TW201035996A - Highly conductive resin composition having carbon composite - Google Patents

Highly conductive resin composition having carbon composite Download PDF

Info

Publication number
TW201035996A
TW201035996A TW098139891A TW98139891A TW201035996A TW 201035996 A TW201035996 A TW 201035996A TW 098139891 A TW098139891 A TW 098139891A TW 98139891 A TW98139891 A TW 98139891A TW 201035996 A TW201035996 A TW 201035996A
Authority
TW
Taiwan
Prior art keywords
materials
weight
resin
parts
carbon nanotubes
Prior art date
Application number
TW098139891A
Other languages
Chinese (zh)
Other versions
TWI406301B (en
Inventor
Man-Woo Jung
Seong-Yun Jeon
Joo-Hee Han
Joo-Seok Oh
Jin-Seo Lee
Seung-Hoe Do
Seong-Cheol Hong
Original Assignee
Hanwha Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020080117106A external-priority patent/KR101090729B1/en
Priority claimed from KR1020090054259A external-priority patent/KR101594494B1/en
Application filed by Hanwha Chemical Corp filed Critical Hanwha Chemical Corp
Publication of TW201035996A publication Critical patent/TW201035996A/en
Application granted granted Critical
Publication of TWI406301B publication Critical patent/TWI406301B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • C08J9/0071Nanosized fillers, i.e. having at least one dimension below 100 nanometers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

Provided is a conductive resin composition including a carbon composite material. Particularly, the conductive resin composition includes: 100 parts by weight of a thermoplastic resin; 0.1-5.0 parts by weight of surface-modified carbon nanotubes based on 100 parts by weight of the thermoplastic resin; and 1-20 parts by weight of a carbon compound based on 100 parts by weight of the thermoplastic resin. The conductive resin composition may further include 0.01-5 parts by weight of a foaming agent based on 100 parts by weight of the thermoplastic resin to realize improved foamability.

Description

201035996 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種包含一碳複合物材料之高導電性聚合物混合 物,且更特定言之,係關於一種包含一具有絕佳導電度之 碳複合物材料的聚合物組合物。 【先前技術】 熱塑性樹脂具有絕佳之可加工性及可塑性,因此已應用在各種 工業領域中,包含多種生活用品、辦公室自動化裝置、電動/電子 商品等。此外,依使用熱塑性樹脂之產品的形式及特性,亦不斷 嘗試使熱塑性樹脂具有除此絕佳之可加工性及可塑性外的特殊性 質,使該熱塑性樹脂可用作為高附加價值之材料。 特定言之,已進行多種使熱塑性樹脂賦有導電度的嘗試,以求 所得之導電性熱塑性樹脂可用來使得汽車、各種電動設備、電子 總成或電纟覽能呈現電磁干擾(ElectroMagnetic Interference, EMI ) 屏蔽之特性。 一般而言,此類導電性熱塑性樹脂係使用包含混有導電性添加 物(包含碳黑、碳_纖維、金屬粉末、金屬塗覆之礦物粉末、金屬 纖維等)之熱塑性樹脂組合物所製得。然而,除非添加顯著量之 此類導電性添加物,否則難以確保該導電性熱塑性樹脂具有所欲 程度之導電性。 再者,由於大量無機材料的導入,使用碳質材料(例如碳黑或 碳纖維)之聚合物複合物會造成樹脂硬度增加、高表面粗糙度及 201035996 物理性質下降。更甚者,此類聚合物複合物材料難以實現所欲之 高導電度。 此外,由於添加物之導入,在聚合物複合物之製造期間難以進 行發泡。 同時,亦嘗試利用碳奈米管作為導電性添加物以賦予此類導電 性熱塑性樹脂絕佳之導電度。 然而,當將碳奈米管與一熱塑性樹脂混合,且隨後注入所得之 〇混合物以獲得-導電性熱紐樹脂,在注人程序間所生成之剪應 力會使該碳奈米管團聚或排列,而使該碳奈米管在導電性熱塑性 樹脂中分散不佳。因而,難以獲得足夠的導電度。 在此情況下,韓國專利第7G6652號揭露—種導電性熱塑性樹脂 組,物’包含J重量份數至99重量份數之—熱塑性樹脂;0」 重量份數至10 4量份數之碳奈米管;以m重量份數至1〇重量 伤數之有機奈米黏土( nanoclay )。 ❹ 人此外’韓國早期公開專利第鳩_52657號揭露一種組合物,包 99.6重量份數至1〇重量份數之至少—種熱塑性樹脂;〇重量 份^至5G重量份數之至少—種橡膠彈性體;〇2重量份數至则 重量份數之碳奈米纖絲(nanofibrils);〇 2重量份數至ι〇 〇重量份 數之至少-種微粒碳化合物(較佳為碳黑或石墨粉末);及〇重量 份數至50重量份數之至少一種填料及/或強化材料。 里 然而,在上述之組合物中, 使碳奈米管發揮至最大程度。 仍難以將碳奈米管分散於樹脂中以 此外,其需要導入大量的碳奈米管 5 201035996 以實現導電度。因此,相較於其他已知之使用碳質材料(例如碳 黑或碳纖維)的組合物,其徒增昂貴材料之消耗,導致不良的成 本效益。 【發明内容】 [技術問題] 本發明之一目的在於藉由形成一碳奈米管(經表面改質以增加 分散性)與其他碳化合物之複合物,而提供一種具有絕佳分散性、 高導電度及高成本效益之聚合物組合物。本發明之另一目的在於 提供一具有絕佳吸震(shock absorbing)特性之聚合物組合物。 [解決方案] 為達成本發明之目的,本發明提供導一種導電性樹脂組合物, 包含:100重量份數之一熱塑性樹脂:0.1重量份數至5.0重量份數 之經表面改質之碳奈米管,以100重量份數之熱塑性樹脂計:及 1重量份數至20重量份數之一碳化合物,以100重量份數之 熱塑性樹脂計。本發明亦提供更包含0.01重量份數至5重量份數 之一發泡劑的導電性樹脂組合物,以1〇〇重量份數之熱塑性樹脂 計。 此外,本發明提供一種導電性樹脂組合物,其中該經表面改質 之碳奈米管係經表面改質以使其包含0.1重量份數至1〇重量份數 之一選自以下群組的元素:氧、氮及前述之組合,以100重量份 數之碳奈米管計。 再者,本發明提供一種導電性樹脂組合物,其中係藉由添加 201035996 羧酸、硝酸、磷酸或硫酸至碳奈米管中以進行該碳奈米管表面之 氧化,而獲得該經表面改質之碳奈米管。 再者,本發明提供一種導電性樹脂組合物,其中該經表面改質 之碳奈米管係在100°c至600°C之溫度、50大氣壓至400大氣壓 之壓力下,於次臨界水或超臨界水之存在下,藉由以一選自以下 群組之氧化劑氧化該碳奈米管表面而獲得:氧、空氣、臭氧、含 水之過氧化氫、確酸、確基化合物及前述之組合。 0 再者,本發明提供一種導電性樹脂組合物,其中該經表面改質 之碳奈米管係在100°c至600°C之溫度、50大氣壓至400大氣壓 之壓力下,於次臨界水或超臨界水之存在下,藉由以一選自以下 ^ 群組之氧化劑養化該碳奈米管之表面而獲得:氧、空氣、臭氧、 含水之過氧化氫、硝酸、硝基化合物及前述之組合;以及隨後在 lOiTC至600°C之溫度、50大氣壓至400大氣壓之壓力下,於次 臨界水或超臨界水之存在下,藉由注入一具有至少一選自以下群 組官之能基之官能化合物至一表面改質反應器以進行表面處理: ◎ 叛基、缓酸醋、胺、胺鹽、季胺(quaternary amine )、碟酸、膦酸 酯、硫酸、硫酸酯、醇、巯基、酯、醯胺、環氧基、醛、酮及前 述之組合。 再者,本發明提供一種導電性樹脂組合物,其中該熱塑性樹脂 係一選自以下群組之樹脂:聚縮醛樹脂、丙烯酸樹脂、聚碳酸酯 樹脂、苯乙烯樹脂、聚酯樹脂、乙烯基樹脂、聚苯醚樹脂、聚烯 烴樹脂、丙烯腈-丁二烯-苯乙烯共聚物樹脂、聚芳酯樹脂、聚醯 胺樹脂、聚醯胺醯亞胺樹脂、聚芳砜樹脂、聚醚醯亞胺樹脂、聚 7 201035996 醚砜樹脂、聚苯硫醚樹脂、氟樹脂、聚醯亞胺樹脂、聚醚酮樹脂 、聚苯并嚼β圭樹脂(polybenzoxazole resins )、聚β惡二°坐樹脂 (polyoxadiazole resins)、聚苯并 °塞唾樹脂(polybenzothiazole resins )、聚苯并咪嗤樹脂(polybenzimidazole resins )、聚 D比咬 樹脂(polypyridine resins)、聚三唾樹脂(polytriazole resins)、聚0比 π各咬樹脂(p〇lypyrrolidine resins)、聚二苯并吱 喃樹脂(polydibenzofuran resins)、聚颯樹脂、聚脲樹脂 (polyurea resins )、聚石粦腈樹脂(polyphosphazene resins )及液 晶聚合物樹脂、前述之共聚物或前述之混合物。 再者’本發明提供一種導電性樹脂組合物,其中該碳化合物包 s石厌黑、石墨或碳纖維。 再者’本發明提供一種導電性樹脂組合物,其中該碳化合物之 平均顆粒尺寸為0.001微米至300微米。 再者’本發明提供一種藉由擠製該導電性樹脂組合物而獲得之 模製物。 再者’本發明提供一種藉由調整該模製物之表面電阻以提供電 罐干擾(ElectroMagnetic Interference,EMI )屏蔽、靜電消散或靜 電防護而獲得之塑膠模製物。 [優勢效果] 根據本發明之一實施態樣,包含一碳複合物材料之導電性樹脂 繞合物係使用經表面改質之碳奈米管與一碳化合物(例如石墨、 雙黑或碳纖維)之組合作為複合物材料。因此,該導電性樹脂組 201035996 合物具有絕佳之導電度。特定言之,即使僅使用少量之碳奈米管 該導電樹脂亦提供了高導電度,因此呈現高成本效益。此外,進 一步包含一發泡劑之導電性樹脂組合物呈現良好的發泡性及因而 產生之良好吸震特性。因此,該導電性樹脂組合物同時呈現良好 之吸震特性及高導電度。再者,該導電性樹脂組合物即使僅使用 少量之昂貴碳奈米管亦呈現高導電度。 此外,導電性樹脂組合物係使用於次臨界水或超臨界水存在下 β 經表面改質之碳奈米管。因此,該碳奈米管係簡易地於環保條件 Ο 下(不使用酸)經表面改質,以使其在樹脂中具有改良之分散性。 再者,根據本發明之一實施態樣,可以適用於各種工業領域的 ^ 粒狀物型態來提供該包含一碳複合物材料之導電性樹脂。 _ 【實施方式】 在下文中,將詳細說明本發明之較佳實施態樣。為求明確簡要, 將省略本發明所含之已知功能及構造的詳細說明,蓋其可能造成 ^ 本發明之標的不明確。 當闡明一特定之製造過程與材料容忍度時,所用之「大約」、 「實質上」、或其他近似之詞彙,係定義為所述數值之接近值。 此等之詞彙係用於防範任何不法入侵者不當使用包含用於協助瞭 解本發明之精確值及絕對值之本發明揭露内容。 本發明提供一種導電性組合物,其使用一熱塑性樹脂以及一經 表面改質之碳奈米管與一碳化合物之複合物的組合,以改良其分 散性及增加其導電度。此外,藉由減少使用大量昂貴之碳奈米管, 9 201035996 « 石厌化合物(例如碳黑、石墨或碳纖維)與該經表面改質之碳奈米 g之組σ的使用改良了其成本效益。雖然此類碳化合物無法提^ 如碳奈米管般高的功效品f,但其亦顯著地幫助該碳奈米管之功 效。因此,該碳奈米管與碳化合物之組合提供了一協同效應,造 就了高成本效益及良好魏性。以此^式,可增城導電性組合 物之工業應祕。再者’更進—步包含—發泡劑之導電性組合物 可同時提供良好之吸震性質及顯著改良之導電性度,並藉此得以 適用在各個工業領域中。 在一方面,本發明提供一種導電性樹脂組合物,包含^〇〇重量 份數之-熱塑性樹脂;〇,1重量份數至5 〇重量份數之經表面改質 的碳奈米管,以1〇〇重量份數之熱塑性樹脂計;及i重量份數至 2〇重量份數之-碳化合物’ α 1〇〇重量份數之熱塑性樹脂計。在 另一方面,本發明提供之上述導電性樹脂組合物更包含〇〇1重量 份數至5重量份數之-發泡劑,以1〇〇重量份數之熱塑性樹脂計。 可用於本發明之熱塑性樹脂的特定實例包含一選自以下群組之 樹脂:聚縮醛樹脂、丙烯酸樹脂、聚碳酸酯樹脂、苯乙烯樹脂、 聚酯樹脂、乙烯基樹脂、聚苯醚樹脂、聚烯烴樹脂、丙烯腈-丁二 烯-苯乙烯共聚物樹脂、聚芳酯樹脂、聚醯胺樹脂、聚醯胺醯亞胺 樹脂、聚芳颯樹脂、聚醚醯亞胺樹脂、聚醚砜樹脂、聚苯硫醚樹 月曰、氟樹脂、聚醯亞胺樹脂、聚醚酮樹脂、聚苯并噁唑樹脂、聚 噁二唑樹脂、聚苯并噻唑樹脂、聚苯并咪唑樹脂、聚吡啶樹脂、 I —坐树月曰、♦比°各咬树月曰、聚二苯并吱喃樹脂、聚硬樹脂、聚 脲樹脂、聚磷腈樹脂及液晶聚合物樹脂、前述之共聚物樹脂或前 201035996 述之混合物。較佳係輯烴樹脂或㈣樹脂,更佳係聚乙婦。 此外,經表面改質之碳奈米管之使用量可為(U重量份數至5〇 重量份數,以⑽重量份數之熱塑性樹脂計。該經表面改質之碳 奈米管可改良機械特性及導電性之_平衡。當該經表面改質之 石厌奈h使用1小於(U 4量份數時,則無法顯著地改良其” 性。另一方面,當該經表面改質之碳奈米管的使用量大於5.0重量 份數,則錢_樹脂的機械特性可能會下降。再者,㈣使用 Ο 過量之碳奈米管’也無法額外地增加㈣性,僅造成昂貴材料之 虛耗。 碳奈米管可選自以下群組: 壁碳奈米管、多壁碳奈米管、 單壁碳奈米管、雙壁碳奈米管、 束狀碳奈米管及前述之組合。201035996 VI. Description of the Invention: [Technical Field] The present invention relates to a highly conductive polymer mixture comprising a carbon composite material, and more particularly to a carbon comprising excellent electrical conductivity A polymer composition of a composite material. [Prior Art] Thermoplastic resins have excellent processability and plasticity, and have been used in various industrial fields, including various household items, office automation devices, and electric/electronic products. Further, depending on the form and characteristics of the product using the thermoplastic resin, the thermoplastic resin is continually attempted to have a special property other than the excellent workability and plasticity, so that the thermoplastic resin can be used as a material of high added value. In particular, various attempts have been made to impart conductivity to thermoplastic resins, so that the resulting conductive thermoplastic resin can be used to cause electromagnetic interference (ElectroMagnetic Interference, EMI) in automobiles, various electric devices, electronic assemblies or electrical displays. The characteristics of the shield. In general, such a conductive thermoplastic resin is produced by using a thermoplastic resin composition containing a conductive additive (including carbon black, carbon fiber, metal powder, metal coated mineral powder, metal fiber, etc.). . However, unless a significant amount of such a conductive additive is added, it is difficult to ensure that the conductive thermoplastic resin has a desired degree of conductivity. Furthermore, due to the introduction of a large amount of inorganic materials, the use of a polymer composite of a carbonaceous material (e.g., carbon black or carbon fiber) causes an increase in hardness of the resin, a high surface roughness, and a decrease in physical properties of 201035996. Moreover, such polymer composite materials are difficult to achieve the desired high conductivity. Further, it is difficult to foam during the production of the polymer composite due to the introduction of the additive. At the same time, carbon nanotubes have also been attempted as conductive additives to impart excellent electrical conductivity to such conductive thermoplastic resins. However, when the carbon nanotube is mixed with a thermoplastic resin and then the resulting ruthenium mixture is injected to obtain a conductive hot resin, the shear stress generated between the injection processes causes the carbon nanotube to be agglomerated or arranged. The carbon nanotubes are poorly dispersed in the conductive thermoplastic resin. Thus, it is difficult to obtain sufficient conductivity. In this case, Korean Patent No. 7G6652 discloses a conductive thermoplastic resin group containing J parts by weight to 99 parts by weight of a thermoplastic resin; 0" by weight to 10 4 parts by weight of carbon naphthalene Rice tube; organic nano-clay (nanoclay) in m parts by weight to 1 inch weight. In addition, 'Korean Early Patent Publication No. _52657 discloses a composition comprising 99.6 parts by weight to 1 part by weight of at least one type of thermoplastic resin; 〇 part by weight to 5 parts by weight of at least one type of rubber Elastomer; 〇 2 parts by weight to parts by weight of carbon nanofibrils; 〇 2 parts by weight to ι by weight of at least one type of particulate carbon compound (preferably carbon black or graphite) And 〇 〇 by weight to 50 parts by weight of at least one filler and/or reinforcing material. However, in the above composition, the carbon nanotubes are maximized. It is still difficult to disperse the carbon nanotubes in the resin. In addition, it is necessary to introduce a large amount of carbon nanotubes 5 201035996 to achieve electrical conductivity. Therefore, the consumption of expensive materials is increased compared to other known compositions using carbonaceous materials such as carbon black or carbon fibers, resulting in undesirable cost benefits. [Disclosure] [Technical Problem] An object of the present invention is to provide an excellent dispersibility and high by forming a carbon nanotube (surface modification to increase dispersibility) and a complex of other carbon compounds. Conductive and cost effective polymer composition. Another object of the present invention is to provide a polymer composition having excellent shock absorbing properties. [Solution] In order to attain the object of the present invention, the present invention provides a conductive resin composition comprising: 100 parts by weight of one thermoplastic resin: 0.1 parts by weight to 5.0 parts by weight of surface-modified carbon naphthalene The rice pipe is based on 100 parts by weight of the thermoplastic resin: and 1 part by weight to 20 parts by weight of one carbon compound, based on 100 parts by weight of the thermoplastic resin. The present invention also provides a conductive resin composition further comprising 0.01 part by weight to 5 parts by weight of the foaming agent, based on 1 part by weight of the thermoplastic resin. Furthermore, the present invention provides a conductive resin composition, wherein the surface-modified carbon nanotube is surface-modified such that it comprises from 0.1 part by weight to 1 part by weight of one selected from the group consisting of Elements: oxygen, nitrogen, and combinations of the foregoing, based on 100 parts by weight of carbon nanotubes. Furthermore, the present invention provides a conductive resin composition obtained by adding 201035996 carboxylic acid, nitric acid, phosphoric acid or sulfuric acid to a carbon nanotube to oxidize the surface of the carbon nanotube, thereby obtaining the surface modification. Carbon nanotubes. Furthermore, the present invention provides a conductive resin composition, wherein the surface-modified carbon nanotube is in a subcritical water or at a temperature of from 100 ° C to 600 ° C at a pressure of from 50 atm to 400 atm. In the presence of supercritical water, obtained by oxidizing the surface of the carbon nanotube with an oxidant selected from the group consisting of oxygen, air, ozone, aqueous hydrogen peroxide, acid, exact compound, and combinations thereof . Further, the present invention provides a conductive resin composition, wherein the surface-modified carbon nanotube is in a subcritical water at a temperature of from 100 ° C to 600 ° C and a pressure of from 50 atm to 400 atm. Or in the presence of supercritical water, obtained by cultivating the surface of the carbon nanotube with an oxidant selected from the group consisting of oxygen, air, ozone, aqueous hydrogen peroxide, nitric acid, nitro compounds, and a combination of the foregoing; and subsequently, at a temperature of from 10 TC to 600 ° C, at a pressure of from 50 atm to 400 atm, in the presence of subcritical water or supercritical water, by injecting at least one member selected from the group below The functional compound of the energy base to a surface modification reactor for surface treatment: ◎ rebel, acid vinegar, amine, amine salt, quaternary amine, dish acid, phosphonate, sulfuric acid, sulfate, alcohol , mercapto, ester, decylamine, epoxy, aldehyde, ketone, and combinations thereof. Furthermore, the present invention provides a conductive resin composition wherein the thermoplastic resin is a resin selected from the group consisting of polyacetal resin, acrylic resin, polycarbonate resin, styrene resin, polyester resin, vinyl Resin, polyphenylene ether resin, polyolefin resin, acrylonitrile-butadiene-styrene copolymer resin, polyarylate resin, polyamide resin, polyamidoximine resin, polyarylsulfone resin, polyether oxime Imine resin, poly 7 201035996 ether sulfone resin, polyphenylene sulfide resin, fluororesin, polyimide resin, polyether ketone resin, polybenzoxazole resins, poly beta oxime resin (polyoxadiazole resins), polybenzothiazole resins, polybenzimidazole resins, polypyridine resins, polytriazole resins, poly-zero ratios Πp〇lypyrrolidine resins, polydibenzofuran resins, polyfluorene resins, polyurea resins, polyfluorene resins (polyp) Hosphazene resins ) and liquid crystalline polymer resins, copolymers of the foregoing or mixtures thereof. Further, the present invention provides a conductive resin composition in which the carbon compound is a blackish, graphite or carbon fiber. Further, the present invention provides a conductive resin composition wherein the carbon compound has an average particle size of from 0.001 μm to 300 μm. Further, the present invention provides a molded article obtained by extruding the conductive resin composition. Further, the present invention provides a plastic molded article obtained by adjusting the surface resistance of the molded article to provide ElectroMagnetic Interference (EMI) shielding, static electricity dissipation or static electricity protection. [Advantageous Effects] According to an embodiment of the present invention, a conductive resin ring comprising a carbon composite material uses a surface-modified carbon nanotube and a carbon compound (for example, graphite, double black or carbon fiber). The combination is used as a composite material. Therefore, the conductive resin group 201035996 has excellent electrical conductivity. In particular, the conductive resin provides high conductivity even if only a small amount of carbon nanotubes are used, and thus is cost-effective. Further, the conductive resin composition further comprising a foaming agent exhibits good foaming properties and thus good shock absorbing properties. Therefore, the conductive resin composition exhibits both good shock absorbing characteristics and high electrical conductivity. Further, the conductive resin composition exhibits high conductivity even if only a small amount of expensive carbon nanotubes are used. Further, the conductive resin composition is used in a surface-modified carbon nanotube in the presence of subcritical water or supercritical water. Therefore, the carbon nanotube tube is simply surface-modified under environmental conditions (without using an acid) to have improved dispersibility in the resin. Further, according to an embodiment of the present invention, the conductive resin containing a carbon composite material can be provided in a granular form suitable for various industrial fields. [Embodiment] Hereinafter, preferred embodiments of the present invention will be described in detail. Detailed descriptions of well-known functions and constructions of the present invention are omitted for clarity and conciseness, which may cause the subject matter of the present invention to be unclear. When clarifying a particular manufacturing process and material tolerance, the terms "about", "substantially", or other similar terms are used to define the approximate value of the stated value. Such vocabulary is used to prevent any unscrupulous intruder from improperly using the present disclosure to assist in understanding the precise and absolute values of the present invention. The present invention provides a conductive composition using a thermoplastic resin and a combination of a surface-modified carbon nanotube and a composite of a carbon compound to improve the dispersibility and increase the conductivity thereof. In addition, by reducing the use of large quantities of expensive carbon nanotubes, 9 201035996 « The use of stone analyzed compounds (such as carbon black, graphite or carbon fiber) and the surface-modified carbon nanog group σ improves its cost-effectiveness. . Although such carbon compounds are not as effective as carbon nanotubes, they also contribute significantly to the effectiveness of the carbon nanotubes. Therefore, the combination of the carbon nanotubes and the carbon compound provides a synergistic effect, resulting in high cost efficiency and good Wei quality. With this type, the industrial application of Zengcheng conductive composition can be secreted. Further, the conductive composition comprising the foaming agent can provide both good shock absorbing properties and significantly improved conductivity, and is thus applicable to various industrial fields. In one aspect, the present invention provides a conductive resin composition comprising: a thermoplastic resin; 〇, 1 part by weight to 5 parts by weight of a surface-modified carbon nanotube, 1 part by weight of the thermoplastic resin; and i parts by weight to 2 parts by weight of the carbon compound 'α 1 〇〇 by weight of the thermoplastic resin. On the other hand, the above-mentioned conductive resin composition provided by the present invention further contains from 1 part by weight to 5 parts by weight of the foaming agent, based on 1 part by weight of the thermoplastic resin. Specific examples of the thermoplastic resin which can be used in the present invention include a resin selected from the group consisting of polyacetal resin, acrylic resin, polycarbonate resin, styrene resin, polyester resin, vinyl resin, polyphenylene ether resin, Polyolefin resin, acrylonitrile-butadiene-styrene copolymer resin, polyarylate resin, polyamide resin, polyamidoximine resin, polyarylene resin, polyether sulfimide resin, polyether sulfone Resin, polyphenylene sulfide tree, fluororesin, polyimide resin, polyether ketone resin, polybenzoxazole resin, polyoxadiazole resin, polybenzothiazole resin, polybenzimidazole resin, poly Pyridine resin, I — sitting on the tree, ♦ than each bite tree, polydibenzofuran resin, polyhard resin, polyurea resin, polyphosphazene resin and liquid crystal polymer resin, the aforementioned copolymer resin Or the mixture described in the previous 201035996. Preferably, it is a hydrocarbon resin or a (four) resin, and more preferably a polyethylene. In addition, the surface modified carbon nanotube can be used in an amount of (U parts by weight to 5 parts by weight, based on (10) parts by weight of the thermoplastic resin. The surface modified carbon nanotube can be improved. The balance of mechanical properties and electrical conductivity. When the surface-modified stone is used less than 1 (U 4 parts, it cannot be significantly improved). On the other hand, when the surface is modified If the amount of carbon nanotubes used is more than 5.0 parts by weight, the mechanical properties of the resin may decrease. (4) The use of Ο excess carbon nanotubes may not additionally increase (four) properties, resulting in only expensive materials. The carbon nanotubes can be selected from the group consisting of: wall carbon nanotubes, multi-walled carbon nanotubes, single-walled carbon nanotubes, double-walled carbon nanotubes, bundled carbon nanotubes, and the foregoing The combination.

Ί表面改質之&奈米#可經表面改質以使其包含H 1〇重量 份數之—選自以下群組之材料:氧、氮及前述之組合,U100重 里伤數之碳奈米管計。 ° «氧化而經表面改質之碳奈米管在與樹脂混合後呈現明顯改 良的分散性,藉此料導電度。此外,除樹脂外亦可促使此類 表面改質之候奈米f與其他碳質材料或碳化合物間之混合。 口此L表面改質之碳奈米管係藉由氧化所獲得,例如,藉由Ί Surface modified & nanometer # can be surface modified to contain H 1 〇 parts by weight - selected from the following group of materials: oxygen, nitrogen and the combination of the above, U100 heavy wounds of carbon Meter tube meter. ° «Oxidized and surface-modified carbon nanotubes exhibit a significantly improved dispersion after mixing with the resin, thereby making the material conductive. In addition, in addition to the resin, such surface modification can be promoted by mixing the nano-f with other carbonaceous materials or carbon compounds. The carbon nanotubes modified by the L surface are obtained by oxidation, for example, by

~、、力^所以成之表面氧化、藉由於高溫高塵下與水反應所造成 之表面氧化等D “列而口 ’經表面改質之碳奈米管可^ i〇〇〇c至6〇〇〇c之溫度、 大氣壓至4GG大氣塵之墨力下於次臨界水或超臨界水存在 201035996 « * 下’利用-選自以下群組之氧化物’藉由碳奈米管之表面氧化所 獲得:氧、线、純、含权過氧化氫、姐、德化合物及 前述之組合。可於次臨界水或㈣界水之存在下,^使用一可 輕易操作及容易廢水處理之無害氧化物,以透輯保的方式獲得 經表面改質之碳奈米管。透過氧化物的簡單導入(藉此改良其分 散性),此種於次臨界水或超臨界水存在下之表面改質改良了碳奈 米管的表面改質效果。 此外,經表面改質之碳奈米管可以下述方式獲得:在1〇〇。匸至 _°C之溫度、5〇大氣壓至働大氣壓之a力下於次臨界水或 超臨界水存在下,藉由以—選自氧、空氣、臭氧、含水之過· 氫、硝酸、硝基化合物及前述之混合的氧化物’進行碳奈米管之 表面氧化;以及隨後在100γ至600γ之溫度、5〇大氣壓至 大氣壓之壓力下,於次臨界水或超臨界水存在下,注入一具有 選自以下群組之官能基的官能化合物至一表面處理反應器以進行 表面處理:羧基、羧酸酯、胺、胺鹽、季胺、磷酸、膦酸酯、碚 酸、硫酸酯、醇、巯基、酯、醯胺、環氧基、醛、酮及前述之組 合。 在一變形態樣中,該經表面改質之碳奈米管可藉由添加羧酸、 硝酸、磷酸或硫酸至碳奈米管中,透過碳奈米管表面的氧化而祥 得。簡言之,簡易之酸導入可獲表面氧化及改質之效。 用於本發明之碳化合物的存在量可為1重量份數至2〇曹旦八 里里份 數,以100重量份數之熱塑性樹脂計。當碳化合物之用量小於1 重量份數時’縱然添加了碳化合物,亦無法改良其成本效益。另 12 201035996 -方面’即使透過使破化合物之添加量大於2G重量份數對於導 電度或成本效益亦無額外之改良。 破化合物可包含碳黑、石墨或碳纖維,但不限於此。用任 何碳質材料。 作為碳化合物之碳黑的平均顆粒尺寸較佳為0 〇〇1微米至〇 5微 米。作為碳化合物之石墨粉末的平均顆粒尺寸較佳為較佳為丨微 米至300微米。再者,作為碳化合物之碳纖維較佳以平均顆粒尺 0 寸為〇·〇1微米至0.1微米之微纖維型態提供。 根據本發明之一實施態樣,可使用導電性添加物(例如金屬粉 末、金屬塗覆礦物粉末或金屬纖維)與碳複合物材料之組合。更 - 佳可使用平均顆粒尺寸為0.001微米至0.1微米之金屬粉末(例如 _ 鉛(Pb)或鋁(A1))。 根據本發明之一另實施態樣,導電性樹脂組合物可更包含〇.〇 1 重量份數至5重量份數之一發泡劑,以1〇〇重量份數之熱塑性樹 ^ 脂計,發泡劑具改良導電性之能力。發泡劑可根據熱塑性樹脂之 特殊形態適當使用,且係選自以下群組:偶氮二叛基醯胺 (azodicarboxylamide )、偶氮雙四唑二胺基胍(az〇bistetrazole diaminoguanidine )、偶氮雙四 °坐胍(azobistetrazole guanidine )、5-苯基四 α坐(5-phenyltetrazole )、雙四哇脈(bistetrazole guanidine )、 雙四。坐 π底嗪(bistetrazole piperazine )、雙四0坐二銨(bistetrazole diammonium ) 、 Ν,Ν-二亞石肖基五亞甲基四胺 (N,N-dinitrosopentamethylene tetramine )、氫偶氮二缓基酸胺 (hydrazodicarboxylamide)及前述之組合。用量為〇·〇1重量份數 13 201035996 . 至5重量份數之發泡劑與經表面改質之碳奈米管及碳化合物之組 合的使用提供了良好的分散性,無困難地提供良好的發泡,以及 明顯地改良導電度。 導電性樹脂組合物可藉由一已知的方式混合該組合物之成分而 獲知。此成分之混合可藉由·--般擠製程序進行,以提供適用於 各種工業領域之粒狀物。特定言之,該粒狀物可視特殊用途而模 製成片狀、膜狀等。 再一方面,本發明提供一塑膠模製物,其係藉由調整模製物之 表面電阻以提供電磁干擾(ElectroMagnetic Interference,EMI)屏 蔽、靜電消散及靜電防護而獲得。 再一方面’本發明提供一包含一碳複合物材料之導電性樹脂組 合物’係用於至少一種選自以下群組之材料:導電性塗層劑、靜 電消散材料、靜電消散塗層劑、導電性材料、電磁干擾 (El ectroMagnetic Interference, EMI)、屏蔽材料、電子波吸收材 料、φ、 電磁干擾(ElectroMagnetic Interference, EMI)屏蔽塗層劑、 電子波吸收塗層劑、太陽能電池材料、供染料敏化太陽能電池用 之電掩材料(DSSCs)、電動裝置、電子裝置、半導體裝置、光電 、夏、筆記型個人電腦元件材料、電腦元件材料、蜂巢式行動電 話~ 711件材料、個人數位助理 (personal digital assistant, PDA)元件 才才科 遷明 diSpi 晶I貝 、供遊戲機器用之元件材料、外殼材料(housing materials )、 電極材料、不透明電極材料、場發射顯示器( emission ay,FED)材料、背光模組(backlight unit,BLU)材料、液 示器(liquid crystal display,LCD )材料、電椠顯示面板(plasma 14 201035996 display panel,PDP )材料、發光二極體(Hght emiuing di〇de, LED ) 材料、觸控面板材料、電子顯示器材料、告示牌材料、顯示器材 料、熱發射體、熱輻射體、鍍覆材料、觸媒、共觸媒、氧化劑、 還原劑、供汽車零件用之材料、供船舶零件用之材料、供飛機零 件用之材料、電子信函材料、保護膠帶材料、黏著材料托盤式 (tray )材料、無塵室材料、供運輸機器零件用之材料、阻燃材料、 抗菌材料、金屬複合物材料、非鐵金屬(n〇n ferr〇usmetal)複合 物材料、供醫療儀器零件用之材料、建築材料、地板材料、壁紙 材料、光源元件材料、燈具材料、光學儀器之元件材料、供纖維 製造機器零件用之材料、供布料製造機器零剌之材料、供電動 裝置製造機器用之材料及供電子裝置製造機器用之材料。 參照以下各實施態樣之說明將可清楚呈現本發明之該等優點、 特徵及層面。然而,本發明可以多種不同形式實施且不應限定於 本發明中所闡述之例示性實施態樣。 [製備實施例1] 首先,在一預處理反應器中經由一循環泵將12公克之多壁碳奈 米管(MWCNT )( CM95 ’取自韓華奈米科技公司(Hanwha Nan〇tec,~,, force ^ so that the surface oxidation, by the surface oxidation caused by high temperature and high dust and water reaction, etc. D "column mouth" surface modified carbon nanotubes can ^ i〇〇〇c to 6 〇〇〇c temperature, atmospheric pressure to 4GG atmospheric dust under the presence of subcritical water or supercritical water 201035996 « * under 'utilization - selected from the group of oxides' by surface oxidation of carbon nanotubes Obtained: oxygen, line, pure, containing hydrogen peroxide, Sister, German compound and the combination of the foregoing. It can be used in the presence of subcritical water or (4) boundary water, using a harmless oxidation that can be easily handled and easily treated by wastewater. Surface-modified carbon nanotubes are obtained by means of a transparent process. The surface is modified in the presence of subcritical water or supercritical water by simple introduction of oxides (to improve its dispersibility). The surface modification effect of the carbon nanotubes is improved. In addition, the surface modified carbon nanotubes can be obtained in the following manner: at a temperature of 1 〇〇 匸 to _ ° C, 5 〇 atmospheric pressure to 働 atmospheric pressure a Forced in the presence of subcritical water or supercritical water , air, ozone, water containing · hydrogen, nitric acid, nitro compounds and the foregoing mixed oxides 'on the surface oxidation of the carbon nanotubes; and then at a temperature of 100 γ to 600 γ, 5 〇 atmospheric pressure to atmospheric pressure Injecting a functional compound having a functional group selected from the group consisting of sub-critical water or supercritical water to a surface treatment reactor for surface treatment: carboxyl group, carboxylate, amine, amine salt, quaternary amine , phosphoric acid, phosphonate, citric acid, sulfate, alcohol, mercapto, ester, decylamine, epoxy, aldehyde, ketone, and combinations thereof. In a variant, the surface modified carbon nanotube The tube can be obtained by adding carboxylic acid, nitric acid, phosphoric acid or sulfuric acid to the carbon nanotubes and oxidizing through the surface of the carbon nanotubes. In short, simple acid introduction can achieve surface oxidation and modification. The carbon compound used in the present invention may be present in an amount of from 1 part by weight to 2 parts by weight of the octagonal celite, based on 100 parts by weight of the thermoplastic resin. When the amount of the carbon compound is less than 1 part by weight, it is added Carbon compounds, no The method improves the cost-effectiveness. Another 12 201035996 - Aspect 'Even if the amount of the compound added is greater than 2G parts by weight, there is no additional improvement in conductivity or cost effectiveness. The broken compound may contain carbon black, graphite or carbon fiber, but not The carbon black as the carbon compound preferably has an average particle size of from 0 〇〇 1 μm to 〇 5 μm. The average particle size of the graphite powder as the carbon compound is preferably 丨 micron. Further, the carbon fiber as the carbon compound is preferably provided in a microfiber type having an average particle size of 0 Å to 1 μm to 0.1 μm. According to an embodiment of the present invention, conductivity can be added. a combination of a substance (for example, a metal powder, a metal coated mineral powder or a metal fiber) and a carbon composite material. More preferably, a metal powder having an average particle size of 0.001 μm to 0.1 μm (for example, _ lead (Pb) or aluminum (for example) may be used. A1)). According to another aspect of the present invention, the conductive resin composition may further comprise from 1 part by weight to 5 parts by weight of the blowing agent, based on 1 part by weight of the thermoplastic resin. The blowing agent has the ability to improve conductivity. The foaming agent can be suitably used according to the specific form of the thermoplastic resin, and is selected from the group consisting of azodicarboxylamide, az〇bistetrazole diaminoguanidine, azo. Azobistetrazole guanidine, 5-phenyltetrazole, bistetrazole guanidine, double four. Sitting on bistetrazole piperazine, bistetrazole diammonium, bismuth, bismuth-dinitrosopentamethylene tetramine, hydrogenazo azodiamine (hydrazodicarboxylamide) and combinations of the foregoing. The amount is 〇·〇1 parts by weight 13 201035996 . The use of up to 5 parts by weight of the blowing agent in combination with the surface modified carbon nanotubes and the carbon compound provides good dispersibility and provides good without difficulty. Foaming, as well as significantly improved conductivity. The conductive resin composition can be known by mixing the components of the composition in a known manner. The mixing of the ingredients can be carried out by a general extrusion procedure to provide granules suitable for use in various industrial fields. Specifically, the granules can be molded into a sheet shape, a film shape or the like depending on the particular use. In still another aspect, the present invention provides a plastic molded article obtained by adjusting the surface resistance of a molded article to provide electromagnetic interference (EMI) shielding, static dissipation, and electrostatic protection. In a further aspect, the invention provides a conductive resin composition comprising a carbon composite material for at least one material selected from the group consisting of a conductive coating agent, a static dissipative material, a static dissipative coating agent, Conductive materials, Electromagnetic Interference (EMI), shielding materials, electron wave absorbing materials, φ, Electromagnetic Interference (EMI) shielding coating agents, electron wave absorbing coating agents, solar cell materials, dyes for dyes Shielding solar cell dielectric mask materials (DSSCs), electric devices, electronic devices, semiconductor devices, photovoltaics, summer, notebook PC component materials, computer component materials, cellular mobile phones ~ 711 materials, personal digital assistants ( Personal digital assistant, PDA) component talents, diSpi, shell materials, housing materials for game machines, housing materials, electrode materials, opaque electrode materials, emission ay (FED) materials, Backlight unit (BLU) material, liquid crystal display , LCD) material, plasma display panel (plasma 14 201035996 display panel, PDP) material, light-emitting diode (Hght emiuing di〇de, LED) material, touch panel material, electronic display material, billboard material, display material , thermal emitters, heat radiators, plating materials, catalysts, co-catalysts, oxidizing agents, reducing agents, materials for automotive parts, materials for marine parts, materials for aircraft parts, electronic letter materials, Protective tape material, adhesive material tray material, clean room material, material for transporting machine parts, flame retardant material, antibacterial material, metal composite material, non-ferrous metal (n〇n ferr〇usmetal) composite Materials, materials for medical instrument parts, building materials, flooring materials, wallpaper materials, light source component materials, luminaire materials, component materials for optical instruments, materials for fiber manufacturing machine parts, materials for fabric manufacturing machines Materials used in the manufacture of machines for power supply devices and materials for the manufacture of machines for electronic devices. These advantages, features, and aspects of the present invention will be apparent from the description of the embodiments. However, the invention may be embodied in many different forms and should not be limited to the illustrative embodiments set forth in the invention. [Preparation Example 1] First, a 12-gram multi-walled carbon nanotube (MWCNT) (CM95' was taken from Hanwha Nan〇tec by a circulation pump in a pretreatment reactor.

Co.))與988公克之蒸顧水混合以提供一多壁碳奈米管溶液。在 透過一高壓注射泵將該多壁碳奈米管溶液以3〇公克/分鐘之流率 導入至一預熱反應器之前,在一熱交換器前端、於0.8公克/分鐘 之流率下’將壓縮到245大氣壓至252大氣壓之氣相氧與該多壁 碳奈米管溶液混合。所得之混合溶液經由該熱交換器導入至該已 預熱至200 C至260°C之預熱反應器中。將該經預熱之混合溶液 201035996 導入一包含350°C、230大氣壓至250大氣壓之次臨界水的表面改 質反應器以進行表面改質。將該經表面改質之產物輸送回該熱交 換器中並在其中冷卻至200°C,其後,透過一冷卻系統將該經表面 改質之產物進一步冷卻至約25°C之溫度。以此方式,以一連續方 式獲得11.8公克之經表面改質之多壁碳奈米管。 [製備實施例2] 重複製備實施例1,惟以空氣取代氧作為氧化物。 [製備實施例3] 重複製備實施例1,惟以臭氧取代氧作為氧化物。 [製備實施例4] 重複製備實施例1,惟加入108.8公克(1.6體積莫耳濃度)之 50%含水過氧化氫取代氧作為氧化物。 [製備實施例5] 重複製備實施例1,惟加入25.2公克(0.4體積莫耳濃度)之硝 酸取代氧作為氧化物。 [實施例1] 首先,將940公克之低密度聚乙烯(LDPE830 ; HCC)、10公克 之由製備實施例1所獲得之經表面改質的碳奈米管及50公克之碳 黑(VXC5〇0 ; CABOT)導入一旋轉雙螺桿擠製機之漏斗中。在 200°C下、藉由螺桿之旋轉,使該聚合物樹脂於該擠製機中熔融並 與該碳材料攪混,以便將該所得之產物透過擠製機之擠模(die) 16 201035996 連續地釋出。藉由一製粒機(pe丨letizer;)將該自擠製機射出之聚 乙烯束製成常見的短粒狀物,隨後藉由壓力將該粒狀物模製成一 厚度為2¾米之片狀物。 [實施例2] 重複實施例1,惟將905公克之低密度聚乙烯(LDPE830;HCC)、 5公克之由製備實施例2所獲得的經表面改質之多壁碳奈米管 (MWCNT)及90公克之碳黑(VXC500 ; CABOT)導入至該旋 0 轉雙螺桿擠製機之漏斗中。 [實施例3] 重複實施例1,惟以10公克之由製備實施例3所獲得之經表面 改質的碳奈米管取代由製備貝施例1所獲得之經表面改質之碳奈 米管,並用50公克之平均顆粒尺寸為〇a微米的碳纖維取代5〇 公克之碳黑。 [實施例4] 重複實施例2,惟以5公克之由製備實施例4所獲得之經表面改 質的碳奈米管取代由製備貫施例1所獲得之經表面改質的碳奈米 管,並用90公克之平均顆粒尺寸為1〇.0微米的碳纖維取代9〇公 克之碳黑。 [實施例5] 重複實施例2,惟以5公克之由製備實施例5所獲得之經表面改 質的碳奈米管取代由製備貝細例1所獲得之經表面改質的碳奈米 管,並用90公克之平均顆粒尺寸為1(>·〇微米的碳纖維取代90公 17 201035996 克之碳黑。 [實施例6] 首先將938 △克之低密度聚乙稀(LDPE830 ; HCC)、10公克 之由製備貫施例1所獲得的碳奈米管、5〇公克之碳黑(㈣谓; 偶氮二緩基酿胺導入至旋轉雙螺桿擠製機之 製機中㈣m、11由螺桿之捕’使Μ合減脂於該擠 製機中熔融並與該碳材料與 山μ心…㈣料搜混’以便透過掩製機之擠模連續地釋 出一片狀物。隨後,將該片妝脇道 片狀物導入至- 2〇〇°c之烘箱中以獲得 一經發泡之片狀物。 [實施例7] 重複貝施例6,惟將9〇3公克之低密度聚乙缔(LDpE83〇;HCC)、 5公克之由製備實施例2所獲得的碳奈米管及9〇公克之碳黑 (VXC500 ; CABOT)導入至該雙螺桿擠製機之漏斗中。 [實施例8] 重複實施例6,惟以1〇公克之由製備實施例3所獲得之經表面 改質的碳奈米管取代由製備實施例1所獲得之經表面改質的碳奈 米管,並用50公克之平均顆粒尺寸為0.1亳米的碳纖維取代50 公克之碳黑。 [實施例9] 重複實施例7,惟以5公克之由製備實施例4所獲得之經表面改 質的碳奈米管取代由製備實施例1所獲得之經表面改質的碳奈米 管,並用90公克之平均顆粒尺寸為10.0微米的破纖維取代90公 18 201035996 克之碳黑。 [實施例10] 重複實施例7,惟以5公克之由製備實施例5所獲得之經表面改 質的碳奈米管取代該由製備實施例1所獲得之經表面改質的碳奈 米管,並用90公克之平均顆粒尺寸為10.0毫米的碳纖維取代90 公克之碳黑。 [比較實施例1] Ο 首先,將970公克之低密度聚乙烯(LDPE830 ; HCC)及30公 克之未經表面改質之碳奈米管導入至一旋轉雙螺桿擠製機之漏斗 中。在200°C下、藉由螺桿之旋轉,將該聚合物樹脂於該擠製機 — 中熔融並與該碳材料攪混,以使得所得之產物透過該擠製機的擠 、 模連續地釋出。隨後,藉由一製粒機將該自擠製機射出之聚乙烯 束成形成常見的短粒狀物,並藉由壓力將該粒狀物模製成一厚度 為2毫米之片狀物。 〇 [比較實施例2] 重複比較實施例1,惟以30公克之由製備實施例1所獲得之經 表面改質的碳奈米管取代未經表面改質之碳奈米管。 [比較實施例3] 重複比較實施例1,惟將650公斤之低密度聚乙烯(LDPE830 ; HCC)及350公克之碳黑(VXC500 ; CABOT)導入至該旋轉雙螺 桿擠製機之漏斗中。 19 201035996 [比較實施例4] 重複比較實施例1,惟將750公克之低密度聚乙烯(LDPE 830 ; HCC)及250公克之平均顆粒尺寸為0.1微米的碳纖維導入至該旋 轉雙螺桿擠製機之漏斗中。 [比較實施例5] 重複實施例1,惟使用5公克之未經表面改質的碳奈米管取代經 表面改質之碳奈米管。 η [比較實施例6] 重複實施例2,惟使用5公克之未經表面改質的碳奈米管取代經 表面改質之碳奈米管。 [比較實施例7] 重複實施例3,惟使用10公克之未經表面改質的碳奈米管取代 經表面改質之碳奈米管。 [比較實施例8] || 重複實施例4,惟使用5公克之未經表面改質的碳奈米管取代經 表面改質之碳奈米管。 [比較實施例9] 重複實施例6,惟將968公克之低密度聚乙烯(LDPE830;HCC)、 30公克之未經表面改質的碳奈米管及2公克之偶氮二羧基醯胺導 入至該旋轉雙螺桿擠製機之漏斗中。 20 201035996 [比較實施例ίο] 重複比較實施例9,惟使用30公克之由製備實施例1獲得之經 表面改質的碳奈米管取代未經表面改質之碳奈米管。 [比較實施例11] 重複比較實施例9,惟將648公克之低密度聚乙烯(LDPE830 ; HCC)及350公克之碳黑導入至該旋轉雙螺桿擠製機的漏斗中。 [比較實施例12] 〇 重複比較實施例9,惟將748公克之低密度聚乙烯(LDPE830 ; HCC)及250公克之平均顆粒尺寸為0.1微米的碳纖維導入至旋轉 雙螺桿擠製機之漏斗中。 [比較實施例13] 重複實施例6,惟使用5公克之未經表面改質的礙奈米管。 [比較實施例14] 〇 重複實施例7,惟使用5公克之未經表面改質的碳奈米管。 [比較實施例I5] 重複實施例8,惟使用10公克之未經表面改質之碳奈米管。 [比較實施例16] 重複實施例9,惟使用5公克未經表面改質之碳奈米管。 [比較實施例17] 重複實施例6,惟不使用偶氮二羧基醯胺且將低密度聚乙烯 21 201035996 (LDPE 830 ·,HCC)之量調整至940公克。 [測試方法] 1 ·測量表面電阻 根據 JISK7194/ASTMD991 利用 LorestaGP (MCP-T600)測量 各實例之表面電阻。 [表1] 聚乙烯 (g) 碳奈米管 (g) 表面改質 碳黑 (g) 碳纖維 (g) 表面電阻 (Ω/口) 實施例1 940 10 0 (氧) 50 - 5.9 X 102 實施例2 905 5 0 (空氣) 90 _ 9.6 X 102 實施例3 940 10 0 (臭氧) - 50 4.2 X 102 實施例4 905 5 〇 (過氧化氫) - 90 7.5 X 102 實施例5 905 5 0 (硝酸) - 90 6.3 X 102 比較實施例1 970 30 X - - 5.5 X 104 比較實施例2 970 30 0 (氧) - - 8.2 X 103 比較實施例3 650 0 - 350 - 7.1 X 104 比較實施例4 750 0 - - 250 8.0 X 104 比較實施例5 940 5 X 50 ------- 2.4 X 104 比較實施例6 905 5 X 90 - 3.1 X 104 比較實施例7 940 10 X - 50 ~~ 3 6X 104 比較實施例8 905 5 X • 90 ~~ 9.7 X 104 [表2] 聚乙烯 (g) 碳奈米 管 (g) 表面改質 碳黑 (g) 碳纖維 (g) 偶氮二羧 基酿胺 (g) 實施例6 938 10 〇 (氧) 50 γ—- 實施例7 903 5 〇 (空氣) 90 - 實施例8 938 10 〇 (臭氧) - 50 r—- 實施例9 903 5 0 (過氧化氫) - 90 實施例10 903 5 0 (硝酸) - 90 比較實施例9 968 30 X - - 比較實施例10 968 30 〇 (氧) - - 比較實施例11 648 0 - 350 比較實施例12 748 0 - - 250 比較實施例13 938 10 X 50 2 〜— -----Co.)) is mixed with 988 grams of steamed water to provide a multi-walled carbon nanotube solution. The multi-walled carbon nanotube solution was introduced into a preheating reactor through a high pressure syringe pump at a flow rate of 3 Torr/min, at a flow end of a heat exchanger at a flow rate of 0.8 g/min. A gas phase oxygen compressed to 245 atm to 252 atm is mixed with the multi-walled carbon nanotube solution. The resulting mixed solution was introduced via the heat exchanger into the preheated reactor which had been preheated to 200 C to 260 °C. The preheated mixed solution 201035996 was introduced into a surface reforming reactor containing subcritical water of 350 ° C and 230 atm to 250 atm to carry out surface modification. The surface modified product is conveyed back to the heat exchanger and cooled therein to 200 ° C, after which the surface modified product is further cooled to a temperature of about 25 ° C through a cooling system. In this manner, 11.8 grams of surface modified multi-walled carbon nanotubes were obtained in a continuous manner. [Preparation Example 2] Preparation Example 1 was repeated except that oxygen was substituted by air as an oxide. [Preparation Example 3] Preparation Example 1 was repeated except that oxygen was replaced with ozone as an oxide. [Preparation Example 4] Preparation Example 1 was repeated except that 108.8 g (1.6 volume of molar concentration) of 50% aqueous hydrogen peroxide was added as an oxide. [Preparation Example 5] Preparation Example 1 was repeated except that 25.2 g (0.4 volume of molar concentration) of nitric acid was added as an oxide. [Example 1] First, 940 g of low density polyethylene (LDPE 830; HCC), 10 g of the surface-modified carbon nanotube obtained in Preparation Example 1 and 50 g of carbon black (VXC5 〇) 0; CABOT) is introduced into the funnel of a rotating twin-screw extruder. The polymer resin is melted in the extruder and stirred with the carbon material by rotation of a screw at 200 ° C to pass the obtained product through a die of the extruder 16 201035996 continuously Released. The polyethylene bundle ejected from the self-extruding machine is made into a common short granule by a granulating machine, and then the granule is molded into a thickness of 23⁄4 m by pressure. Sheet. [Example 2] Example 1 was repeated except that 905 g of low density polyethylene (LDPE 830; HCC), 5 g of the surface-modified multi-walled carbon nanotube (MWCNT) obtained in Preparation Example 2 was used. And 90 grams of carbon black (VXC500; CABOT) was introduced into the funnel of the rotary to twin-screw extruder. [Example 3] Example 1 was repeated except that the surface-modified carbon nanotube obtained by the preparation of the shell example 1 was replaced with 10 g of the surface-modified carbon nanotube obtained in Preparation Example 3. Tube, and replace 5 gram of carbon black with 50 grams of carbon fiber having an average particle size of 〇a micron. [Example 4] Example 2 was repeated except that 5 gram of the surface-modified carbon nanotube obtained in Preparation Example 4 was substituted for the surface-modified carbon nanoparticle obtained by the preparation of Example 1. Tube and replace 9 gram of carbon black with 90 grams of carbon fiber having an average particle size of 1 〇.0 micron. [Example 5] Example 2 was repeated except that 5 gram of the surface-modified carbon nanotube obtained in Preparation Example 5 was substituted for the surface-modified carbon nanoparticle obtained by preparing the shell example 1. Tube, and replace 90 carbon 17 201035996 gram carbon black with 90 gram of carbon fiber with an average particle size of 1 (> 〇 micron. [Example 6] First, 938 Δg of low density polyethylene (LDPE830; HCC), 10 The carbon nanotube obtained by the first embodiment, the carbon black obtained by the example 1 and the carbon black of the 5 gram gram ((4); the azobis succinylamine is introduced into the machine of the rotary twin-screw extruder (4) m, 11 by the screw The trapping 'decomposes the fat in the extruder and melts it with the carbon material and the mountain core... (4) to continuously release a sheet through the extrusion mold of the masker. Subsequently, The sheet of the wafer was introduced into an oven of -2 ° C to obtain a foamed sheet. [Example 7] Repeated Example 6 except that 9 〇 3 gram of low density polyethylene NB (LDPE83〇; HCC), 5 gram of carbon nanotube obtained by Preparation Example 2 and 9 gram of carbon black (VXC500; CABOT) were introduced into the double snail In the funnel of the extruder. [Example 8] Example 6 was repeated except that the surface-modified carbon nanotube obtained in Preparation Example 3 was replaced with 1 gram of the obtained film obtained by Preparation Example 1. Surface modified carbon nanotubes, and 50 grams of carbon black was replaced with 50 grams of carbon fibers having an average particle size of 0.1 mils. [Example 9] Example 7 was repeated except that 5 gram was used to prepare Example 4 The surface-modified carbon nanotube obtained was replaced with the surface-modified carbon nanotube obtained in Preparation Example 1, and 90 g 18 201035996 g of carbon was replaced with 90 g of broken fiber having an average particle size of 10.0 μm. [Example 10] Example 7 was repeated except that 5 g of the surface-modified carbon nanotube obtained in Preparation Example 5 was substituted for the surface-modified carbon obtained in Preparation Example 1. The tube was replaced with 90 g of carbon fiber having an average particle size of 10.0 mm and replaced with 90 g of carbon black. [Comparative Example 1] Ο First, 970 g of low density polyethylene (LDPE830; HCC) and 30 g of untreated Surface-modified carbon nanotubes are introduced into a rotating double screw In a funnel of a rod extruder, the polymer resin is melted in the extruder by a rotation of a screw at 200 ° C and mixed with the carbon material to pass the obtained product through the extruder The squeezing and die are continuously released. Subsequently, the polyethylene which is ejected from the self-extruding machine is bundled into a common short granule by a granulator, and the granule is molded into a granule by pressure. Sheet having a thickness of 2 mm. 〇 [Comparative Example 2] Comparative Example 1 was repeated except that 30 gram of the surface-modified carbon nanotube obtained in Preparation Example 1 was substituted without surface modification. Carbon nanotubes. [Comparative Example 3] Comparative Example 1 was repeated except that 650 kg of low density polyethylene (LDPE830; HCC) and 350 g of carbon black (VXC500; CABOT) were introduced into the funnel of the rotary double screw extruder. 19 201035996 [Comparative Example 4] Comparative Example 1 was repeated except that 750 g of low density polyethylene (LDPE 830; HCC) and 250 g of carbon fiber having an average particle size of 0.1 μm were introduced into the rotary twin-screw extruder In the funnel. [Comparative Example 5] Example 1 was repeated except that 5 g of the surface-modified carbon nanotubes were used instead of the surface-modified carbon nanotubes. η [Comparative Example 6] Example 2 was repeated except that 5 g of the surface-modified carbon nanotubes were used instead of the surface-modified carbon nanotubes. [Comparative Example 7] Example 3 was repeated except that 10 g of the surface-modified carbon nanotube was used instead of the surface-modified carbon nanotube. [Comparative Example 8] || Example 4 was repeated except that 5 g of the surface-modified carbon nanotube was used instead of the surface-modified carbon nanotube. [Comparative Example 9] Example 6 was repeated except that 968 g of low density polyethylene (LDPE830; HCC), 30 g of surface-modified carbon nanotubes, and 2 g of azodicarboxyguanamine were introduced. To the funnel of the rotating twin-screw extruder. 20 201035996 [Comparative Example ίο] Comparative Example 9 was repeated except that 30 gram of the surface-modified carbon nanotube obtained in Preparation Example 1 was used instead of the surface-modified carbon nanotube. [Comparative Example 11] Comparative Example 9 was repeated except that 648 g of low density polyethylene (LDPE 830; HCC) and 350 g of carbon black were introduced into the funnel of the rotary twin-screw extruder. [Comparative Example 12] 比较Comparative Example 9, except that 748 g of low density polyethylene (LDPE 830; HCC) and 250 g of carbon fiber having an average particle size of 0.1 μm were introduced into a funnel of a rotary twin-screw extruder . [Comparative Example 13] Example 6 was repeated except that 5 g of the unmodified surface barrier tube was used. [Comparative Example 14] 实施 Example 7 was repeated except that 5 g of the surface-modified carbon nanotube tube was used. [Comparative Example I5] Example 8 was repeated except that 10 g of a surface-modified carbon nanotube was used. [Comparative Example 16] Example 9 was repeated except that 5 g of a surface-modified carbon nanotube was used. [Comparative Example 17] Example 6 was repeated except that azobiscarboxyguanamine was used and the amount of low density polyethylene 21 201035996 (LDPE 830 ·, HCC) was adjusted to 940 g. [Test method] 1 • Measurement of surface resistance The surface resistance of each example was measured using a LorestaGP (MCP-T600) according to JIS K7194/ASTMD991. [Table 1] Polyethylene (g) Carbon nanotube (g) Surface modified carbon black (g) Carbon fiber (g) Surface resistance (Ω/mouth) Example 1 940 10 0 (oxygen) 50 - 5.9 X 102 Implementation Example 2 905 5 0 (air) 90 _ 9.6 X 102 Example 3 940 10 0 (ozone) - 50 4.2 X 102 Example 4 905 5 〇 (hydrogen peroxide) - 90 7.5 X 102 Example 5 905 5 0 ( Nitric acid) - 90 6.3 X 102 Comparative Example 1 970 30 X - - 5.5 X 104 Comparative Example 2 970 30 0 (oxygen) - - 8.2 X 103 Comparative Example 3 650 0 - 350 - 7.1 X 104 Comparative Example 4 750 0 - - 250 8.0 X 104 Comparative Example 5 940 5 X 50 ------- 2.4 X 104 Comparative Example 6 905 5 X 90 - 3.1 X 104 Comparative Example 7 940 10 X - 50 ~~ 3 6X 104 Comparative Example 8 905 5 X • 90 ~~ 9.7 X 104 [Table 2] Polyethylene (g) Carbon nanotube (g) Surface modified carbon black (g) Carbon fiber (g) Azodicarboxylamine (g) Example 6 938 10 〇 (oxygen) 50 γ - Example 7 903 5 〇 (air) 90 - Example 8 938 10 〇 (ozone) - 50 r - - Example 9 903 5 0 (Peroxidation) Hydrogen) - 90 Example 10 903 5 0 (nitric acid) - 90 Comparative Example 9 968 30 X - - Comparative Example 10 968 30 〇 (oxygen) - - Comparative Example 11 648 0 - 350 Comparative Example 12 748 0 - - 250 Comparative Example 13 938 10 X 50 2 〜 ----

Log {表面電 阻(Ω/ci) } 6.2 1_5_ 6A_ 7.7 ~ T9_ 10.6_ 8.6_ 11.1_ 11.8_ 10.7 22 201035996 比較實施例14 903 5 X 90 - 2 11.0 比較實施例15 938 10 X - 50 2 10.6 比較實施例16 903 5 X _ 90 2 11.6 比較實施例17 940 10 〇 (氧) 50 ~ 11.8 雖然本發明已依特定之實施態樣描述,然本領域習知技藝者當 可了解可在不違背本發明之精神及範疇的情況下,進行各種變化 及改良,如下申請專利範圍所述。 【圖式簡單說明】 (無) 【主要元件符號說明】 (無) 23Log {surface resistance (Ω/ci) } 6.2 1_5_ 6A_ 7.7 ~ T9_ 10.6_ 8.6_ 11.1_ 11.8_ 10.7 22 201035996 Comparative Example 14 903 5 X 90 - 2 11.0 Comparative Example 15 938 10 X - 50 2 10.6 Comparison Example 16 903 5 X _ 90 2 11.6 Comparative Example 17 940 10 〇 (oxygen) 50 ~ 11.8 Although the present invention has been described in terms of specific embodiments, those skilled in the art will understand that In the case of the spirit and scope of the invention, various changes and modifications are made as described in the following patent claims. [Simple description of the diagram] (None) [Description of main component symbols] (None) 23

Claims (1)

201035996 七、申請專利範圍: 1. 一種導電性樹脂組合物,包含: 100重量份數之一熱塑性樹脂; 0·1重量份數至5.0重量份數之一經表面改質之碳奈米 管’以100重量份數之熱塑性樹脂計;以及 1重量份數至20重量份數之一碳化合物,以1〇〇重量份 數之熱塑性樹脂計。 •2.如請求項1之導電性樹脂組合物,其中更包含〇·〇1重量份數 至5重里份數之一發泡劑,以1〇〇重量份數之該熱塑性樹脂 計。 3.如吻求項1或2之導電性樹脂組合物,其中該經表面改質之 碳奈米管係經表面改質以使其含有〇·1重量份數至10重量份 數之—選自以下群組的元素:氧、氮及其組合,以1〇〇重量 份數之該竣奈米管計。 • 士明求項3之導電性樹脂組合物,其中該經表面改質之碳奈 β系在100 c至600oc之溫度、50大氣壓至400大氣壓之 壓力下、於:欠臨界水或超臨界水存在下,藉由以一選自以下 _、-之氧化Μ氧化該碳奈米管的表面所獲得:氧、空氣、臭 氧3水的過氧化氫、石肖酸、破基化合物及前述之組合。 5·如请求項3之導電性樹脂組合物,其中該經表面改質之礙奈 米管係藉由以下方式獲得:在1〇〇〇c至嶋。C之溫度、5〇大 24 201035996 氧壓至400大氣壓之壓力下、於次臨界水或超臨界水之存在 下,藉由以一選自以下群組之氧化劑氧化該碳奈米管的表 面:氧、空氣、臭氧、含水的過氧化氫、硝酸、硝基化合物 及月0述之組合;以及隨後在1〇〇〇c至6〇〇〇c之溫度、5〇大氣 壓至400大氣壓之壓力下,藉由注入一具有至少一選自以下 群組之g忐基之g忐化合物至一表面改質反應器以進行表面 處理:羧基、羧酸酯、胺、胺鹽、季胺(quaternary amine)、磷酸、膦酸酯、硫酸、硫酸酯、醇、巯基、醋、醯胺 基、環氧基、搭基、SJ5J及前述之組合。 6. 如請求項3之導電性樹脂組合物,其中該經表面改質之碳奈 米管係藉由添加羧酸、硝酸、磷酸或硫酸至碳奈米管以進行 該碳奈米管表面之氧化反應所獲得。 7. 如請求項1或2之導電性樹脂組合物,其中該熱塑性樹脂係 一選自以下群組之樹脂:聚縮酸樹脂、丙埽酸樹脂、聚碳酸 S曰柄 J3曰、本乙稀树月曰、聚s旨樹脂、乙稀基樹脂、聚苯謎樹脂、 聚沐fe樹脂、丙烯腈-丁二烯-苯乙烯共聚物樹脂、聚芳醋樹 月曰、t酿胺樹爿a、聚酿胺6&亞胺樹脂、聚芳$風樹脂、聚喊酿 亞胺樹脂、聚醚職樹脂、聚苯硫醚樹脂、氟樹脂、聚酿亞胺 樹脂、聚醚酮樹脂、聚苯并噁唑樹脂(p〇lybenz〇xaz〇le resins)、聚。惡二°坐樹脂(polyoxadiazole resins)、聚苯并〇塞〇坐 樹月旨 (polybenzothiazole resins )、 聚笨并口米0坐楂^月旨 (polybenzimidazole resins )、聚0比啶樹月旨(polypyridine resins )、聚三嗤樹脂(polytriazole resins )、聚α比„各咬樹脂 25 201035996 (polypyrrolidine resins )、聚二苯并吱福樹脂 (polydibenzofuran resins)、聚碱樹脂、聚脲樹脂(p〇iyurea resins)、聚ί粦腈樹脂(polyphosphazene resins)及液晶聚合物 樹脂、前述之共聚物樹脂或前述之混合物。 ^ 8. 如請求項1或2之導電性樹脂組合物,其中該碳化合物係選 自以下群組:碳黑、石墨、碳纖維及前述之組合。 9. 如請求項8之導電性樹脂組合物,其中該碳化合物之 平均顆粒尺寸為0.001微米至300微米。 10. 如請求項2之導電性樹脂組合物,其中該發泡劑係選自以下 群組:偶氮二叛基醯胺(azodicarboxylamide )、偶氮雙四η坐二 胺基胍(azobistetrazole diaminoguanidine )、偶氮雙四哇胍 (azobistetrazole guanidine ) 、 5-苯基 四口坐 (5-phenyltetrazole)、雙四。坐脈(bistetrazole guanidine)、雙 四口坐 0辰嗓(bistetrazole piperazine)、雙四嗤二敍(bistetrazole diammonium ) 、Ν,Ν-二亞硝基五亞曱基四胺 (N,N-dmitrosopentamethylene tetramine)、氫偶氮二缓基酿胺 (hydrazodicarboxylamide )及前述之組合。 11. 如請求項1或2之導電性樹脂組合物,其係一包含一碳複合 物材料之導電性樹脂組合物,係用於至少一種選自以下群組 之材料:導電性塗層劑、靜電消散材料、靜電消散塗層劑、 導電性材料 '電磁干擾(ElectroMagnetic Interference, EMI) 屏敝材料、電子波吸收材料、電磁干擾(ElectroMagnetic interference, EMI )屏蔽塗層劑、電子波吸收塗層劑、太陽能 26 201035996 電池材料供染料敏化太陽能電池(dye_sensitizeds〇iar ceiis, DSSCs)用之電極材料、電動裝置、電子裝置、半導體裝置、 光電裝置、筆記型個人電腦元件材料、電腦元件材料、蜂巢 式行動電居元件材料、個人數位助理(pers〇nal digital assistant, PDA)元件材料、供遊戲機器用之元件材料、外殼材料(h〇using materials)、透明電極材料、不透明電極材料、場發射顯示器 (field emission display, FED )材料、背光模組(backlight unit, BLU )材料、液晶顯示器(HqUid crystal display, LCD )材料、 電聚顯示面板(plasma display panel, PDP)材料、發光二極 體(light emitting diode,LED )材料、觸控面板材料、電子顯 示器材料、告示牌材料、顯示器材料、熱發射體、熱輻射體、 锻覆材料、觸媒、共觸媒、氧化劑、還原劑、供汽車零件用 之材料、供船舶零件用之材料、供飛機零件用之材料、電子 信函材料、保護膠帶材料、黏著材料、托盤式(tray)材料、 無塵室材料、供運輸機器零件用之材料、阻燃材料、抗菌材 料金屬複合物材料、非鐵金屬(non-ferrous metal )複合物 材料 '供醫療儀器零件用之材料、建築材料、地板材料、壁 、紙材料、光源元件材料、燈具材料、光學儀器元件材料、供 、纖'维製造機器零件用之材料、供布料製造機器零件用之材 料'供電動裝置製造機器用之材料及供電子裝置製造機器用 之材料。 一種模製物,係藉由擠製如請求項1或2所述之導電性樹脂 組合物所獲得。 27 201035996 13.如請求項12之模製物,其係一塑膠模製物,其係藉由調整表 面電阻以提供電磁干擾(ElectroMagnetic Interference,EMI ) 屏蔽、靜電消散或靜電防護而製得。 28 201035996 四、指定代表圖: (一) 本案指定代表圖為:(無)。 (二) 本代表圖之元件符號簡單說明:(無) 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式: (無)201035996 VII. Patent application scope: 1. A conductive resin composition comprising: 100 parts by weight of one thermoplastic resin; 0.1 part by weight to 5.0 parts by weight of one surface modified carbon nanotube 100 parts by weight of the thermoplastic resin; and 1 part by weight to 20 parts by weight of one carbon compound, based on 1 part by weight of the thermoplastic resin. 2. The conductive resin composition of claim 1, which further comprises from 1 part by weight to 5 parts by weight of the blowing agent, based on 1 part by weight of the thermoplastic resin. 3. The conductive resin composition of claim 1 or 2, wherein the surface-modified carbon nanotube is surface-modified to contain from 1 part by weight to 10 parts by weight - Elements from the following groups: oxygen, nitrogen, and combinations thereof, in 1 part by weight of the nanotubes. • The conductive resin composition of claim 3, wherein the surface modified carbon necrosis beta is at a temperature of from 100 c to 600 oc, at a pressure of from 50 atm to 400 atm, in: undercritical or supercritical water In the presence of, the surface of the carbon nanotube is obtained by oxidizing cerium oxide selected from the group consisting of oxygen, air, ozone, water, hydrogen peroxide, sulphuric acid, a base compound, and combinations thereof. . 5. The conductive resin composition of claim 3, wherein the surface-modified nanotube tube is obtained by the following method: from 1 〇〇〇c to 嶋. The surface of the carbon nanotubes is oxidized by an oxidant selected from the group consisting of: a temperature of C, a temperature of 5, and a pressure of 400,000, and a pressure of 400 atm. in the presence of subcritical water or supercritical water: a combination of oxygen, air, ozone, aqueous hydrogen peroxide, nitric acid, nitro compounds, and the following; and subsequently at a temperature of from 1 〇〇〇c to 6 〇〇〇c, at a pressure of from 5 Torr to 400 atm. The surface treatment is carried out by injecting a g忐 compound having at least one g group selected from the group consisting of a carboxyl group, a carboxylate, an amine, an amine salt, a quaternary amine, and a surface modification reactor. , phosphoric acid, phosphonate, sulfuric acid, sulfate, alcohol, mercapto, vinegar, decylamino, epoxy, cyclist, SJ5J, and combinations of the foregoing. 6. The conductive resin composition of claim 3, wherein the surface-modified carbon nanotube tube is subjected to the surface of the carbon nanotube by adding a carboxylic acid, a nitric acid, a phosphoric acid or a sulfuric acid to a carbon nanotube Obtained by oxidation reaction. 7. The conductive resin composition according to claim 1 or 2, wherein the thermoplastic resin is a resin selected from the group consisting of a polyacetal resin, a propionate resin, a polystyrene saponin J3 曰, and a methicone Shuyue, Polysyl Resin, Ethylene-based Resin, Polyphenylene Resin, Poly-Fe resin, Acrylonitrile-Butadiene-Styrene Copolymer Resin, Poly-Aromatic Tree, and T-Amine , polyamine 6 & imine resin, polyfang $ wind resin, poly-imine resin, polyether resin, polyphenylene sulfide resin, fluororesin, poly-imine resin, polyether ketone resin, polyphenylene And oxazole resin (p〇lybenz〇xaz〇le resins), poly. Polyoxadiazole resins, polybenzothiazole resins, polybenzimidazole resins, polypyridine resins, polypyridine resins ), polytriazole resins, poly-α ratios, polypyrrolidine resins, polydibenzofuran resins, polyalkaline resins, polyurea resins, p〇iyurea resins The polyphosphazene resins and the liquid crystal polymer resin, the aforementioned copolymer resin or a mixture of the foregoing. The conductive resin composition according to claim 1 or 2, wherein the carbon compound is selected from the following The group: the carbon black, the graphite, the carbon fiber, and the combination of the foregoing. The conductive resin composition of claim 8, wherein the carbon compound has an average particle size of from 0.001 μm to 300 μm. a resin composition, wherein the foaming agent is selected from the group consisting of azodicarboxylamide, azobistetrazene, and azobistetra Zole diaminoguanidine ), azobistetrazole guanidine, 5-phenyltetrazole, bistetrazole guanidine, bistetrazole piperazine, Bistetrazole diammonium, N,N-dmitrosopentamethylene tetramine, hydroazodicarboxylamide, and combinations thereof. The conductive resin composition of claim 1 or 2, which is a conductive resin composition comprising a carbon composite material, is used for at least one material selected from the group consisting of conductive coating agents, static electricity Dissipative material, static dissipative coating agent, conductive material 'ElectroMagnetic Interference (EMI) screen material, electron wave absorbing material, electromagnetic interference (EMI) shielding coating agent, electron wave absorption coating agent, Solar energy 26 201035996 Battery materials for electrode materials, electric devices for dye-sensitized solar cells (dye_sensitizeds〇iar ceiis, DSSCs) Electronic device, semiconductor device, photoelectric device, notebook personal computer component material, computer component material, honeycomb mobile component material, personal digital assistant (PDA) component material, component material for game machine , housing materials, transparent electrode materials, opaque electrode materials, field emission display (FED) materials, backlight unit (BLU) materials, liquid crystal displays (HqUid crystal display, LCD) Materials, plasma display panel (PDP) materials, light emitting diode (LED) materials, touch panel materials, electronic display materials, billboard materials, display materials, thermal emitters, thermal radiation Body, forging material, catalyst, co-catalyst, oxidant, reducing agent, material for automotive parts, materials for ship parts, materials for aircraft parts, electronic letter materials, protective tape materials, adhesive materials, Tray material, clean room material, transport equipment Materials, flame retardant materials, antibacterial materials, metal composite materials, non-ferrous metal composite materials, materials for medical instrument parts, building materials, flooring materials, walls, paper materials, light source components Materials, luminaire materials, optical instrument component materials, materials for fiber-option manufacturing machine parts, materials for machine parts for fabric manufacturing, materials for power-driven device manufacturing machines, and materials for electronic device manufacturing machines. A molded article obtained by extruding the conductive resin composition as claimed in claim 1 or 2. 27 201035996 13. The molded article of claim 12, which is a plastic molded article obtained by adjusting surface resistance to provide electromagnetic interference (EMI) shielding, static dissipation or electrostatic protection. 28 201035996 IV. Designated representative map: (1) The representative representative of the case is: (none). (2) A brief description of the symbol of the representative figure: (none) 5. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: (none) 專利申請案 201035996 *("¥5^ r· •合物。較佳係聚烯烴樹脂或聚酯樹脂,更佳係聚乙 此外,經表面改質之碳奈米管之使用量可為0.1重量份數至5.0 重量份數,以100重量份數之熱塑性樹脂計。該經表面改質之碳 奈米管可改良機械特性及導電性之間的平衡。當該經表面改質之 碳奈米管使用量小於0.1重量份數時,則無法顯著地改良其導電 性。另一方面,當該經表面改質之碳奈米管的使用量大於5.0重量 份數,則其熱塑性樹脂的機械特性可能會下降。再者,縱然使用 過量之碳奈米管,也無法額外地增加導電性,僅造成昂貴材料之 虛耗。 碳奈米管可選自以下群組:單壁碳奈米管、雙壁碳奈米管、薄 壁碳奈米管、多壁碳奈米管、束狀破奈米管及前述之組合。 經表面改質之碳奈米管可經表面改質以使其包含0.1至10重量 份數之一選自以下群組之元素:氧、氮及前述之組合,以100重 量份數之碳奈米管計。 透過氧化而經表面改質之碳奈米管在與樹脂混合後呈現明顯改 〇 良的分散性,藉此影響導電度。此外,除樹脂外,亦可促使此類 經表面改質之碳奈米管與其他碳質材料或碳化合物間之混合。 因此,經表面改質之碳奈米管係藉由氧化所獲得,例如,藉由 添加一酸所造成之表面氧化、藉由於高溫高壓下與水反應所造成 之表面氧化等。 舉例而言,經表面改質之碳奈米管可在100°c至600°C之溫度、 50大氣壓至400大氣壓之壓力下,於次臨界水或超臨界水存在 201035996 下,利用一選自以下群組之氧化物,藉由碳奈米管之表面氧化所 獲得:氧、空氣、臭氧、含水之過氧化氫、硝酸、硝基化合物及 前述之組合。可於次臨界水或超臨界水之存在下,藉由使用一可 輕易操作及容易廢水處理之無害氧化物,以透過環保的方式獲得 經表面改質之碳奈米管。透過氧化物的簡單導入(藉此改良其分 散性),此種於次臨界水或超臨界水存在下之表面改質改良了碳奈 米管的表面改質效果。 此外,經表面改質之碳奈米管可以下述方式獲得:在100°C至 600°C之温度、50大氣壓至400大氣壓之壓力下,於次臨界水或 超臨界水存在下,藉由以一選自氧、空氣、臭氧、含水之過氧化 氫、碗酸、硝基化合物及前述之混合的氧化物,進行碳奈米管之 表面氧化;以及隨後在100°C至600°C之溫度、50大氣壓至400 大氣壓之壓力下,於次臨界水或超臨界水存在下,注入一具有一 選自以下群組之官能基的官能化合物至一表面處理反應器以進行 表面處理:羧基、羧酸酯、胺、胺鹽、季胺、磷酸、膦酸酯、硫 酸、硫酸酯、醇、毓基、酯、醯胺、環氧基、醛、酮及前述之組 合。 在一變形態樣中,該經表面改質之碳奈米管可藉由添加羧酸、 石肖酸、磷酸或硫酸至碳奈米管中,透過碳奈米管表面的氧化而獲 得。簡言之,簡易之酸導入可獲表面氧化及改質之效。 用於本發明之碳化合物的存在量可為1重量份數至20重量份 數,以100重量份數之熱塑性樹脂計。當碳化合物之用量小於1 重量份數時,縱然添加了碳化合物,亦無法改良其成本效益。另 12 直刹由讅案 頁(99年5月) 201035996 几«点 [實施例1〇] 重複實施例7’惟以5公克之由製備實施例5所獲得之經表面改 質的碳奈米管取代該由製備實施例1所獲得之經表面改質的碳奈 米管,並用90公克之平均顆粒尺寸為100毫米的碳纖維取代9〇 公克之碳黑。 [比較實施例U 0 ❹ 首先’將970公克之低密度聚乙烯(LDPE83〇 ; HCC)及3〇公 克之未經表面改質之碳奈米管導入至一旋轉雙螺桿擠製機之漏斗 中。在2GG°C下、藉由螺桿之旋轉,將該聚合物樹脂於該擠製機 中溶融並與該碳材料_,以使得所得之產物透過該擠製機的擠 模連續地釋出。隨後,藉由一製粒機將該自擠製機射出之聚乙烯 束成形成常見的短粒狀物,並藉由壓力將該粒狀物模製成一严产 為2毫米之片狀物。 子又 [比較實施例2] 所獲得之經 重複比較實施例卜惟以30公克之由製備實施例 表面改質的碳奈米管取代未經表面改質之碳奈米營 [比較實施例3] 重複比較實施例1,惟將650公克之低密度聚己埽(LDP酬; HCC)及350公克之碳黑(VXC5〇〇 ; CAB〇T)導 桿擠製機之漏斗中。 “旋轉雙螺 19 201035996 [比較實施例4] 重複比較實施例1,惟將750公克之低密度聚乙烯(LDPE 830 ; HCC)及250公克之平均顆粒尺寸為0.1微米的碳纖維導入至該旋 轉雙螺桿擠製機之漏斗中。 [比較實施例5] 重複實施例1,惟使用5公克之未經表面改質的碳奈米管取代經 表面改質之碳奈米管。 [比較實施例6] 重複實施例2,惟使用5公克之未經表面改質的碳奈米管取代經 表面改質之碳奈米管。 [比較實施例7] 重複實施例3,惟使用10公克之未經表面改質的碳奈米管取代 經表面改質之碳奈米管。 [比較實施例8] 重複實施例4,惟使用5公克之未經表面改質的碳奈米管取代經 表面改質之碳奈米管。 [比較實施例9] 重複實施例6,惟將968公克之低密度聚乙烯(LDPE830;HCC)、 30公克之未經表面改質的碳奈米管及2公克之偶氮二羧基醯胺導 入至該旋轉雙螺桿擠製機之漏斗中。 20Patent application 201035996 *("¥5^r·• compound. It is preferably a polyolefin resin or a polyester resin, more preferably polyethylene. In addition, the surface modified carbon nanotube can be used in an amount of 0.1 The parts by weight to 5.0 parts by weight, based on 100 parts by weight of the thermoplastic resin. The surface modified carbon nanotube can improve the balance between mechanical properties and electrical conductivity. When the amount of the rice pipe used is less than 0.1 parts by weight, the electrical conductivity cannot be remarkably improved. On the other hand, when the surface-modified carbon nanotube is used in an amount of more than 5.0 parts by weight, the mechanical structure of the thermoplastic resin The characteristics may be degraded. Moreover, even if an excessive amount of carbon nanotubes is used, it is impossible to additionally increase the conductivity, which only causes the consumption of expensive materials. The carbon nanotubes can be selected from the following groups: single-walled carbon nanotubes , double-walled carbon nanotubes, thin-walled carbon nanotubes, multi-walled carbon nanotubes, bundled nanotubes, and combinations thereof. The surface-modified carbon nanotubes can be surface modified to An element comprising one of 0.1 to 10 parts by weight selected from the group consisting of oxygen, And the combination of the foregoing, based on 100 parts by weight of the carbon nanotubes. The carbon nanotubes which have been surface-modified by oxidation exhibit a markedly improved dispersibility after being mixed with the resin, thereby affecting the conductivity. In addition to the resin, it may also promote the mixing of such surface-modified carbon nanotubes with other carbonaceous materials or carbon compounds. Therefore, the surface-modified carbon nanotubes are obtained by oxidation, for example, The surface oxidation caused by the addition of an acid, the surface oxidation caused by the reaction with water under high temperature and high pressure, etc. For example, the surface modified carbon nanotube can be at 100 ° C to 600 ° C. Temperature, pressure from 50 atm to 400 atm, in the presence of subcritical water or supercritical water in 201035996, using an oxide selected from the group below, obtained by surface oxidation of carbon nanotubes: oxygen, air, Ozone, aqueous hydrogen peroxide, nitric acid, nitro compounds, and combinations thereof, may be used in the presence of subcritical water or supercritical water by using a harmless oxide that is easily handled and easily treated by wastewater. The surface modified carbon nanotubes are obtained by a simple introduction of oxides (in order to improve their dispersibility), and the surface modification in the presence of subcritical water or supercritical water improves the carbon nanotubes. In addition, the surface modified carbon nanotube can be obtained in the following manner: at a temperature of 100 ° C to 600 ° C, a pressure of 50 to 400 atm, in subcritical water or supercritical Surface oxidation of the carbon nanotubes in the presence of water by an oxide selected from the group consisting of oxygen, air, ozone, aqueous hydrogen peroxide, bowl acid, nitro compounds, and the foregoing; and subsequently at 100° a functional compound having a functional group selected from the group consisting of sub-critical water or supercritical water in the presence of subcritical water or supercritical water at a temperature of from C to 600 ° C under a pressure of from 50 to 400 ° C to a surface treatment reactor Surface treatment: carboxyl group, carboxylate, amine, amine salt, quaternary amine, phosphoric acid, phosphonate, sulfuric acid, sulfate, alcohol, mercapto, ester, decylamine, epoxy, aldehyde, ketone and combinations thereof . In a variant, the surface modified carbon nanotube can be obtained by oxidizing the surface of the carbon nanotube by adding a carboxylic acid, a rock acid, a phosphoric acid or a sulfuric acid to the carbon nanotube. In short, simple acid introduction can achieve surface oxidation and modification. The carbon compound used in the present invention may be present in an amount of from 1 part by weight to 20 parts by weight based on 100 parts by weight of the thermoplastic resin. When the amount of the carbon compound is less than 1 part by weight, even if a carbon compound is added, the cost efficiency cannot be improved. Another 12 straight brakes from the file page (May 99) 201035996 several «points [Example 1〇] Repeat Example 7', but 5 gram of the surface modified carbon nanoparticle obtained in Example 5 The tube was replaced with the surface-modified carbon nanotube obtained in Preparation Example 1, and 9 gram of carbon black was replaced with 90 gram of carbon fiber having an average particle size of 100 mm. [Comparative Example U 0 ❹ Firstly, 970 g of low density polyethylene (LDPE 83 〇; HCC) and 3 〇 g of unsurface-modified carbon nanotubes were introduced into a funnel of a rotary twin-screw extruder . The polymer resin was melted in the extruder by rotation of a screw at 2 GG ° C and continuously discharged with the carbon material so that the obtained product was passed through the extruder of the extruder. Subsequently, the polyethylene shot from the self-extruding machine is bundled into a common short granule by a granulator, and the granule is molded into a sheet of 2 mm by pressure. . [Comparative Example 2] The repeated comparative examples obtained were replaced with 30 gram of surface-modified carbon nanotubes of the preparation examples in place of the surface-modified carbon nanotubes [Comparative Example 3] Comparative Example 1 was repeated except that 650 grams of low density polyhexanide (LDP); and 350 grams of carbon black (VXC5(R); CAB〇T) were introduced into the funnel of the extruder. "Rotating double screw 19 201035996 [Comparative Example 4] Comparative Example 1 was repeated except that 750 grams of low density polyethylene (LDPE 830; HCC) and 250 grams of carbon fibers having an average particle size of 0.1 μm were introduced into the rotating double In the funnel of the screw extruder. [Comparative Example 5] Example 1 was repeated except that 5 g of the surface-modified carbon nanotube was used instead of the surface-modified carbon nanotube. [Comparative Example 6 Example 2 was repeated except that 5 g of the surface-modified carbon nanotubes were used instead of the surface-modified carbon nanotubes. [Comparative Example 7] Example 3 was repeated except that 10 g was used. The surface modified carbon nanotube replaces the surface modified carbon nanotube. [Comparative Example 8] Example 4 was repeated except that 5 g of surface-modified carbon nanotubes were used instead of surface modification. Carbon nanotubes. [Comparative Example 9] Example 6 was repeated except that 968 g of low density polyethylene (LDPE 830; HCC), 30 g of surface-modified carbon nanotubes and 2 g of couples were used. Nitrodicarboxyguanamine was introduced into the funnel of the rotary twin-screw extruder.
TW098139891A 2008-11-24 2009-11-24 Highly conductive resin composition having carbon composite TWI406301B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080117106A KR101090729B1 (en) 2008-11-24 2008-11-24 Highly conductive resin composition having carbon composite
KR1020090054259A KR101594494B1 (en) 2009-06-18 2009-06-18 Highly conductive foam composition having carbon composite

Publications (2)

Publication Number Publication Date
TW201035996A true TW201035996A (en) 2010-10-01
TWI406301B TWI406301B (en) 2013-08-21

Family

ID=42198697

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098139891A TWI406301B (en) 2008-11-24 2009-11-24 Highly conductive resin composition having carbon composite

Country Status (2)

Country Link
TW (1) TWI406301B (en)
WO (1) WO2010059008A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104093787A (en) * 2012-01-12 2014-10-08 韩华石油化学株式会社 Resin composition for emi shielding, comprising carbon hydride composite
CN104919539A (en) * 2013-12-06 2015-09-16 Lg化学株式会社 Composite material having improved electrical conductivity and molded part containing same
TWI500832B (en) * 2011-08-02 2015-09-21 Mitsubishi Rayon Co Method of producing carbon fiber and carbon fiber
US9637646B2 (en) 2012-04-30 2017-05-02 Eternal Materials Co., Ltd. Conductive coating compositions

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9340697B2 (en) 2009-08-14 2016-05-17 Nano-C, Inc. Solvent-based and water-based carbon nanotube inks with removable additives
CA2926910C (en) * 2012-12-21 2021-08-31 Nano-C, Inc. Solvent-based and water-based carbon nanotube inks with removable additives
US10017631B2 (en) * 2014-12-26 2018-07-10 Lg Chem, Ltd. Radar cover-use resin composition, and radar cover and radar apparatus obtained therefrom
KR102085939B1 (en) * 2017-12-14 2020-03-06 금호석유화학 주식회사 A expanded bead having electrical conductivity and a method for manufacturing the same
CN109056104A (en) * 2018-09-21 2018-12-21 佛山皖和新能源科技有限公司 A kind of preparation method of conducting polypropylene fiber
KR101948809B1 (en) * 2018-10-26 2019-02-15 국방과학연구소 Method for producing electromagnetic wave absorption structure and electromagnetic wave absorption structure
CN109467783A (en) * 2018-11-08 2019-03-15 上海应用技术大学 A kind of polyethylene/carbon nanotube conducting material and preparation method thereof
CN110054835B (en) * 2019-03-27 2022-03-29 无锡会通轻质材料股份有限公司 Preparation method of high-rate conductive polypropylene foamed beads
EP4206265A4 (en) * 2020-08-28 2024-10-02 Lotte Chemical Corp Polyolefin-based expanded particles and molded product manufactured therefrom
KR102321837B1 (en) * 2020-11-24 2021-11-08 한국생산기술연구원 A method of obtaining a material for offshore solar power generation, vehecle, building structure in the state of mixing plastics in a functionalized state by irradiating IPL on the surface of carbon fiber
CN112982027B (en) * 2021-02-08 2022-04-15 山东仁丰特种材料股份有限公司 Modification method of high-performance carbon paper based on supercritical fluid technology

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4035619B2 (en) * 2004-03-22 2008-01-23 国立大学法人信州大学 CNT surface modification method
EP1937763A2 (en) * 2005-08-08 2008-07-02 Cabot Corporation Polymeric compositions containing nanotubes
TWI386420B (en) * 2005-12-06 2013-02-21 Mitsubishi Rayon Co Carbon nanotube structure, composite and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI500832B (en) * 2011-08-02 2015-09-21 Mitsubishi Rayon Co Method of producing carbon fiber and carbon fiber
CN104093787A (en) * 2012-01-12 2014-10-08 韩华石油化学株式会社 Resin composition for emi shielding, comprising carbon hydride composite
CN104093787B (en) * 2012-01-12 2016-10-26 韩华石油化学株式会社 The resin combination comprising hydrogenated carbon complex for electromagnetic interference shield
US9505903B2 (en) 2012-01-12 2016-11-29 Hanwha Chemical Corporation Resin composition for EMI shielding, comprising carbon hydride composite
US9637646B2 (en) 2012-04-30 2017-05-02 Eternal Materials Co., Ltd. Conductive coating compositions
CN104919539A (en) * 2013-12-06 2015-09-16 Lg化学株式会社 Composite material having improved electrical conductivity and molded part containing same

Also Published As

Publication number Publication date
TWI406301B (en) 2013-08-21
WO2010059008A3 (en) 2010-08-05
WO2010059008A2 (en) 2010-05-27

Similar Documents

Publication Publication Date Title
TW201035996A (en) Highly conductive resin composition having carbon composite
Nazir et al. Recent progress in the modification of carbon materials and their application in composites for electromagnetic interference shielding
KR101470524B1 (en) Blending improvement carbon-composite having Carbon-nanotube and its continuous manufacturing method
Zhang et al. A facile approach to constructing efficiently segregated conductive networks in poly (lactic acid)/silver nanocomposites via silver plating on microfibers for electromagnetic interference shielding
Al-Saleh et al. A review of vapor grown carbon nanofiber/polymer conductive composites
JP6096806B2 (en) Resin composition for electromagnetic shielding containing composite carbon material
KR101090729B1 (en) Highly conductive resin composition having carbon composite
Xin et al. Decoration of carbon nanotubes with silver nanoparticles for advanced CNT/polymer nanocomposites
AU2005279823B2 (en) Conductive thermosets by extrusion
Kang et al. Thermal, impact and toughness behaviors of expanded graphite/graphite oxide-filled epoxy composites
TWI433902B (en) Conductive paint composition and method for manufacturing conductive film using the same
US9625062B2 (en) Fuel system components
KR101264147B1 (en) Preparation of Concentrated CNT Dispersion Solution Using the Treated CNT
US20110133134A1 (en) Crosslinkable and Crosslinked Compositions of Olefin Polymers and Graphene Sheets
KR20060061306A (en) Electrically conductive compositions and method of manufacture thereof
Kausar et al. Significance of carbon nanotube in flame-retardant polymer/CNT composite: a review
KR20120107044A (en) Polymer compositions containing graphene sheets and graphite
Kausar Fullerene nanofiller reinforced epoxy nanocomposites—Developments, progress and challenges
JP2007507562A (en) Conductive thermoplastic composition, method of manufacture, and article derived from such composition
JP2007515502A (en) Conductive composition and method for producing the same
JP2016108524A (en) Conductive resin composition, conductive master batch, molded body, and production method of the same
KR20100136079A (en) Highly conductive foam composition having carbon composite
Liu et al. Synthesis and properties of sandwiched films of epoxy resin and graphene/cellulose nanowhiskers paper
Fariha et al. Advances in PVC-based blend nanocomposites
Paszkiewicz et al. Detailed study on interfacial interactions in epoxy composites cured with 1-buthylimidazole containing functionalized carbon nanotubes

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees