a particle diameter of 8 nanometers or less.
상기 탄소나노튜브는 입경이 1 ~ 4 나노미터인 탄소나노튜브 및 입경이 5 ~ 8 나노미터인 탄소나노튜브가 1 : 0.2 ~ 1의 중량비로 혼합될 수 있다.The carbon nanotubes may be mixed with a carbon nanotube having a particle size of 1 to 4 nanometers and carbon nanotubes having a particle size of 5 to 8 nanometers in a weight ratio of 1: 0.2 to 1.
상기 폴리비닐부티랄의 평균 중합도는 300 ~ 700 일 수 있다.The average degree of polymerization of the polyvinyl butyral may be 300 to 700.
상기 계면활성제는 도데실 황산 나트륨(Sodium dodecyl sulfate), 소듐 콜레이트 하이드레이트(Sodium cholate hydrate), 소듐 도데실벤젠 설폰산염(Sodium dodecyl benzene sulfonate)으로 이루어진 군에서 선택된 어느 하나 이상일 수 있다.The surfactant may be at least one selected from the group consisting of sodium dodecyl sulfate, sodium cholate hydrate, and sodium dodecyl benzene sulfonate.
상기 용매는 물, 아세톤(Acetone), 디메틸설폭사이드(Dimethlyl sulfoxide), 디메틸폼아미드(Dimethylformamid), 벤젠(Benzene), 톨루엔(Toluene), 자일렌(Xylene), 클로로포름(Chloroform), 피리딘(Pyridine), 테트라하이드로퓨란(Tetrahydrofuran), 메틸에틸케톤(methyl ethyl ketone), N-메틸-2-피페리돈(N-Methyl-2-pyrrolidone)으로 이루어진 군에서 선택된 어느 하나 이상을 포함할 수 있다.The solvent is water, acetone, dimethyl sulfoxide, dimethylformamide, dimethylformamid, benzene, toluene, xylene, chloroform, pyridine, pyridine. It may include any one or more selected from the group consisting of, tetrahydrofuran (Tetrahydrofuran), methyl ethyl ketone, N-methyl-2-piperidone (N-Methyl-2-pyrrolidone).
상기 두 번째 목적을 달성하기 위하여 본 발명은 탄소나노튜브. 계면활성제, 폴리비닐부티랄(Polyvinyl butyral) 및 용매를 혼합하여 혼합물을 제조하는 제 1 단계; 및 상기 혼합물을 음파처리하는 제 2 단계를 포함하는 탄소나노튜브 분산액의 제조방법을 제공한다.The present invention is carbon nanotubes to achieve the second object. A first step of preparing a mixture by mixing a surfactant, polyvinyl butyral and a solvent; And it provides a method for producing a carbon nanotube dispersion comprising a second step of sonicating the mixture.
상기 탄소나노튜브 분산액은 상기 탄소나노튜브 분산액 총 중량 기준으로 상기 탄소나노튜브 1 ~ 8 중량%, 상기 계면활성제 1 ~ 5 중량%, 상기 폴리비닐부티랄 3 ~ 25 중량% 및 상기 용매 65 ~ 90 중량%를 포함할 수 있다.The carbon nanotube dispersion is 1 to 8% by weight of the carbon nanotubes, 1 to 5% by weight of the surfactant, 3 to 25% by weight of the polyvinyl butyral and the solvent 65 to 90 based on the total weight of the carbon nanotube dispersion It may include weight percent.
상기 제 1 단계에서 나노 클레이를 더 포함할 수 있다.In the first step may further comprise a nanoclay.
상기 탄소나노튜브 분산액은 상기 탄소나노튜브 분산액 총 중량 기준으로 상기 나노 클레이를 0.01 ~ 0.1 중량%를 포함할 수 있다.The carbon nanotube dispersion may include 0.01 to 0.1 wt% of the nano clay based on the total weight of the carbon nanotube dispersion.
상기 탄소나노튜브는 입경이 8 나노미터 이하일 수 있다.The carbon nanotubes may have a particle diameter of 8 nanometers or less.
상기 탄소나노튜브는 입경이 1 ~ 4 나노미터인 탄소나노튜브 및 입경이 5 ~ 8 나노미터인 탄소나노튜브가 1 : 0.2 ~ 1의 중량비로 혼합된 것일 수 있다.The carbon nanotubes may be a mixture of carbon nanotubes having a particle diameter of 1 to 4 nanometers and carbon nanotubes having a particle diameter of 5 to 8 nanometers in a weight ratio of 1: 0.2 to 1.
상기 폴리비닐부티랄의 평균 중합도는 300 ~ 700 일 수 있다.The average degree of polymerization of the polyvinyl butyral may be 300 to 700.
본 발명의 탄소나노튜브 분산액은 탄소나노튜브, 계면활성제, 폴리비닐부티랄 및 용매를 포함함으로써, 분산성 및 분산 안정성과 접착력이 동시에 향상될 수 있다.The carbon nanotube dispersion of the present invention includes carbon nanotubes, a surfactant, polyvinyl butyral and a solvent, so that dispersibility, dispersion stability, and adhesion can be simultaneously improved.
본 발명의 탄소나노튜브 분산액의 제조방법은 탄소나노튜브. 계면활성제, 폴리비닐부티랄(Polyvinyl butyral) 및 용매를 혼합하여 혼합물을 제조하는 제 1 단계 및 상기 혼합물을 음파처리하는 제 2 단계를 포함함에 따라, 분산성 및 분산 안정성과 접착력이 동시에 향상되는 탄소나노튜브 분산액을 제공할 수 있다.Carbon nanotube dispersion method of the present invention is a carbon nanotube. A first step of preparing a mixture by mixing a surfactant, polyvinyl butyral and a solvent, and a second step of sonicating the mixture, thereby improving carbon dispersibility and dispersion stability and adhesion at the same time. Nanotube dispersions can be provided.
도 1은 본 발명의 실시예 1, 실시예 2, 비교예 1 및 비교예 2의 UV 흡광도를 측정하여 도시한 것이다.1 shows the measured UV absorbance of Example 1, Example 2, Comparative Example 1 and Comparative Example 2 of the present invention.
도 2는 실시예 2, 실시예 4, 비교예 11 및 비교예 12에 따라 제조된 탄소나노튜브 분산액의 제조 직후 및 48시간 후의 모습을 나타낸 도면이다.2 is a view showing a state immediately after the preparation of the carbon nanotube dispersion prepared according to Example 2, Example 4, Comparative Example 11 and Comparative Example 12 and after 48 hours.
도 3은 실시예 1 및 2의 탄소나노튜브 분산액의 제조 직후, 제조 1시간 후, 6시간 후, 12시간 후의 모습을 나타낸 도면이다.3 is a view showing a state immediately after the preparation of the carbon nanotube dispersion liquid of Examples 1 and 2, 1 hour after the preparation, 6 hours after, 12 hours after the preparation.
도 4는 비교예 1, 2 및 16의 탄소나노튜브 분산액의 제조 직후, 제조 1시간 후, 6시간 후, 12시간 후의 모습을 나타낸 도면이다.4 is a view showing a state immediately after preparation of the carbon nanotube dispersion liquids of Comparative Examples 1, 2 and 16, 1 hour after preparation, 6 hours later, and 12 hours later.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention.
본 발명의 명세서 및 청구범위에 사용된 용어 또는 단어는 통상적이거나 사전적인 의미로 한정 해석되지 아니하며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in the specification and claims of the present invention are not to be construed in a conventional or dictionary sense, and the inventors may appropriately define the concept of terms in order to best explain their invention in the best way. Based on the principle, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention.
본 발명의 명세서 전체에 있어서, 어떤 부분이 어떤 구성 요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. Throughout the specification of the present invention, when a part is said to "include" a certain component, it means that it can further include other components, without excluding the other components unless otherwise stated. .
본 발명의 명세서 전체에 있어서, "A 및/또는 B"는, A 또는 B, 또는 A 및 B를 의미한다.In the specification of the present invention, "A and / or B" means A or B, or A and B.
이하에서는, 첨부된 도면을 참조하여 본 발명을 구체적으로 설명하였으나, 본 발명이 이에 제한되는 것은 아니다.Hereinafter, the present invention has been described in detail with reference to the accompanying drawings, but the present invention is not limited thereto.
본 발명에서는 탄소나노튜브 분산액을 제공한다.The present invention provides a carbon nanotube dispersion.
본 발명의 일 실시예에 따른 탄소나노튜브 분산액은 탄소나노튜브. 계면활성제, 폴리비닐부티랄(Polyvinyl butyral) 및 용매를 포함하며, 이로 인해, 분산성 및 분산 안정성과 접착력이 동시에 향상되어 우수한 분산성, 분산 안정성 및 접착력을 가지는 탄소나노튜브 분산액을 제공할 수 있다. 특히, 본 실시예의 탄소나노튜브 분산액은 탄소나노튜브. 계면활성제, 폴리비닐부티랄(Polyvinyl butyral) 및 용매에 클레이를 더 포함하며, 탄소나노튜브로 입경이 1 ~ 4 나노미터인 탄소나노튜브와 입경이 5 ~ 8 나노미터인 탄소나노튜브가 1 : 0.2 ~ 1의 중량비로 혼합된 것을 사용하면서도 폴리비닐부티랄의 중합도를 300 ~ 1000인 것을 사용함에 따라, 분산성, 분산 안정성 및 접착력은 더욱 우수해질 수 있다.Carbon nanotube dispersion according to an embodiment of the present invention is carbon nanotubes. It includes a surfactant, polyvinyl butyral and a solvent, thereby improving the dispersibility, dispersion stability and adhesion at the same time can provide a carbon nanotube dispersion having excellent dispersibility, dispersion stability and adhesion . In particular, the carbon nanotube dispersion of the present embodiment is carbon nanotubes. Further comprising clay in a surfactant, polyvinyl butyral and a solvent, carbon nanotubes having a particle diameter of 1 to 4 nanometers and carbon nanotubes having a particle diameter of 5 to 8 nanometers are 1: As the polymerization degree of polyvinyl butyral is 300 to 1000 while using a mixture of 0.2 to 1 by weight, dispersibility, dispersion stability, and adhesion may be further improved.
본 발명의 실시예에 따르면, 탄소나노튜브는 입경이 8 나노미터 이하인 것일 수 있으며, 탄소나노튜브의 입경이 8 나노미터를 초과할 경우에는 탄소나노튜브의 무게가 증가할 뿐 아니라 탄소나노튜브 입자들 간의 응집력이 강해져 탄소나노튜브 분산액의 분산성 및 분산 안정성이 저하되는 문제가 있을 수 있다.According to an embodiment of the present invention, the carbon nanotubes may have a particle diameter of 8 nanometers or less, and when the particle diameter of the carbon nanotubes exceeds 8 nanometers, the weight of the carbon nanotubes increases as well as the carbon nanotube particles. There may be a problem that the cohesive force between them is reduced so that the dispersibility and dispersion stability of the carbon nanotube dispersion.
특히, 본 실시예에서는 입경이 8 나노미터 이하인 탄소나노튜브를 사용하되, 입경이 1 ~ 4 나노미터인 탄소나노튜브와 입경이 5 ~ 8 나노미터인 탄소나노튜브를 혼합하여 사용할 수 있다. 상기와 같이 입경이 서로 다른 탄소나노튜브를 혼합하여 사용하게 되면, 탄소나노튜브 입자들 간의 응집이 줄어들 뿐 아니라, 일정 시간이 지나도 분산액 내에서 상대적으로 가벼운 입경이 1 ~ 4 나노미터인 탄소나노튜브는 상부에 위치되고 상대적으로 무거운 입경이 5 ~ 8 나노미터인 탄소나노튜브는 하부에 위치됨으로써 균일하게 분산된 상태를 유지할 수 있다.Particularly, in the present embodiment, carbon nanotubes having a particle diameter of 8 nanometers or less may be used, and carbon nanotubes having a particle size of 1 to 4 nanometers and carbon nanotubes having a particle size of 5 to 8 nanometers may be mixed. As described above, when carbon nanotubes having different particle diameters are mixed and used, not only the aggregation between the carbon nanotube particles is reduced, but the carbon nanotubes having a relatively light particle diameter of 1 to 4 nanometers in the dispersion even after a certain time. Is positioned at the top and the carbon nanotubes having a relatively heavy particle diameter of 5 to 8 nanometers are positioned at the bottom to maintain a uniformly dispersed state.
상기 입경이 1 ~ 4 나노미터인 탄소나노튜브 및 입경이 5 ~ 8 나노미터인 탄소나노튜브는 1 : 0.2 ~ 1의 중량비로 혼합될 수 있으며, 바람직하게는 1 : 0.3 ~ 0.8의 중량비, 더욱 바람직하게는 1 : 0.5 ~ 0.6의 중량비로 혼합될 수 있다.The carbon nanotubes having a particle diameter of 1 to 4 nanometers and the carbon nanotubes having a particle diameter of 5 to 8 nanometers may be mixed in a weight ratio of 1: 0.2 to 1, preferably in a weight ratio of 1: 0.3 to 0.8, more Preferably it may be mixed in a weight ratio of 1: 0.5 to 0.6.
만약, 입경이 1 ~ 4 나노미터인 탄소나노튜브에 대해 입경이 5 ~ 8 나노미터인 탄소나노튜브의 중량비가 0.2 미만으로 포함될 경우에는 탄소나노튜브 입자의 응집되어 분산성 및 분산 안정성이 저하될 수 있으며, 입경이 1 ~ 4 나노미터인 탄소나노튜브에 대해 입경이 5 ~ 8 나노미터인 탄소나노튜브의 중량비가 1을 초과하여 포함될 경우에는 분산액의 하부로 가라앉은 탄소나노튜브가 증가되어, 탄소나노튜브 분산액의 분산성 및 분산 안정성이 저하될 수 있다.If the weight ratio of the carbon nanotubes having a particle diameter of 5 to 8 nanometers is less than 0.2 with respect to the carbon nanotubes having a particle diameter of 1 to 4 nanometers, the carbon nanotube particles may be aggregated to reduce dispersibility and dispersion stability. When the weight ratio of the carbon nanotubes having a particle diameter of 5 to 8 nanometers is greater than 1, the carbon nanotubes that sink to the lower part of the dispersion are increased. Dispersibility and dispersion stability of the carbon nanotube dispersion may be lowered.
본 실시예의 탄소나노튜브 분산액은 탄소나노튜브 분산액 총 중량 기준으로 상기 탄소나노튜브를 1 ~ 8 중량%, 바람직하게는 1 ~ 6 중량%, 더욱 바람직하게는 2 ~ 5 중량%로 포함될 수 있다. 만약, 탄소나노튜브 분산액 총 중량 기준으로 탄소나노튜브를 1 중량% 미만으로 포함할 경우에는 탄소나노튜브 분산액을 전기화학 장치 내지 부품에 적용하여도 전기적 특성을 나타내지 않아 사용이 무의미할 수 있으며, 탄소나노튜브 분산액 총 중량기준으로 탄소나노튜브를 8 중량%를 초과하여 포함할 경우에는 용매 내에서 분산되지 못하고 가라앉는 탄소나노튜브가 발생되는 문제가 있을 수 있다.The carbon nanotube dispersion of the present embodiment may include 1 to 8% by weight, preferably 1 to 6% by weight, more preferably 2 to 5% by weight of the carbon nanotubes based on the total weight of the carbon nanotube dispersions. If the carbon nanotube dispersion contains less than 1 wt% of carbon nanotubes based on the total weight of the carbon nanotube dispersion, even if the carbon nanotube dispersion is applied to an electrochemical device or a component, the carbon nanotube dispersion does not exhibit electrical characteristics, and thus it may be meaningless. If the carbon nanotubes contain more than 8% by weight based on the total weight of the nanotube dispersion, there may be a problem in that the carbon nanotubes that do not disperse in the solvent and sink.
본 실시예에서는 계면활성제로 도데실 황산 나트륨(Sodium dodecyl sulfate), 소듐 콜레이트 하이드레이트(Sodium cholate hydrate), 소듐 도데실벤젠 설폰산염(Sodium dodecyl benzene sulfonate)으로 이루어진 군에서 선택된 어느 하나 이상을 포함할 수 있다. 특히, 본 실시예에서는 계면활성제로 도데실 황산 나트륨을 사용함에 따라, 탄소나노튜브 분산액의 분산성, 분산 안정성 및 접착성을 더욱 향상시킬 수 있다.In this embodiment, the surfactant may include any one or more selected from the group consisting of sodium dodecyl sulfate, sodium cholate hydrate, and sodium dodecyl benzene sulfonate. have. In particular, in the present embodiment, by using sodium dodecyl sulfate as the surfactant, it is possible to further improve the dispersibility, dispersion stability and adhesion of the carbon nanotube dispersion.
본 실시예의 탄소나노튜브 분산액은 탄소나노튜브 분산액 총 중량 기준으로 상기 계면활성제를 1 ~ 5 중량%, 바람직하게는 1 ~ 4 중량%, 더욱 바람직하게는 1.5 ~ 3 중량%를 포함할 수 있다. 만약, 탄소나노튜브 분산액 총 중량기준으로 계면활성제를 1 중량% 미만으로 포함할 경우에는 탄소나노튜브 분산액의 분산성, 분산 안정성 및 접착력 향상 효과가 미미할 뿐 아니라 탄소나노튜브 입자들 간의 응집 현상이 발생되는 문제가 있을 수 있으며, 탄소나노튜브 분산액 총 중량기준으로 계면활성제를 5 중량%를 초과하여 포함할 경우에는 탄소나노튜브의 전기화하적 특성이 저하되는 문제가 있을 수 있다.The carbon nanotube dispersion of the present embodiment may include 1 to 5% by weight, preferably 1 to 4% by weight, more preferably 1.5 to 3% by weight of the surfactant based on the total weight of the carbon nanotube dispersion. If the carbon nanotube dispersion contains less than 1 wt% of surfactant based on the total weight of the carbon nanotube dispersion, not only the effect of improving the dispersibility, dispersion stability and adhesion of the carbon nanotube dispersion is generated but also agglomeration between the carbon nanotube particles occurs. There may be a problem that, if the surfactant contains more than 5% by weight based on the total weight of the carbon nanotube dispersion, there may be a problem that the electrostatic properties of the carbon nanotube is reduced.
폴리비닐부티랄은 폴리바이닐부티랄로도 불리며, 폴리비닐알코올을 산 촉매하에서 부틸알데히드를 반응시켜 합성되는 수지이다. 본 실시예에서는 폴리비닐부티랄로 중합도가 300 ~ 700 이며, 부틸화도가 약 60 ~ 65 mol%인 것을 사용할 수 있다. 만약, 폴리비닐부티랄의 중합도가 300 미만일 경우에는 탄소나노튜브 분산액의 접착력이 저하되는 문제가 있을 수 있으며, 중합도가 700을 초과할 경우에는 접착력은 향상되나 분산성 및 분산 안정성이 저하되는 문제가 있을 수 있다.Polyvinyl butyral, also called polyvinyl butyral, is a resin synthesized by reacting polyvinyl alcohol with butyl aldehyde under an acid catalyst. In the present embodiment, a polyvinyl butyral polymerization degree of 300 to 700 and a butylation degree of about 60 to 65 mol% may be used. If the degree of polymerization of the polyvinyl butyral is less than 300, there may be a problem that the adhesion of the carbon nanotube dispersion is lowered. If the degree of polymerization exceeds 700, the adhesion is improved but the dispersibility and dispersion stability are deteriorated. There may be.
본 실시예의 탄소나노튜브 분산액은 탄소나노튜브 분산액 총 중량 기준으로 상기 폴리비닐부티랄을 3 ~ 25 중량%로 포함할 수 있으며, 바람직하게는 4 ~ 20 중량%, 더욱 바람직하게는 6 ~ 18 중량%로 포함할 수 있다. 만약, 탄소나노튜브 분산액 총 중량 기준으로 폴리비닐부티랄을 3 중량% 미만으로 포함할 경우에는 탄소나노튜브 분산액의 접착력 향상 효과가 미미할 수 있으며, 탄소나노튜브 분산액 총 중량 기준으로 폴리비닐부티랄을 25 중량%를 초과하여 포함할 경우에는 탄소나노튜브 분산액의 점도가 높아져 전기화학 장치 내지 부품에 탄소나노튜브 분산액을 분산 또는 도포하기 어렵고, 폴리비닐부티랄의 점성에 의해 탄소나노튜브 입자가 덩어리를 형성하는 문제가 있을 수 있다.Carbon nanotube dispersion of the present embodiment may include 3 to 25% by weight of the polyvinyl butyral based on the total weight of the carbon nanotube dispersion, preferably 4 to 20% by weight, more preferably 6 to 18% by weight May contain%. If the carbon nanotube dispersion contains less than 3% by weight of polyvinyl butyral based on the total weight of the carbon nanotube dispersion, the adhesion improvement effect may be insignificant, and the polyvinyl butyral based on the total weight of the carbon nanotube dispersion may be used. When it contains more than 25% by weight, the viscosity of the carbon nanotube dispersion becomes high, making it difficult to disperse or apply the carbon nanotube dispersion to the electrochemical device or component, and the viscosity of the polyvinyl butyral causes the carbon nanotube particles to clump. There may be a problem forming.
한편, 상기와 같은 본 실시예의 탄소나노튜브 분산액은 나노 클레이(clay)를 더 포함할 수 있으며, 바람직하게는 입경이 1 ~ 100 나노미터인 나노 클레이일 수 있다. 본 실시예의 나노 클레이는 천연 클레이, 합성 클레이 및 이들의 혼합물 일 수 있고, 예를 들어, 라포나이트(Laponite), 몬모릴로나이트(Montmorillonite), 헥토라이트(Hectorite), 사포나이트(Saponite), 베이델라이트(Beidellite), 논트로나이트(Nontronite) 등 일 수 있으나, 이에 제한되지 않는다.On the other hand, the carbon nanotube dispersion of the present embodiment as described above may further comprise a nano (clay), preferably may be a nano clay having a particle diameter of 1 to 100 nanometers. The nanoclays of this embodiment may be natural clays, synthetic clays, and mixtures thereof, and for example, laponite, montmorillonite, hectorite, saponite, and baydelite ( Beidellite), nontronite (Nontronite) and the like, but is not limited thereto.
상기 나노 클레이는 대전방지 성능을 가짐에 따라, 본 실시예의 탄소나노튜브 분산액 내에서 탄소나노튜브의 대전을 방지함으로써 탄소나노튜브 입자 간의 인력이 발생되어 응집되는 것을 방지할 수 있다. 그러나, 이러한 나노 클레이는 습윤 상태에서는 점성을 가지므로 탄소나노튜브와 엉겨 붙어 덩어리를 형성할 수 있고, 흡착성이 우수하여 탄소나노튜브와 흡착되어 덩어리를 형성할 수 있으므로 소량 사용하는 것이 바람직하다.As the nanoclay has an antistatic performance, it is possible to prevent the attraction of the carbon nanotube particles to aggregate by preventing the charging of the carbon nanotubes in the carbon nanotube dispersion of the present embodiment. However, since the nanoclay is viscous in the wet state, it can be entangled with carbon nanotubes to form agglomerates, and it is preferable to use a small amount because the nanoclay can be adsorbed with carbon nanotubes to form agglomerates.
본 실시예의 탄소나노튜브 분산액은 탄소나노튜브 분산액 총 중량 기준으로 상기 나노 클레이를 0.01 ~ 0.1 중량%, 바람직하게는 0.02 ~ 0.08 중량%, 더욱 바람직하게는 0.03 ~ 0.05 중량%를 포함할 수 있다. 만약, 탄소나노튜브 분산액 총 중량 기준으로 나노 클레이를 0.01 중량% 미만으로 포함할 경우에는 탄소나노튜브의 대전방지 효과가 낮아 탄소나노튜브 분산액의 분산성 및 분산 안정성 향상 효과가 미미할 수 있으며, 탄소나노튜브 분산액 총 중량 기준으로 나노 클레이를 0.1 중량%를 초과하여 포함할 경우에는 탄소나노튜브와 나노 클레이가 엉겨 붙어 덩어리를 형성하여 침전물을 형성할 수 있어 분산성 및 분산 안정성이 저하되는 문제가 있을 수 있다.The carbon nanotube dispersion of the present embodiment may include 0.01 to 0.1% by weight, preferably 0.02 to 0.08% by weight, more preferably 0.03 to 0.05% by weight, based on the total weight of the carbon nanotube dispersion. If the carbon nanotube dispersion contains less than 0.01% by weight of nanoclays based on the total weight of the carbon nanotube dispersion, the antistatic effect of the carbon nanotube may be low, and thus the effect of improving the dispersibility and dispersion stability of the carbon nanotube dispersion may be insignificant. If the nanodispersion is contained in an amount of more than 0.1% by weight based on the total weight of the tube dispersion, carbon nanotubes and nanoclays may be entangled to form lumps, thereby forming a precipitate, which may cause a problem in that dispersibility and dispersion stability are deteriorated. have.
용매는 물, 아세톤(Acetone), 디메틸설폭사이드(Dimethlyl sulfoxide), 디메틸폼아미드(Dimethylformamid), 벤젠(Benzene), 톨루엔(Toluene), 자일렌(Xylene), 클로로포름(Chloroform), 피리딘(Pyridine), 테트라하이드로퓨란(Tetrahydrofuran), 메틸에틸케톤(methyl ethyl ketone), N-메틸-2-피페리돈(N-Methyl-2-pyrrolidone)으로 이루어진 군에서 선택된 어느 하나 이상을 포함하나, 이에 제한되지 않으며 탄소나노튜브 분산액의 제조에 적용될 수 있는 것이라면 제한 없이 사용될 수 있다.The solvent is water, acetone, dimethyl sulfoxide, dimethylformamide, benzene, benzene, toluene, xylene, chloroform, pyridine, pyridine, Tetrahydrofuran (Tetrahydrofuran), methyl ethyl ketone (methyl ethyl ketone), N-methyl-2- piperidone (N-Methyl-2-pyrrolidone), including but not limited to any one or more selected from the group consisting of carbon Anything that can be applied to the preparation of the nanotube dispersion can be used without limitation.
본 실시예의 탄소나노튜브 분산액은 탄소나노튜브 분산액 총 중량 기준으로 상기 용매를 65 ~ 90 중량%, 바람직하게는 70 ~ 90 중량%, 더욱 바람직하게는 75 ~ 90 중량%를 포함할 수 있다. 만약, 탄소나노튜브 분산액 총 중량 기준으로 용매를 65 중량% 미만으로 포함할 경우에는 탄소나노튜브 분산액의 점도가 높아져 사용성이 저하될 뿐 아니라 탄소나노튜브가 균일하게 분산될 수 있는 공간(용매)가 충분하지 않아 분산성 및 분산 안정성이 저하되는 문제가 있을 수 있으며, 탄소나노튜브 분산액 총 중량 기준으로 용매를 90 중량%를 초과하여 포함할 경우에는 탄소나노튜브 분산액 내의 탄소나노튜브의 농도가 낮아 전기화학 특성이 저하될 수 있다.Carbon nanotube dispersion of the present embodiment may include 65 to 90% by weight, preferably 70 to 90% by weight, more preferably 75 to 90% by weight of the solvent based on the total weight of the carbon nanotube dispersion. If the solvent contains less than 65% by weight of the carbon nanotube dispersion, the viscosity of the carbon nanotube dispersion is increased, so that the usability decreases and a space (solvent) in which the carbon nanotube is uniformly dispersed. There may be a problem that the dispersibility and dispersion stability is not enough due to insufficient, and when the solvent contains more than 90% by weight based on the total weight of the carbon nanotube dispersion, the concentration of carbon nanotubes in the carbon nanotube dispersion is low Chemical properties may be lowered.
상기된 바에 따르는 본 발명의 실시예에 따른 탄소나노튜브 분산액은 대전방지 소재, 정전분산 소재, 전도성 소재, 전자파 차폐재료, 전자파 흡수재, RF(Radio frequency) 흡수재, 태양전지용 재료, 연료감응전지용 전극재료, 전기소자 재료, 반도체소자 재료, 광전자소자 재료, 노트북 부품 재료, 컴퓨터 부품 재료, 핸드폰 부품 재료, PDA 부품 재료, PSP 부품 재료, 게임기용 부품 재료, 하우징 재료, 투명전극 재료, 불투명 전극 재료, 전계방출디스플레이 재료, BLU(back light unit)재료, 액정표시장치 재료, 플라즈마표시패널 재료, 발광다이오드 재료, 터치패널 재료, 전광판 재료, 광고판 재료, 디스플레이 소재, 발열체, 방열체, 도금 재료, 촉매, 조촉매, 산화제, 환원제, 자동차 부품 재료, 선박 부품 재료, 항공기기 부품 재료, 보호테이프 재료, 접착제 재료, 트레이 재료, 클린룸 재료, 운송 기기 부품 재료, 난연 소재, 항균 소재, 금속 복합 재료, 비철 금속 복합재료, 의료 기기용 재료, 건축 재료, 바닥재 재료, 벽지 재료, 광원 부품 재료, 램프 재료, 광학기기 부품 재료, 섬유제조용 재료, 의류제조용 재료, 전기제품용 재료, 전자제품제조용 재료, 이차전지용 양극활물질, 이차전지용 음극활물질, 이차전지 재료, 연료전지 재료, 태양전지 재료, 메모리 소자 및 캐패시터(P-ED<C)재료 등으로 활용될 수 있으나, 이에 제한되지 않는다.Carbon nanotube dispersion according to an embodiment of the present invention as described above is an antistatic material, electrostatic dispersion material, conductive material, electromagnetic shielding material, electromagnetic wave absorber, RF (Radio frequency) absorber, solar cell material, fuel material for electrode material , Electronic device material, semiconductor device material, optoelectronic device material, notebook component material, computer component material, mobile phone component material, PDA component material, PSP component material, game machine component material, housing material, transparent electrode material, opaque electrode material, electric field Emission display material, BLU (back light unit) material, liquid crystal display material, plasma display panel material, light emitting diode material, touch panel material, electronic board material, billboard material, display material, heating element, radiator, plating material, catalyst, bath Catalyst, oxidizing agent, reducing agent, automobile parts material, ship parts material, aircraft parts material, protective tape material, adhesive material, tray Materials, Clean Room Materials, Transportation Equipment Parts Materials, Flame Retardant Materials, Antibacterial Materials, Metal Composites, Non-Ferrous Metal Composites, Medical Device Materials, Building Materials, Flooring Materials, Wallpaper Materials, Light Source Components Materials, Lamp Materials, Optical Equipment Components Materials, textile manufacturing materials, clothing manufacturing materials, electrical products materials, electronics manufacturing materials, secondary battery cathode active materials, secondary battery anode active materials, secondary battery materials, fuel cell materials, solar cell materials, memory devices and capacitors (P-ED) <C) may be used as a material, but is not limited thereto.
본 발명에서는 탄소나노튜브 분산액의 제조방법을 제공한다.The present invention provides a method for producing a carbon nanotube dispersion.
본 발명의 일 실시예에 따른 탄소나노튜브 분산액의 제조방법은 탄소나노튜브. 계면활성제, 폴리비닐부티랄(Polyvinyl butyral) 및 용매를 혼합하여 혼합물을 제조하는 제 1 단계 및 상기 혼합물을 음파처리하는 제 2 단계를 포함하며, 이에 따라 제조된 탄소나노튜브 분산액은 분산성 및 분산 안정성과 접착력이 우수할 수 있다. 특히, 본 실시예에서는 탄소나노튜브, 게면활성제, 폴리비닐부티랄 및 용매에 클레이를 더 포함하며, 탄소나노튜브로 입경이 1 ~ 4 나노미터인 탄소나노튜브와 입경이 5 ~ 8 나노미터인 탄소나노튜브가 1 : 0.2 ~ 1의 중량비로 혼합된 것을 사용하면서도 폴리비닐부티랄의 중합도를 300 ~ 1000인 것을 사용함으로써, 분산성 및 분산 안정성과 접착력은 더욱 우수해질 수 있다.Carbon nanotube dispersion method according to an embodiment of the present invention is carbon nanotubes. A first step of preparing a mixture by mixing a surfactant, polyvinyl butyral and a solvent, and a second step of sonicating the mixture, wherein the carbon nanotube dispersion prepared is dispersible and dispersed Stability and adhesion can be excellent. In particular, the present embodiment further comprises a clay in the carbon nanotubes, the surfactant, polyvinyl butyral and the solvent, the carbon nanotubes having a particle diameter of 1 to 4 nanometers and the particle diameter of 5 to 8 nanometers Dispersibility and dispersion stability and adhesion can be further improved by using a mixture of carbon nanotubes in a weight ratio of 1: 0.2 to 1 while using a polymerization degree of polyvinyl butyral of 300 to 1000.
(1) 제 1 단계에서는 탄소나노튜브. 계면활성제, 폴리비닐부티랄(Polyvinyl butyral) 및 용매를 혼합하여 혼합물을 제조한다.(1) In the first step, carbon nanotubes. A mixture is prepared by mixing a surfactant, polyvinyl butyral and a solvent.
본 실시예의 제 1 단계에서는 상기의 탄소나노튜브, 게면활성제, 폴리비닐부티랄, 용매를 혼합하여 혼합물을 제조하며, 이때 상기 혼합물에 나노 클레이가 추가로 혼합될 수 있다. 또한, 제 1 단계에서는 상기 탄소나노튜브 분산액 총 중량 기준으로 탄소나노튜브 1 ~ 8 중량%, 계면활성제 1 ~ 5 중량%, 폴리비닐부티랄 3 ~ 25 중량%, 용매 65 ~ 90 중량% 및 나노 클레이 0.01 ~ 0.1 중량%를 포함할 수 있으며, 본 실시예의 제 1 단계에서 상기 탄소나노튜브 분산액과 혼합물을 구성하는 물질과 이들의 중량비(중량%)는 동일하다.In the first step of the present embodiment, a mixture is prepared by mixing the carbon nanotubes, the surfactant, the polyvinyl butyral, and the solvent, wherein the nano clay may be further mixed with the mixture. In the first step, the carbon nanotube dispersion is based on the total weight of the carbon nanotubes 1 to 8% by weight, surfactant 1 to 5% by weight, polyvinyl butyral 3 to 25% by weight, solvent 65 to 90% by weight and nano It may include 0.01 to 0.1% by weight of clay, the material constituting the mixture with the carbon nanotube dispersion in the first step of the present embodiment and their weight ratio (wt%) is the same.
또한, 제 1 단계에서는 탄소나노튜브, 계면활성제, 폴리비닐우레탄, 용매 및 클레이의 균일한 혼합을 위해 교반이 실시될 수 있으며, 교반 속도는 200 ~ 500 rpm 일 수 있으나, 이에 제한되지 않는다. In addition, in the first step, agitation may be performed for uniform mixing of carbon nanotubes, a surfactant, polyvinylurethane, a solvent, and clay, and a stirring speed may be 200 to 500 rpm, but is not limited thereto.
본 발명의 실시예에 따르면, 탄소나노튜브는 입경이 8 나노미터 이하인 것일 수 있으며, 탄소나노튜브의 입경이 8 나노미터를 초과할 경우에는 탄소나노튜브의 무게가 증가할 뿐 아니라 탄소나노튜브 입자들 간의 응집력이 강해져 탄소나노튜브 분산액의 분산성 및 분산 안정성이 저하되는 문제가 있을 수 있다.According to an embodiment of the present invention, the carbon nanotubes may have a particle diameter of 8 nanometers or less, and when the particle diameter of the carbon nanotubes exceeds 8 nanometers, the weight of the carbon nanotubes increases as well as the carbon nanotube particles. There may be a problem that the cohesive force between them is reduced so that the dispersibility and dispersion stability of the carbon nanotube dispersion.
특히, 본 실시예에서는 입경이 8 나노미터 이하인 탄소나노튜브를 사용하되, 입경이 1 ~ 4 나노미터인 탄소나노튜브와 입경이 5 ~ 8 나노미터인 탄소나노튜브를 혼합하여 사용할 수 있다. 상기와 같이 입경이 서로 다른 탄소나노튜브를 혼합하여 사용하게 되면, 탄소나노튜브 입자들 간의 응집이 줄어들 뿐 아니라, 일정 시간이 지나도 분산액 내에서 상대적으로 가벼운 입경이 1 ~ 4 나노미터인 탄소나노튜브는 상부에 위치되고 상대적으로 무거운 입경이 5 ~ 8 나노미터인 탄소나노튜브는 하부에 위치됨으로써 균일하게 분산된 상태를 유지할 수 있다.Particularly, in the present embodiment, carbon nanotubes having a particle diameter of 8 nanometers or less may be used, and carbon nanotubes having a particle size of 1 to 4 nanometers and carbon nanotubes having a particle size of 5 to 8 nanometers may be mixed. As described above, when carbon nanotubes having different particle diameters are mixed and used, not only the aggregation between the carbon nanotube particles is reduced, but the carbon nanotubes having a relatively light particle diameter of 1 to 4 nanometers in the dispersion even after a certain time. Is positioned at the top and the carbon nanotubes having a relatively heavy particle diameter of 5 to 8 nanometers are positioned at the bottom to maintain a uniformly dispersed state.
상기 입경이 1 ~ 4 나노미터인 탄소나노튜브 및 입경이 5 ~ 8 나노미터인 탄소나노튜브는 1 : 0.2 ~ 1의 중량비로 혼합될 수 있으며, 바람직하게는 1 : 0.3 ~ 0.8의 중량비, 더욱 바람직하게는 1 : 0.5 ~ 0.6의 중량비로 혼합될 수 있다.The carbon nanotubes having a particle diameter of 1 to 4 nanometers and the carbon nanotubes having a particle diameter of 5 to 8 nanometers may be mixed in a weight ratio of 1: 0.2 to 1, preferably in a weight ratio of 1: 0.3 to 0.8, more Preferably it may be mixed in a weight ratio of 1: 0.5 to 0.6.
만약, 입경이 1 ~ 4 나노미터인 탄소나노튜브에 대해 입경이 5 ~ 8 나노미터인 탄소나노튜브의 중량비가 0.2 미만으로 포함될 경우에는 탄소나노튜브 입자의 응집되어 분산성 및 분산 안정성이 저하될 수 있으며, 입경이 1 ~ 4 나노미터인 탄소나노튜브에 대해 입경이 5 ~ 8 나노미터인 탄소나노튜브의 중량비가 1을 초과하여 포함될 경우에는 분산액의 하부로 가라앉은 탄소나노튜브가 증가되어, 탄소나노튜브 분산액의 분산성 및 분산 안정성이 저하될 수 있다.If the weight ratio of the carbon nanotubes having a particle diameter of 5 to 8 nanometers is less than 0.2 with respect to the carbon nanotubes having a particle diameter of 1 to 4 nanometers, the carbon nanotube particles may be aggregated to reduce dispersibility and dispersion stability. When the weight ratio of the carbon nanotubes having a particle diameter of 5 to 8 nanometers is greater than 1, the carbon nanotubes that sink to the lower part of the dispersion are increased. Dispersibility and dispersion stability of the carbon nanotube dispersion may be lowered.
본 실시예의 탄소나노튜브 분산액은 탄소나노튜브 분산액 총 중량 기준으로 상기 탄소나노튜브를 1 ~ 8 중량%, 바람직하게는 1 ~ 6 중량%, 더욱 바람직하게는 2 ~ 5 중량%로 포함될 수 있다. 만약, 탄소나노튜브 분산액 총 중량 기준으로 탄소나노튜브를 1 중량% 미만으로 포함할 경우에는 탄소나노튜브 분산액을 전기화학 장치 내지 부품에 적용하여도 전기적 특성을 나타내지 않아 사용이 무의미할 수 있으며, 탄소나노튜브 분산액 총 중량기준으로 탄소나노튜브를 8 중량%를 초과하여 포함할 경우에는 용매 내에서 분산되지 못하고 가라앉는 탄소나노튜브가 발생되는 문제가 있을 수 있다.The carbon nanotube dispersion of the present embodiment may include 1 to 8% by weight, preferably 1 to 6% by weight, more preferably 2 to 5% by weight of the carbon nanotubes based on the total weight of the carbon nanotube dispersions . If the carbon nanotube dispersion contains less than 1 wt% of carbon nanotubes based on the total weight of the carbon nanotube dispersion, even if the carbon nanotube dispersion is applied to an electrochemical device or a component, the carbon nanotube dispersion does not exhibit electrical characteristics, and thus it may be meaningless. If the carbon nanotubes contain more than 8% by weight based on the total weight of the nanotube dispersion, there may be a problem in that the carbon nanotubes that do not disperse in the solvent and sink.
본 실시예에서는 계면활성제로 도데실 황산 나트륨(Sodium dodecyl sulfate), 소듐 콜레이트 하이드레이트(Sodium cholate hydrate), 소듐 도데실벤젠 설폰산염(Sodium dodecyl benzene sulfonate)으로 이루어진 군에서 선택된 어느 하나 이상을 포함할 수 있다. 특히, 본 실시예에서는 계면활성제로 도데실 황산 나트륨을 사용함에 따라, 탄소나노튜브 분산액의 분산성, 분산 안정성 및 접착성을 더욱 향상시킬 수 있다.In this embodiment, the surfactant may include any one or more selected from the group consisting of sodium dodecyl sulfate, sodium cholate hydrate, and sodium dodecyl benzene sulfonate. have. In particular, in the present embodiment, by using sodium dodecyl sulfate as the surfactant, it is possible to further improve the dispersibility, dispersion stability and adhesion of the carbon nanotube dispersion.
본 실시예의 탄소나노튜브 분산액은 탄소나노튜브 분산액 총 중량 기준으로 상기 계면활성제를 1 ~ 5 중량%, 바람직하게는 1 ~ 4 중량%, 더욱 바람직하게는 1.5 ~ 3 중량%를 포함할 수 있다. 만약, 탄소나노튜브 분산액 총 중량기준으로 계면활성제를 1 중량% 미만으로 포함할 경우에는 탄소나노튜브 분산액의 분산성, 분산 안정성 및 접착력 향상 효과가 미미할 뿐 아니라 탄소나노튜브 입자들 간의 응집 현상이 발생되는 문제가 있을 수 있으며, 탄소나노튜브 분산액 총 중량기준으로 계면활성제를 5 중량%를 초과하여 포함할 경우에는 탄소나노튜브의 전기화하적 특성이 저하되는 문제가 있을 수 있다.The carbon nanotube dispersion of the present embodiment may include 1 to 5% by weight, preferably 1 to 4% by weight, more preferably 1.5 to 3% by weight of the surfactant based on the total weight of the carbon nanotube dispersion. If the carbon nanotube dispersion contains less than 1 wt% of surfactant based on the total weight of the carbon nanotube dispersion, not only the effect of improving the dispersibility, dispersion stability and adhesion of the carbon nanotube dispersion is generated but also agglomeration between the carbon nanotube particles occurs. There may be a problem that, if the surfactant contains more than 5% by weight based on the total weight of the carbon nanotube dispersion, there may be a problem that the electrostatic properties of the carbon nanotube is reduced.
폴리비닐부티랄은 폴리바이닐부티랄로도 불리며, 폴리비닐알코올을 산 촉매하에서 부틸알데히드를 반응시켜 합성되는 수지이다. 본 실시예에서는 폴리비닐부티랄로 중합도가 300 ~ 700 이며, 부틸화도가 약 60 ~ 65 mol%인 것을 사용할 수 있다. 만약, 폴리비닐부티랄의 중합도가 300 미만일 경우에는 탄소나노튜브 분산액의 접착력이 저하되는 문제가 있을 수 있으며, 중합도가 700을 초과할 경우에는 접착력은 향상되나 분산성 및 분산 안정성이 저하되는 문제가 있을 수 있다.Polyvinyl butyral, also called polyvinyl butyral, is a resin synthesized by reacting polyvinyl alcohol with butyl aldehyde under an acid catalyst. In the present embodiment, a polyvinyl butyral polymerization degree of 300 to 700 and a butylation degree of about 60 to 65 mol% may be used. If the degree of polymerization of the polyvinyl butyral is less than 300, there may be a problem that the adhesion of the carbon nanotube dispersion is lowered. If the degree of polymerization exceeds 700, the adhesion is improved but the dispersibility and dispersion stability are deteriorated. There may be.
본 실시예의 탄소나노튜브 분산액은 탄소나노튜브 분산액 총 중량 기준으로 상기 폴리비닐부티랄을 3 ~ 25 중량%로 포함할 수 있으며, 바람직하게는 4 ~ 20 중량%, 더욱 바람직하게는 6 ~ 18 중량%로 포함할 수 있다. 만약, 탄소나노튜브 분산액 총 중량 기준으로 폴리비닐부티랄을 3 중량% 미만으로 포함할 경우에는 탄소나노튜브 분산액의 접착력 향상 효과가 미미할 수 있으며, 탄소나노튜브 분산액 총 중량 기준으로 폴리비닐부티랄을 25 중량%를 초과하여 포함할 경우에는 탄소나노튜브 분산액의 점도가 높아져 전기화학 장치 내지 부품에 탄소나노튜브 분산액을 분산 또는 도포하기 어렵고, 폴리비닐부티랄의 점성에 의해 탄소나노튜브 입자가 덩어리를 형성하거나 는 문제가 있을 수 있다.Carbon nanotube dispersion of the present embodiment may include 3 to 25% by weight of the polyvinyl butyral based on the total weight of the carbon nanotube dispersion, preferably 4 to 20% by weight, more preferably 6 to 18% by weight May contain%. If the carbon nanotube dispersion contains less than 3% by weight of polyvinyl butyral based on the total weight of the carbon nanotube dispersion, the adhesion improvement effect may be insignificant, and the polyvinyl butyral based on the total weight of the carbon nanotube dispersion may be used. When it contains more than 25% by weight, the viscosity of the carbon nanotube dispersion becomes high, making it difficult to disperse or apply the carbon nanotube dispersion to the electrochemical device or component, and the viscosity of the polyvinyl butyral causes the carbon nanotube particles to clump. It may form or have a problem.
한편, 상기된 바와 같이 본 실시예의 제 1 단계에서는 나노 클레이(clay)를 더 포함할 수 있으며, 바람직하게는 입경이 1 ~ 100 나노미터인 나노 클레이일 수 있다. 본 실시예의 나노 클레이는 천연 클레이, 합성 클레이 및 이들의 혼합물 일 수 있고, 예를 들어, 라포나이트(Laponite), 몬모릴로나이트(Montmorillonite), 헥토라이트(Hectorite), 사포나이트(Saponite), 베이델라이트(Beidellite), 논트로나이트(Nontronite) 등 일 수 있으나, 이에 제한되지 않는다.On the other hand, as described above, the first step of the present embodiment may further include a nano clay (clay), preferably may be nano clay having a particle diameter of 1 to 100 nanometers. The nanoclays of this embodiment may be natural clays, synthetic clays, and mixtures thereof, and for example, laponite, montmorillonite, hectorite, saponite, and baydelite ( Beidellite), nontronite (Nontronite) and the like, but is not limited thereto.
상기 나노 클레이는 대전방지 성능을 가짐에 따라, 본 실시예의 탄소나노튜브 분산액 내에서 탄소나노튜브의 대전을 방지하여 탄소나노튜브 입자 간의 인력이 발생되어 응집되는 것을 방지할 수 있다. 그러나, 이러한 나노 클레이는 습윤 상태에서는 점성을 가지므로 탄소나노튜브와 엉겨 붙어 덩어리를 형성할 수 있고, 흡착성이 우수하여 탄소나노튜브와 흡착되어 덩어리를 형성할 수 있으므로 소량 사용하는 것이 바람직하다.As the nanoclay has an antistatic performance, it is possible to prevent the attraction of the carbon nanotubes in the carbon nanotube dispersion of the present embodiment to agglomeration generated by the attraction of the carbon nanotube particles. However, since the nanoclay is viscous in the wet state, it can be entangled with carbon nanotubes to form agglomerates, and it is preferable to use a small amount because the nanoclay can be adsorbed with carbon nanotubes to form agglomerates.
본 실시예의 탄소나노튜브 분산액은 탄소나노튜브 분산액 총 중량 기준으로 상기 나노 클레이를 0.01 ~ 0.1 중량%, 바람직하게는 0.02 ~ 0.08 중량%, 더욱 바람직하게는 0.03 ~ 0.05 중량%를 포함할 수 있다. 만약, 탄소나노튜브 분산액 총 중량 기준으로 나노 클레이를 0.01 중량% 미만으로 포함할 경우에는 탄소나노튜브의 대전방지 효과가 낮아 탄소나노튜브 분산액의 분산성 및 분산 안정성 향상 효과가 미미할 수 있으며, 탄소나노튜브 분산액 총 중량 기준으로 나노 클레이를 0.1 중량%를 초과하여 포함할 경우에는 탄소나노튜브와 나노 클레이가 엉겨 붙어 덩어리를 형성하여 침전물을 형성할 수 있어 분산성 및 분산 안정성이 저하되는 문제가 있을 수 있다.The carbon nanotube dispersion of the present embodiment may include 0.01 to 0.1% by weight, preferably 0.02 to 0.08% by weight, more preferably 0.03 to 0.05% by weight, based on the total weight of the carbon nanotube dispersion. If the carbon nanotube dispersion contains less than 0.01% by weight of nanoclays based on the total weight of the carbon nanotube dispersion, the antistatic effect of the carbon nanotube may be low, and thus the effect of improving the dispersibility and dispersion stability of the carbon nanotube dispersion may be insignificant. If the nanodispersion is contained in an amount of more than 0.1% by weight based on the total weight of the tube dispersion, carbon nanotubes and nanoclays may be entangled to form lumps, thereby forming a precipitate, which may cause a problem in that dispersibility and dispersion stability are deteriorated. have.
용매는 물, 아세톤(Acetone), 디메틸설폭사이드(Dimethlyl sulfoxide), 디메틸폼아미드(Dimethylformamid), 벤젠(Benzene), 톨루엔(Toluene), 자일렌(Xylene), 클로로포름(Chloroform), 피리딘(Pyridine), 테트라하이드로퓨란(Tetrahydrofuran), 메틸에틸케톤(methyl ethyl ketone), N-메틸-2-피페리돈(N-Methyl-2-pyrrolidone)으로 이루어진 군에서 선택된 어느 하나 이상을 포함하나, 이에 제한되지 않으며 탄소나노튜브 분산액의 제조에 적용될 수 있는 것이라면 제한 없이 사용될 수 있다.The solvent is water, acetone, dimethyl sulfoxide, dimethylformamide, benzene, benzene, toluene, xylene, chloroform, pyridine, pyridine, Tetrahydrofuran (Tetrahydrofuran), methyl ethyl ketone (methyl ethyl ketone), N-methyl-2- piperidone (N-Methyl-2-pyrrolidone), including but not limited to any one or more selected from the group consisting of carbon Anything that can be applied to the preparation of the nanotube dispersion can be used without limitation.
본 실시예의 탄소나노튜브 분산액은 탄소나노튜브 분산액 총 중량 기준으로 상기 용매를 65 ~ 90 중량%, 바람직하게는 70 ~ 90 중량%, 더욱 바람직하게는 75 ~ 90 중량%를 포함할 수 있다. 만약, 탄소나노튜브 분산액 총 중량 기준으로 용매를 65 중량% 미만으로 포함할 경우에는 탄소나노튜브 분산액의 점도가 높아져 사용성이 저하될 뿐 아니라 탄소나노튜브가 균일하게 분산될 수 있는 공간(용매)가 충분하지 않아 분산성 및 분산 안정성이 저하되는 문제가 있을 수 있으며, 탄소나노튜브 분산액 총 중량 기준으로 용매를 90 중량%를 초과하여 포함할 경우에는 탄소나노튜브 분산액 내의 탄소나노튜브의 농도가 낮아 전기화학 특성이 저하될 수 있다.Carbon nanotube dispersion of the present embodiment may include 65 to 90% by weight, preferably 70 to 90% by weight, more preferably 75 to 90% by weight of the solvent based on the total weight of the carbon nanotube dispersion. If the solvent contains less than 65% by weight of the carbon nanotube dispersion, the viscosity of the carbon nanotube dispersion is increased, so that the usability decreases and a space (solvent) in which the carbon nanotube is uniformly dispersed. There may be a problem that the dispersibility and dispersion stability is not enough due to insufficient, and when the solvent contains more than 90% by weight based on the total weight of the carbon nanotube dispersion, the concentration of carbon nanotubes in the carbon nanotube dispersion is low Chemical properties may be lowered.
(2)제 2 단계에서는 상기 혼합물을 음파처리한다.(2) In the second step, the mixture is sonicated.
본 실시예에 따라 제 1 단계에서 제조된 탄소나노튜브, 계면활성제, 폴리비닐부티랄, 나노 클레이 및 용매가 혼합된 혼합물은 탄소나노튜브의 균일한 분산을 위해 음파처리될 수 있다. 음파처리는 20 ~ 70 kHz에서 실시될 수 있으며, 바람직하게는 20 ~ 45 kHz, 더욱 바람직하게는 30 ~ 40 kHz에서 실시될 수 있다. 만약, 상기 혼합물의 음파처리를 20 kHz 미만으로 실시할 경우에는 탄소나노튜브가 균일하게 분산되지 못해 분산성 및 분산 안정성이 저하되는 문제가 있을 수 있으며, 음파처리를 70 kHz를 초과하여 실시할 경우에는 탄소나노튜브의 구조가 변형되어 탄소나노튜브 자체의 특성이 저하되는 문제가 있을 수 있다.The mixture of the carbon nanotubes, the surfactant, the polyvinyl butyral, the nanoclay, and the solvent prepared in the first step according to the present embodiment may be sonicated for uniform dispersion of the carbon nanotubes. The sonication may be carried out at 20 to 70 kHz, preferably at 20 to 45 kHz, more preferably at 30 to 40 kHz. If the sound wave treatment of the mixture is less than 20 kHz, there may be a problem that the carbon nanotubes are not uniformly dispersed and the dispersibility and dispersion stability is lowered, and the sound wave treatment is performed in excess of 70 kHz. There may be a problem in that the structure of the carbon nanotubes is deformed to deteriorate the characteristics of the carbon nanotubes themselves.
이와 같이, 본 실시예에서는 상기와 같은 혼합물에 음파처리를 실시함으로써 탄소나노튜브 분산액을 제조할 수 있다. 한편, 제 1 단계 및 제 2 단계에서 별도의 가열 과정이 실시될 수 있으며, 상기 가열은 폴리비닐부티랄의 경화에 영향을 미치지 않는 범위 내에서 실시될 수 있다.As described above, in the present embodiment, the carbon nanotube dispersion can be prepared by performing a sonic treatment on the mixture as described above. Meanwhile, a separate heating process may be performed in the first and second steps, and the heating may be performed within a range that does not affect the curing of the polyvinyl butyral.
상기된 바에 따라 제조된 본 발명의 실시예의 탄소나노튜브 분산액은 대전방지 소재, 정전분산 소재, 전도성 소재, 전자파 차폐재료, 전자파 흡수재, RF(Radio frequency) 흡수재, 태양전지용 재료, 연료감응전지용 전극재료, 전기소자 재료, 반도체소자 재료, 광전자소자 재료, 노트북 부품 재료, 컴퓨터 부품 재료, 핸드폰 부품 재료, PDA 부품 재료, PSP 부품 재료, 게임기용 부품 재료, 하우징 재료, 투명전극 재료, 불투명 전극 재료, 전계방출디스플레이 재료, BLU(back light unit)재료, 액정표시장치 재료, 플라즈마표시패널 재료, 발광다이오드 재료, 터치패널 재료, 전광판 재료, 광고판 재료, 디스플레이 소재, 발열체, 방열체, 도금 재료, 촉매, 조촉매, 산화제, 환원제, 자동차 부품 재료, 선박 부품 재료, 항공기기 부품 재료, 보호테이프 재료, 접착제 재료, 트레이 재료, 클린룸 재료, 운송 기기 부품 재료, 난연 소재, 항균 소재, 금속 복합 재료, 비철 금속 복합재료, 의료 기기용 재료, 건축 재료, 바닥재 재료, 벽지 재료, 광원 부품 재료, 램프 재료, 광학기기 부품 재료, 섬유제조용 재료, 의류제조용 재료, 전기제품용 재료, 전자제품제조용 재료, 이차전지용 양극활물질, 이차전지용 음극활물질, 이차전지 재료, 연료전지 재료, 태양전지 재료, 메모리 소자 및 캐패시터(P-ED<C)재료 등으로 활용될 수 있으나, 이에 제한되지 않는다.Carbon nanotube dispersion of the embodiment of the present invention prepared as described above is an antistatic material, electrostatic dispersion material, conductive material, electromagnetic shielding material, electromagnetic wave absorbing material, RF (Radio frequency) absorbing material, solar cell material, fuel sensitive battery electrode material , Electronic device material, semiconductor device material, optoelectronic device material, notebook component material, computer component material, mobile phone component material, PDA component material, PSP component material, game machine component material, housing material, transparent electrode material, opaque electrode material, electric field Emission display material, BLU (back light unit) material, liquid crystal display material, plasma display panel material, light emitting diode material, touch panel material, electronic board material, billboard material, display material, heating element, radiator, plating material, catalyst, bath Catalyst, oxidizing agent, reducing agent, automobile parts material, ship parts material, aircraft parts material, protective tape material, adhesive material, tray Materials, Clean Room Materials, Transportation Equipment Parts Materials, Flame Retardant Materials, Antibacterial Materials, Metal Composites, Non-Ferrous Metal Composites, Medical Device Materials, Building Materials, Flooring Materials, Wallpaper Materials, Light Source Components Materials, Lamp Materials, Optical Equipment Components Materials, textile manufacturing materials, clothing manufacturing materials, electrical products materials, electronics manufacturing materials, secondary battery cathode active materials, secondary battery anode active materials, secondary battery materials, fuel cell materials, solar cell materials, memory devices and capacitors (P-ED) <C) may be used as a material, but is not limited thereto.
이하 실시예, 비교예, 및 실험예를 통하여 본 발명의 탄소나노튜브 분산액 및 이의 제조방법에 대해 구체적으로 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것이므로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다.Hereinafter, the carbon nanotube dispersion of the present invention and its preparation method will be described in detail through Examples, Comparative Examples, and Experimental Examples. Since these examples are only for illustrating the present invention, the scope of the present invention is not to be construed as being limited by these examples.
실시예Example
실시예 1Example 1
반응기에 입경이 약 3 나노미터인 탄소나노튜브 3 g 및 입경이 약 6 나노미터인 탄소나노튜브 1.8 g이 혼합된 탄소나노튜브 총 4.8 g, 도데실 황산 나트륨 2 g, 폴리비닐부티랄(중합도 400) 15 g 및 N-메틸-2피페리돈(NMP) 78.2 g을 투입하고, 이를 교반(rmp=250 ~ 300)을 약 5 분간 실시하여 혼합물을 제조한 후, 이를 40 kHz에서 약 60 분 동안 음파처리함으로써 탄소나노튜브 분산액을 제조하였다.A total of 4.8 g of carbon nanotubes, 2 g of dodecyl sulfate, and polyvinyl butyral (polymerization degree) were mixed with 3 g of carbon nanotubes having a particle diameter of about 3 nanometers and 1.8 g of carbon nanotubes having a particle diameter of about 3 nanometers in the reactor. 400) 15 g and 78.2 g of N-methyl-2piperidone (NMP) were added and stirred (rmp = 250-300) for about 5 minutes to prepare a mixture, which was then heated at 40 kHz for about 60 minutes. A sonication was performed to prepare a carbon nanotube dispersion.
실시예 2Example 2
반응기에 입경이 약 3 나노미터인 탄소나노튜브 3 g 및 입경이 약 6 나노미터인 탄소나노튜브 1.8 g이 혼합된 탄소나노튜브 총 4.8 g, 도데실 황산 나트륨 2 g, 폴리비닐부티랄(중합도 400) 15 g. 입경이 30 나노미터인 나노 클레이(헥토라이트) 0.05 g 및 N-메틸-2피페리돈(NMP) 78.15 g을 투입하고, 이를 교반(rmp=250 ~ 300)을 약 5 분간 실시하여 혼합물을 제조한 후, 이를 40 kHz에서 약 60 분 동안 음파처리함으로써 탄소나노튜브 분산액을 제조하였다.A total of 4.8 g of carbon nanotubes, 2 g of dodecyl sulfate, and polyvinyl butyral (polymerization degree) were mixed with 3 g of carbon nanotubes having a particle diameter of about 3 nanometers and 1.8 g of carbon nanotubes having a particle diameter of about 3 nanometers in the reactor. 400) 15 g. 0.05 g of nanoclay (hectorite) having a particle diameter of 30 nanometers and 78.15 g of N-methyl-2 piperidone (NMP) were added thereto, followed by stirring (rmp = 250 to 300) for about 5 minutes to prepare a mixture. Then, this was sonicated for about 60 minutes at 40 kHz to prepare a carbon nanotube dispersion.
실시예 3Example 3
입경이 약 3 나노미터인 탄소나노튜브 4 g 및 입경이 약 6 나노미터인 탄소나노튜브 1.2 g이 혼합된 탄소나노튜브 총 5.2 g 및 NMP 77.8 g을 제외하고는 실시예 2와 동일하게 제조하였다.4 g of carbon nanotubes having a particle diameter of about 3 nanometers and 1.2 g of carbon nanotubes having a particle size of about 6 nanometers were mixed in the same manner as in Example 2 except for 5.2 g of total carbon nanotubes and 77.8 g of NMP. .
실시예 4Example 4
계면활성제로 소듐 콜레이트 하이드레이트를 사용하는 것을 제외하고는 실시예 2와 동일하게 제조하였다.It was prepared in the same manner as in Example 2 except for using sodium cholate hydrate as a surfactant.
실시예 5Example 5
계면활성제로 소듐 도데실 벤젠 설폰산염을 사용하는 것을 제외하고는 실시예 2와 동일하게 제조하였다.Except for using sodium dodecyl benzene sulfonate as a surfactant was prepared in the same manner as in Example 2.
비교예Comparative example
비교예 1Comparative Example 1
나노 클레이(헥토라이트)를 1 g 및 NMP 77.2 g을 포함하는 것을 제외하고는 실시예 2와 동일하게 제조하였다.Nanoclay (hectorite) was prepared in the same manner as in Example 2 except for including 1 g and 77.2 g of NMP.
비교예 2Comparative Example 2
나노 클레이(헥토라이트)를 5 g 및 NMP 73.2 g을 포함하는 것을 제외하고는 실시예 2와 동일하게 제조하였다.Nanoclay (hectorite) was prepared in the same manner as in Example 2 except for 5 g and NMP 73.2 g.
비교예 3Comparative Example 3
탄소나노튜브로 입경이 10 나노미터인 것만을 사용하여 제조한 것을 제외하고는 실시예 2와 동일하게 제조하였다.Carbon nanotubes were prepared in the same manner as in Example 2 except for using only those having a particle diameter of 10 nanometers.
비교예 4Comparative Example 4
탄소나노튜브로 입경이 100 나노미터인 것만을 사용하여 제조한 것을 제외하고는 실시예 2와 동일하게 제조하였다.Carbon nanotubes were prepared in the same manner as in Example 2 except for using only 100 nanometers in particle size.
비교예 5Comparative Example 5
입경이 약 3 나노미터인 탄소나노튜브 1 g 및 입경이 약 6 나노미터인 탄소나노튜브 3.8 g이 혼합된 탄소나노튜브 총 4.8 g을 사용하는 것을 제외하고는 실시예 2와 동일하게 제조하였다.1 g of carbon nanotubes having a particle diameter of about 3 nanometers and 4.8 g of carbon nanotubes each having a particle diameter of about 6 nanometers of 3.8 g were prepared in the same manner as in Example 2.
비교예 6Comparative Example 6
입경이 약 3 나노미터인 탄소나노튜브 4.5 g 및 입경이 약 6 나노미터인 탄소나노튜브 0.3 g이 혼합된 탄소나노튜브 총 4.8 g을 사용하는 것을 제외하고는 실시예 2와 동일하게 제조하였다.4.5 g of carbon nanotubes having a particle diameter of about 3 nanometers and 0.3 g of carbon nanotubes having a particle diameter of about 6 nanometers were prepared in the same manner as in Example 2 except that a total of 4.8 g of carbon nanotubes were used.
비교예 7Comparative Example 7
탄소나노튜브를 0.5 g 및 NMP 81.95 g을 사용하는 것을 제외하고는 실시예 2와 동일하게 제조하였다.Carbon nanotubes were prepared in the same manner as in Example 2 except that 0.5 g and NMP 81.95 g were used.
비교예 8Comparative Example 8
탄소나노튜브를 10 g 및 NMP 72.95 g을 사용하는 것을 제외하고는 실시예 2와 동일하게 제조하였다.Carbon nanotubes were prepared in the same manner as in Example 2, except that 10 g and NMP 72.95 g were used.
비교예 9Comparative Example 9
도데실 황산 나트륨을 0.5 g 및 NMP 79.65 g을 사용하는 것을 제외하고는 실시예 2와 동일하게 제조하였다.Sodium dodecyl sulfate was prepared in the same manner as in Example 2 except that 0.5 g and NMP 79.65 g were used.
비교예 10Comparative Example 10
도데실 황산 나트륨을 4 g 및 NMP 76.15 g을 사용하는 것을 제외하고는 실시예 2와 동일하게 제조하였다.A sodium dodecyl sulfate was prepared in the same manner as in Example 2 except for using 4 g and NMP 76.15 g.
비교예 11Comparative Example 11
계면활성제로 Triton X-100을 사용하는 것을 제외하고는 실시예 2와 동일하게 제조하였다.Except for using Triton X-100 as a surfactant was prepared in the same manner as in Example 2.
비교예 12Comparative Example 12
계면활성제로 Triton X-405를 사용하는 것을 제외하고는 실시예 2와 동일하게 제조하였다.It was prepared in the same manner as in Example 2 except for using Triton X-405 as a surfactant.
비교예 13Comparative Example 13
폴리비닐부티랄을 2 g 및 NMP 91.15 g을 사용하는 것을 제외하고는 실시예 2와 동일하게 제조하였다.Polyvinylbutyral was prepared in the same manner as in Example 2 except for using 2 g and NMP 91.15 g.
비교예 14Comparative Example 14
폴리비닐부티랄을 30 g 및 NMP 63.15 g을 사용하는 것을 제외하고는 실시예 2와 동일하게 제조하였다.Polyvinylbutyral was prepared in the same manner as in Example 2, except that 30 g and NMP 63.15 g were used.
비교예 15Comparative Example 15
폴리비닐부티랄의 중합도가 100인 것을 제외하고는 실시예 2와 동일하게 제조하였다.A polyvinyl butyral was prepared in the same manner as in Example 2 except that the polymerization degree was 100.
비교예 16Comparative Example 16
폴리비닐부티랄의 중합도가 1000인 것을 제외하고는 실시예 2와 동일하게 제조하였다.A polyvinyl butyral was prepared in the same manner as in Example 2 except that the polymerization degree was 1000.
실험예Experimental Example
실험예Experimental Example 1 One
상기 실시예 및 비교예에 따라 제조된 탄소나노튜브 분산액을 이용하여 기재 표면에 면적이 2 인치이며, 두께가 10 마이크로미터인 탄소나노튜브 코팅층을 형성한 뒤, 모델명 CNT-SR100N 장비 및 JADEL 사의 4탐침 프로브(각 탐침사이의 거리는 20 ~50 mils임)를 이용하여 표면저항을 측정하였다. 상기 장비를 이용하여 상기 탄소나노튜브 코팅층 표면에서 임의로 5 곳의 표면저항을 측정한 뒤, 이의 평균값을 구하여 하기의 표 1에 나타내었다.After forming a carbon nanotube coating layer having an area of 2 inches and a thickness of 10 micrometers on the surface of the substrate using the carbon nanotube dispersions prepared according to the above Examples and Comparative Examples, the model CNT-SR100N equipment and JADEL 4 Surface resistance was measured using probe probes (the distance between each probe was 20-50 mils). Using the equipment, the surface resistance of five carbon nanotube coating layers was randomly measured, and then the average value thereof was obtained.
표면저항(Ω/sq)Surface resistance (Ω / sq) 표면저항(Ω/sq)Surface resistance (Ω / sq)
실시예 1Example 1 13.613.6 비교예 7Comparative Example 7 50.650.6
실시예 2Example 2 7.17.1 비교예 8Comparative Example 8 45.845.8
실시예 3Example 3 8.38.3 비교예 9Comparative Example 9 58.158.1
실시예 4Example 4 8.18.1 비교예 10Comparative Example 10 40.940.9
실시예 5Example 5 9.29.2 비교예 11Comparative Example 11 49.549.5
비교예 1Comparative Example 1 98.598.5 비교예 12Comparative Example 12 42.542.5
비교예 2Comparative Example 2 100.1100.1 비교예 13Comparative Example 13 32.132.1
비교예 3Comparative Example 3 60.560.5 비교예 14Comparative Example 14 측정불가Not measurable
비교예 4Comparative Example 4 61.261.2 비교예 15Comparative Example 15 29.829.8
비교예 5Comparative Example 5 35.635.6 비교예 16Comparative Example 16 51.851.8
비교예 6Comparative Example 6 38.538.5
상기 표 1을 보면, 실시예에 따른 탄소나노튜브 분산액을 이용한 경우의 표면저항이 약 7 ~ 13의 값을 가지나, 비교예에 따른 탄소나노튜브 분산액을 이용한 경우의 표면저항은 약 27 ~ 100의 값을 가지며, 비교예 14의 경우 점성으로 인해 표면저항의 측정이 불가한 것을 확인할 수 있는바, 이는 본 발명의 실시예에 따른 탄소나노튜브 분산액의 분산성, 분산 안정성 및 접착력이 현저히 우수한 것을 의미한다.Referring to Table 1, the surface resistance when using the carbon nanotube dispersion according to the embodiment has a value of about 7 to 13, the surface resistance when using the carbon nanotube dispersion according to the comparative example is about 27 ~ 100 It has a value, in the case of Comparative Example 14 can be confirmed that the measurement of the surface resistance due to the viscosity, which means that the dispersion, dispersion stability and adhesion of the carbon nanotube dispersion according to the embodiment of the present invention is remarkably excellent do.
실험예Experimental Example 2 2
입도분석기(Particle Size Analyzer)를 Malvern사의 모델 2000을 사용하여, 상기 실시예 및 비교예에 따른 탄소나노튜브 분산액의 입도를 측정하여, 하기의 표 2에 나타내었다.Particle size analyzer (Particle Size Analyzer) using Malvern's Model 2000, and measured the particle size of the carbon nanotube dispersion according to the Examples and Comparative Examples, it is shown in Table 2 below.
상기 입도 분석 시, 완전분산이 이루어진 경우 1개의 Peak(Mono-madal)가 형성되며, 불완전분산되는 경우에는 Large particle(10μm)에서 입도 분포를 나타낸다.In the particle size analysis, one peak (Mono-madal) is formed in the case of complete dispersion, and the particle size distribution is shown in large particles (10 μm) when incomplete dispersion.
입도분석Particle size analysis 입도분석Particle size analysis
실시예 1Example 1 Mono-modalMono-modal 비교예 7Comparative Example 7 불완전분산Incomplete dispersion
실시예 2Example 2 Mono-modalMono-modal 비교예 8Comparative Example 8 불완전분산Incomplete dispersion
실시예 3Example 3 Mono-modalMono-modal 비교예 9Comparative Example 9 불완전분산Incomplete dispersion
실시예 4Example 4 Mono-modalMono-modal 비교예 10Comparative Example 10 불완전분산Incomplete dispersion
실시예 5Example 5 Mono-modalMono-modal 비교예 11Comparative Example 11 불완전분산Incomplete dispersion
비교예 1Comparative Example 1 불완전분산Incomplete dispersion 비교예 12Comparative Example 12 불완전분산Incomplete dispersion
비교예 2Comparative Example 2 불완전분산Incomplete dispersion 비교예 13Comparative Example 13 불완전분산Incomplete dispersion
비교예 3Comparative Example 3 불완전분산Incomplete dispersion 비교예 14Comparative Example 14 측정불가Not measurable
비교예 4Comparative Example 4 불완전분산Incomplete dispersion 비교예 15Comparative Example 15 불완전분산Incomplete dispersion
비교예 5Comparative Example 5 불완전분산Incomplete dispersion 비교예 16Comparative Example 16 불완전분산Incomplete dispersion
비교예 6Comparative Example 6 불완전분산Incomplete dispersion
상기 표 2를 보면, 본 발명에 따라 제조된 실시예 1 내지 5의 경우 완전분산된 것을 알 수 있으며, 비교예 1 내지 16의 경우 불완전 분산된 것을 알 수 있는바, 이는 본 발명에 따르면 분산성 및 분산 안정성이 현저히 우수한 탄소나노튜브 분산액을 제조할 수 있음을 의미한다.Looking at Table 2, it can be seen that in the case of Examples 1 to 5 prepared according to the present invention is completely dispersed, in the case of Comparative Examples 1 to 16 it can be seen that incomplete dispersion, which is according to the present invention dispersibility And it means that can be prepared a carbon nanotube dispersion having excellent dispersion stability.
실험예Experimental Example 3 3
실시예 1, 실시예 2, 비교예 1 및 비교예 2의 UV 흡광도를 측정하여 도 1에 도시하였다.UV absorbance of Example 1, Example 2, Comparative Example 1 and Comparative Example 2 was measured and shown in FIG.
실시예 1, 실시예 2, 비교예 1 및 비교예 2에 따른 탄소나노튜브 분산액을 N-메틸-2피페리돈(NMP)을 이용하여 100 배 희석한 뒤, UV-Visible spectrometer(Perkinelmer사의 LAMBDA 750 모델 : 190nm ~ 2100nm 분석 가능)을 이용하여 이들의 UV 흡광도를 측정하였다.The carbon nanotube dispersions according to Examples 1, 2, Comparative Example 1 and Comparative Example 2 were diluted 100-fold using N-methyl-2piperidone (NMP), and then UV-Visible spectrometer (LAMBDA 750 from Perkinelmer). Model: 190nm ~ 2100nm can be analyzed) their UV absorbance was measured.
이때, 도 1에서 설계 A는 비교예 2, 설계 B는 비교예 1, 설계 C는 실시예 1, 설계 D는 실시예 2를 지칭하는 것이다. At this time, in Figure 1 design A refers to Comparative Example 2, Design B refers to Comparative Example 1, Design C refers to Example 1, Design D refers to Example 2.
Beer의 법칙에 따라, 흡광도(빛이 흡수되는 정도)는 물질의 농도에 비례하므로, 흡광도가 높다는 것은 UV를 흡수할 수 있는 탄소나노튜브가 고농도로 고르게 분산되어 있다는 것을 의미한다.According to Beer's law, the absorbance (the degree of light absorption) is proportional to the concentration of the material, so high absorbance means that the carbon nanotubes that can absorb UV are evenly dispersed in a high concentration.
도 1을 보면, 비교예 1 내지 2에 비해 실시예 1 내지 2의 탄소나노튜브 분산액의 UV 흡광도가 우수한 것을 알 수 있는바, 이는 비교예 1 및 2에 비해 실시예 1 및 2의 탄소나노튜브 분산액에서 탄소나노튜브가 고농도로 고르게 분산되어 있음을 의미한다. 특히, 나노 클레이를 사용한 실시예 2가 나노 클레이를 사용하지 않은 실시예 1에 비해 UV 흡광도가 높은 것을 확인할 수 있는데, 이는 나노 클레이를 사용할 경우 탄소나노튜브 분산액에서 탄소나노튜브가 고농도로 고르게 분산되는 현상이 더욱 향상될 수 있음을 의미한다.1, it can be seen that the UV absorbance of the carbon nanotube dispersion of Examples 1 to 2 is superior to Comparative Examples 1 to 2, which is the carbon nanotubes of Examples 1 and 2 compared to Comparative Examples 1 and 2 This means that carbon nanotubes are dispersed evenly in a high concentration. In particular, it can be seen that Example 2 using the nano clay has a higher UV absorbance than Example 1 without the nano clay, which is dispersed evenly in a high concentration in the carbon nanotube dispersion when using the nano clay. It means that the phenomenon can be further improved.
실험예Experimental Example 4 4
계면활성제가 각각 다른 실시예2(도데실 황산 나트륨), 실시예 4(소듐 콜레이트 하이드레이트), 비교예 11(Triton X-100) 및 비교예 12(Triton X-405)의 탄소나노튜브 분산액을 제조한 뒤, 이의 제조 직후와 제조한 뒤 48시간 후의 모습을 확인하여, 탄소나노튜브 분산액의 분산 안정성을 확인하였다.Preparation of carbon nanotube dispersions of Example 2 (sodium dodecyl sulfate), Example 4 (sodium cholate hydrate), Comparative Example 11 (Triton X-100) and Comparative Example 12 (Triton X-405) with different surfactants After that, immediately after the preparation thereof and after 48 hours after the preparation was confirmed, the dispersion stability of the carbon nanotube dispersion was confirmed.
상기 탄소나노튜브 분산액의 제조 직후와 48시간 후의 모습은 도 2에 도시하였다.Immediately after the preparation of the carbon nanotube dispersion and after 48 hours is shown in FIG.
도 2를 보면, 실시예 2(도데실 황산 나트륨) 및 실시예 4(소듐 콜레이트 하이드레이트)에 따라 제조된 탄소나노튜브 분산액은 제조 직후와 48시간 후의 분산성 및 분산 안정성이 모두 우수한 것을 확인할 수 있는바, 본 실시예에 따르면 분산성 및 분산 안정성이 모두 우수함을 의미한다. 2, the carbon nanotube dispersions prepared according to Examples 2 (sodium dodecyl sulfate) and Example 4 (sodium cholate hydrate) are excellent in both dispersibility and dispersion stability immediately after preparation and after 48 hours. Bar, according to this embodiment means that both dispersibility and dispersion stability are excellent.
반면, 비교예 11(Triton X-100)에 따른 탄소나노튜브 분산액은 제조 직후에도 표면에 응집된 덩어리가 형성된 것을 확인할 수 있으며, 48 시간이 지난 후에 층분리된 것을 확인할 수 있는바, 비교예 11은 실시예 2, 4 및 비교예 12에 비해 분산성 및 분산 안정성이 현저히 낮음을 알 수 있다.On the other hand, the carbon nanotube dispersion according to Comparative Example 11 (Triton X-100) can be confirmed that the aggregated mass formed on the surface immediately after the preparation, and after 48 hours it was confirmed that the layer was separated, Comparative Example 11 It can be seen that the dispersibility and dispersion stability is significantly lower than in Examples 2, 4 and Comparative Example 12.
또한, 비교예 12(Triton X-405)는 제조 직후에는 실시예와 비슷한 분산성을 보이나, 48 시간이 지난 후에 층분리되는 것을 확인할 수 있는바, 분산 안정성이 현저하게 떨어지는 것을 알 수 있다.In addition, Comparative Example 12 (Triton X-405) showed a dispersibility similar to that of the Example immediately after preparation, but after 48 hours it can be seen that the layer is separated, it can be seen that the dispersion stability is significantly reduced.
실험예Experimental Example 5 5
실시예 1, 실시예 2, 비교예 1, 비교예 2, 비교예 16에 따라 제조된 탄소나노튜브 분산액을 바이알 병에 담고, 약 10 ~ 30회 흔들어 준 직후, 1시간 후, 6시간 후, 12시간 후의 모습을 도 3 및 도 4에 나타내었다.Example 1, Example 2, Comparative Example 1, Comparative Example 2, Comparative Example 16 containing the carbon nanotube dispersion in a vial bottle, immediately after shaking about 10 to 30 times, after 1 hour, after 6 hours, The state after 12 hours is shown in FIGS. 3 and 4.
도 3 ~ 4를 보면, 실시예 1 ~ 2의 경우, 비교예에 비해 바이알 병의 표면에서 탄소나노튜브 분산액이 빠르게 분리되는 것을 확인할 수 있는데, 이로부터 실시예 1 ~ 2의 탄소나노튜브 분산액의 분산성 및 분산 안정성이 우수한 것을 알 수 있다. 반면, 비교예 1, 2 및 16의 경우, 12시간이 지난 후에도 바이알 병의 표면에 탄소나노튜브 덩어리들이 묻어있는 것을 확인할 수 있는데, 이는 탄소나노튜브 분산액 내에 탄소나노튜브가 균일하게 분산되지 않았으며, 탄소나노튜브가 덩어리를 형성하였다는 것을 의미하는 바, 이로부터, 비교예 1, 2 및 16에 따른 탄소나노튜브 분산액의 분산성 및 분산 안정성이 실시예에 비해 현저히 낮은 것을 알 수 있다.3 to 4, in the case of Examples 1 to 2, it can be seen that the carbon nanotube dispersion is quickly separated from the surface of the vial bottle compared to the comparative example, from which the carbon nanotube dispersion of Examples 1 to 2 It can be seen that the dispersibility and dispersion stability are excellent. On the other hand, in Comparative Examples 1, 2, and 16, even after 12 hours, the surface of the vial bottle was found to have carbon nanotube lumps, which was not uniformly dispersed in the carbon nanotube dispersion. , Which means that the carbon nanotubes form agglomerates, and from this, it can be seen that the dispersibility and dispersion stability of the carbon nanotube dispersions according to Comparative Examples 1, 2 and 16 are significantly lower than those of the examples.
또한, 실시예 1 및 2를 보면, 나노 클레이를 포함하는 실시예 2의 분산성 및 분산 안정성이 더 좋은 것을 확인할 수 있는데, 이는 나노 클레이의 사용에 따라 분산성 및 분산 안정성이 향상됨을 의미한다. 다만, 실시예 1 ~ 2 및 비교예 1 ~ 2의 비교를 통해, 나노 클레이를 첨가하되, 본 발명에서 제시하는 중량%를 초과할 경우에는 오히려 분산성 및 분산 안정성이 저하되는 것을 알 수 있다.In addition, looking at Examples 1 and 2, it can be seen that the dispersibility and dispersion stability of Example 2 including the nano clay is better, which means that the dispersibility and dispersion stability is improved according to the use of the nano clay. However, through the comparison of Examples 1 and 2 and Comparative Examples 1 and 2, it can be seen that when the nanoclay is added, but exceeds the weight% presented in the present invention, the dispersibility and dispersion stability is rather reduced.
또한, 실시예 2 및 비교예 16의 비교를 통해, 폴리비닐부티랄의 중합도가 본 발명에서 제시한 범위를 만족하지 못할 경우에는 분산성 및 분산 안정성이 저하되는 것을 알 수 있다.In addition, it can be seen from the comparison between Example 2 and Comparative Example 16 that the degree of dispersibility and dispersion stability is lowered when the degree of polymerization of polyvinyl butyral does not satisfy the range set forth in the present invention.
전술한 바와 같이, 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 기술을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며, 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.As described above, the description of the present invention is for the purpose of illustration, and those skilled in the art to which the present invention belongs may easily change to other specific forms without changing the technical spirit or essential features of the present invention. I can understand. Therefore, it is to be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is shown by the following claims rather than the detailed description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included in the scope of the present invention. .

Claims (16)

  1. 탄소나노튜브. 계면활성제, 폴리비닐부티랄(Polyvinyl butyral) 및 용매를 포함하는 것을 특징으로 하는 탄소나노튜브 분산액.Carbon nanotubes. Carbon nanotube dispersion comprising a surfactant, polyvinyl butyral and a solvent.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 탄소나노튜브 분산액은The carbon nanotube dispersion is
    상기 탄소나노튜브 분산액 총 중량 기준으로 상기 탄소나노튜브 1 ~ 8 중량%, 상기 계면활성제 1 ~ 5 중량%, 상기 폴리비닐부티랄 3 ~ 25 중량% 및 상기 용매 65 ~ 90 중량%를 포함하는 것을 특징으로 하는 탄소나노튜브 분산액.Comprising 1 to 8% by weight of the carbon nanotubes, 1 to 5% by weight of the surfactant, 3 to 25% by weight of the polyvinyl butyral and 65 to 90% by weight of the solvent based on the total weight of the carbon nanotube dispersion Carbon nanotube dispersion liquid.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 탄소나노튜브 분산액은 나노 클레이(Clay)를 더 포함하는 것을 특징으로 하는 탄소나노튜브 분산액.The carbon nanotube dispersion is a carbon nanotube dispersion, characterized in that it further comprises a nano (Clay).
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 탄소나노튜브 분산액은The carbon nanotube dispersion is
    상기 탄소나노튜브 분산액 총 중량 기준으로 상기 나노 클레이를 0.01 ~ 0.1 중량%를 포함하는 것을 특징으로 하는 탄소나노튜브 분산액.Carbon nanotube dispersion characterized in that it comprises 0.01 to 0.1% by weight based on the total weight of the carbon nanotube dispersion.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 탄소나노튜브는 입경이 8 나노미터 이하인 것을 특징으로 하는 탄소나노튜브 분산액.The carbon nanotubes are carbon nanotube dispersion, characterized in that the particle size is 8 nanometer or less.
  6. 제 5 항에 있어서,The method of claim 5, wherein
    상기 탄소나노튜브는The carbon nanotubes
    입경이 1 ~ 4 나노미터인 탄소나노튜브 및 입경이 5 ~ 8 나노미터인 탄소나노튜브가 1 : 0.2 ~ 1의 중량비로 혼합된 것을 특징으로 하는 탄소나노튜브 분산액.Carbon nanotube dispersion, characterized in that the carbon nanotubes having a particle diameter of 1 to 4 nanometers and carbon nanotubes having a particle diameter of 5 to 8 nanometers are mixed in a weight ratio of 1: 0.2 to 1.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 폴리비닐부티랄의 평균 중합도는 300 ~ 700 인 것을 특징으로 하는 탄소나노튜브 분산액.Carbon nanotube dispersion, characterized in that the average degree of polymerization of the polyvinyl butyral is 300 ~ 700.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 계면활성제는The surfactant is
    도데실 황산 나트륨(Sodium dodecyl sulfate), 소듐 콜레이트 하이드레이트(Sodium cholate hydrate), 소듐 도데실벤젠 설폰산염(Sodium dodecyl benzene sulfonate)으로 이루어진 군에서 선택된 어느 하나 이상인 것을 특징으로 하는 탄소나노튜브 분산액.Carbon nanotube dispersion, characterized in that any one or more selected from the group consisting of sodium dodecyl sulfate, sodium cholate hydrate, sodium dodecyl benzene sulfonate.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 용매는 물, 아세톤(Acetone), 디메틸설폭사이드(Dimethlyl sulfoxide), 디메틸폼아미드(Dimethylformamid), 벤젠(Benzene), 톨루엔(Toluene), 자일렌(Xylene), 클로로포름(Chloroform), 피리딘(Pyridine), 테트라하이드로퓨란(Tetrahydrofuran), 메틸에틸케톤(methyl ethyl ketone), N-메틸-2-피페리돈(N-Methyl-2-pyrrolidone)으로 이루어진 군에서 선택된 어느 하나 이상을 포함하는 것을 특징으로 하는 탄소나노튜브 분산액.The solvent is water, acetone, dimethyl sulfoxide, dimethylformamide, dimethylformamide, benzene, toluene, xylene, chloroform, pyridine, pyridine. Tetrahydrofuran (Tetrahydrofuran), methyl ethyl ketone (methyl ethyl ketone), N- methyl-2- piperidone (N-Methyl-2-pyrrolidone), characterized in that it comprises any one selected from the group consisting of Nanotube Dispersion.
  10. 탄소나노튜브 분산액의 제조방법에 있어서,In the method for producing a carbon nanotube dispersion,
    탄소나노튜브. 계면활성제, 폴리비닐부티랄(Polyvinyl butyral) 및 용매를 혼합하여 혼합물을 제조하는 제 1 단계; 및Carbon nanotubes. A first step of preparing a mixture by mixing a surfactant, polyvinyl butyral and a solvent; And
    상기 혼합물을 음파처리하는 제 2 단계를 포함하는 것을 특징으로 하는 탄소나노튜브 분산액의 제조방법.Method for producing a carbon nanotube dispersion, characterized in that it comprises a second step of sonicating the mixture.
  11. 제 10 항에 있어서,The method of claim 10,
    상기 탄소나노튜브 분산액은The carbon nanotube dispersion is
    상기 탄소나노튜브 분산액 총 중량 기준으로 상기 탄소나노튜브 1 ~ 8 중량%, 상기 계면활성제 1 ~ 5 중량%, 상기 폴리비닐부티랄 3 ~ 25 중량% 및 상기 용매 65 ~ 90 중량%를 포함하는 것을 특징으로 하는 탄소나노튜브 분산액의 제조방법.Comprising 1 to 8% by weight of the carbon nanotubes, 1 to 5% by weight of the surfactant, 3 to 25% by weight of the polyvinyl butyral and 65 to 90% by weight of the solvent based on the total weight of the carbon nanotube dispersion Method for producing a carbon nanotube dispersion, characterized in that.
  12. 제 10 항에 있어서,The method of claim 10,
    상기 제 1 단계에서 나노 클레이를 더 포함하는 것을 특징으로 하는 탄소나노튜브 분산액의 제조방법.The method of producing a carbon nanotube dispersion, characterized in that further comprising nanoclay in the first step.
  13. 제 12 항에 있어서,The method of claim 12,
    상기 탄소나노튜브 분산액은The carbon nanotube dispersion is
    상기 탄소나노튜브 분산액 총 중량 기준으로 상기 나노 클레이를 0.01 ~ 0.1 중량%를 포함하는 것을 특징으로 하는 탄소나노튜브 분산액의 제조방법.Method for producing a carbon nanotube dispersion, characterized in that it comprises 0.01 to 0.1% by weight based on the total weight of the carbon nanotube dispersion.
  14. 제 10 항에 있어서,The method of claim 10,
    상기 탄소나노튜브는 입경이 8 나노미터 이하인 것을 특징으로 하는 탄소나노튜브 분산액의 제조방법.The carbon nanotubes have a particle diameter of 8 nanometers or less, characterized in that the manufacturing method of carbon nanotube dispersion.
  15. 제 14 항에 있어서,The method of claim 14,
    상기 탄소나노튜브는The carbon nanotubes
    입경이 1 ~ 4 나노미터인 탄소나노튜브 및 입경이 5 ~ 8 나노미터인 탄소나노튜브가 1 : 0.2 ~ 1의 중량비로 혼합된 것을 특징으로 하는 탄소나노튜브 분산액의 제조방법.Carbon nanotubes having a particle diameter of 1 to 4 nanometers and carbon nanotubes having a particle diameter of 5 to 8 nanometers are mixed in a weight ratio of 1: 0.2 to 1.
  16. 제 10 항에 있어서,The method of claim 10,
    상기 폴리비닐부티랄의 평균 중합도는 300 ~ 700 인 것을 특징으로 하는 탄소나노튜브 분산액의 제조방법.Method of producing a carbon nanotube dispersion, characterized in that the average degree of polymerization of the polyvinyl butyral is 300 ~ 700.
PCT/KR2017/009612 2017-03-29 2017-09-01 Carbon nanotube dispersion solution and preparation method therefor WO2018182111A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170040032A KR101807798B1 (en) 2017-03-29 2017-03-29 Carbon nanotube dispersion solution and method of making same
KR10-2017-0040032 2017-03-29

Publications (1)

Publication Number Publication Date
WO2018182111A1 true WO2018182111A1 (en) 2018-10-04

Family

ID=60944192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009612 WO2018182111A1 (en) 2017-03-29 2017-09-01 Carbon nanotube dispersion solution and preparation method therefor

Country Status (2)

Country Link
KR (1) KR101807798B1 (en)
WO (1) WO2018182111A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114530335A (en) * 2022-02-23 2022-05-24 苏州固韧纳米材料技术有限公司 Super capacitor energy storage brick, preparation method thereof and super capacitor
WO2023136631A1 (en) * 2022-01-13 2023-07-20 주식회사 엘지화학 Carbon nanotube bundles

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102586634B1 (en) 2021-06-30 2023-10-10 주식회사 제이오 Preparing method of carbon nanotube dispersion
CN113651315A (en) * 2021-08-18 2021-11-16 成都富安纳新材料科技有限公司 Easily dispersed active nano carbon powder and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070051979A (en) * 2005-11-16 2007-05-21 한국과학기술원 Method for manufacturing the high purity carbon nanotube film using dispersed solution of carbon nanotube
US20100330358A1 (en) * 2008-02-08 2010-12-30 Meijo Nano Carbon Co., Ltd. Carbon nanotube dispersion and utilization of same
KR20110061164A (en) * 2009-12-01 2011-06-09 엘지디스플레이 주식회사 Carbon nano tube dispersion liquid, manufacturing method of thin layer and display panel of the same
KR20120021807A (en) * 2010-08-18 2012-03-09 한화케미칼 주식회사 Preparation of concentrated cnt dispersion solution using the treated cnt
KR20160066494A (en) * 2014-12-01 2016-06-10 엘지디스플레이 주식회사 Carbon Nanotue Dispersed Composition And Method for Manufaturing Of The Same, Conductive Coated Composition Comprising The Same, Antistatic Film And Display Device Using The Same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1838769A1 (en) 2004-12-03 2007-10-03 William Marsh Rice University Well-dispersed polymer nanocomposites via interfacial polymerization
WO2010123610A2 (en) 2009-02-05 2010-10-28 Texas A&M Unverstiy Isolated nanotubes and polymer nanocomposites

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070051979A (en) * 2005-11-16 2007-05-21 한국과학기술원 Method for manufacturing the high purity carbon nanotube film using dispersed solution of carbon nanotube
US20100330358A1 (en) * 2008-02-08 2010-12-30 Meijo Nano Carbon Co., Ltd. Carbon nanotube dispersion and utilization of same
KR20110061164A (en) * 2009-12-01 2011-06-09 엘지디스플레이 주식회사 Carbon nano tube dispersion liquid, manufacturing method of thin layer and display panel of the same
KR20120021807A (en) * 2010-08-18 2012-03-09 한화케미칼 주식회사 Preparation of concentrated cnt dispersion solution using the treated cnt
KR20160066494A (en) * 2014-12-01 2016-06-10 엘지디스플레이 주식회사 Carbon Nanotue Dispersed Composition And Method for Manufaturing Of The Same, Conductive Coated Composition Comprising The Same, Antistatic Film And Display Device Using The Same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136631A1 (en) * 2022-01-13 2023-07-20 주식회사 엘지화학 Carbon nanotube bundles
CN114530335A (en) * 2022-02-23 2022-05-24 苏州固韧纳米材料技术有限公司 Super capacitor energy storage brick, preparation method thereof and super capacitor
CN114530335B (en) * 2022-02-23 2023-09-29 苏州固韧纳米材料技术有限公司 Super capacitor energy storage brick, preparation method thereof and super capacitor

Also Published As

Publication number Publication date
KR101807798B1 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
WO2018182111A1 (en) Carbon nanotube dispersion solution and preparation method therefor
WO2012018242A2 (en) High-efficiency heat-dissipating paint composition using a carbon material
US20130207294A1 (en) Conductive Paint Composition and Method for Manufacturing Conductive Film Using the Same
WO2016108656A1 (en) Transparent sheet heater
WO2016190722A1 (en) Functionalized graphene comprising two or more types of amines, and preparation method therefor
WO2015147449A1 (en) Electromagnetic wave shielding sheet and method for manufacturing same
WO2015012427A1 (en) Heat-radiating sheet using graphene/graphite nanoplate/carbon nanotube/nanometal complex, and manufacturing method therefor
WO2012036453A2 (en) Transparent conductive sheet coated with antireflection layer and method for manufacturing same
WO2012157960A2 (en) Multi-layer plastic substrate and method for manufacturing same
WO2018151393A1 (en) Conductive gloves and method for manufacturing same
EP2417194A2 (en) Uncrosslinked polyethylene composition for power cable
WO2015152559A1 (en) Low refractive composition, preparation method therefor, and transparent conductive film
WO2010059008A2 (en) Conductive resin composition including carbon composite
WO2010035999A2 (en) Transparent electrode
WO2013169087A1 (en) Conductive polymeric ink composition and organic solar cell containing same
WO2014204265A1 (en) Conductive ink composition, transparent conductive film including same, and method of manufacturing transparent conductive film
WO2017200169A1 (en) Hollow aluminosilicate particles and method of manufacturing the same
WO2014098275A1 (en) Production method for planarizing fibre substrate for flexible display
WO2011046254A1 (en) Antistatic sheet for stacking beverage and food containers and manufacturing method thereof
WO2013100550A1 (en) Transparent electrode
WO2023013834A1 (en) Heat sink paint composition, preparation method therefor, heat sink coating film formed therefrom, and heat sink comprising same
WO2016105088A1 (en) Composition for window film, flexible window film formed therefrom, and flexible display device comprising same
WO2015167235A1 (en) Polyester film and method for manufacturing same
WO2018164472A1 (en) Conductive ceramic composition having excellent electrical conductivity
WO2023080349A1 (en) One-part type urethane heat-dissipating paint composition and method for preparing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902722

Country of ref document: EP

Kind code of ref document: A1