WO2010059008A2 - Conductive resin composition including carbon composite - Google Patents

Conductive resin composition including carbon composite Download PDF

Info

Publication number
WO2010059008A2
WO2010059008A2 PCT/KR2009/006909 KR2009006909W WO2010059008A2 WO 2010059008 A2 WO2010059008 A2 WO 2010059008A2 KR 2009006909 W KR2009006909 W KR 2009006909W WO 2010059008 A2 WO2010059008 A2 WO 2010059008A2
Authority
WO
WIPO (PCT)
Prior art keywords
materials
resin
parts
carbon nanotubes
carbon
Prior art date
Application number
PCT/KR2009/006909
Other languages
French (fr)
Korean (ko)
Other versions
WO2010059008A3 (en
Inventor
정만우
전성윤
한주희
오주석
이진서
도승회
홍성철
Original Assignee
한화석유화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020080117106A external-priority patent/KR101090729B1/en
Priority claimed from KR1020090054259A external-priority patent/KR101594494B1/en
Application filed by 한화석유화학 주식회사 filed Critical 한화석유화학 주식회사
Publication of WO2010059008A2 publication Critical patent/WO2010059008A2/en
Publication of WO2010059008A3 publication Critical patent/WO2010059008A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • C08J9/0071Nanosized fillers, i.e. having at least one dimension below 100 nanometers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances

Definitions

  • the present invention relates to a highly conductive polymer mixture comprising a composite carbon material and to a polymer composition comprising a composite carbon material having excellent economic and conductivity.
  • Thermoplastic resins are excellent in processability and formability, and are widely applied to various household goods, office automation equipment, electrical and electronic products, and the like. Moreover, according to the kind and the characteristic of the product in which such a thermoplastic resin is used, in addition to the said excellent workability and moldability, the attempt to add a special property to a thermoplastic resin and to use it as a high value-added material is continuously made.
  • thermoplastic resins many attempts have been made to impart electrical conductivity to thermoplastic resins, and to use such electrically conductive thermoplastic resins for applications such as automobiles, various electrical devices, electronic assemblies, or cables to exhibit electromagnetic shielding performance.
  • Such electrically conductive thermoplastic resins are typically prepared using an electrically conductive thermoplastic resin composition in which a thermoplastic resin is mixed with a conductive additive such as carbon black, carbon fiber, metal powder, metal coated inorganic powder or metal fiber.
  • a conductive additive such as carbon black, carbon fiber, metal powder, metal coated inorganic powder or metal fiber.
  • Korean Patent Inventive No. 706652 80 to 99 parts by weight of a thermoplastic resin; 0.1 to 10 parts by weight of carbon nanotubes; And it has been proposed an electrically conductive thermoplastic resin composition comprising 0.1 to 10 parts by weight of the organic nanoclay.
  • a composition has been proposed comprising fibrils, D) from 0.2 to 10.0 parts by weight of at least one particulate carbon compound, preferably carbon black or graphite powder, E) from 0 to 50 parts by weight of at least one filler and / or reinforcing material.
  • an object of the present invention is to provide a polymer composition having excellent dispersibility, high conductivity, and economical efficiency by complexing a surface-modified carbon nanotube and another carbon compound to improve dispersibility.
  • the present invention provides a polymer composition having excellent impact mitigation properties.
  • the present invention 100 parts by weight of thermoplastic resin to achieve the above object; 0.1 to 5.0 parts by weight of surface-modified carbon nanotubes based on 100 parts by weight of the thermoplastic resin; It provides a conductive resin composition comprising; and 1 to 20 parts by weight of the carbon compound with respect to 100 parts by weight of the thermoplastic resin.
  • the present invention provides a conductive resin composition further comprises 0.01 to 5 parts by weight of the blowing agent relative to 100 parts by weight of the thermoplastic resin.
  • the present invention is the surface-modified carbon nanotube is a conductive resin that is surface-modified to include 0.1 to 10 parts by weight of an element selected from the group consisting of oxygen, nitrogen and mixtures thereof with respect to 100 parts by weight of carbon nanotubes To provide a composition.
  • the surface-modified carbon nanotubes of the present invention provides a conductive resin composition obtained by oxidation of a carbon nanotube surface by adding carboxylic acid, nitric acid, phosphoric acid or sulfuric acid to the carbon nanotubes.
  • the surface-modified carbon nanotubes of the present invention using a oxidizing agent selected from oxygen, air, ozone, hydrogen peroxide, nitric acid, nitro compounds and mixtures thereof, at a pressure of 50 to 400 atm and a temperature of 100 to 600 ° C. It provides a conductive resin composition obtained by oxidizing the carbon nanotube surface in the counting or supercritical water conditions.
  • a oxidizing agent selected from oxygen, air, ozone, hydrogen peroxide, nitric acid, nitro compounds and mixtures thereof, at a pressure of 50 to 400 atm and a temperature of 100 to 600 ° C.
  • the surface-modified carbon nanotubes of the present invention using a oxidizing agent selected from oxygen, air, ozone, hydrogen peroxide, nitric acid, nitro compounds and mixtures thereof, at a pressure of 50 to 400 atm and a temperature of 100 to 600 ° C.
  • a oxidizing agent selected from oxygen, air, ozone, hydrogen peroxide, nitric acid, nitro compounds and mixtures thereof, at a pressure of 50 to 400 atm and a temperature of 100 to 600 ° C.
  • the carbon nanotube surface is oxidized under counting or supercritical conditions, followed by carboxyl, carboxyl salt, amine, amine salt, tetravalent-amine, phosphate group, phosphate, sulfate group, sulfate, alcohol, thiol, ester, amide, epoxide
  • a functional compound having at least one functional group selected from the group consisting of side, aldehyde, ketone, and mixtures thereof is injected into a surface reforming reaction tank at a pressure of 50 to 400 atm and a temperature of 100 to 600 ° C. to provide a conductive resin composition obtained by surface treatment. .
  • the thermoplastic resin is a polyacetal resin, acrylic resin, polycarbonate resin, styrene resin, polyester resin, vinyl resin, polyphenylene ether resin, polyolefin resin, acrylonitrile-butadiene-styrene copolymer Resin, polyarylate resin, polyamide resin, polyamideimide resin, polyarylsulfone resin, polyetherimide resin, polyethersulfone resin, polyphenylene sulfide resin, fluorine resin, polyimide resin, polyetherketone resin, Polybenzoxazole resin, polyoxadiazole resin, polybenzothiazole resin, polybenzimidazole resin, polypyridine resin, polytriazole resin, polypyrrolidine resin, polydibenzofuran resin, polysulfone resin, polyurea resin, One resin, two or more copolymers selected from the group consisting of polyphosphazene resins and liquid crystal polymer resins It provides a resin or a mixture of two
  • the present invention provides a conductive resin composition containing carbon black, graphite or carbon fiber as the carbon compound.
  • the present invention provides a conductive resin composition having an average particle diameter of 0.001 ⁇ m ⁇ 300 ⁇ m.
  • the present invention provides a molding prepared by extruding the conductive resin composition.
  • the present invention provides a plastic molding capable of flexibly varying the surface resistance of the molding, electromagnetic shielding, electrostatic dispersion and antistatic.
  • the present invention by using a composite material of carbon nanotubes and a carbon compound modified in a thermoplastic resin, by using a surface-modified carbon nanotubes to improve dispersibility, an effect of increasing conductivity and a large amount of expensive carbon nanotubes is achieved.
  • the functionalities of carbon blacks, carbon black, graphite, and carbon fibers, which can support them are used together with surface-modified carbon nanotubes. It is intended to extend the applicability of the conductive composition by providing synergy to provide functionality and economy.
  • the present invention is intended to expand the applicability of the conductive composition exhibiting impact relaxation (buffering) with the addition of an excellent blowing agent and an excellent conductivity.
  • the present invention 100 parts by weight of thermoplastic resin; 0.1 to 5.0 parts by weight of surface-modified carbon nanotubes based on 100 parts by weight of the thermoplastic resin; It provides a conductive resin composition comprising; and 1 to 20 parts by weight of the carbon compound with respect to 100 parts by weight of the thermoplastic resin.
  • the present invention also relates to a conductive resin composition further comprising 0.01 to 5 parts by weight of the blowing agent based on 100 parts by weight of the thermoplastic resin.
  • thermoplastic resin used in the present invention is polyacetal resin, acrylic resin, polycarbonate resin, styrene resin, polyester resin, vinyl resin, polyphenylene ether resin, polyolefin resin, acrylonitrile-butadiene-styrene copolymer resin , Polyarylate resin, polyamide resin, polyamideimide resin, polyarylsulfone resin, polyetherimide resin, polyethersulfone resin, polyphenylene sulfide resin, fluorine resin, polyimide resin, polyetherketone resin, poly Benzoxazole resin, polyoxadiazole resin, polybenzothiazole resin, polybenzimidazole resin, polypyridine resin, polytriazole resin, polypyrrolidine resin, polydibenzofuran resin, polysulfone resin, polyurea resin, poly One resin, two or more copolymers selected from the group consisting of phosphazene resins and liquid crystal polymer resins Resins or mixtures of two or more may
  • the surface-modified carbon nanotubes of the present invention may be used as 0.1 to 5.0 parts by weight of surface-modified carbon nanotubes based on 100 parts by weight of the thermoplastic resin.
  • the surface modified carbon nanotubes of the present invention can make excellent balance between mechanical properties and electrical conductivity. If the surface-modified carbon nanotubes are used at less than 0.1 part by weight, the effect of improving conductivity is insignificant. If the surface-modified carbon nanotubes are used in excess of 5.0 parts by weight, the mechanical properties of the thermoplastic resin may be deteriorated. This results in expensive raw material waste.
  • Carbon nanotubes of the present invention is composed of a single-walled, double walled, thin multi-walled, multi-walled, bundled and mixtures thereof Any form selected from the group is possible.
  • the surface-modified carbon nanotubes of the present invention is preferably surface-modified to include 0.1 to 10 parts by weight of a material selected from the group consisting of oxygen, nitrogen and mixtures thereof with respect to 100 parts by weight of carbon nanotubes.
  • the surface-modified carbon nanotubes through the oxidation have a significantly higher dispersibility in mixing with the resin and affect the conductivity. In addition, mixing with not only the resin but also other carbon materials or carbon compounds is facilitated.
  • the surface-modified carbon nanotubes of the present invention include a method of causing oxidation of a surface by adding an acid, a method of oxidizing a surface of a carbon nanotube by reactivity of water under high temperature and high pressure.
  • the surface-modified carbon nanotube of the present invention is oxygen, air, ozone, hydrogen peroxide, nitric acid, nitro compounds And oxidizing the surface of the carbon nanotubes under subcritical water or supercritical water conditions at a pressure of 50 to 400 atm and a temperature of 100 to 600 ° C. using an oxidant selected from a mixture thereof.
  • Environmentally friendly surface modified carbon nanotubes can be obtained using oxidants that are not harmful in subcritical or supercritical conditions and are easy to handle and treat in wastewater.
  • the surface modification of the subcritical water or supercritical water condition is that the oxidant is easily introduced to increase the surface modification effect of the carbon nanotubes, thereby increasing the dispersibility.
  • the surface-modified carbon nanotubes are subcritical water or supercritical water at a pressure of 50 to 400 atm and a temperature of 100 to 600 ° C. using an oxidant selected from oxygen, air, ozone, hydrogen peroxide, nitric acid, nitro compounds, and mixtures thereof.
  • the carbon nanotube surface is oxidized under counting conditions, followed by carboxyl, carboxyl salt, amine, amine salt, tetra-amine, phosphate group, phosphate, sulfate group, sulfate, alcohol, thiol, ester, amide, epoxide, aldehyde
  • functional compounds having at least one functional group selected from the group consisting of ketones and mixtures thereof may be obtained by injecting a surface treatment reactor at a pressure of 50 to 400 atm and a temperature of 100 to 600 ° C.
  • the surface-modified carbon nanotubes may be obtained by adding carboxylic acid, nitric acid, phosphoric acid, or sulfuric acid to the carbon nanotubes by oxidation of the surface of the carbon nanotubes. Oxidation can be provided.
  • the carbon compound used in the present invention may be included as 1 to 20 parts by weight of the carbon compound based on 100 parts by weight of the thermoplastic resin. If the carbon compound is less than 1 part by weight, there is no effect of economical supplementation due to the addition of the carbon compound, and if it exceeds 20 parts by weight, there is no synergistic effect of the excess amount or conductivity.
  • the carbon compound may be used as long as the carbon compound includes carbon black, graphite or carbon fiber, and is not limited thereto.
  • the carbon compound may have an average particle diameter of 0.001 to 0.5 ⁇ m, and graphite may have an average particle diameter of 1 to 300 ⁇ m in powder form.
  • the carbon fiber is also preferably a fine fiber having an average particle diameter of 0.01 to 0.1 mu m.
  • the present invention may be used by mixing a carbon composite material with a conductive additive such as metal powder, metal coated inorganic powder, or metal fiber, and more preferably, lead (Pb), aluminum ( Al) metal powder can be used.
  • a conductive additive such as metal powder, metal coated inorganic powder, or metal fiber, and more preferably, lead (Pb), aluminum ( Al) metal powder can be used.
  • the present invention may further comprise 0.01 to 5 parts by weight of the blowing agent with respect to 100 parts by weight of the thermoplastic resin
  • the blowing agent is a component that can improve the conductivity, azodicarboxyamide, azobistetrazoldiaminoguanidine, azo Selected from bistetrazoleguanidine, 5-phenyltetrazole, bistetrazoleguanidine, bistetrazole piperazine, bistetrazolediammonium, N, N-dinitrosopentamethylenetetramine, hydrazodicarboxyamide and mixtures thereof Can be appropriately selected according to the thermoplastic resin.
  • the foaming agent in 0.01 to 5 parts by weight, the dispersibility is good together with the surface-modified carbon nanotubes and the carbon compound, it is possible to excellently improve the conductivity and at the same time forming a good foam (foam) without trouble.
  • the present invention can be prepared by a known method by mixing the respective conductive resin compositions.
  • the mixing of each of these components can be made into pellets by conventional extrusion, which can be used for various purposes, and the prepared pellets can be made into moldings to suit the purpose of sheets, films and the like.
  • the present invention provides a plastic molding capable of flexibly varying the surface resistance of the molding, electromagnetic shielding, electrostatic dispersion and antistatic.
  • the present invention is a conductive paint, electrostatic dispersion material, electrostatic dispersion paint, conductive material, electromagnetic wave shielding material, electromagnetic wave absorbing material, electromagnetic wave shielding paint, electromagnetic wave absorbing paint, solar cell material, dye-sensitized battery (DSSC) electrode material, electric device, electronic device , Semiconductor device, optoelectronic device, notebook component material, computer component material, mobile phone component material, PDA (PDA) component material, game machine component material, housing material, transparent electrode material, opaque electrode material, field emission display ( Field emission display (FED) materials, back light unit (BLU) materials, liquid crystal display (LCD) materials, plasma display panel (PDP) materials, light emitting diodes (LED) ) Materials, touch panel materials, billboard materials, billboard materials, display materials, heating elements, radiators, plating materials, catalysts, promoters, oxidants, reducing agents, automotive parts materials, ship parts Materials, aircraft component materials, electronic envelope materials, protective tape materials, adhesive materials, tray materials, clean room materials, transportation
  • the conductive resin composition including the composite carbon material of the present invention has excellent conductivity by using a surface-modified carbon nanotube and a carbon compound such as graphite, carbon black, and carbon fiber together as a composite material, and a small amount.
  • the use of carbon nanotubes has an economic effect of showing high conductivity.
  • the resin composition further includes a foaming agent and has good foaming property, and exhibits excellent buffering effect due to excellent foaming, and has an excellent impact relaxation effect with conductivity.
  • the conductive resin composition of the present invention has the effect of showing high conductivity even when using a small amount of expensive carbon nanotubes.
  • the carbon nanotubes of the present invention by using the surface-modified carbon nanotubes in subcritical water or supercritical water conditions to exclude the use of acids to facilitate the surface modification under environmentally friendly conditions and improve the dispersibility with the resin There is.
  • the conductive resin including the composite carbon material of the present invention is produced by the pellets has the effect of extending the applicability according to the application.
  • MWCNT solution was prepared in a pretreatment tank by mixing 12 g of Multi Wall Carbon Nano Tube (hereinafter referred to as MWCNT) (HANWHA NANOTECH, product name: CM95) with 988 g of distilled water and a circulation pump. Before the MWCNT solution is introduced into the preheater at a flow rate of 30 g / min through a high pressure injection pump, the oxygen in the gaseous state compressed to 245 atm to 252 atm is mixed with the MWCNT solution at a flow rate of 0.8 g / min at the front end of the heat exchanger The mixed solution was added to a preheating tank preheated to 200 to 260 ° C. through a heat exchanger.
  • MWCNT Multi Wall Carbon Nano Tube
  • the preheated mixed solution is injected into a surface reforming reactor in a subcritical water state of 350 ° C. and 230 atm to 250 atm, and the surface modified product is transferred to a heat exchanger, and then first cooled to 200 ° C., and then again through a cooling device. After cooling to a temperature of about 25 °C to obtain a surface-modified continuously 11.8g multilayer carbon nanotubes.
  • the carbon nanotubes of Preparation Example 1 were used in the same manner as in Example 6 except that 10g of carbon nanotubes of Preparation Example 3 and 50g of carbon fibers having an average particle diameter of 0.1 ⁇ m were used instead of 50g of carbon black.
  • the carbon nanotubes of Preparation Example 1 were used in the same manner as in Example 7, except that 5g of the carbon nanotubes of Preparation Example 5 and 90g of carbon fibers having an average particle diameter of 10.0 ⁇ m were used instead of 90g of carbon black.
  • Comparative Example 1 The same procedure was followed as in Comparative Example 1 except that 650 kg of low density polyethylene (LDPE830; HCC) and 350 g of carbon black (VXC500; CABOT) were added to a hopper of a rotating twin screw extruder.
  • LDPE830; HCC low density polyethylene
  • VXC500 carbon black
  • Comparative Example 1 The same procedure was followed as in Comparative Example 1 except that 750 g of low density polyethylene (LDPE830; HCC) and 250 g of carbon fiber having an average particle diameter of 0.1 ⁇ m were added to a hopper of a rotating twin screw extruder.
  • LDPE830 low density polyethylene
  • HCC low density polyethylene
  • carbon fiber having an average particle diameter of 0.1 ⁇ m were added to a hopper of a rotating twin screw extruder.
  • Example 2 The same procedure as in Example 2 was carried out except that 5 g of unmodified carbon nanotubes (MWCNT) were used instead of the surface modified carbon nanotubes.
  • MWCNT unmodified carbon nanotubes
  • Example 3 The same procedure as in Example 3 was carried out except that 10 g of unmodified carbon nanotubes (MWCNT) were used instead of the surface modified carbon nanotubes.
  • MWCNT unmodified carbon nanotubes
  • Example 6 Same as Example 6, except that 968 g of low density polyethylene (LDPE 830; HCC), 30 g of unmodified carbon nanotube (MWCNT), and 2 g of azodicarboxyamide were added to the hopper of the rotating twin screw extruder. It was carried out.
  • LDPE 830; HCC low density polyethylene
  • MWCNT unmodified carbon nanotube
  • azodicarboxyamide 2 g
  • Example 6 The same procedure as in Example 6 was conducted except that 5 g of unmodified carbon nanotubes (MWCNT) were used.
  • MWCNT unmodified carbon nanotubes
  • Example 7 The same procedure as in Example 7 was carried out except that 5 g of unmodified carbon nanotubes (MWCNT) were used.
  • MWCNT unmodified carbon nanotubes
  • Example 8 The same procedure as in Example 8 was conducted except that 10 g of unmodified carbon nanotubes (MWCNT) were used.
  • MWCNT unmodified carbon nanotubes
  • Example 9 The same procedure as in Example 9 was carried out except that 5 g of unmodified carbon nanotubes (MWCNT) were used.
  • MWCNT unmodified carbon nanotubes
  • Example 6 The same procedure as in Example 6 was carried out except that low density polyethylene (LDPE 830; HCC) was adjusted to 940 g without using azodicarboxyamide.
  • LDPE 830; HCC low density polyethylene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention relates to a conductive resin composition including a carbon composite, and more specifically to a polymer composition having a carbon composite which is economical and highly conductive. The polymer composition is a conductive resin composition comprising: 100 wt parts of a thermoplastic resin; 0.1–5 wt parts of a carbon nano tube that has undergone surface modification with respect to 100 wt parts of the thermoplastic resin; and 1–20 wt parts of a carbon compound with respect to 100 wt parts of the thermoplastic resin. The present invention also relates to a conductive resin composition with excellent foaming properties by further comprising 0.01–5 wt parts of a foaming agent with respect to 100 wt parts of the thermoplastic resin.

Description

복합탄소소재를 포함하는 전도성 수지조성물Conductive Resin Compositions Including Composite Carbon Materials
본 발명은 복합탄소소재를 포함하는 고전도성 고분자 혼합물에 관한 것으로 경제적이며 전도성이 우수한 복합탄소소재를 포함하는 고분자 조성물에 관한 것이다.The present invention relates to a highly conductive polymer mixture comprising a composite carbon material and to a polymer composition comprising a composite carbon material having excellent economic and conductivity.
열가소성 수지는 가공성 및 성형성이 우수하여 각종 생활용품, 사무자동화 기기, 전기·전자제품 등에 광범위하게 적용되고 있다. 또한, 이러한 열가소성 수지가 사용되는 제품의 종류 및 특성에 따라, 상기 우수한 가공성 및 성형성에 더하여 열가소성 수지에 특수한 성질을 부가해 고부가가치의 재료로서 사용하고자 하는 시도가 계속적으로 이루어지고 있다.Thermoplastic resins are excellent in processability and formability, and are widely applied to various household goods, office automation equipment, electrical and electronic products, and the like. Moreover, according to the kind and the characteristic of the product in which such a thermoplastic resin is used, in addition to the said excellent workability and moldability, the attempt to add a special property to a thermoplastic resin and to use it as a high value-added material is continuously made.
이 중에서도, 열가소성 수지에 전기 전도성을 부여하여, 이러한 전기 전도성 열가소성 수지를 자동차, 각종 전기 장치나 전자 조립체 또는 케이블이 전자파 차폐 성능 등을 나타내게 하기 위한 용도로 사용하기 위한 많은 시도가 이루어지고 있다.Among these, many attempts have been made to impart electrical conductivity to thermoplastic resins, and to use such electrically conductive thermoplastic resins for applications such as automobiles, various electrical devices, electronic assemblies, or cables to exhibit electromagnetic shielding performance.
이러한 전기 전도성 열가소성 수지는 통상적으로 열가소성 수지에 카본블랙, 탄소섬유, 금속 분말, 금속 코팅 무기 분말 또는 금속 섬유 등의 전도성 첨가제를 혼합한 전기 전도성 열가소성 수지 조성물을 사용하여 제조된다. 그런데, 상기 전도성 첨가제의 상당량이 첨가되지 않는 한 상기 전기 전도성 열가소성 수지의 전기 전도성을 원하는 정도로 충분히 확보하기 어렵다. Such electrically conductive thermoplastic resins are typically prepared using an electrically conductive thermoplastic resin composition in which a thermoplastic resin is mixed with a conductive additive such as carbon black, carbon fiber, metal powder, metal coated inorganic powder or metal fiber. By the way, it is difficult to ensure the electrical conductivity of the electrically conductive thermoplastic resin sufficiently to a desired degree unless a substantial amount of the conductive additive is added.
또한 카본블랙이나 탄소섬유 등의 탄소소재를 이용한 고분자 복합재의 경우 다량의 무기소재 투입으로 인한 수지의 고경도화, 표면 거칠음, 물성 저하가 초래되고 요구되는 고전도성을 구현하기도 어렵다. In addition, in the case of a polymer composite using carbon materials such as carbon black or carbon fiber, high hardness of the resin, surface roughness, and physical property deterioration are caused due to the input of a large amount of inorganic material, and it is difficult to realize the required high conductivity.
뿐만 아니라 투입된 첨가제로 인해 발포고분자 제조시 발포가 잘 이루어지지 않는 단점이 있다.In addition, due to the additives added, there is a disadvantage in that foaming is not performed well when preparing expanded polymers.
한편, 상기 전도성 첨가제로서 탄소나노튜브를 사용해 상기 전기 전도성 열가소성 수지에 우수한 전기 전도성을 부여하고자 하는 시도가 있었다.On the other hand, there has been an attempt to impart excellent electrical conductivity to the electrically conductive thermoplastic resin using carbon nanotubes as the conductive additive.
그러나, 열가소성 수지에 탄소나노튜브를 혼합하고 이를 사출하여 전기 전도성 열가소성 수지를 얻고자 하면, 상기 사출 가공 중에 발생하는 전단 응력으로 인해 탄소나노튜브의 집괴나 배향이 나타나고 상기 전기 전도성 열가소성 수지 내에 탄소나노튜브가 불량하게 분산됨에 따라, 원하는 정도의 충분한 전기 전도성을 얻기가 어렵다. However, when carbon nanotubes are mixed with the thermoplastic resin and injected to obtain the electrically conductive thermoplastic resin, the shear stress generated during the injection processing causes the agglomeration or orientation of the carbon nanotubes, and the carbon nanotubes in the electrically conductive thermoplastic resin appear. As the tubes are poorly dispersed, it is difficult to achieve the desired degree of electrical conductivity.
이에 대한민국 특허발명 제706652호에 있어서, 열가소성 수지의 80~99 중량부; 탄소나노튜브의 0.1~10 중량부; 및 유기 나노 클레이의 0.1~10 중량부를 포함하는 전기 전도성 열가소성 수지 조성물이 제안된 바 있다. In Korean Patent Inventive No. 706652, 80 to 99 parts by weight of a thermoplastic resin; 0.1 to 10 parts by weight of carbon nanotubes; And it has been proposed an electrically conductive thermoplastic resin composition comprising 0.1 to 10 parts by weight of the organic nanoclay.
또한, 대한민국 특허공개 제2006-52657호에 있어서, A ) 99. 6 내지 10 중량 부의 하나 이상의 열가소성 수지,B) 0 내지 50 중량 부의 하나 이상의 고무-탄성 중합체, C) 0.2 내지 10.0 중량 부의 탄소나노피브릴, D)0.2 내지 10.0 중량부의 하나 이상의 미립자 탄소화합물, 바람직하게는 카본블랙 또는 흑연 분말, E ) 0 내지 50중량부의 하나이상의 충전제 및/ 또는 강화 물질을 포함하는 조성물이 제안된 바 있다.Further, according to Korean Patent Publication No. 2006-52657, A) 99. 6 to 10 parts by weight of at least one thermoplastic resin, B) 0 to 50 parts by weight of at least one rubber-elastic polymer, C) 0.2 to 10.0 parts by weight of carbon nano A composition has been proposed comprising fibrils, D) from 0.2 to 10.0 parts by weight of at least one particulate carbon compound, preferably carbon black or graphite powder, E) from 0 to 50 parts by weight of at least one filler and / or reinforcing material.
그러나 상기 특허 방법은 탄소나노튜브의 성능을 최대로 발휘하기 위해 탄소나노튜브가 수지 내에 분산하는데 여전히 어려움이 있으며, 많은 양의 탄소나노튜브를 투입해야 전도성을 발휘하게 되어 기존의 카본블랙이나 탄소섬유 등의 탄소소재를 사용하는 것보다 고가의 원료소비가 많아지게 되어 경제성이 부족한 문제가 있다.However, the patented method is still difficult to disperse the carbon nanotubes in the resin in order to maximize the performance of the carbon nanotubes, and a large amount of carbon nanotubes must be added to demonstrate the conductivity, so that the existing carbon black or carbon fiber There is a problem that the consumption of expensive raw materials is more expensive than using carbon materials, such as the economy.
상기와 같은 문제점을 해결하기 위하여 본 발명의 목적은 분산성이 증진되도록 표면개질된 탄소나노튜브와 다른 탄소화합물을 복합화하여 분산성이 우수하고, 고전도성이며 경제성이 우수한 고분자 조성물을 제공하는 데 있으며, 충격완화성이 우수한 고분자 조성물을 제공하는데 있다.In order to solve the above problems, an object of the present invention is to provide a polymer composition having excellent dispersibility, high conductivity, and economical efficiency by complexing a surface-modified carbon nanotube and another carbon compound to improve dispersibility. In addition, the present invention provides a polymer composition having excellent impact mitigation properties.
상기 목적을 달성하기 위해 본 발명은 열가소성수지 100중량부; 상기 열가소성수지 100중량부에 대하여 표면개질된 탄소나노튜브 0.1~5.0중량부; 및 상기 열가소성수지 100중량부에 대하여 탄소화합물 1~20중량부;를 포함하는 전도성 수지조성물을 제공한다. 또한 본 발명은 열가소성수지 100중량부에 대하여 발포제 0.01~5중량부를 더 포함하는 전도성 수지조성물을 제공한다.The present invention 100 parts by weight of thermoplastic resin to achieve the above object; 0.1 to 5.0 parts by weight of surface-modified carbon nanotubes based on 100 parts by weight of the thermoplastic resin; It provides a conductive resin composition comprising; and 1 to 20 parts by weight of the carbon compound with respect to 100 parts by weight of the thermoplastic resin. In another aspect, the present invention provides a conductive resin composition further comprises 0.01 to 5 parts by weight of the blowing agent relative to 100 parts by weight of the thermoplastic resin.
또한, 본 발명은 상기 표면개질된 탄소나노튜브는 탄소나노튜브 100중량부에 대하여 산소, 질소 및 이들의 혼합물로 이루어진 군에서 선택되는 원소가 0.1~10중량부로 포함되도록 표면개질된 것인 전도성 수지조성물을 제공한다.In addition, the present invention is the surface-modified carbon nanotube is a conductive resin that is surface-modified to include 0.1 to 10 parts by weight of an element selected from the group consisting of oxygen, nitrogen and mixtures thereof with respect to 100 parts by weight of carbon nanotubes To provide a composition.
또한, 본 발명의 상기 표면개질된 탄소나노튜브는 탄소나노튜브에 카르복실산, 질산, 인산 또는 황산을 첨가하여 탄소나노튜브 표면의 산화작용으로 얻어진 것인 전도성 수지 조성물을 제공한다.In addition, the surface-modified carbon nanotubes of the present invention provides a conductive resin composition obtained by oxidation of a carbon nanotube surface by adding carboxylic acid, nitric acid, phosphoric acid or sulfuric acid to the carbon nanotubes.
또한, 본 발명의 상기 표면개질된 탄소나노튜브는 산소, 공기, 오존, 과산화수소수, 질산, 니트로화합물 및 이들의 혼합물에서 선택되는 산화제를 사용하여 50 내지 400atm의 압력과 100 내지 600℃온도의 아임계수 또는 초임계수 조건에서 탄소나노튜브 표면을 산화처리하여 얻어진 것인 전도성 수지조성물을 제공한다.In addition, the surface-modified carbon nanotubes of the present invention using a oxidizing agent selected from oxygen, air, ozone, hydrogen peroxide, nitric acid, nitro compounds and mixtures thereof, at a pressure of 50 to 400 atm and a temperature of 100 to 600 ° C. It provides a conductive resin composition obtained by oxidizing the carbon nanotube surface in the counting or supercritical water conditions.
또한, 본 발명의 상기 표면개질된 탄소나노튜브는 산소, 공기, 오존, 과산화수소수, 질산, 니트로화합물 및 이들의 혼합물에서 선택되는 산화제를 사용하여 50 내지 400atm의 압력과 100 내지 600℃온도의 아임계수 또는 초임계수 조건에서 탄소나노튜브 표면을 산화처리하고, 이어서 카르복실, 카르복실염, 아민, 아민염, 4가-아민, 인산기, 인산염, 황산기, 황산염, 알코올, 티올, 에스테르, 아미드, 에폭사이드, 알데하이드, 케톤 및 이들의 혼합물로 이루어진 군에서 선택된 하나 이상의 관능기를 지닌 기능성화합물을 50 내지 400atm의 압력과 100내지 600℃ 온도로 표면개질반응조에 주입하여 표면 처리되어 얻어진 전도성 수지조성물을 제공한다.In addition, the surface-modified carbon nanotubes of the present invention using a oxidizing agent selected from oxygen, air, ozone, hydrogen peroxide, nitric acid, nitro compounds and mixtures thereof, at a pressure of 50 to 400 atm and a temperature of 100 to 600 ° C. The carbon nanotube surface is oxidized under counting or supercritical conditions, followed by carboxyl, carboxyl salt, amine, amine salt, tetravalent-amine, phosphate group, phosphate, sulfate group, sulfate, alcohol, thiol, ester, amide, epoxide A functional compound having at least one functional group selected from the group consisting of side, aldehyde, ketone, and mixtures thereof is injected into a surface reforming reaction tank at a pressure of 50 to 400 atm and a temperature of 100 to 600 ° C. to provide a conductive resin composition obtained by surface treatment. .
또한, 본 발명은 상기 열가소성수지가 폴리아세탈 수지, 아크릴계 수지, 폴리카보네이트 수지, 스티렌계 수지, 폴리에스테르 수지, 비닐계 수지, 폴리페닐렌에테르 수지, 폴리올레핀 수지, 아크릴로니트릴-부타디엔-스티렌 공중합체 수지, 폴리아릴레이트 수지, 폴리아미드 수지, 폴리아미드이미드 수지, 폴리아릴설폰 수지, 폴리에테르이미드 수지, 폴리에테르설폰 수지, 폴리페닐렌 설피드 수지, 불소계 수지, 폴리이미드 수지, 폴리에테르케톤 수지, 폴리벤족사졸 수지, 폴리옥사디아졸 수지, 폴리벤조티아졸 수지, 폴리벤지미다졸 수지, 폴리피리딘 수지, 폴리트리아졸 수지, 폴리피롤리딘 수지, 폴리디벤조퓨란 수지, 폴리설폰 수지, 폴리우레아 수지, 폴리포스파젠 수지 및 액정중합체 수지로 이루어진 군에서 선택된 하나의 수지, 둘 이상의 공중합체 수지 또는 둘 이상의 혼합물인 전도성 수지조성물을 제공한다.In the present invention, the thermoplastic resin is a polyacetal resin, acrylic resin, polycarbonate resin, styrene resin, polyester resin, vinyl resin, polyphenylene ether resin, polyolefin resin, acrylonitrile-butadiene-styrene copolymer Resin, polyarylate resin, polyamide resin, polyamideimide resin, polyarylsulfone resin, polyetherimide resin, polyethersulfone resin, polyphenylene sulfide resin, fluorine resin, polyimide resin, polyetherketone resin, Polybenzoxazole resin, polyoxadiazole resin, polybenzothiazole resin, polybenzimidazole resin, polypyridine resin, polytriazole resin, polypyrrolidine resin, polydibenzofuran resin, polysulfone resin, polyurea resin, One resin, two or more copolymers selected from the group consisting of polyphosphazene resins and liquid crystal polymer resins It provides a resin or a mixture of two or more of the conductive resin composition.
또한, 본 발명은 상기 탄소화합물로 카본블랙, 흑연 또는 탄소섬유를 포함하는 전도성 수지조성물을 제공한다.In addition, the present invention provides a conductive resin composition containing carbon black, graphite or carbon fiber as the carbon compound.
또한 본 발명은 상기 탄소화합물의 평균입경이 0.001㎛~300㎛인 전도성 수지조성물을 제공한다.In another aspect, the present invention provides a conductive resin composition having an average particle diameter of 0.001㎛ ~ 300㎛.
또한 본 발명은 상기의 전도성 수지조성물을 압출하여 제조된 성형물을 제공한다.In another aspect, the present invention provides a molding prepared by extruding the conductive resin composition.
또한 본 발명은 상기 성형물의 표면저항을 유연하게 변화시켜 전자파 차폐, 정전분산 및 정전기 방지가 가능한 플라스틱 성형물을 제공한다.In another aspect, the present invention provides a plastic molding capable of flexibly varying the surface resistance of the molding, electromagnetic shielding, electrostatic dispersion and antistatic.
이하 본 발명에 본 발명의 바람직한 일실시예를 상세히 설명하기로 한다. 본 발명을 설명함에 있어, 관련된 공지기능 혹은 구성에 대한 구체적인 설명은 본 발명의 요지를 모호하지 않게 하기 위하여 생략한다.Hereinafter, a preferred embodiment of the present invention to the present invention will be described in detail. In describing the present invention, detailed descriptions of related well-known functions or configurations are omitted in order not to obscure the subject matter of the present invention.
본 명세서에서 사용되는 정도의 용어 “약”, “실질적으로” 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본 발명의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.As used herein, the terms “about”, “substantially”, and the like, are used at, or in close proximity to, numerical values when manufacturing and material tolerances inherent in the meanings indicated are intended to aid the understanding of the invention. Accurate or absolute figures are used to assist in the prevention of unfair use by unscrupulous infringers.
본 발명은 열가소성수지에 개질된 탄소나노튜브와 탄소화합물의 복합소재를 사용함으로써 표면개질된 탄소나노튜브를 사용하여 분산성을 증진시킴에 따라 전도성의 증가 효과를 달성하고 고가의 탄소나노튜브를 다량 사용하는 데 따른 경제적 효과의 보완을 위해 탄소나노튜브 만큼의 기능성은 부족하지만 이를 뒷받침해 줄 수 있는 카본블랙, 흑연, 탄소섬유 등의 탄소화합물을 표면개질된 탄소나노튜브와 함께 사용함으로써 이들의 상호 상승작용을 발휘하여 기능성 및 경제성을 제공하여 전도성 조성물의 응용성을 확대시키고자 함이다. 또한 본 발명은 발포제를 더 첨가함으로써 탁월한 전도성의 향상과 함께 충격완화성(완충성)을 나타내는 전도성 조성물의 응용성을 확대시키고자 한다.According to the present invention, by using a composite material of carbon nanotubes and a carbon compound modified in a thermoplastic resin, by using a surface-modified carbon nanotubes to improve dispersibility, an effect of increasing conductivity and a large amount of expensive carbon nanotubes is achieved. In order to compensate for the economic effects of using carbon nanotubes, the functionalities of carbon blacks, carbon black, graphite, and carbon fibers, which can support them, are used together with surface-modified carbon nanotubes. It is intended to extend the applicability of the conductive composition by providing synergy to provide functionality and economy. In addition, the present invention is intended to expand the applicability of the conductive composition exhibiting impact relaxation (buffering) with the addition of an excellent blowing agent and an excellent conductivity.
본 발명은 열가소성수지 100중량부; 상기 열가소성수지 100중량부에 대하여 표면개질된 탄소나노튜브 0.1~5.0중량부; 및 상기 열가소성수지 100중량부에 대하여 탄소화합물 1~20중량부;를 포함하는 전도성 수지조성물을 제공한다. 또한 본 발명은 상기 열가소성수지 100중량부에 대하여 발포제 0.01~5중량부를 더 포함하는 전도성 수지조성물에 관한 것이다.The present invention 100 parts by weight of thermoplastic resin; 0.1 to 5.0 parts by weight of surface-modified carbon nanotubes based on 100 parts by weight of the thermoplastic resin; It provides a conductive resin composition comprising; and 1 to 20 parts by weight of the carbon compound with respect to 100 parts by weight of the thermoplastic resin. The present invention also relates to a conductive resin composition further comprising 0.01 to 5 parts by weight of the blowing agent based on 100 parts by weight of the thermoplastic resin.
본 발명에 사용되는 열가소성수지는 폴리아세탈 수지, 아크릴계 수지, 폴리카보네이트 수지, 스티렌계 수지, 폴리에스테르 수지, 비닐계 수지, 폴리페닐렌에테르 수지, 폴리올레핀 수지, 아크릴로니트릴-부타디엔-스티렌 공중합체 수지, 폴리아릴레이트 수지, 폴리아미드 수지, 폴리아미드이미드 수지, 폴리아릴설폰 수지, 폴리에테르이미드 수지, 폴리에테르설폰 수지, 폴리페닐렌 설피드 수지, 불소계 수지, 폴리이미드 수지, 폴리에테르케톤 수지, 폴리벤족사졸 수지, 폴리옥사디아졸 수지, 폴리벤조티아졸 수지, 폴리벤지미다졸 수지, 폴리피리딘 수지, 폴리트리아졸 수지, 폴리피롤리딘 수지, 폴리디벤조퓨란 수지, 폴리설폰 수지, 폴리우레아 수지, 폴리포스파젠 수지 및 액정중합체 수지로 이루어진 군에서 선택된 하나의 수지, 둘 이상의 공중합체 수지 또는 둘 이상의 혼합물이 사용될 수 있다. 폴리올레핀 수지 또는 폴리에스테르 수지가 바람직하며, 그 중 폴리에틸렌이 더욱 바람직하다.The thermoplastic resin used in the present invention is polyacetal resin, acrylic resin, polycarbonate resin, styrene resin, polyester resin, vinyl resin, polyphenylene ether resin, polyolefin resin, acrylonitrile-butadiene-styrene copolymer resin , Polyarylate resin, polyamide resin, polyamideimide resin, polyarylsulfone resin, polyetherimide resin, polyethersulfone resin, polyphenylene sulfide resin, fluorine resin, polyimide resin, polyetherketone resin, poly Benzoxazole resin, polyoxadiazole resin, polybenzothiazole resin, polybenzimidazole resin, polypyridine resin, polytriazole resin, polypyrrolidine resin, polydibenzofuran resin, polysulfone resin, polyurea resin, poly One resin, two or more copolymers selected from the group consisting of phosphazene resins and liquid crystal polymer resins Resins or mixtures of two or more may be used. Polyolefin resin or polyester resin is preferable, and polyethylene is more preferable among them.
또한, 본 발명의 표면개질된 탄소나노튜브는 상기 열가소성수지 100중량부에 대하여 표면개질된 탄소나노튜브 0.1~5.0중량부로 사용할 수 있다. 본 발명의 표면개질된 탄소나노튜브는 기계적 물성과 전기 전도성의 밸런스를 우수하게 할 수 있다. 상기의 표면개질된 탄소나노튜브를 0.1중량부 미만으로 사용하면, 전도성 향상효과가 미미하며, 5.0중량부를 초과 사용하면 열가소성수지의 기계적 물성이 저하될 우려가 있으며 초과사용에 따른 전도성 상승이 나타나지 않고, 고가의 원료 낭비가 초래된다. In addition, the surface-modified carbon nanotubes of the present invention may be used as 0.1 to 5.0 parts by weight of surface-modified carbon nanotubes based on 100 parts by weight of the thermoplastic resin. The surface modified carbon nanotubes of the present invention can make excellent balance between mechanical properties and electrical conductivity. If the surface-modified carbon nanotubes are used at less than 0.1 part by weight, the effect of improving conductivity is insignificant. If the surface-modified carbon nanotubes are used in excess of 5.0 parts by weight, the mechanical properties of the thermoplastic resin may be deteriorated. This results in expensive raw material waste.
본 발명의 탄소나노튜브는 단일벽(Single-walled), 이중벽(Double walled), 얇은 다중벽(Thin multi-walled), 다중벽(Multi-walled), 다발형(Roped) 및 이들의 혼합물로 이루어진 군에서 선택되는 어떤 형태이든 가능하다.Carbon nanotubes of the present invention is composed of a single-walled, double walled, thin multi-walled, multi-walled, bundled and mixtures thereof Any form selected from the group is possible.
또한, 본 발명의 표면개질된 탄소나노튜브는 탄소나노튜브 100중량부에 대하여 산소, 질소 및 이들의 혼합물로 이루어진 군에서 선택되는 물질이 0.1~10중량부로 포함되도록 표면개질된 것이 바람직하다.In addition, the surface-modified carbon nanotubes of the present invention is preferably surface-modified to include 0.1 to 10 parts by weight of a material selected from the group consisting of oxygen, nitrogen and mixtures thereof with respect to 100 parts by weight of carbon nanotubes.
상기 산화를 통해 표면개질된 탄소나노튜브는 수지와의 혼합에 있어 분산성이 현저하게 높아져 전도성에 영향을 준다. 또한, 수지뿐만 아니라 다른 탄소소재 또는 탄소화합물과의 혼합도 용이하게 된다.The surface-modified carbon nanotubes through the oxidation have a significantly higher dispersibility in mixing with the resin and affect the conductivity. In addition, mixing with not only the resin but also other carbon materials or carbon compounds is facilitated.
따라서 본 발명의 상기 표면개질된 탄소나노튜브는 산을 가하여 표면의 산화작용을 일으키는 방법이나, 고온 고압하의 물의 반응성에 의해 탄소나노튜브의 표면이 산화처리된 방법 등을 포함한다.Therefore, the surface-modified carbon nanotubes of the present invention include a method of causing oxidation of a surface by adding an acid, a method of oxidizing a surface of a carbon nanotube by reactivity of water under high temperature and high pressure.
이에 대한 예로 본 발명의 표면개질된 탄소나노튜브는 산소, 공기, 오존, 과산화수소수, 질산, 니트로화합물 및 이들의 혼합물에서 선택되는 산화제를 사용하여 50 내지 400atm의 압력과 100 내지 600℃온도의 아임계수 또는 초임계수 조건에서 탄소나노튜브 표면을 산화처리하여 얻어질 수 있다. 아임계 또는 초임계 조건에서 유해하지 않으며, 취급 및 폐수처리가 용이한 산화제를 사용하여 환경친화적으로 표면개질된 탄소나노튜브가 얻어질 수 있다. 상기의 아임계수 또는 초임계수 조건의 표면개질은 산화제가 용이하게 도입되어 탄소나노튜브의 표면개질 효과가 상승되며 그에 따른 분산성이 증가하게 된다.For example, the surface-modified carbon nanotube of the present invention is oxygen, air, ozone, hydrogen peroxide, nitric acid, nitro compounds And oxidizing the surface of the carbon nanotubes under subcritical water or supercritical water conditions at a pressure of 50 to 400 atm and a temperature of 100 to 600 ° C. using an oxidant selected from a mixture thereof. Environmentally friendly surface modified carbon nanotubes can be obtained using oxidants that are not harmful in subcritical or supercritical conditions and are easy to handle and treat in wastewater. The surface modification of the subcritical water or supercritical water condition is that the oxidant is easily introduced to increase the surface modification effect of the carbon nanotubes, thereby increasing the dispersibility.
또한, 상기 표면개질된 탄소나노튜브는 산소, 공기, 오존, 과산화수소수, 질산, 니트로화합물 및 이들의 혼합물에서 선택되는 산화제를 사용하여 50 내지 400atm의 압력과 100 내지 600℃온도의 아임계수 또는 초임계수 조건에서 탄소나노튜브 표면을 산화처리하고, 이어서 카르복실, 카르복실염, 아민, 아민염, 4가-아민, 인산기, 인산염, 황산기, 황산염, 알코올, 티올, 에스테르, 아미드, 에폭사이드, 알데하이드, 케톤 및 이들의 혼합물로 이루어진 군에서 선택된 하나 이상의 관능기를 지닌 기능성화합물을 50 내지 400atm의 압력과 100내지 600℃ 온도로 표면처리 반응조에 주입하여 표면 처리하여 얻어질 수도 있다.In addition, the surface-modified carbon nanotubes are subcritical water or supercritical water at a pressure of 50 to 400 atm and a temperature of 100 to 600 ° C. using an oxidant selected from oxygen, air, ozone, hydrogen peroxide, nitric acid, nitro compounds, and mixtures thereof. The carbon nanotube surface is oxidized under counting conditions, followed by carboxyl, carboxyl salt, amine, amine salt, tetra-amine, phosphate group, phosphate, sulfate group, sulfate, alcohol, thiol, ester, amide, epoxide, aldehyde And functional compounds having at least one functional group selected from the group consisting of ketones and mixtures thereof may be obtained by injecting a surface treatment reactor at a pressure of 50 to 400 atm and a temperature of 100 to 600 ° C.
또 다른 예로는 상기 표면개질된 탄소나노튜브는 탄소나노튜브에 카르복실산, 질산, 인산 또는 황산을 첨가하여 탄소나노튜브 표면의 산화작용으로 얻어질 수 있는데, 산의 도입으로 간단하게 표면개질의 산화가 제공될 수 있다.In another example, the surface-modified carbon nanotubes may be obtained by adding carboxylic acid, nitric acid, phosphoric acid, or sulfuric acid to the carbon nanotubes by oxidation of the surface of the carbon nanotubes. Oxidation can be provided.
본 발명에서 사용되는 탄소화합물은 상기 열가소성수지 100중량부에 대하여 탄소화합물 1~20중량부로 포함될 수 있다. 상기 탄소화합물이 1중량부 미만이면 탄소화합물 첨가에 따른 경제성 보완의 효과가 없게 되며, 20중량부를 초과하면 초과량의 전도성이나 경제성의 상승효과가 없다.The carbon compound used in the present invention may be included as 1 to 20 parts by weight of the carbon compound based on 100 parts by weight of the thermoplastic resin. If the carbon compound is less than 1 part by weight, there is no effect of economical supplementation due to the addition of the carbon compound, and if it exceeds 20 parts by weight, there is no synergistic effect of the excess amount or conductivity.
상기 탄소화합물은 카본블랙, 흑연 또는 탄소섬유를 포함하며 탄소를 함유하는 물질이라면 어떤 것이든 사용가능하고 이에 한정되지 않는다. The carbon compound may be used as long as the carbon compound includes carbon black, graphite or carbon fiber, and is not limited thereto.
또한, 상기 탄소화합물은 카본블랙의 경우는 평균입경이 0.001~0.5㎛인 것이 좋으며, 흑연은 분말형태로 평균입경 1~300㎛인 것이 좋다. 또한, 탄소섬유 또한 평균입경 0.01~0.1㎛의 미세 섬유가 바람직하다.In addition, in the case of carbon black, the carbon compound may have an average particle diameter of 0.001 to 0.5 µm, and graphite may have an average particle diameter of 1 to 300 µm in powder form. Moreover, the carbon fiber is also preferably a fine fiber having an average particle diameter of 0.01 to 0.1 mu m.
본 발명은 상기 탄소화합물 외에도 금속분말, 금속코팅 무기분말 또는 금속섬유 등의 전도성 첨가제를 탄소복합소재와 혼합하여 사용할 수 있으며, 보다 바람직하게는 평균입경 0.001~0.1㎛의 납(Pb), 알루미늄(Al)의 금속분말을 사용할 수 있다.In addition to the carbon compound, the present invention may be used by mixing a carbon composite material with a conductive additive such as metal powder, metal coated inorganic powder, or metal fiber, and more preferably, lead (Pb), aluminum ( Al) metal powder can be used.
또한 본 발명은 열가소성수지 100중량부에 대하여 발포제 0.01~5중량부를 더 포함할 수 있으며, 상기 발포제는 전도성을 향상시킬 수 있는 성분으로, 아조디카르복실아미드, 아조비스테트라졸디아미노구아니딘, 아조비스테트라졸구아니딘, 5-페닐테트라졸, 비스테트라졸구아니딘, 비스테트라졸피페라진, 비스테트라졸디암모늄, N,N-디니트로소펜타메틸렌테트라민, 히드라조디카르복실아미드 및 이들의 혼합물로부터 선택하여 열가소성수지에 따라 적절하게 선택하여 사용할 수 있다. 본 발명에서 발포제를 0.01~5중량부로 사용함으로써 표면개질된 탄소나노튜브와 탄소화합물와 함께 분산성이 좋으며, 트러블 없이 양호한 폼(foam)의 형성과 동시에 전도성이 탁월하게 향상될 수 있다.In addition, the present invention may further comprise 0.01 to 5 parts by weight of the blowing agent with respect to 100 parts by weight of the thermoplastic resin, the blowing agent is a component that can improve the conductivity, azodicarboxyamide, azobistetrazoldiaminoguanidine, azo Selected from bistetrazoleguanidine, 5-phenyltetrazole, bistetrazoleguanidine, bistetrazole piperazine, bistetrazolediammonium, N, N-dinitrosopentamethylenetetramine, hydrazodicarboxyamide and mixtures thereof Can be appropriately selected according to the thermoplastic resin. In the present invention, by using the foaming agent in 0.01 to 5 parts by weight, the dispersibility is good together with the surface-modified carbon nanotubes and the carbon compound, it is possible to excellently improve the conductivity and at the same time forming a good foam (foam) without trouble.
본 발명은 상기의 각각의 전도성 수지조성물을 혼합하여 이미 공지된 방법에 의해 제조될 수 있다. 이러한 각 성분들의 혼합은 통상적인 압출에 의해 펠렛으로 제조하여 여러 용도에 사용가능하며 상기 제조된 펠렛으로 시트, 필름 등의 용도에 맞도록 성형물로 제조하여 사용한다. The present invention can be prepared by a known method by mixing the respective conductive resin compositions. The mixing of each of these components can be made into pellets by conventional extrusion, which can be used for various purposes, and the prepared pellets can be made into moldings to suit the purpose of sheets, films and the like.
또한 본 발명은 상기 성형물의 표면저항을 유연하게 변화시켜 전자파 차폐, 정전분산 및 정전기 방지가 가능한 플라스틱 성형물을 제공한다.In another aspect, the present invention provides a plastic molding capable of flexibly varying the surface resistance of the molding, electromagnetic shielding, electrostatic dispersion and antistatic.
본 발명은 전도성 도료, 정전분산재, 정전분산도료, 전도성 소재, 전자파 차폐재, 전자파 흡수재, 전자파 차폐도료, 전자파 흡수도료, 태양전지용 재료, 염료감응용전지(DSSC)용 전극재료, 전기소자, 전자소자, 반도체소자, 광전소자, 노트북 부품 재료, 컴퓨터 부품 재료, 핸드폰 부품 재료, PDA(PDA:personal digital assistants) 부품 재료, 게임기용 부품 재료, 하우징 재료, 투명전극 재료, 불투명 전극 재료, 전계방출디스플레이 (FED;field emission display)재료, 백라이트유닛(BLU ;back light unit)재료, 액정표시장치(LCD;liquid crystal display) 재료, 플라즈마표시패널(PDP;plasma display panel ) 재료, 발광다이오드(LED;luminescent diode) 재료, 터치패널 재료, 전광판 재료, 광고판 재료, 디스플레이 소재, 발열체, 방열체, 도금 재료, 촉매, 조촉매, 산화제, 환원제, 자동차 부품 재료, 선박 부품 재료, 항공기기 부품 재료, 전자봉투재료, 보호테이프 재료, 접착제 재료, 트레이 재료, 클린룸 재료, 운송 기기 부품 재료, 난연 소재, 항균 소재, 금속 복합 재료, 비철 금속 복합재료, 의료 기기 부품 재료, 건축 재료, 바닥재 재료, 벽지 재료, 광원 부품 재료, 램프 재료, 광학기기 부품 재료, 섬유제조기기 부품 재료, 의류제조기기 부품 재료, 전기제품제조 기기 재료 및 전자제품제조 기기 재료 로 이루어진 군으로부터 하나 이상 선택된 재료에 사용되는 것을 특징으로 하는 복합탄소소재를 포함하는 전도성 수지조성물에 관한 것이다.The present invention is a conductive paint, electrostatic dispersion material, electrostatic dispersion paint, conductive material, electromagnetic wave shielding material, electromagnetic wave absorbing material, electromagnetic wave shielding paint, electromagnetic wave absorbing paint, solar cell material, dye-sensitized battery (DSSC) electrode material, electric device, electronic device , Semiconductor device, optoelectronic device, notebook component material, computer component material, mobile phone component material, PDA (PDA) component material, game machine component material, housing material, transparent electrode material, opaque electrode material, field emission display ( Field emission display (FED) materials, back light unit (BLU) materials, liquid crystal display (LCD) materials, plasma display panel (PDP) materials, light emitting diodes (LED) ) Materials, touch panel materials, billboard materials, billboard materials, display materials, heating elements, radiators, plating materials, catalysts, promoters, oxidants, reducing agents, automotive parts materials, ship parts Materials, aircraft component materials, electronic envelope materials, protective tape materials, adhesive materials, tray materials, clean room materials, transportation equipment component materials, flame retardant materials, antibacterial materials, metal composite materials, nonferrous metal composite materials, medical device component materials, One or more from the group consisting of building materials, flooring materials, wallpaper materials, light source component materials, lamp materials, optical component component materials, textile manufacturing component component materials, garment manufacturing component component materials, electrical appliance manufacturing equipment materials and electronic manufacturing equipment materials It relates to a conductive resin composition comprising a composite carbon material, characterized in that used for the selected material.
상술한 바와 같이 본 발명의 복합탄소소재를 포함하는 전도성 수지조성물은 표면개질된 탄소나노튜브와 흑연, 카본블랙, 탄소섬유 등의 탄소화합물을 함께 복합소재로 사용하여 전도성이 우수해지며, 적은양의 탄소나노튜브 사용으로도 높은 전도성을 나타내는 경제적 효과가 있다. 그리고 상기 수지 조성물에서 발포제를 더 포함하며 발포성이 좋으며, 우수한 발포에 따른 완충성을 나타내어 전도성과 함께 우수한 충격완화 효과가 있다. 또한 본 발명의 전도성 수지 조성물은 고가의 탄소나노튜브를 적은양을 사용하여도 높은 전도성을 나타내는 효과가 있다. As described above, the conductive resin composition including the composite carbon material of the present invention has excellent conductivity by using a surface-modified carbon nanotube and a carbon compound such as graphite, carbon black, and carbon fiber together as a composite material, and a small amount. The use of carbon nanotubes has an economic effect of showing high conductivity. In addition, the resin composition further includes a foaming agent and has good foaming property, and exhibits excellent buffering effect due to excellent foaming, and has an excellent impact relaxation effect with conductivity. In addition, the conductive resin composition of the present invention has the effect of showing high conductivity even when using a small amount of expensive carbon nanotubes.
또한, 본 발명의 탄소나노튜브는 아임계수 또는 초임계수조건에서 표면개질된 탄소나노튜브를 사용함으로써 산의 사용을 배제하여 환경친화적인 조건에서 표면개질이 용이하게 이루어지며 수지와의 분산성 향상 효과가 있다. In addition, the carbon nanotubes of the present invention by using the surface-modified carbon nanotubes in subcritical water or supercritical water conditions to exclude the use of acids to facilitate the surface modification under environmentally friendly conditions and improve the dispersibility with the resin There is.
또한, 본 발명의 복합탄소소재를 포함하는 전도성 수지는 펠렛으로 제조되어 용도에 따라 응용성을 넓힐 수 있는 효과가 있다.In addition, the conductive resin including the composite carbon material of the present invention is produced by the pellets has the effect of extending the applicability according to the application.
하기의 실시예를 통하여 좀 더 상세하게 설명하고자 한다. Through the following examples will be described in more detail.
제조예 1Preparation Example 1
다중벽탄소나노튜브(Multi Wall Carbon Nano Tube;이하 MWCNT)(한화나노텍,상품명:CM95) 12g을 증류수 988g과 순환펌프로 혼합하여 전처리조에서 MWCNT용액을 준비하였다. 상기 MWCNT용액을 고압주입펌프를 통해 30g/min유속으로 예열조에 투입되기 전, 이와 함께 245atm 내지 252atm으로 압축된 기상상태의 산소는 열교환기의 전단에서 0.8g/min의 유속으로 MWCNT용액과 혼합되어 상기 혼합액은 열교환기를 통해 200 내지 260℃로 예열된 예열조에 투입하였다. 상기 예열된 혼합액은 350℃ 및 230atm 내지 250atm의 아임계수 상태의 표면개질반응기에 주입되어 표면개질되고, 상기 표면개질된 생성물은 다시 열교환기로 이송되어 200℃로 1차 냉각 후, 다시 냉각장치를 통해 약 25℃의 온도로 냉각한 후 연속적으로 표면개질된 11.8g의 다층탄소나노튜브를 얻었다.MWCNT solution was prepared in a pretreatment tank by mixing 12 g of Multi Wall Carbon Nano Tube (hereinafter referred to as MWCNT) (HANWHA NANOTECH, product name: CM95) with 988 g of distilled water and a circulation pump. Before the MWCNT solution is introduced into the preheater at a flow rate of 30 g / min through a high pressure injection pump, the oxygen in the gaseous state compressed to 245 atm to 252 atm is mixed with the MWCNT solution at a flow rate of 0.8 g / min at the front end of the heat exchanger The mixed solution was added to a preheating tank preheated to 200 to 260 ° C. through a heat exchanger. The preheated mixed solution is injected into a surface reforming reactor in a subcritical water state of 350 ° C. and 230 atm to 250 atm, and the surface modified product is transferred to a heat exchanger, and then first cooled to 200 ° C., and then again through a cooling device. After cooling to a temperature of about 25 ℃ to obtain a surface-modified continuously 11.8g multilayer carbon nanotubes.
제조예 2Preparation Example 2
산화제로 산소대신 공기를 사용하는 것을 제외하고, 제조예 1과 동일하게 제조하였다.Except for using air instead of oxygen as the oxidizing agent was prepared in the same manner as in Preparation Example 1.
제조예 3Preparation Example 3
산화제로 산소대신 오존을 사용하는 것을 제외하고, 제조예 1과 동일하게 제조하였다.Except for using ozone instead of oxygen as the oxidizing agent was prepared in the same manner as in Preparation Example 1.
제조예 4Preparation Example 4
산화제로 산소대신 50%과산화수소 수용액 108.8g(1.6M)을 첨가하는 것을 제외하고, 제조예 1과 동일하게 제조하였다. It was prepared in the same manner as in Preparation Example 1, except that 108.8 g (1.6 M) of 50% hydrogen peroxide aqueous solution was added instead of oxygen as the oxidizing agent.
제조예 5Preparation Example 5
산화제로 산소대신 질산 25.2g(0.4M)을 첨가하는 것을 제외하고, 제조예 1과 동일하게 제조하였다.It was prepared in the same manner as in Preparation Example 1, except that 25.2 g (0.4 M) of nitric acid was added instead of oxygen as the oxidizing agent.
실시예 1Example 1
회전하는 이축압출기의 호퍼(hopper)에 저밀도폴리에틸렌(LDPE 830;HCC) 940g, 제조예 1의 표면개질된 탄소나노튜브(MWCNT) 10g, 카본블랙(VXC500;CABOT) 50g을 투입하였다. 200℃의 압출기 축의 회전에 의해 고분자 수지가 에서 용융되고 탄소소재와 혼련되어 압출기 다이(die)를 통해 연속적으로 빠져 나오게 하였다. 압출기를 빠져나오는 폴리에틸렌 가닥(strand)을 펠렛타이저(pelletizer)를 이용하여 통상의 짧은 펠렛(pellet)으로 제조한 다음, 상기 펠렛을 프레스를 이용하여 두께 2mm의 시트를 제조하였다.Into a hopper of a rotating twin screw extruder, 940 g of low density polyethylene (LDPE 830; HCC), 10 g of surface modified carbon nanotubes (MWCNT) of Preparation Example 1, and 50 g of carbon black (VXC500; CABOT) were added. Rotation of the extruder shaft at 200 ° C. melted the polymer resin at, kneaded with the carbon material and continuously exited through the extruder die. Polyethylene strands exiting the extruder were made into conventional short pellets using a pelletizer, and then the pellets were made into a sheet having a thickness of 2 mm using a press.
실시예 2Example 2
이축압출기의 호퍼(hopper)에 저밀도폴리에틸렌(LDPE 830;HCC) 905g, 제조예 2의 표면개질된 탄소나노튜브(MWCNT;Multi Wall Carbon Nano Tube) 5g, 카본블랙(VXC500;CABOT) 90g을 투입하는 것을 제외하고, 실시예 1과 동일하게 실시하였다.Into the hopper of the twin screw extruder, 905 g of low density polyethylene (LDPE 830; HCC), 5 g of surface modified carbon nanotube (MWCNT) of Preparation Example 2, and 90 g of carbon black (VXC500; CABOT) were added. Except that, it was carried out in the same manner as in Example 1.
실시예 3Example 3
제조예 1의 표면개질된 탄소나노튜브 대신 제조예 3의 표면개질된 탄소나노튜브 10g, 카본블랙 50g 대신 평균입경 0.1㎛ 의 탄소섬유 50g을 사용하는 것을 제외하고, 실시예 1과 동일하게 실시하였다.Instead of the surface-modified carbon nanotubes of Preparation Example 1 was carried out in the same manner as in Example 1, except that 10g of the surface-modified carbon nanotubes of Preparation Example 3, 50g of carbon fibers having an average particle diameter of 0.1㎛ instead of 50g of carbon black. .
실시예 4Example 4
제조예 1의 표면개질된 탄소나노튜브 대신 제조예 4의 표면개질된 탄소나노튜브 5g, 카본블랙 90g 대신 평균입경 10.0㎛ 의 탄소섬유 90g을 사용하는 것을 제외하고, 실시예 2와 동일하게 실시하였다.Instead of the surface-modified carbon nanotubes of Preparation Example 1 was carried out in the same manner as in Example 2, except that 5g of the surface-modified carbon nanotubes of Preparation Example 4, 90g of carbon fibers having an average particle diameter of 10.0㎛ instead of carbon black 90g. .
실시예 5Example 5
제조예 1의 표면개질된 탄소나노튜브 대신 제조예 5의 표면개질된 탄소나노튜브 5g, 카본블랙 90g 대신 평균입경 10.0㎛ 의 탄소섬유 90g을 사용하는 것을 제외하고, 실시예 2와 동일하게 실시하였다.Instead of the surface-modified carbon nanotubes of Preparation Example 1 was carried out in the same manner as in Example 2 except that 5g of the surface-modified carbon nanotubes of Preparation Example 5, 90g of carbon fibers having an average particle diameter of 10.0㎛ instead of 90g of carbon black. .
실시예 6Example 6
회전하는 이축압출기의 호퍼(hopper)에 저밀도폴리에틸렌(LDPE 830;HCC) 938g, 제조예 1의 탄소나노튜브(MWCNT) 10g, 카본블랙(VXC500;CABOT) 50g, 아조디카르복실아미드 2g을 투입하였다. 150℃로 유지되는 압출기내에서 회전하는 스크류에 의해 고분자 수지가 용융되고 탄소소재와 혼련되어 압출기 다이(die)를 통해 시트가 연속적으로 빠져 나오게 하였다. 이 시트를 200℃의 oven에 넣어 발포시트를 얻었다.938 g of low density polyethylene (LDPE 830; HCC), 10 g of carbon nanotubes (MWCNT) of Preparation Example 1, 50 g of carbon black (VXC500; CABOT), and 2 g of azodicarboxyamide were added to a hopper of a rotating twin screw extruder. . The polymer resin was melted and kneaded with the carbon material by the rotating screw in the extruder maintained at 150 ° C. to continuously eject the sheet through the extruder die. This sheet was placed in an oven at 200 ° C. to obtain a foam sheet.
실시예 7Example 7
이축압출기의 호퍼(hopper)에 저밀도폴리에틸렌(LDPE 830;HCC) 903g, 제조예 2의 탄소나노튜브(MWCNT;Multi Wall Carbon Nano Tube) 5g, 카본블랙(VXC500;CABOT) 90g을 투입하는 것을 제외하고, 실시예 6과 동일하게 실시하였다.903 g of low density polyethylene (LDPE 830; HCC), 5 g of carbon nanotube (MWCNT) of Preparation Example 2, and 90 g of carbon black (VXC500; CABOT) were added to the hopper of the twin screw extruder. , The same as in Example 6.
실시예 8Example 8
제조예 1의 탄소나노튜브 대신 제조예 3의 탄소나노튜브 10g, 카본블랙 50g 대신 평균입경 0.1㎛ 의 탄소섬유 50g을 사용하는 것을 제외하고, 실시예 6과 동일하게 실시하였다.The carbon nanotubes of Preparation Example 1 were used in the same manner as in Example 6 except that 10g of carbon nanotubes of Preparation Example 3 and 50g of carbon fibers having an average particle diameter of 0.1 μm were used instead of 50g of carbon black.
실시예 9Example 9
제조예 1의 탄소나노튜브 대신 제조예 4의 탄소나노튜브 5g, 카본블랙 90g 대신 평균입경 10.0㎛ 의 탄소섬유 90g을 사용하는 것을 제외하고, 실시예 7와 동일하게 실시하였다.Instead of the carbon nanotubes of Preparation Example 1 was carried out in the same manner as in Example 7, except that 5g of carbon nanotubes of Preparation Example 4 and 90g of carbon black instead of 90g of carbon black.
실시예 10Example 10
제조예 1의 탄소나노튜브 대신 제조예 5의 탄소나노튜브 5g, 카본블랙 90g 대신 평균입경 10.0㎛ 의 탄소섬유 90g을 사용하는 것을 제외하고, 실시예 7와 동일하게 실시하였다.The carbon nanotubes of Preparation Example 1 were used in the same manner as in Example 7, except that 5g of the carbon nanotubes of Preparation Example 5 and 90g of carbon fibers having an average particle diameter of 10.0 μm were used instead of 90g of carbon black.
비교예 1Comparative Example 1
회전하는 이축압출기의 호퍼(hopper)에 저밀도폴리에틸렌(LDPE 830;HCC) 970g, 제조예 1의 표면개질되지 않은 탄소나노튜브(MWCNT) 30g을 투입하였다. 200℃의 압출기 축의 회전에 의해 고분자 수지가 에서 용융되고 탄소소재와 혼련되어 압출기 다이(die)를 통해 연속적으로 빠져 나오게 하였다. 압출기를 빠져나오는 폴리에틸렌 가닥(strand)을 펠렛타이저(pelletizer)를 이용하여 통상의 짧은 펠렛(pellet)으로 제조한 다음, 상기 펠렛을 프레스를 이용하여 두께 2mm의 시트를 제조하였다.970 g of low density polyethylene (LDPE 830; HCC) and 30 g of unmodified carbon nanotubes (MWCNT) of Preparation Example 1 were added to a hopper of a rotating twin screw extruder. Rotation of the extruder shaft at 200 ° C. melted the polymer resin at, kneaded with the carbon material and continuously exited through the extruder die. Polyethylene strands exiting the extruder were made into conventional short pellets using a pelletizer, and then the pellets were made into a sheet having a thickness of 2 mm using a press.
비교예 2Comparative Example 2
표면개질되지 않은 탄소나노튜브 대신 제조예 1의 표면개질된 탄소나노튜브 30g을 사용하는 것을 제외하고, 비교예 1과 동일하게 실시하였다.Except for using the surface-modified carbon nanotubes of Preparation Example 1 instead of the surface-modified carbon nanotubes were carried out in the same manner as in Comparative Example 1.
비교예 3Comparative Example 3
회전하는 이축압출기의 호퍼(hopper)에 저밀도폴리에틸렌(LDPE830;HCC) 650kg, 카본블랙(VXC500;CABOT) 350g을 투입하는 것을 제외하고, 비교예 1과 동일하게 실시하였다.The same procedure was followed as in Comparative Example 1 except that 650 kg of low density polyethylene (LDPE830; HCC) and 350 g of carbon black (VXC500; CABOT) were added to a hopper of a rotating twin screw extruder.
비교예 4Comparative Example 4
회전하는 이축압출기의 호퍼(hopper)에 저밀도폴리에틸렌(LDPE830;HCC) 750g, 평균입경 0.1㎛ 의 탄소섬유 250g을 투입하는 것을 제외하고, 비교예 1과 동일하게 실시하였다.The same procedure was followed as in Comparative Example 1 except that 750 g of low density polyethylene (LDPE830; HCC) and 250 g of carbon fiber having an average particle diameter of 0.1 μm were added to a hopper of a rotating twin screw extruder.
비교예 5Comparative Example 5
표면개질된 탄소나노튜브 대신 표면개질되지 않은 탄소나노튜브(MWCNT) 5g을 사용하는 것을 제외하고, 실시예 1과 동일하게 실시하였다.Except for using surface-modified carbon nanotubes 5g unmodified carbon nanotubes (MWCNT) was carried out in the same manner as in Example 1.
비교예 6Comparative Example 6
표면개질된 탄소나노튜브 대신 표면개질되지 않은 탄소나노튜브(MWCNT) 5g을 사용하는 것을 제외하고, 실시예 2와 동일하게 실시하였다.The same procedure as in Example 2 was carried out except that 5 g of unmodified carbon nanotubes (MWCNT) were used instead of the surface modified carbon nanotubes.
비교예 7Comparative Example 7
표면개질된 탄소나노튜브 대신 표면개질되지 않은 탄소나노튜브(MWCNT) 10g을 사용하는 것을 제외하고, 실시예 3과 동일하게 실시하였다.The same procedure as in Example 3 was carried out except that 10 g of unmodified carbon nanotubes (MWCNT) were used instead of the surface modified carbon nanotubes.
비교예 8Comparative Example 8
표면개질된 탄소나노튜브 대신 표면개질되지 않은 탄소나노튜브(MWCNT) 5g을 사용하는 것을 제외하고, 실시예 4와 동일하게 실시하였다.Except for using surface-modified carbon nanotubes 5g unmodified carbon nanotubes (MWCNT) was carried out in the same manner as in Example 4.
비교예 9Comparative Example 9
회전하는 이축압출기의 호퍼(hopper)에 저밀도폴리에틸렌(LDPE 830;HCC) 968g, 표면개질되지 않은 탄소나노튜브(MWCNT) 30g, 아조디카르복실아미드 2g을 투입한 것을 제외하고는 실시예 6과 동일하게 실시하였다. Same as Example 6, except that 968 g of low density polyethylene (LDPE 830; HCC), 30 g of unmodified carbon nanotube (MWCNT), and 2 g of azodicarboxyamide were added to the hopper of the rotating twin screw extruder. It was carried out.
비교예 10Comparative Example 10
표면개질되지 않은 탄소나노튜브 대신 제조예 1의 표면개질된 탄소나노튜브 30g을 사용하는 것을 제외하고, 비교예 9과 동일하게 실시하였다.Except for using the surface-modified carbon nanotubes of Preparation Example 1 instead of the surface-modified carbon nanotubes were carried out in the same manner as in Comparative Example 9.
비교예 11Comparative Example 11
회전하는 이축압출기의 호퍼(hopper)에 저밀도폴리에틸렌(LDPE830;HCC) 648g, 카본블랙(VXC500;CABOT) 350g을 투입하는 것을 제외하고, 비교예 9과 동일하게 실시하였다.The same procedure as in Comparative Example 9 was conducted except that 648 g of low density polyethylene (LDPE830; HCC) and 350 g of carbon black (VXC500; CABOT) were added to a hopper of a rotating twin screw extruder.
비교예 12Comparative Example 12
회전하는 이축압출기의 호퍼(hopper)에 저밀도폴리에틸렌(LDPE830;HCC) 748g, 평균입경 0.1㎛ 의 탄소섬유 250g을 투입하는 것을 제외하고, 비교예 9과 동일하게 실시하였다.The same procedure as in Comparative Example 9 was conducted except that 748 g of low density polyethylene (LDPE830; HCC) and 250 g of carbon fiber having an average particle diameter of 0.1 µm were added to a hopper of a rotating twin screw extruder.
비교예 13Comparative Example 13
표면개질되지 않은 탄소나노튜브(MWCNT) 5g을 사용하는 것을 제외하고, 실시예 6과 동일하게 실시하였다.The same procedure as in Example 6 was conducted except that 5 g of unmodified carbon nanotubes (MWCNT) were used.
비교예 14Comparative Example 14
표면개질되지 않은 탄소나노튜브(MWCNT) 5g을 사용하는 것을 제외하고, 실시예 7와 동일하게 실시하였다.The same procedure as in Example 7 was carried out except that 5 g of unmodified carbon nanotubes (MWCNT) were used.
비교예 15Comparative Example 15
표면개질되지 않은 탄소나노튜브(MWCNT) 10g을 사용하는 것을 제외하고, 실시예 8과 동일하게 실시하였다.The same procedure as in Example 8 was conducted except that 10 g of unmodified carbon nanotubes (MWCNT) were used.
비교예 16Comparative Example 16
표면개질되지 않은 탄소나노튜브(MWCNT) 5g을 사용하는 것을 제외하고, 실시예 9와 동일하게 실시하였다.The same procedure as in Example 9 was carried out except that 5 g of unmodified carbon nanotubes (MWCNT) were used.
비교예 17Comparative Example 17
아조디카르복실아미드를 사용하지 않고 저밀도폴리에틸렌(LDPE 830;HCC)을 940g으로 조정한 것을 제외하고, 실시예 6과 동일하게 실시하였다.The same procedure as in Example 6 was carried out except that low density polyethylene (LDPE 830; HCC) was adjusted to 940 g without using azodicarboxyamide.
*시험방법*Test Methods
1. 표면저항측정1. Surface Resistance Measurement
미쯔비시 사의 Loresta GP(MCP-T600)를 사용하여 JISK 7194/ASTM D991에 따라 측정하였다. It was measured according to JISK 7194 / ASTM D991 using Mitsubishi's Loresta GP (MCP-T600).
[표 1]TABLE 1
Figure PCTKR2009006909-appb-I000001
Figure PCTKR2009006909-appb-I000001
[표 2]TABLE 2
Figure PCTKR2009006909-appb-I000002
Figure PCTKR2009006909-appb-I000002
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어서 명백할 것이다. The present invention described above is not limited to the above-described embodiments and the accompanying drawings, and various substitutions, modifications, and changes can be made without departing from the technical spirit of the present invention. It will be evident to those who have knowledge of.

Claims (13)

  1. 열가소성수지 100중량부;100 parts by weight of thermoplastic resin;
    표면개질된 탄소나노튜브 0.1~5중량부; 및0.1-5 parts by weight of surface-modified carbon nanotubes; And
    탄소화합물 1~20중량부;1 to 20 parts by weight of carbon compound;
    를 포함하는 전도성 수지조성물.Conductive resin composition comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 전도성 수지조성물은 상기 열가소성수지 100중량부에 대하여 발포제 0.01~5중량부를 더 포함하는 전도성 수지조성물.The conductive resin composition further comprises 0.01 to 5 parts by weight of a blowing agent based on 100 parts by weight of the thermoplastic resin.
  3. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 표면개질된 탄소나노튜브는 탄소나노튜브 100중량부에 대하여 산소, 질소 및 이들의 혼합물로 이루어진 군에서 선택되는 원소가 0.1~10중량부로 포함되도록 표면개질된 것인 전도성 수지조성물.The surface-modified carbon nanotubes are surface-modified conductive resin composition such that 0.1 to 10 parts by weight of an element selected from the group consisting of oxygen, nitrogen, and mixtures thereof, based on 100 parts by weight of carbon nanotubes.
  4. 제3항에 있어서,The method of claim 3,
    상기 표면개질된 탄소나노튜브는 산소, 공기, 오존, 과산화수소수, 질산, 니트로화합물 및 이들의 혼합물에서 선택되는 산화제를 사용하여 50 내지 400atm의 압력과 100 내지 600℃온도의 아임계수 또는 초임계수 조건에서 탄소나노튜브 표면을 산화처리하여 얻어진 것인 전도성 수지조성물.The surface-modified carbon nanotubes are oxygen, air, ozone, hydrogen peroxide, nitric acid, nitro compounds And a conductive resin composition obtained by oxidizing a carbon nanotube surface under subcritical water or supercritical water conditions at a pressure of 50 to 400 atm and a temperature of 100 to 600 ° C. using an oxidant selected from a mixture thereof.
  5. 제3항에 있어서, The method of claim 3,
    상기 표면개질된 탄소나노튜브는 산소, 공기, 오존, 과산화수소수, 질산, 니트로화합물 및 이들의 혼합물에서 선택되는 산화제를 사용하여 50 내지 400atm의 압력과 100 내지 600℃온도의 아임계수 또는 초임계수 조건에서 탄소나노튜브 표면을 산화처리하고, 이어서 카르복실, 카르복실염, 아민, 아민염, 4가-아민, 인산기, 인산염, 황산기, 황산염, 알코올, 티올, 에스테르, 아미드, 에폭사이드, 알데하이드, 케톤 및 이들의 혼합물로 이루어진 군에서 선택된 하나 이상의 관능기를 지닌 기능성화합물을 50 내지 400atm의 압력과 100내지 600℃ 온도로 표면개질반응조에 주입하여 표면 처리되어 얻어진 전도성 수지조성물. The surface-modified carbon nanotubes are subcritical water or supercritical condition at a pressure of 50 to 400 atm and a temperature of 100 to 600 ° C. using an oxidant selected from oxygen, air, ozone, hydrogen peroxide, nitric acid, nitro compounds, and mixtures thereof. Oxidation of the surface of the carbon nanotubes, followed by carboxyl, carboxyl salt, amine, amine salt, tetra-amine, phosphate group, phosphate, sulfate group, sulfate, alcohol, thiol, ester, amide, epoxide, aldehyde, ketone And a conductive resin composition obtained by surface treatment by injecting a functional compound having at least one functional group selected from the group consisting of a mixture thereof into a surface reforming reaction tank at a pressure of 50 to 400 atm and a temperature of 100 to 600 ° C.
  6. 제3항에 있어서,The method of claim 3,
    상기 표면개질된 탄소나노튜브는 탄소나노튜브에 카르복실산, 질산, 인산 또는 황산을 첨가하여 탄소나노튜브 표면의 산화작용으로 얻어진 것인 전도성 수지 조성물.The surface-modified carbon nanotubes are obtained by adding a carboxylic acid, nitric acid, phosphoric acid or sulfuric acid to the carbon nanotubes by oxidation of the surface of the carbon nanotubes.
  7. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 열가소성수지는 폴리아세탈 수지, 아크릴계 수지, 폴리카보네이트 수지, 스티렌계 수지, 폴리에스테르 수지, 비닐계 수지, 폴리페닐렌에테르 수지, 폴리올레핀 수지, 아크릴로니트릴-부타디엔-스티렌 공중합체 수지, 폴리아릴레이트 수지, 폴리아미드 수지, 폴리아미드이미드 수지, 폴리아릴설폰 수지, 폴리에테르이미드 수지, 폴리에테르설폰 수지, 폴리페닐렌 설피드 수지, 불소계 수지, 폴리이미드 수지, 폴리에테르케톤 수지, 폴리벤족사졸 수지, 폴리옥사디아졸 수지, 폴리벤조티아졸 수지, 폴리벤지미다졸 수지, 폴리피리딘 수지, 폴리트리아졸 수지, 폴리피롤리딘 수지, 폴리디벤조퓨란 수지, 폴리설폰 수지, 폴리우레아 수지, 폴리포스파젠 수지 및 액정중합체 수지로 이루어진 군에서 선택된 하나의 수지, 둘 이상의 공중합체 수지 또는 둘 이상의 혼합물인 전도성 수지조성물.The thermoplastic resin is polyacetal resin, acrylic resin, polycarbonate resin, styrene resin, polyester resin, vinyl resin, polyphenylene ether resin, polyolefin resin, acrylonitrile-butadiene-styrene copolymer resin, polyarylate Resin, polyamide resin, polyamideimide resin, polyarylsulfone resin, polyetherimide resin, polyethersulfone resin, polyphenylene sulfide resin, fluorine-based resin, polyimide resin, polyetherketone resin, polybenzoxazole resin, Polyoxadiazole resin, polybenzothiazole resin, polybenzimidazole resin, polypyridine resin, polytriazole resin, polypyrrolidine resin, polydibenzofuran resin, polysulfone resin, polyurea resin, polyphosphazene resin and One resin, two or more copolymer resins or two selected from the group consisting of liquid crystal polymer resins Mixture of conductive resin composition on the.
  8. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 탄소화합물은 카본블랙, 흑연, 탄소섬유 및 이들의 혼합물로 이루어진 군에서 선택되는 전도성 수지조성물. The carbon compound is a conductive resin composition selected from the group consisting of carbon black, graphite, carbon fibers and mixtures thereof.
  9. 제8항에 있어서,The method of claim 8,
    상기 탄소화합물은 평균입경이 0.001㎛~300㎛인 전도성 수지조성물.The carbon compound is a conductive resin composition having an average particle diameter of 0.001㎛ ~ 300㎛.
  10. 제2항에 있어서,The method of claim 2,
    상기 발포제는 아조디카르복실아미드, 아조비스테트라졸디아미노구아니딘, 아조비스테트라졸구아니딘, 5-페닐테트라졸, 비스테트라졸구아니딘, 비스테트라졸피페라진, 비스테트라졸디암모늄, N,N-디니트로소펜타메틸렌테트라민, 히드라조디카르복실아미드 및 이들의 혼합물로부터 선택되는 전도성 수지조성물. The blowing agent is azodicarboxyamide, azobistetrazoldiaminoguanidine, azobistetrazolguanidine, 5-phenyltetrazole, bistetrazolguanidine, bistetrazolpiperazine, bistrezazolediammonium, N, N-di A conductive resin composition selected from nitrosopentamethylenetetramine, hydrazodicarboxyamide and mixtures thereof.
  11. 제 1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 전도성 수지 조성물은 전도성 도료, 정전분산재, 정전분산도료, 전도성 소재, 전자파 차폐재, 전자파 흡수재, 전자파 차폐도료, 전자파 흡수도료, 태양전지용 재료, 염료감응용전지(DSSC)용 전극재료, 전기소자, 전자소자, 반도체소자, 광전소자, 노트북 부품 재료, 컴퓨터 부품 재료, 핸드폰 부품 재료, PDA(PDA:personal digital assistants) 부품 재료, 게임기용 부품 재료, 하우징 재료, 투명전극 재료, 불투명 전극 재료, 전계방출디스플레이 (FED;field emission display)재료, 백라이트유닛(BLU ;back light unit)재료, 액정표시장치(LCD;liquid crystal display) 재료, 플라즈마표시패널(PDP;plasma display panel ) 재료, 발광다이오드(LED;luminescent diode) 재료, 터치패널 재료, 전광판 재료, 광고판 재료, 디스플레이 소재, 발열체, 방열체, 도금 재료, 촉매, 조촉매, 산화제, 환원제, 자동차 부품 재료, 선박 부품 재료, 항공기기 부품 재료, 전자봉투재료, 보호테이프 재료, 접착제 재료, 트레이 재료, 클린룸 재료, 운송 기기 부품 재료, 난연 소재, 항균 소재, 금속 복합 재료, 비철 금속 복합재료, 의료 기기 부품 재료, 건축 재료, 바닥재 재료, 벽지 재료, 광원 부품 재료, 램프 재료, 광학기기 부품 재료, 섬유제조기기 부품 재료, 의류제조기기 부품 재료, 전기제품제조 기기 재료 및 전자제품제조 기기 재료 로 이루어진 군으로부터 하나 이상 선택된 재료에 사용되는 것을 특징으로 하는 복합탄소소재를 포함하는 전도성 수지조성물.The conductive resin composition may include conductive paints, electrostatic dispersion materials, electrostatic dispersion paints, conductive materials, electromagnetic wave shielding materials, electromagnetic wave absorbing materials, electromagnetic wave shielding paints, electromagnetic wave absorbing paints, solar cell materials, dye-sensitized battery (DSSC) electrode materials, electrical devices, Electronic device, semiconductor device, optoelectronic device, notebook component material, computer component material, mobile phone component material, PDA (PDA) component material, game machine component material, housing material, transparent electrode material, opaque electrode material, field emission Field emission display (FED) materials, back light unit (BLU) materials, liquid crystal display (LCD) materials, plasma display panel (PDP) materials, light emitting diodes (LEDs); luminescent diode) materials, touch panel materials, billboard materials, billboard materials, display materials, heating elements, radiators, plating materials, catalysts, promoters, oxidants, reducing agents, automotive parts Materials, ship parts materials, aircraft parts materials, electronic envelope materials, protective tape materials, adhesive materials, tray materials, clean room materials, transportation equipment parts materials, flame retardant materials, antibacterial materials, metal composite materials, nonferrous metal composite materials, medical Consists of device component materials, building materials, flooring materials, wallpaper materials, light source component materials, lamp materials, optical equipment component materials, textile manufacturing equipment component materials, garment manufacturing equipment component materials, electrical appliance manufacturing equipment materials and electronic manufacturing equipment materials A conductive resin composition comprising a composite carbon material, characterized in that it is used in at least one material selected from the group.
  12. 제1항 또는 제2항의 전도성 수지조성물을 압출하여 제조된 성형물.A molded article prepared by extruding the conductive resin composition of claim 1.
  13. 제12항에 있어서,The method of claim 12,
    상기 성형물은 표면저항을 조절하여 전자파 차폐, 정전분산 또는 정전기 방지가 가능한 플라스틱 성형물.The molding is a plastic molding capable of shielding electromagnetic waves, electrostatic dispersion or antistatic by controlling the surface resistance.
PCT/KR2009/006909 2008-11-24 2009-11-24 Conductive resin composition including carbon composite WO2010059008A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020080117106A KR101090729B1 (en) 2008-11-24 2008-11-24 Highly conductive resin composition having carbon composite
KR10-2008-0117106 2008-11-24
KR10-2009-0054259 2009-06-18
KR1020090054259A KR101594494B1 (en) 2009-06-18 2009-06-18 Highly conductive foam composition having carbon composite

Publications (2)

Publication Number Publication Date
WO2010059008A2 true WO2010059008A2 (en) 2010-05-27
WO2010059008A3 WO2010059008A3 (en) 2010-08-05

Family

ID=42198697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/006909 WO2010059008A2 (en) 2008-11-24 2009-11-24 Conductive resin composition including carbon composite

Country Status (2)

Country Link
TW (1) TWI406301B (en)
WO (1) WO2010059008A2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2935090A4 (en) * 2012-12-21 2016-07-27 Nano C Inc Solvent-based and water-based carbon nanotube inks with removable additives
CN106103567A (en) * 2014-12-26 2016-11-09 株式会社Lg化学 For the resin combination of radome, this resin combination radome obtained and radar system
US9505903B2 (en) 2012-01-12 2016-11-29 Hanwha Chemical Corporation Resin composition for EMI shielding, comprising carbon hydride composite
US10023755B2 (en) 2009-08-14 2018-07-17 Nano-C, Inc. Solvent-based and water-based carbon nanotube inks with removable additives
CN109056104A (en) * 2018-09-21 2018-12-21 佛山皖和新能源科技有限公司 A kind of preparation method of conducting polypropylene fiber
KR101948809B1 (en) * 2018-10-26 2019-02-15 국방과학연구소 Method for producing electromagnetic wave absorption structure and electromagnetic wave absorption structure
CN109467783A (en) * 2018-11-08 2019-03-15 上海应用技术大学 A kind of polyethylene/carbon nanotube conducting material and preparation method thereof
EP3498765A1 (en) * 2017-12-14 2019-06-19 Korea Kumho Petrochemical Co., Ltd. Conductive foam bead and method of manufacturingthe same
CN112982027A (en) * 2021-02-08 2021-06-18 山东仁丰特种材料股份有限公司 Modification method of high-performance carbon paper based on supercritical fluid technology
KR102321837B1 (en) * 2020-11-24 2021-11-08 한국생산기술연구원 A method of obtaining a material for offshore solar power generation, vehecle, building structure in the state of mixing plastics in a functionalized state by irradiating IPL on the surface of carbon fiber
CN116034129A (en) * 2020-08-28 2023-04-28 乐天化学株式会社 Expanded polyolefin particles and molded articles produced therefrom

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018860A1 (en) * 2011-08-02 2013-02-07 三菱レイヨン株式会社 Carbon fiber manufacturing method and carbon fiber
TWI449763B (en) 2012-04-30 2014-08-21 Eternal Materials Co Ltd Conductive coating composition
KR101800486B1 (en) * 2013-12-06 2017-11-22 주식회사 엘지화학 Composite having improved conductivity and plastics comprising same
CN110054835B (en) * 2019-03-27 2022-03-29 无锡会通轻质材料股份有限公司 Preparation method of high-rate conductive polypropylene foamed beads

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005263607A (en) * 2004-03-22 2005-09-29 Univ Shinshu Cnt surface modification method and cnt
KR20080053924A (en) * 2005-08-08 2008-06-16 캐보트 코포레이션 Polymeric compositions containing nanotubes

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8329065B2 (en) * 2005-12-06 2012-12-11 Mitsubishi Rayon Co., Ltd. Carbon nanotube-containing composition, composite, and methods for producing them

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005263607A (en) * 2004-03-22 2005-09-29 Univ Shinshu Cnt surface modification method and cnt
KR20080053924A (en) * 2005-08-08 2008-06-16 캐보트 코포레이션 Polymeric compositions containing nanotubes

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GI RYOUNG PART ET AL.: 'Comparison of Characteristics of Multi-walled Carbon Nanotubes Functionalized Using Various Methods' JOURNAL OF THE KOREAN FIBER SOCIETY vol. 45, no. 6, pages 359 - 363 *
JONG-IL LEE ET AL.: 'Technical Status of Carbon Nanotubes Composites' KOREAN CHEMICAL ENGINEERING RESEARCH vol. 46, no. 1, 07 February 2008, *
KI CHUL PARK ET AL.: 'Progressive and invasive functionalization of carbon nanotube sidewalls by diluted nitric acid under supercritical conditions' J. MATER. CHEM. vol. 15, 2005, pages 407 - 411 *
SHAWN MANCHESTER ET AL.: 'High capacity mercury adsorption on freshly ozone- treated carbon surfaces' CARBON N Y. vol. 46, no. 3, March 2008, pages 518 - 524 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10023755B2 (en) 2009-08-14 2018-07-17 Nano-C, Inc. Solvent-based and water-based carbon nanotube inks with removable additives
US9505903B2 (en) 2012-01-12 2016-11-29 Hanwha Chemical Corporation Resin composition for EMI shielding, comprising carbon hydride composite
EP2935090A4 (en) * 2012-12-21 2016-07-27 Nano C Inc Solvent-based and water-based carbon nanotube inks with removable additives
CN106103567A (en) * 2014-12-26 2016-11-09 株式会社Lg化学 For the resin combination of radome, this resin combination radome obtained and radar system
KR20190071184A (en) * 2017-12-14 2019-06-24 금호석유화학 주식회사 A expanded bead having electrical conductivity and a method for manufacturing the same
KR102085939B1 (en) 2017-12-14 2020-03-06 금호석유화학 주식회사 A expanded bead having electrical conductivity and a method for manufacturing the same
CN109971026A (en) * 2017-12-14 2019-07-05 锦湖石油化学株式会社 Conductive foaming bead and preparation method thereof
EP3498765A1 (en) * 2017-12-14 2019-06-19 Korea Kumho Petrochemical Co., Ltd. Conductive foam bead and method of manufacturingthe same
CN109056104A (en) * 2018-09-21 2018-12-21 佛山皖和新能源科技有限公司 A kind of preparation method of conducting polypropylene fiber
KR101948809B1 (en) * 2018-10-26 2019-02-15 국방과학연구소 Method for producing electromagnetic wave absorption structure and electromagnetic wave absorption structure
CN109467783A (en) * 2018-11-08 2019-03-15 上海应用技术大学 A kind of polyethylene/carbon nanotube conducting material and preparation method thereof
CN116034129A (en) * 2020-08-28 2023-04-28 乐天化学株式会社 Expanded polyolefin particles and molded articles produced therefrom
CN116034129B (en) * 2020-08-28 2024-04-19 乐天化学株式会社 Expanded polyolefin particles and molded articles produced therefrom
KR102321837B1 (en) * 2020-11-24 2021-11-08 한국생산기술연구원 A method of obtaining a material for offshore solar power generation, vehecle, building structure in the state of mixing plastics in a functionalized state by irradiating IPL on the surface of carbon fiber
CN112982027A (en) * 2021-02-08 2021-06-18 山东仁丰特种材料股份有限公司 Modification method of high-performance carbon paper based on supercritical fluid technology
CN112982027B (en) * 2021-02-08 2022-04-15 山东仁丰特种材料股份有限公司 Modification method of high-performance carbon paper based on supercritical fluid technology

Also Published As

Publication number Publication date
TW201035996A (en) 2010-10-01
TWI406301B (en) 2013-08-21
WO2010059008A3 (en) 2010-08-05

Similar Documents

Publication Publication Date Title
WO2010059008A2 (en) Conductive resin composition including carbon composite
Song et al. Highly thermally conductive polypropylene/graphene composites for thermal management
EP2594613B1 (en) Conductive coating composition and method for manufacturing a conductive layer using same
KR101090729B1 (en) Highly conductive resin composition having carbon composite
US9117568B2 (en) Polymer compositions containing carbonaceous fillers
US20110133134A1 (en) Crosslinkable and Crosslinked Compositions of Olefin Polymers and Graphene Sheets
JP6096806B2 (en) Resin composition for electromagnetic shielding containing composite carbon material
WO2011122901A2 (en) Polyimide nanocomposite and method for preparing same
US20120142832A1 (en) Polymeric Compositions Containing Graphene Sheets and Graphite
CN104136504B (en) The manufacture method and conductive resin composition of conductive resin composition
US20120277360A1 (en) Graphene Compositions
CN110591283B (en) Conductive graphene composite material and preparation method and application thereof
WO2012115344A1 (en) Electrically conductive polymer/filler composite, and method for preparing same
CN103865197B (en) Based on antistatic laminated film and the preparation method of polyvinyl chloride and Graphene
US20160035456A1 (en) Electrically conductive polymer compositions
KR20060061306A (en) Electrically conductive compositions and method of manufacture thereof
WO2012144781A2 (en) Biodegradable polymer composite material
WO2010067955A2 (en) Method for preparing rubber/nanoclay masterbatches, and method for preparing high strength, high impact-resistant polypropylene/nanoclay/rubber composites using same
WO2015030498A1 (en) Thermoplastic polymer to which carbon nanomaterial is bound and method for preparing same
WO2011065678A2 (en) Environmentally-friendly polyamide resin composition and molded product using same
CN108102358A (en) Polyamide-based conductive agglomerate based on carbon nanotubes and graphene compound system and preparation method thereof
WO2016159510A1 (en) Highly thermally conductive composite material
WO2015088239A1 (en) Halogen-based flame-retardant glass fiber-reinforced polyamide resin composition, and method for preparing same
WO2015030501A1 (en) Resin composition containing carbon nanomaterial and plastic molded product
KR20190053666A (en) Carbon material composites

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827773

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09827773

Country of ref document: EP

Kind code of ref document: A2