WO2018181589A1 - Adhesive composition and structure - Google Patents

Adhesive composition and structure Download PDF

Info

Publication number
WO2018181589A1
WO2018181589A1 PCT/JP2018/012994 JP2018012994W WO2018181589A1 WO 2018181589 A1 WO2018181589 A1 WO 2018181589A1 JP 2018012994 W JP2018012994 W JP 2018012994W WO 2018181589 A1 WO2018181589 A1 WO 2018181589A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive composition
circuit
mass
adhesive
meth
Prior art date
Application number
PCT/JP2018/012994
Other languages
French (fr)
Japanese (ja)
Inventor
直 工藤
泰典 川端
翔太 三島
智樹 森尻
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to CN201880021694.3A priority Critical patent/CN110461984A/en
Priority to JP2019510051A priority patent/JP7172991B2/en
Priority to KR1020197030920A priority patent/KR102577181B1/en
Publication of WO2018181589A1 publication Critical patent/WO2018181589A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • C09J4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09J159/00 - C09J187/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/185Joining of semiconductor bodies for junction formation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers

Definitions

  • the present disclosure relates to an adhesive composition and a structure.
  • Various adhesives are conventionally used in semiconductor elements and liquid crystal display elements (display display elements) for the purpose of bonding various members in the elements.
  • the properties required for adhesives are diverse, including adhesiveness, heat resistance, reliability in high temperature and high humidity conditions, and the like.
  • an adherend used for adhesion a printed wiring board, an organic substrate (polyimide substrate, etc.), metal (titanium, copper, aluminum, etc.), ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide)
  • Base materials having surface states such as IGZO (Indium Gallium Zinc Oxide), SiN x , and SiO 2 are used, and molecular design of an adhesive suitable for each adherend is necessary.
  • thermosetting resins epoxy resins, acrylic resins, etc.
  • a latent curing agent that generates an epoxy resin and a cationic species or anionic species having reactivity with the epoxy resin by heat or light
  • the latent curing agent is an important factor for determining the curing temperature and the curing rate, and various compounds have been used from the viewpoint of storage stability at normal temperature and curing rate during heating. In the actual process, for example, desired adhesiveness was obtained by curing under a curing condition of a temperature of 170 to 250 ° C. for 10 seconds to 3 hours.
  • radical curing adhesives using a (meth) acrylate derivative and a peroxide as a radical polymerization initiator in combination.
  • radicals that are reactive species are very reactive, so they can be cured for a short time, and the peroxide is stable below the decomposition temperature of the radical polymerization initiator.
  • a curing system that achieves both low-temperature short-time curing and storage stability (for example, storage stability near room temperature).
  • radical curing adhesive compositions as shown in Patent Documents 1 to 3 below are known.
  • connection portions of semiconductor elements and liquid crystal display elements have been further reduced, and there is a demand for an adhesive having a sufficient adhesive strength even with a smaller connection area.
  • sufficient adhesive strength cannot be obtained with conventional adhesives.
  • the present disclosure relates to an adhesive composition capable of obtaining sufficient adhesive strength even when the connection area is small in a radical curable adhesive capable of low-temperature and short-time connection (low-temperature and short-time curing), and uses the same.
  • An object of the present invention is to provide a structure.
  • the inventors of the present invention paid attention to polyurethane beads during the study. Then, the inventors have found that the adhesive strength is particularly high when a resin containing a urethane bond is used as a thermoplastic resin, in the course of studying an adhesive composition containing polyurethane beads. It was. Moreover, it discovered that adhesive strength became higher by using a nonelectroconductive inorganic fine particle in combination with a polyurethane bead.
  • one aspect of the present disclosure includes (a) a thermoplastic resin having a urethane bond, (b) a radical polymerizable compound, (c) a radical polymerization initiator, (d) a polyurethane bead, An adhesive composition containing conductive inorganic fine particles is provided.
  • the adhesive composition of the present disclosure high adhesive force can be obtained even when the connection area is small.
  • the connection area is small.
  • the present inventors infer the reason why a high adhesive force can be obtained in some cases as follows. That is, the adhesiveness with the adherend is improved by the flexibility and polarity of the polyurethane beads, and the connection area is small because the adhesive composition and its cured product have sufficient strength by the non-conductive inorganic fine particles. In some cases, it is considered that high adhesive strength can be obtained.
  • thermoplastic resin having a urethane bond has a high affinity with (d) polyurethane beads. Therefore, by using these in combination, the dispersibility of (d) polyurethane beads in the adhesive composition can be increased. It is believed that the adhesive strength is greatly improved and excellent adhesive strength can be obtained even when the connection area is small.
  • the content of the thermoplastic resin having the urethane bond (a) in the adhesive composition of the present disclosure may be equal to or more than the content of the polyurethane beads (d) on a mass basis.
  • the adhesive composition of the present disclosure may further contain (f) conductive particles.
  • the adhesive composition of the present disclosure may be for circuit connection (adhesive composition for circuit connection).
  • Another aspect of the present disclosure provides a structure including the adhesive composition according to one aspect of the present disclosure or a cured product thereof.
  • Another aspect of the present disclosure includes a first circuit member having a first circuit electrode, a second circuit member having a second circuit electrode, the first circuit member, and the second circuit member.
  • a structure comprising the composition or a cured product thereof is provided.
  • an adhesive composition capable of obtaining high adhesive force even when the connection area is small can be provided.
  • the present disclosure it is possible to provide an application of the adhesive composition or the cured product thereof to the structure or the production thereof. According to the present disclosure, it is possible to provide application of an adhesive composition or a cured product thereof to circuit connection. According to the present disclosure, it is possible to provide an application of an adhesive composition or a cured product thereof to a circuit connection structure or a production thereof.
  • (meth) acrylate means at least one of acrylate and methacrylate corresponding thereto.
  • the materials exemplified below may be used alone or in combination of two or more unless otherwise specified.
  • the content of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition.
  • the numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively. “A or B” only needs to include either A or B, and may include both.
  • Normal temperature means 25 ° C.
  • the upper limit value or lower limit value of a numerical range of a certain step may be replaced with the upper limit value or lower limit value of the numerical range of another step. Further, in the numerical ranges described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • the adhesive composition of the present embodiment includes (a) a thermoplastic resin having a urethane bond (hereinafter also referred to as (a) component), (b) a radical polymerizable compound (hereinafter also referred to as (b) component), ( c) radical polymerization initiator (hereinafter also referred to as (c) component), (d) polyurethane beads (hereinafter also referred to as (d) component), and (e) non-conductive inorganic fine particles (hereinafter referred to as (e) component) It is also referred to as an adhesive composition.
  • the adhesive composition of this embodiment may further contain (f) conductive particles (hereinafter also referred to as component (f)).
  • the adhesive composition of this embodiment can be suitably used as an adhesive composition for circuit connection.
  • each component will be described.
  • thermoplastic resin The thermoplastic resin (a) having a urethane bond (hereinafter referred to as polyurethane resin) used in the present embodiment can be obtained, for example, by a reaction between a polyol and an isocyanate component such as diisocyanate.
  • the weight average molecular weight of the polyurethane resin is preferably 5,000 to 150,000, and more preferably 10,000 to 80,000. If this value is 5,000 or more, the film forming property tends to be good when the adhesive composition is used in a film form, and if it is 150,000 or less, the compatibility with other components is good. Tend to be.
  • polyol used for the synthesis of the polyurethane resin examples include polyester polyol, polyether polyol, polycarbonate polyol, acrylic polyol, polyurethane polyol, and aromatic polyol (phthalic acid polyol).
  • polyether polyol examples include those having a basic skeleton of ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, triethylene glycol and the like. These can be used alone or in combination.
  • isocyanate component examples include diisocyanate compounds such as aromatic diisocyanate, aliphatic diisocyanate, and alicyclic diisocyanate. Specifically, 4,4′-diphenylmethane diisocyanate (MDI), tolylene diisocyanate (TDI), trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate (HDI), 3-isocyanate methyl-3,5,5-trimethyl Examples thereof include cyclohexyl isocyanate (IPDI).
  • MDI 4,4′-diphenylmethane diisocyanate
  • TDI tolylene diisocyanate
  • HDI hexamethylene diisocyanate
  • IPDI cyclohexyl isocyanate
  • the isocyanurate compound (trifunctional) or uretdione compound (bifunctional) formed from the said diisocyanate monomer can also be used as an isocyanate component.
  • terminal isocyanate group polyisocyanate for example, adduct type polyisocyanate, biuret type polyisocyanate, etc.
  • the content of polyurethane resin in the adhesive composition is preferably not less than the content of (d) polyurethane beads on a mass basis.
  • the content of the polyurethane resin is equal to or greater than the content of the polyurethane bead, the dispersibility of the polyurethane bead in the adhesive composition is further increased by the presence of a relatively large amount of the polyurethane resin having a high affinity with the polyurethane bead. There is a tendency to improve.
  • the content of the polyurethane resin is 5 to 90 mass based on the total mass of the adhesive component of the adhesive composition ((f) solid content other than the conductive particles in the adhesive composition. The same applies hereinafter).
  • the content of the polyurethane resin is 5% by mass or more, the dispersibility of the polyurethane beads tends to be improved and the adhesive strength tends to be further improved, and if it is 90% by mass or less, the fluidity of the adhesive composition is good. There is a tendency to be able to.
  • the adhesive composition of the present embodiment can be used in combination with a known thermoplastic resin other than the polyurethane resin.
  • thermoplastic resin other than the polyurethane resin include one or more resins selected from polyimide resins, polyamide resins, phenoxy resins, poly (meth) acrylic resins, polyester resins, and polyvinyl butyral resins.
  • the weight average molecular weight of such a thermoplastic resin is preferably 5000 to 400000, more preferably 5000 to 200000, and still more preferably 10,000 to 150,000.
  • weight average molecular weight of such a thermoplastic resin is 5000 or more, there is a tendency that the adhesive strength of the adhesive composition can be improved, and when the weight average molecular weight is 400000 or less, compatibility with other components is high. It is favorable and tends to suppress a decrease in fluidity of the adhesive.
  • a rubber component can also be used for the purpose of stress relaxation and adhesion improvement.
  • the rubber component include acrylic rubber, polyisoprene, polybutadiene, carboxyl group-terminated polybutadiene, hydroxyl group-terminated polybutadiene, 1,2-polybutadiene, carboxyl group-terminated 1,2-polybutadiene, hydroxyl group-terminated 1,2-polybutadiene, and styrene-butadiene.
  • Examples include rubber, hydroxyl-terminated styrene-butadiene rubber, carboxylated nitrile rubber, hydroxyl-terminated poly (oxypropylene), alkoxysilyl group-terminated poly (oxypropylene), poly (oxytetramethylene) glycol, polyolefin glycol, and poly- ⁇ -caprolactone. It is done.
  • the rubber component preferably has a cyano group or a carboxyl group, which is a highly polar group, as a side chain group or a terminal group from the viewpoint of improving adhesiveness. These rubber components can be used alone or in combination of two or more.
  • the total content of the thermoplastic resin in the adhesive composition is preferably 20 to 90% by mass, more preferably 20 to 80% by mass, based on the total mass of the adhesive component of the adhesive composition.
  • the content is preferably 30 to 70% by mass.
  • the radical polymerizable compound is a compound having a radical polymerizable functional group.
  • examples of such radically polymerizable compounds include (meth) acrylate compounds, maleimide compounds, citraconic imide resins, and nadiimide resins.
  • “(Meth) acrylate compound” means a compound having a (meth) acryloyl group.
  • a radically polymerizable compound may be used in the state of a monomer or an oligomer, and can also use a monomer and an oligomer together.
  • a radically polymerizable compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the (meth) acrylate compound examples include methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, isobutyl (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, Trimethylolpropane tri (meth) acrylate, tetramethylolmethanetetra (meth) acrylate, 2-hydroxy-1,3-di (meth) acryloxypropane, 2,2-bis [4-((meth) acryloxymethoxy) Phenyl] propane, 2,2-bis [4-((meth) acryloxypolyethoxy) phenyl] propane, dicyclopentenyl (meth) acrylate, tricyclodecanyl (meth) acrylate, tris ((meth) acryloyloxy D Le) isocyanurate, urethane (meth)
  • radically polymerizable compounds other than (meth) acrylate compounds for example, compounds described in Patent Document 3 (International Publication No. 2009/063827) can be preferably used.
  • a (meth) acrylate compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • a (meth) acrylate compound is preferable and urethane (meth) acrylate is more preferable from the viewpoint of obtaining further excellent storage stability.
  • the (meth) acrylate compound preferably has at least one substituent selected from the group consisting of a dicyclopentenyl group, a tricyclodecanyl group, and a triazine ring.
  • radical polymerizable compound a radical polymerizable compound having a phosphate ester structure represented by the following general formula (1) is preferably used, and the radical polymerizable compound such as a (meth) acrylate compound and the formula ( It is more preferable to use together with the radically polymerizable compound which has the phosphate ester structure represented by 1).
  • the adhesive strength to the surface of an inorganic substance (metal etc.) improves, it is suitable for adhesion
  • p represents an integer of 1 to 3
  • R represents a hydrogen atom or a methyl group.
  • the radical polymerizable compound having a phosphoric ester structure can be obtained, for example, by reacting phosphoric anhydride with 2-hydroxyethyl (meth) acrylate.
  • Specific examples of the radical polymerizable compound having a phosphate structure include mono (2- (meth) acryloyloxyethyl) acid phosphate, di (2- (meth) acryloyloxyethyl) acid phosphate, and the like.
  • the radically polymerizable compound having a phosphate ester structure represented by the formula (1) may be used alone or in combination of two or more.
  • the content of the radical polymerizable compound having a phosphate ester structure represented by the formula (1) is a radical polymerizable compound (total amount of components corresponding to the radical polymerizable compound. From the viewpoint of obtaining further excellent adhesiveness. 1) to 100% by mass, more preferably 1 to 50% by mass, still more preferably 1 to 10% by mass, based on the total mass of the same).
  • the content of the radically polymerizable compound having the phosphate ester structure represented by the formula (1) is that of the radically polymerizable compound and the film forming material (components used as necessary) from the viewpoint of obtaining further excellent adhesiveness. Based on the total mass, 0.01 to 50 mass% is preferable, 0.5 to 10 mass% is more preferable, and 0.5 to 5 mass% is still more preferable.
  • the radical polymerizable compound may contain allyl (meth) acrylate.
  • the content of allyl (meth) acrylate is preferably 0.1 to 10% by mass, based on the total mass of the radical polymerizable compound and the film-forming material (components used as necessary), preferably 0.5 to 5 mass% is more preferable.
  • the content of the radical polymerizable compound is preferably in the following range based on the total mass of the adhesive component of the adhesive composition from the viewpoint of obtaining further excellent adhesiveness.
  • the content of the radical polymerizable compound is preferably 10% by mass or more, more preferably 20% by mass or more, further preferably 30% by mass or more, and further preferably 40% by mass or more.
  • the content of the radically polymerizable compound is preferably 90% by mass or less, more preferably 80% by mass or less, further preferably 70% by mass or less, and particularly preferably 60% by mass or less. Preferably, it is very preferably 50% by mass or less.
  • the content of the radical polymerizable compound is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, still more preferably 30 to 70% by mass, It is particularly preferably from 60 to 60% by weight, and very preferably from 40 to 50% by weight.
  • Radical polymerization initiator As the radical polymerization initiator, an initiator that generates free radicals by heat (heating), an initiator that generates free radicals by light, an initiator that generates free radicals by ultrasonic waves, electromagnetic waves, or the like is used. Can do.
  • An initiator that generates free radicals by heat is a compound that decomposes by heat to generate free radicals.
  • examples of such compounds include peroxides (such as organic peroxides) and azo compounds.
  • Such radical polymerization initiator is appropriately selected depending on the intended connection temperature, connection time, pot life, and the like. From the viewpoint of stability, reactivity, and compatibility, a peroxide having a one-minute half-life temperature of 90 to 175 ° C. and a molecular weight of 180 to 1000 is preferred. “1 minute half-life temperature” refers to a temperature at which the half-life of the peroxide is 1 minute.
  • Half-life refers to the time taken for the concentration of a compound to decrease to half of its initial value at a given temperature.
  • the 1-minute half-life temperature is a value published in a catalog (organic peroxide (10th edition, February 2015)) issued by NOF Corporation.
  • the initiator that generates free radicals by heat include diacyl peroxide, peroxydicarbonate, peroxyester, peroxyketal, dialkyl peroxide, hydroperoxide, silyl peroxide, and the like.
  • radical polymerization initiator from the viewpoint of suppressing corrosion of electrodes (circuit electrodes, etc.), an initiator having a concentration of contained chlorine ions and organic acids of 5000 ppm or less is preferable, and an organic acid generated after thermal decomposition is low. An agent is more preferable.
  • Specific examples of such initiators include peroxyesters, dialkyl peroxides, hydroperoxides, silyl peroxides, and the like, and peroxyesters are more preferable from the viewpoint of obtaining high reactivity.
  • radical polymerization initiator examples include 1,1,3,3-tetramethylbutylperoxyneodecanoate, di (4-tert-butylcyclohexyl) peroxydicarbonate, di (2-ethylhexyl) peroxydi Carbonate, cumylperoxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, dilauroyl peroxide, 1-cyclohexyl-1-methylethylperoxyneodecanoate, t- Hexyl peroxyneodecanoate, t-butyl peroxyneodecanoate, t-butyl peroxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 2,5 -Dimethyl-2,5-di (2-ethylhexanoylperoxy) hexane, t-hexyl
  • An initiator that generates free radicals by light is a compound that decomposes by light to generate free radicals.
  • a compound that generates free radicals upon irradiation with light having a wavelength of 150 to 750 nm can be used.
  • Examples of such a compound include Photoinitiation, Photopolymerization, and Photocuring, J.A. -P. ⁇ -Acetaminophenone derivatives and phosphine oxide derivatives described in Fouassier, Hanser Publishers (1995), p17 to p35 are preferred.
  • the radical polymerization initiator may be used alone or in combination of two or more. You may use together an initiator, a decomposition accelerator, a decomposition inhibitor, etc. In addition, the initiator may be coated with a polyurethane-based or polyester-based polymer substance to form microcapsules. Microencapsulated initiators are preferred because the pot life is extended.
  • the content of the radical polymerization initiator is preferably 1 to 15 parts by mass, more preferably 2.5 to 10 parts by mass with respect to 100 parts by mass of the total amount of the components (a) and (b). .
  • the polyurethane beads (d) used in the present embodiment are spherical organic fine particles made of a crosslinked urethane resin.
  • Polyurethane beads can be synthesized by reacting a polyol component and an isocyanate component.
  • a polyol component bifunctional ones are mainly used, but trifunctional or higher ones may be used in combination.
  • trifunctional or higher functional group is used in combination, the degree of crosslinking of the polyurethane beads can be increased.
  • polyol component examples include polyester polyol, polyether polyol, polycarbonate polyol, acrylic polyol, polyurethane polyol, and aromatic polyol (phthalic acid polyol). Of these, polycarbonate polyols or aromatic polyols are preferred in terms of improving hydrolysis resistance.
  • a polyol a polyfunctional polyol is preferable at the point which makes the crosslinking degree of a polyurethane bead high and an elastic recovery property becomes high.
  • polyfunctional polyol examples include a trifunctional polycaprolactone-based polyol. The polyfunctional polyol has higher flexibility as the weight average molecular weight is larger. These can be used alone or in combination.
  • the isocyanate component may be any of yellowing type, non-yellowing type, and hardly yellowing type.
  • Examples of the isocyanate component include diisocyanate compounds such as aromatic diisocyanate, aliphatic diisocyanate, and alicyclic diisocyanate. Specifically, for example, 4,4′-diphenylmethane diisocyanate (MDI), tolylene diisocyanate (TDI), trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate (HDI), 3-isocyanate methyl-3,5,5 -Trimethylcyclohexyl isocyanate (IPDI) and the like.
  • MDI 4,4′-diphenylmethane diisocyanate
  • TDI tolylene diisocyanate
  • HDI hexamethylene diisocyanate
  • IPDI 3-isocyanate methyl-3,5,5 -Trimethylcyclohexyl
  • the isocyanurate compound (trifunctional) or uretdione compound (bifunctional) formed from the said diisocyanate monomer can also be used as an isocyanate component.
  • terminal isocyanate group polyisocyanate for example, adduct type polyisocyanate, biuret type polyisocyanate, etc.
  • the average particle diameter of the polyurethane beads is not particularly limited, but is preferably 50 nm to 10 ⁇ m, more preferably 70 nm to 6 ⁇ m, and further preferably 70 nm to 5 ⁇ m. Since it may be technically difficult to produce polyurethane beads of less than 50 nm, it is preferably 50 nm or more from the viewpoint of availability. Moreover, when it is 10 micrometers or less, when it mix
  • the content of polyurethane beads is preferably less than the content of the polyurethane resin as component (a). In addition, it is preferably 3 to 50% by mass, more preferably 4 to 40% by mass, and more preferably 5 to 30% by mass based on the total mass of the adhesive component of the adhesive composition. Is more preferable, and 8 to 25% by mass is particularly preferable. When the content is 3% by mass or more, sufficient adhesive strength tends to be easily obtained. When the content is 50% by mass or less, a decrease in fluidity of the adhesive tends to be suppressed.
  • Non-conductive inorganic fine particles As the non-conductive inorganic fine particles of the component (e), known non-conductive inorganic fine particles can be used without particular limitation.
  • the nonconductive inorganic fine particles include nonconductive inorganic fine particles such as silica fine particles, alumina fine particles, silica-alumina fine particles, titania fine particles, and zirconia fine particles. These can be used individually by 1 type or in mixture of 2 or more types.
  • (e) non-conductive inorganic fine particles have no conductivity, and do not belong to (f) conductive particles described later.
  • the average particle size of the nonconductive inorganic fine particles is preferably less than 1 ⁇ m, and more preferably 0.1 to 0.5 ⁇ m.
  • the average particle diameter is the mode diameter in the major axis direction when present in the circuit connecting material.
  • the average primary particle diameter of the component (e) is preferably 100 nm or less, and more preferably 10 to 30 nm.
  • an average particle diameter and an average primary particle diameter show the value measured by image analysis.
  • non-conductive inorganic fine particles fine particles whose surface is modified with an organic group can be suitably used because of excellent dispersibility.
  • organic group include a dimethylsiloxane group and a diphenylsiloxane group.
  • the content of the non-conductive inorganic fine particles is preferably 1 to 30% by mass, more preferably 2 to 25% by mass based on the total mass of the adhesive component, and 5 to 20% by mass. More preferably.
  • the content of the component (e) is in the above range, the effects of the present disclosure are more remarkably exhibited.
  • the adhesive composition of the present embodiment may further contain (f) conductive particles.
  • conductive particles examples include gold (Au), silver (Ag), nickel (Ni), copper (Cu), metals such as solder, carbon, and the like.
  • coated conductive particles in which a non-conductive resin, glass, ceramic, plastic, or the like is used as a core, and the metal (metal particles or the like) or carbon is coated on the core may be used. Since the coated conductive particles or the hot-melt metal particles are deformable by heating and pressing, the variation in the height of the circuit electrode is eliminated at the time of connection, and the contact area with the electrode is increased at the time of connection, thereby improving the reliability. Therefore, it is preferable.
  • the average particle diameter of the conductive particles is preferably 1 to 30 ⁇ m, more preferably 2 to 25 ⁇ m, and further preferably 3 to 20 ⁇ m from the viewpoint of excellent dispersibility and conductivity.
  • the average particle diameter of the conductive particles can be measured using instrumental analysis such as laser diffraction.
  • the content of the conductive particles is preferably 0.1 part by volume or more, and more preferably 1 part by volume or more with respect to 100 parts by volume of the total volume of the adhesive component of the adhesive composition.
  • the content of the conductive particles is preferably 50 parts by volume or less, more preferably 20 parts by volume or less, based on the total volume of the adhesive component of the adhesive composition, from the viewpoint of easily suppressing short-circuiting of electrodes (circuit electrodes, etc.).
  • 10 parts by volume or less is more preferable, 5 parts by volume or less is particularly preferable, and 3 parts by volume or less is extremely preferable.
  • the content of the conductive particles is preferably 0.1 to 50 parts by volume, more preferably 0.1 to 20 parts by volume, still more preferably 1 to 20 parts by volume, and particularly preferably 1 to 10 parts by volume. 1 to 5 parts by volume is very preferable, and 1 to 3 parts by volume is very preferable.
  • the “volume part” is determined based on the volume of each component before curing at 23 ° C., and the volume of each component can be converted from mass to volume using specific gravity.
  • the volume of the target component is increased by adding the target component to a container in which a suitable solvent (water, alcohol, etc.) that does not dissolve or swell the target component and wets the target component well is placed in a graduated cylinder. Can also be sought.
  • the adhesive composition according to the present embodiment may contain a silane coupling agent.
  • the silane coupling agent is preferably a compound represented by the following formula (2).
  • R 1 , R 2 and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkoxycarbonyl group having 1 to 5 carbon atoms or An aryl group is shown. At least one of R 1 , R 2 and R 3 is an alkoxy group.
  • R 4 is a (meth) acryloyl group, a (meth) acryloyloxy group, a vinyl group, an isocyanate group, an imidazole group, a mercapto group, an aminoalkyl group optionally substituted with an aminoalkyl group, a methylamino group, a dimethylamino group, a benzyl An amino group, a phenylamino group, a cyclohexylamino group, a morpholino group, a piperazino group, a ureido group, a glycidyl group or a glycidoxy group.
  • a represents an integer of 0 to 10.
  • silane coupling agent of the formula (2) examples include vinyltrimethoxysilane, vinyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3- (meth) Acryloxypropylmethyldimethoxysilane, 3- (meth) acryloxypropyltrimethoxysilane, 3- (meth) acryloxypropylmethyldiethoxysilane, 3- (meth) acryloxypropyltriethoxysilane, N-2- (amino Ethyl) -3-aminopropylmethyldimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane and 3-isocyanatopropyltriethoxysilane. That.
  • the content of the silane coupling agent is preferably 0.1 to 10 parts by mass and preferably 0.25 to 5 parts by mass with respect to 100 parts by mass of the total amount of the components (a) and (b). Is more preferable. If the content of the silane coupling agent is 0.1 parts by mass or more, the effect of suppressing the separation of the interface between the circuit member and the circuit connecting material and the generation of bubbles tends to increase. When the content is 10 parts by mass or less, the pot life of the adhesive composition tends to be long.
  • the adhesive composition of this embodiment may contain a polymerization inhibitor such as hydroquinone and methyl ether hydroquinone as needed.
  • the adhesive composition of this embodiment is a homopolymer or copolymer obtained by polymerizing at least one monomer component selected from the group consisting of (meth) acrylic acid, (meth) acrylic acid ester and acrylonitrile. Furthermore, you may contain.
  • the adhesive composition of the present embodiment preferably contains acrylic rubber or the like, which is a copolymer obtained by polymerizing glycidyl (meth) acrylate having a glycidyl ether group, from the viewpoint of excellent stress relaxation.
  • the weight average molecular weight of the acrylic rubber is preferably 200,000 or more from the viewpoint of increasing the cohesive strength of the adhesive composition.
  • the adhesive composition of the present embodiment may contain coated fine particles obtained by coating the surfaces of the conductive particles with a polymer resin or the like.
  • coated fine particles obtained by coating the surfaces of the conductive particles with a polymer resin or the like.
  • the coated fine particles may be used alone without using conductive particles, or the coated fine particles and conductive particles may be used in combination.
  • the “adhesive component of the adhesive composition” in the present specification means a solid content other than the conductive particles and the coated fine particles in the adhesive composition.
  • the adhesive composition of this embodiment can also contain rubber fine particles, fillers, softeners, accelerators, anti-aging agents, colorants, flame retardants, thixotropic agents, and the like. Moreover, the adhesive composition of this embodiment may contain additives, such as a thickener, a leveling agent, and a weather resistance improver, as appropriate.
  • the rubber fine particles have an average particle size not more than twice the average particle size of the conductive particles, and the storage elastic modulus at normal temperature is 1/2 of the storage elastic modulus at normal temperature of the conductive particles and the adhesive composition.
  • the following particles are preferred.
  • the rubber fine particles are made of silicone, acrylic emulsion, SBR (Styrene-Butadiene Rubber), NBR (Nitril-Butadiene Rubber) or polybutadiene rubber
  • the rubber fine particles may be used alone or in combination of two or more. Is preferred.
  • the three-dimensionally cross-linked rubber fine particles have excellent solvent resistance and are easily dispersed in the adhesive composition.
  • the filler can improve the electrical characteristics (connection reliability, etc.) between the circuit electrodes.
  • the filler for example, particles having an average particle size of 1/2 or less of the average particle size of the conductive particles can be suitably used.
  • particles having no conductivity are used in combination with a filler, particles having an average particle size not more than the particles having no conductivity can be used as the filler.
  • the content of the filler is preferably 0.1 to 60% by mass based on the total amount of the adhesive component of the adhesive composition. When the content is 60% by mass or less, the effect of improving connection reliability tends to be obtained more sufficiently. When the content is 0.1% by mass or more, the effect of adding the filler tends to be sufficiently obtained.
  • the adhesive composition of this embodiment can be used in the form of a paste when it is liquid at room temperature.
  • the adhesive composition When the adhesive composition is solid at room temperature, it may be heated and used, or may be made into a paste using a solvent.
  • the solvent that can be used is not particularly limited as long as it is not reactive with the components in the adhesive composition and exhibits sufficient solubility.
  • the solvent is preferably a solvent having a boiling point of 50 to 150 ° C. at normal pressure. When the boiling point is 50 ° C. or higher, the solvent is poorly volatile at room temperature, and can be used even in an open system. When the boiling point is 150 ° C. or lower, it is easy to volatilize the solvent, and thus good reliability can be obtained after bonding.
  • the adhesive composition of the present embodiment may be in the form of a film. If necessary, an adhesive composition containing a solvent or the like is applied onto, for example, a fluororesin film, a polyethylene terephthalate film, or a peelable substrate (release paper, etc.), and then the solvent is removed to remove the film. Can be obtained. Moreover, after impregnating base materials, such as a nonwoven fabric, with the said solution and mounting on a peelable base material, a film-form adhesive composition can be obtained by removing a solvent etc. When the adhesive composition is used in the form of a film, the handleability is excellent.
  • the adhesive composition of this embodiment can be adhered by applying pressure together with heating or light irradiation. By using heating and light irradiation in combination, it can be bonded at a lower temperature in a shorter time.
  • the light irradiation is preferably performed in the wavelength region of 150 to 750 nm.
  • As the light source a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp (extra-high-pressure mercury lamp, etc.), a xenon lamp, a metal halide lamp, or the like can be used.
  • the irradiation dose may be 0.1-10 J / cm 2 .
  • the heating temperature is not particularly limited, but a temperature of 50 to 170 ° C. is preferable.
  • the pressure is not particularly limited as long as it does not damage the adherend, but is preferably 0.1 to 10 MPa. Heating and pressurization are preferably performed in the range of 0.5 seconds to 3 hours.
  • the adhesive composition of the present embodiment may be used as an adhesive for the same type of adherend, or as an adhesive for different types of adherends having different thermal expansion coefficients.
  • circuit connection materials typified by anisotropic conductive adhesive, silver paste, silver film, etc .; CSP (Chip Size Package) elastomer, CSP underfill material, LOC (Lead on Chip) tape, etc. It can be used as a semiconductor element adhesive material.
  • the structure of this embodiment includes the adhesive composition of this embodiment or a cured product thereof.
  • the structure of this embodiment is a semiconductor device such as a circuit connection structure.
  • the circuit connection structure includes a first circuit member having a first circuit electrode, a second circuit member having a second circuit electrode, and a first circuit member. And a circuit connecting member disposed between the second circuit members.
  • the first circuit member includes, for example, a first substrate and a first circuit electrode disposed on the first substrate.
  • the second circuit member includes, for example, a second substrate and a second circuit electrode disposed on the second substrate. The first circuit electrode and the second circuit electrode face each other and are electrically connected.
  • the circuit connection member includes the adhesive composition of the present embodiment or a cured product thereof.
  • the structure which concerns on this embodiment should just be equipped with the adhesive composition which concerns on this embodiment, or its hardened
  • the structure manufacturing method of the present embodiment includes a step of curing the adhesive composition of the present embodiment.
  • the circuit connection structure manufacturing method includes a first circuit member having a first circuit electrode, and a second circuit member having a second circuit electrode. Between the step of arranging the adhesive composition of the present embodiment, and pressurizing the first circuit member and the second circuit member to electrically connect the first circuit electrode and the second circuit electrode. And a heating and pressing step of heating and curing the adhesive composition. In the arranging step, the first circuit electrode and the second circuit electrode can be arranged to face each other. In the heating and pressurizing step, the first circuit member and the second circuit member can be pressurized in the opposite directions.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a structure.
  • a circuit connection structure 100 a shown in FIG. 1 includes a circuit member (first circuit member) 20 and a circuit member (second circuit member) 30 that are opposed to each other, and between the circuit member 20 and the circuit member 30.
  • the circuit connection member 10 which connects these is arrange
  • the circuit connection member 10 includes a cured product of the adhesive composition of the present embodiment.
  • the circuit member 20 includes a substrate (first substrate) 21 and a circuit electrode (first circuit electrode) 22 disposed on the main surface 21 a of the substrate 21.
  • An insulating layer (not shown) may be disposed on the main surface 21a of the substrate 21 as the case may be.
  • the circuit member 30 includes a substrate (second substrate) 31 and a circuit electrode (second circuit electrode) 32 disposed on the main surface 31 a of the substrate 31.
  • An insulating layer (not shown) may be disposed on the main surface 31a of the substrate 31 in some cases.
  • the circuit connecting member 10 contains an insulating substance (cured product of components excluding conductive particles) 10a and conductive particles 10b.
  • the conductive particles 10b are disposed at least between the circuit electrode 22 and the circuit electrode 32 facing each other. In the circuit connection structure 100a, the circuit electrode 22 and the circuit electrode 32 are electrically connected via the conductive particles 10b.
  • the circuit members 20 and 30 have one or a plurality of circuit electrodes (connection terminals).
  • a chip component such as a semiconductor chip (IC chip), a resistor chip, or a capacitor chip; a substrate such as a printed board or a semiconductor mounting board can be used.
  • Examples of the combination of the circuit members 20 and 30 include a semiconductor chip and a semiconductor mounting substrate.
  • the material of the substrate include inorganic substances such as semiconductor, glass, and ceramic; organic substances such as polyimide, polyethylene terephthalate, polycarbonate, (meth) acrylic resin, and cyclic olefin resin; and composites of glass and epoxy.
  • the substrate may be a plastic substrate.
  • FIG. 2 is a schematic cross-sectional view showing another embodiment of the structure.
  • the circuit connection structure 100b shown in FIG. 2 has the same configuration as the circuit connection structure 100a except that the circuit connection member 10 does not contain the conductive particles 10b.
  • the circuit electrode 22 and the circuit electrode 32 are in direct contact and are electrically connected without interposing conductive particles.
  • the circuit connection structures 100a and 100b can be manufactured, for example, by the following method. First, when the adhesive composition is in a paste form, the resin layer containing the adhesive composition is disposed on the circuit member 20 by applying and drying the adhesive composition. When the adhesive composition is in the form of a film, the resin layer containing the adhesive composition is disposed on the circuit member 20 by sticking the film-like adhesive composition to the circuit member 20. Subsequently, the circuit member 30 is placed on the resin layer disposed on the circuit member 20 so that the circuit electrode 22 and the circuit electrode 32 are opposed to each other. And a heat treatment or light irradiation is performed to the resin layer containing an adhesive composition, an adhesive composition hardens
  • a nickel layer having a thickness of 0.2 ⁇ m was formed on the surface of the polystyrene particles. Further, a gold layer having a thickness of 0.04 ⁇ m was formed outside the nickel layer. Thereby, conductive particles having an average particle diameter of 4 ⁇ m were produced.
  • Examples 1 to 7 and Comparative Examples 1 to 4 (Production of film adhesive)
  • the components shown in Table 2 were mixed at a mass ratio (solid content) shown in Table 2 to obtain a mixture.
  • Coating for forming a film adhesive by dispersing the conductive particles in this mixture at a ratio of 1.5 parts by volume (standard: ratio relative to 100 parts by volume of the total adhesive component of the adhesive composition).
  • a liquid was obtained.
  • This coating solution was applied to a polyethylene terephthalate (PET) film having a thickness of 50 ⁇ m using a coating apparatus.
  • the coating film was dried with hot air at 70 ° C. for 10 minutes to form a film adhesive having a thickness of 18 ⁇ m.
  • PET polyethylene terephthalate
  • Polyurethane resin A polyurethane resin synthesized as described above was used.
  • Phenoxy resin Used in the form of a 40% by mass solution prepared by dissolving 40 g of PKHC (manufactured by Union Carbide Corporation, trade name, weight average molecular weight 45000) in 60 g of methyl ethyl ketone.
  • Radical polymerizable compound A Urethane acrylate synthesized as described above was used.
  • Radical polymerizable compound B Isocyanuric acid EO-modified diacrylate (trade name: M-215, manufactured by Toa Gosei Co., Ltd.) was used.
  • Radical polymerizable compound C phosphate ester: 2-methacryloyloxyethyl acid phosphate (trade name: Light Ester P-2M, manufactured by Kyoeisha Chemical Co., Ltd.) was used.
  • Peroxide radiation polymerization initiator: 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate (trade name: Perocta O, manufactured by NOF Corporation, 1 minute half-life temperature: 124 .3 ° C).
  • Polyurethane beads A P-800T (trade name, average particle size: 6 ⁇ m, glass transition temperature: ⁇ 34 ° C.) manufactured by Negami Kogyo Co., Ltd.
  • 10 g was used in the form of a 10% by mass solution dispersed in 90 g of methyl ethyl ketone.
  • Silica fine particles (non-conductive inorganic fine particles): 10 g of R104 (trade name, manufactured by Nippon Aerosil Co., Ltd.) dispersed in a mixed solvent of 45 g of toluene and 45 g of ethyl acetate was used.
  • the substrate and a SiN x substrate (thickness 0.7 mm) having a thin layer of 0.2 ⁇ m thick silicon nitride (SiN x ) formed on the glass substrate were connected.
  • the connection was performed by heating and pressurizing at 170 ° C. and 3 MPa for 5 seconds using a thermocompression bonding apparatus (heating method: constant heat type, manufactured by Toray Engineering Co., Ltd.).
  • connection body in which the FPC and the SiN x substrate were connected by the cured product of the film adhesive over a width of 1.5 mm and a width of 1.0 mm was produced.
  • Pressure of the pressure the pressure bonding area in the case of width 1.5mm 0.495cm 2, in the case of width 1.0mm was calculated as 0.330cm 2.
  • the adhesive strength of the obtained connection body was measured by a 90-degree peeling method according to JIS-Z0237.
  • Tensilon UTM-4 manufactured by Toyo Baldwin Co., Ltd., trade name, peel strength 50 mm / min, 25 ° C. was used as an adhesive strength measuring device. The results are shown in Table 2.
  • the film-like adhesives of the Examples can obtain higher adhesive strength (8 N / cm or more) even when connected to a width of 1.0 mm than the film-like adhesives of Comparative Examples.
  • the film-like adhesive of Comparative Example 1 a high adhesive strength was obtained when the width was 1.5 mm, but sufficient adhesive strength was not obtained when the width was 1.0 mm.
  • the film-like adhesives of Comparative Examples 2 to 4 sufficient adhesive strength was not obtained even when connected to a width of 1.5 mm.

Abstract

An adhesive composition which contains (a) a thermoplastic resin having a urethane bond, (b) a radically polymerizable compound, (c) a radical polymerization initiator, (d) polyurethane beads and (e) non-conductive inorganic fine particles.

Description

接着剤組成物及び構造体Adhesive composition and structure
 本開示は、接着剤組成物及び構造体に関する。 The present disclosure relates to an adhesive composition and a structure.
 半導体素子及び液晶表示素子(ディスプレイ表示素子)において、素子中の種々の部材を結合させる目的で従来から種々の接着剤が使用されている。接着剤に要求される特性は、接着性をはじめとして、耐熱性、高温高湿状態における信頼性等、多岐に亘る。また、接着に使用される被着体としては、プリント配線板、有機基材(ポリイミド基材等)、金属(チタン、銅、アルミニウム等)、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、IGZO(Indium Gallium Zinc Oxide)、SiN、SiO等の表面状態を有する基材などが用いられ、各被着体にあわせた接着剤の分子設計が必要である。 2. Description of the Related Art Various adhesives are conventionally used in semiconductor elements and liquid crystal display elements (display display elements) for the purpose of bonding various members in the elements. The properties required for adhesives are diverse, including adhesiveness, heat resistance, reliability in high temperature and high humidity conditions, and the like. Moreover, as an adherend used for adhesion, a printed wiring board, an organic substrate (polyimide substrate, etc.), metal (titanium, copper, aluminum, etc.), ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide) Base materials having surface states such as IGZO (Indium Gallium Zinc Oxide), SiN x , and SiO 2 are used, and molecular design of an adhesive suitable for each adherend is necessary.
 従来、半導体素子用又は液晶表示素子用の接着剤では、高接着性及び高信頼性を示す熱硬化性樹脂(エポキシ樹脂、アクリル樹脂等)が用いられてきた。エポキシ樹脂を使用した接着剤の構成成分としては、エポキシ樹脂、及び、エポキシ樹脂に対する反応性を有するカチオン種又はアニオン種を熱又は光により発生させる潜在性硬化剤が一般に用いられている。潜在性硬化剤は、硬化温度及び硬化速度を決定する重要な因子であり、常温での貯蔵安定性及び加熱時の硬化速度の観点から、種々の化合物が用いられてきた。実際の工程では、例えば、温度170~250℃、10秒~3時間の硬化条件で硬化することにより所望の接着性を得ていた。 Conventionally, thermosetting resins (epoxy resins, acrylic resins, etc.) exhibiting high adhesion and high reliability have been used in adhesives for semiconductor elements or liquid crystal display elements. As a constituent component of an adhesive using an epoxy resin, a latent curing agent that generates an epoxy resin and a cationic species or anionic species having reactivity with the epoxy resin by heat or light is generally used. The latent curing agent is an important factor for determining the curing temperature and the curing rate, and various compounds have been used from the viewpoint of storage stability at normal temperature and curing rate during heating. In the actual process, for example, desired adhesiveness was obtained by curing under a curing condition of a temperature of 170 to 250 ° C. for 10 seconds to 3 hours.
 また、近年、半導体素子の高集積化及び液晶表示素子の高精細化に伴い、素子間及び配線間ピッチが狭小化し、硬化時の熱によって、周辺部材に悪影響を及ぼすおそれがある。更に、低コスト化のためには、スループットを向上させる必要があり、低温(90~170℃)且つ短時間(1時間以内、好ましくは10秒以内、より好ましくは5秒以内)での接着、換言すれば、低温短時間硬化(低温速硬化)での接着が要求されている。この低温短時間硬化を達成するためには、活性化エネルギーの低い熱潜在性触媒を使用する必要があるが、常温付近での貯蔵安定性を兼備することが非常に難しいことが知られている。 In recent years, with the high integration of semiconductor elements and the high definition of liquid crystal display elements, the pitch between elements and wirings is narrowed, and there is a possibility of adversely affecting peripheral members due to heat during curing. Further, in order to reduce the cost, it is necessary to improve the throughput, and adhesion at a low temperature (90 to 170 ° C.) and in a short time (within 1 hour, preferably within 10 seconds, more preferably within 5 seconds) In other words, adhesion by low temperature short time curing (low temperature rapid curing) is required. In order to achieve this low-temperature and short-time curing, it is necessary to use a thermal latent catalyst with low activation energy, but it is known that it is very difficult to combine storage stability near normal temperature. .
 そのため、近年、(メタ)アクリレート誘導体と、ラジカル重合開始剤である過酸化物とを併用したラジカル硬化系の接着剤等が注目されている。ラジカル硬化系は、反応活性種であるラジカルが非常に反応性に富むため、短時間硬化が可能であり、且つ、ラジカル重合開始剤の分解温度以下では、過酸化物が安定に存在することから、低温短時間硬化と貯蔵安定性(例えば、常温付近での貯蔵安定性)とを両立した硬化系である。例えば、下記特許文献1~3に示されるようなラジカル硬化系の接着剤組成物が知られている。 For this reason, in recent years, attention has been focused on radical curing adhesives using a (meth) acrylate derivative and a peroxide as a radical polymerization initiator in combination. In radical curing systems, radicals that are reactive species are very reactive, so they can be cured for a short time, and the peroxide is stable below the decomposition temperature of the radical polymerization initiator. A curing system that achieves both low-temperature short-time curing and storage stability (for example, storage stability near room temperature). For example, radical curing adhesive compositions as shown in Patent Documents 1 to 3 below are known.
特開2006-22231号公報JP 2006-22231 A 特開2009-1765号公報JP 2009-1765 A 国際公開第2009/063827号International Publication No. 2009/063827
 近年、半導体素子及び液晶表示素子の接続部分の縮小化が更に進んでおり、より小さい接続面積でも十分な接着強度を有する接着剤が求められている。しかしながら、従来の接着剤では十分な接着強度が得られないことがわかった。 In recent years, the connection portions of semiconductor elements and liquid crystal display elements have been further reduced, and there is a demand for an adhesive having a sufficient adhesive strength even with a smaller connection area. However, it has been found that sufficient adhesive strength cannot be obtained with conventional adhesives.
 そこで、本開示は、低温短時間接続(低温短時間硬化)が可能なラジカル硬化系接着剤において、接続面積が小さい場合においても十分な接着強度が得られる接着剤組成物、及び、それを用いた構造体を提供することを目的とする。 Therefore, the present disclosure relates to an adhesive composition capable of obtaining sufficient adhesive strength even when the connection area is small in a radical curable adhesive capable of low-temperature and short-time connection (low-temperature and short-time curing), and uses the same. An object of the present invention is to provide a structure.
 本発明者らは、検討を進める中でポリウレタンビーズに着目した。そして、本発明者らは、ポリウレタンビーズを配合した接着剤組成物の検討を進める中で、特に熱可塑性樹脂として、ウレタン結合を含有する樹脂を用いた場合に特に接着強度が高くなることを見出した。また、ポリウレタンビーズと組み合わせて、非導電性無機微粒子を用いることにより、接着強度がより高くなることを見出した。 The inventors of the present invention paid attention to polyurethane beads during the study. Then, the inventors have found that the adhesive strength is particularly high when a resin containing a urethane bond is used as a thermoplastic resin, in the course of studying an adhesive composition containing polyurethane beads. It was. Moreover, it discovered that adhesive strength became higher by using a nonelectroconductive inorganic fine particle in combination with a polyurethane bead.
 すなわち、本開示の一側面は、(a)ウレタン結合を有する熱可塑性樹脂と、(b)ラジカル重合性化合物と、(c)ラジカル重合開始剤と、(d)ポリウレタンビーズと、(e)非導電性無機微粒子と、を含有する、接着剤組成物を提供する。 That is, one aspect of the present disclosure includes (a) a thermoplastic resin having a urethane bond, (b) a radical polymerizable compound, (c) a radical polymerization initiator, (d) a polyurethane bead, An adhesive composition containing conductive inorganic fine particles is provided.
 本開示の接着剤組成物によれば、接続面積が小さい場合にも高い接着力を得ることができる。本開示の接着剤組成物において、特に(a)ウレタン結合を有する熱可塑性樹脂と、(d)ポリウレタンビーズと、(e)非導電性無機微粒子と、を組み合わせて用いることにより、接続面積が小さい場合にも高い接着力を得ることができる理由について、本発明者らは以下のように推察する。すなわち、ポリウレタンビーズが有する柔軟性及び極性によって被着体との密着性が向上し、更に非導電性無機微粒子によって接着剤組成物及びその硬化物が十分な強度を有することで、接続面積が小さい場合にも高い接着力を得ることができると考えている。また、(a)ウレタン結合を有する熱可塑性樹脂は(d)ポリウレタンビーズとの親和性が高いため、これらを組み合わせて用いることにより、接着剤組成物中での(d)ポリウレタンビーズの分散性が大きく向上し、接続面積が小さい場合においても優れた接着強度が得られるものと考えている。 According to the adhesive composition of the present disclosure, high adhesive force can be obtained even when the connection area is small. In the adhesive composition of the present disclosure, in particular, by using a combination of (a) a thermoplastic resin having a urethane bond, (d) polyurethane beads, and (e) non-conductive inorganic fine particles, the connection area is small. The present inventors infer the reason why a high adhesive force can be obtained in some cases as follows. That is, the adhesiveness with the adherend is improved by the flexibility and polarity of the polyurethane beads, and the connection area is small because the adhesive composition and its cured product have sufficient strength by the non-conductive inorganic fine particles. In some cases, it is considered that high adhesive strength can be obtained. In addition, (a) a thermoplastic resin having a urethane bond has a high affinity with (d) polyurethane beads. Therefore, by using these in combination, the dispersibility of (d) polyurethane beads in the adhesive composition can be increased. It is believed that the adhesive strength is greatly improved and excellent adhesive strength can be obtained even when the connection area is small.
 本開示の接着剤組成物における上記(a)ウレタン結合を有する熱可塑性樹脂の含有量は、質量基準で、上記(d)ポリウレタンビーズの含有量以上であってもよい。 The content of the thermoplastic resin having the urethane bond (a) in the adhesive composition of the present disclosure may be equal to or more than the content of the polyurethane beads (d) on a mass basis.
 本開示の接着剤組成物は、(f)導電粒子を更に含有していてもよい。 The adhesive composition of the present disclosure may further contain (f) conductive particles.
 本開示の接着剤組成物は、回路接続用(回路接続用接着剤組成物)であってもよい。 The adhesive composition of the present disclosure may be for circuit connection (adhesive composition for circuit connection).
 本開示の別の側面は、上記本開示の一側面に係る接着剤組成物又はその硬化物を備える、構造体を提供する。 Another aspect of the present disclosure provides a structure including the adhesive composition according to one aspect of the present disclosure or a cured product thereof.
 本開示の別の側面は、第一の回路電極を有する第一の回路部材と、第二の回路電極を有する第二の回路部材と、上記第一の回路部材及び上記第二の回路部材の間に配置された回路接続部材と、を備え、上記第一の回路電極及び上記第二の回路電極が電気的に接続されており、上記回路接続部材が上記本開示の一側面に係る接着剤組成物又はその硬化物を含む、構造体を提供する。 Another aspect of the present disclosure includes a first circuit member having a first circuit electrode, a second circuit member having a second circuit electrode, the first circuit member, and the second circuit member. A circuit connection member disposed between the first circuit electrode and the second circuit electrode, wherein the circuit connection member is an adhesive according to one aspect of the present disclosure. A structure comprising the composition or a cured product thereof is provided.
 本開示によれば、低温短時間接続(低温短時間硬化)が可能なラジカル硬化系接着剤において、接続面積が小さい場合にも高い接着力を得ることができる接着剤組成物、及び、それを用いた構造体を提供することができる。 According to the present disclosure, in a radical curable adhesive capable of low-temperature short-time connection (low-temperature short-time curing), an adhesive composition capable of obtaining high adhesive force even when the connection area is small, and The used structure can be provided.
 本開示によれば、構造体又はその製造への接着剤組成物又はその硬化物の応用を提供することができる。本開示によれば、回路接続への接着剤組成物又はその硬化物の応用を提供することができる。本開示によれば、回路接続構造体又はその製造への接着剤組成物又はその硬化物の応用を提供することができる。 According to the present disclosure, it is possible to provide an application of the adhesive composition or the cured product thereof to the structure or the production thereof. According to the present disclosure, it is possible to provide application of an adhesive composition or a cured product thereof to circuit connection. According to the present disclosure, it is possible to provide an application of an adhesive composition or a cured product thereof to a circuit connection structure or a production thereof.
本開示の構造体の一実施形態を示す模式断面図である。It is a schematic cross section showing one embodiment of a structure of this indication. 本開示の構造体の他の一実施形態を示す模式断面図である。It is a schematic cross section which shows other one Embodiment of the structure of this indication.
 以下、本開示の実施形態について説明するが、本開示はこれらの実施形態に何ら限定されるものではない。 Hereinafter, embodiments of the present disclosure will be described, but the present disclosure is not limited to these embodiments.
 本明細書において、「(メタ)アクリレート」とは、アクリレート、及び、それに対応するメタクリレートの少なくとも一方を意味する。「(メタ)アクリロイル」、「(メタ)アクリル酸」等の他の類似の表現においても同様である。以下で例示する材料は、特に断らない限り、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。「常温」とは、25℃を意味する。 In the present specification, “(meth) acrylate” means at least one of acrylate and methacrylate corresponding thereto. The same applies to other similar expressions such as “(meth) acryloyl” and “(meth) acrylic acid”. The materials exemplified below may be used alone or in combination of two or more unless otherwise specified. The content of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition. The numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively. “A or B” only needs to include either A or B, and may include both. “Normal temperature” means 25 ° C.
 本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。 In the numerical ranges described step by step in this specification, the upper limit value or lower limit value of a numerical range of a certain step may be replaced with the upper limit value or lower limit value of the numerical range of another step. Further, in the numerical ranges described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
<接着剤組成物>
 本実施形態の接着剤組成物は、(a)ウレタン結合を有する熱可塑性樹脂(以下、(a)成分ともいう)、(b)ラジカル重合性化合物(以下、(b)成分ともいう)、(c)ラジカル重合開始剤(以下、(c)成分ともいう)、(d)ポリウレタンビーズ(以下、(d)成分ともいう)、及び、(e)非導電性無機微粒子(以下、(e)成分ともいう)を含有する接着剤組成物である。本実施形態の接着剤組成物は、(f)導電粒子(以下、(f)成分ともいう)を更に含有していてもよい。本実施形態の接着剤組成物は、回路接続用接着剤組成物として好適に用いることができる。以下、各成分について説明する。
<Adhesive composition>
The adhesive composition of the present embodiment includes (a) a thermoplastic resin having a urethane bond (hereinafter also referred to as (a) component), (b) a radical polymerizable compound (hereinafter also referred to as (b) component), ( c) radical polymerization initiator (hereinafter also referred to as (c) component), (d) polyurethane beads (hereinafter also referred to as (d) component), and (e) non-conductive inorganic fine particles (hereinafter referred to as (e) component) It is also referred to as an adhesive composition. The adhesive composition of this embodiment may further contain (f) conductive particles (hereinafter also referred to as component (f)). The adhesive composition of this embodiment can be suitably used as an adhesive composition for circuit connection. Hereinafter, each component will be described.
(熱可塑性樹脂)
 本実施形態で用いる(a)ウレタン結合を有する熱可塑性樹脂(以下、ポリウレタン樹脂と呼ぶ)は、例えば、ポリオールとジイソシアネート等のイソシアネート成分との反応により得ることができる。ポリウレタン樹脂の重量平均分子量としては、5,000~150,000が好ましく、10,000~80,000がより好ましい。この値が5,000以上であると、接着剤組成物をフィルム状で用いる場合にフィルム形成性が良好となる傾向があり、また150,000以下であると他の成分との相溶性が良好となる傾向がある。
(Thermoplastic resin)
The thermoplastic resin (a) having a urethane bond (hereinafter referred to as polyurethane resin) used in the present embodiment can be obtained, for example, by a reaction between a polyol and an isocyanate component such as diisocyanate. The weight average molecular weight of the polyurethane resin is preferably 5,000 to 150,000, and more preferably 10,000 to 80,000. If this value is 5,000 or more, the film forming property tends to be good when the adhesive composition is used in a film form, and if it is 150,000 or less, the compatibility with other components is good. Tend to be.
 ポリウレタン樹脂の合成に用いられるポリオールとしては、例えば、ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオール、アクリルポリオール、ポリウレタンポリオール、芳香族系ポリオール(フタル酸系ポリオール)等が挙げられる。具体的にはエチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、トリエチレングリコール等を基本骨格としたものなどが挙げられる。これらは1種を単独で又は複数を混合して用いることができる。 Examples of the polyol used for the synthesis of the polyurethane resin include polyester polyol, polyether polyol, polycarbonate polyol, acrylic polyol, polyurethane polyol, and aromatic polyol (phthalic acid polyol). Specific examples include those having a basic skeleton of ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, triethylene glycol and the like. These can be used alone or in combination.
 イソシアネート成分としては、芳香族ジイソシアネート、脂肪族ジイソシアネート、脂環族ジイソシアネート等のジイソシアネート化合物が挙げられる。具体的には、4,4’-ジフェニルメタンジイソシアネート(MDI)、トリレンジイソシアネート(TDI)、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート(HDI)、3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(IPDI)等が挙げられる。また、イソシアネート成分として、上記ジイソシアネートモノマーから形成したイソシアヌレート化合物(3官能)又はウレトジオン化合物(2官能)を用いることもできる。更に、イソシアネート成分として、末端イソシアネート基ポリイソシアネート(例えば、アダクト型ポリイソシアネート、ビウレット型ポリイソシアネート等)を用いることもできる。これらは1種を単独で又は複数を混合して用いることができる。 Examples of the isocyanate component include diisocyanate compounds such as aromatic diisocyanate, aliphatic diisocyanate, and alicyclic diisocyanate. Specifically, 4,4′-diphenylmethane diisocyanate (MDI), tolylene diisocyanate (TDI), trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate (HDI), 3-isocyanate methyl-3,5,5-trimethyl Examples thereof include cyclohexyl isocyanate (IPDI). Moreover, the isocyanurate compound (trifunctional) or uretdione compound (bifunctional) formed from the said diisocyanate monomer can also be used as an isocyanate component. Furthermore, terminal isocyanate group polyisocyanate (for example, adduct type polyisocyanate, biuret type polyisocyanate, etc.) can also be used as an isocyanate component. These can be used alone or in combination.
 接着剤組成物におけるポリウレタン樹脂の含有量は、質量基準で、(d)ポリウレタンビーズの含有量以上であることが好ましい。ポリウレタン樹脂の含有量がポリウレタンビーズの含有量以上である場合、ポリウレタンビーズとの親和性が高いポリウレタン樹脂が相対的に多く存在することで、接着剤組成物中でのポリウレタンビーズの分散性がより向上する傾向がある。その上で、ポリウレタン樹脂の含有量は、接着剤組成物の接着剤成分(接着剤組成物中の(f)導電粒子以外の固形分。以下同様)の全質量を基準として、5~90質量%であることが好ましく、6~80質量%であることがより好ましく、8~70質量%であることが更に好ましく、10~60質量%であることが特に好ましい。ポリウレタン樹脂の含有量が5質量%以上であると、ポリウレタンビーズの分散性が向上して接着強度がより向上する傾向があり、90質量%以下であると、接着剤組成物の流動性を良好にできる傾向がある。 The content of polyurethane resin in the adhesive composition is preferably not less than the content of (d) polyurethane beads on a mass basis. When the content of the polyurethane resin is equal to or greater than the content of the polyurethane bead, the dispersibility of the polyurethane bead in the adhesive composition is further increased by the presence of a relatively large amount of the polyurethane resin having a high affinity with the polyurethane bead. There is a tendency to improve. In addition, the content of the polyurethane resin is 5 to 90 mass based on the total mass of the adhesive component of the adhesive composition ((f) solid content other than the conductive particles in the adhesive composition. The same applies hereinafter). %, More preferably 6 to 80% by mass, still more preferably 8 to 70% by mass, and particularly preferably 10 to 60% by mass. If the content of the polyurethane resin is 5% by mass or more, the dispersibility of the polyurethane beads tends to be improved and the adhesive strength tends to be further improved, and if it is 90% by mass or less, the fluidity of the adhesive composition is good. There is a tendency to be able to.
 本実施形態の接着剤組成物はポリウレタン樹脂以外の公知の熱可塑性樹脂を併用することができる。ポリウレタン樹脂以外の熱可塑性樹脂としては、例えば、ポリイミド樹脂、ポリアミド樹脂、フェノキシ樹脂、ポリ(メタ)アクリル樹脂、ポリエステル樹脂、及びポリビニルブチラール樹脂から選ばれる1種又は2種以上の樹脂が挙げられる。 The adhesive composition of the present embodiment can be used in combination with a known thermoplastic resin other than the polyurethane resin. Examples of the thermoplastic resin other than the polyurethane resin include one or more resins selected from polyimide resins, polyamide resins, phenoxy resins, poly (meth) acrylic resins, polyester resins, and polyvinyl butyral resins.
 このような熱可塑性樹脂の重量平均分子量は、5000~400000が好ましく、5000~200000がより好ましく、10000~150000が更に好ましい。このような熱可塑性樹脂の重量平均分子量が5000以上であると、接着剤組成物の接着強度を良好にできる傾向があり、重量平均分子量が400000以下であると、他の成分との相溶性が良好であり、接着剤の流動性の低下を抑制できる傾向がある。 The weight average molecular weight of such a thermoplastic resin is preferably 5000 to 400000, more preferably 5000 to 200000, and still more preferably 10,000 to 150,000. When the weight average molecular weight of such a thermoplastic resin is 5000 or more, there is a tendency that the adhesive strength of the adhesive composition can be improved, and when the weight average molecular weight is 400000 or less, compatibility with other components is high. It is favorable and tends to suppress a decrease in fluidity of the adhesive.
 熱可塑性樹脂として、応力緩和及び接着性向上を目的として、ゴム成分を用いることもできる。ゴム成分としては、例えば、アクリルゴム、ポリイソプレン、ポリブタジエン、カルボキシル基末端ポリブタジエン、水酸基末端ポリブタジエン、1,2-ポリブタジエン、カルボキシル基末端1,2-ポリブタジエン、水酸基末端1,2-ポリブタジエン、スチレン-ブタジエンゴム、水酸基末端スチレン-ブタジエンゴム、カルボキシル化ニトリルゴム、水酸基末端ポリ(オキシプロピレン)、アルコキシシリル基末端ポリ(オキシプロピレン)、ポリ(オキシテトラメチレン)グリコール、ポリオレフィングリコール及びポリ-ε-カプロラクトンが挙げられる。ゴム成分は、接着性向上の観点から、高極性基であるシアノ基又はカルボキシル基を側鎖基又は末端基として有することが好ましい。これらのゴム成分は、1種を単独で又は2種以上を組み合わせて用いることができる。 As the thermoplastic resin, a rubber component can also be used for the purpose of stress relaxation and adhesion improvement. Examples of the rubber component include acrylic rubber, polyisoprene, polybutadiene, carboxyl group-terminated polybutadiene, hydroxyl group-terminated polybutadiene, 1,2-polybutadiene, carboxyl group-terminated 1,2-polybutadiene, hydroxyl group-terminated 1,2-polybutadiene, and styrene-butadiene. Examples include rubber, hydroxyl-terminated styrene-butadiene rubber, carboxylated nitrile rubber, hydroxyl-terminated poly (oxypropylene), alkoxysilyl group-terminated poly (oxypropylene), poly (oxytetramethylene) glycol, polyolefin glycol, and poly-ε-caprolactone. It is done. The rubber component preferably has a cyano group or a carboxyl group, which is a highly polar group, as a side chain group or a terminal group from the viewpoint of improving adhesiveness. These rubber components can be used alone or in combination of two or more.
 接着剤組成物における熱可塑性樹脂全体の含有量は、接着剤組成物の接着剤成分の全質量を基準として、20~90質量%であることが好ましく、20~80質量%であることがより好ましく、30~70質量%であることが更に好ましい。(a)熱可塑性樹脂の含有量が20質量%以上であると、接着強度を良好にしつつ、接着剤組成物のフィルム形成性を向上できる傾向があり、90質量%以下であると、接着剤組成物の流動性を良好にできる傾向がある。 The total content of the thermoplastic resin in the adhesive composition is preferably 20 to 90% by mass, more preferably 20 to 80% by mass, based on the total mass of the adhesive component of the adhesive composition. The content is preferably 30 to 70% by mass. (A) When the content of the thermoplastic resin is 20% by mass or more, the film forming property of the adhesive composition tends to be improved while improving the adhesive strength. When the content is 90% by mass or less, the adhesive is used. There is a tendency that the fluidity of the composition can be improved.
(ラジカル重合性化合物)
 (b)ラジカル重合性化合物は、ラジカル重合可能な官能基を有する化合物である。このようなラジカル重合性化合物としては、(メタ)アクリレート化合物、マレイミド化合物、シトラコンイミド樹脂、ナジイミド樹脂等が挙げられる。「(メタ)アクリレート化合物」とは、(メタ)アクリロイル基を有する化合物を意味する。ラジカル重合性化合物は、モノマー又はオリゴマーの状態で用いてもよく、モノマーとオリゴマーとを併用することもできる。ラジカル重合性化合物は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(Radically polymerizable compound)
(B) The radical polymerizable compound is a compound having a radical polymerizable functional group. Examples of such radically polymerizable compounds include (meth) acrylate compounds, maleimide compounds, citraconic imide resins, and nadiimide resins. “(Meth) acrylate compound” means a compound having a (meth) acryloyl group. A radically polymerizable compound may be used in the state of a monomer or an oligomer, and can also use a monomer and an oligomer together. A radically polymerizable compound may be used individually by 1 type, and may be used in combination of 2 or more type.
 (メタ)アクリレート化合物の具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、イソブチル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、2-ヒドロキシ-1,3-ジ(メタ)アクリロキシプロパン、2,2-ビス[4-((メタ)アクリロキシメトキシ)フェニル]プロパン、2,2-ビス[4-((メタ)アクリロキシポリエトキシ)フェニル]プロパン、ジシクロペンテニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、トリス((メタ)アクリロイロキシエチル)イソシアヌレート、ウレタン(メタ)アクリレート、イソシアヌル酸EO変性ジ(メタ)アクリレート、9,9-ビス[4-(2-(メタ)アクリロイルオキシエトキシ)フェニル]フルオレン等が挙げられる。(メタ)アクリレート化合物以外のラジカル重合性化合物としては、例えば、特許文献3(国際公開第2009/063827号)に記載の化合物を好適に使用することができる。(メタ)アクリレート化合物は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Specific examples of the (meth) acrylate compound include methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, isobutyl (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, Trimethylolpropane tri (meth) acrylate, tetramethylolmethanetetra (meth) acrylate, 2-hydroxy-1,3-di (meth) acryloxypropane, 2,2-bis [4-((meth) acryloxymethoxy) Phenyl] propane, 2,2-bis [4-((meth) acryloxypolyethoxy) phenyl] propane, dicyclopentenyl (meth) acrylate, tricyclodecanyl (meth) acrylate, tris ((meth) acryloyloxy D Le) isocyanurate, urethane (meth) acrylate, isocyanuric acid EO-modified di (meth) acrylate, 9,9-bis [4- (2- (meth) acryloyloxy ethoxy) phenyl] fluorene, and the like. As radically polymerizable compounds other than (meth) acrylate compounds, for example, compounds described in Patent Document 3 (International Publication No. 2009/063827) can be preferably used. A (meth) acrylate compound may be used individually by 1 type, and may be used in combination of 2 or more type.
 ラジカル重合性化合物としては、更に優れた保存安定性を得る観点から、(メタ)アクリレート化合物が好ましく、ウレタン(メタ)アクリレートがより好ましい。(メタ)アクリレート化合物は、耐熱性が向上する観点から、ジシクロペンテニル基、トリシクロデカニル基及びトリアジン環からなる群より選ばれる少なくとも1種の置換基を有することが好ましい。 As the radically polymerizable compound, a (meth) acrylate compound is preferable and urethane (meth) acrylate is more preferable from the viewpoint of obtaining further excellent storage stability. From the viewpoint of improving heat resistance, the (meth) acrylate compound preferably has at least one substituent selected from the group consisting of a dicyclopentenyl group, a tricyclodecanyl group, and a triazine ring.
 また、ラジカル重合性化合物として、下記一般式(1)で表されるリン酸エステル構造を有するラジカル重合性化合物を用いることが好ましく、(メタ)アクリレート化合物等の上記ラジカル重合性化合物と、式(1)で表されるリン酸エステル構造を有するラジカル重合性化合物とを併用することがより好ましい。これらの場合、無機物(金属等)の表面に対する接着強度が向上するため、例えば、回路電極同士の接着に好適である。 Further, as the radical polymerizable compound, a radical polymerizable compound having a phosphate ester structure represented by the following general formula (1) is preferably used, and the radical polymerizable compound such as a (meth) acrylate compound and the formula ( It is more preferable to use together with the radically polymerizable compound which has the phosphate ester structure represented by 1). In these cases, since the adhesive strength to the surface of an inorganic substance (metal etc.) improves, it is suitable for adhesion | attachment of circuit electrodes, for example.
Figure JPOXMLDOC01-appb-C000001
[式中、pは1~3の整数を示し、Rは、水素原子又はメチル基を示す。]
Figure JPOXMLDOC01-appb-C000001
[Wherein, p represents an integer of 1 to 3, and R represents a hydrogen atom or a methyl group. ]
 上記リン酸エステル構造を有するラジカル重合性化合物は、例えば、無水リン酸と2-ヒドロキシエチル(メタ)アクリレートとを反応させることにより得られる。上記リン酸エステル構造を有するラジカル重合性化合物の具体例としては、モノ(2-(メタ)アクリロイルオキシエチル)アシッドフォスフェート、ジ(2-(メタ)アクリロイルオキシエチル)アシッドフォスフェート等が挙げられる。式(1)で表されるリン酸エステル構造を有するラジカル重合性化合物は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The radical polymerizable compound having a phosphoric ester structure can be obtained, for example, by reacting phosphoric anhydride with 2-hydroxyethyl (meth) acrylate. Specific examples of the radical polymerizable compound having a phosphate structure include mono (2- (meth) acryloyloxyethyl) acid phosphate, di (2- (meth) acryloyloxyethyl) acid phosphate, and the like. . The radically polymerizable compound having a phosphate ester structure represented by the formula (1) may be used alone or in combination of two or more.
 式(1)で表されるリン酸エステル構造を有するラジカル重合性化合物の含有量は、更に優れた接着性を得る観点から、ラジカル重合性化合物(ラジカル重合性化合物に該当する成分の総量。以下同様)の全質量を基準として、1~100質量%が好ましく、1~50質量%がより好ましく、1~10質量%が更に好ましい。式(1)で表されるリン酸エステル構造を有するラジカル重合性化合物の含有量は、更に優れた接着性を得る観点から、ラジカル重合性化合物及びフィルム形成材(必要により使用される成分)の合計質量を基準として、0.01~50質量%が好ましく、0.5~10質量%がより好ましく、0.5~5質量%が更に好ましい。 The content of the radical polymerizable compound having a phosphate ester structure represented by the formula (1) is a radical polymerizable compound (total amount of components corresponding to the radical polymerizable compound. From the viewpoint of obtaining further excellent adhesiveness. 1) to 100% by mass, more preferably 1 to 50% by mass, still more preferably 1 to 10% by mass, based on the total mass of the same). The content of the radically polymerizable compound having the phosphate ester structure represented by the formula (1) is that of the radically polymerizable compound and the film forming material (components used as necessary) from the viewpoint of obtaining further excellent adhesiveness. Based on the total mass, 0.01 to 50 mass% is preferable, 0.5 to 10 mass% is more preferable, and 0.5 to 5 mass% is still more preferable.
 上記ラジカル重合性化合物は、アリル(メタ)アクリレートを含んでいてもよい。この場合、アリル(メタ)アクリレートの含有量は、ラジカル重合性化合物及びフィルム形成材(必要により使用される成分)の合計質量を基準として、0.1~10質量%が好ましく、0.5~5質量%がより好ましい。 The radical polymerizable compound may contain allyl (meth) acrylate. In this case, the content of allyl (meth) acrylate is preferably 0.1 to 10% by mass, based on the total mass of the radical polymerizable compound and the film-forming material (components used as necessary), preferably 0.5 to 5 mass% is more preferable.
 ラジカル重合性化合物の含有量は、更に優れた接着性を得る観点から、接着剤組成物の接着剤成分の全質量を基準として下記の範囲が好ましい。ラジカル重合性化合物の含有量は、10質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることが更に好ましく、40質量%以上であることが更に好ましい。ラジカル重合性化合物の含有量は、90質量%以下であることが好ましく、80質量%以下であることがより好ましく、70質量%以下であることが更に好ましく、60質量%以下であることが特に好ましく、50質量%以下であることが極めて好ましい。これらの観点から、ラジカル重合性化合物の含有量は、10~90質量%であることが好ましく、20~80質量%であることがより好ましく、30~70質量%であることが更に好ましく、40~60質量%であることが特に好ましく、40~50質量%であることが極めて好ましい。 The content of the radical polymerizable compound is preferably in the following range based on the total mass of the adhesive component of the adhesive composition from the viewpoint of obtaining further excellent adhesiveness. The content of the radical polymerizable compound is preferably 10% by mass or more, more preferably 20% by mass or more, further preferably 30% by mass or more, and further preferably 40% by mass or more. preferable. The content of the radically polymerizable compound is preferably 90% by mass or less, more preferably 80% by mass or less, further preferably 70% by mass or less, and particularly preferably 60% by mass or less. Preferably, it is very preferably 50% by mass or less. From these viewpoints, the content of the radical polymerizable compound is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, still more preferably 30 to 70% by mass, It is particularly preferably from 60 to 60% by weight, and very preferably from 40 to 50% by weight.
(ラジカル重合開始剤)
 (c)ラジカル重合開始剤としては、熱(加熱)により遊離ラジカルを発生する開始剤、光により遊離ラジカルを発生する開始剤、超音波、電磁波等により遊離ラジカルを発生する開始剤などを用いることができる。
(Radical polymerization initiator)
(C) As the radical polymerization initiator, an initiator that generates free radicals by heat (heating), an initiator that generates free radicals by light, an initiator that generates free radicals by ultrasonic waves, electromagnetic waves, or the like is used. Can do.
 熱により遊離ラジカルを発生する開始剤は、熱により分解して遊離ラジカルを発生する化合物である。このような化合物としては、過酸化物(有機過酸化物等)、アゾ系化合物などが挙げられる。このようなラジカル重合開始剤は、目的とする接続温度、接続時間、ポットライフ等により適宜選定される。安定性、反応性及び相溶性の観点から、1分間半減期温度が90~175℃で、且つ分子量が180~1000の過酸化物が好ましい。「1分間半減期温度」とは、過酸化物の半減期が1分である温度をいう。「半減期」とは、所定の温度において化合物の濃度が初期値の半分に減少するまでの時間をいう。1分間半減期温度は、日油株式会社発行のカタログ(有機過酸化物(第10版、2015年2月))掲載の値とする。 An initiator that generates free radicals by heat is a compound that decomposes by heat to generate free radicals. Examples of such compounds include peroxides (such as organic peroxides) and azo compounds. Such radical polymerization initiator is appropriately selected depending on the intended connection temperature, connection time, pot life, and the like. From the viewpoint of stability, reactivity, and compatibility, a peroxide having a one-minute half-life temperature of 90 to 175 ° C. and a molecular weight of 180 to 1000 is preferred. “1 minute half-life temperature” refers to a temperature at which the half-life of the peroxide is 1 minute. “Half-life” refers to the time taken for the concentration of a compound to decrease to half of its initial value at a given temperature. The 1-minute half-life temperature is a value published in a catalog (organic peroxide (10th edition, February 2015)) issued by NOF Corporation.
 熱により遊離ラジカルを発生する開始剤の具体例としては、ジアシルパーオキサイド、パーオキシジカーボネート、パーオキシエステル、パーオキシケタール、ジアルキルパーオキサイド、ハイドロパーオキサイド、シリルパーオキサイド等が挙げられる。 Specific examples of the initiator that generates free radicals by heat include diacyl peroxide, peroxydicarbonate, peroxyester, peroxyketal, dialkyl peroxide, hydroperoxide, silyl peroxide, and the like.
 ラジカル重合開始剤としては、電極(回路電極等)の腐食を抑える観点から、含有される塩素イオン及び有機酸の濃度が5000ppm以下である開始剤が好ましく、熱分解後に発生する有機酸が少ない開始剤がより好ましい。このような開始剤の具体例としては、パーオキシエステル、ジアルキルパーオキサイド、ハイドロパーオキサイド、シリルパーオキサイド等が挙げられ、高反応性が得られる観点から、パーオキシエステルがより好ましい。 As the radical polymerization initiator, from the viewpoint of suppressing corrosion of electrodes (circuit electrodes, etc.), an initiator having a concentration of contained chlorine ions and organic acids of 5000 ppm or less is preferable, and an organic acid generated after thermal decomposition is low. An agent is more preferable. Specific examples of such initiators include peroxyesters, dialkyl peroxides, hydroperoxides, silyl peroxides, and the like, and peroxyesters are more preferable from the viewpoint of obtaining high reactivity.
 ラジカル重合開始剤としては、例えば、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、ジ(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ(2-エチルヘキシル)パーオキシジカーボネート、クミルパーオキシネオデカノエート、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、ジラウロイルパーオキサイド、1-シクロヘキシル-1-メチルエチルパーオキシネオデカノエート、t-ヘキシルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、t-ブチルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイルパーオキシ)ヘキサン、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシネオヘプタノエート、t-アミルパーオキシ-2-エチルヘキサノエート、ジ-t-ブチルパーオキシヘキサヒドロテレフタレート、t-アミルパーオキシ-3,5,5-トリメチルヘキサノエート、3-ヒドロキシ-1,1-ジメチルブチルパーオキシネオデカノエート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、t-アミルパーオキシネオデカノエート、t-アミルパーオキシ-2-エチルヘキサノエート、3-メチルベンゾイルパーオキサイド、4-メチルベンゾイルパーオキサイド、ジ(3-メチルベンゾイル)パーオキサイド、ジベンゾイルパーオキサイド、ジ(4-メチルベンゾイル)パーオキサイド、2,2’-アゾビス-2,4-ジメチルバレロニトリル、1,1’-アゾビス(1-アセトキシ-1-フェニルエタン)、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、ジメチル-2,2’-アゾビスイソブチロニトリル、4,4’-アゾビス(4-シアノバレリン酸)、1,1’-アゾビス(1-シクロヘキサンカルボニトリル)、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート、2,5-ジメチル-2,5-ジ(3-メチルベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシベンゾエート、ジブチルパーオキシトリメチルアジペート、t-アミルパーオキシノルマルオクトエート、t-アミルパーオキシイソノナノエート及びt-アミルパーオキシベンゾエートから選ばれる1以上の化合物である。 Examples of the radical polymerization initiator include 1,1,3,3-tetramethylbutylperoxyneodecanoate, di (4-tert-butylcyclohexyl) peroxydicarbonate, di (2-ethylhexyl) peroxydi Carbonate, cumylperoxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, dilauroyl peroxide, 1-cyclohexyl-1-methylethylperoxyneodecanoate, t- Hexyl peroxyneodecanoate, t-butyl peroxyneodecanoate, t-butyl peroxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 2,5 -Dimethyl-2,5-di (2-ethylhexanoylperoxy) hexane, t-hexyl -Oxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, t-butylperoxyneoheptanoate, t-amylperoxy-2-ethylhexanoate, di-t-butyl Peroxyhexahydroterephthalate, t-amylperoxy-3,5,5-trimethylhexanoate, 3-hydroxy-1,1-dimethylbutylperoxyneodecanoate, 1,1,3,3-tetramethyl Butylperoxy-2-ethylhexanoate, t-amylperoxyneodecanoate, t-amylperoxy-2-ethylhexanoate, 3-methylbenzoyl peroxide, 4-methylbenzoyl peroxide, di ( 3-methylbenzoyl) peroxide, dibenzoyl peroxide, di (4-methyl) Nzoyl) peroxide, 2,2'-azobis-2,4-dimethylvaleronitrile, 1,1'-azobis (1-acetoxy-1-phenylethane), 2,2'-azobisisobutyronitrile, , 2′-azobis (2-methylbutyronitrile), dimethyl-2,2′-azobisisobutyronitrile, 4,4′-azobis (4-cyanovaleric acid), 1,1′-azobis (1- Cyclohexanecarbonitrile), t-hexylperoxyisopropyl monocarbonate, t-butylperoxymaleic acid, t-butylperoxy-3,5,5-trimethylhexanoate, t-butylperoxylaurate, 2,5 -Dimethyl-2,5-di (3-methylbenzoylperoxy) hexane, t-butylperoxy-2-ethylhexyl monocar Bonate, t-hexylperoxybenzoate, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, t-butylperoxybenzoate, dibutylperoxytrimethyladipate, t-amylperoxynormal octoate, t -One or more compounds selected from amyl peroxyisononanoate and t-amyl peroxybenzoate.
 光により遊離ラジカルを発生する開始剤は、光により分解して遊離ラジカルを発生する化合物である。このような開始剤としては、波長150~750nmの光照射によって遊離ラジカルを発生する化合物を用いることができる。このような化合物としては、例えば、光照射に対する感度が高い観点から、Photoinitiation,Photopolymerization,and Photocuring,J.-P. Fouassier,Hanser Publishers(1995年)、p17~p35に記載されているα-アセトアミノフェノン誘導体及びホスフィンオキサイド誘導体が好ましい。 An initiator that generates free radicals by light is a compound that decomposes by light to generate free radicals. As such an initiator, a compound that generates free radicals upon irradiation with light having a wavelength of 150 to 750 nm can be used. Examples of such a compound include Photoinitiation, Photopolymerization, and Photocuring, J.A. -P. Α-Acetaminophenone derivatives and phosphine oxide derivatives described in Fouassier, Hanser Publishers (1995), p17 to p35 are preferred.
 ラジカル重合開始剤は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。開始剤と、分解促進剤、分解抑制剤等とを併用してもよい。また、開始剤をポリウレタン系又はポリエステル系の高分子物質等で被覆してマイクロカプセル化してもよい。マイクロカプセル化した開始剤は、可使時間が延長されるために好ましい。 The radical polymerization initiator may be used alone or in combination of two or more. You may use together an initiator, a decomposition accelerator, a decomposition inhibitor, etc. In addition, the initiator may be coated with a polyurethane-based or polyester-based polymer substance to form microcapsules. Microencapsulated initiators are preferred because the pot life is extended.
 ラジカル重合開始剤の含有量は(a)成分及び(b)成分の総量100質量部に対して、1~15質量部であることが好ましく、2.5~10質量部であることがより好ましい。 The content of the radical polymerization initiator is preferably 1 to 15 parts by mass, more preferably 2.5 to 10 parts by mass with respect to 100 parts by mass of the total amount of the components (a) and (b). .
(ポリウレタンビーズ)
 本実施形態で用いる(d)ポリウレタンビーズは、架橋されたウレタン樹脂からなる球状の有機微粒子である。
(Polyurethane beads)
The polyurethane beads (d) used in the present embodiment are spherical organic fine particles made of a crosslinked urethane resin.
 ポリウレタンビーズはポリオール成分及びイソシアネート成分を反応させて合成することができる。ポリオールは主として2官能のものが用いられるが、3官能以上のものを併用してもよい。3官能以上のものを併用した場合には、ポリウレタンビーズの架橋度を高くできる。 Polyurethane beads can be synthesized by reacting a polyol component and an isocyanate component. As the polyol, bifunctional ones are mainly used, but trifunctional or higher ones may be used in combination. When a trifunctional or higher functional group is used in combination, the degree of crosslinking of the polyurethane beads can be increased.
 ポリオール成分としては、例えば、ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオール、アクリルポリオール、ポリウレタンポリオール、芳香族系ポリオール(フタル酸系ポリオール)等が挙げられる。これらのうち、耐加水分解性が向上する点では、ポリカーボネートポリオール又は芳香族系ポリオールが好ましい。また、ポリオールとしては、ポリウレタンビーズの架橋度を高くし、弾性回復性が高くなる点では、多官能ポリオールが好ましい。多官能ポリオールとしては、例えば、3官能ポリカプロラクトン系ポリオール等が挙げられる。多官能ポリオールは重量平均分子量が大きい程、柔軟性が高くなる。これらは1種を単独で又は複数を混合して用いることができる。 Examples of the polyol component include polyester polyol, polyether polyol, polycarbonate polyol, acrylic polyol, polyurethane polyol, and aromatic polyol (phthalic acid polyol). Of these, polycarbonate polyols or aromatic polyols are preferred in terms of improving hydrolysis resistance. Moreover, as a polyol, a polyfunctional polyol is preferable at the point which makes the crosslinking degree of a polyurethane bead high and an elastic recovery property becomes high. Examples of the polyfunctional polyol include a trifunctional polycaprolactone-based polyol. The polyfunctional polyol has higher flexibility as the weight average molecular weight is larger. These can be used alone or in combination.
 イソシアネート成分は、黄変型、無黄変型、難黄変型のいずれでもよい。イソシアネート成分としては、芳香族ジイソシアネート、脂肪族ジイソシアネート、脂環族ジイソシアネート等のジイソシアネート化合物が挙げられる。具体的には、例えば、4,4’-ジフェニルメタンジイソシアネート(MDI)、トリレンジイソシアネート(TDI)、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート(HDI)、3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(IPDI)等が挙げられる。また、イソシアネート成分として、上記ジイソシアネートモノマーから形成したイソシアヌレート化合物(3官能)又はウレトジオン化合物(2官能)を用いることもできる。更に、イソシアネート成分として、末端イソシアネート基ポリイソシアネート(例えば、アダクト型ポリイソシアネート、ビウレット型ポリイソシアネート等)を用いることもできる。これらは1種を単独で又は複数を混合して用いることができる。 The isocyanate component may be any of yellowing type, non-yellowing type, and hardly yellowing type. Examples of the isocyanate component include diisocyanate compounds such as aromatic diisocyanate, aliphatic diisocyanate, and alicyclic diisocyanate. Specifically, for example, 4,4′-diphenylmethane diisocyanate (MDI), tolylene diisocyanate (TDI), trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate (HDI), 3-isocyanate methyl-3,5,5 -Trimethylcyclohexyl isocyanate (IPDI) and the like. Moreover, the isocyanurate compound (trifunctional) or uretdione compound (bifunctional) formed from the said diisocyanate monomer can also be used as an isocyanate component. Furthermore, terminal isocyanate group polyisocyanate (for example, adduct type polyisocyanate, biuret type polyisocyanate, etc.) can also be used as an isocyanate component. These can be used alone or in combination.
 ポリウレタンビーズの平均粒子径は特に制限されないが、50nm~10μmであることが好ましく、70nm~6μmであることがより好ましく、70nm~5μmであることが更に好ましい。50nm未満のポリウレタンビーズを作製することは技術的に難しい場合があるため、入手容易性の観点から50nm以上であることが好ましい。また、10μm以下の場合、他の接着剤組成物と配合した際に凝集が発生しにくく、また、凝集が発生しても濾過性の悪化を抑制できる傾向がある。平均粒子径は例えばSEMによって確認することができる。 The average particle diameter of the polyurethane beads is not particularly limited, but is preferably 50 nm to 10 μm, more preferably 70 nm to 6 μm, and further preferably 70 nm to 5 μm. Since it may be technically difficult to produce polyurethane beads of less than 50 nm, it is preferably 50 nm or more from the viewpoint of availability. Moreover, when it is 10 micrometers or less, when it mix | blends with another adhesive composition, it is hard to generate | occur | produce aggregation, and even if aggregation generate | occur | produces, there exists a tendency which can suppress deterioration of filterability. The average particle diameter can be confirmed by SEM, for example.
 ポリウレタンビーズの含有量は、(a)成分であるポリウレタン樹脂の含有量未満であることが好ましい。その上で、接着剤組成物の接着剤成分の全質量を基準として、3~50質量%であることが好ましく、4~40質量%であることがより好ましく、5~30質量%であることが更に好ましく、8~25質量%であることが特に好ましい。含有量が3質量%以上の場合、十分な接着強度が得られやすい傾向があり、50質量%以下の場合、接着剤の流動性の低下を抑制できる傾向がある。 The content of polyurethane beads is preferably less than the content of the polyurethane resin as component (a). In addition, it is preferably 3 to 50% by mass, more preferably 4 to 40% by mass, and more preferably 5 to 30% by mass based on the total mass of the adhesive component of the adhesive composition. Is more preferable, and 8 to 25% by mass is particularly preferable. When the content is 3% by mass or more, sufficient adhesive strength tends to be easily obtained. When the content is 50% by mass or less, a decrease in fluidity of the adhesive tends to be suppressed.
(非導電性無機微粒子)
 (e)成分の非導電性無機微粒子としては、公知の非導電性無機微粒子を特に制限無く用いることができる。非導電性無機微粒子としては、例えば、シリカ微粒子、アルミナ微粒子、シリカ-アルミナ微粒子、チタニア微粒子、ジルコニア微粒子等の金属酸化物微粒子などの非導電性無機微粒子が挙げられる。これらは1種を単独で又は2種以上を混合して用いることができる。なお、本実施形態において、(e)非導電性無機微粒子は導電性を有さないものであり、後述する(f)導電粒子には属さないものである。
(Non-conductive inorganic fine particles)
As the non-conductive inorganic fine particles of the component (e), known non-conductive inorganic fine particles can be used without particular limitation. Examples of the nonconductive inorganic fine particles include nonconductive inorganic fine particles such as silica fine particles, alumina fine particles, silica-alumina fine particles, titania fine particles, and zirconia fine particles. These can be used individually by 1 type or in mixture of 2 or more types. In the present embodiment, (e) non-conductive inorganic fine particles have no conductivity, and do not belong to (f) conductive particles described later.
 非導電性無機微粒子の平均粒子径は、1μm未満であることが好ましく、0.1~0.5μmであることがより好ましい。なお、ここでいう平均粒子径とは、回路接続材料中に存在するときの長軸方向のモード径である。また、(e)成分の平均1次粒子径は、100nm以下であることが好ましく、10~30nmであることがより好ましい。なお、本明細書において、平均粒子径及び平均1次粒子径は、画像解析によって測定される値を示す。 The average particle size of the nonconductive inorganic fine particles is preferably less than 1 μm, and more preferably 0.1 to 0.5 μm. Here, the average particle diameter is the mode diameter in the major axis direction when present in the circuit connecting material. Further, the average primary particle diameter of the component (e) is preferably 100 nm or less, and more preferably 10 to 30 nm. In addition, in this specification, an average particle diameter and an average primary particle diameter show the value measured by image analysis.
 非導電性無機微粒子としては、分散性に優れることから、表面を有機基で修飾した微粒子を好適に用いることができる。有機基としては、例えば、ジメチルシロキサン基、ジフェニルシロキサン基等が挙げられる。 As the non-conductive inorganic fine particles, fine particles whose surface is modified with an organic group can be suitably used because of excellent dispersibility. Examples of the organic group include a dimethylsiloxane group and a diphenylsiloxane group.
 非導電性無機微粒子の含有量は、接着剤成分の全質量を基準として、1~30質量%であることが好ましく、2~25質量%であることがより好ましく、5~20質量%であることが更に好ましい。(e)成分の含有量が上記範囲であると、本開示の効果が一層顕著に奏される。 The content of the non-conductive inorganic fine particles is preferably 1 to 30% by mass, more preferably 2 to 25% by mass based on the total mass of the adhesive component, and 5 to 20% by mass. More preferably. When the content of the component (e) is in the above range, the effects of the present disclosure are more remarkably exhibited.
(導電粒子)
 本実施形態の接着剤組成物は、(f)導電粒子を更に含有していてもよい。導電粒子の構成材料としては、金(Au)、銀(Ag)、ニッケル(Ni)、銅(Cu)、はんだ等の金属、カーボンなどが挙げられる。また、非導電性の樹脂、ガラス、セラミック、プラスチック等を核とし、この核に上記金属(金属粒子等)又はカーボンを被覆した被覆導電粒子でもよい。被覆導電粒子又は熱溶融金属粒子は、加熱加圧により変形性を有するため、接続時に回路電極の高さのばらつきを解消し、接続時に電極との接触面積が増加することから信頼性が向上するため好ましい。
(Conductive particles)
The adhesive composition of the present embodiment may further contain (f) conductive particles. Examples of the constituent material of the conductive particles include gold (Au), silver (Ag), nickel (Ni), copper (Cu), metals such as solder, carbon, and the like. Also, coated conductive particles in which a non-conductive resin, glass, ceramic, plastic, or the like is used as a core, and the metal (metal particles or the like) or carbon is coated on the core may be used. Since the coated conductive particles or the hot-melt metal particles are deformable by heating and pressing, the variation in the height of the circuit electrode is eliminated at the time of connection, and the contact area with the electrode is increased at the time of connection, thereby improving the reliability. Therefore, it is preferable.
 導電粒子の平均粒径は、分散性及び導電性に優れる観点から、1~30μmであることが好ましく、2~25μmであることがより好ましく、3~20μmであることが更に好ましい。導電粒子の平均粒径は、例えば、レーザー回折法等の機器分析を用いて測定することができる。 The average particle diameter of the conductive particles is preferably 1 to 30 μm, more preferably 2 to 25 μm, and further preferably 3 to 20 μm from the viewpoint of excellent dispersibility and conductivity. The average particle diameter of the conductive particles can be measured using instrumental analysis such as laser diffraction.
 導電粒子の含有量は、導電性に優れる観点から、接着剤組成物の接着剤成分の全体積100体積部に対して、0.1体積部以上が好ましく、1体積部以上がより好ましい。導電粒子の含有量は、電極(回路電極等)の短絡を抑制しやすい観点から、接着剤組成物の接着剤成分の全体積を基準として、50体積部以下が好ましく、20体積部以下がより好ましく、10体積部以下が更に好ましく、5体積部以下が特に好ましく、3体積部以下が極めて好ましい。これらの観点から、導電粒子の含有量は、0.1~50体積部が好ましく、0.1~20体積部がより好ましく、1~20体積部が更に好ましく、1~10体積部が特に好ましく、1~5体積部が極めて好ましく、1~3体積部が非常に好ましい。なお、「体積部」は、23℃の硬化前の各成分の体積をもとに決定されるが、各成分の体積は、比重を利用して質量から体積に換算することができる。また、対象成分を溶解したり膨潤させたりせず且つ対象成分をよくぬらす適当な溶剤(水、アルコール等)をメスシリンダー等に入れた容器に対象成分を投入し増加した体積を対象成分の体積として求めることもできる。 From the viewpoint of excellent conductivity, the content of the conductive particles is preferably 0.1 part by volume or more, and more preferably 1 part by volume or more with respect to 100 parts by volume of the total volume of the adhesive component of the adhesive composition. The content of the conductive particles is preferably 50 parts by volume or less, more preferably 20 parts by volume or less, based on the total volume of the adhesive component of the adhesive composition, from the viewpoint of easily suppressing short-circuiting of electrodes (circuit electrodes, etc.). Preferably, 10 parts by volume or less is more preferable, 5 parts by volume or less is particularly preferable, and 3 parts by volume or less is extremely preferable. From these viewpoints, the content of the conductive particles is preferably 0.1 to 50 parts by volume, more preferably 0.1 to 20 parts by volume, still more preferably 1 to 20 parts by volume, and particularly preferably 1 to 10 parts by volume. 1 to 5 parts by volume is very preferable, and 1 to 3 parts by volume is very preferable. The “volume part” is determined based on the volume of each component before curing at 23 ° C., and the volume of each component can be converted from mass to volume using specific gravity. In addition, the volume of the target component is increased by adding the target component to a container in which a suitable solvent (water, alcohol, etc.) that does not dissolve or swell the target component and wets the target component well is placed in a graduated cylinder. Can also be sought.
(シランカップリング剤)
 本実施形態に係る接着剤組成物は、シランカップリング剤を含有していてもよい。シランカップリング剤は、好ましくは、下記式(2)で表される化合物である。
(Silane coupling agent)
The adhesive composition according to the present embodiment may contain a silane coupling agent. The silane coupling agent is preferably a compound represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000002
 式(2)中、R、R及びRはそれぞれ独立に、水素原子、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数1~5のアルコキシカルボニル基又はアリール基を示す。R、R及びRのうち少なくとも1つはアルコキシ基である。Rは(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、ビニル基、イソシアネート基、イミダゾール基、メルカプト基、アミノアルキル基で置換されていてもよいアミノ基、メチルアミノ基、ジメチルアミノ基、ベンジルアミノ基、フェニルアミノ基、シクロヘキシルアミノ基、モルホリノ基、ピペラジノ基、ウレイド基、グリシジル基又はグリシドキシ基を示す。aは0~10の整数を示す。
Figure JPOXMLDOC01-appb-C000002
In formula (2), R 1 , R 2 and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkoxycarbonyl group having 1 to 5 carbon atoms or An aryl group is shown. At least one of R 1 , R 2 and R 3 is an alkoxy group. R 4 is a (meth) acryloyl group, a (meth) acryloyloxy group, a vinyl group, an isocyanate group, an imidazole group, a mercapto group, an aminoalkyl group optionally substituted with an aminoalkyl group, a methylamino group, a dimethylamino group, a benzyl An amino group, a phenylamino group, a cyclohexylamino group, a morpholino group, a piperazino group, a ureido group, a glycidyl group or a glycidoxy group. a represents an integer of 0 to 10.
 式(2)のシランカップリング剤としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルメチルジエトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン及び3-イソシアネートプロピルトリエトキシシランが挙げられる。 Examples of the silane coupling agent of the formula (2) include vinyltrimethoxysilane, vinyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3- (meth) Acryloxypropylmethyldimethoxysilane, 3- (meth) acryloxypropyltrimethoxysilane, 3- (meth) acryloxypropylmethyldiethoxysilane, 3- (meth) acryloxypropyltriethoxysilane, N-2- (amino Ethyl) -3-aminopropylmethyldimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane and 3-isocyanatopropyltriethoxysilane. That.
 シランカップリング剤の含有量は、(a)成分及び(b)成分の総量100質量部に対して、0.1~10質量部であることが好ましく、0.25~5質量部であることがより好ましい。シランカップリング剤の含有量が0.1質量部以上であれば、回路部材と回路接続材料の界面の剥離、及び気泡の発生を抑制する効果がより大きくなる傾向があり、シランカップリング剤の含有量が10質量部以下であると、接着剤組成物のポットライフが長くなる傾向がある。 The content of the silane coupling agent is preferably 0.1 to 10 parts by mass and preferably 0.25 to 5 parts by mass with respect to 100 parts by mass of the total amount of the components (a) and (b). Is more preferable. If the content of the silane coupling agent is 0.1 parts by mass or more, the effect of suppressing the separation of the interface between the circuit member and the circuit connecting material and the generation of bubbles tends to increase. When the content is 10 parts by mass or less, the pot life of the adhesive composition tends to be long.
(その他の成分)
 本実施形態の接着剤組成物は、必要に応じて、ハイドロキノン、メチルエーテルハイドロキノン類等の重合禁止剤を適宜含有してもよい。
(Other ingredients)
The adhesive composition of this embodiment may contain a polymerization inhibitor such as hydroquinone and methyl ether hydroquinone as needed.
 本実施形態の接着剤組成物は、(メタ)アクリル酸、(メタ)アクリル酸エステル及びアクリロニトリルからなる群より選ばれる少なくとも1種のモノマー成分を重合させて得られる単独重合体又は共重合体を更に含有していてもよい。本実施形態の接着剤組成物は、応力緩和に優れる観点から、グリシジルエーテル基を有するグリシジル(メタ)アクリレートを重合させて得られる共重合体であるアクリルゴム等を含有することが好ましい。上記アクリルゴムの重量平均分子量は、接着剤組成物の凝集力を高める観点から、20万以上が好ましい。 The adhesive composition of this embodiment is a homopolymer or copolymer obtained by polymerizing at least one monomer component selected from the group consisting of (meth) acrylic acid, (meth) acrylic acid ester and acrylonitrile. Furthermore, you may contain. The adhesive composition of the present embodiment preferably contains acrylic rubber or the like, which is a copolymer obtained by polymerizing glycidyl (meth) acrylate having a glycidyl ether group, from the viewpoint of excellent stress relaxation. The weight average molecular weight of the acrylic rubber is preferably 200,000 or more from the viewpoint of increasing the cohesive strength of the adhesive composition.
 本実施形態の接着剤組成物は、上記導電粒子の表面を高分子樹脂等で被覆した被覆微粒子を含有してもよい。このような被覆微粒子を上記導電粒子と併用した場合、導電粒子の含有量が増加した場合であっても、導電粒子同士の接触による短絡を抑制しやすいことから、隣接した回路電極間の絶縁性を向上させることができる。導電粒子を用いることなく上記被覆微粒子を単独で用いてもよく、被覆微粒子と導電粒子とを併用してもよい。なお、接着剤組成物が被覆微粒子を含む場合、本明細書における「接着剤組成物の接着剤成分」は、接着剤組成物中の導電粒子及び被覆微粒子以外の固形分を意味する。 The adhesive composition of the present embodiment may contain coated fine particles obtained by coating the surfaces of the conductive particles with a polymer resin or the like. When such coated fine particles are used in combination with the above conductive particles, even if the content of the conductive particles is increased, it is easy to suppress short-circuiting due to contact between the conductive particles, so that insulation between adjacent circuit electrodes can be prevented. Can be improved. The coated fine particles may be used alone without using conductive particles, or the coated fine particles and conductive particles may be used in combination. When the adhesive composition contains coated fine particles, the “adhesive component of the adhesive composition” in the present specification means a solid content other than the conductive particles and the coated fine particles in the adhesive composition.
 本実施形態の接着剤組成物は、ゴム微粒子、充填剤、軟化剤、促進剤、老化防止剤、着色剤、難燃化剤、チキソトロピック剤等を含有することもできる。また、本実施形態の接着剤組成物は、増粘剤、レベリング剤、耐候性向上剤等の添加剤を適宜含有してもよい。 The adhesive composition of this embodiment can also contain rubber fine particles, fillers, softeners, accelerators, anti-aging agents, colorants, flame retardants, thixotropic agents, and the like. Moreover, the adhesive composition of this embodiment may contain additives, such as a thickener, a leveling agent, and a weather resistance improver, as appropriate.
 ゴム微粒子は、導電粒子の平均粒径の2倍以下の平均粒径を有し、且つ、常温での貯蔵弾性率が、導電粒子及び接着剤組成物の常温での貯蔵弾性率の1/2以下である粒子が好ましい。特に、ゴム微粒子の材質がシリコーン、アクリルエマルジョン、SBR(Styrene-Butadiene Rubber)、NBR(Nitril-Butadiene Rubber)又はポリブタジエンゴムである場合、ゴム微粒子は、単独で又は2種以上を混合して用いることが好適である。3次元架橋したゴム微粒子は、耐溶剤性に優れており、接着剤組成物中に容易に分散される。 The rubber fine particles have an average particle size not more than twice the average particle size of the conductive particles, and the storage elastic modulus at normal temperature is 1/2 of the storage elastic modulus at normal temperature of the conductive particles and the adhesive composition. The following particles are preferred. In particular, when the rubber fine particles are made of silicone, acrylic emulsion, SBR (Styrene-Butadiene Rubber), NBR (Nitril-Butadiene Rubber) or polybutadiene rubber, the rubber fine particles may be used alone or in combination of two or more. Is preferred. The three-dimensionally cross-linked rubber fine particles have excellent solvent resistance and are easily dispersed in the adhesive composition.
 充填剤は、回路電極間の電気特性(接続信頼性等)を向上させることができる。充填剤としては、例えば、導電粒子の平均粒径の1/2以下の平均粒径を有する粒子を好適に使用できる。導電性を有さない粒子を充填剤と併用する場合、導電性を有さない粒子の平均粒径以下の粒子を充填剤として使用できる。充填剤の含有量は、接着剤組成物の接着剤成分全量を基準として、0.1~60質量%であることが好ましい。上記含有量が60質量%以下であることにより、接続信頼性の向上効果を更に充分に得られる傾向がある。上記含有量が0.1質量%以上であることにより、充填剤の添加効果を充分に得られる傾向がある。 The filler can improve the electrical characteristics (connection reliability, etc.) between the circuit electrodes. As the filler, for example, particles having an average particle size of 1/2 or less of the average particle size of the conductive particles can be suitably used. When particles having no conductivity are used in combination with a filler, particles having an average particle size not more than the particles having no conductivity can be used as the filler. The content of the filler is preferably 0.1 to 60% by mass based on the total amount of the adhesive component of the adhesive composition. When the content is 60% by mass or less, the effect of improving connection reliability tends to be obtained more sufficiently. When the content is 0.1% by mass or more, the effect of adding the filler tends to be sufficiently obtained.
 本実施形態の接着剤組成物は、常温で液状である場合にはペースト状で使用することができる。接着剤組成物が常温で固体状である場合には、加熱して使用する他、溶剤を使用してペースト化してもよい。使用できる溶剤としては、接着剤組成物中の成分に対して反応性がなく、且つ、充分な溶解性を示す溶剤であれば、特に制限はない。溶剤は、常圧での沸点が50~150℃である溶剤が好ましい。沸点が50℃以上であると、常温での溶剤の揮発性に乏しいため、開放系でも使用できる。沸点が150℃以下であると、溶剤を揮発させることが容易であるため、接着後に良好な信頼性が得られる。 The adhesive composition of this embodiment can be used in the form of a paste when it is liquid at room temperature. When the adhesive composition is solid at room temperature, it may be heated and used, or may be made into a paste using a solvent. The solvent that can be used is not particularly limited as long as it is not reactive with the components in the adhesive composition and exhibits sufficient solubility. The solvent is preferably a solvent having a boiling point of 50 to 150 ° C. at normal pressure. When the boiling point is 50 ° C. or higher, the solvent is poorly volatile at room temperature, and can be used even in an open system. When the boiling point is 150 ° C. or lower, it is easy to volatilize the solvent, and thus good reliability can be obtained after bonding.
 本実施形態の接着剤組成物は、フィルム状であってもよい。必要に応じて溶剤等を含有する接着剤組成物を、例えば、フッ素樹脂フィルム、ポリエチレンテレフタレートフィルム、又は、剥離性基材(離型紙等)上に塗布した後、溶剤等を除去することによりフィルム状の接着剤組成物を得ることができる。また、不織布等の基材に上記溶液を含浸させて剥離性基材上に載置した後、溶剤等を除去することによりフィルム状の接着剤組成物を得ることができる。接着剤組成物をフィルム状で使用すると、取扱性等に優れる。 The adhesive composition of the present embodiment may be in the form of a film. If necessary, an adhesive composition containing a solvent or the like is applied onto, for example, a fluororesin film, a polyethylene terephthalate film, or a peelable substrate (release paper, etc.), and then the solvent is removed to remove the film. Can be obtained. Moreover, after impregnating base materials, such as a nonwoven fabric, with the said solution and mounting on a peelable base material, a film-form adhesive composition can be obtained by removing a solvent etc. When the adhesive composition is used in the form of a film, the handleability is excellent.
 本実施形態の接着剤組成物は、加熱又は光照射と共に加圧することにより接着させることができる。加熱及び光照射を併用することにより、更に低温短時間で接着できる。光照射は、150~750nmの波長域の光を照射することが好ましい。光源は、低圧水銀灯、中圧水銀灯、高圧水銀灯(超高圧水銀灯等)、キセノンランプ、メタルハライドランプなどを使用することができる。照射量は、0.1~10J/cmであってよい。加熱温度は、特に制限はないが、50~170℃の温度が好ましい。圧力は、被着体に損傷を与えない範囲であれば、特に制限はないが、0.1~10MPaが好ましい。加熱及び加圧は、0.5秒~3時間の範囲で行うことが好ましい。 The adhesive composition of this embodiment can be adhered by applying pressure together with heating or light irradiation. By using heating and light irradiation in combination, it can be bonded at a lower temperature in a shorter time. The light irradiation is preferably performed in the wavelength region of 150 to 750 nm. As the light source, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp (extra-high-pressure mercury lamp, etc.), a xenon lamp, a metal halide lamp, or the like can be used. The irradiation dose may be 0.1-10 J / cm 2 . The heating temperature is not particularly limited, but a temperature of 50 to 170 ° C. is preferable. The pressure is not particularly limited as long as it does not damage the adherend, but is preferably 0.1 to 10 MPa. Heating and pressurization are preferably performed in the range of 0.5 seconds to 3 hours.
 本実施形態の接着剤組成物は、同一種の被着体の接着剤として使用してもよく、熱膨張係数の異なる異種の被着体の接着剤として使用してもよい。具体的には、異方導電接着剤、銀ペースト、銀フィルム等に代表される回路接続材料;CSP(Chip Size Package)用エラストマー、CSP用アンダーフィル材、LOC(Lead on Chip)テープ等に代表される半導体素子接着材料などとして使用することができる。 The adhesive composition of the present embodiment may be used as an adhesive for the same type of adherend, or as an adhesive for different types of adherends having different thermal expansion coefficients. Specifically, circuit connection materials typified by anisotropic conductive adhesive, silver paste, silver film, etc .; CSP (Chip Size Package) elastomer, CSP underfill material, LOC (Lead on Chip) tape, etc. It can be used as a semiconductor element adhesive material.
<構造体及びその製造方法>
 本実施形態の構造体は、本実施形態の接着剤組成物又はその硬化物を備える。本実施形態の構造体は、例えば、回路接続構造体等の半導体装置である。本実施形態の構造体の一態様として、回路接続構造体は、第一の回路電極を有する第一の回路部材と、第二の回路電極を有する第二の回路部材と、第一の回路部材及び第二の回路部材の間に配置された回路接続部材と、を備える。第一の回路部材は、例えば、第一の基板と、当該第一の基板上に配置された第一の回路電極と、を有する。第二の回路部材は、例えば、第二の基板と、当該第二の基板上に配置された第二の回路電極と、を有する。第一の回路電極及び第二の回路電極は、相対向すると共に電気的に接続されている。回路接続部材は、本実施形態の接着剤組成物又はその硬化物を含んでいる。本実施形態に係る構造体は、本実施形態に係る接着剤組成物又はその硬化物を備えていればよく、上記回路接続構造体の回路部材に代えて、回路電極を有していない部材(基板等)を用いてもよい。
<Structure and manufacturing method thereof>
The structure of this embodiment includes the adhesive composition of this embodiment or a cured product thereof. The structure of this embodiment is a semiconductor device such as a circuit connection structure. As one aspect of the structure of the present embodiment, the circuit connection structure includes a first circuit member having a first circuit electrode, a second circuit member having a second circuit electrode, and a first circuit member. And a circuit connecting member disposed between the second circuit members. The first circuit member includes, for example, a first substrate and a first circuit electrode disposed on the first substrate. The second circuit member includes, for example, a second substrate and a second circuit electrode disposed on the second substrate. The first circuit electrode and the second circuit electrode face each other and are electrically connected. The circuit connection member includes the adhesive composition of the present embodiment or a cured product thereof. The structure which concerns on this embodiment should just be equipped with the adhesive composition which concerns on this embodiment, or its hardened | cured material, and it replaces with the circuit member of the said circuit connection structure, and is a member which does not have a circuit electrode ( A substrate or the like) may be used.
 本実施形態の構造体の製造方法は、本実施形態の接着剤組成物を硬化させる工程を備える。本実施形態の構造体の製造方法の一態様として、回路接続構造体の製造方法は、第一の回路電極を有する第一の回路部材と、第二の回路電極を有する第二の回路部材との間に、本実施形態の接着剤組成物を配置する配置工程と、第一の回路部材と第二の回路部材とを加圧して第一の回路電極と第二の回路電極とを電気的に接続させると共に、接着剤組成物を加熱して硬化させる加熱加圧工程と、を備える。配置工程において、第一の回路電極と第二の回路電極とが相対向するように配置することができる。加熱加圧工程において、第一の回路部材と第二の回路部材とを相対向する方向に加圧することができる。 The structure manufacturing method of the present embodiment includes a step of curing the adhesive composition of the present embodiment. As one aspect of the structure manufacturing method of the present embodiment, the circuit connection structure manufacturing method includes a first circuit member having a first circuit electrode, and a second circuit member having a second circuit electrode. Between the step of arranging the adhesive composition of the present embodiment, and pressurizing the first circuit member and the second circuit member to electrically connect the first circuit electrode and the second circuit electrode. And a heating and pressing step of heating and curing the adhesive composition. In the arranging step, the first circuit electrode and the second circuit electrode can be arranged to face each other. In the heating and pressurizing step, the first circuit member and the second circuit member can be pressurized in the opposite directions.
 以下、図面を用いて、本実施形態の一態様として、回路接続構造体及びその製造方法について説明する。図1は、構造体の一実施形態を示す模式断面図である。図1に示す回路接続構造体100aは、相対向する回路部材(第一の回路部材)20及び回路部材(第二の回路部材)30を備えており、回路部材20と回路部材30との間には、これらを接続する回路接続部材10が配置されている。回路接続部材10は、本実施形態の接着剤組成物の硬化物を含む。 Hereinafter, a circuit connection structure and a manufacturing method thereof will be described as an aspect of the present embodiment with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing an embodiment of a structure. A circuit connection structure 100 a shown in FIG. 1 includes a circuit member (first circuit member) 20 and a circuit member (second circuit member) 30 that are opposed to each other, and between the circuit member 20 and the circuit member 30. The circuit connection member 10 which connects these is arrange | positioned. The circuit connection member 10 includes a cured product of the adhesive composition of the present embodiment.
 回路部材20は、基板(第一の基板)21と、基板21の主面21a上に配置された回路電極(第一の回路電極)22とを備えている。基板21の主面21a上には、場合により絶縁層(図示せず)が配置されていてもよい。 The circuit member 20 includes a substrate (first substrate) 21 and a circuit electrode (first circuit electrode) 22 disposed on the main surface 21 a of the substrate 21. An insulating layer (not shown) may be disposed on the main surface 21a of the substrate 21 as the case may be.
 回路部材30は、基板(第二の基板)31と、基板31の主面31a上に配置された回路電極(第二の回路電極)32とを備えている。基板31の主面31a上には、場合により絶縁層(図示せず)が配置されていてもよい。 The circuit member 30 includes a substrate (second substrate) 31 and a circuit electrode (second circuit electrode) 32 disposed on the main surface 31 a of the substrate 31. An insulating layer (not shown) may be disposed on the main surface 31a of the substrate 31 in some cases.
 回路接続部材10は、絶縁性物質(導電粒子を除く成分の硬化物)10a及び導電粒子10bを含有している。導電粒子10bは、少なくとも、相対向する回路電極22と回路電極32との間に配置されている。回路接続構造体100aにおいては、回路電極22及び回路電極32が導電粒子10bを介して電気的に接続されている。 The circuit connecting member 10 contains an insulating substance (cured product of components excluding conductive particles) 10a and conductive particles 10b. The conductive particles 10b are disposed at least between the circuit electrode 22 and the circuit electrode 32 facing each other. In the circuit connection structure 100a, the circuit electrode 22 and the circuit electrode 32 are electrically connected via the conductive particles 10b.
 回路部材20及び30は、単数又は複数の回路電極(接続端子)を有している。回路部材20及び30としては、例えば、電気的接続を必要とする電極を有する部材を用いることができる。回路部材としては、半導体チップ(ICチップ)、抵抗体チップ、コンデンサチップ等のチップ部品;プリント基板、半導体搭載用基板等の基板などを用いることができる。回路部材20及び30の組み合わせとしては、例えば、半導体チップ及び半導体搭載用基板が挙げられる。基板の材質としては、例えば、半導体、ガラス、セラミック等の無機物;ポリイミド、ポリエチレンテレフタレート、ポリカーボネート、(メタ)アクリル樹脂、環状オレフィン樹脂等の有機物;ガラスとエポキシ等との複合物などが挙げられる。基板は、プラスチック基板であってもよい。 The circuit members 20 and 30 have one or a plurality of circuit electrodes (connection terminals). As the circuit members 20 and 30, for example, members having electrodes that require electrical connection can be used. As the circuit member, a chip component such as a semiconductor chip (IC chip), a resistor chip, or a capacitor chip; a substrate such as a printed board or a semiconductor mounting board can be used. Examples of the combination of the circuit members 20 and 30 include a semiconductor chip and a semiconductor mounting substrate. Examples of the material of the substrate include inorganic substances such as semiconductor, glass, and ceramic; organic substances such as polyimide, polyethylene terephthalate, polycarbonate, (meth) acrylic resin, and cyclic olefin resin; and composites of glass and epoxy. The substrate may be a plastic substrate.
 図2は、構造体の他の実施形態を示す模式断面図である。図2に示す回路接続構造体100bは、回路接続部材10が導電粒子10bを含有していないこと以外は、回路接続構造体100aと同様の構成を有している。図2に示す回路接続構造体100bでは、回路電極22と回路電極32とが導電粒子を介することなく直接接触して電気的に接続されている。 FIG. 2 is a schematic cross-sectional view showing another embodiment of the structure. The circuit connection structure 100b shown in FIG. 2 has the same configuration as the circuit connection structure 100a except that the circuit connection member 10 does not contain the conductive particles 10b. In the circuit connection structure 100b shown in FIG. 2, the circuit electrode 22 and the circuit electrode 32 are in direct contact and are electrically connected without interposing conductive particles.
 回路接続構造体100a及び100bは、例えば、以下の方法により製造することができる。まず、接着剤組成物がペースト状である場合、接着剤組成物を塗布及び乾燥することにより、接着剤組成物を含む樹脂層を回路部材20上に配置する。接着剤組成物がフィルム状である場合、フィルム状の接着剤組成物を回路部材20に貼り付けることにより、接着剤組成物を含む樹脂層を回路部材20上に配置する。続いて、回路電極22と回路電極32とが対向配置されるように、回路部材20上に配置された樹脂層の上に回路部材30を載せる。そして、接着剤組成物を含む樹脂層に加熱処理又は光照射を行うことにより、接着剤組成物が硬化して硬化物(回路接続部材10)が得られる。以上により、回路接続構造体100a及び100bが得られる。 The circuit connection structures 100a and 100b can be manufactured, for example, by the following method. First, when the adhesive composition is in a paste form, the resin layer containing the adhesive composition is disposed on the circuit member 20 by applying and drying the adhesive composition. When the adhesive composition is in the form of a film, the resin layer containing the adhesive composition is disposed on the circuit member 20 by sticking the film-like adhesive composition to the circuit member 20. Subsequently, the circuit member 30 is placed on the resin layer disposed on the circuit member 20 so that the circuit electrode 22 and the circuit electrode 32 are opposed to each other. And a heat treatment or light irradiation is performed to the resin layer containing an adhesive composition, an adhesive composition hardens | cures and hardened | cured material (circuit connection member 10) is obtained. Thus, the circuit connection structures 100a and 100b are obtained.
 以下、実施例及び比較例を挙げて、本開示についてより具体的に説明する。ただし、本開示は以下の実施例に限定されるものではない。 Hereinafter, the present disclosure will be described more specifically with reference to examples and comparative examples. However, the present disclosure is not limited to the following examples.
(ポリウレタン樹脂の合成)
 還流冷却器、温度計及び撹拌機を備えたセパラブルフラスコに、エーテル結合を有するジオールであるポリプロピレングリコール(和光純薬工業株式会社製、数平均分子量Mn=2000)1000質量部、及び、メチルエチルケトン(溶剤)4000質量部を加えた後、40℃で30分間撹拌して反応液を調製した。上記反応液を70℃まで昇温した後、ジメチル錫ラウレート(触媒)0.0127質量部を加えた。次いで、この反応液に対して、4,4’-ジフェニルメタンジイソシアネート125質量部をメチルエチルケトン125質量部に溶解して調製した溶液を、1時間かけて滴下した。その後、赤外分光光度計(日本分光株式会社製)によってイソシアネート基由来の吸収ピーク(2270cm-1)が見られなくなるまで上記温度で撹拌を続けて、ポリウレタンのメチルエチルケトン溶液を得た。次いで、この溶液の固形分濃度(ポリウレタンの濃度)が30質量%となるように溶剤量を調整した。得られたポリウレタン(ポリウレタン樹脂)の重量平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)による測定の結果、320000(標準ポリスチレン換算値)であった。GPCの測定条件を表1に示す。
(Synthesis of polyurethane resin)
In a separable flask equipped with a reflux condenser, a thermometer, and a stirrer, 1000 parts by mass of polypropylene glycol (manufactured by Wako Pure Chemical Industries, Ltd., number average molecular weight Mn = 2000), which is a diol having an ether bond, and methyl ethyl ketone ( Solvent) After adding 4000 parts by mass, the mixture was stirred at 40 ° C. for 30 minutes to prepare a reaction solution. After heating up the said reaction liquid to 70 degreeC, 0.0127 mass part of dimethyltin laurate (catalyst) was added. Next, a solution prepared by dissolving 125 parts by mass of 4,4′-diphenylmethane diisocyanate in 125 parts by mass of methyl ethyl ketone was added dropwise to the reaction solution over 1 hour. Thereafter, stirring was continued at the above temperature until an absorption peak (2270 cm −1 ) derived from an isocyanate group was not observed with an infrared spectrophotometer (manufactured by JASCO Corporation) to obtain a polyurethane methylethylketone solution. Next, the amount of solvent was adjusted so that the solid content concentration (polyurethane concentration) of this solution was 30% by mass. The weight average molecular weight of the obtained polyurethane (polyurethane resin) was 320,000 (standard polystyrene conversion value) as a result of measurement by GPC (gel permeation chromatography). Table 1 shows the GPC measurement conditions.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(ウレタンアクリレートの合成)
 温度計、撹拌機、不活性ガス導入口及び還流冷却器を装着した2L(リットル)の四つ口フラスコに、ポリカーボネートジオール(アルドリッチ社製、数平均分子量2000)4000質量部と、2-ヒドロキシエチルアクリレート238質量部と、ハイドロキノンモノメチルエーテル0.49質量部と、スズ系触媒4.9質量部とを仕込んで反応液を調製した。70℃に加熱した反応液に対して、イソホロンジイソシアネート(IPDI)666質量部を3時間かけて均一に滴下し、反応させた。滴下完了後、15時間反応を継続し、NCO%(NCO含有量)が0.2質量%以下となった時点を反応終了とみなし、ウレタンアクリレートを得た。NCO%は、電位差自動滴定装置(商品名:AT-510、京都電子工業株式会社製)によって確認した。GPCによる分析の結果、ウレタンアクリレートの重量平均分子量は8500(標準ポリスチレン換算値)であった。なお、GPCによる分析は、上記ポリウレタン樹脂の重量平均分子量の分析と同様の条件で行った。
(Synthesis of urethane acrylate)
In a 2 L (liter) four-necked flask equipped with a thermometer, stirrer, inert gas inlet and reflux condenser, 4000 parts by mass of polycarbonate diol (manufactured by Aldrich, number average molecular weight 2000) and 2-hydroxyethyl A reaction solution was prepared by charging 238 parts by mass of acrylate, 0.49 parts by mass of hydroquinone monomethyl ether, and 4.9 parts by mass of a tin-based catalyst. To the reaction liquid heated to 70 ° C., 666 parts by mass of isophorone diisocyanate (IPDI) was uniformly dropped over 3 hours to be reacted. After completion of the dropwise addition, the reaction was continued for 15 hours, and the time when NCO% (NCO content) became 0.2% by mass or less was regarded as the completion of the reaction, and urethane acrylate was obtained. NCO% was confirmed by a potentiometric automatic titrator (trade name: AT-510, manufactured by Kyoto Electronics Industry Co., Ltd.). As a result of analysis by GPC, the weight average molecular weight of urethane acrylate was 8500 (standard polystyrene conversion value). In addition, the analysis by GPC was performed on the same conditions as the analysis of the weight average molecular weight of the said polyurethane resin.
(導電粒子の作製)
 ポリスチレン粒子の表面に厚さ0.2μmのニッケル層を形成した。更に、このニッケル層の外側に厚さ0.04μmの金層を形成させた。これにより、平均粒径4μmの導電粒子を作製した。
(Preparation of conductive particles)
A nickel layer having a thickness of 0.2 μm was formed on the surface of the polystyrene particles. Further, a gold layer having a thickness of 0.04 μm was formed outside the nickel layer. Thereby, conductive particles having an average particle diameter of 4 μm were produced.
[実施例1~7及び比較例1~4]
(フィルム状接着剤の作製)
 表2に示す成分を、表2に示す質量比(固形分)で混合して混合物を得た。この混合物に上記導電粒子を1.5体積部の割合(基準:接着剤組成物の接着剤成分の全体積100体積部に対する割合)で分散させて、フィルム状接着剤を形成するための塗工液を得た。この塗工液を厚さ50μmのポリエチレンテレフタレート(PET)フィルムに、塗工装置を用いて塗布した。塗膜を70℃で10分熱風乾燥して、厚さ18μmのフィルム状接着剤を形成させた。
[Examples 1 to 7 and Comparative Examples 1 to 4]
(Production of film adhesive)
The components shown in Table 2 were mixed at a mass ratio (solid content) shown in Table 2 to obtain a mixture. Coating for forming a film adhesive by dispersing the conductive particles in this mixture at a ratio of 1.5 parts by volume (standard: ratio relative to 100 parts by volume of the total adhesive component of the adhesive composition). A liquid was obtained. This coating solution was applied to a polyethylene terephthalate (PET) film having a thickness of 50 μm using a coating apparatus. The coating film was dried with hot air at 70 ° C. for 10 minutes to form a film adhesive having a thickness of 18 μm.
 なお、表2に示す各成分の詳細は以下の通りである。
 ポリウレタン樹脂:上記のとおり合成したポリウレタン樹脂を用いた。
 フェノキシ樹脂:PKHC(ユニオンカーバイド株式会社製、商品名、重量平均分子量45000)40gをメチルエチルケトン60gに溶解して調製した40質量%溶液の形態で用いた。
 ラジカル重合性化合物A:上記のとおり合成したウレタンアクリレートを用いた。
 ラジカル重合性化合物B:イソシアヌル酸EO変性ジアクリレート(商品名:M-215、東亜合成株式会社製)を用いた。
 ラジカル重合性化合物C(リン酸エステル):2-メタクリロイルオキシエチルアシッドフォスフェート(商品名:ライトエステルP-2M、共栄社化学株式会社製)を用いた。
 過酸化物(ラジカル重合開始剤):1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート(商品名:パーオクタO、日油株式会社製、1分間半減期温度:124.3℃)を用いた。
 ポリウレタンビーズA:P-800T(根上工業株式会社製、商品名、平均粒子径:6μm、ガラス転移温度:-34℃)10gをメチルエチルケトン90gに分散した10質量%溶液の形態で用いた。
 ポリウレタンビーズB:JB-800T(根上工業株式会社製、商品名、平均粒子径:6μm、ガラス転移温度:-52℃)10gをメチルエチルケトン90gに分散した10質量%溶液の形態で用いた。
 シリカ微粒子(非導電性無機微粒子):R104(日本アエロジル株式会社製、商品名)10gをトルエン45g及び酢酸エチル45gの混合溶剤に分散させた10質量%の分散液の形態で用いた。
In addition, the detail of each component shown in Table 2 is as follows.
Polyurethane resin: A polyurethane resin synthesized as described above was used.
Phenoxy resin: Used in the form of a 40% by mass solution prepared by dissolving 40 g of PKHC (manufactured by Union Carbide Corporation, trade name, weight average molecular weight 45000) in 60 g of methyl ethyl ketone.
Radical polymerizable compound A: Urethane acrylate synthesized as described above was used.
Radical polymerizable compound B: Isocyanuric acid EO-modified diacrylate (trade name: M-215, manufactured by Toa Gosei Co., Ltd.) was used.
Radical polymerizable compound C (phosphate ester): 2-methacryloyloxyethyl acid phosphate (trade name: Light Ester P-2M, manufactured by Kyoeisha Chemical Co., Ltd.) was used.
Peroxide (radical polymerization initiator): 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate (trade name: Perocta O, manufactured by NOF Corporation, 1 minute half-life temperature: 124 .3 ° C).
Polyurethane beads A: P-800T (trade name, average particle size: 6 μm, glass transition temperature: −34 ° C.) manufactured by Negami Kogyo Co., Ltd. 10 g was used in the form of a 10% by mass solution dispersed in 90 g of methyl ethyl ketone.
Polyurethane beads B: JB-800T (manufactured by Negami Kogyo Co., Ltd., trade name, average particle size: 6 μm, glass transition temperature: −52 ° C.) 10 g was used in the form of a 10% by mass solution dispersed in 90 g of methyl ethyl ketone.
Silica fine particles (non-conductive inorganic fine particles): 10 g of R104 (trade name, manufactured by Nippon Aerosil Co., Ltd.) dispersed in a mixed solvent of 45 g of toluene and 45 g of ethyl acetate was used.
(接続体の作製)
 実施例1~7及び比較例1~4のフィルム状接着剤を用いて、ライン幅75μm、ピッチ150μm(スペース75μm)及び厚さ18μmの銅回路を2200本有するフレキシブル回路基板(FPC)と、ガラス基板、及び、ガラス基板上に形成された厚さ0.2μmの窒化珪素(SiN)の薄層を有するSiN基板(厚さ0.7mm)とを接続した。接続は、熱圧着装置(加熱方式:コンスタントヒート型、東レエンジニアリング株式会社製)を用い、170℃、3MPaで5秒間の加熱及び加圧により行った。これにより、幅1.5mm及び幅1.0mmにわたりFPCとSiN基板とがフィルム状接着剤の硬化物により接続された接続体(構造体)を作製した。加圧の圧力は、圧着面積を、幅1.5mmの場合は0.495cm、幅1.0mmの場合は0.330cmとして計算した。
(Production of connected body)
A flexible circuit board (FPC) having 2200 copper circuits having a line width of 75 μm, a pitch of 150 μm (space of 75 μm) and a thickness of 18 μm using the film adhesives of Examples 1 to 7 and Comparative Examples 1 to 4, and glass The substrate and a SiN x substrate (thickness 0.7 mm) having a thin layer of 0.2 μm thick silicon nitride (SiN x ) formed on the glass substrate were connected. The connection was performed by heating and pressurizing at 170 ° C. and 3 MPa for 5 seconds using a thermocompression bonding apparatus (heating method: constant heat type, manufactured by Toray Engineering Co., Ltd.). As a result, a connection body (structure) in which the FPC and the SiN x substrate were connected by the cured product of the film adhesive over a width of 1.5 mm and a width of 1.0 mm was produced. Pressure of the pressure, the pressure bonding area in the case of width 1.5mm 0.495cm 2, in the case of width 1.0mm was calculated as 0.330cm 2.
<接着強度の測定>
 得られた接続体の接着強度を、JIS-Z0237に準じて90度剥離法で測定した。接着強度の測定装置として、テンシロンUTM-4(東洋ボールドウィン株式会社製、商品名、剥離強度50mm/min、25℃)を使用した。結果を表2に示す。
<Measurement of adhesive strength>
The adhesive strength of the obtained connection body was measured by a 90-degree peeling method according to JIS-Z0237. Tensilon UTM-4 (manufactured by Toyo Baldwin Co., Ltd., trade name, peel strength 50 mm / min, 25 ° C.) was used as an adhesive strength measuring device. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2より、実施例のフィルム状接着剤は、比較例のフィルム状接着剤と比較して1.0mm幅接続時においても高い接着強度(8N/cm以上)が得られることが確認された。比較例1のフィルム状接着剤では、1.5mm幅接続時は高い接着強度が得られたが、1.0mm幅接続時には十分な接着強度が得られなかった。比較例2~4のフィルム状接着剤では、1.5mm幅接続時においても十分な接着強度が得られなかった。 From Table 2, it was confirmed that the film-like adhesives of the Examples can obtain higher adhesive strength (8 N / cm or more) even when connected to a width of 1.0 mm than the film-like adhesives of Comparative Examples. With the film-like adhesive of Comparative Example 1, a high adhesive strength was obtained when the width was 1.5 mm, but sufficient adhesive strength was not obtained when the width was 1.0 mm. With the film-like adhesives of Comparative Examples 2 to 4, sufficient adhesive strength was not obtained even when connected to a width of 1.5 mm.
 10…回路接続部材、10a…絶縁性物質、10b…導電粒子、20…第一の回路部材、21…第一の基板、21a…主面、22…第一の回路電極、30…第二の回路部材、31…第二の基板、31a…主面、32…第二の回路電極、100a,100b…回路接続構造体。 DESCRIPTION OF SYMBOLS 10 ... Circuit connection member, 10a ... Insulating substance, 10b ... Conductive particle, 20 ... First circuit member, 21 ... First substrate, 21a ... Main surface, 22 ... First circuit electrode, 30 ... Second Circuit member 31 ... second substrate 31a ... main surface 32 ... second circuit electrode 100a, 100b ... circuit connection structure.

Claims (6)

  1.  (a)ウレタン結合を有する熱可塑性樹脂と、
     (b)ラジカル重合性化合物と、
     (c)ラジカル重合開始剤と、
     (d)ポリウレタンビーズと、
     (e)非導電性無機微粒子と、
    を含有する、接着剤組成物。
    (A) a thermoplastic resin having a urethane bond;
    (B) a radically polymerizable compound;
    (C) a radical polymerization initiator;
    (D) polyurethane beads;
    (E) non-conductive inorganic fine particles;
    An adhesive composition comprising:
  2.  前記(a)ウレタン結合を有する熱可塑性樹脂の含有量が、質量基準で、前記(d)ポリウレタンビーズの含有量以上である、請求項1に記載の接着剤組成物。 The adhesive composition according to claim 1, wherein the content of the thermoplastic resin having the (a) urethane bond is not less than the content of the (d) polyurethane beads on a mass basis.
  3.  (f)導電粒子を更に含有する、請求項1又は2に記載の接着剤組成物。 (F) The adhesive composition according to claim 1 or 2, further comprising conductive particles.
  4.  回路接続用である、請求項1~3のいずれか一項に記載の接着剤組成物。 The adhesive composition according to any one of claims 1 to 3, which is used for circuit connection.
  5.  請求項1~4のいずれか一項に記載の接着剤組成物又はその硬化物を備える、構造体。 A structure comprising the adhesive composition according to any one of claims 1 to 4 or a cured product thereof.
  6.  第一の回路電極を有する第一の回路部材と、
     第二の回路電極を有する第二の回路部材と、
     前記第一の回路部材及び前記第二の回路部材の間に配置された回路接続部材と、を備え、
     前記第一の回路電極及び前記第二の回路電極が電気的に接続されており、
     前記回路接続部材が、請求項1~4のいずれか一項に記載の接着剤組成物又はその硬化物を含む、構造体。
    A first circuit member having a first circuit electrode;
    A second circuit member having a second circuit electrode;
    A circuit connecting member disposed between the first circuit member and the second circuit member;
    The first circuit electrode and the second circuit electrode are electrically connected;
    A structure in which the circuit connecting member includes the adhesive composition according to any one of claims 1 to 4 or a cured product thereof.
PCT/JP2018/012994 2017-03-29 2018-03-28 Adhesive composition and structure WO2018181589A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880021694.3A CN110461984A (en) 2017-03-29 2018-03-28 Adhesive composite and structural body
JP2019510051A JP7172991B2 (en) 2017-03-29 2018-03-28 Adhesive composition and structure
KR1020197030920A KR102577181B1 (en) 2017-03-29 2018-03-28 Adhesive compositions and structures

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017066015 2017-03-29
JP2017-066015 2017-03-29

Publications (1)

Publication Number Publication Date
WO2018181589A1 true WO2018181589A1 (en) 2018-10-04

Family

ID=63676292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012994 WO2018181589A1 (en) 2017-03-29 2018-03-28 Adhesive composition and structure

Country Status (5)

Country Link
JP (1) JP7172991B2 (en)
KR (1) KR102577181B1 (en)
CN (1) CN110461984A (en)
TW (1) TWI781158B (en)
WO (1) WO2018181589A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020184583A1 (en) * 2019-03-13 2020-09-17 日立化成株式会社 Adhesive film for circuit connection, manufacturing method thereof, manufacturing method of circuit connection structure, and adhesive film accommodating set
WO2022186016A1 (en) * 2021-03-01 2022-09-09 昭和電工マテリアルズ株式会社 Bonding film for circuit connection and connected body

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000040418A (en) * 1998-07-22 2000-02-08 Sony Chem Corp Anisotropic conductive adhesive film
JP2001323249A (en) * 2000-05-17 2001-11-22 Hitachi Chem Co Ltd Adhesive for circuit connection
JP2011080033A (en) * 2009-05-29 2011-04-21 Hitachi Chem Co Ltd Adhesive composition, adhesive sheet, and method of manufacturing semiconductor device
JP2012140594A (en) * 2010-12-31 2012-07-26 Cheil Industries Inc Anisotropic conductive film composition, anisotropic conductive film produced therefrom, and device including the anisotropic conductive film
WO2013005831A1 (en) * 2011-07-07 2013-01-10 日立化成工業株式会社 Circuit-connecting material and connected circuit board structure
JP2013181131A (en) * 2012-03-02 2013-09-12 Dexerials Corp Circuit connection material, and method for producing real unit using the same
JP2016189334A (en) * 2010-12-29 2016-11-04 チェイル インダストリーズ インコーポレイテッド Anisotropic conductive film, anisotropic conductive film composition contained in the same, and apparatus including the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1036404C (en) * 1990-05-22 1997-11-12 中国兵器工业第五三研究所 Polyurethane complementary networks adhesive and its making method
JP2006022231A (en) 2004-07-08 2006-01-26 Sumitomo Bakelite Co Ltd Anisotropically conductive adhesive and anisotropically conductive adhesive film
KR100590820B1 (en) * 2005-10-17 2006-06-19 주식회사 에코세라 Adhesive composit using asphalt-polyurethane resin and manufacture method of the same
JP5023901B2 (en) 2007-05-23 2012-09-12 日立化成工業株式会社 Adhesive composition, circuit connection structure, and semiconductor device
KR20100080628A (en) 2007-11-12 2010-07-09 히다치 가세고교 가부시끼가이샤 Circuit connecting material and structure for connecting circuit member
JP5176139B2 (en) 2008-05-12 2013-04-03 日立化成株式会社 Circuit connection material and circuit member connection structure using the same
JP4900490B2 (en) 2010-01-27 2012-03-21 日立化成工業株式会社 Circuit connection material, circuit member connection structure, and circuit member connection method.
CN101864266A (en) * 2010-05-18 2010-10-20 上海鼎道科技发展有限公司 Photo-curing adhesive for adhering glass and metals and preparation method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000040418A (en) * 1998-07-22 2000-02-08 Sony Chem Corp Anisotropic conductive adhesive film
JP2001323249A (en) * 2000-05-17 2001-11-22 Hitachi Chem Co Ltd Adhesive for circuit connection
JP2011080033A (en) * 2009-05-29 2011-04-21 Hitachi Chem Co Ltd Adhesive composition, adhesive sheet, and method of manufacturing semiconductor device
JP2016189334A (en) * 2010-12-29 2016-11-04 チェイル インダストリーズ インコーポレイテッド Anisotropic conductive film, anisotropic conductive film composition contained in the same, and apparatus including the same
JP2012140594A (en) * 2010-12-31 2012-07-26 Cheil Industries Inc Anisotropic conductive film composition, anisotropic conductive film produced therefrom, and device including the anisotropic conductive film
WO2013005831A1 (en) * 2011-07-07 2013-01-10 日立化成工業株式会社 Circuit-connecting material and connected circuit board structure
JP2013181131A (en) * 2012-03-02 2013-09-12 Dexerials Corp Circuit connection material, and method for producing real unit using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020184583A1 (en) * 2019-03-13 2020-09-17 日立化成株式会社 Adhesive film for circuit connection, manufacturing method thereof, manufacturing method of circuit connection structure, and adhesive film accommodating set
CN113613892A (en) * 2019-03-13 2021-11-05 昭和电工材料株式会社 Adhesive film for circuit connection and method for manufacturing same, method for manufacturing circuit connection structure, and adhesive film housing set
WO2022186016A1 (en) * 2021-03-01 2022-09-09 昭和電工マテリアルズ株式会社 Bonding film for circuit connection and connected body

Also Published As

Publication number Publication date
TWI781158B (en) 2022-10-21
KR102577181B1 (en) 2023-09-08
TW201840796A (en) 2018-11-16
JP7172991B2 (en) 2022-11-16
JPWO2018181589A1 (en) 2020-02-06
KR20190133021A (en) 2019-11-29
CN110461984A (en) 2019-11-15

Similar Documents

Publication Publication Date Title
JP5867508B2 (en) Circuit connection material and connection body
KR102478959B1 (en) Adhesive composition and connected structure
JP2008195852A (en) Film adhesive composition and joined structure in circuit terminal using the same composition
JP6307966B2 (en) Adhesive composition, anisotropic conductive adhesive composition, circuit connection material and connector
WO2017090659A1 (en) Adhesive composition for circuit connection, and structure
WO2018181589A1 (en) Adhesive composition and structure
JP4788036B2 (en) Film adhesive for circuit connection, circuit terminal connection structure, and circuit terminal connection method
JP7124936B2 (en) Adhesive composition and structure
JP2022000530A (en) Adhesive composition and structure
KR102467385B1 (en) Connection structure, circuit connection member and adhesive composition
JP2006016580A (en) Adhesive composition, film adhesive and circuit-connecting material using the same, coupling structure of circuit member and production method thereof
WO2017078157A1 (en) Adhesive composition and structure
JP2022051002A (en) Adhesive composition for circuit connection, and circuit connection structure and method for manufacturing the same
JP2006111806A (en) Circuit connecting material and circuit connection structure using the same
WO2017037951A1 (en) Adhesive composition, anisotropically electroconductive adhesive composition, circuit connecting material, and connected object
KR20230154877A (en) Adhesive film and connector for circuit connection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775745

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019510051

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197030920

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18775745

Country of ref document: EP

Kind code of ref document: A1