WO2018181955A1 - 陽極、複極式電解セル、水素製造方法 - Google Patents

陽極、複極式電解セル、水素製造方法 Download PDF

Info

Publication number
WO2018181955A1
WO2018181955A1 PCT/JP2018/013768 JP2018013768W WO2018181955A1 WO 2018181955 A1 WO2018181955 A1 WO 2018181955A1 JP 2018013768 W JP2018013768 W JP 2018013768W WO 2018181955 A1 WO2018181955 A1 WO 2018181955A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
anode
less
catalyst layer
cobalt
Prior art date
Application number
PCT/JP2018/013768
Other languages
English (en)
French (fr)
Inventor
稔幸 平野
陽介 内野
英史 高見
則和 藤本
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to EP18778292.5A priority Critical patent/EP3604619A4/en
Priority to JP2019509389A priority patent/JP6837130B2/ja
Publication of WO2018181955A1 publication Critical patent/WO2018181955A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/77Assemblies comprising two or more cells of the filter-press type having diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to an anode, a bipolar electrolysis cell using the anode, and a hydrogen production method.
  • the requirement for an anode for generating oxygen is that the substrate for the anode and the catalyst layer are used in an environment exposed to alkaline water containing NaOH or KOH, in addition to the low overvoltage of oxygen generation.
  • the conductive substrate for the anode nickel, nickel alloy, stainless steel, or iron or stainless steel having a surface plated with nickel is used.
  • the anode catalyst (catalyst layer), a noble metal such as ruthenium or platinum, porous nickel, an oxide containing nickel as a main component, or the like is used.
  • porous nickel or nickel oxide or nickel hydroxide containing nickel as a main component is often used.
  • Patent Document 1 describes a technique for obtaining an electrode for water electrolysis having a catalyst layer having a large specific surface area by spraying a metal oxide powder onto a conductive substrate.
  • Patent Document 2 describes an alkaline water electrolyzer using an anode having a porous nickel catalyst layer having a large specific surface area, suitable for generating oxygen for water electrolysis.
  • the electrode described in Patent Document 1 is for hydrogen generation and is not a composition suitable for an oxygen generation anode, that is, a water electrolysis anode.
  • the anode described in Patent Document 2 is not an electrode that assumes an energy source that is unstable in supply, such as natural energy, but is durable to long-term electrolysis where electrolysis can be frequently stopped and resumed. Is not necessarily sufficient.
  • an object of the present invention is to provide an anode having a low oxygen overvoltage and excellent durability and a bipolar electrolysis cell including the anode.
  • the present inventors diligently researched and repeated experiments to solve the above problems. As a result, by controlling the composition and form of the catalyst layer formed on the surface of the nickel porous substrate, high durability against electrolysis using low oxygen overvoltage and unstable energy such as natural energy The present inventors have found an anode having the properties and have arrived at the present invention.
  • the present invention is as follows.
  • the peak intensity of X-rays diffracted by the (111) plane of nickel in the nickel catalyst layer is I Ni
  • the peak intensity of X-rays diffracted by the (012) plane of nickel oxide is I NiO
  • [I The value of NiO 2 / (I Ni + I NiO )] ⁇ 100 is 0 or more and 15 or less
  • the specific surface area of the nickel catalyst layer is 1.0 m 2 / g or more and 10.0 m 2 / g or less.
  • An anode for alkaline water electrolysis in which a nickel catalyst layer having a thickness of 50 ⁇ m or more and 800 ⁇ m or less is formed on the surface of a nickel porous substrate, containing 0.1 to 10 mol% of cobalt with respect to the total number of moles of nickel and cobalt Because
  • the peak intensity of X-rays diffracted by the (111) plane of nickel in the nickel catalyst layer is I Ni
  • the peak intensity of X-rays diffracted by the (012) plane of nickel oxide is I NiO
  • the value of NiO 2 / (I Ni + I NiO )] ⁇ 100 is 0 or more and 15 or less
  • the specific surface area of the nickel catalyst layer is 1.0 m 2 / g or more and 10.0 m 2 / g or less.
  • Pores are formed in the nickel catalyst layer, Among the pores, the specific surface area of the first pore having a pore diameter of 2 nm or more and 5 nm or less is 0.6 m 2 / g or more and 2.0 m 2 / g or less, The pore volume of the first pore is 3 ⁇ 10 ⁇ 4 ml / g or more and 9 ⁇ 10 ⁇ 4 ml / g or less, Among the pores, the specific surface area of the second pore having a pore diameter of 0.01 ⁇ m or more and 2.00 ⁇ m or less is 2.0 m 2 / g or more and 5.0 m 2 / g or less, The anode according to [1] or [2], wherein the pore volume of the second pore among the pores is 0.04 ml / g or more and 0.2 ml / g or less.
  • a bipolar electrolysis cell comprising the anode according to any one of [1] to [9].
  • hydrophilic inorganic particles include a compound containing zirconium oxide and a nickel atom and / or a cobalt atom.
  • the total of nickel atom concentration and cobalt atom concentration when analyzing at least one surface of the diaphragm using a fluorescent X-ray method is 0.01 atomic% or more and 1.0 atomic% or less.
  • a hydrogen production method of producing hydrogen by electrolyzing water containing an alkali in an electrolytic cell The electrolytic cell has at least an anode and a cathode,
  • the anode includes a nickel catalyst layer having a thickness of 50 ⁇ m or more and 800 ⁇ m or less on the surface of the nickel porous substrate, the cobalt containing 0.1 mol% or more and 10 mol% or less of cobalt with respect to the total number of moles of nickel and cobalt.
  • an anode having a low oxygen overvoltage and excellent durability and a bipolar electrolysis cell including this anode can be obtained.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • this following embodiment is an illustration for demonstrating this invention, and is not the meaning which limits this invention.
  • the present invention can be variously modified without departing from the gist thereof.
  • the nickel catalyst layer containing 0.1 to 10 mol% of cobalt with respect to the total number of moles of nickel and cobalt and having a thickness of 50 to 800 ⁇ m is a nickel porous group.
  • the peak intensity of X-rays formed on the material surface and diffracted by the (111) plane of nickel in the nickel catalyst layer is I Ni
  • the peak intensity of X-rays diffracted by the (012) plane of nickel oxide is I NiO
  • the value of [I NiO / (I Ni + I NiO )] ⁇ 100 is 0 or more and 15 or less
  • the specific surface area of the nickel catalyst layer is 1.0 m 2 / g or more and 10.0 m 2 / g or less. is there.
  • the alkaline water electrolysis anode of this embodiment has a low overvoltage due to the large specific surface area of the nickel catalyst layer. If the nickel catalyst layer is porous, the overvoltage can be further reduced.
  • the initial performance and durability are excellent. Furthermore, since cobalt is an appropriate amount, adsorption to the diaphragm can be suppressed, and the voltage of the electrolytic cell is unlikely to increase.
  • the alkaline water electrolysis anode has a nickel catalyst layer containing cobalt on at least a part or all of the surface of the nickel porous substrate. It is what you have.
  • the said nickel catalyst layer may be provided in the single side
  • the nickel porous substrate is a plate-like substrate having a large number of holes, which is made of nickel or a material mainly composed of nickel. It is.
  • the material mainly composed of nickel include nickel-based alloys such as monel, inconel, and hastelloy.
  • Specific examples of the shape include expanded metal, punching metal, plain woven mesh, foamed metal, and similar shapes, and expanded metal is preferable.
  • the nickel porous base material is preferably nickel or nickel-based material.
  • Nickel or a material mainly composed of nickel is preferable in terms of durability, conductivity, and economy because it is a metal that is not dissolved even at an oxygen generation potential in an alkaline aqueous solution and can be obtained at a lower cost than a noble metal. .
  • the nickel porous substrate is preferably expanded metal made of nickel or a material mainly composed of nickel, and the dimensions are not particularly limited.
  • the distance between the centers in the short direction of the mesh (SW ) Is preferably 2 mm or more and 5 mm or less, more preferably 3 mm or more and 4 mm or less.
  • the center-to-center distance (LW) of the mesh in the long direction is preferably 3 mm or more and 10 mm or less, more preferably 4 mm or more and 6 mm or less.
  • thickness is 0.2 mm or more and 2.0 mm or less, More preferably, it is 0.8 mm or more and 1.5 mm or less.
  • the opening ratio is preferably 20% or more and 80% or less, more preferably 40% or more and 60% or less.
  • the ranges of the SW, LW, thickness, and aperture ratio may be individually selected for obtaining the effects of the present invention.
  • the nickel catalyst layer is composed mainly of nickel, but may contain other elements.
  • Nickel is not dissolved even at an oxygen generation potential in an alkaline aqueous solution, and is a metal that can be obtained at a lower cost than a noble metal, and thus is preferable in terms of durability, conductivity, and economy.
  • the molar ratio of nickel atoms to the total number of moles of nickel atoms and cobalt atoms in the nickel catalyst layer is preferably 75 mol% or more, and more preferably 85% or more. Moreover, it is preferable that it is 99.9 mol% or less, More preferably, it is 99.5 mol% or less.
  • Nickel is preferably present in a metallic state from the viewpoint of conductivity, but includes nickel oxide, alloys and composite oxides with other elements, hydroxides, and other compounds such as sulfides and phosphides. It may be.
  • the “main component” means that the component is contained in an amount of 80% by mass or more (preferably 85% by mass or more) with respect to the mass (100% by mass) of the entire layer.
  • the molar ratio of cobalt atoms to the total number of moles of nickel atoms and cobalt atoms in the nickel catalyst layer is 0.1 mol% or more and 10 mol% or less.
  • the molar ratio of cobalt atoms in the nickel catalyst layer is preferably 0.1 mol% or more and 5 mol% or less, more preferably 0. .5 mol% or more and 2 mol% or less.
  • the molar ratio of nickel atoms or the molar ratio of cobalt atoms to the total number of moles of nickel atoms and cobalt atoms in the nickel catalyst layer can be measured by the method described in the examples described later.
  • the presence state of cobalt contained in the nickel catalyst layer is not limited, and may be a state such as metallic cobalt or cobalt oxide.
  • the presence of a cobalt compound having high electronic conductivity adjacent to the nickel compound in the nickel catalyst layer increases the active point of oxygen generation of the nickel compound, so that an electrode with a lower oxygen generation overvoltage can be obtained. It is done. Therefore, water electrolysis can be performed at a lower voltage by adapting the anode of this embodiment to an electrolytic cell for alkaline water electrolysis.
  • the reason why the active point of oxygen generation of the nickel compound is increased by the fact that the cobalt compound and nickel compound having high electronic conductivity are adjacent to each other is as follows.
  • the electron transfer from the liquid phase to the solid phase, in which electrons are extracted from the hydroxide ions in the alkaline solution of the nickel compound, is as smooth as the platinum group.
  • the electronic conductivity in the solid is poor, the transfer of electrons from the substrate to the catalyst or between the catalyst and the catalyst particles, that is, from the solid to the solid, is not smooth.
  • a cobalt compound since a cobalt compound has high electron conductivity, it is several tens to 100 times smoother than nickel in terms of electron transfer from a solid to a solid. Therefore, when an appropriate amount of a cobalt compound is mixed in the nickel catalyst layer, the electron transfer of nickel having poor electronic conductivity in the solid can be supplemented by the cobalt compound having high electron conductivity.
  • the utilization efficiency of the nickel compound is increased, and the function as a catalyst can be enhanced.
  • cobalt oxide has a slight solubility in an alkaline solution, if the proportion of cobalt oxide is too large, the dissolution of the catalyst layer proceeds, and eventually the catalyst layer falls off and oxygen Overvoltage may increase.
  • electrolysis is performed using an energy source that is unstable in supply, such as natural energy, cobalt dissolved in the electrolytic solution may be precipitated in the electrolytic cell by stopping or restarting electrolysis.
  • the deposited cobalt or cobalt compound adheres to other members such as the flow path piping of the electrolytic solution or the generated gas and the diaphragm constituting the electrolytic cell, thereby inhibiting the flow of the electrolytic solution.
  • the electrolytic efficiency is greatly increased and the electrolytic efficiency is greatly reduced.
  • the present inventors incorporated cobalt into an electrolytic cell while maintaining the effect of increasing the utilization efficiency of nickel by cobalt by adjusting the molar ratio of nickel atom to cobalt atom when cobalt is contained in the nickel catalyst layer. It has been found that there is a composition having high durability that can withstand long-term operation even when used in the above.
  • the molar ratio of the nickel compound is increased to such an extent that the effect of cobalt is not impaired.
  • the nickel compound having high chemical stability against alkali functions as a support for forming the skeleton of the catalyst layer, even if cobalt is slightly dissolved, the entire catalyst layer is unlikely to fall off.
  • the nickel catalyst layer has a thickness of 50 ⁇ m or more and 800 ⁇ m or less. If the thickness of the nickel catalyst layer is too thick, the electrical resistance may increase and the overvoltage may be increased.On the other hand, if the nickel catalyst layer is too thin, the nickel catalyst layer may be worn away due to long-term electrolysis or electrolysis stop, resulting in wear of the electrode. Deteriorating and overvoltage may increase.
  • the thickness of the nickel catalyst layer is preferably 100 ⁇ m or more and 500 ⁇ m or less, more preferably 100 ⁇ m or more and 300 ⁇ m or less.
  • the thickness of a nickel catalyst layer can be measured by observing the cross section of an electrode, for example with an electron microscope. Specifically, the cross section of the electrode is observed with an electron microscope, and the average value of values obtained by measuring the thickness of the catalyst layer at five points is defined as the thickness of the catalyst layer.
  • the peak intensity of X-rays diffracted by the (111) plane of nickel in the nickel catalyst layer is I Ni
  • the peak intensity of X-rays diffracted by the (012) plane of nickel oxide is I NiO
  • One characteristic is that the value of [I NiO / (I Ni + I NiO )] ⁇ 100 is in the range of 0 to 15.
  • nickel oxide is relatively chemically stable, it may be effective for the nickel catalyst layer to contain nickel oxide to maintain the strength of the nickel catalyst layer.
  • I Ni and I NiO can be determined from the XRD (X-Ray Diffraction) measurement results for the nickel catalyst layer, and specifically, can be measured by the methods of the examples described later.
  • the value of [I NiO / (I Ni + I NiO )] ⁇ 100 is more preferably 5 or less, and even more preferably 3 It is as follows.
  • the specific surface area of the nickel catalyst layer is 1.0 m 2 / g or more and 10.0 m 2 / g or less.
  • the specific surface area of the nickel catalyst layer is preferably 2.0 m 2 / g or more and 5.0 m 2 / g or less, more preferably is 2.0 m 2 / g or more 4.5 m 2 / g or less.
  • the specific surface area of the nickel catalyst layer is less than 1.0 m 2 / g, the reaction active points per unit area are reduced, so that a low overvoltage may not be obtained.
  • the specific surface area of the nickel catalyst layer is more than 10.0 m 2 / g, the mechanical strength of the catalyst layer may be lowered, and the durability may be lowered.
  • the nickel catalyst layer preferably has pores.
  • the specific surface area of the first pore having a pore diameter of 2 to 5 nm is preferably 0.6 to 2.0 m 2 / g.
  • the pore volume of the first pore is preferably 3 ⁇ 10 ⁇ 4 to 9 ⁇ 10 ⁇ 4 ml / g.
  • the specific surface area of the second pore having a pore diameter in the range of 0.01 to 2.00 ⁇ m is 2.0 to 5.0 m 2 / g. Is preferred.
  • the pore volume of the second pore is preferably 0.04 to 0.2 ml / g.
  • the second pore having a pore diameter in the range of 0.01 to 2.00 ⁇ m has a small specific surface area but a large pore volume, so the first pore is present inside the second pore. It will be.
  • the first pores greatly increase the surface area of the nickel catalyst layer.
  • the surface of the first pore functions as a reaction field (reaction interface) of the hydroxide ion oxidation reaction (oxygen generation reaction).
  • reaction interface reaction interface
  • oxygen generation reaction oxygen generation reaction
  • the specific surface area of the first pore is more preferably 0.6 to 1.5 m 2 / g, and still more preferably 0.6. ⁇ 1.0 m 2 / g.
  • the specific surface area of the first pore may be 0.62 to 0.98 m 2 / g.
  • the oxygen generation potential decreases as the specific surface area of the first pore increases.
  • the first pores are too small, the first pores are completely filled with nickel hydroxide generated when oxygen is generated, and the substantial surface area of the first pores tends to be reduced.
  • the specific surface area of the first pores decreases, the surface area of the entire catalyst layer also tends to decrease. As the surface area of the entire nickel catalyst layer decreases, the oxygen generation potential tends to increase.
  • the pore volume of the first pore is more preferably 3.3 ⁇ 10 ⁇ 4 to 8.5 ⁇ 10 ⁇ 4 ml. / G, more preferably 3.6 ⁇ 10 ⁇ 4 to 7.9 ⁇ 10 ⁇ 4 ml / g.
  • the specific surface area tends to decrease.
  • the specific surface area tends to increase.
  • the specific surface area of the second pore is more preferably 2.0 to 4.5 m 2 / g, and still more preferably 2.0. ⁇ 4.0 m 2 / g.
  • the volume tends to decrease.
  • the specific surface area of the second pore decreases, the pore volume tends to increase.
  • the pore volume of the second pore is more preferably 0.04 to 0.15 ml / g, and still more preferably 0.04. To 0.1 ml / g, particularly preferably 0.04 to 0.09 ml / g. As the pore volume of the second pore increases, the degassing of oxygen gas generated in the nickel catalyst layer tends to proceed. As the pore volume of the second pore is reduced, outgassing from the nickel catalyst layer is hindered and the oxygen generation overvoltage tends to increase, but the mechanical strength tends to increase.
  • the electric double layer capacity of the alkaline water electrolysis anode is preferably 0.3 F / cm 2 or more and 10 from the viewpoint of overvoltage and durability. .0f / cm 2 or less, more preferably 0.5F / cm 2 or more 5.0F / cm 2 or less.
  • the electric double layer capacity can be measured by, for example, an electrochemical impedance method.
  • the electric double layer capacitance is calculated by analyzing the Cole-Cole plot obtained by plotting the real part and the imaginary part obtained by the AC impedance measurement by equivalent circuit fitting. Specifically, it can be measured by the method described in Examples described later.
  • the method for forming the nickel catalyst layer on the nickel porous substrate is not particularly limited.
  • the plasma spraying method is a preferable method.
  • the coating layer (catalyst layer) obtained by the plasma spraying method is porous, has high strength, and exhibits high adhesion to the substrate.
  • the raw material of the plasma spraying method is preferably a metal or metal oxide powder.
  • metal oxide powder When metal oxide powder is used as a raw material, it can also be prepared by spray drying.
  • a metal oxide powder having an average particle size of 0.2 ⁇ m to 5.0 ⁇ m (for example, 1.0 to 5.0 ⁇ m, may be 0.2 to 2 ⁇ m) is granulated by a spray drying granulator, Metal oxide particles having an average particle diameter of 5 to 100 ⁇ m (for example, 10 to 100 ⁇ m and may be 5 to 50 ⁇ m) are obtained.
  • the metal oxide particles are blown into a high-temperature gas such as plasma gas, melted, and blown onto a substrate such as a nickel porous substrate.
  • the substrate is coated with a molten metal oxide. Even if the particle size of the metal oxide before granulation is too large or too small, the required pore diameter, specific surface area, and pore capacity cannot be obtained when the electrode is formed.
  • the average particle size of the metal oxide powder before granulation is preferably 0.2 to 5.0 ⁇ m, and more preferably 0.2 to 2.0 ⁇ m.
  • the metal or metal oxide powder used as the raw material for the plasma spraying method contains at least nickel and cobalt.
  • Nickel oxide and cobalt oxide may be sufficient as nickel and cobalt.
  • Other materials may be added to the raw material.
  • Other materials include powders of at least one metal or metal oxide selected from the group consisting of titanium, chromium, molybdenum, cobalt, manganese, iron, tantalum, zirconium, aluminum, zinc, platinum group and rare earth elements, etc. Can be mentioned.
  • at least one additive selected from the group consisting of gum arabic, carboxymethyl cellulose and sodium lauryl sulfate may be mixed with the nickel oxide particles before being sprayed onto the conductive substrate.
  • the thermal spray raw material is melted with the combustion heat of combustible gas such as acetylene and oxygen, the thermal spray raw material used for the thermal spraying method is processed into a rod shape, and the molten material is combusted with the heat of combustible gas combustion.
  • a method of spraying with a gas a method of melting a thermal spray raw material with a plasma gas obtained by heating a gas such as argon, hydrogen, nitrogen, helium, or a mixture thereof.
  • a plasma spraying method is preferable in which a gas in which hydrogen is mixed with nitrogen or argon is turned into plasma, and the thermal spray material is melted with plasma.
  • the velocity of the plasma gas is large enough to exceed the speed of sound, and the gas temperature is 5000 ° C. or higher. Therefore, the thermal spray raw material having a high melting point can be melted, and the melted thermal spray raw material can be attached to the substrate at a high speed. As a result, a dense and strong coating layer such as a nickel catalyst layer can be formed.
  • a coating layer such as a nickel catalyst layer having a thickness of 10 to 1000 ⁇ m can be formed in a relatively short time.
  • the pores formed between the particles of the melted raw material powder on the conductive substrate are denser than in the case of using other spraying methods.
  • pores can be formed in the coating layer such as a nickel catalyst layer.
  • the temperature at which the coating layer such as the nickel catalyst layer formed by the plasma spraying method is reduced with hydrogen is important. When the reduction temperature is too high, pores generated by reduction are crushed by heat, and the expected pores, specific surface area, and pore volume may not be obtained. If the reduction temperature is too low, the reduction of the metal oxide does not proceed.
  • the reduction temperature of the metal oxide layer with hydrogen is preferably 180 to 300 ° C., and particularly preferably 180 to 250 ° C.
  • a coating layer such as a nickel catalyst layer may be reduced by electrolysis.
  • FIG. 1 the side view about the whole of an example of the bipolar electrolytic cell containing the bipolar electrolytic cell provided with the anode for alkaline water electrolysis of this embodiment is shown.
  • FIG. 2 is a diagram of a zero gap structure of an example of a bipolar electrolytic cell including a bipolar electrolytic cell including an anode for alkaline water electrolysis according to the present embodiment (a cross-sectional view of a portion of a dashed square frame shown in FIG. 1). Show. As shown in FIGS.
  • the bipolar electrolytic cell 50 of this embodiment includes an anode 2 a, a cathode 2 c, a partition wall 1 that separates the anode 2 a and the cathode 2 c, and an outer frame 3 that borders the partition wall 1. It is preferable that it is a bipolar electrolyzer in which a plurality of elements 60 provided with are stacked with the diaphragm 4 interposed therebetween.
  • the electrolytic cell of this embodiment may be a monopolar type or a bipolar type, and is a bipolar type electrolytic cell for alkaline water electrolysis in which bipolar elements are stacked via a diaphragm. preferable.
  • the monopolar type is a method in which one or a plurality of elements are directly connected to a power source.
  • a cathode terminal element is provided with a diaphragm sandwiched between anodes of the elements arranged in parallel, and an anode terminal element with a diaphragm sandwiched between the cathodes.
  • Bipolar is one of the methods to connect a number of bipolar elements to a power supply.
  • bipolar elements with one side serving as an anode and one side serving as a cathode are arranged in the same direction and connected in series. Is the only way to connect to the power supply.
  • the bipolar electrolytic cell has a feature that the current of the power source can be reduced, and can produce a large amount of a compound, a predetermined substance, etc. in a short time by electrolysis. As long as the output of the power supply equipment is the same, the constant current and high voltage are cheaper and more compact, so the bipolar type is preferable to the single pole type industrially.
  • the bipolar electrolytic cell 50 is configured by stacking a necessary number of bipolar elements 60.
  • the bipolar electrolytic cell 50 has a fast head 51g, an insulating plate 51i, and an anode terminal element 51a arranged in order from one end, and further, an anode side gasket portion, a diaphragm 4, and a cathode side gasket portion.
  • the bipolar elements 60 are arranged in this order.
  • the bipolar element 60 is arranged so that the cathode 2c faces the anode terminal element 51a side.
  • the anode gasket to the bipolar element 60 are repeatedly arranged as many times as necessary for the design production volume.
  • the bipolar electrolytic cell 50 is formed into a single body by tightening the whole with a tie rod 51 r to form the bipolar electrolytic cell 50.
  • the arrangement constituting the bipolar electrolytic cell 50 can be arbitrarily selected from the anode side or the cathode side, and is not limited to the above-described order.
  • the bipolar element 60 is disposed between the anode terminal element 51a and the cathode terminal element 51c, and the diaphragm 4 is connected to the anode terminal element 51a and the bipolar terminal element. It is disposed between the element 60, between the adjacent bipolar elements 60, and between the bipolar element 60 and the cathode terminal element 51c.
  • the diaphragm 4 is in contact with the anode 2a and the cathode 2c to form a zero gap structure Z.
  • a portion between the partition walls 1 is referred to as an electrolysis cell 65.
  • the electrolysis cell 65 includes a diaphragm 4, a partition wall 1, an anode chamber 5a, and an anode 2a of one element, and a cathode 2c, a cathode chamber 5c, and a partition wall 1 of the other element.
  • the bipolar electrolysis cell of this embodiment preferably includes the alkaline water electrolysis anode of this embodiment.
  • the distance between the anode 2a and the cathode 2c (hereinafter also referred to as “distance between electrodes”) is made as small as possible so that it exists between the anode 2a and the cathode 2c. It is effective to eliminate the influence of electrolyte solution and bubbles.
  • the anode 2a and the diaphragm 4 are in contact with each other over the entire surface of the electrode, and the cathode 2c and the diaphragm 4 are in contact with each other, or the distance between the electrodes is almost the same as the thickness of the diaphragm 4 over the entire surface of the electrode.
  • a zero gap structure is employed that can maintain a gap between the anode 2a and the diaphragm 4 and between the cathode 2c and the diaphragm 4 with almost no gap.
  • an electrode chamber 5 through which the electrolytic solution passes is defined by the partition wall 1, the outer frame 3, and the diaphragm 4.
  • an arrangement mode of the header pipe which is a pipe for distributing or collecting the electrolytic solution, which is attached to the bipolar electrolytic cell 50 shown in FIGS. 1 and 2
  • an internal header type and an external header are used. There is a type, but in the present invention, any type may be adopted and is not particularly limited.
  • the partition wall 1 is preferably provided between the cathode 2c and the anode 2a and between the anode 2a and the cathode current collector 2r and / or between the cathode 2c and the anode current collector 2r.
  • the shape of the partition wall in the present embodiment may be a plate shape having a predetermined thickness, but is not particularly limited.
  • the size of the partition wall is not particularly limited, and may be appropriately designed according to the size of the electrode chamber.
  • a material for the partition wall As a material for the partition wall, a material having high conductivity is preferable from the viewpoint of achieving uniform power supply. From the viewpoint of alkali resistance and heat resistance, nickel, nickel alloy, mild steel, nickel alloy is plated with nickel. Is preferred.
  • the size of the cathode is not particularly limited and may be determined according to the size of the electrode chamber.
  • the length is 0.4 m to 4.0 m, the width is 0.4 m to 6.0 m, and the thickness is 0.00. It may be 1 mm to 3 mm.
  • the cathode in the bipolar electrolysis cell of this embodiment is a porous body in order to increase the surface area used for electrolysis and to efficiently remove gas generated by electrolysis from the electrode surface. Is more preferable.
  • the surface located opposite to the surface in contact with the electrode film penetrates. .
  • porous material examples include meshes such as plain weave and twill, punching metal, expanded metal, metal foam and the like.
  • the material of the base material is not particularly limited, but mild steel, stainless steel, nickel, and nickel-based alloy are preferable because of resistance to the use environment.
  • the cathode catalyst layer preferably has a high hydrogen generation capability, and nickel, cobalt, iron, platinum group elements, or the like can be used.
  • the catalyst layer can be formed as a single metal, a compound such as an oxide, a complex oxide or alloy composed of a plurality of metal elements, or a mixture thereof.
  • Raney nickel, Raney alloy consisting of a combination of a plurality of materials such as nickel and aluminum, nickel and tin, a porous coating produced by plasma spraying using nickel compounds and cobalt compounds as raw materials, nickel and cobalt Alloys and composite compounds with elements selected from iron, molybdenum, silver, copper, etc., metals and oxides of platinum group elements such as platinum and ruthenium with high hydrogen generating ability, and metals and oxides of these platinum group elements And other platinum group element compounds such as iridium and palladium, rare earth metal compounds such as lanthanum and cerium, and carbon materials such as graphene.
  • a plurality of the above materials may be stacked, or a plurality of the above materials may be mixed in the catalyst layer.
  • An organic substance such as a polymer material may be included in order to improve durability and adhesion to the substrate.
  • a method for forming a catalyst layer on a substrate As a method for forming a catalyst layer on a substrate, a plating method or a plasma spraying method, a thermal decomposition method in which heat is applied after applying a precursor layer solution on the substrate, a catalyst substance is mixed with a binder component, and the substrate is mixed. And a method such as a vacuum film formation method such as a sputtering method.
  • the reaction active points per unit area are reduced, so that a low overvoltage may not be obtained.
  • the specific surface area of the cathode is too large, the mechanical strength of the catalyst layer is lowered, and the durability may be lowered. Therefore, the present embodiment (e.g., the above-mentioned [1] to form such a [16])
  • a specific surface area of the cathode is 0.001 m 2 / g or more, is preferably from 1 m 2 / g, more preferably, 0. 005m 2 / g or more and 0.1m 2 / g or less.
  • the specific surface area of the cathode can be measured using, for example, the BET method.
  • the measurement sample is put in a dedicated cell, and pretreatment is performed by heating and evacuating to remove the adsorbate on the pore surface in advance. Thereafter, an adsorption / desorption isotherm of gas adsorption on the measurement sample is measured at -196 ° C.
  • the specific surface area of the measurement sample can be obtained.
  • the area used for electrolysis on the electrode surface can be determined in a pseudo manner by measuring the capacity of the electric double layer formed at the interface between the electrode and the electrolytic solution.
  • the double layer capacity can be measured by, for example, the electrochemical impedance method.
  • the double layer capacitance is calculated by analyzing the Cole-Cole plot obtained by plotting the real part and the imaginary part obtained by the AC impedance measurement by equivalent circuit fitting.
  • the film resistance of the electrode is too high, the overvoltage increases when electrolysis is performed under a condition where the current density is high in order to obtain high energy efficiency. Therefore, the film resistance is preferably 2 ⁇ ⁇ cm 2 or less, more preferably 0.5 ⁇ . ⁇ cm 2 or less.
  • the film resistance can be measured by, for example, the electrochemical impedance method. The film resistance is calculated by analyzing the Cole-Cole plot obtained by plotting the real part and the imaginary part obtained by the AC impedance measurement by equivalent circuit fitting.
  • the shape of the outer frame 3 in the bipolar electrolysis cell of the present embodiment is not particularly limited as long as the partition wall 1 can be bordered, but the inner surface along the direction perpendicular to the plane of the partition wall 1 extends outward from the partition wall 1. It is good also as a shape provided over.
  • the shape of the outer frame is not particularly limited, and may be appropriately determined according to the shape of the partition in plan view.
  • the dimension of the outer frame is not particularly limited and may be designed according to the outer dimension of the electrode chamber.
  • the material of the outer frame a material having conductivity is preferable, and nickel, nickel alloy, mild steel, or nickel alloy plated with nickel is preferable in terms of alkali resistance and heat resistance.
  • the diaphragm 4 used in the bipolar electrolysis cell 65 of the present embodiment is not particularly limited as long as it is a film that can isolate generated hydrogen gas and oxygen gas while conducting ions, and is not particularly limited.
  • An ion permeable membrane such as a membrane is used.
  • a porous film is particularly preferably used.
  • the porous membrane has a plurality of fine through-holes, and has a structure that allows electrolyte to pass through the diaphragm.
  • Control of the porous structure such as pore diameter, porosity, and hydrophilicity is very important because ionic conduction is manifested when the electrolytic solution penetrates into the porous membrane.
  • the porous membrane has a plurality of fine through holes, and examples thereof include a polymer porous membrane, an inorganic porous membrane, a woven fabric, and a nonwoven fabric. These can be produced by a known technique. Examples of the production method of the polymer porous membrane include a phase conversion method (microphase separation method), an extraction method, a stretching method, a wet gel stretching method and the like. Examples of the method for producing the inorganic porous membrane include a sintering method.
  • the porous membrane preferably contains a polymer material and hydrophilic inorganic particles, and the presence of the hydrophilic inorganic particles can impart hydrophilicity to the porous membrane.
  • polysulfone examples include polysulfone, polyethersulfone, polyphenylsulfone, polyvinylidene fluoride, polycarbonate, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene / ethylene copolymer, and polyvinylidene fluoride.
  • polysulfone polyethersulfone, polyphenylsulfone, polyphenylene sulfide, and polytetrafluoroethylene are preferable, and polysulfone is more preferable. These may be used alone or in combination of two or more.
  • polysulfone By using polysulfone, polyethersulfone, or polyphenylsulfone as the polymer material, resistance to high-temperature, high-concentration alkaline solutions is further improved.
  • the diaphragm can be more easily formed.
  • the pore diameter can be controlled with higher accuracy.
  • Polysulfone, polyethersulfone, and polyphenylsulfone may be subjected to crosslinking treatment.
  • the weight average molecular weight of the polysulfone, polyethersulfone and polyphenylsulfone subjected to such crosslinking treatment is preferably 40,000 to 150,000 in terms of standard polystyrene equivalent weight average molecular weight.
  • the method for the crosslinking treatment is not particularly limited, and examples thereof include crosslinking by irradiation with radiation such as electron beams and ⁇ rays and thermal crosslinking using a crosslinking agent.
  • the weight average molecular weight of standard polystyrene conversion can be measured by GPC.
  • polysulfone examples include “Ultrason S PSU (registered trademark, the same applies hereinafter)” manufactured by BASF, “Udel (registered trademark)” manufactured by Solvay Advanced Polymers, and the like.
  • polyether sulfone examples include “Ultrason E PES (registered trademark)” manufactured by BASF, “Radel A (registered trademark)” manufactured by Solvay Advanced Polymers, and the like.
  • polyphenylsulfone examples include “Ultrason P PPSU (registered trademark, the same applies hereinafter)” manufactured by BASF, “Radel R (registered trademark)” manufactured by Solvay Advanced Polymers, and the like.
  • polyphenylene sulfide examples include “Torelina (registered trademark)” manufactured by Toray Industries, Inc.
  • polytetrafluoroethylene examples include “Teflon (registered trademark)” manufactured by Mitsui DuPont Fluorochemical Co., Ltd., “Polyflon (registered trademark)” manufactured by Daikin, and “Furoon (registered trademark)” manufactured by Asahi Glass.
  • the pore diameter of the porous membrane it is preferable to control the pore diameter of the porous membrane in order to obtain appropriate membrane properties such as separation ability and strength. Further, when used for alkaline water electrolysis, it is preferable to control the pore diameter of the porous membrane from the viewpoint of preventing mixing of oxygen gas generated from the anode and hydrogen gas generated from the cathode and reducing voltage loss in electrolysis. .
  • the larger the average water-permeable pore diameter of the porous membrane the larger the amount of porous membrane permeation per unit area. In particular, in electrolysis, the porous membrane has better ion permeability and tends to reduce voltage loss. .
  • the average water-permeable pore diameter is 0.1 ⁇ m or more and 1.0 ⁇ m or less, and / or the maximum pore diameter is greater than 0.1 ⁇ m and 2.0 ⁇ m or less.
  • a range is preferable. If the pore diameter is within this range, the porous membrane can achieve both excellent gas barrier properties and high ion permeability.
  • the pore diameter of the porous membrane is preferably controlled in the temperature range in which it is actually used. Therefore, for example, when used as a diaphragm for electrolysis in an environment of 90 ° C., it is preferable to satisfy the above pore diameter range at 90 ° C.
  • the porous membrane has an average water-permeable pore diameter of 0.1 ⁇ m or more and 0.5 ⁇ m or less and / or a maximum pore diameter as a range capable of exhibiting better gas barrier properties and high ion permeability as a diaphragm for alkaline water electrolysis. Is more preferably 0.5 ⁇ m or more and 1.8 ⁇ m or less.
  • the average water-permeable pore diameter and the maximum pore diameter of the porous membrane can be measured by the following method.
  • the average water-permeable pore diameter of the porous membrane means an average water-permeable pore size measured by the following method using an integrity tester (“Sartochcheck Junior BP-Plus” manufactured by Sartorius Stedim Japan).
  • an integrity tester (“Sartochcheck Junior BP-Plus” manufactured by Sartorius Stedim Japan).
  • the porous membrane is cut into a predetermined size including the core material, and this is used as a sample. This sample is set in an arbitrary pressure vessel, and the inside of the vessel is filled with pure water.
  • the pressure vessel is held in a thermostat set at a predetermined temperature, and measurement is started after the pressure vessel reaches a predetermined temperature (for example, 90 ° C.).
  • the average water permeable pore diameter can be obtained from the following Hagen-Poiseuille equation using a gradient between a pressure between 10 kPa and 30 kPa and a water flow rate.
  • Average water-permeable pore diameter (m) ⁇ 32 ⁇ L ⁇ 0 / ( ⁇ P) ⁇ 0.5
  • is the viscosity of water (Pa ⁇ s)
  • L is the thickness (m) of the porous membrane
  • ⁇ 0 is the apparent flow velocity
  • ⁇ 0 (m / s) flow rate (m 3 / s) / It is a channel area (m 2 ).
  • is the porosity and P is the pressure (Pa).
  • the maximum pore diameter of the porous membrane can be measured by the following method using an integrity tester ("Sartochcheck Junior BP-Plus” manufactured by Sartorius Stedim Japan).
  • an integrity tester (“Sartochcheck Junior BP-Plus” manufactured by Sartorius Stedim Japan).
  • the porous membrane is cut into a predetermined size including the core material, and this is used as a sample.
  • This sample is wetted with pure water, impregnated with pure water in the pores of the porous membrane, and set in a pressure-resistant container for measurement.
  • the pressure vessel is held in a thermostatic chamber set at a predetermined temperature, and measurement is started after the pressure vessel reaches a predetermined temperature.
  • the upper surface side of the sample is pressurized with nitrogen, and the nitrogen pressure when bubbles are continuously generated from the lower surface side of the sample is defined as a bubble point pressure.
  • the maximum pore diameter can be obtained from the following bubble point equation obtained by modifying the Young-Laplace equation.
  • Maximum pore diameter (m) 4 ⁇ cos ⁇ / P
  • is the surface tension (N / m) of water
  • cos ⁇ is the contact angle (rad) of water with the porous membrane surface
  • P is the bubble point pressure (Pa).
  • the average pore diameter on the surface is preferably 0.5 ⁇ m or more and 5 ⁇ m or less, and more preferably 1 ⁇ m or more and 3 ⁇ m or less.
  • the average pore diameter on the surface can be obtained, for example, by binarizing an SEM image of the porous membrane surface using image analysis software.
  • Examples of a method for controlling the pore diameter of the porous membrane include a method for producing a porous membrane.
  • the thickness of the porous film is not particularly limited, but is preferably 60 ⁇ m or more and 700 ⁇ m or less, and more preferably 200 ⁇ m or more and 700 ⁇ m or less. If the thickness of the porous membrane is 250 ⁇ m or more, further excellent gas barrier properties can be obtained, and the strength of the porous membrane against impact can be further improved. From this viewpoint, the lower limit of the thickness of the porous membrane is more preferably 300 ⁇ m or more, further preferably 350 ⁇ m or more, and even more preferably 400 ⁇ m or more.
  • the thickness of the porous membrane is 700 ⁇ m or less, the ion permeability is hardly hindered by the resistance of the electrolytic solution contained in the pores during operation, and more excellent ion permeability can be maintained.
  • the upper limit of the thickness of the porous film is more preferably 600 ⁇ m or less, further preferably 550 ⁇ m or less, and further preferably 500 ⁇ m or less.
  • the polymer resin contains at least one selected from the group consisting of polysulfone, polyethersulfone and polyphenylsulfone, this effect is further improved.
  • the porous membrane preferably contains hydrophilic inorganic particles in order to exhibit high ion permeability and high gas barrier properties.
  • the hydrophilic inorganic particles may be attached to the surface of the porous membrane, or a part thereof may be embedded in a polymer material constituting the porous membrane. Further, when the hydrophilic inorganic particles are included (embedded) in the voids of the porous film, it becomes difficult to detach from the porous film, and the performance of the porous film can be maintained for a long time.
  • hydrophilic inorganic particles include oxides or hydroxides of zirconium, nickel, cobalt, bismuth, cerium, etc .; oxides of group IV elements of the periodic table; nitrides of group IV elements of the periodic table; and Examples include at least one inorganic substance selected from the group consisting of carbides of Group IV elements of the Periodic Table.
  • oxides or hydroxides of zirconium, nickel, cobalt, bismuth, cerium, and oxides of Group IV elements of the periodic table are more preferable, zirconium, nickel, cobalt, bismuth.
  • cerium oxide is more preferable.
  • zirconium oxide having particularly excellent hydrophilicity is more preferably used.
  • the particle surface of the hydrophilic inorganic particles is polar. Considering the affinity between oxygen molecules and hydrogen molecules with a small polarity and water molecules with a large polarity in an electrolyte solution that is an aqueous solution, water molecules with a large polarity are more easily adsorbed to hydrophilic inorganic particles. Conceivable. Therefore, when such hydrophilic inorganic particles are present on the film surface, water molecules are preferentially adsorbed on the film surface, and bubbles such as oxygen molecules and hydrogen molecules are not adsorbed on the film surface. As a result, it is possible to effectively suppress the adhesion of bubbles to the surface of the diaphragm (for example, a porous film). However, the effect of this embodiment is not limited to these.
  • nickel atoms such as nickel oxide and cobalt oxide, which are hydrophilic and particularly excellent in chemical stability.
  • a compound containing a cobalt atom may be further contained.
  • a compound containing nickel atoms and / or cobalt atoms is porous as precipitates because nickel atoms and cobalt atoms contained in the constituent materials of elements such as electrodes and current collectors are in contact with the electrolytic solution in a trace amount. It may adhere to the diaphragm such as the membrane surface.
  • the total of the nickel atom concentration and the cobalt atom concentration on the surface of the diaphragm is preferably 0.01 to 1.0 atom%. More preferred is 0.02 to 1.0 atomic%, and further preferred is 0.05 to 0.08 atomic%.
  • the nickel atom concentration and the cobalt atom concentration on the surface of the diaphragm or the porous film can be obtained by analyzing the surface of the dried diaphragm or the porous film using a fluorescent X-ray method.
  • the surface concentration of nickel and cobalt may be a surface concentration after electrolysis, or may be a surface concentration after electrolysis under the conditions described in Example 9 and Comparative Example 5 described later.
  • the total of the nickel atom concentration and the cobalt atom concentration only needs to satisfy the above range on at least one surface of the diaphragm, and both surfaces may satisfy the above range, or one surface may satisfy the above range. May be. Especially, it is preferable that the anode side surface satisfy
  • the porous membrane When a porous membrane is used as the diaphragm, the porous membrane may be used with a porous support.
  • the porous membrane has a structure in which a porous support is contained, and more preferably, the porous membrane is laminated on both sides of the porous support.
  • stacked the porous film symmetrically on both surfaces of the porous support body may be sufficient.
  • the diaphragm is preferably a porous film having a thickness of 60 ⁇ m or more and 600 ⁇ m or less.
  • the thickness of the diaphragm is more preferably 100 ⁇ m or more and 500 ⁇ m or less, and still more preferably 300 ⁇ m or more and 500 ⁇ m or less.
  • a spring as the elastic body 2e is disposed between the electrode 2 and the partition wall 1 as a means for reducing the distance between the electrodes, and the electrode is supported by this spring.
  • a spring made of a conductive material may be attached to the partition wall 1 and the electrode 2 may be attached to this spring.
  • a spring may be attached to the electrode rib 6 attached to the partition wall 1, and the electrode 2 may be attached to the spring.
  • the structure has little deformation even when pressed. .
  • the electrode supported via the elastic body has a flexible structure that deforms when the diaphragm is pressed, thereby absorbing the tolerance in electrolytic cell manufacturing accuracy and unevenness due to electrode deformation, etc., and zero gap The structure can be kept.
  • Examples of the zero gap structure Z include a zero gap structure formed between the anode terminal element 51a and the element, between the elements, and between the element and the cathode terminal element 51c.
  • a conductive elastic body 2e and a cathode current collector 2r are provided between the cathode 2c and the partition wall 1 as a conductive elastic body. 2e is preferably provided so as to be sandwiched between the cathode 2c and the cathode current collector 2r. Further, the cathode current collector 2r is preferably in contact with the rib 6 of the cathode.
  • the anode rib 6 and the anode 2 a are stacked in this order on the anode 2 a side of the partition wall 1.
  • a bipolar element 60 in which a cathode rib 6, a cathode current collector 2r, a conductive elastic body 2e, and a cathode 2c are stacked in this order on the cathode 2c side is stacked with the diaphragm 4 interposed therebetween.
  • the diaphragm 4 is the anode 2a.
  • a structure in contact with the cathode 2c is preferable.
  • the current collector examples include a cathode current collector and an anode current collector.
  • the current collector has a role of transmitting electricity to the conductive elastic body and the electrode laminated thereon, supporting a load received from them, and allowing gas generated from the electrode to pass through the partition wall without any trouble.
  • the shape of the current collector is preferably an expanded metal or a punched perforated plate.
  • the aperture ratio of the current collector is preferably within a range in which hydrogen gas generated from the electrode can be extracted to the partition wall side without hindrance. However, if the aperture ratio is too large, the strength may decrease or the conductivity to the conductive elastic body may decrease, and if it is too small, the outgassing may deteriorate.
  • Nickel, nickel alloy, stainless steel, mild steel, etc. can be used as the material of the current collector from the viewpoint of conductivity and alkali resistance, but nickel or mild steel or stainless steel nickel alloy was plated on nickel from the viewpoint of corrosion resistance. Those are preferred.
  • the conductive elastic body is between the current collector and the electrode and is in contact with the current collector and the electrode, and it is an essential requirement to transmit electricity to the electrode and not to inhibit diffusion of gas generated from the electrode. This is because by inhibiting the diffusion of the gas, the electrical resistance increases, and the electrode area used for electrolysis decreases, so that the electrolysis efficiency decreases. The most important role is to bring the diaphragm and the electrode into close contact with each other by applying an appropriate pressure to the electrode so as not to damage the diaphragm.
  • an electrode chamber 5 through which an electrolytic solution passes is defined by the partition wall 1, the outer frame 3, and the diaphragm 4.
  • the electrode chamber 5 on the anode side is the anode chamber 5a
  • the electrode chamber 5 on the cathode side is the cathode chamber 5c.
  • the rib 6 is physically connected to the electrode 2. According to such a configuration, the rib 6 serves as a support for the electrode 2 and the zero gap structure Z is easily maintained.
  • the rib 6 is preferably electrically connected to the partition wall 1.
  • the bipolar electrolytic cell for alkaline water electrolysis of the above example employs a structure in which the cathode rib, cathode current collector, conductive elastic body, and cathode are stacked in this order in the cathode chamber, and the anode rib in the anode chamber. -A structure in which the anodes are stacked in this order is adopted.
  • the present invention is not limited to this, and the structure of “anode rib—anode current collector—conductive elastic body—anode” may also be adopted in the anode chamber.
  • the ribs (anode rib and cathode rib) have not only a role of supporting the anode or cathode but also a role of transmitting current from the partition wall to the anode or cathode.
  • a conductive metal is generally used.
  • mild steel plated with nickel, stainless steel, nickel or the like can be used.
  • the material of the rib is preferably the same material as that of the partition walls, and most preferably nickel.
  • the gasket 7 is sandwiched together with the diaphragm 4 between the outer frames 3 bordering the partition wall 1.
  • the gasket 7 is used for sealing between the bipolar element 60 and the diaphragm 4 and between the bipolar element 60 against the electrolytic solution and the generated gas, and leakage of the electrolytic solution and the generated gas to the outside of the electrolytic cell. And gas mixing between the polar chambers can be prevented.
  • the general structure of the gasket is a quadrangular or annular shape in which the electrode surface is hollowed out according to the surface of the element (bipolar element, anode terminal element, cathode terminal element, etc.) in contact with the frame.
  • the diaphragm can be stacked between the elements in such a manner that the diaphragm is sandwiched between two such gaskets.
  • the gasket preferably includes a slit portion capable of accommodating the diaphragm so that the diaphragm can be held, and an opening that allows the accommodated diaphragm to be exposed on both surfaces of the gasket.
  • the gasket has a structure in which the edge portion of the diaphragm is accommodated in the slit portion and the end surface of the edge portion of the diaphragm is covered. Therefore, it can prevent more reliably that electrolyte solution and gas leak from the end surface of a diaphragm.
  • the material of the gasket is not particularly limited, and a known rubber material or resin material having insulating properties can be selected.
  • rubber materials and resin materials include natural rubber (NR), styrene butadiene rubber (SBR), chloroprene rubber (CR), butadiene rubber (BR), acrylonitrile-butadiene rubber (NBR), and silicone rubber (SR). ), Ethylene-propylene rubber (EPT), ethylene-propylene-diene rubber (EPDM), fluorine rubber (FR), isobutylene-isoprene rubber (IIR), urethane rubber (UR), chlorosulfonated polyethylene rubber (CSM), etc.
  • NR natural rubber
  • SBR styrene butadiene rubber
  • CR chloroprene rubber
  • BR butadiene rubber
  • NBR acrylonitrile-butadiene rubber
  • silicone rubber silicone rubber
  • EPT Ethylene-propylene rubber
  • EPDM ethylene-propy
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer
  • ETFE tetrafluoroethylene / ethylene copolymer
  • ECTFE chlorotrifluoroethylene / ethylene copolymer
  • a resin material polyphenylene sulfide (PPS)
  • PPS polyphenylene sulfide
  • EPDM ethylene-propylene-diene rubber
  • FR fluororubber
  • the electrolytic cell for alkaline water electrolysis preferably has a cathode chamber and an anode chamber for each electrolytic cell.
  • an electrolytic solution sufficiently containing raw materials consumed by electrolysis to the cathode chamber and the anode chamber of each electrolysis cell.
  • the electrolytic cell is connected to an electrolyte supply / discharge pipe called a header common to a plurality of electrolytic cells.
  • the anode liquid distribution pipe is called an anode inlet header
  • the cathode liquid distribution pipe is called a cathode inlet header
  • the anode liquid collection pipe is called an anode outlet header
  • the cathode liquid collection pipe is called a cathode outlet header.
  • the element is connected to each electrolyte distribution pipe and each electrolyte collection pipe through a hose or the like.
  • the material of the header is not particularly limited, but it is necessary to adopt a material that can sufficiently withstand the corrosiveness of the electrolyte used and the operating conditions such as pressure and temperature.
  • the header material may be iron, nickel, cobalt, PTFE, ETFE, PFA, polyvinyl chloride, polyethylene or the like.
  • the internal header type refers to a type in which a bipolar electrolytic cell and a header (a pipe for distributing or collecting an electrolytic solution) are integrated.
  • an anode inlet header and a cathode inlet header are provided in a part of the lower part of the outer frame at the edge of the partition wall, and similarly, the edge of the partition wall A part of the outer frame located above is provided with an anode outlet header and a cathode outlet header. Note that the outer frame and the anode chamber or the cathode chamber are connected to each other at an electrolyte inlet or an electrolyte outlet through which the electrolyte is passed.
  • the external header type is a type in which a bipolar electrolytic cell and a header (a pipe for distributing or collecting an electrolytic solution) are independent.
  • the external header type bipolar electrolytic cell is provided independently such that the anode inlet header and the cathode inlet header run parallel to the electrolytic cell in a direction perpendicular to the current-carrying surface of the electrolytic cell.
  • the anode inlet header, the cathode inlet header, and each element are connected by a hose.
  • the internal header type and external header type bipolar electrolytic cell may have a gas-liquid separation box for separating the gas generated by electrolysis and the electrolytic solution therein.
  • the attachment position of the gas-liquid separation box is not particularly limited, but it may be attached between the anode chamber and the anode outlet header or between the cathode chamber and the cathode outlet header.
  • a cathode chamber frame attached with a cathode and an anode chamber frame attached with an anode are arranged via a partition wall. That is, the anode chamber and the cathode chamber are divided by the partition walls.
  • the electrolytic solution is supplied to the anode chamber and the cathode chamber.
  • the electrolytic solution those generally used for water electrolysis can be used.
  • potassium hydroxide aqueous solution, sodium hydroxide aqueous solution, etc. are mentioned.
  • the electrolyte concentration is preferably 1N or more and 12N or less, and more preferably 6N or more and 10N or less.
  • the hydrogen production method of the present embodiment is a hydrogen production method in which water containing an alkali is electrolyzed in an electrolytic cell to produce hydrogen, the electrolytic cell having at least an anode and a cathode,
  • the anode is an anode in which a nickel catalyst layer containing 0.1 to 10 mol% of cobalt with respect to the total number of moles of nickel and cobalt and having a thickness of 50 to 800 ⁇ m is formed on the surface of the nickel porous substrate.
  • the peak intensity of the X-ray diffracted by the (111) plane of nickel in the nickel catalyst layer is I Ni
  • the peak intensity of the X-ray diffracted by the (012) plane of nickel oxide is I NiO
  • the value of [I NiO / (I Ni + I NiO)] ⁇ 100 is 0 or more and 15 or less
  • the specific surface area of the nickel catalyst layer 1.0 m 2 / g or more 10.0 m 2 / g or more The method below is preferred.
  • a variable power source can be used as the power source.
  • a fluctuating power source is a power source whose output fluctuates in units of several seconds to several minutes derived from a renewable energy power plant, unlike a power source that is stably output such as system power.
  • the method of renewable energy power generation is not particularly limited, and examples thereof include solar power generation and wind power generation.
  • the cationic electrolyte in the electrolytic solution moves from the anode chamber of the element through the diaphragm to the cathode chamber of the adjacent element, and the anionic electrolyte is the element.
  • the cathode chamber passes through the diaphragm and moves to the anode chamber of the adjacent element.
  • the current during electrolysis flows along the direction in which the elements are connected in series. That is, the current flows from the anode chamber of one element toward the cathode chamber of the adjacent element through the diaphragm. Along with the electrolysis, oxygen gas is generated in the anode chamber and hydrogen gas is generated in the cathode chamber.
  • the bipolar electrolysis cell 65 of the present embodiment (for example, the above-described forms [1] to [16]) can be used for the bipolar electrolyzer 50, the electrolyzer 70 for alkaline water electrolysis, and the like.
  • a liquid feed pump 71 for circulating the electrolytic solution, and the electrolytic solution and hydrogen and / or oxygen are separated. Examples include an apparatus having a gas-liquid separation tank 72 and a water replenisher for replenishing water consumed by electrolysis.
  • the electrolytic apparatus for alkaline water electrolysis may further include a rectifier 74, an oxygen concentration meter 75, a hydrogen concentration meter 76, a flow meter 77, a pressure gauge 78, a heat exchanger 79, a pressure control valve 80, and the like.
  • the current density applied to the electrolytic cell is preferably 4kA / m 2 ⁇ 20kA / m 2, in 6kA / m 2 ⁇ 15kA / m 2 More preferably it is.
  • the anode, the bipolar electrolysis cell, and the method for producing hydrogen according to the embodiment of the present invention have been described with reference to the drawings.
  • the anode, the bipolar electrolysis cell, and the method for producing hydrogen of the present invention are described above. It is not limited to this example, and the above embodiment can be modified as appropriate.
  • Example 1 99.25 parts by mass of nickel oxide powder having a particle size of 0.2-2 ⁇ m, 0.75 parts by mass of cobalt oxide having a particle size of 0.2-2 ⁇ m, 2.25 parts by mass of gum arabic, 0.7% of carboxymethyl cellulose
  • a suspension was prepared by mixing and stirring mass parts, 0.001 mass part of sodium lauryl sulfate, and 100 mass parts of water.
  • a spray drying granulator a granulated product having a particle size of 5 to 50 ⁇ m was prepared from the suspension.
  • the granulated material was sprayed on both sides of the nickel porous substrate by plasma spraying.
  • a nickel expanded metal having SW 3.0 mm, LW 4.5 mm, thickness 1.2 mm, and aperture ratio 54% was prepared and subjected to blasting.
  • a gas in which argon and nitrogen are mixed at a ratio of 1: 0.8 is used as a plasma gas.
  • This electrode was placed in a quartz tube. The quartz tube was inserted into a tubular furnace, the inside of the quartz tube was heated to 200 ° C., and a hydrogen stream was continuously supplied into the quartz tube for 2 hours, thereby reducing the catalyst layer.
  • an anode for water electrolysis in which a nickel catalyst layer containing cobalt was formed on the surface of the nickel porous substrate was obtained.
  • the thickness of the nickel catalyst layer was 220 ⁇ m.
  • Examples 2 to 8, Comparative Example 1, Comparative Example 3 An anode for water electrolysis was produced in the same manner as in Example 1 except that the granulated material prepared at the cobalt ratio shown in Table 1 was used and the thickness of the nickel catalyst layer was changed.
  • Example 2 The granulated molded product prepared in the same manner as in Example 1 was sprayed on both surfaces of the nickel porous substrate by plasma spraying.
  • a nickel expanded metal having SW 3.0 mm, LW 4.5 mm, thickness 1.2 mm, and open area ratio 54% was prepared and subjected to blasting to obtain an anode for water electrolysis.
  • a gas in which argon and nitrogen are mixed at a ratio of 1: 0.8 is used as a plasma gas.
  • the value obtained by multiplying the mass part of nickel by the molar mass of nickel 58.69 is (A), and the value obtained by multiplying the mass part of cobalt by the molar mass 58.93 of cobalt is (B).
  • the molar ratio of cobalt atoms to the total number of moles ( ⁇ B / (A + B) ⁇ ⁇ 100) (mol%) was determined.
  • the nickel catalyst layer peeled off from the nickel expanded metal substrate was placed in a sample pretreatment device vacuum prep made by Shimadzu Corporation.
  • the chamber in which the catalyst layer was installed was evacuated, and the catalyst layer was kept in a vacuum atmosphere at 80 ° C. for 2 hours to obtain a sample used for measuring the specific surface area.
  • the adsorption / desorption isotherm of the sample was measured by a constant volume gas adsorption method.
  • BJH Barrett-Joyner-Halenda
  • an automatic specific surface area / pore distribution measuring device “Tristar II 3020” manufactured by Shimadzu Corporation was used.
  • nitrogen gas was used as the adsorption gas
  • liquid nitrogen was used as the refrigerant.
  • the specific surface area of the pores at each pore size was integrated.
  • the specific surface area (unit: m 2 / g) of the first pore having a pore diameter in the range of 2 to 5 nm among the pores in the catalyst layer was determined.
  • the specific surface area (unit: m 2 / g) of the second pore having a pore diameter in the range of 0.01 to 2.00 ⁇ m among the pores in the catalyst layer was determined.
  • Pore volume The pore diameter in the nickel catalyst layer peeled from the nickel expanded metal substrate and the pore volume at each pore diameter were measured by a mercury intrusion method. For the measurement of the pore volume, an automatic porosimeter “Autopore 9520” manufactured by Shimadzu Corporation was used. The pore volume at each pore size was integrated. Thus, the pore volume (unit: ml / g) of the first pore having a pore diameter in the range of 2 to 5 nm among the pores in the catalyst layer was determined. In the same manner, the pore volume (unit: ml / g) of the second pore having a pore diameter in the range of 0.01 to 2.00 ⁇ m among the pores in the catalyst layer was determined.
  • the oxygen overvoltage of the anode was measured by the following procedure.
  • the test anode was cut into 2 cm ⁇ 2 cm, and fixed to a nickel rod covered with PTFE with a nickel screw.
  • a platinum mesh was used for the counter electrode, electrolysis was performed at 80 ° C. in a 32 wt% sodium hydroxide aqueous solution at a current density of 6 kA / m 2 , and the oxygen overvoltage was measured (measurement of initial overvoltage).
  • the oxygen overvoltage was measured by a three-electrode method using a Lugin tube to eliminate the effect of ohmic loss due to liquid resistance.
  • the distance between the tip of the Lugin tube and the anode was always fixed at 1 mm.
  • a potentogalvanostat “1470E system” manufactured by Solartron was used as an oxygen overvoltage measuring device.
  • Silver-silver chloride (Ag / AgCl) was used as a reference electrode for the three-electrode method.
  • the electrolyte resistance that could not be eliminated even by using the three-electrode method was measured by the AC impedance method, and the oxygen overvoltage was corrected based on the measured value of the electrolyte resistance.
  • the frequency characteristic analyzer “1255B” manufactured by Solartron the Cole-Cole plot in which the real part and the imaginary part are plotted is obtained, and then analyzed by equivalent circuit fitting. The volume was calculated.
  • the initial overvoltage of the example was lower than 240 mV, and a good overvoltage was obtained.
  • the oxygen overvoltage in Comparative Examples 1 and 2 was 240 mV or higher.
  • the oxygen overvoltage after the potential cycle test of the example was 310 mV or less, and good potential cycle resistance was confirmed.
  • Example 9 An electrolytic cell for alkaline water electrolysis and a bipolar electrolytic cell were prepared as follows.
  • Example 3 The anode produced in Example 3 was used.
  • a plain woven mesh base material in which nickel fine wires having a diameter of 0.15 mm were knitted with 40 mesh was used. Blasting was performed using alumina powder having a weight average particle size of 100 ⁇ m or less, and then acid treatment was performed in 6N hydrochloric acid at room temperature for 5 minutes, followed by washing with water and drying. Next, a palladium nitrate solution (Tanaka Kikinzoku, palladium concentration: 100 g / L) and a dinitrodiammine platinum nitric acid solution (Tanaka Kikinzoku, platinum concentration: 100 g / L) are prepared with a molar ratio of palladium to platinum of 1: 1. The first coating solution was prepared by mixing.
  • a chlorinated iridium acid solution (Tanaka Kikinzoku, iridium concentration: 100 g / L) and a dinitrodiammine platinum nitric acid solution (Tanaka Kikinzoku, platinum concentration: 100 g / L) are used, and the molar ratio of iridium and platinum is 0.73.
  • the second coating solution was applied, dried and thermally decomposed onto the substrate on which the first layer was formed by the roll method.
  • the drying temperature was 50 ° C.
  • the thermal decomposition temperature was 500 ° C. twice to form a second layer.
  • post-heating was performed at 500 ° C. for 1 hour in an air atmosphere to prepare a test cathode.
  • bipolar element an element including a partition wall for partitioning the anode and the cathode and an outer frame surrounding the partition wall was used.
  • the materials for the members in contact with the electrolyte such as the partition walls and the frame of the bipolar element were all nickel.
  • the conductive elastic body one obtained by corrugating a woven nickel wire having a wire diameter of 0.15 mm so as to have a wave height of 5 mm was used.
  • the thickness was 5 mm and the opening was about 5 mesh.
  • Polysulfone (“Udel” (registered trademark), manufactured by Solvay Advanced Polymers) and polyvinyl pyrrolidone (weight average molecular weight (Mw) 900,000, manufactured by Wako Pure Chemical Industries, Ltd.) are added to the mixture from which the balls have been separated, and 12 using a three-one motor. The mixture was dissolved by stirring for a time to obtain a coating solution having the following component composition.
  • Polysulfone 15 parts by mass Polyvinylpyrrolidone: 6 parts by mass N-methyl-2-pyrrolidone: 70 parts by mass Zirconium oxide: 45 parts by mass
  • the above coating liquid was used as a base material for polyphenylene sulfide mesh (manufactured by Kuraba Co., Ltd., film thickness)
  • the coating thickness was applied to both surfaces of 280 ⁇ m, openings 358 ⁇ m, and fiber diameter 150 ⁇ m using a comma coater so that the coating thickness was 150 ⁇ m on each side.
  • the substrate coated with the coating solution was stored with a 30 ° C.
  • the gasket is a rectangular shape with a thickness of 4.0 mm and a width of 18 mm and an inner size of 504 mm square, and has an opening on the inside having the same dimensions as the electrode chamber in plan view, and is a slit for holding by inserting a diaphragm. What has a structure was used.
  • the slit structure was a structure in which a gap of 0.4 mm was provided in the central portion in the thickness direction of the inner wall of the opening to hold it by inserting a partition wall.
  • This gasket was made of EPDM rubber and had a tensile stress of 4.0 MPa at 100% deformation.
  • the external header type zero gap type cell unit 60 was a rectangle of 540 mm ⁇ 620 mm, and the areas of the current-carrying surfaces of the anode 2a and the cathode 2c were 500 mm ⁇ 500 mm.
  • a cathode 2c, a conductive elastic body 2e, and a cathode current collector 2r are laminated, connected to the partition wall 1 through the cathode rib 6, and a cathode chamber 5c through which an electrolyte flows. There is.
  • anode chamber 5a in which the anode 2a is connected to the partition wall 1 through the anode rib 6 and the electrolytic solution flows (FIG. 2).
  • the depth of the anode chamber 5a is 25 mm
  • the depth of the cathode chamber 5c depth of the cathode chamber, distance between the partition walls and the cathode current collector in FIG. 2).
  • the thickness was 25 mm and the material was nickel.
  • the thickness of the nickel partition wall 1 in which the nickel anode rib 6 having a height of 25 mm and a thickness of 1.5 mm and the nickel cathode rib 6 having a height of 25 mm and a thickness of 1.5 mm were attached by welding was 2 mm.
  • As the cathode current collector 2r a nickel expanded substrate that had been previously blasted was used as the current collector.
  • the base material had a thickness of 1 mm and an aperture ratio of 54%.
  • the conductive elastic body 2e was fixed by spot welding on the cathode current collector 2r.
  • the zero gap structure Z in which the anode 2a and the cathode 2c are pressed against the diaphragm 4 can be formed by stacking the zero gap type bipolar element through a gasket holding the diaphragm.
  • the electrolyte solution was allowed to flow from the cathode chamber 5c to the cathode chamber 5c via the cathode inlet header and via the cathode outlet header.
  • the electrolyte solution was flowed from the anode chamber 5a to the anode chamber 5a via the anode inlet header via the anode outlet header. As shown in FIG.
  • the cathode electrolyte inlet is connected to one end of the lower side of the rectangular outer frame in plan view
  • the cathode electrolyte outlet is connected to the other end side of the lower side of the rectangular outer frame 3 in plan view.
  • the cathode electrolyte inlet and the cathode electrolyte outlet are provided so as to face each other across the central portion of the electrode chamber 5 of the electrode chamber 5 in the rectangular electrolytic chamber 5 in plan view.
  • the electrolyte flowed from below to above while inclining with respect to the vertical direction, and rose along the electrode surface (FIG. 3).
  • the electrolyte flows into the anode chamber 5a and the cathode chamber 5c from the electrolyte inlet of the anode chamber 5a and the cathode chamber 5c, and the electrolyte in the anode chamber 5a and the cathode chamber 5c. From the outlet, the electrolytic solution and the generated gas flow out of the electrolytic cell 50.
  • the cathode chamber 5c hydrogen gas is generated by electrolysis
  • oxygen gas is generated by electrolysis.
  • the bipolar electrolytic cell of Example 9 was produced by the following procedure.
  • a cathode terminal element was formed by attaching the cathode to a cathode terminal frame. What attached the said anode to the anode terminal frame was used as the anode terminal element.
  • Nine of the above bipolar elements were prepared.
  • the said cathode terminal element and the said anode terminal element were prepared one each. Gaskets were affixed to metal frame portions of all bipolar elements, cathode terminal elements, and anode terminal elements.
  • One of the diaphragms was sandwiched between the anode terminal element and the cathode side of the bipolar element.
  • Nine bipolar elements are arranged in series so that one anode side and the other cathode side of the adjacent bipolar elements face each other, and eight elements are arranged between adjacent bipolar elements.
  • Each of the diaphragms was sandwiched one by one to form a zero gap structure in which the cathode and the anode were pressed against the diaphragm.
  • one diaphragm A was sandwiched between the anode side of the ninth bipolar element and the cathode terminal element.
  • a fast electrode, an insulating plate, and a loose head were used, and these were clamped with a press to obtain a bipolar electrolytic cell.
  • Example 9 the 3-cell average overvoltage was 1.78 V at the initial overvoltage and 1.79 V after 1000 cycles, whereas in Comparative Example 4, the initial overvoltage was high and sufficiently low electrolysis efficiency was obtained. I could't.
  • Comparative Example 5 an increase in cell voltage was confirmed after the cycle test, and sufficient durability was not obtained. Therefore, it can be concluded that the anode of Example 9 has a low overvoltage and high durability, so that a low cell voltage can be maintained even during long-time operation.
  • elemental analysis was performed on the anode side surface of the diaphragm taken out from the electrolytic cell using a portable component analyzer Niton XL3t manufactured by Thermo Fisher Scientific.
  • Example 9 The average value of Co atom% measured at three points for each diaphragm was taken as the Co atom concentration. Similarly, the average value of Ni atom% was determined and used as the Ni atom concentration. As a result, in Example 9, the total of the nickel atom concentration and the cobalt atom concentration was 0.23 atomic% (Co 0.22 atomic%, Ni 0.01 atomic%), whereas in Comparative Example 5, It was 1.58 atomic% (Co 1.50 atomic%, Ni 0.08 atomic%). In Example 9, as a result of an appropriate amount of the cobalt compound adhering to the surface, the hydrophilicity of the porous film was increased, and the retention of bubbles generated by electrolysis on the film surface was suppressed. It is thought that is obtained.
  • Comparative Example 5 On the other hand, in Comparative Example 5, a large amount of cobalt compound adhered to the film surface, part of the holes were blocked, and the flow path of the electrolyte decreased, resulting in an increase compared to the cell voltage and the initial value. It is done. As a result of SEM-EDX analysis of the cross section of the diaphragm of Example 9, it was confirmed that Co atoms were present locally on the surface of the zirconium oxide particles.
  • the anode of this embodiment has a low oxygen generation potential in water electrolysis and exhibits high energy conversion efficiency. Therefore, it can be used as an anode for water electrolysis. In particular, it can be suitably used as an anode for water electrolysis using a fluctuating power source such as power generation by natural energy with unstable supply of wind power or sunlight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本発明の目的は、低い酸素過電圧を有し、かつ耐久性に優れたアルカリ水電解用陽極及びこのアルカリ水電解用陽極を含む複極式電解セルを提供することにある。本発明のアルカリ水電解用陽極は、ニッケルとコバルトの総モル数に対してコバルトを0.1モル%以上10モル%以下含み、厚みが50μm以上800μm以下であるニッケル触媒層がニッケル多孔基材表面に形成されたアルカリ水電解用陽極であって、前記ニッケル触媒層中のニッケルの(111)面によって回折されるX線のピーク強度をINi、酸化ニッケルの(012)面によって回折されるX線のピーク強度をINiOとしたとき、[INiO/(INi+INiO)]×100の値が0以上15以下であり、前記ニッケル触媒層の比表面積が1.0m2/g以上10.0m2/g以下であることを特徴とする。

Description

陽極、複極式電解セル、水素製造方法
 本発明は、陽極、及び該陽極を用いた複極式電解セル、水素製造方法に関する。
 近年、COによる地球温暖化、化石燃料の埋蔵量の減少等の問題を解決するために、風力や太陽光に代表される再生可能エネルギーの普及が進んでいる。しかしながら、再生可能エネルギーは気象条件の影響を大きく受けるため、供給が不安定という課題を抱えている。そこで、再生可能エネルギーを蓄える手法として、水の電気分解(水電解)技術を活用した水素の製造が注目されている。電気エネルギーを効率よく水素に変換することにより、大量なエネルギーの貯蓄あるいは運搬が容易になり、再生可能エネルギーのさらなる普及が期待される。
 水電解では、水に電流を流すことにより陽極において酸素が発生し、陰極において水素が発生する。電解における主なエネルギー損失の要因として、陽極及び陰極の過電圧が挙げられる。この過電圧を低減することで、効率よく水素を製造することが可能になる。特に陽極の過電圧は陰極の過電圧に比べて高く、陽極の過電圧を下げるための研究開発が広く進められている。
 アルカリ水電解において、酸素を発生させる陽極として必要な要件は、酸素発生の過電圧が低いこと以外に、NaOH又はKOH等を含むアルカリ水に曝される環境においても、陽極の基材及び触媒層の腐食、電解液への溶解等が起きにくいことが挙げられる。そのため、一般に陽極用の導電性基材としてはニッケル、ニッケル合金、ステンレススチール、又は鉄若しくはステンレススチールの表面にニッケルメッキを施したものが使われている。また陽極触媒(触媒層)としては、ルテニウムや白金等の貴金属、多孔質ニッケル、ニッケルを主成分とした酸化物等が用いられている。特に材料価格が比較的安価なことから、多孔質ニッケルまたはニッケルを主成分としたニッケル酸化物或いはニッケル水酸化物を用いることが多い。
 触媒層の主成分がニッケルである場合、比表面積の大きな触媒層を形成することで、過電圧を下げる試みが多くなされている。特許文献1には、金属酸化物の粉末を導電性基材に溶射することにより、比表面積の大きな触媒層を有する水電解用電極を得る手法が記載されている。また、特許文献2には、水電解用酸素発生に適した、比表面積の大きな多孔質のニッケル触媒層を有する陽極を用いたアルカリ水電解槽が記載されている。
特開昭57-82483号公報 国際公開第2013/191140号
 しかしながら、特許文献1に記載されている電極は水素発生用であり、酸素発生用の陽極、すなわち水電解用陽極に適した組成ではない。また、特許文献2に記載されている陽極は、自然エネルギーのような供給が不安定なエネルギー源を想定した電極ではなく、電解の停止や再開が頻繁に起こり得る長期間の電解への耐久性が必ずしも十分であるとは言えない。
 従って、本発明の目的は、低い酸素過電圧を有し、かつ耐久性に優れた陽極及びこの陽極を含む複極式電解セルを提供することにある。
 本発明者らは、上記課題を解決すべく鋭意研究し、実験を重ねた。その結果、ニッケル多孔基材の表面上に形成する触媒層の組成及び形態を制御することで、低い酸素過電圧と自然エネルギーのような供給が不安定なエネルギーを利用した電解に対しても高い耐久性とを有する陽極を見出し、本発明に至った。
 すなわち、本発明は、以下のとおりである。
[1]
 ニッケルとコバルトの総モル数に対してコバルトを0.1モル%以上10モル%以下含み、厚みが50μm以上800μm以下であるニッケル触媒層がニッケル多孔基材表面に形成された陽極であって、
 前記ニッケル触媒層中のニッケルの(111)面によって回折されるX線のピーク強度をINi、酸化ニッケルの(012)面によって回折されるX線のピーク強度をINiOとしたとき、[INiO/(INi+INiO)]×100の値が0以上15以下であり、
 前記ニッケル触媒層の比表面積が1.0m/g以上10.0m/g以下である、
ことを特徴とする陽極。
[2]
 ニッケルとコバルトの総モル数に対してコバルトを0.1モル%以上10モル%以下含み、厚みが50μm以上800μm以下であるニッケル触媒層がニッケル多孔基材表面に形成されたアルカリ水電解用陽極であって、
 前記ニッケル触媒層中のニッケルの(111)面によって回折されるX線のピーク強度をINi、酸化ニッケルの(012)面によって回折されるX線のピーク強度をINiOとしたとき、[INiO/(INi+INiO)]×100の値が0以上15以下であり、
 前記ニッケル触媒層の比表面積が1.0m/g以上10.0m/g以下である、
ことを特徴とするアルカリ水電解用陽極。
[3]
 前記ニッケル触媒層中に細孔が形成され、
 前記細孔のうち、孔径が2nm以上5nm以下である第一細孔の比表面積が0.6m/g以上2.0m/g以下であり、
 前記第一細孔の細孔容積が3×10-4ml/g以上9×10-4ml/g以下であり、
 前記細孔のうち、孔径が0.01μm以上2.00μm以下である第二細孔の比表面積が2.0m/g以上5.0m/g以下であり、
 前記細孔のうち、前記第二細孔の細孔容積が0.04ml/g以上0.2ml/g以下である、[1]又は[2]に記載の陽極。
[4]
 前記ニッケル触媒層において、ニッケルとコバルトの総モル数に対してコバルトを0.5モル%以上2モル%以下含む、[1]から[3]のいずれかに記載の陽極。
[5]
 電気二重層容量が0.3F/cm以上10.0F/cm以下である、[1]から[4]のいずれかに記載の陽極。
[6]
 前記ニッケル多孔基材の開口率が20%以上80%以下である、[1]から[5]のいずれかに記載の陽極。
[7]
 前記ニッケル多孔基材の厚みが0.2mm以上2.0mm以下である、[1]から[6]のいずれかに記載の陽極。
[8]
 前記ニッケル多孔基材がエキスパンドメタルである、[1]から[7]のいずれかに記載の陽極。
[9]
 前記エキスパンドメタルの寸法が、SWが2mm以上5mm以下であり、LWが3mm以上10mm以下である、[8]に記載の陽極。
[10]
 [1]から[9]のいずれかに記載の陽極を含むことを特徴とする複極式電解セル。
[11]
 前記陽極と陰極とが、隔膜を挟んで重ね合わされ、前記隔膜が、表面の平均孔径が0.5μm以上5μm以下の多孔質膜である、[10]に記載の複極式電解セル。
[12]
 前記隔膜が、親水性無機粒子が包埋されている多孔質膜である、[11]に記載の複極式電解セル。
[13]
 前記親水性無機粒子が酸化ジルコニウムである、[12]に記載の複極式電解セル。
[14]
 前記親水性無機粒子が、酸化ジルコニウム、並びにニッケル原子及び/又はコバルト原子を含む化合物を含む、[12]に記載の複極式電解セル。
[15]
 前記隔膜の少なくとも一方の表面を、蛍光X線法を用いて解析した際の、ニッケル原子濃度とコバルト原子濃度との合計が、0.01原子%以上1.0原子%以下である、[12]から[14]の何れかに記載の複極式電解セル。
[16]
 アルカリを含有する水を電解槽により水電解し、水素を製造する水素製造方法であって、
 前記電解槽は、少なくとも陽極と陰極とを有し、
 前記陽極は、ニッケルとコバルトの総モル数に対してコバルトを0.1モル%以上10モル%以下含み、厚みが50μm以上800μm以下であるニッケル触媒層がニッケル多孔基材表面に形成された陽極であって、
 前記ニッケル触媒層中のニッケルの(111)面によって回折されるX線のピーク強度をINi、酸化ニッケルの(012)面によって回折されるX線のピーク強度をINiOとしたとき、[INiO/(INi+INiO)]×100の値が0以上15以下であり、
 前記ニッケル触媒層の比表面積が1.0m/g以上10.0m/g以下である、
ことを特徴とする水素製造方法。
 本発明によれば、低い酸素過電圧を有し、かつ耐久性に優れた陽極及びこの陽極を含む複極式電解セルを得られる。
本実施形態のアルカリ水電解用陽極を備える複極式電解セルを含む複極式電解槽の一例の全体について示す側面図である。 本実施形態のアルカリ水電解用陽極を備える複極式電解セルを含む複極式電解槽の、図1の破線四角枠の部分の電解セル内部の断面を示す図である。 実施例、比較例で用いた電解装置の概要を示す図である。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。なお、以下の本実施形態は本発明を説明するための例示であり、本発明を限定する趣旨ではない。また、本発明は、その要旨を逸脱しない限り、さまざまな変形が可能である。
(アルカリ水電解用陽極)
 本実施形態のアルカリ水電解用陽極は、ニッケルとコバルトの総モル数に対してコバルトを0.1モル%以上10モル%以下含み、厚みが50μm以上800μm以下であるニッケル触媒層がニッケル多孔基材表面に形成され、上記ニッケル触媒層中のニッケルの(111)面によって回折されるX線のピーク強度をINi、酸化ニッケルの(012)面によって回折されるX線のピーク強度をINiOとしたとき、[INiO/(INi+INiO)]×100の値が0以上15以下であり、上記ニッケル触媒層の比表面積が1.0m/g以上10.0m/g以下である。
 本実施形態のアルカリ水電解用陽極は、ニッケル触媒層の比表面積が大きいために過電圧が低い。ニッケル触媒層が多孔質であると、過電圧を一層低くすることができる。また、ニッケル触媒層中に適量のコバルトが含まれるために、初期性能及び耐久性に優れる。さらに、コバルトが適量であるため、隔膜への吸着を抑制でき、電解セルの電圧が上昇しにくい。
 本実施形態(例えば、上記[1]~[16]の形態等)において、アルカリ水電解用陽極は、少なくとも、ニッケル多孔基材の表面上の一部または全部に、コバルトを含むニッケル触媒層を有しているものである。上記ニッケル触媒層は、ニッケル多孔基材の片面に設けられていてもよいし、両面に設けられていてもよい。
 本実施形態(例えば、上記[1]~[16]の形態等)において、ニッケル多孔基材とは、ニッケルまたはニッケルを主成分とした材料で構成される、多数の孔を有する板状基材である。ニッケルを主成分とした材料としては、例えば、モネル、インコネル、ハステロイなどのニッケル基合金が挙げられる。具体的な形状としては、エキスパンドメタル、パンチングメタル、平織メッシュ、発泡金属、又はこれらに類似する形状が挙げられ、エキスパンドメタルが好ましい。
 本実施形態(例えば、上記[1]~[16]の形態等)において、ニッケル多孔基材の材質は、ニッケルまたはニッケルを主成分とした材料であることが好ましい。ニッケルまたはニッケルを主成分とした材料は、アルカリ水溶液中の酸素発生電位においても溶解されず、貴金属と比較して安価に入手できる金属であるため、耐久性、導電性及び経済性の点で好ましい。
 本実施形態(例えば、上記[1]~[16]の形態等)において、ニッケル多孔基材としては、ニッケルまたはニッケルを主成分とした材料からなるエキスパンドメタルが好ましく、寸法は特に制限されないが、電解表面積増加によるガス発生量の増加と、電解により発生するガスの電極表面からの効率的な除去を両立させるため、また、機械的強度の観点から、メッシュの短目方向の中心間距離(SW)は2mm以上5mm以下であることが好ましく、より好ましくは3mm以上4mm以下である。また、メッシュの長目方向の中心間距離(LW)は3mm以上10mm以下であることが好ましく、より好ましくは4mm以上6mm以下である。また、厚みは0.2mm以上2.0mm以下であることが好ましく、より好ましくは0.8mm以上1.5mm以下である。また、開口率は、20%以上80%以下であることが好ましく、より好ましくは40%以上60%以下である。
 上記SW、LW、厚み、開口率の範囲は、本発明の効果を好適に得るうえで、それぞれ個別に選択されてもよい。
 本実施形態(例えば、上記[1]~[16]の形態等)において、上記ニッケル触媒層は、ニッケルを主成分として構成されるが、他の元素を含んでもよい。ニッケルは、アルカリ水溶液中の酸素発生電位においても溶解されず、貴金属と比較して安価に入手できる金属であるため、耐久性、導電性及び経済性の点で好ましい。ニッケル触媒層中のニッケル原子及びコバルト原子の総モル数に対するニッケル原子のモル割合は、75モル%以上であることが好ましく、より好ましくは85%以上である。また、99.9モル%以下であることが好ましく、より好ましくは99.5モル%以下である。
 ニッケルは導電性の観点から金属状態で存在することが好ましいが、ニッケル酸化物や、他の元素との合金や複合酸化物、または水酸化物や、硫化物やリン化物といった他の化合物が含まれていてもよい。
 ここで、本明細書において、「主成分」とは、層全体の質量(100質量%)に対して、該成分を80質量%以上(好ましくは85質量%以上)含むことをいう。
 本実施形態において、上記ニッケル触媒層中のニッケル原子及びコバルト原子の総モル数に対する、コバルト原子のモル割合が0.1モル%以上10モル%以下であることが一つの特徴である。本実施形態(例えば、上記[1]~[16]の形態等)において、上記ニッケル触媒層中のコバルト原子のモル割合は、好ましくは0.1モル%以上5モル%以下、より好ましくは0.5モル%以上2モル%以下である。
 ニッケル触媒層中のニッケル原子及びコバルト原子の総モル数に対する、ニッケル原子のモル割合又はコバルト原子のモル割合は、後述の実施例に記載の方法により測定することができる。
 上記ニッケル触媒層中に含まれるコバルトの存在状態は限定されず、金属コバルトやコバルト酸化物といった状態でよい。
 本実施形態において、ニッケル触媒層に電子導電性の高いコバルト化合物がニッケル化合物と隣接して存在することにより、ニッケル化合物の酸素発生の活性点が増加するため、酸素発生過電圧が一層低い電極が得られる。そのため、本実施形態の陽極をアルカリ水電解用電解セルに適合させることにより、一層低電圧での水電解が可能になる。
 電子導電性が高いコバルト化合物とニッケル化合物が隣接することで、ニッケル化合物の酸素発生の活性点が増加する理由は以下である。即ち、ニッケル化合物の、アルカリ溶液中の水酸化物イオンから、電子を抜き取るような、液相から固相への電子授受は、白金族などと遜色がないほど円滑である。しかしながら、固体中の電子導電性が乏しいため、基材と触媒、或いは、触媒と触媒粒子間、即ち、固体中から固体への電子授受は円滑ではない。
 一方、コバルト化合物は、電子伝導性が高いため、固体から固体への電子授受に関しては、ニッケルの数10倍から100倍円滑である。そのため、ニッケル触媒層中にコバルト化合物を適量混ぜると、固体中の電子導電性が乏しいニッケルの電子授受を、電子伝導性が高いコバルト化合物によって補うことが出来る。その結果、ニッケル化合物の利用効率が高くなり、触媒としての機能を高めることができる。
 しかし、コバルト酸化物は、アルカリ溶液に対してわずかではあるが溶解性を有するため、コバルト酸化物の割合が多すぎると触媒層の溶解が進行し、最終的には触媒層が脱落し、酸素過電圧が上昇してしまう場合がある。また、自然エネルギーのような供給が不安定なエネルギー源を用いて、電解を行う場合、電解の停止や再開によって、電解液に溶解したコバルトが電解セル中で析出し得る。この際、析出したコバルトもしくはコバルト化合物が、電解液もしくは発生ガスの流路配管や、電解セルを構成する隔膜といった他の部材に付着して、電解液の流れを阻害することで、セル電圧が大きく上昇し、電解効率が大幅に低下してしまう場合がある。
 本発明者らは、ニッケル触媒層にコバルトを含有させる際に、ニッケル原子とコバルト原子のモル比を調整することによって、コバルトによるニッケルの利用効率を高める効果を保持しつつも、電解セルに組み込んで使用した場合も長時間運転に耐えうる高い耐久性を有する組成があることを見出した。即ち、ニッケル化合物のモル比を、コバルトの効果を損なわない程度に大きくする。その結果、アルカリに対する化学的な安定性が高いニッケル化合物が触媒層の骨格を形成する支持体として機能するため、コバルトが若干溶解しても、触媒層全体の脱落は生じにくくなる。
 本実施形態において、上記ニッケル触媒層の厚みが、50μm以上800μm以下であることが一つの特徴である。ニッケル触媒層の厚みは、厚すぎると電気抵抗が増加し過電圧を上昇させる場合があり、逆に薄すぎると長期間の電解や電解の停止によりニッケル触媒層が脱落などにより減耗することで電極が劣化し、過電圧が上昇する場合がある。
 本実施形態(例えば、上記[1]~[16]の形態等)において、ニッケル触媒層の厚みは、好ましくは100μm以上500μm以下、より好ましくは100μm以上300μm以下である。
 なお、ニッケル触媒層の厚みは、例えば電子顕微鏡にて電極の断面を観察することにより測定できる。具体的には、電子顕微鏡で、電極の断面を観察し、触媒層の厚みを5点測定した値の平均値を触媒層の厚みとする。
 本実施形態において、上記ニッケル触媒層中のニッケルの(111)面によって回折されるX線のピーク強度をINi、酸化ニッケルの(012)面によって回折されるX線のピーク強度をINiOとしたとき、[INiO/(INi+INiO)]×100の値が0以上15以下の範囲であることが一つの特徴である。
 上記ニッケル触媒層中のニッケル酸化物の割合が多いと、触媒層の電気抵抗が低く、酸素発生を行う際の電圧ロスが小さくなる。上記ニッケル触媒層中の酸化ニッケルの部分では、導電性が低下するが、酸素発生反応も起き難い。また、酸化ニッケルは比較的化学的に安定であるため、ニッケル触媒層が酸化ニッケルを含有することは、ニッケル触媒層の強度を維持するには有効な場合がある。なお、INi及びINiOは、ニッケル触媒層についてのXRD(X-Ray Diffraction)の測定結果から求めることができ、具体的には、後述の実施例の方法で測定することができる。
 本実施形態(例えば、上記[1]~[16]の形態等)において、[INiO/(INi+INiO)]×100の値は、5以下であることがより好ましく、さらに好ましくは3以下である。
 本実施形態において、上記ニッケル触媒層の比表面積が1.0m/g以上10.0m/g以下であることが一つの特徴である。本実施形態(例えば、上記[1]~[16]の形態等)において、上記ニッケル触媒層の比表面積は、2.0m/g以上5.0m/g以下であることが好ましく、より好ましくは2.0m/g以上4.5m/g以下である。
 ニッケル触媒層の比表面積が1.0m/g未満であると、単位面積当たりの反応活性点が少なくなるので、低い過電圧が得られない場合がある。一方、ニッケル触媒層の比表面積が10.0m/g超であると、触媒層の機械的強度が低下し、耐久性が低下する場合がある。
 本実施形態(例えば、上記[1]~[16]の形態等)において、上記ニッケル触媒層は細孔が形成されていることが好ましい。
 上記ニッケル触媒層中には形成される細孔のうち、孔径が2~5nmである第一細孔の比表面積は0.6~2.0m/gであることが好ましい。また、上記第一細孔の細孔容積は3×10-4~9×10-4ml/gであることが好ましい。
 上記ニッケル触媒層中には形成される細孔のうち、孔径が0.01~2.00μmの範囲内である第二細孔の比表面積は2.0~5.0m/gであることが好ましい。また、上記第二細孔の細孔容積は、0.04~0.2ml/gであることが好ましい。
 孔径が0.01~2.00μmの範囲内である上記第二細孔は、比表面積は小さいが、細孔容量が大きいため、上記第一細孔は、第二細孔の内部に存在することになる。上記第一細孔は、ニッケル触媒層の表面積を非常に大きくする。上記第一細孔の表面は、水酸化物イオンの酸化反応(酸素の生成反応)の反応場(反応界面)として機能する。上記第一細孔の内部では、酸素発生の際に水酸化ニッケルが生成され、そのため細孔を更に小さくしてしまうと予想される。しかし、上記第一細孔は孔径が大きな上記第二細孔の内部に存在するため、電解する際に第一細孔内で発生する酸素が第二細孔を通じて触媒層の外へ抜けやすく、電解を阻害しにくい。そのため、本実施形態では酸素発生過電圧が高くならないと推定される。
 本実施形態(例えば、上記[1]~[16]の形態等)において、上記第一細孔の比表面積は、より好ましくは0.6~1.5m/g、更に好ましくは0.6~1.0m/gである。また、上記第一細孔の比表面積は0.62~0.98m/gであってもよい。一般的には第一細孔の比表面積の増加に伴い、酸素発生電位が低くなると考えられる。ただし、第一細孔が小さすぎると酸素発生時に生成する水酸化ニッケルにより第一細孔が完全に埋まり、第一細孔の実質的な表面積が少なくなる傾向がある。第一細孔の比表面積が減少すると、触媒層全体の表面積も減少する傾向がある。ニッケル触媒層全体の表面積の減少に伴い、酸素発生電位が上昇する傾向がある。
 本実施形態(例えば、上記[1]~[16]の形態等)において、上記第一細孔の細孔容積は、より好ましくは3.3×10-4~8.5×10-4ml/g、更に好ましくは3.6×10-4~7.9×10-4ml/gである。第一細孔の細孔容積の増加に伴い、比表面積が減少する傾向がある。第一細孔の細孔容積の減少に伴い、比表面積が増加する傾向がある。
 本実施形態(例えば、上記[1]~[16]の形態等)において、上記第二細孔の比表面積は、より好ましくは2.0~4.5m/g、更に好ましくは2.0~4.0m/gである。第二細孔の比表面積の増加に伴い容積が減少する傾向がある。第二細孔の比表面積の低下に伴い細孔容積が増加する傾向がある。
 本実施形態(例えば、上記[1]~[16]の形態等)において、上記第二細孔の細孔容積は、より好ましくは0.04~0.15ml/g、更に好ましくは0.04~0.1ml/g、特に好ましくは0.04~0.09ml/gである。第二細孔の細孔容積の増加に伴い、ニッケル触媒層内で発生した酸素ガスの脱泡が進行し易い傾向がある。第二細孔の細孔容積の減少に伴い、ニッケル触媒層からのガス抜けが阻害され酸素発生過電圧が高くなる傾向があるが、機械的強度は高まる傾向がある。
 本実施形態(例えば、上記[1]~[16]の形態等)では、過電圧と耐久性の観点から、アルカリ水電解用陽極の電気二重層容量は、好ましくは0.3F/cm以上10.0F/cm以下であり、より好ましくは0.5F/cm以上5.0F/cm以下である。
 ここで、電気二重層容量は、例えば電気化学インピーダンス法により測定することができる。交流インピーダンス測定により得られた実部と虚部をプロットしたCole-Coleプロットに対して、等価回路フィッティングにより解析することで、電気二重層容量を算出する。具体的には、後述の実施例に記載の方法により測定することができる。
 ニッケル多孔基材上にニッケル触媒層を形成させる方法は特に限定されないが、めっき法やプラズマ溶射法、基材上に前駆体層溶液を塗布した後に熱を加える熱分解法、触媒物質をバインダー成分と混合して基材に固定化する方法、および、スパッタリング法などの真空成膜法といった手法が挙げられる。
 中でも、プラズマ溶射法は好ましい手法である。プラズマ溶射法によって得られるコーティング層(触媒層)は、多孔質であり、強度が強く、基材との高い密着性を示す。
 プラズマ溶射法の原料は、金属、金属酸化物の粉末が好ましく用いられる。金属酸化物の粉末を原料に用いる場合、スプレードライ法により調製することもできる。平均粒径が0.2μm~5.0μm(例えば、1.0~5.0μm、0.2~2μmであってもよい)である金属酸化物粉末を噴霧乾燥造粒機により造粒し、平均粒径が5~100μm(例えば、10~100μm、5~50μmであってもよい)である金属酸化物粒子を得る。この金属酸化物粒子をプラズマガスなどの高温のガス中に吹き込み、溶融させて、ニッケル多孔基材等の基材に吹き付ける。つまり、基材を溶融した金属酸化物でコーティングする。造粒する前の金属酸化物の粒径が大きすぎても、小さすぎても、電極を形成した際に必要な孔径や比表面積、細孔容量が得られない。造粒前の金属酸化物粉末の平均粒径は0.2~5.0μmであることが好ましく、0.2~2.0μmであることがより好ましい。
 本実施形態において、上記プラズマ溶射法の原料として用いられる金属もしくは金属酸化物の粉末は、少なくともニッケルおよびコバルトを含む。ニッケル及びコバルトは、酸化ニッケル、酸化コバルトであってもよい。その他の材料を原料に加えてもよい。他の材料としては、チタン、クロム、モリブデン、コバルト、マンガン、鉄、タンタル、ジルコニウム、アルミニウム、亜鉛、白金族および希土類元素などからなる群より選ばれる少なくとも一種の金属もしくは金属酸化物の粉末等が挙げられる。さらに、導電性基材に吹き付ける前の酸化ニッケル粒子に、アラビアゴム、カルボキシメチルセルロースおよびラウリル硫酸ナトリウムからなる群より選ばれる少なくとも一種の添加剤を混ぜてもよい。
 プラズマ溶射法としては、アセチレンなどの可燃性ガスと酸素の燃焼熱で溶射原料を溶融する方法、溶射法に用いる溶射原料を棒状に加工し、可燃性ガスを燃焼した熱で溶融した素材を燃焼ガスで吹き付ける方法、アルゴン、水素、窒素、ヘリウム、又はこれらの混合物などのガスを加熱して得たプラズマガスで溶射原料を溶融する方法等がある。その中では、窒素またはアルゴンに水素を混ぜたガスをプラズマ化して、プラズマで溶射原料を溶融するプラズマ溶射法が好ましい。プラズマガスの速度が音速を超える程度に大きく、ガスの温度が5000℃以上である。そのため、融点の高い溶射原料を溶融することができ、溶融した溶射原料を高速で基材に付着させることができる。その結果、緻密で強度の強いニッケル触媒層等のコーティング層を形成することが可能になる。プラズマ溶射法を用いた場合、原料粉末のコーティング速度が速いため、10~1000μmの厚みを有するニッケル触媒層等のコーティング層を比較的短時間で形成することができる。プラズマ溶射法では、その条件にもよるが、溶融した原料粉末の粒子が導電性基材上に積層する過程で粒子間に形成される細孔が、他の溶射法を用いた場合に比べ緻密になりやすい。水素を含むプラズマガスを用いた溶射法で金属酸化物を基材に吹き付ける場合、コーティングの一部が還元されやすく、コーティング層の導電性が増し、導電性に優れた電極を製造することが可能となる。
 プラズマ溶射法によって形成されたニッケル触媒層等のコーティング層を、水素気流下で還元することにより、ニッケル触媒層等のコーティング層に細孔を形成することもできる。
 プラズマ溶射法によって形成されたニッケル触媒層等のコーティング層を水素で還元する際の温度は重要である。還元の温度が高すぎる場合、還元により生じた細孔が熱によりつぶされて、期待する細孔、比表面積および細孔容量が得られない場合がある。また還元温度が低すぎると、金属酸化物の還元が進まない。例えば、金属酸化物として酸化ニッケルを用いる場合、水素による金属酸化物層の還元温度としては、180~300℃が好ましく、180~250℃が特に好ましい。
 ニッケル触媒層等のコーティング層は電解によって還元してもよい。
(アルカリ水電解用電解槽)
 図1に、本実施形態のアルカリ水電解用陽極を備える複極式電解セルを含む複極式電解槽の一例の全体についての側面図を示す。
 図2に、本実施形態のアルカリ水電解用陽極を備える複極式電解セルを含む複極式電解槽の一例のゼロギャップ構造の図(図1に示す破線四角枠の部分の断面図)を示す。
 本実施形態の複極式電解槽50は、図1、2に示すように、陽極2aと、陰極2cと、陽極2aと陰極2cとを隔離する隔壁1と、隔壁1を縁取る外枠3とを備える複数のエレメント60が隔膜4を挟んで重ね合わせられている複極式電解槽であることが好ましい。
 本実施形態の電解槽は、単極式であっても、複極式であってもよく、隔膜を介して複極式エレメントがスタックされたアルカリ水電解用複極式電解槽であることが好ましい。
 単極式とは、1又は複数のエレメントそれぞれを直接電源に接続する方法であり、並列に並べた各エレメントの陽極に隔膜を挟んで陰極ターミナルエレメントを設け、陰極に隔膜を挟んで陽極ターミナルエレメントを設け、各ターミナルエレメントに電源をつなぐ並列回路である。
 複極式とは、多数の複極式エレメントを電源に接続する方法の1つであり、片面が陽極、片面が陰極となる複数の複極式エレメントを同じ向きに並べて直列に接続し、両端のみを電源に接続する方法である。
 複極式電解槽は、電源の電流を小さくできるという特徴を持ち、電解により化合物や所定の物質等を短時間で大量に製造することができる。電源設備は出力が同じであれば、定電流、高電圧の方が安価でコンパクトになるため、工業的には単極式よりも複極式の方が好ましい。
 本実施形態では、図1に示すとおり、複極式電解槽50は複極式エレメント60を必要数積層することで構成されている。
 図1に示す一例では、複極式電解槽50は、一端からファストヘッド51g、絶縁板51i、陽極ターミナルエレメント51aが順番に並べられ、更に、陽極側ガスケット部分、隔膜4、電陰極側ガスケット部分、複極式エレメント60が、この順番で並べて配置される。このとき、複極式エレメント60は陽極ターミナルエレメント51a側に陰極2cを向けるよう配置する。陽極ガスケットから複極式エレメント60までは、設計生産量に必要な数だけ繰り返し配置される。陽極ガスケットから複極式エレメント60までを必要数だけ繰り返し配置した後、再度、陽極側ガスケット部分、隔膜4、電陰極側ガスケット部分を並べて配置し、最後に陰極ターミナルエレメント51c、絶縁板51i、ルーズヘッド51gをこの順番で配置される。複極式電解槽50は、全体をタイロッド51rで締め付けることによりー体化され、複極式電解槽50となる。
 複極式電解槽50を構成する配置は、陽極側からでも陰極側からでも任意に選択でき、上述の順序に限定されるものではない。
 図1に示すように、複極式電解槽50では、複極式エレメント60が、陽極ターミナルエレメント51aと陰極ターミナルエレメント51cとの間に配置され、隔膜4は、陽極ターミナルエレメント51aと複極式エレメント60との間、隣接して並ぶ複極式エレメント60同士の間、及び複極式エレメント60と陰極ターミナルエレメント51cとの間に配置されている。
 本実施形態の複極式電解槽50では、図2に示すとおり、隔膜4が陽極2a及び陰極2cと接触してゼロギャップ構造Zが形成されている。
 本実施形態では、特に、複極式電解槽50における、隣接する2つの複極式エレメント60間の互いの隔壁1間における部分、及び、隣接する複極式エレメント60とターミナルエレメントとの間の互いの隔壁1間における部分、を電解セル65と称する。電解セル65は、隔膜4、一方のエレメントの隔壁1、陽極室5a、及び陽極2a、並びに他方のエレメントの陰極2c、陰極室5c及び隔壁1を含む。
 本実施形態の複極式電解セルは、本実施形態のアルカリ水電解用陽極を含むことが好ましい。
 アルカリ水電解において、隔膜4と、陽極2aや陰極2cとの間に隙間がある場合、この部分には電解液の他に電解で発生した大量の気泡が滞留することで、電気抵抗が非常に高くなる。電解セル65における大幅な電解電圧の低減を図るためには、陽極2aと陰極2cの間隔(以下、「極間距離」ともいう。)をできるだけ小さくして、陽極2aと陰極2cの間に存在する電解液や気泡の影響をなくすことが効果的である。
 そこで、電極全面にわたり、陽極2aと隔膜4とが互いに接触し、且つ、陰極2cと隔膜4とが互いに接触している状態、又は、電極全面にわたり、極間距離が隔膜4の厚みとほぼ同じとなる距離で、陽極2aと隔膜4との間及び陰極2cと隔膜4との間に隙間のほとんど無い状態、に保つことのできる、ゼロギャップ構造が採用される。
 また、複極式電解槽50では、図2に示すとおり、隔壁1と外枠3と隔膜4とにより、電解液が通過する電極室5が画成されている。
 なお、図1~図2に示す複極式電解槽50に取り付けられる、電解液を配液又は集液する管であるヘッダー管の配設態様として、代表的には、内部ヘッダー型と外部ヘッダー型とがあるが、本発明では、いずれの型を採用してもよく、特に限定されない。
 以下、本実施形態のアルカリ水電解用複極式電解セル、複極式電解槽の構成要素について詳細に説明する。
 また、以下では、本発明の効果を高めるための好適形態についても詳述する。
-隔壁-
 上記隔壁1は、陰極2cと陽極2aとの間であって、陽極2aと陰極集電体2rとの間及び/又は陰極2cと陽極集電体2rとの間に設けられることが好ましい。
 本実施形態における隔壁の形状は、所定の厚みを有する板状の形状としてよいが、特に限定されない。
 隔壁のサイズとしては、特に限定されることはなく、電極室のサイズに応じて適宜設計されてよい。
 隔壁の材料としては、電力の均一な供給を実現する観点から、高い導電性を有する材料が好ましく、耐アルカリ性や耐熱性といった面から、ニッケル、ニッケル合金、軟鋼、ニッケル合金上にニッケルメッキを施したものが好ましい。
-陰極-
 陰極のサイズとしては、特に限定されることなく、電極室のサイズに合わせて定められてよく、縦:0.4m~4.0m、横:0.4m~6.0m、厚さ:0.1mm~3mmとしてよい。
 本実施形態の複極式電解セルにおける陰極としては、電解に用いられる表面積を増加させるため、また、電解により発生するガスを効率的に電極表面から除去するために、陰極が多孔体であることがより好ましい。特に、ゼロギャップ電解槽の場合、隔膜との接触面の裏側から発生するガスを脱泡する必要があるため、電極の膜に接する面と反対に位置する面が、貫通していることが好ましい。
 多孔体の例としては、平織、綾織等のメッシュ、パンチングメタル、エキスパンドメタル、金属発泡体等が挙げられる。
 基材の材料は、特に制限されないが、使用環境への耐性から、軟鋼、ステンレス、ニッケル、ニッケル基合金が好ましい。
 陰極の触媒層は、水素発生能が高いものであることが好ましく、ニッケルやコバルト、鉄もしくは白金族元素等を使用することができる。これらは、所望の活性や耐久性を実現するために、金属単体や、酸化物等の化合物、複数の金属元素からなる複合酸化物や合金、あるいはそれらの混合物として、触媒層を形成できる。具体的には、ラネーニッケルや、ニッケルとアルミニウム、あるいはニッケルと錫等の複数の材料の組み合わせからなるラネー合金、ニッケル化合物やコバルト化合物を原料として、プラズマ溶射法により作製した多孔被膜、ニッケルと、コバルト、鉄、モリブデン、銀、銅等から選ばれる元素との合金や複合化合物、水素発生能が高い白金やルテニウム等の白金族元素の金属や酸化物、及び、それら白金族元素の金属や酸化物と、イリジウムやパラジウム等の他の白金族元素の化合物やランタンやセリウム等の希土類金属の化合物との混合物、グラフェン等の炭素材料等が挙げられる。高い触媒活性や耐久性を実現するために、上記の材料を複数積層してもよく、触媒層中に複数混在させてもよい。耐久性や基材との接着性を向上させるために高分子材料等の有機物が含まれていてもよい。
 基材上に触媒層を形成させる方法としては、めっき法やプラズマ溶射法、基材上に前駆体層溶液を塗布した後に熱を加える熱分解法、触媒物質をバインダー成分と混合して基材に固定化する方法、及び、スパッタリング法等の真空成膜法といった手法が挙げられる。
 陰極の比表面積(基材を含む陰極全体の比表面積)が小さいと、単位面積当たりの反応活性点が少なくなるので、低い過電圧が得られない場合がある。一方、陰極の比表面積が大き過ぎると触媒層の機械的強度が低下し、耐久性が低下する場合がある。そのため、本実施形態(例えば、上記[1]~[16]の形態等)においては、陰極の比表面積は0.001m/g以上、1m/g以下が好ましく、より好ましくは、0.005m/g以上、0.1m/g以下である。
 上記陰極の比表面積は例えばBET法を用いて測定することができる。測定試料を専用セルに入れ、加熱真空排気を行うことにより前処理を行い、細孔表面への吸着物を予め取り除く。その後、-196℃で測定サンプルへのガス吸着の吸脱着等温線を測定する。得られた吸脱着等温線をBET法で解析することにより、測定サンプルの比表面積を求めることができる。
 電極表面で電解に使用される面積は、電極と電解液との界面で形成される電気二重層の容量を測定することで、疑似的に求めることができる。
 なお、二重層容量は例えば電気化学インピーダンス法により測定することができる。交流インピーダンス測定により得られた実部と虚部をプロットしたCole-Coleプロットに対して、等価回路フィッティングにより解析することで、二重層容量を算出する。
 電極の被膜抵抗が高すぎると、高いエネルギー効率を得るために電流密度が高い条件で電解する際に過電圧が上昇するため、その被膜抵抗は2Ω・cm以下が好ましく、より好ましくは0.5Ω・cm以下である。
 なお、被膜抵抗は例えば電気化学インピーダンス法により測定することができる。交流インピーダンス測定により得られた実部と虚部をプロットしたCole-Coleプロットに対して、等価回路フィッティングにより解析することで、被膜抵抗を算出する。
-外枠-
 本実施形態の複極式電解セルにおける外枠3の形状は、隔壁1を縁取ることができる限り特に限定されないが、隔壁1の平面に対して垂直な方向に沿う内面を隔壁1の外延に亘って備える形状としてよい。
 外枠の形状としては、特に限定されることなく、隔壁の平面視形状に合わせて適宜定められてよい。
 外枠の寸法としては、特に限定されることなく、電極室の外寸に応じて設計されてよい。
 外枠の材料としては、導電性を有する材料が好ましく、耐アルカリ性や耐熱性といった面から、ニッケル、ニッケル合金、軟鋼、ニッケル合金上にニッケルメッキを施したものが好ましい。
-隔膜-
 本実施形態の複極式電解セル65において用いられる隔膜4としては、イオンを導通しつつ、発生する水素ガスと酸素ガスを隔離できる膜であれば、特に限定はされず、イオン交換膜や多孔質膜といったイオン透過性の隔膜が使用される。膜厚を薄くすることで、電極間距離を小さくすることが可能になり、電解液由来の抵抗を減らすことで電解効率高めることができるため、特に、多孔質膜が好ましく用いられる。
 多孔質膜は、複数の微細な貫通孔を有し、隔膜を電解液が透過できる構造を有する。電解液が多孔質膜中に浸透することにより、イオン伝導を発現するため、孔径や気孔率、親水性といった多孔構造の制御が非常に重要となる。一方、電解液だけでなく、発生ガスを通過させないこと、すなわちガスの遮断性を有することが求められる。この観点でも多孔構造の制御が重要となる。
 多孔質膜は、複数の微細な貫通孔を有するものであるが、高分子多孔質膜、無機多孔質膜、織布、不織布等が挙げられる。これらは公知の技術により作製することができる。
 高分子多孔質膜の製法例としては、相転換法(ミクロ相分離法)、抽出法、延伸法、湿式ゲル延伸法等が挙げられる。無機多孔質膜の製法例としては、焼結法等が挙げられる。
 多孔質膜は、高分子材料と親水性無機粒子とを含むことが好ましく、親水性無機粒子が存在することによって多孔質膜に親水性を付与することができる。
---高分子材料---
 高分子材料としては、例えば、ポリスルホン、ポリエーテルスルホン、ポリフェニルスルホン、ポリビニリデンフロライド、ポリカーボネート、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン・エチレン共重合体、ポリビニリデンフルオライド、ポリテトラフルオロエチレン、パーフルオロスルホン酸、パーフルオロカルボン酸、ポリエチレン、ポリプロピレン、ポリフェニレンサルファイド、ポリパラフェニレンベンゾビスオキサゾール、ポリケトン、ポリイミド、ポリエーテルイミド等が挙げられる。これらの中でも、ポリスルホン、ポリエーテルスルホン、ポリフェニルスルホン、ポリフェニレンサルファイド、ポリテトラフルオロエチレン、であることが好ましく、ポリスルホンであることがより好ましい。これらは1種単独で用いてもよいし、2種以上を併用してもよい。
 高分子材料として、ポリスルホン、ポリエーテルスルホン、ポリフェニルスルホンを用いることで、高温、高濃度のアルカリ溶液に対する耐性が一層向上する。
 また、例えば、非溶媒誘起相分離法等の方法を用いることで、隔膜を一層簡便に製膜することができる。特にポリスルホンであれば、孔径を一層精度よく制御することができる。
 ポリスルホン、ポリエーテルスルホン、ポリフェニルスルホンは架橋処理が施されていてもよい。かかる架橋処理が施されたポリスルホン、ポリエーテルスルホン、ポリフェニルスルホンの重量平均分子量は、標準ポリスチレン換算の重量平均分子量として、4万以上15万以下であることが好ましい。架橋処理の方法は、特に限定されないが、電子線やγ線等の放射線照射による架橋や架橋剤による熱架橋等が挙げられる。なお、標準ポリスチレン換算の重量平均分子量はGPCで測定することができる。
 上記高分子材料は、市販品を用いることもできる。ポリスルホンとしては、例えば、BASF社の「Ultrason S PSU(登録商標、以下同様)」、ソルベイアドバンストポリマーズ社の「ユーデル(登録商標)」等が挙げられる。ポリエーテルスルホンとしては、例えば、BASF社の「Ultrason E PES(登録商標)」、ソルベイアドバンストポリマーズ社の「レーデル A(登録商標)」等が挙げられる。ポリフェニルスルホンとしては、例えば、BASF社の「Ultrason P PPSU(登録商標、以下同様)」、ソルベイアドバンストポリマーズ社の「レーデル R(登録商標)」等が挙げられる。ポリフェニレンサルファイドとしては、例えば、東レ社の「トレリナ(登録商標)」等が挙げられる。ポリテトラフルオロエチレンとしては、三井デュポンフロロケミカル社の「テフロン(登録商標)」、ダイキン社の「ポリフロン(登録商標)」、旭硝子社の「フロオン(登録商標)」等が挙げられる。
 多孔質膜は、分離能、強度等適切な膜物性を得る為に、孔径を制御することが好ましい。また、アルカリ水電解に用いる場合、陽極から発生する酸素ガス及び陰極から発生する水素ガスの混合を防止し、かつ電解における電圧損失を低減する観点から、多孔質膜の孔径を制御することが好ましい。
 多孔質膜の平均透水孔径が大きい程、単位面積あたりの多孔質膜透過量は大きくなり、特に、電解においては多孔質膜のイオン透過性が良好となり、電圧損失を低減しやすくなる傾向にある。また、多孔質膜の平均透水孔径が大きい程、アルカリ水との接触表面積が小さくなるので、ポリマーの劣化が抑制される傾向にある。
 一方、多孔質膜の平均透水孔径が小さい程、多孔質膜の分離精度が高くなり、電解においては多孔質膜のガス遮断性が良好となる傾向にある。さらに、後述する粒径の小さな親水性無機粒子を多孔質膜に担持した場合、欠落せずしっかりと保持することができる。これにより、親水性無機粒子が持つ高い保持能力を付与でき、長期に亘ってその効果を維持することができる。
 本実施形態の複極式電解セルの隔膜としての多孔質膜においては、平均透水孔径は、0.1μm以上1.0μm以下、かつ/または最大孔径は0.1μmよりも大きく2.0μm以下の範囲であることが好ましい。多孔質膜は、孔径がこの範囲であれば、優れたガス遮断性と高いイオン透過性とを両立することができる。また、多孔質膜の孔径は実際に使用する温度域において制御されることが好ましい。従って、例えば90℃の環境下での電解用隔膜として使用する場合は、90℃で上記の孔径の範囲を満足させることが好ましい。また、多孔質膜は、アルカリ水電解用隔膜として、より優れたガス遮断性と高いイオン透過性とを発現できる範囲として、平均透水孔径が0.1μm以上0.5μm以下、かつ/または最大孔径が0.5μm以上1.8μm以下であることがより好ましい。
 多孔質膜の平均透水孔径と最大孔径とは、以下の方法で測定することができる。
 多孔質膜の平均透水孔径とは、完全性試験機(ザルトリウス・ステディム・ジャパン社製、「Sartocheck Junior BP-Plus」)を使用して以下の方法で測定した平均透水孔径をいう。まず、多孔質膜を芯材も含めて所定の大きさに切り出して、これをサンプルとする。このサンプルを任意の耐圧容器にセットして、容器内を純水で満たす。次に、耐圧容器を所定温度に設定した恒温槽内で保持し、耐圧容器内部が所定温度(例えば、90℃)になってから測定を開始する。測定が始まると、サンプルの上面側が窒素で加圧されていき、サンプルの下面側から純水が透過してくる際の圧力及び透過流量の数値を記録する。平均透水孔径は、圧力が10kPaから30kPaの間の圧力と透水流量との勾配を使い、以下のハーゲンポアズイユの式から求めることができる。
  平均透水孔径(m)={32ηLμ/(εP)}0.5
 ここで、ηは水の粘度(Pa・s)、Lは多孔質膜の厚み(m)、μは見かけの流速であり、μ(m/s)=流量(m/s)/流路面積(m)である。また、εは空隙率、Pは圧力(Pa)である。
 多孔質膜の最大孔径は、完全性試験機(ザルトリウス・ステディム・ジャパン社製、「Sartocheck Junior BP-Plus」)を使用して以下の方法で測定することができる。まず、多孔質膜を芯材も含めて所定の大きさに切り出して、これをサンプルとする。このサンプルを純水で濡らし、多孔質膜の孔内に純水を含浸させ、これを測定用の耐圧容器にセットする。次に、耐圧容器を所定温度に設定した恒温槽内で保持し、耐圧容器内部が所定温度になってから測定を開始する。測定が始まると、サンプルの上面側が窒素で加圧されていき、サンプルの下面側から気泡が連続して発生してくるときの窒素圧力を、バブルポイント圧力とする。最大孔径はヤング-ラプラスの式を変形させた下記バブルポイント式から求めることができる。
  最大孔径(m)=4γcosθ/P
 ここで、γは水の表面張力(N/m)、cosθは多孔質膜表面と水の接触角(rad)、Pはバブルポイント圧力(Pa)である。
 本実施形態において、特に多孔質膜の表面の孔が小さいと、電極から溶解、析出したコバルトもしくはコバルト化合物が、多孔質表面に付着し、孔を閉塞することで、電解液の流れを阻害することで、セル電圧が大きく上昇し、電解効率が大幅に低下してしまうことが懸念される。そのため、表面の平均孔径は0.5μm以上5μm以下が好ましく、1μm以上3μm以下がより好ましい。
 表面の平均孔径は、例えば、多孔質膜表面のSEM画像を、画像解析ソフトを用いて2値化することで求めることができる。
 多孔質膜の孔径を制御する方法としては、例えば、多孔質膜の製造方法等が挙げられる。
 多孔質膜の厚みは、特に限定されないが、60μm以上700μm以下であることが好ましく、200μm以上700μm以下であることがより好ましい。多孔質膜の厚みが、250μm以上であれば、一層優れたガス遮断性が得られ、また、衝撃に対する多孔質膜の強度が一層向上する。この観点より、多孔質膜の厚みの下限は、300μm以上であることがより好ましく、350μm以上であることが更に好ましく400μm以上でることがより一層好ましい。一方で、多孔質膜の厚みが、700μm以下であれば、運転時に孔内に含まれる電解液の抵抗によりイオンの透過性を阻害されにくく、一層優れたイオン透過性を維持すことができる。かかる観点から、多孔質膜の厚みの上限は、600μm以下であることがより好ましく、550μm以下であることが更に好ましく、500μm以下であることがより一層好ましい。特に、高分子樹脂が、ポリスルホン、ポリエーテルスルホン及びポリフェニルスルホンからなる群より選ばれる少なくとも1種を含むものである場合に、かかる効果は一層向上する。
---親水性無機粒子---
 多孔質膜は、高いイオン透過性及び高いガス遮断性を発現するために親水性無機粒子を含有していることが好ましい。親水性無機粒子は多孔質膜の表面に付着していても良いし、一部が多孔質膜を構成する高分子材料に埋没していても良い。また親水性無機粒子が多孔質膜の空隙部に内包(包埋)されると、多孔質膜から脱離しにくくなり、多孔質膜の性能を長時間維持できる。
 親水性無機粒子としては、例えば、ジルコニウム、ニッケル、コバルト、ビスマス、セリウム等の酸化物又は水酸化物;周期律表第IV族元素の酸化物;周期律表第IV族元素の窒化物、及び周期律表第IV族元素の炭化物からなる群より選ばれる少なくとも1種の無機物が挙げられる。これらの中でも、化学的安定性の観点から、ジルコニウム、ニッケル、コバルト、ビスマス、セリウムの酸化物又は水酸化物、周期律表第IV族元素の酸化物がより好ましく、ジルコニウム、ニッケル、コバルト、ビスマス、セリウムの酸化物が更に好ましい。その中でも、親水性が特に優れている酸化ジルコニウムがより更に好ましく用いられる。親水性無機粒子の粒子表面は、極性を帯びている。水溶液である電解液内における、極性の小さな酸素分子や水素分子と、極性の大きな水分子との親和性等を踏まえると、極性の大きな水分子の方が親水性無機粒子と吸着し易いとと考えられる。よって、このような親水性無機粒子が膜表面に存在することで、膜表面には水分子が優先的に吸着し、酸素分子や水素分子等の気泡は膜表面に吸着しない。その結果、隔膜(例えば、多孔質膜)の表面への気泡の付着を効果的に抑制することができる。但し、本実施形態の作用効果はこれらに限定されない。
 酸化ジルコニウムの隔膜(例えば、多孔質膜)からの脱落を抑えるために、酸化ジルコニウムに加えて、親水性を有し、かつ、化学的安定性に特に優れた酸化ニッケルや酸化コバルトといったニッケル原子及び/又はコバルト原子を含む化合物をさらに含有してもよい。
 ニッケル原子及び/又はコバルト原子を含む化合物は、電極や集電体などのエレメントの構成材料に含まれるニッケル原子やコバルト原子が、電解液に触れることで極微量ながら溶解し、析出物として多孔質膜表面等の隔膜に付着することもある。
 この場合、付着量が多過ぎると、隔膜の孔(例えば、多孔質膜の孔)を閉塞することで、電解液の流路が減少し、電解時のセル電圧が上昇することで、電解効率を低下させてしまう恐れがある。そのため、隔膜(特に多孔質膜)の表面のニッケル原子濃度とコバルト原子濃度との合計は、0.01~1.0原子%が好ましい。より好ましくは0.02~1.0原子%であり、さらに好ましくは0.05~0.08原子%である。隔膜や多孔質膜の表面のニッケル原子濃度とコバルト原子濃度は、乾燥させた隔膜や多孔質膜の表面を、蛍光X線法を用いて解析することで求めることができる。上記ニッケルとコバルトの表面濃度は、電解後の表面濃度であってよく、後述の実施例9、比較例5に記載の条件の電解後の表面濃度であってもよい。
 ニッケル原子濃度とコバルト原子濃度との上記合計は、上記隔膜の少なくとも一方の表面において上記範囲を満たせばよく、両表面が上記範囲を満たしていてもよいし、一方の表面が上記範囲を満たしていてもよい。中でも、陽極側表面が上記範囲を満たすことが好ましい。
--多孔性支持体--
 隔膜として多孔質膜を用いる場合、多孔質膜は多孔性支持体と共に用いてよい。好ましくは、多孔質膜が多孔性支持体を内在した構造であり、より好ましくは、多孔性支持体の両面に多孔質膜を積層した構造である。また、多孔性支持体の両面に対称に多孔質膜を積層した構造であってもよい。
 上記隔膜は、厚さ60μm以上600μm以下の多孔質膜であることが好ましい。多孔質膜の厚さが60μm以上であると、隔膜が破れにくくなる。また、600μm以下であると、過電圧が高くなりすぎず、低過電圧とすることができる。上記隔膜の厚さは、より好ましくは100μm以上500μm以下、更に好ましくは300μm以上500μm以下である。
((ゼロギャップ構造))
 ゼロギャップ型電解セル65では、極間距離を小さくする手段として、電極2と隔壁1との間に弾性体2eであるバネを配置し、このバネで電極を支持する形態をとることが好ましい。例えば、第1の例では、隔壁1に導電性の材料で製作されたバネを取り付け、このバネに電極2を取り付けてよい。また、第2の例では、隔壁1に取り付けた電極リブ6にバネを取り付け、そのバネに電極2を取り付けてよい。なお、このような弾性体を用いた形態を採用する場合には、電極が隔膜に接する圧力が不均一にならないように、バネの強度、バネの数、形状等必要に応じて適宜調節する必要がある。
 また弾性体を介して支持した電極の対となるもう一方の電極の剛性を強くすること(例えば、陽極の剛性を陰極の剛性よりも強くすること)で、押しつけても変形の少ない構造としている。―方で、弾性体を介して支持した電極については、隔膜を押しつけると変形する柔軟な構造とすることで、電解槽の製作精度上の公差や電極の変形等による凹凸を吸収してゼロギャップ構造を保つことができる。
 上記ゼロギャップ構造Zとしては、陽極ターミナルエレメント51aとエレメントとの間、エレメント間、エレメントと陰極ターミナルエレメント51cとの間に形成されるゼロギャップ構造が挙げられる。
 本実施形態のアルカリ水電解用複極式電解セル65では、図2に示すように、陰極2cと隔壁1との間に、導電性弾性体2e及び陰極集電体2rが、導電性弾性体2eが陰極2cと陰極集電体2rとに挟まれるように、設けられていることが好ましい。また、陰極集電体2rは、陰極のリブ6と接していることが好ましい。
 本実施形態のアルカリ水電解用複極式電解セル65のゼロギャップ構造Zは、図2に示すように、隔壁1の陽極2a側に陽極リブ6及び陽極2aがこの順に重ねられ、隔壁1の陰極2c側に陰極リブ6、陰極集電体2r、導電性弾性体2e及び陰極2cがこの順に重ねられた複極式エレメント60が、隔膜4を挟んで重ね合わせられた、隔膜4が陽極2a及び陰極2cと接触する構造であることが好ましい。
-集電体-
 集電体としては、例えば、陰極集電体、陽極集電体が挙げられる。
 集電体は、その上に積層される導電性弾性体や電極へ電気を伝えるとともに、それらから受ける荷重を支え、電極から発生するガスを隔壁側に支障なく通過させる役割がある。従って、この集電体の形状は、エキスパンドメタルや打ち抜き多孔板等が好ましい。この場合の集電体の開口率は、電極から発生した水素ガスを支障なく隔壁側に抜き出せる範囲であることが好ましい。しかし、あまり開口率が大きいと強度が低下する、或いは導電性弾性体への導電性が低下する等の問題が生ずる場合があり、小さすぎるとガス抜けが悪くなる場合がある。
 集電体の材質は、導電性と耐アルカリ性の面からニッケル、ニッケル合金、ステンレススチール、軟鋼等が利用できるが、耐蝕性の面からニッケル或いは軟鋼やステンレススチールニッケル合金上にニッケルメッキを施したものが好ましい。
-導電性弾性体-
 導電性弾性体は、集電体と電極の間にあって集電体及び電極と接しており、電気を電極に伝えること、電極から発生したガスの拡散を阻害しないことが必須要件である。ガスの拡散が阻害されることにより、電気的抵抗が増加し、また電解に使用される電極面積が低下することで、電解効率が低下するためである。そして最も重要な役割は、隔膜を損傷させない程度の適切な圧力を電極に均等に加えることで、隔膜と電極とを密着させることである。
-電極室-
 本実施形態における複極式電解槽50では、図2に示すとおり、隔壁1と外枠3と隔膜4とにより、電解液が通過する電極室5が画成されている。ここで、隔壁1を挟んで陽極側の電極室5が陽極室5a、陰極側の電極室5が陰極室5cである。
-リブ-
 本実施形態のアルカリ水電解用複極式電解セル65では、リブ6が電極2と物理的に接続されていることが好ましい。かかる構成によれば、リブ6が電極2の支持体となり、ゼロギャップ構造Zを維持しやすい。また、リブ6は隔壁1と電気的につながっていることが好ましい。
 前述の一例のアルカリ水電解用複極式電解セルでは、陰極室において、陰極リブ-陰極集電体-導電性弾性体-陰極の順に重ね合わせられた構造が採用され、陽極室において、陽極リブ-陽極の順に重ね合わせられた構造が採用されている。ただし、本発明ではこれに限定されることなく、陽極室においても「陽極リブ-陽極集電体-導電性弾性体-陽極」構造が採用されてもよい。
 リブ(陽極リブ、陰極リブ)には、陽極又は陰極を支える役割だけでなく、電流を隔壁から陽極又は陰極へ伝える役割を備えることが好ましい。
 リブの材料としては、一般的に導電性の金属が用いられる。例えば、ニッケルメッキを施した軟鋼、ステンレススチール、ニッケル等が利用できる。リブの材料は、特に隔壁と同じ材料であることが好ましく、特にニッケルであることが最も好ましい。
-ガスケット-
 本実施形態のアルカリ水電解用複極式電解セル65では、図2に示すように、隔壁1を縁取る外枠3同士の間に、隔膜4と共にガスケット7が挟持されることが好ましい。
 ガスケット7は、複極式エレメント60と隔膜4との間、複極式エレメント60間を電解液と発生ガスに対してシールするために使用され、電解液や発生ガスの電解槽外への漏れや両極室間におけるガス混合を防ぐことができる。
 ガスケットの一般的な構造としては、エレメント(複極式エレメント、陽極ターミナルエレメント、陰極ターミナルエレメント等)の枠体に接する面に合わせて、電極面をくり抜いた四角形状または環状である。このようなガスケット2枚で隔膜を挟み込む形でエレメント間に隔膜をスタックさせることができる。さらに、ガスケットは、隔膜を保持できるように、隔膜を収容することが可能なスリット部を備え、収容された隔膜がガスケット両表面に露出することを可能にする開口部を備えることも好ましい。これにより、ガスケットは、隔膜の縁部をスリット部内に収容し、隔膜の縁部の端面を覆う構造がとれる。したがって、隔膜の端面から電解液やガスが漏れることをより確実に防止できる。
 ガスケットの材質としては、特に制限されるものではなく、絶縁性を有する公知のゴム材料や樹脂材料等を選択することができる。
 ゴム材料や樹脂材料としては、具体的には、天然ゴム(NR)、スチレンブタジエンゴム(SBR)、クロロプレンゴム(CR)、ブタジエンゴム(BR)、アクリロニトリル-ブタジエンゴム(NBR)、シリコーンゴム(SR)、エチレン-プロピレンゴム(EPT)、エチレン-プロピレン-ジエンゴム(EPDM)、フッ素ゴム(FR)、イソブチレン-イソプレンゴム(IIR)、ウレタンゴム(UR)、クロロスルホン化ポリエチレンゴム(CSM)等のゴム材料、ポリテトラフルオロエチレン(PTFE)やテトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・エチレン共重合体(ETFE)、クロロトリフルオエチレン・エチレン共重合体(ECTFE)等のフッ素樹脂材料や、ポリフェニレンサルファイド(PPS)、ポリエチレン、ポリイミド、ポリアセタール等の樹脂材料を用いることができる。これらの中でも、弾性率や耐アルカリ性の観点でエチレン-プロピレン-ジエンゴム(EPDM)、フッ素ゴム(FR)が特に好適である。
-ヘッダー-
 アルカリ水電解用電解槽は、電解セル毎に、陰極室、陽極室を有することが好ましい。電解槽で、電気分解反応を連続的に行うためには、各電解セルの陰極室と陽極室とに電気分解によって消費される原料を十分に含んだ電解液を供給し続ける必要がある。
 電解セルは、複数の電解セルに共通するヘッダーと呼ばれる電解液の給排配管と繋がっている。一般に、陽極用配液管は陽極入口ヘッダー、陰極用配液管は陰極入口ヘッダー、陽極用集液管は陽極出口ヘッダー、陰極用集液管は陰極出口ヘッダーと呼ばれる。エレメントはホース等を通じて各電解液配液管及び各電解液集液管と繋がっている。
 ヘッダーの材質は特に限定されないが、使用する電解液の腐食性や、圧力や温度等の運転条件に十分耐えうるものを採用する必要がある。ヘッダーの材質に、鉄、ニッケル、コバルト、PTFE、ETFE、PFA、ポリ塩化ビニル、ポリエチレン等を採用しても良い。
-内部ヘッダー-
 内部ヘッダー型とは、複極式電解槽とヘッダー(電解液を配液又は集液する管)とが一体化されている形式をいう。
 内部ヘッダー型の例として、隔壁の端縁にある外枠のうちの下方に位置する部分の一部に、陽極入口ヘッダーと陰極入口ヘッダーとを備えており、また、同様に、隔壁の端縁にある外枠のうちの上方に位置する部分の一部に、陽極出口ヘッダーと陰極出口ヘッダーとを備えている。なお、外枠と、陽極室又は陰極室とは、電解液を通す電解液入口又は電解液出口でつながっている。
-外部ヘッダー-
 外部ヘッダー型とは、複極式電解槽とヘッダー(電解液を配液又は集液する管)とが独立している形式をいう。
 外部ヘッダー型複極式電解槽は、陽極入口ヘッダーと、陰極入口ヘッダーとが、電解槽の通電面に対し、垂直方向に、電解槽と並走する形で、独立して設けられる。この陽極入口ヘッダー、及び陰極入口ヘッダーと、各エレメントが、ホースで接続される。
 なお、内部ヘッダー型及び外部ヘッダー型の複極式電解槽において、その内部に電解によって発生した気体と、電解液を分離する気液分離ボックスを有してもよい。気液分離ボックスの取付位置は、特に限定されないが、陽極室と陽極出口ヘッダーとの間や、陰極室と陰極出口ヘッダーの間に取付けられてもよい。
-電解液-
 本実施形態の複極式電解槽内においては、陰極を取り付けた陰極室枠と、陽極を取り付けた陽極室枠とが、隔壁を介して配置されている。つまり、陽極室と陰極室とは隔壁によって区分されている。電解液は、この陽極室及び陰極室に供給される。
 電解液としては、水電解に一般に使用されるものを使用することができる。例えば、水酸化カリウム水溶液や水酸化ナトリウム水溶液等が挙げられる。また、電解質濃度は1N以上12N以下が好ましく、6N以上10N以下がより好ましい。
((水素の製造方法))
 次に、本実施形態の複極式電解槽を用いたアルカリ水電解による水素の製造方法について説明する。
 本実施形態(例えば、上記[1]~[16]の形態等)においては、前述のような陽極及び陰極を備え、電解液が循環した複極式電解槽に電流を印加して水電解を行うことにより、陰極で水素を製造する。
 本実施形態の水素の製造方法としては、アルカリを含有する水を電解槽により水電解し、水素を製造する水素製造方法であって、上記電解槽は、少なくとも陽極と陰極とを有し、上記陽極は、ニッケルとコバルトの総モル数に対してコバルトを0.1モル%以上10モル%以下含み、厚みが50μm以上800μm以下であるニッケル触媒層がニッケル多孔基材表面に形成された陽極であって、上記ニッケル触媒層中のニッケルの(111)面によって回折されるX線のピーク強度をINi、酸化ニッケルの(012)面によって回折されるX線のピーク強度をINiOとしたとき、[INiO/(INi+INiO)]×100の値が0以上15以下であり、上記ニッケル触媒層の比表面積が1.0m/g以上10.0m/g以下である方法が好ましい。
 このとき、電源として、例えば変動電源を用いることができる。変動電源とは、系統電力等の、安定して出力される電源と異なり、再生可能エネルギー発電所由来の数秒乃至数分単位で出力が変動する電源のことである。再生可能エネルギー発電の方法は特に限定されないが、例えば、太陽光発電や風力発電が挙げられる。
 例えば、複極式電解槽を利用した電解の場合、電解液中のカチオン性電解質は、エレメントの陽極室から、隔膜を通過して、隣接するエレメントの陰極室へ移動し、アニオン性電解質はエレメントの陰極室から隔膜を通過して、隣接するエレメントの陽極室へ移動する。よって、電解中の電流は、エレメントが直列に連結された方向に沿って、流れることになる。つまり、電流は、隔膜を介して、一方のエレメントの陽極室から、隣接するエレメントの陰極室に向かって流れる。電解に伴い、陽極室内で酸素ガスが生成し、陰極室内で水素ガスが生成する。
 本実施形態(例えば、上記[1]~[16]の形態等)の複極式電解セル65は、複極式電解槽50、アルカリ水電解用電解装置70等に用いることができる。上記アルカリ水電解用電解装置70としては、例えば、本実施形態の複極式電解槽50と、電解液を循環させるための送液ポンプ71と、電解液と水素及び/又は酸素とを分離する気液分離タンク72と電解により消費した水を補給するための水補給器と、を有する装置等が挙げられる。
 上記アルカリ水電解用電解装置は、さらに、整流器74、酸素濃度計75、水素濃度計76、流量計77、圧力計78、熱交換器79、圧力制御弁80等を備えてよい。
 上記アルカリ水電解用電解装置を用いたアルカリ水電解方法において、電解セルに与える電流密度としては、4kA/m~20kA/mであることが好ましく、6kA/m~15kA/mであることがさらに好ましい。
 特に、変動電源を使用する場合には、電流密度の上限を上記範囲にすることが好ましい。
 以上、図面を参照して、本発明の実施形態の陽極、複極式電解セル、水素の製造方法について例示説明したが、本発明の陽極、複極式電解セル、水素の製造方法は、上記の例に限定されることはなく、上記実施形態には、適宜変更を加えることができる。
 以下、実施例により本発明を更に詳細に説明するが、本発明は下記の実施例に何ら限定されるものではない。
(実施例1)
 粒径が0.2~2μmである酸化ニッケル粉末99.25質量部、粒径が0.2~2μmである酸化コバルト0.75質量部、アラビアゴム2.25質量部、カルボキシルメチルセルロース0.7質量部、ラウリル硫酸ナトリウム0.001質量部、及び水100質量部を混合・攪拌して、懸濁液を調製した。噴霧乾燥造粒機を用いて、懸濁液から、粒径が5~50μmである造粒物を調製した。
 造粒物をプラズマ溶射法によってニッケル多孔基材の両面に吹き付けた。ニッケル多孔基材としては、SW3.0mm、LW4.5mm、厚み1.2mm、開口率54%のニッケルエキスパンドメタルを用意し、ブラスト処理を施した。プラズマ溶射法では、プラズマガスとして、アルゴンと窒素とを1:0.8の割合で混合したガス用いた。この電極を、石英管中に設置した。この石英管を、管状炉内に差し込んで、石英管内を200℃に加熱し、石英管内へ水素気流を2時間供給し続けることにより、触媒層を還元した。以上の工程により、ニッケル多孔基材表面にコバルトを含むニッケル触媒層が形成された水電解用陽極を得た。ニッケル触媒層の厚みは220μmであった。
(実施例2~8、比較例1、比較例3)
 表1に示すコバルト比率で調製した造粒物を用い、ニッケル触媒層の厚みを変えたこと以外は、実施例1と同じ方法で水電解用陽極を作製した。
(比較例2)
 実施例1と同じ方法で調製した造粒成形物をプラズマ溶射法によってニッケル多孔基材の両面に吹き付けた。ニッケル多孔基材としては、SW3.0mm、LW4.5mm、厚み1.2mm、開口率54%のニッケルエキスパンドメタルを用意し、ブラスト処理を施して、水電解用陽極を得た。プラズマ溶射法では、プラズマガスとして、アルゴンと窒素とを1:0.8の割合で混合したガス用いた。以上の工程により、ニッケル多孔基材表面にコバルトを含むニッケル触媒層が形成された水電解用陽極を得た。ニッケル触媒層の厚みは220μmであった。
 作製した水電解用陽極の特性について下記のとおり分析した。結果を表1に示す。
[(1)ニッケル触媒層中のコバルト原子のモル割合]
 実施例、比較例で得られた陽極を縦2cm×横2cmに切断加工し、ペンチで捻じることで応力を加え、表面のニッケル触媒層を剥離させた。この触媒層を0.1g測り取り、王水で加熱溶解した。純水で50mlに定容し、ICP発光分光装置により金属元素の存在割合(質量部)を測定した。ICP発光分光装置はサーモフィッシャーサイエンティフック社製のiCAP6300Duoを使用した。ニッケルの質量部にニッケルのモル質量58.69を乗じた値を(A)とし、コバルトの質量部にコバルトのモル質量58.93を乗じた値を(B)とし、ニッケル原子及びコバルト原子の総モル数に対するコバルト原子のモル割合({B/(A+B)}×100)(モル%)を求めた。
[(2)ニッケル触媒層の厚み]
 水電解用陽極の小片を切り出し、エポキシ樹脂に包埋した後に、陽極の切断面をBIB加工装置(日立ハイテクノロジーズ社製「E3500」)を用いて、加速電圧6kVにて加工処理した。上記の切断面を、電子顕微鏡(日立ハイテクノロジーズ社製「S4800」)にて250倍の拡大率により観察し、断面写真を取得した。得られた断面写真から、金属酸化物の層の厚みを5点測定した値の平均値を金属酸化物の層の厚みとして求めた。
[(3)[INiO/(INi+INiO)]×100]
 株式会社リガク製X線回折装置「RINT2000型」を用い、励起電圧40kV、励起電流200mAとし、操作軸は2θ/θとして測定し、水電解用陽極のX線回折チャートを得た。X線回折解析ソフトウェア「JADE」を用いて、X線回折チャートのKα線由来のピークを除去した後に、ベースライン補正を行い、ピーク強度INiおよびINiOをそれぞれ算出した。
[(4)比表面積]
 ニッケルエキスパンドメタル基材から剥がしたニッケル触媒層を(株)島津製作所製の試料前処理装置バキュプレップ中に設置した。触媒層が設置されたチャンバー内を排気して、触媒層を80℃の真空雰囲気下に2時間保持することにより、比表面積の測定に用いる試料を得た。定容のガス吸着法によって、試料の吸脱着等温線を測定した。BJH(Barrett‐Joyner‐Halenda)法により、吸脱着等温線から、試料中の細孔の孔径と各孔径における細孔の比表面積(単位:m/g)を算出した。吸脱着等温線の測定では、(株)島津製作所製の自動比表面積/細孔分布測定装置「トライスターII3020」を用いた。ガス吸着法では、吸着ガスとして窒素ガスを用い、冷媒として液体窒素を用いた。
 各孔径における細孔の比表面積を積算した。これにより、触媒層中の細孔のうち孔径が2~5nmの範囲内である第一細孔の比表面積(単位:m/g)を求めた。同様の方法で、触媒層中の細孔のうち孔径が0.01~2.00μmの範囲内である第二細孔の比表面積(単位:m/g)を求めた。
[(5)細孔容積]
 ニッケルエキスパンドメタル基材から剥がしたニッケル触媒層中の細孔の孔径と各孔径における細孔容積を、水銀圧入法によって測定した。細孔容積の測定には、(株)島津製作所製の自動ポロシメータ「オートポア9520」を用いた。各孔径における細孔容積を積算した。これにより、触媒層中の細孔のうち孔径が2~5nmの範囲内である第一細孔の細孔容積(単位:ml/g)を求めた。同様の方法で、触媒層中の細孔のうち孔径が0.01~2.00μmの範囲内である第二細孔の細孔容積(単位:ml/g)を求めた。
[(6)陽極の酸素過電圧、電気二重層容量]
 陽極の酸素過電圧は下記の手順で測定した。
 試験陽極を2cm×2cmに切り出し、PTFEで被覆したニッケル製の棒にニッケル製のネジで固定した。対極には白金メッシュを使用し、80℃、32wt%水酸化ナトリウム水溶液中で、電流密度6kA/mで電解し、酸素過電圧を測定した(初期過電圧の測定)。酸素過電圧は、液抵抗によるオーム損の影響を排除するために、ルギン管を使用する三電極法によって測定した。ルギン管の先端と陽極との間隔は、常に1mmに固定した。酸素過電圧の測定装置としては、ソーラートロン社製のポテンショガルバノスタット「1470Eシステム」を用いた。三電極法用の参照極としては、銀-塩化銀(Ag/AgCl)を用いた。三電極法を使用しても排除しきれない電解液抵抗を交流インピーダンス法で測定し、電解液抵抗の測定値に基づき前記酸素過電圧を補正した。ソーラートロン社製の周波数特性分析器「1255B」を使用して、実部と虚部をプロットしたCole-Coleプロットを取得した後に、等価回路フィッティングにより解析することで、電解液抵抗と電気二重層容量を算出した。
[(7)CV4000回後の過電圧]
 上記三電極法をもちいて、±0V vs. Ag/AgClから+0.35V vs. Ag/AgClの掃引幅でサイクリックボルタンメトリー測定を行った。電位の掃引速度は200mV/secとした。+0.35Vからスタートし、±0Vを経由し、再び+0.35Vに到達するまでをサイクル1回(CV1回)とした。4000回のサイクル後の過電圧(CV4000回後の過電圧)を測定した。
 実施例及び比較例における評価結果を表1に示す。
[(8)24時間電解後の多孔質膜へのCo付着量]
 片面に上記多孔質膜を密着させた試験陽極を、PTFEで被覆したニッケル製の棒にニッケル製のネジで固定した。対極には白金メッシュを使用し、80℃、32wt%水酸化ナトリウム水溶液中で、電流密度6kA/mで24時間電解した。
 電解後、取り出した膜を、蒸留水で洗浄した後に、完全に水分を除去するまで乾燥させた。乾燥した膜の、試験陽極と接していた面を、Thermo Fisher Scientific社製携帯型成分分析計ナイトンXL3tにて、元素分析した。隔膜1枚につき3点測定した平均値を、Coの表面濃度(原子%)とした。
 実施例及び比較例における評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例の初期過電圧は240mVより低く、良好な過電圧が得られた。一方で、比較例1および2の酸素過電圧では240mV以上であった。
 また、実施例の電位サイクル試験後の酸素過電圧は310mV以下であり、良好な電位サイクル耐性が確認された。
(実施例9)
 アルカリ水電解用電解セル、複極式電解槽を下記の通りに作製した。
-陽極-
 実施例3で作製した陽極を使用した。
-陰極-
 導電性基材として、直径0.15mmのニッケルの細線を40メッシュで編んだ平織メッシュ基材を用いた。重量平均粒径100μm以下のアルミナ粉を用いてブラストし、次に、6Nの塩酸中にて室温で5分間酸処理した後、水洗、乾燥した。
 次に、硝酸パラジウム溶液(田中貴金属製、パラジウム濃度:100g/L)とジニトロジアンミン白金硝酸溶液(田中貴金属製、白金濃度:100g/L)とを、パラジウムと白金のモル比が1:1となるように混合し、第一塗布液を調製した。
 塗布ロールの最下部に上記第一塗布液を入れたバットを設置し、EPDM製の塗布ロールに塗布液をしみこませ、その上部にロールと塗布液とが常に接するようにロールを設置し、さらにその上にPVC製のローラーを設置して、該導電性基材に塗布液を塗布した(ロール法)。塗布液が乾燥する前に手早く、2つのEPDM製スポンジロールの間にこの導電性基材を通過させて、導電性基材のメッシュの交点に溜まる塗布液を吸い取って除いた。その後、50℃で10分間乾燥させて塗布膜を形成した後、マッフル炉を用いて500℃で10分間の加熱焼成を行って該塗布膜を熱分解させた。このロール塗布、乾燥及び熱分解のサイクルを2回繰り返し、第一層を形成させた。
 次に、塩化イリジウム酸溶液(田中貴金属製、イリジウム濃度:100g/L)とジニトロジアンミン白金硝酸溶液(田中貴金属製、白金濃度:100g/L)を、イリジウムと白金とのモル比が0.73:0.27となるように混合し、第二塗布液を調製した。第一層と同様にロール法にて第二塗布液を上記第一層が形成された基材上へ、塗布、乾燥及び熱分解を行った。乾燥温度は、50℃、熱分解温度は500℃で2回繰り返し、第二層を形成させた。さらに、空気雰囲気中500℃で1時間の後加熱を行い、試験陰極を作製した。
-隔壁、外枠-
 複極式エレメントとして、陽極と陰極とを区画する隔壁と、隔壁を取り囲む外枠と、を備えたものを用いた。隔壁及び複極式エレメントのフレーム等の電解液に接液する部材の材料は、全てニッケルとした。
-導電性弾性体-
 導電性弾性体は、線径0.15mmのニッケル製ワイヤーを織ったものを、波高さ5mmになるように波付け加工したものを使用した。厚みは5mmであり、目開きは5メッシュ程度であった。
-隔膜-
 酸化ジルコニウム(商品名「EP酸化ジルコニウム」、第一稀元素化学工業社製)とN-メチル-2-ピロリドン(和光純薬工業社製)とを、粒径0.5mmのSUSボールが入った容量1000mLのボールミルポットに投入した。これらを回転数70rpmで3時間攪拌して、分散させて混合物を得た。得られた混合物を、ステンレス製のざる(網目30メッシュ)により濾過し、混合物からボールを分離した。ボールを分離した混合物にポリスルホン(「ユーデル」(登録商標)、ソルベイアドバンストポリマーズ社製)及びポリビニルピロリドン(重量平均分子量(Mw)900000、和光純薬工業社製)を加え、スリーワンモータを用いて12時間攪拌して溶解させ、以下の成分組成の塗工液を得た。
ポリスルホン        :15質量部
ポリビニルピロリドン    :6質量部
N-メチル-2-ピロリドン :70質量部
酸化ジルコニウム      :45質量部
 上記塗工液を、基材であるポリフェニレンサルファイドメッシュ(くればぁ社製、膜厚280μm、目開き358μm、繊維径150μm)の両表面に対して、コンマコータを用いて塗工厚みが各面150μmとなるよう塗工した。塗工後直ちに、塗工液を塗工した基材を、30℃の純水/イソプロパノール混合液(和光純薬工業社製、純水/イソプロパノール=50/50(v/v))を溜めた凝固浴の蒸気下へ晒した。その後直ちに、塗工液を塗工した基材を、凝固浴中へ浸漬した。そして、ポリスルホンを凝固させることで基材表面に塗膜を形成させた。その後、純水で塗膜を十分洗浄して多孔質膜を得た。
 この多孔質膜の90℃の平均透水孔径で0.3μmであった。厚みは580μmであった。多孔質膜表面の平均孔径は2.3μmであった。
-ガスケット-
 ガスケットは、厚み4.0mm、幅18mmの内寸504mm角の四角形状のもので、内側に平面視で電極室と同じ寸法の開口部を有し、隔膜を挿入することで保持するためのスリット構造を有するものを使用した。スリット構造は、開口部の内壁の厚み方向の中央部分に、隔壁を挿入することでこれを保持するための、0.4mmの隙間を設けた構造とした。このガスケットは、EPDMゴムを材質とし、100%変形時の引張応力が4.0MPaであった。
-ゼロギャップ型複極式エレメント-
 外部ヘッダー型のゼロギャップ型セルユニット60は、540mm×620mmの長方形とし、陽極2aおよび陰極2cの通電面の面積は500mm×500mmとした。ゼロギャップ型複極式エレメント60の陰極側は、陰極2c、導電性弾性体2e、陰極集電体2rが積層され、陰極リブ6を介して隔壁1と接続され、電解液が流れる陰極室5cがある。また、陽極側は、陽極2aが陽極リブ6を介して隔壁1と接続され、電解液が流れる陽極室5aがある(図2)。
 陽極室5aの深さ(陽極室深さ、図2における隔壁と陽極との距離)は25mm、陰極室5cの深さ(陰極室深さ、図2における隔壁と陰極集電体との距離)25mmとし、材質はニッケルとした。高さ25mm、厚み1.5mmのニッケル製の陽極リブ6と、高さ25mm、厚み1.5mmのニッケル製の陰極リブ6を溶接により取り付けたニッケル製の隔壁1の厚みは2mmとした。
 陰極集電体2rとして、集電体として、あらかじめブラスト処理を施したニッケルエキスパンド基材を用いた。基材の厚みは1mmで、開口率は54%であった。導電性弾性体2eを、陰極集電体2r上にスポット溶接して固定した。このゼロギャップ型複極式エレメントを、隔膜を保持したガスケットを介してスタックさせることで、陽極2aと陰極2cとが隔膜4に押し付けられたゼロギャップ構造Zを形成することができる。
 陰極入口ヘッダーを介して陰極室5cへ、陰極室5cから陰極出口ヘッダーを介して、電解液を流した。また、陽極入口ヘッダーを介して陽極室5aへ、陽極室5aから陽極出口ヘッダーを介して、電解液を流した。
 図3に示すように、陰極電解液入口は平面視で長方形の外枠の下辺の一方端側に、陰極電解液出口は平面視で長方形の外枠3の下辺の他方端側に繋がる側辺の上側に、それぞれ接続されている。ここでは、陰極電解液入口と陰極電解液出口とを、平面視で長方形の電解室5において電極室5の電極室5の中央部を挟んで向かい合うように、設けた。電解液は、鉛直方向に対して傾斜しながら下方から上方へ流れ、電極面に沿って上昇した(図3)。
 この実施例の複極式電解槽50では、陽極室5aや陰極室5cの電解液入口から、陽極室5aや陰極室5cに、電解液が流入し、陽極室5aや陰極室5cの電解液出口から、電解液と生成ガスとが、電解槽50外へ流出する構造とした。
 陰極室5cでは、電解により水素ガスが発生し、陽極室5aでは、電解により酸素ガスが発生するため、前述した、陰極出口ヘッダーでは、電解液と水素ガスとの混相流となり、陽極出口ヘッダーでは、電解液と酸素ガスとの混相流となった。
 実施例9の複極式電解槽は下記のとおりの手順で作製した。
 上記陰極を陰極ターミナルフレームに取付けたものを、陰極ターミナルエレメントとした。上記陽極を陽極ターミナルフレームに取付けたものを、陽極ターミナルエレメントとした。
 上記複極式エレメントを9個用意した。また、上記陰極ターミナルエレメント、上記陽極ターミナルエレメントを、1個ずつ用意した。
 全ての複極式エレメントと、陰極ターミナルエレメントと、陽極ターミナルエレメントの、金属フレーム部分にガスケットを貼付けた。
 陽極ターミナルエレメントと、複極式エレメントの陰極側との間に、上記隔膜を1枚挟み込んだ。9個の複極式エレメントを、隣接する複極式エレメントのうちの一方の陽極側と他方の陰極側とが対向するように、直列に並べ、隣接する複極式エレメントの間に、8枚の隔膜を1枚ずつ挟み込み、陰極と陽極とが隔膜に押しつけられたゼロギャップ構造を形成した。更に、9個目の複極式エレメントの陽極側と、陰極ターミナルエレメントとの間に、隔膜Aを1枚挟み込んだ。これらを、ファストヘッド、絶縁板、ルーズヘッドを用いたうえで、プレス機で締付けたものを、複極式電解槽とした。
 送液ポンプ、気液分離タンク等は、いずれも当該技術分野において通常使用されるものを用いて、図3に示すようなアルカリ水電解装置を作製した。
(比較例4)
 比較例1と同様にして作製した陽極を用いたこと以外は、実施例9と同様にしてゼロギャップ型複極式エレメントを製造した。
(比較例5)
 比較例3と同様にして作製した陽極を用いたこと以外は、実施例9と同様にしてゼロギャップ型複極式エレメントを製造した。
 上記電解装置を用いて、電流密度が6kA/mとなるように連続で11時間正通電し、水電解を行ったのち電解を停止した。そのままの状態で1時間保持した後、再度6kA/mの正通電を11時間行った。正通電・停止をそれぞれ一回ずつ行うことを1サイクルの通電として、1000サイクルの通電を行った。実施例9、比較例4、比較例5の各セルの対電圧をモニターし、対電圧の推移を記録した。各セルの初期の対電圧および1000サイクル後の対電圧を、実施例9、比較例4、比較例5それぞれ3セルの平均値をとった。結果を表2に示す。
 実施例9では3セル平均過電圧が、初期過電圧で1.78V、1000サイクル後も1.79Vと低い値であったのに対して、比較例4では初期過電圧が高く、十分低い電解効率が得られなかった。また、比較例5ではサイクル試験後にセル電圧の上昇が確認され、十分な耐久性が得られなかった。よって、実施例9の陽極が低い過電圧と高い耐久性を持つことで、長時間運転においても低いセル電圧の維持が実現できたと結論付けられる。
 さらに、上記サイクル試験が終わった後に、電解槽から取り出した隔膜の陽極側の表面を、Thermo Fisher Scientific社製携帯型成分分析計ナイトンXL3tにて、元素分析を実施した。隔膜1枚につき3点測定したCo原子%の平均値を、Co原子濃度とした。同様にしてNi原子%の平均値を求め、Ni原子濃度とした。
 その結果、実施例9では、ニッケル原子濃度とコバルト原子濃度との合計が0.23原子%(Co0.22原子%、Ni0.01原子%)であったのに対して、比較例5では、1.58原子%(Co1.50原子%、Ni0.08原子%)であった。実施例9では、適度な量のコバルト化合物が表面に付着することで、多孔質膜の親水性が増加し、電解により発生した気泡の膜表面への滞留が抑制された結果、良好なセル電圧が得られていると考えられる。一方、比較例5では、コバルト化合物が膜表面に大量に付着することで、孔の一部が閉塞して電解液の流路が減少した結果、セル電圧と初期と比較して増加したと考えられる。尚、実施例9の隔膜の断面をSEM-EDX解析した結果、Co原子が酸化ジルコニウム粒子の表面に局在して存在していることが確認できた。
Figure JPOXMLDOC01-appb-T000002
 本実施形態の陽極は、水の電気分解において、低い酸素発生電位を有し、高いエネルギー変換効率を示す。したがって、水電解用陽極として利用できる。とりわけ、風力又は太陽光等の供給が不安定な自然エネルギーによる発電等の変動電源を利用した水電解用の陽極として好適に利用できる。
 1     隔壁
 2     電極
 2a    陽極
 2c    陰極
 2e    導電性弾性体
 2r    集電体
 3     外枠
 4     隔膜
 5     電極室
 5a    陽極室
 5c    陰極室
 5i    電解液入口
 5o    電解液出口
 5ai   陽極電解液入口
 5ao   陽極電解液出口
 5ci   陰極電解液入口
 5co   陰極電解液出口
 6     リブ
 7     ガスケット
 10    ヘッダー
 10ai  陽極入口ヘッダー
 10ao  陽極出口ヘッダー
 10ci  陰極入口ヘッダー
 10co  陰極出口ヘッダー
 50    複極式電解槽
 51g   ファストヘッド、ルーズヘッド
 51i   絶縁板
 51a   陽極ターミナルエレメント
 51c   陰極ターミナルエレメント
 51r   タイロッド
 60    複極式エレメント
 65    電解セル
 70    電解装置
 71    送液ポンプ
 72    気液分離タンク
 74    整流器
 75    酸素濃度計
 76    水素濃度計
 77    流量計
 78    圧力計
 79    熱交換器
 80    圧力制御弁
 D1    隔壁に沿う所与の方向(電解液通過方向)
 Z     ゼロギャップ構造

Claims (16)

  1.  ニッケルとコバルトの総モル数に対してコバルトを0.1モル%以上10モル%以下含み、厚みが50μm以上800μm以下であるニッケル触媒層がニッケル多孔基材表面に形成された陽極であって、
     前記ニッケル触媒層中のニッケルの(111)面によって回折されるX線のピーク強度をINi、酸化ニッケルの(012)面によって回折されるX線のピーク強度をINiOとしたとき、[INiO/(INi+INiO)]×100の値が0以上15以下であり、
     前記ニッケル触媒層の比表面積が1.0m/g以上10.0m/g以下である、
    ことを特徴とする陽極。
  2.  ニッケルとコバルトの総モル数に対してコバルトを0.1モル%以上10モル%以下含み、厚みが50μm以上800μm以下であるニッケル触媒層がニッケル多孔基材表面に形成されたアルカリ水電解用陽極であって、
     前記ニッケル触媒層中のニッケルの(111)面によって回折されるX線のピーク強度をINi、酸化ニッケルの(012)面によって回折されるX線のピーク強度をINiOとしたとき、[INiO/(INi+INiO)]×100の値が0以上15以下であり、
     前記ニッケル触媒層の比表面積が1.0m/g以上10.0m/g以下である、
    ことを特徴とするアルカリ水電解用陽極。
  3.  前記ニッケル触媒層中に細孔が形成され、
     前記細孔のうち、孔径が2nm以上5nm以下である第一細孔の比表面積が0.6m/g以上2.0m/g以下であり、
     前記第一細孔の細孔容積が3×10-4ml/g以上9×10-4ml/g以下であり、
     前記細孔のうち、孔径が0.01μm以上2.00μm以下である第二細孔の比表面積が2.0m/g以上5.0m/g以下であり、
     前記細孔のうち、前記第二細孔の細孔容積が0.04ml/g以上0.2ml/g以下である、請求項1又は2に記載の陽極。
  4.  前記ニッケル触媒層において、ニッケルとコバルトの総モル数に対してコバルトを0.5モル%以上2モル%以下含む、請求項1から3のいずれか一項に記載の陽極。
  5.  電気二重層容量が0.3F/cm以上10.0F/cm以下である、請求項1から4のいずれか一項に記載の陽極。
  6.  前記ニッケル多孔基材の開口率が20%以上80%以下である、請求項1から5のいずれか一項に記載の陽極。
  7.  前記ニッケル多孔基材の厚みが0.2mm以上2.0mm以下である、請求項1から6のいずれか一項に記載の陽極。
  8.  前記ニッケル多孔基材がエキスパンドメタルである、請求項1から7のいずれか一項に記載の陽極。
  9.  前記エキスパンドメタルの寸法が、SWが2mm以上5mm以下であり、LWが3mm以上10mm以下である、請求項8に記載の陽極。
  10.  請求項1から9のいずれか一項に記載の陽極を含むこと、を特徴とする複極式電解セル。
  11.  前記陽極と陰極とが、隔膜を挟んで重ね合わされ、
     前記隔膜が、表面の平均孔径が0.5μm以上5μm以下の多孔質膜である、
    請求項10に記載の複極式電解セル。
  12.  前記隔膜が、親水性無機粒子が包埋されている多孔質膜である、請求項11に記載の複極式電解セル。
  13.  前記親水性無機粒子が酸化ジルコニウムである、請求項12に記載の複極式電解セル。
  14.  前記親水性無機粒子が、酸化ジルコニウム、並びにニッケル原子及び/又はコバルト原子を含む化合物を含む、請求項12に記載の複極式電解セル。
  15.  前記隔膜の少なくとも一方の表面を、蛍光X線法を用いて解析した際の、ニッケル原子濃度とコバルト原子濃度との合計が、0.01原子%以上1.0原子%以下である、請求項12から14の何れか一項に記載の複極式電解セル。
  16.  アルカリを含有する水を電解槽により水電解し、水素を製造する水素製造方法であって、
     前記電解槽は、少なくとも陽極と陰極とを有し、
     前記陽極は、ニッケルとコバルトの総モル数に対してコバルトを0.1モル%以上10モル%以下含み、厚みが50μm以上800μm以下であるニッケル触媒層がニッケル多孔基材表面に形成された陽極であって、
     前記ニッケル触媒層中のニッケルの(111)面によって回折されるX線のピーク強度をINi、酸化ニッケルの(012)面によって回折されるX線のピーク強度をINiOとしたとき、[INiO/(INi+INiO)]×100の値が0以上15以下であり、
     前記ニッケル触媒層の比表面積が1.0m/g以上10.0m/g以下である、
    ことを特徴とする水素製造方法。
PCT/JP2018/013768 2017-03-31 2018-03-30 陽極、複極式電解セル、水素製造方法 WO2018181955A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18778292.5A EP3604619A4 (en) 2017-03-31 2018-03-30 ANODE, BIPOLAR ELECTROLYTIC CELL AND METHOD FOR PRODUCING HYDROGEN
JP2019509389A JP6837130B2 (ja) 2017-03-31 2018-03-30 陽極、複極式電解セル、水素製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017072937 2017-03-31
JP2017-072937 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018181955A1 true WO2018181955A1 (ja) 2018-10-04

Family

ID=63677742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013768 WO2018181955A1 (ja) 2017-03-31 2018-03-30 陽極、複極式電解セル、水素製造方法

Country Status (3)

Country Link
EP (1) EP3604619A4 (ja)
JP (1) JP6837130B2 (ja)
WO (1) WO2018181955A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021004411A (ja) * 2019-06-27 2021-01-14 株式会社日本触媒 アルカリ水電解用隔膜ならびに該隔膜の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024147010A1 (en) 2023-01-05 2024-07-11 Oxford nanosystems Limited Improved electrodes

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782483A (en) 1980-11-11 1982-05-22 Asahi Chem Ind Co Ltd Electrode for production of hydrogen and its production
JPS58136789A (ja) * 1981-12-21 1983-08-13 アンステイテユ・フランセ・デユ・ペトロ−ル 特にアルカリ性媒質中における水の電解に利用し得る、酸素放出のための弱い過電圧を示す、触媒の被覆する電極
JP2010065283A (ja) * 2008-09-11 2010-03-25 Dainippon Printing Co Ltd 触媒層ペースト組成物、転写基材付き触媒層、水素発生用電気分解セルの電極及びその製造方法、並びに膜触媒層接合体、水素発生用電気分解セルとその製造方法
JP2010209420A (ja) * 2009-03-11 2010-09-24 Daiso Co Ltd 低水素過電圧陰極の製法
WO2013191140A1 (ja) 2012-06-18 2013-12-27 旭化成株式会社 複極式アルカリ水電解ユニット、及び電解槽
WO2016148302A1 (ja) * 2015-03-18 2016-09-22 旭化成株式会社 アルカリ水電解用隔膜、アルカリ水電解装置、水素の製造方法及びアルカリ水電解用隔膜の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782483A (en) 1980-11-11 1982-05-22 Asahi Chem Ind Co Ltd Electrode for production of hydrogen and its production
JPS58136789A (ja) * 1981-12-21 1983-08-13 アンステイテユ・フランセ・デユ・ペトロ−ル 特にアルカリ性媒質中における水の電解に利用し得る、酸素放出のための弱い過電圧を示す、触媒の被覆する電極
JP2010065283A (ja) * 2008-09-11 2010-03-25 Dainippon Printing Co Ltd 触媒層ペースト組成物、転写基材付き触媒層、水素発生用電気分解セルの電極及びその製造方法、並びに膜触媒層接合体、水素発生用電気分解セルとその製造方法
JP2010209420A (ja) * 2009-03-11 2010-09-24 Daiso Co Ltd 低水素過電圧陰極の製法
WO2013191140A1 (ja) 2012-06-18 2013-12-27 旭化成株式会社 複極式アルカリ水電解ユニット、及び電解槽
WO2016148302A1 (ja) * 2015-03-18 2016-09-22 旭化成株式会社 アルカリ水電解用隔膜、アルカリ水電解装置、水素の製造方法及びアルカリ水電解用隔膜の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3604619A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021004411A (ja) * 2019-06-27 2021-01-14 株式会社日本触媒 アルカリ水電解用隔膜ならびに該隔膜の製造方法
JP7284001B2 (ja) 2019-06-27 2023-05-30 株式会社日本触媒 アルカリ水電解用隔膜ならびに該隔膜の製造方法

Also Published As

Publication number Publication date
JP6837130B2 (ja) 2021-03-03
EP3604619A1 (en) 2020-02-05
JPWO2018181955A1 (ja) 2019-11-07
EP3604619A4 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
JP6948384B2 (ja) 水電解システム、水電解方法、水素の製造方法
JP7323299B2 (ja) 陰極、その製造方法、およびそれを用いた電解槽、水素製造方法
JP6797940B2 (ja) 電解槽、電解装置、電解方法、水素製造方法
JP6746721B2 (ja) 複極式電解槽、アルカリ水電解用複極式電解槽、及び水素製造方法
JP6120804B2 (ja) 電解セル及び電解槽
US11339484B2 (en) Electrolytic cell and electrolyzer
JP6764994B2 (ja) 陽極、水電解用陽極、電解セル、及び水素の製造方法
US20160237578A1 (en) Anode for alkaline water electrolysis
WO2013191140A1 (ja) 複極式アルカリ水電解ユニット、及び電解槽
JP6782796B2 (ja) 複極式電解セル、複極式電解槽、水素製造方法
JP6837130B2 (ja) 陽極、複極式電解セル、水素製造方法
JP7136580B2 (ja) 隔膜、隔膜の製造方法、電解槽及び水素製造方法
JP6803406B2 (ja) 電解槽、電解装置、電解方法
JP7170061B2 (ja) 水素製造方法
JP7579086B2 (ja) 電解装置の運転方法、および電解システム
WO2023145914A1 (ja) 水素発生用陰極、アルカリ水電解用陰極、陰極の製造方法、複極式電解セル、アルカリ水電解用電解槽及び水素製造方法
JP2021195597A (ja) 内部マニホールド型複極式水電解エレメント

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18778292

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509389

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018778292

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018778292

Country of ref document: EP

Effective date: 20191031