WO2014204265A1 - Conductive ink composition, transparent conductive film including same, and method of manufacturing transparent conductive film - Google Patents
Conductive ink composition, transparent conductive film including same, and method of manufacturing transparent conductive film Download PDFInfo
- Publication number
- WO2014204265A1 WO2014204265A1 PCT/KR2014/005466 KR2014005466W WO2014204265A1 WO 2014204265 A1 WO2014204265 A1 WO 2014204265A1 KR 2014005466 W KR2014005466 W KR 2014005466W WO 2014204265 A1 WO2014204265 A1 WO 2014204265A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductive
- ink composition
- solvent
- weight
- metal
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/52—Electrically conductive inks
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
Definitions
- the present invention relates to a conductive ink composition, a transparent conductive film including the same, and a method for manufacturing the transparent conductive film, and more particularly, to modify the composition of the solvent of the conductive ink composition to control bubble generation to improve optical and electrical properties. It relates to a conductive ink composition, a transparent conductive film comprising the same, and a method for producing a transparent conductive film.
- the transparent conductive film has been used as an essential component of electrical and electronic equipment such as transparent electrodes in various display fields such as power supply of display devices, electromagnetic shielding films of home appliances, LCDs, OLEDs, FEDs, PDPs, flexible displays, and electronic paper.
- Transparent conductive films currently in use include inorganic oxide conductive materials such as indium tin oxide (ITO), antimony tin oxide (ATO), and antimony zinc oxide (AZO). I use it.
- ITO indium tin oxide
- ATO antimony tin oxide
- AZO antimony zinc oxide
- the conductive paste or the conductive nano ink technology in the electronic industry has been in the spotlight recently in terms of productivity, cost reduction, and environment due to the enlargement of the display industry and the simplification of the process.
- Such conductive nano inks require uniform particle size and excellent dispersibility, and metal nano particles of uniform particle size used in the metal nano ink are mostly made by a chemical method that is dispersed and synthesized in a solution.
- Such a conductive metal nano ink must consider a boiling point for fractional distillation, and depending on the type of solvent, it can greatly affect the physical properties of the conductive film, thereby limiting solvent selection.
- Conventional oil-based metal inks have the advantages of smaller nanoparticle size, easier manufacturing of high concentration, and continuous ejection from the head during inkjet printing process, compared to water-based metal inks. Due to the uneven line width, surface treatment is essential and has a high firing temperature.
- Korean Patent Publication No. 2008-0102098 solves this problem by selecting an ink additive soluble in a lipophilic solvent and optimizing the composition of the metal ink to increase the adhesive strength with the substrate and prevent cracks when forming the wiring by inkjet printing.
- an ink additive soluble in a lipophilic solvent As a non-aqueous metal ink composition which hardens well at low temperature, the technique which disperse
- Such a metal ink composition also has a problem of inferior dispersion due to complex process procedures and generation of waste water as well as reaggregation of metal nanoparticles.
- an object of the present invention is to solve such a conventional problem, and an object of the present invention is to provide a conductive ink composition for a display that can control the generation of bubbles by adjusting the composition of a solvent.
- the conductive ink composition according to an embodiment of the present invention comprises a conductive nanomaterial and a solvent, the solvent is made up of more than 80% and less than 100% by weight of water and more than 20% by weight of cosolvent 0 It is characterized by.
- the conductive nanomaterial is at least one of a metal nanowire, a metal nanorod or a metal nanostructure of a metal nanoparticle, a conductive polymer, a conductive fiber, or a carbon nanotube.
- the cosolvent is methanol, ethanol, isopropanol, 1-methoxypropanol, butanol, ethylhexyl alcohol, terpineol, ethylene glycol, glycerin, ethyl acetate, butyl acetate, methoxypropyl acetate, carbitol acetate, ethyl carbitol acetate , Methyl cellosolve, butyl cellosolve, diethyl ether, tetrahydrofuran, dioxane, methyl ethyl ketone, acetone, dimethylformamide, 1-methyl-2-pyrrolidone, hexane, heptane, dodecane, paraffin It is characterized in that at least one of oil, mineral spirit, benzene, toluene, xylene, chloroform, methylene chloride, carbon tetrachloride, acetonitrile
- the conductive nano material is 0.01 to 10 parts by weight based on 100 parts by weight of the solvent.
- the conductive ink composition further comprises a binder, a dispersant and a wetting agent, the binder is 0.01 to 1 part by weight, the dispersant is 0.001 to 0.5 parts by weight, the wetting agent is 0.0001 to 1 part by weight It features.
- the conductive ink composition is characterized in that it further comprises a surfactant, leveling agent, thixotropic agent or reducing agent.
- the conductive ink composition according to another embodiment of the present invention comprises a conductive nanomaterial and a solvent, the solvent is characterized in that the water.
- the conductive nano material is 0.01 to 10 parts by weight based on 100 parts by weight of the solvent.
- the transparent conductive film according to an embodiment of the present invention comprises a conductive nanomaterial and a solvent
- the solvent is conductive consisting of more than 80% less than 100% by weight of water and more than 20% by weight of cosolvent 0 It is characterized by including an ink composition.
- the conductive nanomaterial is at least one of a metal nanowire, a metal nanorod or a metal nanostructure of a metal nanoparticle, a conductive polymer, a conductive fiber, or a carbon nanotube.
- the cosolvent is methanol, ethanol, isopropanol, 1-methoxypropanol, butanol, ethylhexyl alcohol, terpineol, ethylene glycol, glycerin, ethyl acetate, butyl acetate, methoxypropyl acetate, carbitol acetate, ethyl carbitol acetate , Methyl cellosolve, butyl cellosolve, diethyl ether, tetrahydrofuran, dioxane, methyl ethyl ketone, acetone, dimethylformamide, 1-methyl-2-pyrrolidone, hexane, heptane, dodecane, paraffin It is characterized in that at least one of oil, mineral spirit, benzene, toluene, xylene, chloroform, methylene chloride, carbon tetrachloride, acetonitrile
- a method of manufacturing a transparent conductive film the coating step of coating a conductive ink composition comprising a conductive nanomaterial and a solvent on a substrate; And a drying step of drying the conductive ink composition, wherein the solvent is 80 to less than 100 wt% of water and more than 0 to 20 wt% of cosolvent.
- the conductive nanomaterial is at least one of a metal nanowire, a metal nanorod or a metal nanostructure of a metal nanoparticle, a conductive polymer, a conductive fiber, or a carbon nanotube.
- the metal nanowires have an average thickness of 10 to 200 nm and an average length of 1 to 100 ⁇ m.
- the cosolvent is methanol, ethanol, isopropanol, 1-methoxypropanol, butanol, ethylhexyl alcohol, terpineol, ethylene glycol, glycerin, ethyl acetate, butyl acetate, methoxypropyl acetate, carbitol acetate, ethyl carbitol acetate , Methyl cellosolve, butyl cellosolve, diethyl ether, tetrahydrofuran, dioxane, methyl ethyl ketone, acetone, dimethylformamide, 1-methyl-2-pyrrolidone, hexane, heptane, dodecane, paraffin It is characterized in that at least one of oil, mineral spirit, benzene, toluene, xylene, chloroform, methylene chloride, carbon tetrachloride, acetonitrile
- a method of manufacturing a transparent conductive film according to an embodiment of the present invention is a coating step of coating a conductive ink composition comprising a solvent consisting of a conductive nanomaterial and water on the substrate; And a drying step of drying the conductive ink composition.
- the conductive nano material is 0.01 to 10 parts by weight based on 100 parts by weight of the solvent.
- the conductive nanomaterial is at least one of a metal nanowire, a metal nanorod or a metal nanostructure of a metal nanoparticle, a conductive polymer, a conductive fiber, or a carbon nanotube.
- Conductive ink composition capable of realizing transparent conductive film for display with excellent optical and electrical properties by improving the electrical uniformity by controlling the content of water and cosolvent, which are the constituents of the solvent, to prevent the occurrence of foreign substances recondensing the conductive material. Can be provided.
- a conductive ink composition capable of realizing a transparent conductive film for a display having improved physical properties by controlling the type and content of the conductive material, the solvent and the additive to improve the dispersibility of the conductive material.
- FIG. 1 is a flowchart sequentially illustrating a method of manufacturing a conductive film using the conductive ink composition according to the present invention.
- FIG. 2 is a graph showing uniformity of electrical characteristics of the transparent conductive film of Example 2.
- Example 3 is a graph showing the uniformity of the electrical properties of the transparent conductive film of Example 4.
- FIG. 5 is a before (a) and after (b) photograph for explaining the defoaming effect of the conductive ink composition prepared in Example 2.
- FIG. 5 is a before (a) and after (b) photograph for explaining the defoaming effect of the conductive ink composition prepared in Example 2.
- the conductive ink composition according to an embodiment of the present invention includes a conductive nanomaterial and a solvent, and the solvent is preferably an aqueous solvent composed of water and co-solvent.
- the conductive nanomaterial is preferably at least one of a metal nanowire, a metal nanorod or a metal nanostructure of a metal nanoparticle, a conductive polymer, a conductive fiber, or a carbon nanotube, more preferably, the metal nanostructure is effective. More preferably, the metal nanowire is most effective.
- Metal which is the main material of nanowires, is basically an opaque material or a nano unit, and shows a transparency when its size decreases, and when it decreases below a certain size in the increase of the specific resistance of the metal in the conductive portion, a rapid increase in the specific resistance may occur. Therefore, the metal nanowires may have an average thickness of 10 to 200 nm and an average length of 1 to 100 ⁇ m.
- Metals of the metal nanostructures are Ag, Au, Cu, Ni, Co, Pd, Ti, V, Mn, Fe, Cr, Zr, Nb, Mo, W, Ru, Cd, Ta, Re, Os, Ir, Al,
- metals known in the art such as Ga, Ge, In, Sn, Sb, Pb, and Bi, may be used, and two or more of these may be alloyed.
- Typical metal nanoparticle manufacturing methods include a physical method of physically pulverizing a metal mass and a method of manufacturing using a chemical reaction.
- the chemical method is described by aerosol method for the injection of high-pressure gas to powder, pyrolysis method for pyrolysis using metal compound and gas reducing agent, heat evaporation of evaporation material to produce powder Evaporative condensation, sol-gel, hydrothermal synthesis, ultrasonic synthesis, microemulsion, liquid phase reduction, and the like.
- liquid phase reduction method using a dispersing agent and a reducing agent which is considered to be easy to control the formation of nanoparticles and is considered to be the most economical, is most used.
- any method can be used as long as it can form nanoparticles.
- the method for producing the nanoparticles by the liquid-phase reduction method is described in Korean Patent Application No. 2006-0074246 filed by the present applicant and the metal nanoparticles described in the patent application has the advantage that the particle size is uniform and the cohesion is minimized
- the conductive ink containing the metal nanoparticles has an advantage of easily forming a uniform and dense thin film or fine pattern having high conductivity even when fired at a low temperature of 150 ° C. or less for a short time.
- a preferred embodiment of the present invention is a conductive nano material, it is effective to use a silver nanowire that is relatively excellent in conductivity, inexpensive and capable of mass production.
- silver nanowires may be manufactured using a polyol reduction method in which silver nitrate and polyvinylpyrrolidone are mainly dissolved in an organic solvent such as ethylene glycol and heated and stirred to reduce them. no.
- the solvent may be composed of water 80 or more and less than 100% by weight and cosolvent more than 0 and 20 or less by weight, more preferably it is effective that the cosolvent comprises 1 to 10% by weight of the solvent.
- the solvent of the conductive ink composition has a higher water content than the conventional one, and has an excellent effect of suppressing the generation of bubbles in the coating process for preparing the conductive film by adding a small amount of cosolvent.
- the organic solvent When the content of the cosolvent, the organic solvent, exceeds 20% by weight, the organic solvent is volatilized during the coating process to change the concentration and viscosity of the conductive ink composition, thereby changing the composition of the ink composition. As the metal reaggregates and the resistance locally changes, the electrical uniformity is different, thereby significantly reducing the physical properties of the conductive film.
- the conductive ink composition including a solvent having a composition in the above range prevents reaggregation of the conductive nanomaterial through bubble generation control, thereby uniformly distributing the conductive nanomaterial throughout the conductive film, thereby improving electrical and optical properties.
- the cosolvent is methanol, ethanol, isopropanol, 1-methoxypropanol, butanol, ethylhexyl alcohol, terpineol, ethylene glycol, glycerin, ethyl acetate, butyl acetate, methoxypropyl acetate, carbitol acetate, ethyl carbitol acetate , Methyl cellosolve, butyl cellosolve, diethyl ether, tetrahydrofuran, dioxane, methyl ethyl ketone, acetone, dimethylformamide, 1-methyl-2-pyrrolidone, hexane, heptane, dodecane, paraffin It is preferable to use oil, mineral spirit, benzene, toluene, xylene, chloroform, methylene chloride, carbon tetrachloride, acetonitrile or dimethyl
- two or more of the above-described cosolvents may be mixed and used.
- composition of the solvent can remove bubbles without adding an antifoaming agent.
- the conductive ink composition may further include a binder, a dispersing agent, and a wetting agent.
- the binder has excellent adhesion to various substrates.
- binder examples include acrylic resins such as polyacrylic acid or polyacrylic acid esters, cellulose resins such as ethyl cellulose, aliphatic or copolyester resins, vinyl resins such as polyvinyl butyral and polyvinylacetate, polyurethane resins, and polyethers.
- thermosetting resins such as urea resins, alkyd resins, silicone resins, fluorine resins, olefin resins such as polyethylene, thermoplastic resins such as petroleum and rosin resins, epoxy resins, unsaturated polyester resins, phenol resins, melamine resins, and the like.
- Acrylic resins of various structures such as resins, ultraviolet rays or electron beam curing types, ethylene-propylene rubbers, styrene-butadiene rubbers, and the like can also be used.
- an organic compound such as polycarboxylic acid or a derivative thereof may be mainly used.
- polycarboxylic acids and derivatives thereof include homopolymers and copolymers of acrylates and methacrylates such as alkali metal salts of acrylic acid and methacrylic acid, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, homopolymers and copolymers of acrylic or methacrylic acid esters such as n-butyl acrylate, n-butyl methacrylate, isobutyl acrylate or isobutyl methacrylate, but are not limited thereto.
- humectant examples include compounds such as polyethylene glycol, Sufinol series of Air Products, and Tego wet series of Deguessa.
- the binder is preferably 0.01 to 1 parts by weight, the dispersant is 0.001 to 0.5 parts by weight, and the wetting agent is 0.0001 to 1 part by weight based on 100 parts by weight of the solvent.
- the conductive ink composition may further include a surfactant, a leveling agent, a thixotropic agent, or a reducing agent.
- surfactant examples include anionic surfactants such as sodium lauryl sulfate, nonyl phenoxypolyethoxyethanol, and BB such as Dupont's FFS.
- anionic surfactants and cationic surfactants such as laurylbenzylammonium chloride and amphoteric surfactants such as lauryl betaine and coco betaine may be mentioned.
- the leveling agent or thixotropic agent As the leveling agent or thixotropic agent, the BYK series of BYK company, the glide series of Degussa, the EFKA 3000 series of EFKA company or the DS of Cognis company For example, the DSX series.
- the reducing agent may be added to facilitate firing, for example, hydrazine, acetichydrazide, sodium or potassium borohydride, trisodium citrate, and amine compounds such as methyldiethanolamine, dimethylamineborane, Ferrous chloride, metal salts such as ferric lactate, aldehyde compounds such as hydrogen, hydrogen iodide, carbon monoxide, formaldehyde, acetaldehyde, glucose, ascorbic acid, salicylic acid, tannic acid, pyrogallol, hydroquinone Organic compounds, such as these, etc. are mentioned.
- the conductive ink composition according to another embodiment of the present invention includes a conductive nanomaterial and a solvent, and the solvent may be water, which completely replaces the solvent of the conductive ink composition with water.
- the conductive nanomaterial is preferably 0.01 to 10 parts by weight, more preferably 1 to 8 parts by weight based on 100 parts by weight of a solvent made of water. If the conductive nanomaterial is less than 0.01 parts by weight, it is difficult to secure the electrical conductivity for implementing the display. If the conductive nano material is more than 10 parts by weight, it may affect the permeability of the conductive film.
- the transparent conductive film according to one embodiment of the present invention may include the conductive ink composition.
- the conductive nanomaterial is preferably at least one of a metal nanowire, a metal nanorod or a metal nanostructure of a metal nanoparticle, a conductive polymer, a conductive fiber, or a carbon nanotube, but is not necessarily limited thereto.
- the solvent is preferably made of water 80 to less than 100% by weight and cosolvent 0 to 20% by weight, it may be made of water only.
- the cosolvent is methanol, ethanol, isopropanol, 1-methoxypropanol, butanol, ethylhexyl alcohol, terpineol, ethylene glycol, glycerin, ethyl acetate, butyl acetate, methoxypropyl acetate, carbitol Acetate, ethyl carbitol acetate, methyl cellosolve, butyl cellosolve, diethyl ether, tetrahydrofuran, dioxane, methyl ethyl ketone, acetone, dimethylformamide, 1-methyl-2-pyrrolidone, hexane, It is preferably at least one of heptane, dodecane, paraffin oil, mineral spirit, benzene, toluene, xylene, chloroform, methylene chloride, carbon tetrachloride, acetonitrile or
- the method of manufacturing a transparent conductive film according to an embodiment of the present invention may include a coating step (S10) and a drying step (S20).
- the coating step S10 is a step of coating a conductive ink composition on a substrate, which is a process of forming a sensing unit of the display.
- the substrate may be formed of a transparent material such as a plastic film or glass.
- the plastic film may be polyimide (PI), polyethylene terephthalate (PET), polyethernaphthalate (PEN), polyethersulfone (PES), nylon (Nylon), polytetrafluoroethylene (PTFE), polyether ether Ketones (PEEK), polycarbonates (PC) or polyarylates (PAR) can be used.
- the substrate may be provided with an opaque material.
- a metal plate having an insulated surface may be used, or an opaque plastic film, an opaque glass, or an opaque glass fiber material may be applied.
- a plastic film, a glass substrate, etc. can be used, It is not limited to this.
- the conductive ink composition includes a conductive nanomaterial and a solvent, and the solvent may be composed of water of 80% or more and less than 100% by weight and cosolvent 0% and 20% or less by weight.
- the conductive nanomaterial may be at least one of a metal nanowire, a metal nanorod or a metal nanostructure of a metal nanoparticle, a conductive polymer, a conductive fiber, or a carbon nanotube.
- the average thickness of the metal nanowire is preferably 10 to 200 nm, and the average length is 1 to 100 ⁇ m.
- the cosolvent is methanol, ethanol, isopropanol, 1-methoxypropanol, butanol, ethylhexyl alcohol, terpineol, ethylene glycol, glycerin, ethyl acetate, butyl acetate, methoxypropyl acetate, carbitol acetate, ethyl carbitol acetate , Methyl cellosolve, butyl cellosolve, diethyl ether, tetrahydrofuran, dioxane, methyl ethyl ketone, acetone, dimethylformamide, 1-methyl-2-pyrrolidone, hexane, heptane, dodecane, paraffin Oil, mineral spirit, benzene, toluene, xylene, chloroform, methylene chloride, carbon tetrachloride, acetonitrile or dimethyl sulfoxide.
- Conductive ink compositions include inkjet method, flat screen method, spin coating method, bar coater method, roll coating method, flow coating method, doctor blade, disc It can be applied on the substrate using any known coating method of dispensing, gravure printing or flexography printing without limitation.
- the number of coating can be used repeatedly one or more times. Since the coating properties may be different according to the respective coating methods, it is necessary to optimize the rheology of the conductive ink composition to the coating method.
- the coating thickness is preferably 10 ⁇ m or less, more preferably 0.1 ⁇ m or more and 5 ⁇ m or less, and thickness adjustment is necessary according to the line width, required resistance, and post-treatment conditions to be implemented.
- a conductive layer may be formed using a conductive ink composition including a solvent made of water and a conductive nanomaterial by increasing the content of water in a solvent.
- the conductive nano material is preferably 0.01 to 10 parts by weight based on 100 parts by weight of the solvent, and the conductive nano material is a metal nanostructure of a metal nanowire, a metal nanorod or a metal nanoparticle, a conductive polymer, or a conductive fiber. Or at least one of carbon nanotubes.
- a conductive ink composition prepared above was applied to the surface of the non-conductive base film, and dried by heat treatment at a temperature of 120 ° C. for 3 minutes to prepare a transparent conductive film.
- 0.15 wt% of silver nanowire solids was added to a solution containing 9.84 wt% of methanol and 89.9989 wt% of distilled water (18 M ⁇ ), followed by addition of 0.001 wt% of a dispersant, 0.0001 wt% of a wetting agent, and 0.01 wt% of a binder, followed by stirring for 30 minutes.
- a conductive ink composition was prepared. The conductive ink composition prepared above was applied to the surface of the non-conductive base film, and dried by heat treatment at a temperature of 120 ° C. for 3 minutes to prepare a transparent conductive film.
- 0.15 wt% of silver nanowire solids were added to a solution containing 19.9678 wt% of methanol and 79.8711 wt% of distilled water (18 M ⁇ ), and then 0.001 wt% of a dispersant, 0.0001 wt% of a wetting agent, and 0.01 wt% of a binder were added thereto, followed by stirring for 30 minutes.
- a conductive ink composition was prepared.
- the conductive ink composition prepared above was applied to the surface of the non-conductive base film, and dried by heat treatment at a temperature of 120 ° C. for 3 minutes to prepare a transparent conductive film.
- 0.15 wt% of silver nanowire solids was added to a solution containing 9.84 wt% of normal propyl alcohol and 89.9989 wt% of distilled water (18 M ⁇ ), followed by adding 0.001 wt% of a dispersant, 0.0001 wt% of a wetting agent, and 0.01 wt% of a binder. Agitated to prepare a conductive ink composition.
- the conductive ink composition prepared above was applied to the surface of the non-conductive base film, and dried by heat treatment at a temperature of 120 ° C. for 3 minutes to prepare a transparent conductive film.
- 0.15 wt% of silver nanowire solids was added to a solution containing 19.9678 wt% of normal propyl alcohol and 79.8711 wt% of distilled water (18 M ⁇ ), followed by adding 0.001 wt% of a dispersant, 0.0001 wt% of a wetting agent, and 0.01 wt% of a binder. Agitated to prepare a conductive ink composition.
- the conductive ink composition prepared above was applied to the surface of the non-conductive base film, and dried by heat treatment at a temperature of 120 ° C. for 3 minutes to prepare a transparent conductive film.
- 0.15 wt% of silver nanowire solids was added to a solution containing 9.84 wt% of ethanol and 89.9989 wt% of distilled water (18 M ⁇ ), followed by addition of 0.001 wt% of a dispersant, 0.0001 wt% of a wetting agent, and 0.01 wt% of a binder, followed by stirring for 30 minutes.
- a conductive ink composition was prepared. The conductive ink composition prepared above was applied to the surface of the non-conductive base film, and dried by heat treatment at a temperature of 120 ° C. for 3 minutes to prepare a transparent conductive film.
- 0.15 wt% of silver nanowire solids was added to a solution containing 19.9678 wt% of ethanol and 79.8711 wt% of distilled water (18 M ⁇ ), followed by addition of 0.001 wt% of a dispersant, 0.0001 wt% of a wetting agent, and 0.01 wt% of a binder, followed by stirring for 30 minutes.
- a conductive ink composition was prepared. The conductive ink composition prepared above was applied to the surface of the non-conductive base film, and dried by heat treatment at a temperature of 120 ° C. for 3 minutes to prepare a transparent conductive film.
- 0.15 wt% of silver nanowire solids was added to a solution containing 9.84 wt% of methyl cellosolve and 89.9989 wt% of distilled water (18 M ⁇ ), followed by adding 0.001 wt% of dispersant, 0.0001 wt% of wetting agent, and 0.01 wt% of binder. Stirring for minutes gave a conductive ink composition.
- the conductive ink composition prepared above was applied to the surface of the non-conductive base film, and dried by heat treatment at a temperature of 120 ° C. for 3 minutes to prepare a transparent conductive film.
- 0.15 wt% of silver nanowire solids was added to a solution containing 29.951 wt% of ethanol and 69.8879 wt% of distilled water (18 M ⁇ ), followed by adding 0.001 wt% of a dispersant, 0.0001 wt% of a wetting agent, and 0.01 wt% of a binder, followed by stirring for 30 minutes.
- a conductive ink composition was prepared. The conductive ink composition prepared above was applied to the surface of the non-conductive base film, and dried by heat treatment at a temperature of 120 ° C. for 3 minutes to prepare a transparent conductive film.
- 0.15 wt% of silver nanowire solids was added to a solution containing 29.951 wt% of ethanol and 69.8879 wt% of distilled water (18 M ⁇ ), followed by adding 0.001 wt% of a dispersant, 0.0001 wt% of a wetting agent, and 0.01 wt% of a binder, followed by stirring for 30 minutes.
- a conductive ink composition was prepared. The conductive ink composition prepared above was applied to the surface of the non-conductive base film, and dried by heat treatment at a temperature of 120 ° C. for 3 minutes to prepare a transparent conductive film.
- 0.15 wt% of silver nanowire solids was added to a solution containing 29.951 wt% of methyl cellosolve and 69.8879 wt% of distilled water (18 M ⁇ ), followed by adding 0.001 wt% of a dispersant, 0.0001 wt% of a wetting agent, and 0.01 wt% of a binder. Stirring for minutes gave a conductive ink composition.
- the conductive ink composition prepared above was applied to the surface of the non-conductive base film, and dried by heat treatment at a temperature of 120 ° C. for 3 minutes to prepare a transparent conductive film.
- 0.15 wt% of silver nanowire solids was added to a solution containing 29.951 wt% of ethanol and 69.8879 wt% of distilled water (18 M ⁇ ), followed by adding 0.001 wt% of a dispersant, 0.0001 wt% of a wetting agent, and 0.01 wt% of a binder, followed by stirring for 30 minutes.
- a conductive ink composition was prepared. The conductive ink composition prepared above was applied to the surface of the non-conductive base film, and dried by heat treatment at a temperature of 120 ° C. for 3 minutes to prepare a transparent conductive film.
- Table 1 shows the average sheet resistance, standard deviation of sheet resistance, transmittance, and haze of the transparent conductive films prepared from the conductive ink compositions of Examples 1 to 8 and Comparative Examples 1 to 4, respectively.
- Example 1 Average sheet resistance ( ⁇ / ⁇ ) Sheet Resistance Standard Deviation Permeability (%) Haze (%) Example 1 48 12 89.4 2.5 Example 2 48 5 89.4 2.7 Example 3 61 27 90.7 2.7 Example 4 42 8 88.9 2.6 Example 5 44 11 89.3 2.6 Example 6 50 6 89.3 2.6 Example 7 64 31 90.8 2.8 Example 8 146 23 89.6 2.8 Comparative Example 1 96 41 90.3 2.1 Comparative Example 2 109 58 90.1 2.4 Comparative Example 3 80 13 90.4 1.9 Comparative Example 4 71 76 90.0 2.3
- the transparent conductive film of the embodiment has a lower average sheet resistance and a smaller sheet resistance standard deviation value than the comparative example, which means that the electrical properties of the conductive film are uniform, whereby the conductive ink composition of the embodiment of the present invention.
- the antifoaming effect was found to be effective.
- Example 1 in which the solvent was replaced with water, it can be confirmed that the average sheet resistance and the sheet resistance standard deviation are superior to those of the comparative example.
- FIG. 2 is a graph showing the uniformity of the electrical properties of the transparent conductive film of Example 2
- Figure 3 is a graph showing the uniformity of the electrical properties of the transparent conductive film of Example 4.
- the conductive films of Examples 2 and 4 can be confirmed that the standard deviation is measured uniformly.
- FIG. 4 is an optical microscope photograph of the transparent conductive films of Examples 1, 2, and 4.
- FIG. It was confirmed that the surfaces of the transparent conductive films of Examples 1, 2, and 4 were uniformly formed.
- FIG. 5 is a photograph before (a) and after (b) for explaining the defoaming effect of the conductive ink composition prepared in Example 2.
- FIG. 5 As shown in the photograph of FIG. 5, it was observed that the conductive ink composition suppressed bubble generation as shown in (b) by mixing the solvent of the present invention.
- the solvent of the conductive ink composition may be modified to implement a transparent conductive film having improved physical properties of optical and electrical properties.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
- Conductive Materials (AREA)
Abstract
The present invention relates to a conductive ink composition, a transparent conductive film including same, and a method of manufacturing a transparent conductive film. The conductive ink composition includes a conductive nano material and a solvent. The solvent is characterized in that it comprises between 80% and 100% by weight of water and between 0% and 20% by weight of a co-solvent.
Description
본 발명은 전도성 잉크 조성물, 이를 포함하는 투명 전도성 필름 및 투명 전도성 필름의 제조방법에 관한 것으로, 보다 상세하게는 전도성 잉크 조성물의 용매의 조성을 수식하여 기포 발생을 제어함으로써 광학적 특성 및 전기적 특성을 향상시킬 수 있는 전도성 잉크 조성물, 이를 포함하는 투명 전도성 필름 및 투명 전도성 필름의 제조방법에 관한 것이다.The present invention relates to a conductive ink composition, a transparent conductive film including the same, and a method for manufacturing the transparent conductive film, and more particularly, to modify the composition of the solvent of the conductive ink composition to control bubble generation to improve optical and electrical properties. It relates to a conductive ink composition, a transparent conductive film comprising the same, and a method for producing a transparent conductive film.
최근 투명 전도성 필름은 표시소자의 전원 인가용, 가전기기의 전자파 차폐막, LCD, OLED, FED, PDP, 플렉시블 디스플레이, 전자종이 등 각종 디스플레이 분야의 투명전극 등 전기전자장비의 필수적인 구성요소로 사용되고 있다.Recently, the transparent conductive film has been used as an essential component of electrical and electronic equipment such as transparent electrodes in various display fields such as power supply of display devices, electromagnetic shielding films of home appliances, LCDs, OLEDs, FEDs, PDPs, flexible displays, and electronic paper.
현재 주로 사용되고 있는 투명 전도성 필름의 소재로는 인듐주석 산화물(Indium Tin Oxide, ITO), 안티몬주석 산화물(Antimony Tin Oxide, ATO), 안티몬아연 산화물(Antimony Zinc Oxide, AZO) 등과 같은 무기 산화물 전도성 소재를 사용하고 있다. Transparent conductive films currently in use include inorganic oxide conductive materials such as indium tin oxide (ITO), antimony tin oxide (ATO), and antimony zinc oxide (AZO). I use it.
특히, 전자 산업에서 전도성 페이스트 또는 전도성 나노 잉크 기술은 최근 디스플레이 산업 등의 대형화 및 공정 단순화에 의한 생산성과 원가 절감 및 환경적인 측면에서 크게 각광 받고 있다. In particular, the conductive paste or the conductive nano ink technology in the electronic industry has been in the spotlight recently in terms of productivity, cost reduction, and environment due to the enlargement of the display industry and the simplification of the process.
이와 같은 전도성 나노 잉크는 균일한 입도와 우수한 분산성을 요구하며, 이러한 금속 나노 잉크에 사용되는 균일한 입도의 금속 나노입자는 대부분 용액에 분산되어 합성되는 화학적 방법으로 만들어지고 있다. Such conductive nano inks require uniform particle size and excellent dispersibility, and metal nano particles of uniform particle size used in the metal nano ink are mostly made by a chemical method that is dispersed and synthesized in a solution.
이와 같은 전도성 금속 나노 잉크는 분별증류를 위한 끓는점을 고려해야하며, 용매의 종류에 따라 전도성 필름의 물성에 크게 영향을 줄 수 있으므로 용매 선택에 제한이 따르게 된다.Such a conductive metal nano ink must consider a boiling point for fractional distillation, and depending on the type of solvent, it can greatly affect the physical properties of the conductive film, thereby limiting solvent selection.
종래의 유계 금속 잉크는 수계 금속 잉크에 비하여 나노 입자의 크기가 작고, 고농도의 제조가 용이하며, 잉크젯 프린팅 공정시 헤드에서 연속적인 토출이 가능하다는 장점이 있으나, 인쇄된 이미지의 배선의 크랙이 심하고 선폭이 균일하지 못하여 표면처리가 필수적이고 소성온도가 높은 단점을 가지고 있다.Conventional oil-based metal inks have the advantages of smaller nanoparticle size, easier manufacturing of high concentration, and continuous ejection from the head during inkjet printing process, compared to water-based metal inks. Due to the uneven line width, surface treatment is essential and has a high firing temperature.
한국공개특허 제2008-0102098호에는 이러한 문제를 해결하고자 친유성 용매에 용해 가능한 잉크 첨가제를 선정하여 금속 잉크의 조성을 최적화시킴으로써 잉크젯 프린팅으로 배선을 형성할 때 기판과의 접착강도를 높이고 크랙을 방지하며 저온에서 경화가 잘 이루어지는 비수계 금속 잉크 조성물로서, 금속 나노입자를 비수계 코솔벤트에 첨가제와 함께 분산시킨 기술을 제안하고 있다. Korean Patent Publication No. 2008-0102098 solves this problem by selecting an ink additive soluble in a lipophilic solvent and optimizing the composition of the metal ink to increase the adhesive strength with the substrate and prevent cracks when forming the wiring by inkjet printing. As a non-aqueous metal ink composition which hardens well at low temperature, the technique which disperse | distributed metal nanoparticle to non-aqueous cosolvent with an additive is proposed.
그러나, 이러한 금속 잉크 조성물도 복잡한 공정 절차 및 폐수의 발생 문제뿐만 아니라 금속 나노 입자의 재응집으로 인해 분산도가 떨어지는 문제점을 가지고 있다. However, such a metal ink composition also has a problem of inferior dispersion due to complex process procedures and generation of waste water as well as reaggregation of metal nanoparticles.
따라서, 분산도를 개선하면서도 전도성 필름으로 적용시 전기적 특성 및 광학적 특성과 같은 물성이 우수한 전도성 잉크 조성물의 개발이 요구된다.Therefore, there is a need to develop a conductive ink composition having improved physical properties such as electrical properties and optical properties when applied to the conductive film while improving dispersion.
따라서, 본 발명의 목적은 이와 같은 종래의 문제점을 해결하기 위한 것으로서, 용매의 조성을 조절함으로써 기포의 발생을 제어할 수 있는 디스플레이용 전도성 잉크 조성물을 제공함에 목적이 있다.Accordingly, an object of the present invention is to solve such a conventional problem, and an object of the present invention is to provide a conductive ink composition for a display that can control the generation of bubbles by adjusting the composition of a solvent.
또한, 용매를 구성하는 물질의 함량을 조절함으로써 이물질의 발생을 줄여 구현되는 디스플레이의 물성을 향상시킬 수 있는 전도성 잉크 조성물을 제공함에 목적이 있다.In addition, it is an object of the present invention to provide a conductive ink composition that can improve the physical properties of the display implemented by reducing the generation of foreign matter by controlling the content of the material constituting the solvent.
또한, 전도성 잉크 조성물을 구성하는 전도성 물질, 용매 및 첨가제를 조절하여 전도성 물질의 분산성이 우수한 전도성 잉크 조성물을 제공함에 목적이 있다.In addition, it is an object to provide a conductive ink composition having excellent dispersibility of the conductive material by adjusting the conductive material, solvent and additives constituting the conductive ink composition.
또한, 용매의 조성을 조절하여 친환경적이면서 경제적인 전도성 잉크 조성물을 제공함에 목적이 있다.In addition, it is an object to provide an environmentally friendly and economical conductive ink composition by adjusting the composition of the solvent.
상기 과제를 달성하기 위하여, 본 발명의 일 실시예에 따른 전도성 잉크 조성물은, 전도성 나노 물질 및 용매를 포함하고, 상기 용매는 물 80 이상 100 미만 중량% 및 코솔벤트 0 초과 20 이하 중량%로 이루어진 것을 특징으로 한다.In order to achieve the above object, the conductive ink composition according to an embodiment of the present invention comprises a conductive nanomaterial and a solvent, the solvent is made up of more than 80% and less than 100% by weight of water and more than 20% by weight of cosolvent 0 It is characterized by.
상기 전도성 나노 물질은 금속 나노와이어, 금속 나노로드 또는 금속 나노입자의 금속 나노구조체, 전도성 고분자, 전도성 섬유 또는 탄소나노튜브 중 적어도 하나인 것을 특징으로 한다.The conductive nanomaterial is at least one of a metal nanowire, a metal nanorod or a metal nanostructure of a metal nanoparticle, a conductive polymer, a conductive fiber, or a carbon nanotube.
상기 코솔벤트는 메탄올, 에탄올, 이소프로판올, 1-메톡시프로판올, 부탄올, 에틸헥실 알코올, 테르피네올, 에틸렌글리콜, 글리세린, 에틸아세테이트, 부틸아세테이트, 메톡시프로필아세테이트, 카비톨아세테이트, 에틸카비톨아세테이트, 메틸셀로솔브, 부틸셀로솔브, 디에틸에테르, 테트라히드로퓨란, 디옥산, 메틸에틸케톤, 아세톤, 디메틸포름아미드, 1-메틸-2-피롤리돈, 헥산, 헵탄, 도데칸, 파라핀오일, 미네랄스피릿, 벤젠, 톨루엔, 자일렌, 클로로포름, 메틸렌클로라이드, 카본테트라클로라이드, 아세토니트릴 또는 디메틸술폭사이드 중 적어도 하나인 것을 특징으로 한다.The cosolvent is methanol, ethanol, isopropanol, 1-methoxypropanol, butanol, ethylhexyl alcohol, terpineol, ethylene glycol, glycerin, ethyl acetate, butyl acetate, methoxypropyl acetate, carbitol acetate, ethyl carbitol acetate , Methyl cellosolve, butyl cellosolve, diethyl ether, tetrahydrofuran, dioxane, methyl ethyl ketone, acetone, dimethylformamide, 1-methyl-2-pyrrolidone, hexane, heptane, dodecane, paraffin It is characterized in that at least one of oil, mineral spirit, benzene, toluene, xylene, chloroform, methylene chloride, carbon tetrachloride, acetonitrile or dimethyl sulfoxide.
상기 전도성 나노 물질은 상기 용매 100중량부에 대하여, 0.01 내지 10중량부인 것을 특징으로 한다.The conductive nano material is 0.01 to 10 parts by weight based on 100 parts by weight of the solvent.
상기 전도성 잉크 조성물은 바인더, 분산제 및 습윤제를 더 포함하고, 상기 용매 100중량부에 대하여, 상기 바인더는 0.01 내지 1중량부, 상기 분산제는 0.001 내지 0.5중량부, 상기 습윤제는 0.0001 내지 1중량부인 것을 특징으로 한다.The conductive ink composition further comprises a binder, a dispersant and a wetting agent, the binder is 0.01 to 1 part by weight, the dispersant is 0.001 to 0.5 parts by weight, the wetting agent is 0.0001 to 1 part by weight It features.
상기 전도성 잉크 조성물은, 계면활성제, 레벨링제, 칙소제 또는 환원제를 더 포함하는 것을 특징으로 한다.The conductive ink composition is characterized in that it further comprises a surfactant, leveling agent, thixotropic agent or reducing agent.
상기 과제를 달성하기 위하여, 본 발명의 다른 실시예에 따른 전도성 잉크 조성물은 전도성 나노 물질 및 용매를 포함하고, 상기 용매는 물인 것을 특징으로 한다.In order to achieve the above object, the conductive ink composition according to another embodiment of the present invention comprises a conductive nanomaterial and a solvent, the solvent is characterized in that the water.
상기 전도성 나노 물질은 상기 용매 100중량부에 대하여, 0.01 내지 10중량부인 것을 특징으로 한다.The conductive nano material is 0.01 to 10 parts by weight based on 100 parts by weight of the solvent.
상기 과제를 달성하기 위하여, 본 발명의 일 실시예에 의한 투명 전도성 필름은 전도성 나노 물질 및 용매를 포함하고, 상기 용매는 물 80 이상 100 미만 중량% 및 코솔벤트 0 초과 20 이하 중량%로 이루어진 전도성 잉크 조성물을 포함하는 것을 특징으로 한다.In order to achieve the above object, the transparent conductive film according to an embodiment of the present invention comprises a conductive nanomaterial and a solvent, the solvent is conductive consisting of more than 80% less than 100% by weight of water and more than 20% by weight of cosolvent 0 It is characterized by including an ink composition.
상기 전도성 나노 물질은 금속 나노와이어, 금속 나노로드 또는 금속 나노입자의 금속 나노구조체, 전도성 고분자, 전도성 섬유 또는 탄소나노튜브 중 적어도 하나인 것을 특징으로 한다.The conductive nanomaterial is at least one of a metal nanowire, a metal nanorod or a metal nanostructure of a metal nanoparticle, a conductive polymer, a conductive fiber, or a carbon nanotube.
상기 코솔벤트는 메탄올, 에탄올, 이소프로판올, 1-메톡시프로판올, 부탄올, 에틸헥실 알코올, 테르피네올, 에틸렌글리콜, 글리세린, 에틸아세테이트, 부틸아세테이트, 메톡시프로필아세테이트, 카비톨아세테이트, 에틸카비톨아세테이트, 메틸셀로솔브, 부틸셀로솔브, 디에틸에테르, 테트라히드로퓨란, 디옥산, 메틸에틸케톤, 아세톤, 디메틸포름아미드, 1-메틸-2-피롤리돈, 헥산, 헵탄, 도데칸, 파라핀오일, 미네랄스피릿, 벤젠, 톨루엔, 자일렌, 클로로포름, 메틸렌클로라이드, 카본테트라클로라이드, 아세토니트릴 또는 디메틸술폭사이드 중 적어도 하나인 것을 특징으로 한다.The cosolvent is methanol, ethanol, isopropanol, 1-methoxypropanol, butanol, ethylhexyl alcohol, terpineol, ethylene glycol, glycerin, ethyl acetate, butyl acetate, methoxypropyl acetate, carbitol acetate, ethyl carbitol acetate , Methyl cellosolve, butyl cellosolve, diethyl ether, tetrahydrofuran, dioxane, methyl ethyl ketone, acetone, dimethylformamide, 1-methyl-2-pyrrolidone, hexane, heptane, dodecane, paraffin It is characterized in that at least one of oil, mineral spirit, benzene, toluene, xylene, chloroform, methylene chloride, carbon tetrachloride, acetonitrile or dimethyl sulfoxide.
상기 과제를 달성하기 위하여, 본 발명의 일 실시예에 의한 투명 전도성 필름의 제조방법은, 기재 상에 전도성 나노 물질 및 용매를 포함하는 전도성 잉크 조성물을 코팅하는 코팅단계; 및 상기 전도성 잉크 조성물을 건조하는 건조단계;를 포함하고, 상기 용매는 물 80 이상 100 미만 중량% 및 코솔벤트 0 초과 20 이하 중량%로 이루어진 것을 특징으로 한다.In order to achieve the above object, a method of manufacturing a transparent conductive film according to an embodiment of the present invention, the coating step of coating a conductive ink composition comprising a conductive nanomaterial and a solvent on a substrate; And a drying step of drying the conductive ink composition, wherein the solvent is 80 to less than 100 wt% of water and more than 0 to 20 wt% of cosolvent.
상기 전도성 나노 물질은 금속 나노와이어, 금속 나노로드 또는 금속 나노입자의 금속 나노구조체, 전도성 고분자, 전도성 섬유 또는 탄소나노튜브 중 적어도 하나인 것을 특징으로 한다.The conductive nanomaterial is at least one of a metal nanowire, a metal nanorod or a metal nanostructure of a metal nanoparticle, a conductive polymer, a conductive fiber, or a carbon nanotube.
상기 금속 나노와이어는 평균 두께가 10 내지 200nm이고, 평균 길이가 1 내지 100㎛인 것을 특징으로 한다.The metal nanowires have an average thickness of 10 to 200 nm and an average length of 1 to 100 μm.
상기 코솔벤트는 메탄올, 에탄올, 이소프로판올, 1-메톡시프로판올, 부탄올, 에틸헥실 알코올, 테르피네올, 에틸렌글리콜, 글리세린, 에틸아세테이트, 부틸아세테이트, 메톡시프로필아세테이트, 카비톨아세테이트, 에틸카비톨아세테이트, 메틸셀로솔브, 부틸셀로솔브, 디에틸에테르, 테트라히드로퓨란, 디옥산, 메틸에틸케톤, 아세톤, 디메틸포름아미드, 1-메틸-2-피롤리돈, 헥산, 헵탄, 도데칸, 파라핀오일, 미네랄스피릿, 벤젠, 톨루엔, 자일렌, 클로로포름, 메틸렌클로라이드, 카본테트라클로라이드, 아세토니트릴 또는 디메틸술폭사이드 중 적어도 하나인 것을 특징으로 한다.The cosolvent is methanol, ethanol, isopropanol, 1-methoxypropanol, butanol, ethylhexyl alcohol, terpineol, ethylene glycol, glycerin, ethyl acetate, butyl acetate, methoxypropyl acetate, carbitol acetate, ethyl carbitol acetate , Methyl cellosolve, butyl cellosolve, diethyl ether, tetrahydrofuran, dioxane, methyl ethyl ketone, acetone, dimethylformamide, 1-methyl-2-pyrrolidone, hexane, heptane, dodecane, paraffin It is characterized in that at least one of oil, mineral spirit, benzene, toluene, xylene, chloroform, methylene chloride, carbon tetrachloride, acetonitrile or dimethyl sulfoxide.
상기 과제를 달성하기 위하여, 본 발명의 일 실시예에 의한 투명 전도성 필름의 제조방법은 기재 상에 전도성 나노 물질 및 물로 이루어진 용매를 포함하는 전도성 잉크 조성물을 코팅하는 코팅단계; 및 상기 전도성 잉크 조성물을 건조하는 건조단계;를 포함하는 것을 특징으로 한다.In order to achieve the above object, a method of manufacturing a transparent conductive film according to an embodiment of the present invention is a coating step of coating a conductive ink composition comprising a solvent consisting of a conductive nanomaterial and water on the substrate; And a drying step of drying the conductive ink composition.
상기 전도성 나노 물질은 상기 용매 100중량부에 대하여, 0.01 내지 10중량부인 것을 특징으로 한다.The conductive nano material is 0.01 to 10 parts by weight based on 100 parts by weight of the solvent.
상기 전도성 나노 물질은 금속 나노와이어, 금속 나노로드 또는 금속 나노입자의 금속 나노구조체, 전도성 고분자, 전도성 섬유 또는 탄소나노튜브 중 적어도 하나인 것을 특징으로 한다.The conductive nanomaterial is at least one of a metal nanowire, a metal nanorod or a metal nanostructure of a metal nanoparticle, a conductive polymer, a conductive fiber, or a carbon nanotube.
전도성 잉크 조성물을 구성하는 용매의 조성을 물 및 알코올과 같은 코솔벤트로 조절함으로써, 소포제의 첨가없이도 전도성 잉크 조성물을 사용하는 코팅 공정에서 발생할 수 있는 기포를 제어할 수 있다.By adjusting the composition of the solvent constituting the conductive ink composition with cosolvents such as water and alcohols, it is possible to control bubbles that may occur in the coating process using the conductive ink composition without addition of an antifoaming agent.
용매의 구성성분인 물 및 코솔벤트의 함량을 조절하여 전도성 물질이 재응집된 이물질의 발생을 방지하여 전기적 균일도를 향상시킴으로써 광학적 특성 및 전기적 특성이 우수한 디스플레이용 투명 전도성 필름을 구현할 수 있는 전도성 잉크 조성물을 제공할 수 있다.Conductive ink composition capable of realizing transparent conductive film for display with excellent optical and electrical properties by improving the electrical uniformity by controlling the content of water and cosolvent, which are the constituents of the solvent, to prevent the occurrence of foreign substances recondensing the conductive material. Can be provided.
또한, 전도성 물질, 용매 및 첨가제의 종류 및 함량을 조절하여 전도성 물질의 분산성을 향상시켜 물성이 개선된 디스플레이용 투명 전도성 필름을 구현할 수 있는 전도성 잉크 조성물을 제공할 수 있다.In addition, it is possible to provide a conductive ink composition capable of realizing a transparent conductive film for a display having improved physical properties by controlling the type and content of the conductive material, the solvent and the additive to improve the dispersibility of the conductive material.
뿐만 아니라, 유기용매를 용매로 사용하는 종래와 달리, 용매의 구성성분 중 대부분을 물로 대체하여 친환경적일뿐만 아니라, 유기용매의 휘발의 영향이 적어 공간의 개방 또는 밀폐와 상관없이 코팅 공정에서 사용할 수 있어 공간의 제약을 크게 받지 않는다는 장점이 있다.In addition, unlike conventional methods using an organic solvent as a solvent, it is not only environmentally friendly by replacing most of the components of the solvent with water, but also less affected by the volatilization of the organic solvent can be used in the coating process regardless of opening or sealing of the space. There is a merit that it is not greatly restricted by space.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The effects of the present invention are not limited to the above-mentioned effects, and other effects not mentioned will be clearly understood by those skilled in the art from the description of the claims.
도 1은 본 발명에 의한 전도성 잉크 조성물을 이용하여 전도성 필름을 제조하는 방법을 순차적으로 나타낸 순서도이다.1 is a flowchart sequentially illustrating a method of manufacturing a conductive film using the conductive ink composition according to the present invention.
도 2는 실시예 2의 투명 전도성 필름의 전기적 특성의 균일도를 도시한 그래프이다.FIG. 2 is a graph showing uniformity of electrical characteristics of the transparent conductive film of Example 2. FIG.
도 3은 실시예 4의 투명 전도성 필름의 전기적 특성의 균일도를 도시한 그래프이다.3 is a graph showing the uniformity of the electrical properties of the transparent conductive film of Example 4.
도 4는 실시예 1(a), 2(b) 및 4(c)의 투명 전도성 필름의 광학현미경 촬영 사진이다.4 is an optical microscope photograph of the transparent conductive films of Examples 1 (a), 2 (b) and 4 (c).
도 5은 실시예 2에 의해 제조된 전도성 잉크 조성물의 소포 효과를 설명하기 위한 전(a)·후(b) 사진이다.5 is a before (a) and after (b) photograph for explaining the defoaming effect of the conductive ink composition prepared in Example 2. FIG.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but can be implemented in various different forms, and only the embodiments make the disclosure of the present invention complete, and the general knowledge in the art to which the present invention belongs. It is provided to fully inform the person having the scope of the invention, which is defined only by the scope of the claims.
이하, 본 발명에 의한 전도성 잉크 조성물, 이를 포함하는 전도성 필름 및 전도성 필름의 제조방법에 대하여 본 발명의 바람직한 하나의 실시형태를 첨부된 도면을 참조하여 상세히 설명한다. 본 발명은 하기의 실시예에 의하여 보다 더 잘 이해될 수 있으며, 하기의 실시예는 본 발명의 예시목적을 위한 것이고, 첨부된 특허청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다.Hereinafter, with reference to the accompanying drawings, a preferred embodiment of the present invention with respect to a conductive ink composition, a conductive film comprising the same and a method for producing a conductive film according to the present invention will be described in detail. The invention can be better understood by the following examples, which are intended for the purpose of illustration of the invention and are not intended to limit the scope of protection defined by the appended claims.
본 발명의 일 실시예에 의한 전도성 잉크 조성물은 전도성 나노 물질 및 용매를 포함하고, 상기 용매는 물과 코솔벤트(co-solvent)로 이루어진 수계 용매인 것이 바람직하다.The conductive ink composition according to an embodiment of the present invention includes a conductive nanomaterial and a solvent, and the solvent is preferably an aqueous solvent composed of water and co-solvent.
상기 전도성 나노 물질은 금속 나노와이어, 금속 나노로드 또는 금속 나노입자의 금속 나노구조체, 전도성 고분자, 전도성 섬유 또는 탄소나노튜브 중 적어도 하나인 것이 바람직하며, 더 바람직하게는 금속 나노구조체인 것이 효과적이고, 더욱 바람직하게는 금속 나노와이어인 것이 가장 효과적이다.The conductive nanomaterial is preferably at least one of a metal nanowire, a metal nanorod or a metal nanostructure of a metal nanoparticle, a conductive polymer, a conductive fiber, or a carbon nanotube, more preferably, the metal nanostructure is effective. More preferably, the metal nanowire is most effective.
나노와이어의 주재료인 금속은 기본적으로 불투명 소재이나 나노단위로 그 크기가 작아지면 투명성을 나타내며, 전도성의 부분에 있어서 금속의 비저항의 증가에 있어서 일정 크기 이하로 작아지면 비저항의 급격한 증가가 일어날 수 있기 때문에, 상기 금속 나노와이어는 평균 두께가 10 내지 200nm이고, 평균 길이가 1 내지 100㎛인 것이 바람직할 수 있다.Metal, which is the main material of nanowires, is basically an opaque material or a nano unit, and shows a transparency when its size decreases, and when it decreases below a certain size in the increase of the specific resistance of the metal in the conductive portion, a rapid increase in the specific resistance may occur. Therefore, the metal nanowires may have an average thickness of 10 to 200 nm and an average length of 1 to 100 μm.
금속 나노구조체의 금속은 Ag, Au, Cu, Ni, Co, Pd, Ti, V, Mn, Fe, Cr, Zr, Nb, Mo, W, Ru, Cd, Ta, Re, Os, Ir, Al, Ga, Ge, In, Sn, Sb, Pb, Bi 등 해당 기술분야에서 알려진 다양한 종류의 금속을 사용할 수 있으며, 이들 중 2종 이상을 합금하여 사용할 수도 있다. Metals of the metal nanostructures are Ag, Au, Cu, Ni, Co, Pd, Ti, V, Mn, Fe, Cr, Zr, Nb, Mo, W, Ru, Cd, Ta, Re, Os, Ir, Al, Various kinds of metals known in the art, such as Ga, Ge, In, Sn, Sb, Pb, and Bi, may be used, and two or more of these may be alloyed.
일반적인 금속 나노입자 제조방법에는 물리적으로 금속 덩어리를 미세하게 분쇄하여 제조하는 물리적인 방법과 화학적인 반응을 이용하여 제조하는 방법이 있다. 화학적인 방법을 좀 더 구체적으로 설명하면 고압의 가스를 분사하여 분말로 제조하는 에어로졸법, 금속 화합물과 기체 환원제를 사용하여 열분해로 분말을 제조하는 열분해법, 증발원료를 가열 증발시켜 분말을 제조하는 증발응축법, 졸겔법, 수열합성법, 초음파 합성법, 마이크로 에멀젼법, 액상 환원법 등이 있다. Typical metal nanoparticle manufacturing methods include a physical method of physically pulverizing a metal mass and a method of manufacturing using a chemical reaction. In more detail, the chemical method is described by aerosol method for the injection of high-pressure gas to powder, pyrolysis method for pyrolysis using metal compound and gas reducing agent, heat evaporation of evaporation material to produce powder Evaporative condensation, sol-gel, hydrothermal synthesis, ultrasonic synthesis, microemulsion, liquid phase reduction, and the like.
나노입자의 형성제어가 용이하고 가장 경제성이 좋은 것으로 평가되고 있는 분산제와 환원제를 이용하여 제조하는 액상 환원법이 가장 많이 사용하고 있으나 본 발명에서는 나노입자를 형성할 수만 있다면 모든 방법을 사용 할 수 있다. The liquid phase reduction method using a dispersing agent and a reducing agent, which is considered to be easy to control the formation of nanoparticles and is considered to be the most economical, is most used. However, in the present invention, any method can be used as long as it can form nanoparticles.
액상 환원법의 나노입자의 제조방법에 대한 구체적인 설명은 본 출원인이 출원한 대한민국 특허출원 제2006-0074246호에 기재되어 있고 상기 특허 출원에 기재된 금속 나노 입자는 입자의 크기가 균일하고 응집성이 최소화되는 장점이 있으며, 상기 금속 나노입자를 함유하는 전도성 잉크는 150℃ 이하의 낮은 온도에서, 짧은 시간에 소성하여도 높은 전도도를 갖는 균일하고 치밀한 박막 또는 미세 패턴 형성이 용이한 장점이 있다.Detailed description of the method for producing the nanoparticles by the liquid-phase reduction method is described in Korean Patent Application No. 2006-0074246 filed by the present applicant and the metal nanoparticles described in the patent application has the advantage that the particle size is uniform and the cohesion is minimized In this case, the conductive ink containing the metal nanoparticles has an advantage of easily forming a uniform and dense thin film or fine pattern having high conductivity even when fired at a low temperature of 150 ° C. or less for a short time.
특히, 본 발명의 바람직한 실시예로는 전도성 나노 물질로, 비교적 전도도가 우수하고 가격이 저렴하며 대량 생산이 가능한 은 나노 와이어를 사용하는 것이 효과적이다.In particular, a preferred embodiment of the present invention is a conductive nano material, it is effective to use a silver nanowire that is relatively excellent in conductivity, inexpensive and capable of mass production.
은 나노와이어의 경우 주로 질산은과 폴리비닐피롤리돈을 에틸렌글리콜과 같은 유기용매에 용해하여 가열교반하여 환원하는 폴리올 환원법을 이용하여 은 나노와이어를 제조할 수 있으나, 반드시 이러한 제조방법으로 한정되는 것은 아니다.In the case of silver nanowires, silver nanowires may be manufactured using a polyol reduction method in which silver nitrate and polyvinylpyrrolidone are mainly dissolved in an organic solvent such as ethylene glycol and heated and stirred to reduce them. no.
상기 용매는 물 80 이상 100 미만 중량% 및 코솔벤트 0 초과 20 이하 중량%로 이루어질 수 있고, 더 바람직하게는 코솔벤트가 용매의 1 내지 10중량%를 차지하는 것이 효과적이다.The solvent may be composed of water 80 or more and less than 100% by weight and cosolvent more than 0 and 20 or less by weight, more preferably it is effective that the cosolvent comprises 1 to 10% by weight of the solvent.
상기 전도성 잉크 조성물의 용매는 종래에 비해 물의 함량이 높으며, 적은 양의 코솔벤트를 첨가함으로써 전도성 필름을 제조하기 위한 코팅 공정시에 기포의 발생을 억제하는데 우수한 효과가 있다.The solvent of the conductive ink composition has a higher water content than the conventional one, and has an excellent effect of suppressing the generation of bubbles in the coating process for preparing the conductive film by adding a small amount of cosolvent.
유기용매인 코솔벤트의 함량이 20중량%를 넘게되면, 유기용매가 코팅 공정 중에 휘발되어 전도성 잉크 조성물의 농도 및 점도가 달라져 잉크 조성물의 조성이 변할뿐만 아니라, 전도성 나노 물질, 특히 금속 나노구조체의 금속이 재응집하여 국소적으로 저항이 달라져 전기적 균일도가 상이해지고, 이에 따라 전도성 필름의 물성이 현저히 떨어지게 된다.When the content of the cosolvent, the organic solvent, exceeds 20% by weight, the organic solvent is volatilized during the coating process to change the concentration and viscosity of the conductive ink composition, thereby changing the composition of the ink composition. As the metal reaggregates and the resistance locally changes, the electrical uniformity is different, thereby significantly reducing the physical properties of the conductive film.
따라서, 상기 범위의 조성을 가지는 용매를 포함한 전도성 잉크 조성물은 기포 발생 제어를 통해 전도성 나노 물질의 재응집을 방지하여 전도성 나노 물질이 전도성 필름 전체에 균일하게 분포하여 전기적 특성 및 광학적 특성을 개선시킬 수 있다.Accordingly, the conductive ink composition including a solvent having a composition in the above range prevents reaggregation of the conductive nanomaterial through bubble generation control, thereby uniformly distributing the conductive nanomaterial throughout the conductive film, thereby improving electrical and optical properties. .
또한, 코솔벤트의 함량 감소로 인하여 유해한 유기용매의 사용이 줄어들어 친환경적이다.In addition, the use of harmful organic solvents are reduced due to the reduced content of cosolvent is environmentally friendly.
상기 코솔벤트는 메탄올, 에탄올, 이소프로판올, 1-메톡시프로판올, 부탄올, 에틸헥실 알코올, 테르피네올, 에틸렌글리콜, 글리세린, 에틸아세테이트, 부틸아세테이트, 메톡시프로필아세테이트, 카비톨아세테이트, 에틸카비톨아세테이트, 메틸셀로솔브, 부틸셀로솔브, 디에틸에테르, 테트라히드로퓨란, 디옥산, 메틸에틸케톤, 아세톤, 디메틸포름아미드, 1-메틸-2-피롤리돈, 헥산, 헵탄, 도데칸, 파라핀오일, 미네랄스피릿, 벤젠, 톨루엔, 자일렌, 클로로포름, 메틸렌클로라이드, 카본테트라클로라이드, 아세토니트릴 또는 디메틸술폭사이드를 사용하는 것이 바람직하며, 더 바람직하게는 메탄올, 에탄올 및 n-프로필알코올이 소포 작용에 더욱 효과적이다.The cosolvent is methanol, ethanol, isopropanol, 1-methoxypropanol, butanol, ethylhexyl alcohol, terpineol, ethylene glycol, glycerin, ethyl acetate, butyl acetate, methoxypropyl acetate, carbitol acetate, ethyl carbitol acetate , Methyl cellosolve, butyl cellosolve, diethyl ether, tetrahydrofuran, dioxane, methyl ethyl ketone, acetone, dimethylformamide, 1-methyl-2-pyrrolidone, hexane, heptane, dodecane, paraffin It is preferable to use oil, mineral spirit, benzene, toluene, xylene, chloroform, methylene chloride, carbon tetrachloride, acetonitrile or dimethyl sulfoxide, more preferably methanol, ethanol and n-propyl alcohol are used for defoaming action. More effective.
전도성 나노 물질에 따라 상기 나열한 코솔벤트 중 2종 이상을 혼합하여 사용할 수도 있다.Depending on the conductive nanomaterial, two or more of the above-described cosolvents may be mixed and used.
이러한 용매의 조성으로 별도의 소포제(antifoaming agent) 첨가없이도 기포를 제거할 수 있다.The composition of the solvent can remove bubbles without adding an antifoaming agent.
상기 전도성 잉크 조성물은 바인더(binder), 분산제(dispersing agent) 및 습윤제(wetting agent)를 더 포함할 수 있다.The conductive ink composition may further include a binder, a dispersing agent, and a wetting agent.
상기 바인더는 다양한 기재와의 부착력이 우수한 것이 바람직하다. It is preferable that the binder has excellent adhesion to various substrates.
바인더로는 폴리아크릴산 또는 폴리아크릴산 에스테르와 같은 아크릴계 수지, 에틸 셀룰로스와 같은 셀룰로스계 수지, 지방족 또는 공중합 폴리에스테르계 수지, 폴리비닐부티랄, 폴리비닐아세테이트와 같은 비닐계 수지, 폴리우레탄 수지, 폴리에테르 및 우레아 수지, 알키드 수지, 실리콘 수지, 불소 수지, 폴리에틸렌과 같은 올레핀계 수지, 석유 및 로진계 수지 등과 같은 열가소성 수지나 에폭시계 수지, 불포화 폴리에스테르계 수지, 페놀계 수지, 멜라민계 수지 등과 같은 열경화성 수지, 자외선 또는 전자선 경화형의 다양한 구조의 아크릴계 수지, 그리고 에틸렌-프로필렌계 고무, 스티렌-부타디엔계 고무 등도 함께 사용 가능하다. Examples of the binder include acrylic resins such as polyacrylic acid or polyacrylic acid esters, cellulose resins such as ethyl cellulose, aliphatic or copolyester resins, vinyl resins such as polyvinyl butyral and polyvinylacetate, polyurethane resins, and polyethers. And thermosetting resins such as urea resins, alkyd resins, silicone resins, fluorine resins, olefin resins such as polyethylene, thermoplastic resins such as petroleum and rosin resins, epoxy resins, unsaturated polyester resins, phenol resins, melamine resins, and the like. Acrylic resins of various structures such as resins, ultraviolet rays or electron beam curing types, ethylene-propylene rubbers, styrene-butadiene rubbers, and the like can also be used.
상기 분산제로는 폴리카르복실산이나 그 유도체와 같은 유기 화합물이 주로 사용될 수 있다. 폴리카르복실산이나 그 유도체로는 아크릴산이나 메타크릴산의 알카리금속염과 같은 아크릴산염이나 메타크릴산염의 호모폴리머 및 코폴리머, 메틸아크릴레이트, 메틸메타크릴레이트, 에틸아크릴레이트, 에틸메타크릴레이트, n-부틸아크릴레이트, n-부틸메타크릴레이트, 이소부틸아크릴레이트 또는 이소부틸메타크릴에이트와 같은 아크릴산에스테르 또는 메타크릴산에스테르의 호모 폴리머 및 코폴리머가 있으나, 이에 한정되는 것은 아니다. As the dispersant, an organic compound such as polycarboxylic acid or a derivative thereof may be mainly used. Examples of polycarboxylic acids and derivatives thereof include homopolymers and copolymers of acrylates and methacrylates such as alkali metal salts of acrylic acid and methacrylic acid, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, homopolymers and copolymers of acrylic or methacrylic acid esters such as n-butyl acrylate, n-butyl methacrylate, isobutyl acrylate or isobutyl methacrylate, but are not limited thereto.
상기 습윤제는 폴리에틸렌글리콜, 에어프로덕트사(Air Product) 제품의 써피놀 시리즈, 데구사(Deguessa)의 테고 웨트 시리즈와 같은 화합물을 예로 들 수 있다.Examples of the humectant include compounds such as polyethylene glycol, Sufinol series of Air Products, and Tego wet series of Deguessa.
상기 바인더는 상기 용매 100중량부에 대하여, 0.01 내지 1중량부, 상기 분산제는 0.001 내지 0.5중량부, 상기 습윤제는 0.0001 내지 1중량부인 것이 바람직하다.The binder is preferably 0.01 to 1 parts by weight, the dispersant is 0.001 to 0.5 parts by weight, and the wetting agent is 0.0001 to 1 part by weight based on 100 parts by weight of the solvent.
용매를 물과 코솔벤트를 사용하여 분산도를 향상시킴으로써, 첨가제의 첨가량을 상기 범위의 함량으로 줄이더라도 우수한 물성의 투명 전도성 필름을 구현할 수 있다.By improving the dispersibility of the solvent using water and cosolvent, it is possible to implement a transparent conductive film having excellent physical properties even if the amount of the additive is reduced to the content in the above range.
또한, 상기 전도성 잉크 조성물은 계면활성제(surfactant), 레벨링제(levelling agent), 칙소제(thixotropic agent) 또는 환원제(reducing agent)를 더 포함할 수 있다.In addition, the conductive ink composition may further include a surfactant, a leveling agent, a thixotropic agent, or a reducing agent.
상기 계면활성제로는, 소듐 라우릴 설페이트(sodium lauryl sulfate)와 같은 음이온계면활성제, 노닐페녹시폴리에톡시에탄올(nonyl phenoxy- polyethoxyethanol), 듀폰사(Dupont)제품의 에프에스엔(FSN)과 같은 비이온성 계면활성제, 그리고 라우릴벤질암모늄 클로라이드 등과 같은 양이온성 계면활성제나 라우릴 베타인(betaine), 코코 베타인과 같은 양쪽성 계면활성제 등을 예로 들 수 있다.Examples of the surfactant include anionic surfactants such as sodium lauryl sulfate, nonyl phenoxypolyethoxyethanol, and BB such as Dupont's FFS. Anionic surfactants and cationic surfactants such as laurylbenzylammonium chloride and amphoteric surfactants such as lauryl betaine and coco betaine may be mentioned.
상기 레벨링제 또는 칙소제로는 비와이케이(BYK)사의 비와이케이(BYK) 시리즈, 데구사(Degussa)의 글라이드 시리즈, 에프카(EFKA)사의 에프카(EFKA) 3000 시리즈나 코그니스(Cognis)사의 디에스엑스(DSX) 시리즈 등을 예로 들 수 있다.As the leveling agent or thixotropic agent, the BYK series of BYK company, the glide series of Degussa, the EFKA 3000 series of EFKA company or the DS of Cognis company For example, the DSX series.
상기 환원제는 소성을 쉽게 하기 위하여 첨가될 수도 있는데, 예로 히드라진, 아세틱히드라자이드, 소듐 또는 포타슘 보로하이드라이드, 트리소디움 시트레이트, 그리고 메틸디에탄올아민, 디메틸아민보란(dimethylamineborane)과 같은 아민화합물, 제1염화철, 유산철과 같은 금속 염, 수소, 요오드화 수소, 일산화탄소, 포름알데히드, 아세트알데히드와 같은 알데히드 화합물, 글루코스, 아스코빅 산, 살리실산, 탄닌산(tannic acid), 피로가롤(pyrogallol), 히드로퀴논과 같은 유기화합물 등을 들 수 있다.The reducing agent may be added to facilitate firing, for example, hydrazine, acetichydrazide, sodium or potassium borohydride, trisodium citrate, and amine compounds such as methyldiethanolamine, dimethylamineborane, Ferrous chloride, metal salts such as ferric lactate, aldehyde compounds such as hydrogen, hydrogen iodide, carbon monoxide, formaldehyde, acetaldehyde, glucose, ascorbic acid, salicylic acid, tannic acid, pyrogallol, hydroquinone Organic compounds, such as these, etc. are mentioned.
본 발명의 다른 실시예에 의한 전도성 잉크 조성물은 전도성 나노 물질 및 용매를 포함하고, 상기 용매는 물일 수 있으며, 이는 전도성 잉크 조성물의 용매를 완전히 물로 대체한 것이다.The conductive ink composition according to another embodiment of the present invention includes a conductive nanomaterial and a solvent, and the solvent may be water, which completely replaces the solvent of the conductive ink composition with water.
전도성 잉크 조성물의 용매를 완전히 물로 대체함으로써, 전도성 나노 물질의 재응집을 제어하여 분산된 전도성 나노 물질의 분산도를 그대로 유지하여 코팅 공정을 거치더라도 국소적으로 전기적 저항이 달라지는 문제를 해결하는데 더욱 크게 기여할 수 있다.By completely replacing the solvent of the conductive ink composition with water, it is possible to control the reaggregation of the conductive nanomaterials to maintain the dispersion of the dispersed conductive nanomaterials as it is, and to solve the problem of locally changing electric resistance even after the coating process. Can contribute.
상기 전도성 나노 물질은 물로 이루어진 용매 100중량부에 대하여 0.01 내지 10중량부인 것이 바람직하고, 더 바람직하게는 1 내지 8중량부인 것이 효과적이다. 전도성 나노 물질이 0.01중량부 미만인 경우에는 디스플레이를 구현하기 위한 전기전도도를 확보하기가 어려우며, 10중량부를 초과하는 경우에는 전도성 필름의 투과도에 영향을 미칠 수 있다.The conductive nanomaterial is preferably 0.01 to 10 parts by weight, more preferably 1 to 8 parts by weight based on 100 parts by weight of a solvent made of water. If the conductive nanomaterial is less than 0.01 parts by weight, it is difficult to secure the electrical conductivity for implementing the display. If the conductive nano material is more than 10 parts by weight, it may affect the permeability of the conductive film.
본 발명의 일 실시예에 의한 투명 전도성 필름은 상기의 전도성 잉크 조성물을 포함할 수 있다.The transparent conductive film according to one embodiment of the present invention may include the conductive ink composition.
상기 전도성 나노 물질은 금속 나노와이어, 금속 나노로드 또는 금속 나노입자의 금속 나노구조체, 전도성 고분자, 전도성 섬유 또는 탄소나노튜브 중 적어도 하나인 것이 바람직하며, 반드시 이에 한정되는 것은 아니다.The conductive nanomaterial is preferably at least one of a metal nanowire, a metal nanorod or a metal nanostructure of a metal nanoparticle, a conductive polymer, a conductive fiber, or a carbon nanotube, but is not necessarily limited thereto.
전도성 나노 물질 및 용매를 포함하고, 상기 용매는 물 80 이상 100 미만 중량% 및 코솔벤트 0 초과 20중량%로 이루어지는 것이 바람직하며, 물만으로 이루어질 수도 있다.It comprises a conductive nanomaterial and a solvent, the solvent is preferably made of water 80 to less than 100% by weight and cosolvent 0 to 20% by weight, it may be made of water only.
용매가 포함되는 경우, 상기 코솔벤트는 메탄올, 에탄올, 이소프로판올, 1-메톡시프로판올, 부탄올, 에틸헥실 알코올, 테르피네올, 에틸렌글리콜, 글리세린, 에틸아세테이트, 부틸아세테이트, 메톡시프로필아세테이트, 카비톨아세테이트, 에틸카비톨아세테이트, 메틸셀로솔브, 부틸셀로솔브, 디에틸에테르, 테트라히드로퓨란, 디옥산, 메틸에틸케톤, 아세톤, 디메틸포름아미드, 1-메틸-2-피롤리돈, 헥산, 헵탄, 도데칸, 파라핀오일, 미네랄스피릿, 벤젠, 톨루엔, 자일렌, 클로로포름, 메틸렌클로라이드, 카본테트라클로라이드, 아세토니트릴 또는 디메틸술폭사이드 중 적어도 하나인 것이 바람직하다.When the solvent is included, the cosolvent is methanol, ethanol, isopropanol, 1-methoxypropanol, butanol, ethylhexyl alcohol, terpineol, ethylene glycol, glycerin, ethyl acetate, butyl acetate, methoxypropyl acetate, carbitol Acetate, ethyl carbitol acetate, methyl cellosolve, butyl cellosolve, diethyl ether, tetrahydrofuran, dioxane, methyl ethyl ketone, acetone, dimethylformamide, 1-methyl-2-pyrrolidone, hexane, It is preferably at least one of heptane, dodecane, paraffin oil, mineral spirit, benzene, toluene, xylene, chloroform, methylene chloride, carbon tetrachloride, acetonitrile or dimethyl sulfoxide.
본 발명의 일 실시예에 의한 투명 전도성 필름의 제조방법은, 코팅단계(S10) 및 건조단계(S20)를 포함할 수 있다.The method of manufacturing a transparent conductive film according to an embodiment of the present invention may include a coating step (S10) and a drying step (S20).
코팅단계(S10)는 기재 상에 전도성 잉크 조성물을 코팅하는 단계로, 이는 디스플레이의 감지부를 형성하는 공정이다.The coating step S10 is a step of coating a conductive ink composition on a substrate, which is a process of forming a sensing unit of the display.
상기 기재의 종류는 특별히 한정되는 것은 아니다. 상기 기재는 투명한 재질, 예컨대 플라스틱 필름이나 글라스로 형성될 수 있다. 상기 플라스틱 필름으로는 폴리이미드(PI), 폴리에틸렌텔레프탈레이트(PET), 폴리에텔렌나프탈레이트(PEN), 폴리에테르술폰(PES), 나일론(Nylon), 폴리테트라플로우로에틸렌(PTFE), 폴리에테르에테르케톤(PEEK), 폴리카보네이트(PC) 또는 폴리아릴레이트(PAR)가 사용될 수 있다. The kind of said base material is not specifically limited. The substrate may be formed of a transparent material such as a plastic film or glass. The plastic film may be polyimide (PI), polyethylene terephthalate (PET), polyethernaphthalate (PEN), polyethersulfone (PES), nylon (Nylon), polytetrafluoroethylene (PTFE), polyether ether Ketones (PEEK), polycarbonates (PC) or polyarylates (PAR) can be used.
상기 기재는 불투명한 재질로 구비될 수도 있다. 예컨대 표면이 절연 처리된 금속제 플레이트가 사용되거나, 불투명한 플라스틱 필름, 불투명한 글라스 또는 불투명한 유리 섬유재가 적용될 수 있다. 이와 같이 플라스틱 필름이나 유리 기판 등을 사용 할 수 있으며, 이에 한정되지는 않는다.The substrate may be provided with an opaque material. For example, a metal plate having an insulated surface may be used, or an opaque plastic film, an opaque glass, or an opaque glass fiber material may be applied. Thus, a plastic film, a glass substrate, etc. can be used, It is not limited to this.
전도성 잉크 조성물은 전도성 나노 물질 및 용매를 포함하고, 상기 용매는 물 80 이상 100 미만 중량% 및 코솔벤트 0 초과 20 이하 중량%로 이루어질 수 있다.The conductive ink composition includes a conductive nanomaterial and a solvent, and the solvent may be composed of water of 80% or more and less than 100% by weight and cosolvent 0% and 20% or less by weight.
상기 전도성 나노 물질은 금속 나노와이어, 금속 나노로드 또는 금속 나노입자의 금속 나노구조체, 전도성 고분자, 전도성 섬유 또는 탄소나노튜브 중 적어도 하나일 수 있다.The conductive nanomaterial may be at least one of a metal nanowire, a metal nanorod or a metal nanostructure of a metal nanoparticle, a conductive polymer, a conductive fiber, or a carbon nanotube.
전도성 나노 물질이 금속 나노구조체 중 금속 나노와이어인 경우, 금속 나노와이어의 평균 두께가 10 내지 200nm이고, 평균 길이가 1 내지 100㎛인 것이 바람직하다.When the conductive nanomaterial is a metal nanowire in the metal nanostructure, the average thickness of the metal nanowire is preferably 10 to 200 nm, and the average length is 1 to 100 μm.
상기 코솔벤트는 메탄올, 에탄올, 이소프로판올, 1-메톡시프로판올, 부탄올, 에틸헥실 알코올, 테르피네올, 에틸렌글리콜, 글리세린, 에틸아세테이트, 부틸아세테이트, 메톡시프로필아세테이트, 카비톨아세테이트, 에틸카비톨아세테이트, 메틸셀로솔브, 부틸셀로솔브, 디에틸에테르, 테트라히드로퓨란, 디옥산, 메틸에틸케톤, 아세톤, 디메틸포름아미드, 1-메틸-2-피롤리돈, 헥산, 헵탄, 도데칸, 파라핀오일, 미네랄스피릿, 벤젠, 톨루엔, 자일렌, 클로로포름, 메틸렌클로라이드, 카본테트라클로라이드, 아세토니트릴 또는 디메틸술폭사이드 중 적어도 하나일 수 있다.The cosolvent is methanol, ethanol, isopropanol, 1-methoxypropanol, butanol, ethylhexyl alcohol, terpineol, ethylene glycol, glycerin, ethyl acetate, butyl acetate, methoxypropyl acetate, carbitol acetate, ethyl carbitol acetate , Methyl cellosolve, butyl cellosolve, diethyl ether, tetrahydrofuran, dioxane, methyl ethyl ketone, acetone, dimethylformamide, 1-methyl-2-pyrrolidone, hexane, heptane, dodecane, paraffin Oil, mineral spirit, benzene, toluene, xylene, chloroform, methylene chloride, carbon tetrachloride, acetonitrile or dimethyl sulfoxide.
전도성 잉크 조성물은 잉크젯(inkjet) 방법, 평판 스크린법, 스핀(spin) 코팅법, 바(bar) 코터법, 롤(roll) 코팅법, 플로우(flow) 코팅법, 닥터 블레이드(doctor blade), 디스펜싱(dispensing), 그라비아(Gravure) 프린팅법 또는 플렉소(flexography) 프린팅법의 공지의 코팅법을 제한없이 사용하여 상기 기재 상에 도포될 수 있다.Conductive ink compositions include inkjet method, flat screen method, spin coating method, bar coater method, roll coating method, flow coating method, doctor blade, disc It can be applied on the substrate using any known coating method of dispensing, gravure printing or flexography printing without limitation.
이 때 코팅 횟수는 1회 또는 그 이상 코팅 횟수를 반복하여 사용할 수 있다. 상기 각각의 코팅 방법에 따라 코팅 특성이 차이를 보일 수 있어, 전도성 잉크 조성물의 레올로지를 코팅 방법에 최적화하는 것이 필요하다.At this time, the number of coating can be used repeatedly one or more times. Since the coating properties may be different according to the respective coating methods, it is necessary to optimize the rheology of the conductive ink composition to the coating method.
코팅 두께는 10㎛ 이하, 보다 좋게는 0.1㎛ 이상 5㎛이하가 바람직하고, 구현하고자하는 선폭, 요구 저항 및 후처리 조건에 따라 두께 조절이 필요하다.The coating thickness is preferably 10 μm or less, more preferably 0.1 μm or more and 5 μm or less, and thickness adjustment is necessary according to the line width, required resistance, and post-treatment conditions to be implemented.
본 발명의 다른 실시예에 의한 투명 전도성 필름의 제조방법은, 용매를 물의 함량을 높여 물로 이루어진 용매 및 전도성 나노 물질을 포함하는 전도성 잉크 조성물을 사용하여 전도층을 형성할 수 있다.In the method of manufacturing a transparent conductive film according to another embodiment of the present invention, a conductive layer may be formed using a conductive ink composition including a solvent made of water and a conductive nanomaterial by increasing the content of water in a solvent.
이 때, 전도성 나노 물질은 상기 용매 100중량부에 대하여, 0.01 내지 10중량부인 것이 바람직하고, 상기 전도성 나노 물질은 금속 나노와이어, 금속 나노로드 또는 금속 나노입자의 금속 나노구조체, 전도성 고분자, 전도성 섬유 또는 탄소나노튜브 중 적어도 하나일 수 있다.In this case, the conductive nano material is preferably 0.01 to 10 parts by weight based on 100 parts by weight of the solvent, and the conductive nano material is a metal nanostructure of a metal nanowire, a metal nanorod or a metal nanoparticle, a conductive polymer, or a conductive fiber. Or at least one of carbon nanotubes.
이하에서는, 실시예 및 비교예를 통해 본 발명 및 본 발명의 우수성에 대해 구체적으로 설명한다. 본 발명의 범위는 실시예로 한정되지 않는다.Hereinafter, the superiority of the present invention and the present invention through the examples and comparative examples will be described in detail. The scope of the invention is not limited to the examples.
실시예 1Example 1
은 나노와이어 고형분 0.15wt%를 증류수(18MΩ) 99.8389wt%에 첨가한 후, 분산제 0.001wt%, 습윤제 0.0001wt%, 바인더 0.01wt%를 첨가하고 30분간 교반하여 전도성 잉크 조성물을 제조하였다. 상기 제조한 전도성 잉크 조성물을 비전도성 기재 필름 표면에 도포하고 120℃의 온도에서 3분간 열처리하여 건조시켜 투명 전도성 필름을 제조하였다.After adding 0.15 wt% of silver nanowire solids to 99.8389 wt% of distilled water (18 MΩ), 0.001 wt% of a dispersant, 0.0001 wt% of a wetting agent, and 0.01 wt% of a binder were added thereto, followed by stirring for 30 minutes to prepare a conductive ink composition. The conductive ink composition prepared above was applied to the surface of the non-conductive base film, and dried by heat treatment at a temperature of 120 ° C. for 3 minutes to prepare a transparent conductive film.
실시예 2Example 2
은 나노와이어 고형분 0.15wt%를 메탄올 9.84wt%, 증류수(18MΩ) 89.9989wt%가 혼합된 용액에 첨가한 후, 분산제 0.001wt%, 습윤제 0.0001wt%, 바인더 0.01wt%를 첨가하고 30분간 교반하여 전도성 잉크 조성물을 제조하였다. 상기 제조한 전도성 잉크 조성물을 비전도성 기재 필름 표면에 도포하고 120℃의 온도에서 3분간 열처리하여 건조시켜 투명 전도성 필름을 제조하였다.0.15 wt% of silver nanowire solids was added to a solution containing 9.84 wt% of methanol and 89.9989 wt% of distilled water (18 MΩ), followed by addition of 0.001 wt% of a dispersant, 0.0001 wt% of a wetting agent, and 0.01 wt% of a binder, followed by stirring for 30 minutes. A conductive ink composition was prepared. The conductive ink composition prepared above was applied to the surface of the non-conductive base film, and dried by heat treatment at a temperature of 120 ° C. for 3 minutes to prepare a transparent conductive film.
실시예 3Example 3
은 나노와이어 고형분 0.15wt%를 메탄올 19.9678wt%, 증류수(18MΩ) 79.8711wt%가 혼합된 용액에 첨가한 후, 분산제 0.001wt%, 습윤제 0.0001wt%, 바인더 0.01wt%를 첨가하고 30분간 교반하여 전도성 잉크 조성물을 제조하였다. 상기 제조한 전도성 잉크 조성물을 비전도성 기재 필름 표면에 도포하고 120℃의 온도에서 3분간 열처리하여 건조시켜 투명 전도성 필름을 제조하였다.0.15 wt% of silver nanowire solids were added to a solution containing 19.9678 wt% of methanol and 79.8711 wt% of distilled water (18 MΩ), and then 0.001 wt% of a dispersant, 0.0001 wt% of a wetting agent, and 0.01 wt% of a binder were added thereto, followed by stirring for 30 minutes. A conductive ink composition was prepared. The conductive ink composition prepared above was applied to the surface of the non-conductive base film, and dried by heat treatment at a temperature of 120 ° C. for 3 minutes to prepare a transparent conductive film.
실시예 4Example 4
은 나노와이어 고형분 0.15wt%를 노말프로필알코올 9.84wt%, 증류수(18MΩ) 89.9989wt%가 혼합된 용액에 첨가한 후, 분산제 0.001wt%, 습윤제 0.0001wt%, 바인더 0.01wt%를 첨가하고 30분간 교반하여 전도성 잉크 조성물을 제조하였다. 상기 제조한 전도성 잉크 조성물을 비전도성 기재 필름 표면에 도포하고 120℃의 온도에서 3분간 열처리하여 건조시켜 투명 전도성 필름을 제조하였다.0.15 wt% of silver nanowire solids was added to a solution containing 9.84 wt% of normal propyl alcohol and 89.9989 wt% of distilled water (18 MΩ), followed by adding 0.001 wt% of a dispersant, 0.0001 wt% of a wetting agent, and 0.01 wt% of a binder. Agitated to prepare a conductive ink composition. The conductive ink composition prepared above was applied to the surface of the non-conductive base film, and dried by heat treatment at a temperature of 120 ° C. for 3 minutes to prepare a transparent conductive film.
실시예 5Example 5
은 나노와이어 고형분 0.15wt%를 노말프로필알코올 19.9678wt%, 증류수(18MΩ) 79.8711wt%가 혼합된 용액에 첨가한 후, 분산제 0.001wt%, 습윤제 0.0001wt%, 바인더 0.01wt%를 첨가하고 30분간 교반하여 전도성 잉크 조성물을 제조하였다. 상기 제조한 전도성 잉크 조성물을 비전도성 기재 필름 표면에 도포하고 120℃의 온도에서 3분간 열처리하여 건조시켜 투명 전도성 필름을 제조하였다.0.15 wt% of silver nanowire solids was added to a solution containing 19.9678 wt% of normal propyl alcohol and 79.8711 wt% of distilled water (18 MΩ), followed by adding 0.001 wt% of a dispersant, 0.0001 wt% of a wetting agent, and 0.01 wt% of a binder. Agitated to prepare a conductive ink composition. The conductive ink composition prepared above was applied to the surface of the non-conductive base film, and dried by heat treatment at a temperature of 120 ° C. for 3 minutes to prepare a transparent conductive film.
실시예 6Example 6
은 나노와이어 고형분 0.15wt%를 에탄올 9.84wt%, 증류수(18MΩ) 89.9989wt%가 혼합된 용액에 첨가한 후, 분산제 0.001wt%, 습윤제 0.0001wt%, 바인더 0.01wt%를 첨가하고 30분간 교반하여 전도성 잉크 조성물을 제조하였다. 상기 제조한 전도성 잉크 조성물을 비전도성 기재 필름 표면에 도포하고 120℃의 온도에서 3분간 열처리하여 건조시켜 투명 전도성 필름을 제조하였다.0.15 wt% of silver nanowire solids was added to a solution containing 9.84 wt% of ethanol and 89.9989 wt% of distilled water (18 MΩ), followed by addition of 0.001 wt% of a dispersant, 0.0001 wt% of a wetting agent, and 0.01 wt% of a binder, followed by stirring for 30 minutes. A conductive ink composition was prepared. The conductive ink composition prepared above was applied to the surface of the non-conductive base film, and dried by heat treatment at a temperature of 120 ° C. for 3 minutes to prepare a transparent conductive film.
실시예 7Example 7
은 나노와이어 고형분 0.15wt%를 에탄올 19.9678wt%, 증류수(18MΩ) 79.8711wt%가 혼합된 용액에 첨가한 후, 분산제 0.001wt%, 습윤제 0.0001wt%, 바인더 0.01wt%를 첨가하고 30분간 교반하여 전도성 잉크 조성물을 제조하였다. 상기 제조한 전도성 잉크 조성물을 비전도성 기재 필름 표면에 도포하고 120℃의 온도에서 3분간 열처리하여 건조시켜 투명 전도성 필름을 제조하였다.0.15 wt% of silver nanowire solids was added to a solution containing 19.9678 wt% of ethanol and 79.8711 wt% of distilled water (18 MΩ), followed by addition of 0.001 wt% of a dispersant, 0.0001 wt% of a wetting agent, and 0.01 wt% of a binder, followed by stirring for 30 minutes. A conductive ink composition was prepared. The conductive ink composition prepared above was applied to the surface of the non-conductive base film, and dried by heat treatment at a temperature of 120 ° C. for 3 minutes to prepare a transparent conductive film.
실시예 8Example 8
은 나노와이어 고형분 0.15wt%를 메틸셀로솔브 9.84wt%, 증류수(18MΩ) 89.9989wt%가 혼합된 용액에 첨가한 후, 분산제 0.001wt%, 습윤제 0.0001wt%, 바인더 0.01wt%를 첨가하고 30분간 교반하여 전도성 잉크 조성물을 제조하였다. 상기 제조한 전도성 잉크 조성물을 비전도성 기재 필름 표면에 도포하고 120℃의 온도에서 3분간 열처리하여 건조시켜 투명 전도성 필름을 제조하였다.0.15 wt% of silver nanowire solids was added to a solution containing 9.84 wt% of methyl cellosolve and 89.9989 wt% of distilled water (18 MΩ), followed by adding 0.001 wt% of dispersant, 0.0001 wt% of wetting agent, and 0.01 wt% of binder. Stirring for minutes gave a conductive ink composition. The conductive ink composition prepared above was applied to the surface of the non-conductive base film, and dried by heat treatment at a temperature of 120 ° C. for 3 minutes to prepare a transparent conductive film.
비교예 1Comparative Example 1
은 나노와이어 고형분 0.15wt%를 에탄올 29.951wt%, 증류수(18MΩ) 69.8879wt%가 혼합된 용액에 첨가한 후, 분산제 0.001wt%, 습윤제 0.0001wt%, 바인더 0.01wt%를 첨가하고 30분간 교반하여 전도성 잉크 조성물을 제조하였다. 상기 제조한 전도성 잉크 조성물을 비전도성 기재 필름 표면에 도포하고 120℃의 온도에서 3분간 열처리하여 건조시켜 투명 전도성 필름을 제조하였다.0.15 wt% of silver nanowire solids was added to a solution containing 29.951 wt% of ethanol and 69.8879 wt% of distilled water (18 MΩ), followed by adding 0.001 wt% of a dispersant, 0.0001 wt% of a wetting agent, and 0.01 wt% of a binder, followed by stirring for 30 minutes. A conductive ink composition was prepared. The conductive ink composition prepared above was applied to the surface of the non-conductive base film, and dried by heat treatment at a temperature of 120 ° C. for 3 minutes to prepare a transparent conductive film.
비교예 2Comparative Example 2
은 나노와이어 고형분 0.15wt%를 에탄올 29.951wt%, 증류수(18MΩ) 69.8879wt%가 혼합된 용액에 첨가한 후, 분산제 0.001wt%, 습윤제 0.0001wt%, 바인더 0.01wt%를 첨가하고 30분간 교반하여 전도성 잉크 조성물을 제조하였다. 상기 제조한 전도성 잉크 조성물을 비전도성 기재 필름 표면에 도포하고 120℃의 온도에서 3분간 열처리하여 건조시켜 투명 전도성 필름을 제조하였다.0.15 wt% of silver nanowire solids was added to a solution containing 29.951 wt% of ethanol and 69.8879 wt% of distilled water (18 MΩ), followed by adding 0.001 wt% of a dispersant, 0.0001 wt% of a wetting agent, and 0.01 wt% of a binder, followed by stirring for 30 minutes. A conductive ink composition was prepared. The conductive ink composition prepared above was applied to the surface of the non-conductive base film, and dried by heat treatment at a temperature of 120 ° C. for 3 minutes to prepare a transparent conductive film.
비교예 3Comparative Example 3
은 나노와이어 고형분 0.15wt%를 메틸셀로솔브 29.951wt%, 증류수(18MΩ) 69.8879wt%가 혼합된 용액에 첨가한 후, 분산제 0.001wt%, 습윤제 0.0001wt%, 바인더 0.01wt%를 첨가하고 30분간 교반하여 전도성 잉크 조성물을 제조하였다. 상기 제조한 전도성 잉크 조성물을 비전도성 기재 필름 표면에 도포하고 120℃의 온도에서 3분간 열처리하여 건조시켜 투명 전도성 필름을 제조하였다.0.15 wt% of silver nanowire solids was added to a solution containing 29.951 wt% of methyl cellosolve and 69.8879 wt% of distilled water (18 MΩ), followed by adding 0.001 wt% of a dispersant, 0.0001 wt% of a wetting agent, and 0.01 wt% of a binder. Stirring for minutes gave a conductive ink composition. The conductive ink composition prepared above was applied to the surface of the non-conductive base film, and dried by heat treatment at a temperature of 120 ° C. for 3 minutes to prepare a transparent conductive film.
비교예 4Comparative Example 4
은 나노와이어 고형분 0.15wt%를 에탄올 29.951wt%, 증류수(18MΩ) 69.8879wt%가 혼합된 용액에 첨가한 후, 분산제 0.001wt%, 습윤제 0.0001wt%, 바인더 0.01wt%를 첨가하고 30분간 교반하여 전도성 잉크 조성물을 제조하였다. 상기 제조한 전도성 잉크 조성물을 비전도성 기재 필름 표면에 도포하고 120℃의 온도에서 3분간 열처리하여 건조시켜 투명 전도성 필름을 제조하였다.0.15 wt% of silver nanowire solids was added to a solution containing 29.951 wt% of ethanol and 69.8879 wt% of distilled water (18 MΩ), followed by adding 0.001 wt% of a dispersant, 0.0001 wt% of a wetting agent, and 0.01 wt% of a binder, followed by stirring for 30 minutes. A conductive ink composition was prepared. The conductive ink composition prepared above was applied to the surface of the non-conductive base film, and dried by heat treatment at a temperature of 120 ° C. for 3 minutes to prepare a transparent conductive film.
실시예 1 내지 8 및 비교예 1 내지 4의 전도성 잉크 조성물로 제조된 투명 전도성 필름의 평균 면저항, 면저항의 표준편차, 투과도, 헤이즈를 각각 측정하여 표 1에 기재하였다.Table 1 shows the average sheet resistance, standard deviation of sheet resistance, transmittance, and haze of the transparent conductive films prepared from the conductive ink compositions of Examples 1 to 8 and Comparative Examples 1 to 4, respectively.
표 1
Table 1
평균 면저항(Ω/□) | 면저항표준편차 | 투과도(%) | 헤이즈(%) | |
실시예 1 | 48 | 12 | 89.4 | 2.5 |
실시예 2 | 48 | 5 | 89.4 | 2.7 |
실시예 3 | 61 | 27 | 90.7 | 2.7 |
실시예 4 | 42 | 8 | 88.9 | 2.6 |
실시예 5 | 44 | 11 | 89.3 | 2.6 |
실시예 6 | 50 | 6 | 89.3 | 2.6 |
실시예 7 | 64 | 31 | 90.8 | 2.8 |
실시예 8 | 146 | 23 | 89.6 | 2.8 |
비교예 1 | 96 | 41 | 90.3 | 2.1 |
비교예 2 | 109 | 58 | 90.1 | 2.4 |
비교예 3 | 80 | 13 | 90.4 | 1.9 |
비교예 4 | 71 | 76 | 90.0 | 2.3 |
Average sheet resistance (Ω / □) | Sheet Resistance Standard Deviation | Permeability (%) | Haze (%) | |
Example 1 | 48 | 12 | 89.4 | 2.5 |
Example 2 | 48 | 5 | 89.4 | 2.7 |
Example 3 | 61 | 27 | 90.7 | 2.7 |
Example 4 | 42 | 8 | 88.9 | 2.6 |
Example 5 | 44 | 11 | 89.3 | 2.6 |
Example 6 | 50 | 6 | 89.3 | 2.6 |
Example 7 | 64 | 31 | 90.8 | 2.8 |
Example 8 | 146 | 23 | 89.6 | 2.8 |
Comparative Example 1 | 96 | 41 | 90.3 | 2.1 |
Comparative Example 2 | 109 | 58 | 90.1 | 2.4 |
Comparative Example 3 | 80 | 13 | 90.4 | 1.9 |
Comparative Example 4 | 71 | 76 | 90.0 | 2.3 |
상기 표 1에 의하면, 실시예의 투명 전도성 필름은 비교예에 비하여 평균 면저항이 낮으면서도 면저항 표준편차값이 작아, 전도성 필름의 전기적 특성이 균일하다는 것을 의미하며, 이에 의해 본 발명의 실시예의 전도성 잉크 조성물은 소포 작용이 효과적임을 알 수 있었다. According to Table 1, the transparent conductive film of the embodiment has a lower average sheet resistance and a smaller sheet resistance standard deviation value than the comparative example, which means that the electrical properties of the conductive film are uniform, whereby the conductive ink composition of the embodiment of the present invention. The antifoaming effect was found to be effective.
또한, 실시예의 모든 전도성 필름은 디스플레이에 사용하기에 적합한 투과도 및 헤이즈값이 측정되었다.In addition, all the conductive films of the examples were measured for transmittance and haze value suitable for use in a display.
실시예 2와 3, 실시예 4와 5, 실시예 6과 7을 각각 비교하였을 때, 유기용매인 코솔벤트의 함량이 적은 경우 면저항 표준편차 값이 작게 측정되어 적은 양의 유기용매를 첨가하여 전기적 특성을 향상시킬 수 있음을 알 수 있다.When comparing Examples 2 and 3, Examples 4 and 5, and Examples 6 and 7, respectively, when the content of cosolvent, which is an organic solvent, was small, the sheet resistance standard deviation value was measured to be small. It can be seen that the characteristics can be improved.
뿐만 아니라, 용매를 물로 대체한 실시예 1의 경우에도 평균 면저항 및 면저항 표준편차가 비교예에 비하여 우수한 것을 확인할 수 있다.In addition, in the case of Example 1 in which the solvent was replaced with water, it can be confirmed that the average sheet resistance and the sheet resistance standard deviation are superior to those of the comparative example.
도 2는 실시예 2의 투명 전도성 필름의 전기적 특성의 균일도를 도시한 그래프이고, 도 3은 실시예 4의 투명 전도성 필름의 전기적 특성의 균일도를 도시한 그래프이다. 도 2 및 3에서 보는 바와 같이, 실시예 2 및 4의 전도성 필름은 표준 편차가 균일하게 측정됨을 확인할 수 있다.2 is a graph showing the uniformity of the electrical properties of the transparent conductive film of Example 2, Figure 3 is a graph showing the uniformity of the electrical properties of the transparent conductive film of Example 4. As shown in Figures 2 and 3, the conductive films of Examples 2 and 4 can be confirmed that the standard deviation is measured uniformly.
도 4는 실시예 1, 2 및 4의 투명 전도성 필름의 광학현미경 촬영 사진이다. 실시예 1, 2 및 4의 투명 전도성 필름의 표면이 균일하게 형성되어 있음을 확인할 수 있었다.4 is an optical microscope photograph of the transparent conductive films of Examples 1, 2, and 4. FIG. It was confirmed that the surfaces of the transparent conductive films of Examples 1, 2, and 4 were uniformly formed.
도 5는 실시예 2에 의해 제조된 전도성 잉크 조성물의 소포 효과를 설명하기 위한 전(a)·후(b) 사진이다. 도 5의 사진에서 보는 바와 같이, 전도성 잉크 조성물이 본 발명의 용매를 혼합함으로써 (b)와 같이 기포 발생을 억제됨을 관찰할 수 있었다.5 is a photograph before (a) and after (b) for explaining the defoaming effect of the conductive ink composition prepared in Example 2. FIG. As shown in the photograph of FIG. 5, it was observed that the conductive ink composition suppressed bubble generation as shown in (b) by mixing the solvent of the present invention.
본 발명의 권리범위는 상술한 실시예에 한정되는 것이 아니라 첨부된 특허청구범위 내에서 다양한 형태의 실시예로 구현될 수 있다. 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가지는 자라면 누구든지 변형 가능한 다양한 범위까지 본 발명의 청구범위 기재의 범위 내에 있는 것으로 본다.The scope of the present invention is not limited to the above-described embodiment, but may be embodied in various forms of embodiments within the scope of the appended claims. Without departing from the gist of the present invention as claimed in the claims, any person having ordinary skill in the art to which the present invention pertains is considered to be within the scope of the claims described in the present invention to various extents which can be modified.
본 발명에 의한 전도성 잉크 조성물은, 전도성 잉크 조성물의 용매를 수식하여 광학적 특성 및 전기적 특성의 물성을 향상된 투명 전도성 필름을 구현할 수 있다.In the conductive ink composition according to the present invention, the solvent of the conductive ink composition may be modified to implement a transparent conductive film having improved physical properties of optical and electrical properties.
Claims (18)
- 전도성 잉크 조성물에 있어서,In the conductive ink composition,상기 전도성 잉크 조성물은 전도성 나노 물질 및 용매를 포함하고, 상기 용매는 물 80 이상 100 미만 중량% 및 코솔벤트 0 초과 20 이하 중량%로 이루어진 전도성 잉크 조성물.Wherein the conductive ink composition comprises a conductive nanomaterial and a solvent, wherein the solvent is 80% or more and less than 100% by weight of water and cosolvent more than 0 and 20% or less by weight.
- 제1항에 있어서,The method of claim 1,상기 전도성 나노 물질은 금속 나노와이어, 금속 나노로드 또는 금속 나노입자의 금속 나노구조체, 전도성 고분자, 전도성 섬유 또는 탄소나노튜브 중 적어도 하나인 전도성 잉크 조성물. The conductive nanomaterial is at least one of a metal nanowire, a metal nanorod or a metal nanostructure of a metal nanoparticle, a conductive polymer, a conductive fiber, or a carbon nanotube.
- 제1항에 있어서,The method of claim 1,상기 코솔벤트는 메탄올, 에탄올, 이소프로판올, 1-메톡시프로판올, 부탄올, 에틸헥실 알코올, 테르피네올, 에틸렌글리콜, 글리세린, 에틸아세테이트, 부틸아세테이트, 메톡시프로필아세테이트, 카비톨아세테이트, 에틸카비톨아세테이트, 메틸셀로솔브, 부틸셀로솔브, 디에틸에테르, 테트라히드로퓨란, 디옥산, 메틸에틸케톤, 아세톤, 디메틸포름아미드, 1-메틸-2-피롤리돈, 헥산, 헵탄, 도데칸, 파라핀오일, 미네랄스피릿, 벤젠, 톨루엔, 자일렌, 클로로포름, 메틸렌클로라이드, 카본테트라클로라이드, 아세토니트릴 또는 디메틸술폭사이드 중 적어도 하나인 전도성 잉크 조성물.The cosolvent is methanol, ethanol, isopropanol, 1-methoxypropanol, butanol, ethylhexyl alcohol, terpineol, ethylene glycol, glycerin, ethyl acetate, butyl acetate, methoxypropyl acetate, carbitol acetate, ethyl carbitol acetate , Methyl cellosolve, butyl cellosolve, diethyl ether, tetrahydrofuran, dioxane, methyl ethyl ketone, acetone, dimethylformamide, 1-methyl-2-pyrrolidone, hexane, heptane, dodecane, paraffin At least one of oil, mineral spirit, benzene, toluene, xylene, chloroform, methylene chloride, carbon tetrachloride, acetonitrile or dimethyl sulfoxide.
- 제1항에 있어서,The method of claim 1,상기 전도성 나노 물질은 상기 용매 100중량부에 대하여, 0.01 내지 10중량부인 전도성 잉크 조성물.The conductive nanomaterial is 0.01 to 10 parts by weight based on 100 parts by weight of the solvent.
- 제1항에 있어서,The method of claim 1,상기 전도성 잉크 조성물은 바인더, 분산제 및 습윤제를 더 포함하고, 상기 용매 100중량부에 대하여, 상기 바인더는 0.01 내지 1중량부, 상기 분산제는 0.001 내지 0.5중량부, 상기 습윤제는 0.0001 내지 1중량부인 전도성 잉크 조성물.The conductive ink composition further includes a binder, a dispersant and a humectant, and the binder is 0.01 to 1 part by weight, the dispersant is 0.001 to 0.5 part by weight, and the wetting agent is 0.0001 to 1 part by weight based on 100 parts by weight of the solvent. Ink composition.
- 제1항에 있어서,The method of claim 1,상기 전도성 잉크 조성물은, 계면활성제, 레벨링제, 칙소제 또는 환원제를 더 포함하는 전도성 잉크 조성물.The conductive ink composition further comprises a surfactant, a leveling agent, a thixotropic agent or a reducing agent.
- 전도성 잉크 조성물에 있어서,In the conductive ink composition,상기 전도성 잉크 조성물은 전도성 나노 물질 및 용매를 포함하고, 상기 용매는 물인 전도성 잉크 조성물.The conductive ink composition includes a conductive nanomaterial and a solvent, and the solvent is water.
- 제7항에 있어서,The method of claim 7, wherein상기 전도성 나노 물질은 상기 용매 100중량부에 대하여, 0.01 내지 10중량부인 전도성 잉크 조성물.The conductive nanomaterial is 0.01 to 10 parts by weight based on 100 parts by weight of the solvent.
- 전도성 나노 물질 및 용매를 포함하고, 상기 용매는 물 80 이상 100 미만 중량% 및 코솔벤트 0 초과 20 이하 중량%로 이루어진 전도성 잉크 조성물을 포함하는 투명 전도성 필름.A conductive conductive material comprising a conductive nanomaterial and a solvent, wherein the solvent comprises a conductive ink composition comprising at least 80% by weight of water and at least 20% by weight of cosolvent.
- 제9항에 있어서,The method of claim 9,상기 전도성 나노 물질은 금속 나노와이어, 금속 나노로드 또는 금속 나노입자의 금속 나노구조체, 전도성 고분자, 전도성 섬유 또는 탄소나노튜브 중 적어도 하나인 투명 전도성 필름.The conductive nanomaterial is at least one of a metal nanowire, a metal nanorod or a metal nanostructure of a metal nanoparticle, a conductive polymer, a conductive fiber, or a carbon nanotube.
- 제9항에 있어서,The method of claim 9,상기 코솔벤트는 메탄올, 에탄올, 이소프로판올, 1-메톡시프로판올, 부탄올, 에틸헥실 알코올, 테르피네올, 에틸렌글리콜, 글리세린, 에틸아세테이트, 부틸아세테이트, 메톡시프로필아세테이트, 카비톨아세테이트, 에틸카비톨아세테이트, 메틸셀로솔브, 부틸셀로솔브, 디에틸에테르, 테트라히드로퓨란, 디옥산, 메틸에틸케톤, 아세톤, 디메틸포름아미드, 1-메틸-2-피롤리돈, 헥산, 헵탄, 도데칸, 파라핀오일, 미네랄스피릿, 벤젠, 톨루엔, 자일렌, 클로로포름, 메틸렌클로라이드, 카본테트라클로라이드, 아세토니트릴 또는 디메틸술폭사이드 중 적어도 하나인 투명 전도성 필름.The cosolvent is methanol, ethanol, isopropanol, 1-methoxypropanol, butanol, ethylhexyl alcohol, terpineol, ethylene glycol, glycerin, ethyl acetate, butyl acetate, methoxypropyl acetate, carbitol acetate, ethyl carbitol acetate , Methyl cellosolve, butyl cellosolve, diethyl ether, tetrahydrofuran, dioxane, methyl ethyl ketone, acetone, dimethylformamide, 1-methyl-2-pyrrolidone, hexane, heptane, dodecane, paraffin A transparent conductive film, which is at least one of oil, mineral spirit, benzene, toluene, xylene, chloroform, methylene chloride, carbon tetrachloride, acetonitrile or dimethyl sulfoxide.
- 기재 상에 전도성 나노 물질 및 용매를 포함하는 전도성 잉크 조성물을 코팅하는 코팅단계; 및Coating a conductive ink composition comprising a conductive nanomaterial and a solvent on the substrate; And상기 전도성 잉크 조성물을 건조하는 건조단계;를 포함하고,And drying the conductive ink composition.상기 용매는 물 80 이상 100 미만 중량% 및 코솔벤트 0 초과 20 이하 중량%로 이루어진 투명 전도성 필름의 제조방법.The solvent is 80 to less than 100% by weight of water and cosolvent 0 to 20% by weight of the transparent conductive film production method.
- 제12항에 있어서,The method of claim 12,상기 전도성 나노 물질은 금속 나노와이어, 금속 나노로드 또는 금속 나노입자의 금속 나노구조체, 전도성 고분자, 전도성 섬유 또는 탄소나노튜브 중 적어도 하나인 투명 전도성 필름의 제조방법.The conductive nanomaterial is at least one of a metal nanowire, a metal nanorod or a metal nanostructure of a metal nanoparticle, a conductive polymer, a conductive fiber, or carbon nanotubes.
- 제13항에 있어서,The method of claim 13,상기 금속 나노와이어는 평균 두께가 10 내지 200nm이고, 평균 길이가 1 내지 100㎛인 투명 전도성 필름의 제조방법.The metal nanowire has an average thickness of 10 to 200nm, the average length of 1 to 100㎛ manufacturing method of the transparent conductive film.
- 제12항에 있어서,The method of claim 12,상기 코솔벤트는 메탄올, 에탄올, 이소프로판올, 1-메톡시프로판올, 부탄올, 에틸헥실 알코올, 테르피네올, 에틸렌글리콜, 글리세린, 에틸아세테이트, 부틸아세테이트, 메톡시프로필아세테이트, 카비톨아세테이트, 에틸카비톨아세테이트, 메틸셀로솔브, 부틸셀로솔브, 디에틸에테르, 테트라히드로퓨란, 디옥산, 메틸에틸케톤, 아세톤, 디메틸포름아미드, 1-메틸-2-피롤리돈, 헥산, 헵탄, 도데칸, 파라핀오일, 미네랄스피릿, 벤젠, 톨루엔, 자일렌, 클로로포름, 메틸렌클로라이드, 카본테트라클로라이드, 아세토니트릴 또는 디메틸술폭사이드 중 적어도 하나인 투명 전도성 필름의 제조방법.The cosolvent is methanol, ethanol, isopropanol, 1-methoxypropanol, butanol, ethylhexyl alcohol, terpineol, ethylene glycol, glycerin, ethyl acetate, butyl acetate, methoxypropyl acetate, carbitol acetate, ethyl carbitol acetate , Methyl cellosolve, butyl cellosolve, diethyl ether, tetrahydrofuran, dioxane, methyl ethyl ketone, acetone, dimethylformamide, 1-methyl-2-pyrrolidone, hexane, heptane, dodecane, paraffin A method for producing a transparent conductive film which is at least one of oil, mineral spirit, benzene, toluene, xylene, chloroform, methylene chloride, carbon tetrachloride, acetonitrile or dimethyl sulfoxide.
- 기재 상에 전도성 나노 물질 및 물로 이루어진 용매를 포함하는 전도성 잉크 조성물을 코팅하는 코팅단계; 및Coating a conductive ink composition comprising a conductive nanomaterial and a solvent on the substrate; And상기 전도성 잉크 조성물을 건조하는 건조단계를 포함하는 투명 전도성 필름의 제조방법.Method for producing a transparent conductive film comprising a drying step of drying the conductive ink composition.
- 제16항에 있어서,The method of claim 16,상기 전도성 나노 물질은 상기 용매 100중량부에 대하여, 0.01 내지 10중량부인 투명 전도성 필름의 제조방법.The conductive nanomaterial is 0.01 to 10 parts by weight based on 100 parts by weight of the solvent.
- 제16항에 있어서,The method of claim 16,상기 전도성 나노 물질은 금속 나노와이어, 금속 나노로드 또는 금속 나노입자의 금속 나노구조체, 전도성 고분자, 전도성 섬유 또는 탄소나노튜브 중 적어도 하나인 투명 전도성 필름의 제조방법.The conductive nanomaterial is at least one of a metal nanowire, a metal nanorod or a metal nanostructure of a metal nanoparticle, a conductive polymer, a conductive fiber, or carbon nanotubes.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2013-0071068 | 2013-06-20 | ||
KR1020130071068A KR102169003B1 (en) | 2013-06-20 | 2013-06-20 | Conductive ink composition, transparent conductive film comprising thereof and method for preparing transparent conductive film |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014204265A1 true WO2014204265A1 (en) | 2014-12-24 |
Family
ID=52104915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/005466 WO2014204265A1 (en) | 2013-06-20 | 2014-06-20 | Conductive ink composition, transparent conductive film including same, and method of manufacturing transparent conductive film |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102169003B1 (en) |
WO (1) | WO2014204265A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104952513A (en) * | 2015-03-06 | 2015-09-30 | 苏州深科微新材料科技有限公司 | Printing-way-based silver-nanowire transparent conductive slurry |
WO2020149977A1 (en) * | 2019-01-18 | 2020-07-23 | Henkel IP & Holding GmbH | Stretchable electrically conductive ink compositions |
CN113308147A (en) * | 2021-06-07 | 2021-08-27 | 天津大学 | Bioabsorbable conductive ink, preparation method thereof and sintering method |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170020630A (en) * | 2015-08-13 | 2017-02-23 | 주식회사 네패스 | Eco-friendly water-based conductive ink composition and conductive pen having the same |
KR101978334B1 (en) * | 2016-07-13 | 2019-05-15 | 주식회사 나노솔루션 | Conductive color ink composition and color antistatic film including the same |
KR101903128B1 (en) * | 2016-09-27 | 2018-11-13 | 롯데케미칼 주식회사 | Conductive pipe |
KR102551823B1 (en) | 2021-05-21 | 2023-07-05 | 청주대학교 산학협력단 | Method for manufacturing 3-dimensional transparent conducting thin film having low-resistance |
KR102455611B1 (en) | 2022-02-10 | 2022-10-17 | 지노팩 주식회사 | Ink composition for printing polyethylene film and manufacturing thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080182090A1 (en) * | 2006-09-08 | 2008-07-31 | Sun Chemical Corporation | High conductive water-based silver ink |
KR20080088712A (en) * | 2007-03-30 | 2008-10-06 | 삼성전자주식회사 | Conductive ink composition and method of forming conductive pattern using the same |
KR20090012696A (en) * | 2007-07-31 | 2009-02-04 | 한국생산기술연구원 | Conductive ink composition for ink-jet printing and the method to increase adhesive strength between metal pattern and polyimide substrate |
KR20090018538A (en) * | 2007-08-17 | 2009-02-20 | 씨엠에스테크놀로지(주) | Aqueous conductive ink composition for inkjet printer using high concentration nano-silver colloidal solution and method forming electrode pattern by inkjet printing |
KR20090025894A (en) * | 2007-09-07 | 2009-03-11 | 연세대학교 산학협력단 | Conductive ink compositions incorporating nano glass frit and nano metal for enhanced adhesion with glass and ceramic substrates used in displays |
KR20100116680A (en) * | 2008-02-26 | 2010-11-01 | 캄브리오스 테크놀로지즈 코포레이션 | Methods and compositions for ink jet deposition of conductive features |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10231344B2 (en) * | 2007-05-18 | 2019-03-12 | Applied Nanotech Holdings, Inc. | Metallic ink |
KR100897308B1 (en) | 2007-05-18 | 2009-05-14 | 삼성전기주식회사 | Metal ink composition for ink-jet printing |
KR101207363B1 (en) | 2009-03-04 | 2012-12-04 | 엘에스전선 주식회사 | Composition for Conductive Paste Containing Nanometer-Thick Metal Microplates |
-
2013
- 2013-06-20 KR KR1020130071068A patent/KR102169003B1/en active IP Right Grant
-
2014
- 2014-06-20 WO PCT/KR2014/005466 patent/WO2014204265A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080182090A1 (en) * | 2006-09-08 | 2008-07-31 | Sun Chemical Corporation | High conductive water-based silver ink |
KR20080088712A (en) * | 2007-03-30 | 2008-10-06 | 삼성전자주식회사 | Conductive ink composition and method of forming conductive pattern using the same |
KR20090012696A (en) * | 2007-07-31 | 2009-02-04 | 한국생산기술연구원 | Conductive ink composition for ink-jet printing and the method to increase adhesive strength between metal pattern and polyimide substrate |
KR20090018538A (en) * | 2007-08-17 | 2009-02-20 | 씨엠에스테크놀로지(주) | Aqueous conductive ink composition for inkjet printer using high concentration nano-silver colloidal solution and method forming electrode pattern by inkjet printing |
KR20090025894A (en) * | 2007-09-07 | 2009-03-11 | 연세대학교 산학협력단 | Conductive ink compositions incorporating nano glass frit and nano metal for enhanced adhesion with glass and ceramic substrates used in displays |
KR20100116680A (en) * | 2008-02-26 | 2010-11-01 | 캄브리오스 테크놀로지즈 코포레이션 | Methods and compositions for ink jet deposition of conductive features |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104952513A (en) * | 2015-03-06 | 2015-09-30 | 苏州深科微新材料科技有限公司 | Printing-way-based silver-nanowire transparent conductive slurry |
WO2020149977A1 (en) * | 2019-01-18 | 2020-07-23 | Henkel IP & Holding GmbH | Stretchable electrically conductive ink compositions |
US11840634B2 (en) | 2019-01-18 | 2023-12-12 | Henkel Ag & Co, Kgaa | Stretchable electrically conductive ink compositions |
CN113308147A (en) * | 2021-06-07 | 2021-08-27 | 天津大学 | Bioabsorbable conductive ink, preparation method thereof and sintering method |
CN113308147B (en) * | 2021-06-07 | 2022-05-03 | 天津大学 | Bioabsorbable conductive ink, preparation method thereof and sintering method |
Also Published As
Publication number | Publication date |
---|---|
KR102169003B1 (en) | 2020-10-22 |
KR20140147975A (en) | 2014-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014204265A1 (en) | Conductive ink composition, transparent conductive film including same, and method of manufacturing transparent conductive film | |
JP5706998B2 (en) | Transparent conductive ink and transparent conductive pattern forming method | |
KR101795419B1 (en) | Method for manufacturing transparent conductive layer and transparent conductive layer manufactured by the method | |
US20110193032A1 (en) | Composition for making transparent conductive coating based on nanoparticle dispersion | |
KR101489161B1 (en) | Method for manufacturing transparent conductive layer and transparent conductive layer manufactured by the method | |
WO2012026791A2 (en) | Conductive metal ink composition, and method for preparing a conductive pattern | |
KR101417254B1 (en) | Conductive compositions for printing, printing method using the compositions and conductive patterns prepared by the method | |
JP5425479B2 (en) | Method for removing stabilizers from metal nanoparticles using destabilizing agents | |
WO2010101418A2 (en) | Composition for conductive paste containing nanometer-thick metal microplates | |
WO2014171798A1 (en) | Method of manufacturing transparent electrode film for display and transparent electrode film for display | |
WO2014185756A1 (en) | Method for manufacturing hybrid transparent electrode and hybrid transparent electrode | |
DE102015206065A1 (en) | DEBRAIL, CONDUCTIVE FILM ON SILVER NANOTEILIC BASE | |
KR20140094690A (en) | Electroconductive ink comoposition and method for forming an electrode by using the same | |
CN105593796A (en) | Protective coating for printed conductive pattern on patterned nanowire transparent conductors | |
CN103824611A (en) | Laser lithography silver paste and preparation method thereof as well as touch screen | |
TWI787185B (en) | Method of forming transparent conductive pattern | |
WO2016159609A1 (en) | Composition for forming copper nanowire network by using light sintering, method for manufacturing copper nanowire network, and transparent electrode comprising same | |
WO2016129270A1 (en) | Electrode, method for producing same, and touch panel and organic el lighting element each provided with said electrode | |
JP5771072B2 (en) | Conductive paste | |
CN110317525B (en) | Conductive polymer aqueous slurry and preparation method and application thereof | |
KR101549999B1 (en) | Transparent Electrode Substrate Using Metal Nanowire | |
JP2011192401A (en) | Transparent conductive paste composition | |
GB2535251A (en) | Conductive ink | |
WO2018098853A1 (en) | Nano-indium ink for flexible electronic devices, preparation method therefor and application thereof | |
JP2008034345A (en) | Conductive oxide particulate dispersion solution, coating liquid for forming transparent conductive film, and transparent conductive film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14812993 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14812993 Country of ref document: EP Kind code of ref document: A1 |