WO2022186016A1 - Bonding film for circuit connection and connected body - Google Patents

Bonding film for circuit connection and connected body Download PDF

Info

Publication number
WO2022186016A1
WO2022186016A1 PCT/JP2022/007383 JP2022007383W WO2022186016A1 WO 2022186016 A1 WO2022186016 A1 WO 2022186016A1 JP 2022007383 W JP2022007383 W JP 2022007383W WO 2022186016 A1 WO2022186016 A1 WO 2022186016A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
adhesive film
particles
connection
meth
Prior art date
Application number
PCT/JP2022/007383
Other languages
French (fr)
Japanese (ja)
Inventor
譲 小林
直 工藤
翔太 三島
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to KR1020237031590A priority Critical patent/KR20230154877A/en
Priority to CN202280016266.8A priority patent/CN116917429A/en
Priority to JP2023503743A priority patent/JPWO2022186016A1/ja
Publication of WO2022186016A1 publication Critical patent/WO2022186016A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09J175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations

Definitions

  • the present disclosure relates to an adhesive film for circuit connection and a connection body of circuit members.
  • various adhesive compositions have conventionally been used as circuit connecting materials for the purpose of bonding various members in the devices.
  • the adhesive composition is required to have various properties such as heat resistance and reliability under high temperature and high humidity conditions, in addition to adhesiveness.
  • wearable terminals In recent years, mobile terminals have become smaller, and the development of wearable terminals has also become active. Furthermore, wearable terminals are required to have excellent weather resistance due to their intended use. As the weather resistance, salt water resistance has been required in recent years.
  • the present disclosure has been made in view of the above problems of the prior art, and an adhesive film for circuit connection capable of forming a connection body having excellent salt water resistance, and a circuit member connection body using the same intended to provide
  • the present disclosure provides a first circuit member having a first circuit electrode formed on the main surface of a first substrate and a second circuit on the main surface of the second substrate.
  • An adhesive film for circuit connection for connecting a second circuit member having electrodes formed thereon with the first circuit electrode and the second circuit electrode facing each other, wherein the adhesive film is , (a) a thermoplastic resin, (b) a radically polymerizable compound, (c) a radical polymerization initiator, and (d) insulating particles, wherein the (b) radically polymerizable compound is a (meth)acrylate compound
  • the flow rate of the adhesive film is 140% or more at a heating temperature of 160 ° C., a pressure of 2 MPa, and a heating time of 5 seconds, and the linear expansion coefficient of the cured product of the adhesive film is 130 ppm on average at 80 to 90 ° C. /K or less to provide an adhesive film for circuit connection.
  • the adhesive film for circuit connection since it is in the form of a film, it is possible to easily connect circuit members and seal the circuit connection part in a small mobile terminal such as a wearable terminal, and it has excellent salt resistance. Connections having aqueous properties can be formed.
  • the present inventors speculate as follows about the reason why excellent salt water resistance is obtained. First, chloride ions, which are components of salt water, are more likely to permeate the interface between the circuit member and the connection member, which is a cured adhesive film, than the water component, thereby easily causing separation between the circuit member and the connection member. Therefore, even if the connector does not peel when exposed to normal water, it is likely to peel when exposed to salt water.
  • the linear expansion coefficient of the cured product is within the above range, so that the adhesion of the interface between the circuit member and the connection member is sufficient to prevent the salt water component from permeating. can be increased, and peeling can be suppressed even when the connector is exposed to salt water.
  • the flow rate is within the above range, so that the adhesive film flows when the circuit members are connected to each other and protrudes appropriately from between the circuit members, and the protruding portion is the circuit connection part. It will act as a protective lid. Since the lid portion also has high adhesion to the circuit member, it is possible to prevent salt water components from entering the interface between the circuit member and the connection member. Therefore, according to the adhesive film for circuit connection, it is possible to form a connecting body having excellent resistance to salt water. Moreover, the above effect is maximized when a (meth)acrylate compound is used as the radically polymerizable compound.
  • the (d) insulating particles may contain silica particles.
  • the (d) insulating particles may contain organic fine particles.
  • the organic fine particles may contain fine particles made of at least one kind of resin selected from the group consisting of polyurethane resins and silicone resins.
  • the average particle diameter of the (d) insulating particles may be 0.001 to 35 ⁇ m.
  • the circuit connection adhesive film may further contain (e) conductive particles. (e) By containing the conductive particles, the adhesive film for circuit connection can be imparted with conductivity or anisotropic conductivity, so the adhesive film can be more preferably used as a circuit connection material. Moreover, the connection resistance between the circuit electrodes electrically connected via the adhesive film can be more easily reduced.
  • the present disclosure also includes a pair of circuit members having circuit electrodes and arranged to face each other, and a connection member provided between the pair of circuit members and bonding the pair of circuit members together, The circuit electrode of the circuit member and the circuit electrode of the other circuit member are electrically connected, and the connection member is a cured product of the above adhesive film for circuit connection.
  • Such connectors can have excellent resistance to salt water.
  • an adhesive film for circuit connection capable of forming a connection body having excellent salt water resistance, and a circuit member connection body using the same.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a laminated film having an adhesive film for circuit connection;
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a connecting body;
  • FIG. It is a schematic sectional drawing which shows one Embodiment of the method of manufacturing a connection body.
  • each component in the composition means the total amount of the plurality of substances present in the composition unless otherwise specified when there are multiple substances corresponding to each component in the composition.
  • a numerical range indicated using "-" indicates a range including the numerical values before and after "-" as the minimum and maximum values, respectively.
  • the upper limit value or lower limit value of the numerical range at one step may be replaced with the upper limit value or lower limit value of the numerical range at another step.
  • (meth)acrylate means acrylate or its corresponding methacrylate
  • (meth)acryloyloxy means acryloyloxy or methacryloyloxy.
  • a first circuit member having first circuit electrodes formed on the main surface of a first substrate, and a second circuit having second circuit electrodes formed on the main surface of a second substrate A circuit connection adhesive film for connecting a member with the first circuit electrode and the second circuit electrode facing each other, the adhesive film comprising (a) a thermoplastic resin, ( b) a radically polymerizable compound, (c) a radical polymerization initiator, and (d) insulating particles, wherein the (b) radically polymerizable compound comprises a (meth)acrylate compound, and the flow rate of the adhesive film is 140% or more at a heating temperature of 160 ° C., a pressure of 2 MPa, and a heating time of 5 seconds, and the linear expansion coefficient of the cured product of the adhesive film is 130 ppm / K or less on average at 80 to 90 ° C., for circuit connection.
  • the adhesive film for circuit connection comprises (a) a thermoplastic resin, (b) a radically polymerizable compound, (c) a radical polymerization initiator, and (d) ) containing insulating particles.
  • the (b) radically polymerizable compound includes a (meth)acrylate compound.
  • the flow rate of the adhesive film is 140% or more at a heating temperature of 160° C., a pressure of 2 MPa, and a heating time of 5 seconds. Further, the coefficient of linear expansion (CTE) of the cured adhesive film is 130 ppm/K or less on average at 80 to 90°C.
  • the adhesive film having the above configuration comprises an adhesive composition containing the (a) thermoplastic resin, the (b) radically polymerizable compound, the (c) radical polymerization initiator, and the (d) insulating particles.
  • the adhesive film and adhesive composition may also contain (e) conductive particles. Each component will be described below.
  • thermoplastic resin is not particularly limited, but for example, one selected from polyimide resin, polyamide resin, phenoxy resin, poly(meth)acrylate resin, polyimide resin, polyester resin, polyurethane resin and polyvinyl butyral resin, Two or more resins are included.
  • the thermoplastic resin may contain siloxane bonds and/or fluorine groups. When two or more thermoplastic resins are used, the combination may be such that they are completely compatible or cause microphase separation to cause white turbidity.
  • the weight average molecular weight of the thermoplastic resin is not particularly limited, it may be 5,000 to 200,000, or 10,000 to 150,000.
  • the weight average molecular weight of the thermoplastic resin is 5000 or more, the adhesive strength of the adhesive film tends to improve.
  • the weight average molecular weight of the thermoplastic resin is 200,000 or less, there is a tendency that good compatibility with other components is likely to be obtained, and the fluidity of the adhesive film is likely to be improved.
  • the content of the thermoplastic resin may be 20 to 80% by mass, 25 to 70% by mass, or 30 to 60% by mass, based on the total amount of components (a) and (b). may be When the content of the thermoplastic resin is 20% by mass or more, the adhesive strength of the adhesive film tends to improve, and the film formability when forming the adhesive film from the adhesive composition tends to improve. If the amount is not more than % by mass, the adhesive film tends to be more fluid.
  • a rubber component can also be used as the thermoplastic resin for the purpose of relaxing stress and improving adhesion.
  • rubber components include acrylic rubber, polyisoprene, polybutadiene, carboxyl-terminated polybutadiene, hydroxyl-terminated polybutadiene, 1,2-polybutadiene, carboxyl-terminated 1,2-polybutadiene, hydroxyl-terminated 1,2-polybutadiene, and styrene-butadiene rubber.
  • the rubber component may have a cyano group or a carboxyl group, which are highly polar groups, as side chain groups or terminal groups. These rubber components can be used individually by 1 type or in combination of 2 or more types.
  • the adhesive film according to the present embodiment may contain any radically polymerizable compound (b), but it contains at least a (meth)acrylate compound.
  • This radically polymerizable compound may be either a monomer or an oligomer, or a combination of both.
  • the radically polymerizable compound may be one or more polyfunctional (meth)acrylate compounds having two or more (meth)acryloyloxy groups.
  • Such (meth)acrylate compounds are, for example, monomers or oligomers such as epoxy (meth)acrylates, urethane (meth)acrylates, polyether (meth)acrylates and polyester (meth)acrylates, trimethylolpropane tri(meth)acrylate , polyethylene glycol di(meth)acrylate, polyalkylene glycol di(meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate, neopentyl glycol di(meth)acrylate, dipentaerythritol hexa (Meth) acrylate, isocyanuric acid-modified bifunctional (meth) acrylate, isocyanuric acid-modified tri-functional (meth) acrylate, epoxy (meth) produced by
  • the adhesive film may contain a monofunctional (meth)acrylate compound as the (b) radically polymerizable compound for the purpose of adjusting fluidity and the like.
  • Monofunctional (meth)acrylate compounds include, for example, pentaerythritol (meth)acrylate, 2-cyanoethyl (meth)acrylate, cyclohexyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate , 2-(2-ethoxyethoxy)ethyl (meth)acrylate, 2-ethoxyethyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-hexyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, hydroxy propyl (meth)acrylate, isobornyl (meth)acrylate, isodecyl (meth)acrylate, isoocty
  • the adhesive film contains, in addition to the above (meth)acrylate compound, a radically polymerizable functional group such as an aryl group, a maleimide group, and a vinyl group as the (b) radically polymerizable compound.
  • a radically polymerizable functional group such as an aryl group, a maleimide group, and a vinyl group as the (b) radically polymerizable compound.
  • N-vinylimidazole N-vinylpyridine, N-vinylpyrrolidone, N-vinylformamide, N-vinylcaprolactam, 4,4′-vinylidenebis(N,N-dimethylaniline), N -vinylacetamide, N,N-dimethylacrylamide, N-isopropylacrylamide and N,N-diethylacrylamide.
  • the adhesive film may contain a radically polymerizable compound having a phosphoric acid group as (b) a radically polymerizable compound for the purpose of improving adhesive strength.
  • radically polymerizable compounds having a phosphoric acid group include compounds represented by the following formulas (1), (2), and (3).
  • R 5 represents a (meth)acryloyloxy group
  • R 6 represents a hydrogen atom or a methyl group
  • w and x each independently represents an integer of 1-8.
  • Plural R 5 , R 6 , w and x in the same molecule may be the same or different.
  • R 7 represents a (meth)acryloyloxy group
  • y and z each independently represents an integer of 1-8.
  • Plural R 7 , y and z in the same molecule may be the same or different.
  • R 8 represents a hydrogen atom or a methyl group
  • R 9 represents a (meth)acryloyloxy group
  • b and c each independently represent an integer of 1-8.
  • R8 in the same molecule may be the same or different.
  • Radically polymerizable compounds having a phosphoric acid group include, for example, acid phosphooxyethyl methacrylate, acid phosphooxyethyl acrylate, acid phosphooxypropyl methacrylate, acid phosphooxypolyoxyethylene glycol monomethacrylate, acid phosphooxypolyoxypropylene glycol monomethacrylate. , 2,2′-di(meth)acryloyloxydiethyl phosphate, EO-modified dimethacrylate phosphate, phosphate-modified epoxy acrylate and vinyl phosphate.
  • the content of the radically polymerizable compound having a phosphoric acid group may be 0.1 to 15% by mass, or 0.5 to 10% by mass, based on the total amount of components (a) and (b). There may be. If the content of the radically polymerizable compound having a phosphate group is 0.1% by mass or more, high adhesive strength tends to be obtained, and if it is 15% by mass or less, the physical properties of the adhesive film after curing deteriorate. is less likely to occur, and the effect of improving reliability is good.
  • the total content of the (b) radically polymerizable compound contained in the adhesive film may be 20 to 80% by mass, preferably 25 to 70% by mass, based on the total amount of components (a) and (b). It may be present, and may be 30 to 60% by mass.
  • the total content is 20% by mass or more, the heat resistance tends to be improved, and when the total content is 80% by mass or less, the effect of suppressing peeling after being left in a high-temperature and high-humidity environment tends to increase.
  • the radical polymerization initiator can be arbitrarily selected from compounds such as peroxides and azo compounds. From the viewpoint of stability, reactivity and compatibility, a peroxide having a 1-minute half-life temperature of 90 to 175° C. and a molecular weight of 180 to 1,000 may be used. "1 minute half-life temperature” refers to the temperature at which the peroxide half-life is 1 minute. "Half-life” refers to the time it takes for the concentration of a compound to decrease to half of its initial value at a given temperature.
  • Radical polymerization initiators include, for example, 1,1,3,3-tetramethylbutyl peroxyneodecanoate, di(4-t-butylcyclohexyl)peroxydicarbonate, di(2-ethylhexyl)peroxydicarbonate , cumyl peroxyneodecanoate, 1,1,3,3-tetramethylbutyl peroxyneodecanoate, dilauroyl peroxide, 1-cyclohexyl-1-methylethyl peroxyneodecanoate, t-hexyl peroxyneodecanoate, t-butyl peroxyneodecanoate, t-butyl peroxypivalate, 1,1,3,3-tetramethylbutyl peroxy-2-ethylhexanoate, 2,5- Dimethyl-2,5-di(2-ethylhexanoylperoxy)hexane, t-hexy
  • a compound that generates radicals upon irradiation with light having a wavelength of 150 to 750 nm can also be used as the radical polymerization initiator.
  • Such compounds are not particularly limited.
  • the adhesive film may contain a radical polymerization initiator that generates radicals by ultrasonic waves, electromagnetic waves, or the like.
  • the amount of chlorine ions or organic acid contained in the radical polymerization initiator may be 5000 ppm or less in order to suppress corrosion of the connection terminals (circuit electrodes) of the circuit members. From the same point of view, it may be a radically polymerizable compound that generates less organic acid after decomposition. It may be a radical polymerization initiator having a mass retention rate of 20% by mass or more after being left open for 24 hours at room temperature and normal pressure because it improves the stability of the circuit connecting material.
  • the content of the radical polymerization initiator may be 0.5 to 15 parts by mass, or 1.5 to 10 parts by mass, with respect to 100 parts by mass of the total amount of components (a) and (b). good too.
  • the adhesive film contains (d) insulating particles.
  • the insulating particles include organic fine particles and inorganic fine particles.
  • inorganic fine particles examples include metal oxide fine particles represented by silica fine particles, alumina fine particles, silica-alumina fine particles, titania fine particles and zirconia fine particles, and nitride fine particles.
  • organic fine particles examples include urethane fine particles, silicone fine particles, methacrylate-butadiene-styrene fine particles, acryl-silicone fine particles, polyamide fine particles and polyimide fine particles.
  • the organic fine particles have a function as a shock absorbing agent having stress relaxation properties.
  • These insulating particles may have a uniform structure or a core-shell structure.
  • the insulating particles can be used singly or in combination of two or more.
  • inorganic fine particles and organic fine particles may be used in combination.
  • the salt water resistance of the connecting body formed using the adhesive film can be further improved.
  • the average particle diameter of the insulating particles may be 0.001-35 ⁇ m, 0.005-20 ⁇ m, or 0.001-10 ⁇ m.
  • the average particle size is 0.001 ⁇ m or more, the cohesive force of the insulating particles tends to improve, and when the average particle size is 35 ⁇ m or less, the dispersibility of the insulating particles tends to improve.
  • the average particle size in this specification can be measured, for example, with a scanning electron microscope (SEM).
  • the content of the insulating particles may be 5 parts by mass or more, 7.5 parts by mass or more, or 10 parts by mass with respect to 100 parts by mass as the total amount of components (a) and (b). parts or more, 15 parts by mass or more, or 20 parts by mass or more. If the content of the insulating particles is 5 parts by mass or more, it tends to be relatively easy to maintain the electrical connection between the facing electrodes. In addition, the content of the insulating particles may be 45 parts by mass or less, 40 parts by mass or less, or 35 parts by mass with respect to the total amount of 100 parts by mass of the components (a) and (b). It may be less than part.
  • the type and content of the insulating particles affect the flow rate and coefficient of linear expansion of the adhesive film. Therefore, the type and content of the insulating particles may be adjusted so that the flow rate and coefficient of linear expansion of the adhesive film are within specific ranges.
  • the adhesive film according to this embodiment may contain a silane coupling agent.
  • the silane coupling agent may be a compound represented by the following formula (4).
  • R 1 , R 2 and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkoxycarbonyl group having 1 to 5 carbon atoms, or represents an aryl group. At least one of R 1 , R 2 and R 3 is an alkoxy group.
  • R4 is a (meth)acryloyl group, vinyl group, isocyanate group, imidazole group, mercapto group, amino group, methylamino group, dimethylamino group, benzylamino group, phenylamino group, cyclohexylamino group, morpholino group, piperazino group, It represents a ureido group or a glycidyl group. a represents an integer of 1 to 10;
  • Silane coupling agents of formula (4) are, for example, vinyltrimethoxysilane, vinyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-methacryloxypropylmethyl Dimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2 (aminoethyl) 3-amino Propylmethyldimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, and 3-isocyanatopropyltriethoxysilane.
  • the content of the silane coupling agent may be 0.1 to 10 parts by mass, or 0.25 to 7 parts by mass, with respect to 100 parts by mass of the total amount of components (a) and (b). may be 0.5 to 5 parts by mass. If the content of the silane coupling agent is 0.1 parts by mass or more, the effect of suppressing the generation of peeling bubbles at the interface between the circuit member and the circuit connecting material tends to be greater, and the content of the silane coupling agent tends to be greater. When the content is 10 parts by mass or less, there is a tendency to easily suppress deterioration in fluidity when the adhesive film is stored for a long period of time.
  • the adhesive film according to the present embodiment may further contain (e) conductive particles.
  • An adhesive film containing conductive particles can be particularly suitably used as an anisotropically conductive adhesive film.
  • Examples of conductive particles include metal particles containing Au, Ag, Pd, Ni, Cu, solder, etc., and carbon particles.
  • the conductive particles are composite particles having core particles made of a non-conductive material such as glass, ceramic, plastic, etc., and a conductive layer containing a metal, metal particles, carbon, etc. covering the core particles. There may be.
  • the metal particles may be particles having copper particles and a silver layer coating the copper particles.
  • the core particles of the composite particles may be plastic particles.
  • the composite particles having the plastic particles as the core particles have the deformability of being deformed by heat and pressure, when the circuit members are bonded together, the contact area between the circuit electrodes of the circuit members and the conductive particles can be increased. Therefore, with an adhesive film containing these composite particles as conductive particles, it is possible to obtain a connected body that is even more excellent in terms of connection reliability.
  • the adhesive film may contain insulating coated conductive particles having the above conductive particles and an insulating layer or insulating particles covering at least part of the surface thereof.
  • the insulating layer can be provided by a method such as hybridization.
  • the insulating layer or insulating particles are formed from an insulating material such as a polymeric resin.
  • the average particle size of the conductive particles may be 1 to 18 ⁇ m from the viewpoint of obtaining good dispersibility and conductivity.
  • the particle size is measured by observation using a scanning electron microscope (SEM), and the average value of the obtained particle sizes is taken as the average particle size. .
  • the content of the conductive particles is not particularly limited, but may be 0.1 to 30% by volume, 0.1 to 10% by volume, or 0.1 to 10% by volume based on the total volume of the adhesive film. It may be 5 to 7.5% by volume. If the content of the conductive particles is 0.1% by volume or more, the conductivity tends to improve. If the content of the conductive particles is 30% by volume or less, short circuits between circuit electrodes tend to be less likely to occur.
  • the content (% by volume) of the conductive particles is determined based on the volume at 23° C. of each component constituting the adhesive film before curing or the adhesive composition before curing. The volume of each component can be determined by converting mass into volume using specific gravity.
  • An appropriate solvent water, alcohol, etc. that can wet the component well without dissolving or swelling the component whose volume is to be measured is placed in a graduated cylinder or the like, and the component to be measured is introduced into it. It is also possible to obtain the volume increased by
  • the adhesive film can contain stabilizers to control the curing speed and provide storage stability.
  • stabilizers include, but are not limited to, quinone derivatives such as benzoquinone and hydroquinone, phenol derivatives such as 4-methoxyphenol and 4-t-butylcatechol, and 2,2,6,6-tetramethylpiperidine.
  • quinone derivatives such as benzoquinone and hydroquinone
  • phenol derivatives such as 4-methoxyphenol and 4-t-butylcatechol
  • 2,2,6,6-tetramethylpiperidine 2,2,6,6-tetramethylpiperidine.
  • -1-oxyl and aminoxyl derivatives such as 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl
  • hindered amine derivatives such as tetramethylpiperidyl methacrylate.
  • the content of the stabilizer may be 0.01 to 30 parts by mass, or 0.05 to 10 parts by mass with respect to 100 parts by mass of the total amount of components (a) and (b). good.
  • the content of the stabilizer is 0.01 part by mass or more, the effect of the stabilizer tends to increase.
  • the content of the stabilizer is 30 parts by mass or less, there is a tendency that the decrease in compatibility with other components can be suppressed.
  • the adhesive film according to the present embodiment is a film-like adhesive obtained by molding the adhesive composition containing the components described above into a film.
  • the adhesive film can be obtained, for example, by applying a solution obtained by adding a solvent or the like to the adhesive composition as necessary on a release support such as a fluororesin film, polyethylene terephthalate film, or release paper, or It can be obtained by a method of impregnating a base material such as a non-woven fabric with the above solution, placing the base material on a peelable base material, and removing the solvent and the like.
  • Adhesive films are convenient in terms of handleability and the like.
  • the flow rate of the adhesive film according to this embodiment is 140% or more at a heating temperature of 160°C, a pressure of 2 MPa, and a heating time of 5 seconds.
  • the adhesive film flows when the circuit members are connected to each other and protrudes moderately from between the circuit members, and the protruding portion serves as a lid to protect the circuit connection part. be able to. Therefore, the connection body obtained using the adhesive film according to the present embodiment can prevent salt water components from entering the interface between the circuit member and the connection member, and has excellent salt water resistance.
  • the adhesive film may have a flow rate of 145% or more.
  • the flow rate of the adhesive film can be measured by the method shown in Examples.
  • the coefficient of linear expansion (CTE) of the cured product of the adhesive film according to this embodiment is 130 ppm/K or less on average at 80 to 90°C.
  • the cured product of the adhesive film has a CTE of 130 ppm/K or less, the adhesiveness of the interface between the circuit member and the connection member is increased to the extent that the infiltration of salt water components can be prevented when the connection body is formed.
  • the cured product of the adhesive film may have a CTE of 128 ppm/K or less.
  • the CTE of the cured product of the adhesive film can be measured by the method shown in Examples.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of a laminated film having an adhesive film.
  • a laminated film 100 shown in FIG. 1 has a support 8 and an adhesive film 40 provided on the support 8 .
  • the adhesive film 40 is the above-described adhesive composition formed into a film, and is composed of an insulating adhesive layer 5 and insulating particles 6 and conductive particles 7 dispersed in the insulating adhesive layer 5. be done.
  • the insulating adhesive layer 5 is composed of components other than the insulating particles and the conductive particles in the adhesive composition described above.
  • This adhesive film is easy to handle, can be easily installed on an adherend, and can be easily connected.
  • the adhesive film may have a multilayer construction consisting of two or more layers.
  • the adhesive film may not contain conductive particles, but when the adhesive film contains conductive particles, the adhesive film can be suitably used as an anisotropically conductive film.
  • the adherends can be adhered to each other by using both heating and pressure.
  • the heating temperature is not particularly limited, it may be 100 to 250°C.
  • the pressure is not particularly limited as long as it does not damage the adherend, but generally it may be 0.1 to 10 MPa. These heating and pressurization may be performed within the range of 0.5 seconds to 120 seconds.
  • the adhesive film according to this embodiment can be used as an adhesive for different types of adherends with different thermal expansion coefficients. Specifically, it is used as an anisotropic conductive adhesive, a circuit connection material represented by silver paste and silver film, or a semiconductor element adhesive material represented by elastomer for CSP, underfill material for CSP, and LOC tape. Film can be used.
  • FIG. 2 is a schematic cross-sectional view showing one embodiment of a connecting body provided with a connecting member made of a cured adhesive film according to this embodiment.
  • the connection body 1 shown in FIG. 2 includes a first circuit member 20 and a second circuit member 30 that are arranged to face each other.
  • a connection member 10 is provided between the first circuit member 20 and the second circuit member 30 to adhere and connect them.
  • the first circuit member 20 includes a first circuit board 21 and first circuit electrodes 22 formed on the main surface 21 a of the circuit board 21 .
  • An insulating layer may be formed on the main surface 21 a of the circuit board 21 .
  • the second circuit member 30 includes a second circuit board 31 and second circuit electrodes 32 formed on the main surface 31 a of the circuit board 31 .
  • An insulating layer may also be formed on the main surface 31 a of the circuit board 31 .
  • the first and second circuit members 20, 30 are not particularly limited as long as they have circuit electrodes that require electrical connection.
  • Examples of the circuit boards 21 and 31 include substrates of inorganic materials such as semiconductors, glass and ceramics, substrates of organic materials such as polyimide and polycarbonate, and substrates containing inorganic and organic materials such as glass/epoxy.
  • the first circuit board 21 may be a glass board
  • the second circuit board 31 may be a flexible board (for example, a resin film such as a polyimide film).
  • circuit members to be connected include glass or plastic substrates, printed wiring boards, ceramic wiring boards, and flexible wiring boards on which electrodes such as ITO (indium tin oxide) films are formed, which are used in liquid crystal displays. , semiconductor silicon chips, and the like. These are used in combination as necessary.
  • ITO indium tin oxide
  • the adhesive film according to the present embodiment in addition to members having surfaces formed of organic materials such as printed wiring boards and polyimide films, metals such as copper and aluminum, ITO, silicon nitride (SiN x ), and members having surfaces formed from inorganic materials such as silicon dioxide ( SiO2 ).
  • connection body obtained by connecting these is the solar cell
  • the solar cell module includes tab wires and a connecting member (cured product of an adhesive film) for bonding them.
  • connection member 10 is made of a cured adhesive film according to this embodiment.
  • the connection member 10 contains an insulating layer 11 and conductive particles 7 dispersed in the insulating layer 11 .
  • the conductive particles 7 are arranged not only between the opposing circuit electrodes 22 and 32, but also between the major surfaces 21a and 31a.
  • the circuit electrodes 22 , 32 are electrically connected via the conductive particles 7 .
  • Conductive particles 7 are in direct contact with both circuit electrodes 22 and 32 . Therefore, the connection resistance between the circuit electrodes 22 and 32 is sufficiently reduced. Therefore, the current flow between the circuit electrodes 22 and 32 can be made smooth, and the functions of the circuit can be fully exhibited.
  • the connection member does not contain conductive particles, the circuit electrodes 22 and the circuit electrodes 32 are electrically connected by direct contact.
  • connection member 10 is formed of the cured adhesive film according to this embodiment, the adhesion strength of the connection member 10 to the circuit member 20 or 30 is sufficiently high. Therefore, even after a reliability test (high-temperature, high-humidity test), it is possible to sufficiently suppress a decrease in adhesive strength and an increase in connection resistance.
  • connection body 1 is formed by, for example, a step of arranging a pair of circuit members having circuit electrodes and facing each other with an adhesive film made of an adhesive composition sandwiched therebetween, and bonding the pair of circuit members and the adhesive film. It can be manufactured by a method comprising a step of bonding a pair of circuit members via the cured adhesive film (main connecting step) by heating and curing while applying pressure to the film in the thickness direction.
  • FIG. 3 is a schematic cross-sectional view showing one embodiment of a method for manufacturing a connected body using the adhesive film according to this embodiment.
  • an adhesive film 40 is placed on the main surface of the first circuit member 20 on the circuit electrode 22 side.
  • the adhesive film 40 is provided on the support described above, the laminate of the adhesive film and the support is placed on the circuit member such that the adhesive film 40 faces the first circuit member 20 . Since the adhesive film 40 is in the form of a film, it is easy to handle. Therefore, the adhesive film 40 can be easily interposed between the first circuit member 20 and the second circuit member 30, and the work of connecting the first circuit member 20 and the second circuit member 30 can be performed. can be easily done.
  • the adhesive film 40 is the above-described adhesive composition (circuit connecting material) formed into a film, and has insulating particles 6 , conductive particles 7 and an insulating adhesive layer 5 . Even if the adhesive film does not contain conductive particles, it can be used as a circuit connecting material for anisotropic conductive adhesion.
  • a circuit-connecting material that does not contain conductive particles is sometimes called an NCF (Non-Conductive Film).
  • NCF Non-Conductive Film
  • ACF isotropic Conductive Film
  • the thickness of the adhesive film 40 may be 10-50 ⁇ m. If the thickness of the adhesive film 40 is 10 ⁇ m or more, the space between the circuit electrodes 22 and 32 tends to be easily filled with the adhesive film. If the thickness of the adhesive film is 50 ⁇ m or less, the adhesive film between the circuit electrodes 22 and 32 can be sufficiently removed, and the electrical connection between the circuit electrodes 22 and 32 can be easily secured.
  • the adhesive film 40 is temporarily connected to the first circuit member 20 by applying pressures A and B in the thickness direction of the adhesive film 40 as shown in FIG. ). At this time, the pressure may be applied while heating. However, the heating temperature is set to a temperature at which the adhesive composition in the adhesive film 40 does not cure, that is, a temperature sufficiently lower than the temperature at which the radical polymerization initiator rapidly generates radicals.
  • the second circuit member 30 is placed on the adhesive film 40 with the second circuit electrode facing the first circuit member 20 side.
  • the second circuit member 30 is placed on the adhesive film 40 after peeling off the support.
  • the adhesive film 40 is heated while applying pressures A and B in its thickness direction.
  • the heating temperature at this time is set to a temperature at which the radical polymerization initiator sufficiently generates radicals.
  • radicals are generated from the radical polymerization initiator, and polymerization of the radically polymerizable compound is initiated.
  • the insulating adhesive is cured to form the insulating layer 11 while the distance between the first circuit electrode 22 and the second circuit electrode 32 is sufficiently reduced.
  • the first circuit member 20 and the second circuit member 30 are firmly connected via the connection member 10 including the insulating layer 11 . With this permanent connection, the connection body shown in FIG. 2 is obtained.
  • This connection may be performed under the conditions of a heating temperature of 100 to 250°C, a pressure of 0.1 to 10 MPa, and a pressurization time of 0.5 to 120 seconds. These conditions are appropriately selected depending on the intended use, adhesive film, and circuit member. Post-curing may be performed after the main connection, if necessary.
  • the pressure of this connection is calculated from the applied load and the crimped area by the formula: load/crimped area.
  • the crimping area is the area of the portion to be pressed among the smallest rectangular regions surrounding the entire overlapping portion of the first circuit electrode and the second circuit electrode when viewed from the thickness direction of the adhesive film. .
  • the adhesive film contains a radical polymerization initiator that generates radicals upon irradiation with light
  • light irradiation may be performed instead of heating when curing the adhesive film for this connection.
  • a paste-like adhesive composition may be used as the circuit connecting material.
  • a coating liquid prepared by dissolving the adhesive composition in a solvent if necessary is applied to the first circuit member 20 or the second circuit member 30, and the adhesive film is formed by a method including the step of drying the coating film. can be formed.
  • the reaction was continued for 15 hours, and when it was confirmed that the NCO content was 0.2% by mass or less with an automatic potentiometric titrator (trade name: AT-510, manufactured by Kyoto Electronics Industry Co., Ltd.).
  • the reaction was terminated to obtain urethane acrylate.
  • the weight average molecular weight of urethane acrylate was 8500 (standard polystyrene conversion value).
  • the analysis by GPC was performed under the same conditions as the analysis of the weight average molecular weight of the polyurethane resin described above.
  • a nickel layer with a thickness of 0.2 ⁇ m was formed on the surface of the polystyrene particles, and a gold layer with a thickness of 0.04 ⁇ m was further formed on the outside of this nickel layer. In this way, conductive particles having an average particle size of 5 ⁇ m were produced.
  • Examples 1 to 5 and Comparative Examples 1 to 3 (Preparation of laminated film having adhesive film)
  • the raw materials shown in Table 2 were mixed at the mass ratio (solid content mass ratio) shown in Table 2 to obtain a coating liquid for forming an adhesive film.
  • This coating liquid was applied to a polyethylene terephthalate (PET) film having a thickness of 50 ⁇ m using a coating device.
  • PET polyethylene terephthalate
  • the coating film was dried with hot air at 70° C. for 10 minutes to form an adhesive film with a thickness of 16 ⁇ m.
  • a laminated film was obtained in which the adhesive film was laminated on the PET film as the support.
  • Phosphate acrylate P-2M (Kyoeisha Chemical Co., Ltd., trade name) ((c) component: radical polymerization initiator) Peroxide: 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate (trade name: Perocta O, manufactured by NOF Corporation, 1 minute half-life temperature: 124.3 ° C.) board.
  • silica fine particles R104 (manufactured by Nippon Aerosil Co., Ltd., trade name, average particle size: 12 nm) was dispersed in a mixed solvent of 45 g of toluene and 45 g of ethyl acetate, and used in the form of a dispersion having a solid content of 10% by mass.
  • Organic fine particles A 10 g of BTA 751 (manufactured by Rohm and Haas, trade name, core-shell type fine particles, average particle diameter: 0.2 to 0.3 ⁇ m) dispersed in 90 g of methyl ethyl ketone, dispersion liquid having a solid content of 10% by mass.
  • Organic fine particles B CE-800T (manufactured by Negami Kogyo Co., Ltd., trade name, polyurethane beads, average particle size: 6 ⁇ m) 10 g were dispersed in 90 g of methyl ethyl ketone, and used in the form of a dispersion having a solid content of 10% by mass.
  • Conductive particles Conductive particles prepared as described above were used.
  • Silane coupling agent KBM-503 (manufactured by Shin-Etsu Chemical Co., Ltd., trade name)
  • a flexible circuit board (FPC) having 220 copper circuits with a line width of 75 ⁇ m, a pitch of 150 ⁇ m, and a thickness of 18 ⁇ m was connected to a glass substrate using the above adhesive film as a circuit connecting material.
  • the connection was performed by heating and pressurizing at 160° C. and 2 MPa for 5 seconds using a thermocompression bonding device (heating method: constant heat type, manufactured by Nikka Setsubi Engineering Co., Ltd.).
  • a thermocompression bonding device heating method: constant heat type, manufactured by Nikka Setsubi Engineering Co., Ltd.
  • the connector prepared as described above was immersed in an aqueous solution of NaCl adjusted to a concentration of 5% by mass under conditions of 25° C. for 12 hours and then dried. This was confirmed using ECLIPSE L200 (manufactured by Nikon Corporation).
  • ECLIPSE L200 manufactured by Nikon Corporation.
  • A is for no peeling, and a small amount of peeling is occurring (the ratio of the peeled part is the total area (less than 20% of the total area) was rated B, and C was rated when peeling occurred (the percentage of the peeled portion was 20% or more of the total area).
  • Table 2 shows the results.
  • the flow rate is 140% or more at a heating temperature of 160° C., a pressure of 2 MPa, and a heating time of 5 seconds, and the CTE is 80 to 80%. It was confirmed that an average of 130 ppm/K or less at 90° C. exhibits excellent salt water resistance. On the other hand, it was confirmed that when the flow rate is less than 140% or the CTE is greater than 130 ppm/K, excellent saltwater resistance cannot be obtained.

Abstract

A bonding film for circuit connection, the bonding film being used for the purpose of connecting a first circuit member, which is obtained by forming a first circuit electrode on a main surface of a first substrate, and a second circuit member, which is obtained by forming a second circuit electrode on a main surface of a second substrate, with each other in such a manner that the first circuit electrode and the second circuit electrode face each other. This bonding film for circuit connection contains (a) a thermoplastic resin, (b) a radically polymerizable compound, (c) a radical polymerization initiator and (d) insulating particles; the radically polymerizable compound (b) contains a (meth)acrylate compound; the flow rate of this bonding film is 140% or more as determined at a heating temperature of 160°C under a pressure of 2 MPa with a heating time of 5 seconds; and the linear expansion coefficient of a cured product of this bonding film is 130 ppm/K or less on average for the temperature range 80°C to 90°C.

Description

回路接続用接着フィルム及び接続体Adhesive film and connector for circuit connection
 本開示は、回路接続用接着フィルム及び回路部材の接続体に関する。 The present disclosure relates to an adhesive film for circuit connection and a connection body of circuit members.
 半導体素子及び液晶表示素子において、素子中の種々の部材を結合させる目的で、従来から種々の接着剤組成物が回路接続材料として使用されている。この接着剤組成物には、接着性をはじめとして、耐熱性、高温高湿状態における信頼性等の多様な特性が要求される。 In semiconductor devices and liquid crystal display devices, various adhesive compositions have conventionally been used as circuit connecting materials for the purpose of bonding various members in the devices. The adhesive composition is required to have various properties such as heat resistance and reliability under high temperature and high humidity conditions, in addition to adhesiveness.
 近年、モバイル端末は小型化しており、ウェアラブル端末の開発も活性化している。さらに、ウェアラブル端末は使用用途から優れた耐候性が求められる。その耐候性として、近年は耐塩水性が求められるようになってきた。 In recent years, mobile terminals have become smaller, and the development of wearable terminals has also become active. Furthermore, wearable terminals are required to have excellent weather resistance due to their intended use. As the weather resistance, salt water resistance has been required in recent years.
 一方、これまでにも回路接続部に封止樹脂を塗布することで、水分の浸入を防ぐ方法が取られている(例えば、特許文献1及び2参照)。 On the other hand, a method has been used to prevent moisture from entering by applying a sealing resin to the circuit connection portion (see Patent Documents 1 and 2, for example).
特開2012-203628号公報Japanese Unexamined Patent Application Publication No. 2012-203628 特開2003-151762号公報JP-A-2003-151762
 しかし、ウェアラブル端末は、小型であるため回路接続部が小さく、封止樹脂を塗布できないことが多い。また、塗布できたとしても技術的に難しく、コストが上がってしまうことが課題となっている。そのため、ウェアラブル端末等の小型のモバイル端末においては、回路接続部が小さい場合であっても封止が容易であるフィルム状の接着剤(接着フィルム)を用いることが検討されている。 However, since wearable terminals are small, the circuit connection part is small and it is often impossible to apply sealing resin. Moreover, even if it can be applied, it is technically difficult, and the problem is that the cost rises. Therefore, in small mobile terminals such as wearable terminals, use of a film-like adhesive (adhesive film) that facilitates sealing even when the circuit connection portion is small is being studied.
 しかしながら、接着フィルムを用いて回路部材同士の接着及び回路接続部の封止を行った場合、耐塩水性が不十分になりやすい。 However, when an adhesive film is used to bond circuit members together and to seal circuit connections, salt water resistance tends to be insufficient.
 本開示は、上記従来技術の有する課題に鑑みてなされたものであり、優れた耐塩水性を有する接続体を形成することができる回路接続用接着フィルム、及び、それを用いた回路部材の接続体を提供することを目的とする。 The present disclosure has been made in view of the above problems of the prior art, and an adhesive film for circuit connection capable of forming a connection body having excellent salt water resistance, and a circuit member connection body using the same intended to provide
 上記目的を達成するために、本開示は、第一の基板の主面上に第一の回路電極が形成された第一の回路部材と、第二の基板の主面上に第二の回路電極が形成された第二の回路部材とを、上記第一の回路電極及び上記第二の回路電極を対向配置させた状態で接続するための回路接続用接着フィルムであって、上記接着フィルムは、(a)熱可塑性樹脂、(b)ラジカル重合性化合物、(c)ラジカル重合開始剤、及び、(d)絶縁性粒子を含み、上記(b)ラジカル重合性化合物は、(メタ)アクリレート化合物を含み、上記接着フィルムのフロー率が、加熱温度160℃、圧力2MPa、加熱時間5秒間で140%以上であり、上記接着フィルムの硬化物の線膨張係数が、80~90℃の平均で130ppm/K以下である、回路接続用接着フィルムを提供する。 In order to achieve the above object, the present disclosure provides a first circuit member having a first circuit electrode formed on the main surface of a first substrate and a second circuit on the main surface of the second substrate. An adhesive film for circuit connection for connecting a second circuit member having electrodes formed thereon with the first circuit electrode and the second circuit electrode facing each other, wherein the adhesive film is , (a) a thermoplastic resin, (b) a radically polymerizable compound, (c) a radical polymerization initiator, and (d) insulating particles, wherein the (b) radically polymerizable compound is a (meth)acrylate compound The flow rate of the adhesive film is 140% or more at a heating temperature of 160 ° C., a pressure of 2 MPa, and a heating time of 5 seconds, and the linear expansion coefficient of the cured product of the adhesive film is 130 ppm on average at 80 to 90 ° C. /K or less to provide an adhesive film for circuit connection.
 上記回路接続用接着フィルムによれば、フィルム状であることで、ウェアラブル端末等の小型のモバイル端末における回路部材同士の接続及び回路接続部の封止を容易に行うことができると共に、優れた耐塩水性を有する接続体を形成することができる。ここで、優れた耐塩水性が得られる理由について、本発明者らは以下のように推察する。まず、塩水の成分であるクロライドイオンは、水の成分よりも回路部材と接着フィルムの硬化物である接続部材との界面に浸透し易く、それによって回路部材と接続部材との剥離を引き起こし易い。そのため、接続体が通常の水にさらされた場合には剥離が生じなくても、塩水にさらされた場合には剥離が生じ易い。これに対し、上記接着フィルムによれば、その硬化物の線膨張係数が上記範囲内であることで、塩水の成分の浸み込みを防げるほどに、回路部材と接続部材との界面の密着性を高めることができ、接続体が塩水にさらされた場合であっても剥離が生じることを抑制することができる。更に、上記接着フィルムによれば、そのフロー率が上記範囲内であることで、回路部材同士の接続時に接着フィルムが流動して回路部材間から適度にはみ出し、そのはみ出した部分が回路接続部を保護する蓋の役割を果たすこととなる。そして、この蓋の部分も回路部材との密着性が高いため、回路部材と接続部材との界面への塩水の成分の侵入を防ぐことができる。よって、上記回路接続用接着フィルムによれば、優れた耐塩水性を有する接続体を形成することができる。また、上記効果は、ラジカル重合性化合物として、(メタ)アクリレート化合物を用いた場合に最も大きくなる。 According to the adhesive film for circuit connection, since it is in the form of a film, it is possible to easily connect circuit members and seal the circuit connection part in a small mobile terminal such as a wearable terminal, and it has excellent salt resistance. Connections having aqueous properties can be formed. Here, the present inventors speculate as follows about the reason why excellent salt water resistance is obtained. First, chloride ions, which are components of salt water, are more likely to permeate the interface between the circuit member and the connection member, which is a cured adhesive film, than the water component, thereby easily causing separation between the circuit member and the connection member. Therefore, even if the connector does not peel when exposed to normal water, it is likely to peel when exposed to salt water. On the other hand, according to the adhesive film, the linear expansion coefficient of the cured product is within the above range, so that the adhesion of the interface between the circuit member and the connection member is sufficient to prevent the salt water component from permeating. can be increased, and peeling can be suppressed even when the connector is exposed to salt water. Furthermore, according to the adhesive film, the flow rate is within the above range, so that the adhesive film flows when the circuit members are connected to each other and protrudes appropriately from between the circuit members, and the protruding portion is the circuit connection part. It will act as a protective lid. Since the lid portion also has high adhesion to the circuit member, it is possible to prevent salt water components from entering the interface between the circuit member and the connection member. Therefore, according to the adhesive film for circuit connection, it is possible to form a connecting body having excellent resistance to salt water. Moreover, the above effect is maximized when a (meth)acrylate compound is used as the radically polymerizable compound.
 上記(d)絶縁性粒子は、シリカ粒子を含んでいてもよい。また、上記(d)絶縁性粒子は、有機微粒子を含んでいてもよい。ここで、上記有機微粒子は、ポリウレタン樹脂及びシリコーン樹脂からなる群より選択される少なくとも一種の樹脂からなる微粒子を含んでいてもよい。更に、上記(d)絶縁性粒子の平均粒径は、0.001~35μmであってもよい。これらの絶縁性粒子を用いることで、接着フィルムのフロー率及び硬化物の線膨張係数を好適な範囲に調整しやすく、得られる接続体の耐塩水性をより向上させやすい。 The (d) insulating particles may contain silica particles. In addition, the (d) insulating particles may contain organic fine particles. Here, the organic fine particles may contain fine particles made of at least one kind of resin selected from the group consisting of polyurethane resins and silicone resins. Furthermore, the average particle diameter of the (d) insulating particles may be 0.001 to 35 μm. By using these insulating particles, it is easy to adjust the flow rate of the adhesive film and the coefficient of linear expansion of the cured product to a suitable range, and to further improve the resistance to salt water of the obtained connected body.
 上記回路接続用接着フィルムは、(e)導電性粒子を更に含有してもよい。(e)導電性粒子を含有することで、回路接続用接着フィルムに導電性又は異方導電性を付与することができるため、接着フィルムを、回路接続材料としてより好適に使用することができる。また、当該接着フィルムを介して電気的に接続した回路電極間の接続抵抗を、より容易に低減することができる。 The circuit connection adhesive film may further contain (e) conductive particles. (e) By containing the conductive particles, the adhesive film for circuit connection can be imparted with conductivity or anisotropic conductivity, so the adhesive film can be more preferably used as a circuit connection material. Moreover, the connection resistance between the circuit electrodes electrically connected via the adhesive film can be more easily reduced.
 本開示はまた、回路電極を有し対向配置された一対の回路部材と、上記一対の回路部材の間に設けられ、上記一対の回路部材同士を接着する接続部材と、を備え、一方の上記回路部材の上記回路電極と他方の上記回路部材の上記回路電極とが電気的に接続されており、上記接続部材が、上述した回路接続用接着フィルムの硬化物である、接続体を提供する。かかる接続体は、優れた耐塩水性を有することができる。 The present disclosure also includes a pair of circuit members having circuit electrodes and arranged to face each other, and a connection member provided between the pair of circuit members and bonding the pair of circuit members together, The circuit electrode of the circuit member and the circuit electrode of the other circuit member are electrically connected, and the connection member is a cured product of the above adhesive film for circuit connection. Such connectors can have excellent resistance to salt water.
 本開示によれば、優れた耐塩水性を有する接続体を形成することができる回路接続用接着フィルム、及び、それを用いた回路部材の接続体を提供することができる。 According to the present disclosure, it is possible to provide an adhesive film for circuit connection capable of forming a connection body having excellent salt water resistance, and a circuit member connection body using the same.
回路接続用接着フィルムを有する積層フィルムの一実施形態を示す模式断面図である。1 is a schematic cross-sectional view showing an embodiment of a laminated film having an adhesive film for circuit connection; FIG. 接続体の一実施形態を示す模式断面図である。1 is a schematic cross-sectional view showing an embodiment of a connecting body; FIG. 接続体を製造する方法の一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the method of manufacturing a connection body.
 以下、場合により図面を参照しつつ、本開示の実施形態について説明する。本開示は以下の実施形態に限定されるものではない。なお、以下で例示する材料は、特に断らない限り、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。本明細書において、(メタ)アクリレートはアクリレート又はそれに対応するメタクリレートを意味し、(メタ)アクリロイルオキシ基はアクリロイルオキシ基又はメタクリロイルオキシ基を意味する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings as the case may be. The present disclosure is not limited to the following embodiments. The materials exemplified below may be used singly or in combination of two or more unless otherwise specified. The content of each component in the composition means the total amount of the plurality of substances present in the composition unless otherwise specified when there are multiple substances corresponding to each component in the composition. A numerical range indicated using "-" indicates a range including the numerical values before and after "-" as the minimum and maximum values, respectively. In the numerical ranges described stepwise in this specification, the upper limit value or lower limit value of the numerical range at one step may be replaced with the upper limit value or lower limit value of the numerical range at another step. In the numerical ranges described herein, the upper or lower limits of the numerical ranges may be replaced with the values shown in the examples. As used herein, (meth)acrylate means acrylate or its corresponding methacrylate, and (meth)acryloyloxy means acryloyloxy or methacryloyloxy.
 本実施形態は、下記[1]~[7]に関する。
[1]第一の基板の主面上に第一の回路電極が形成された第一の回路部材と、第二の基板の主面上に第二の回路電極が形成された第二の回路部材とを、上記第一の回路電極及び上記第二の回路電極を対向配置させた状態で接続するための回路接続用接着フィルムであって、上記接着フィルムは、(a)熱可塑性樹脂、(b)ラジカル重合性化合物、(c)ラジカル重合開始剤、及び、(d)絶縁性粒子を含み、上記(b)ラジカル重合性化合物は、(メタ)アクリレート化合物を含み、上記接着フィルムのフロー率が、加熱温度160℃、圧力2MPa、加熱時間5秒間で140%以上であり、上記接着フィルムの硬化物の線膨張係数が、80~90℃の平均で130ppm/K以下である、回路接続用接着フィルム。
[2]上記(d)絶縁性粒子が、シリカ微粒子を含む、上記[1]に記載の回路接続用接着フィルム。
[3]上記(d)絶縁性粒子が、有機微粒子を含む、上記[1]又は[2]に記載の回路接続用接着フィルム。
[4]上記有機微粒子が、ポリウレタン樹脂及びシリコーン樹脂からなる群より選択される少なくとも一種の樹脂からなる微粒子を含む、上記[3]に記載の回路接続用接着フィルム。
[5]上記(d)絶縁性粒子の平均粒径が、0.001~35μmである、上記[1]~[4]のいずれかに記載の回路接続用接着フィルム。
[6](e)導電性粒子を更に含有する、上記[1]~[5]のいずれかに記載の回路接続用接着フィルム。
[7]回路電極を有し対向配置された一対の回路部材と、上記一対の回路部材の間に設けられ、上記一対の回路部材同士を接着する接続部材と、を備え、一方の上記回路部材の上記回路電極と他方の上記回路部材の上記回路電極とが電気的に接続されており、上記接続部材が、上記[1]~[6]のいずれかに記載の回路接続用接着フィルムの硬化物である、接続体。
The present embodiment relates to the following [1] to [7].
[1] A first circuit member having first circuit electrodes formed on the main surface of a first substrate, and a second circuit having second circuit electrodes formed on the main surface of a second substrate A circuit connection adhesive film for connecting a member with the first circuit electrode and the second circuit electrode facing each other, the adhesive film comprising (a) a thermoplastic resin, ( b) a radically polymerizable compound, (c) a radical polymerization initiator, and (d) insulating particles, wherein the (b) radically polymerizable compound comprises a (meth)acrylate compound, and the flow rate of the adhesive film is 140% or more at a heating temperature of 160 ° C., a pressure of 2 MPa, and a heating time of 5 seconds, and the linear expansion coefficient of the cured product of the adhesive film is 130 ppm / K or less on average at 80 to 90 ° C., for circuit connection. adhesive film.
[2] The adhesive film for circuit connection according to [1] above, wherein the insulating particles (d) contain silica fine particles.
[3] The adhesive film for circuit connection according to [1] or [2] above, wherein the (d) insulating particles contain organic fine particles.
[4] The adhesive film for circuit connection according to [3] above, wherein the organic fine particles contain fine particles made of at least one resin selected from the group consisting of polyurethane resins and silicone resins.
[5] The adhesive film for circuit connection according to any one of [1] to [4] above, wherein the average particle diameter of the (d) insulating particles is 0.001 to 35 μm.
[6] (e) The adhesive film for circuit connection according to any one of [1] to [5] above, which further contains conductive particles.
[7] A pair of circuit members having circuit electrodes arranged opposite to each other, and a connection member provided between the pair of circuit members and bonding the pair of circuit members together, one of the circuit members and the circuit electrode of the other circuit member are electrically connected, and the connection member is the cured adhesive film for circuit connection according to any one of [1] to [6]. A connection that is a thing.
(回路接続用接着フィルム)
 本実施形態に係る回路接続用接着フィルム(以下、単に「接着フィルム」ともいう)は、(a)熱可塑性樹脂、(b)ラジカル重合性化合物、(c)ラジカル重合開始剤、及び、(d)絶縁性粒子を含む。上記(b)ラジカル重合性化合物は、(メタ)アクリレート化合物を含む。上記接着フィルムのフロー率は、加熱温度160℃、圧力2MPa、加熱時間5秒間で140%以上である。また、上記接着フィルムの硬化物の線膨張係数(CTE)は、80~90℃の平均で130ppm/K以下である。上記構成を有する接着フィルムは、上記(a)熱可塑性樹脂、上記(b)ラジカル重合性化合物、上記(c)ラジカル重合開始剤、及び、上記(d)絶縁性粒子を含む接着剤組成物を用いて形成することができる。また、接着フィルム及び接着剤組成物は、(e)導電性粒子を含有していてもよい。以下、各成分について説明する。
(adhesive film for circuit connection)
The adhesive film for circuit connection according to the present embodiment (hereinafter also simply referred to as "adhesive film") comprises (a) a thermoplastic resin, (b) a radically polymerizable compound, (c) a radical polymerization initiator, and (d) ) containing insulating particles. The (b) radically polymerizable compound includes a (meth)acrylate compound. The flow rate of the adhesive film is 140% or more at a heating temperature of 160° C., a pressure of 2 MPa, and a heating time of 5 seconds. Further, the coefficient of linear expansion (CTE) of the cured adhesive film is 130 ppm/K or less on average at 80 to 90°C. The adhesive film having the above configuration comprises an adhesive composition containing the (a) thermoplastic resin, the (b) radically polymerizable compound, the (c) radical polymerization initiator, and the (d) insulating particles. can be formed using The adhesive film and adhesive composition may also contain (e) conductive particles. Each component will be described below.
 (a)熱可塑性樹脂としては、特に制限されないが、例えば、ポリイミド樹脂、ポリアミド樹脂、フェノキシ樹脂、ポリ(メタ)アクリレート樹脂、ポリイミド樹脂、ポリエステル樹脂、ポリウレタン樹脂及びポリビニルブチラール樹脂から選ばれる1種又は2種以上の樹脂が挙げられる。熱可塑性樹脂は、シロキサン結合及び/又はフッ素基を含んでいてもよい。2種以上の熱可塑性樹脂を用いる場合、完全に相溶するか、又はミクロ相分離が生じて白濁する組み合わせであってもよい。 (a) The thermoplastic resin is not particularly limited, but for example, one selected from polyimide resin, polyamide resin, phenoxy resin, poly(meth)acrylate resin, polyimide resin, polyester resin, polyurethane resin and polyvinyl butyral resin, Two or more resins are included. The thermoplastic resin may contain siloxane bonds and/or fluorine groups. When two or more thermoplastic resins are used, the combination may be such that they are completely compatible or cause microphase separation to cause white turbidity.
 熱可塑性樹脂の重量平均分子量は、特に制限されないが、5000~200000であってもよく、10000~150000であってもよい。熱可塑性樹脂の重量平均分子量が5000以上であると、接着フィルムの接着力が向上する傾向がある。熱可塑性樹脂の重量平均分子量が200000以下であると、他の成分との良好な相溶性が得られやすい傾向があり、接着フィルムの流動性が向上しやすい傾向がある。 Although the weight average molecular weight of the thermoplastic resin is not particularly limited, it may be 5,000 to 200,000, or 10,000 to 150,000. When the weight average molecular weight of the thermoplastic resin is 5000 or more, the adhesive strength of the adhesive film tends to improve. When the weight average molecular weight of the thermoplastic resin is 200,000 or less, there is a tendency that good compatibility with other components is likely to be obtained, and the fluidity of the adhesive film is likely to be improved.
 熱可塑性樹脂の含有量は、(a)成分及び(b)成分の総量を基準として、20~80質量%であってもよく、25~70質量%であってもよく、30~60質量%であってもよい。熱可塑性樹脂の含有量が20質量%以上であると、接着フィルムの接着力が向上したり、接着剤組成物から接着フィルムを形成する際のフィルム形成性が向上したりする傾向があり、80質量%以下であれば、接着フィルムの流動性が得られやすい傾向がある。 The content of the thermoplastic resin may be 20 to 80% by mass, 25 to 70% by mass, or 30 to 60% by mass, based on the total amount of components (a) and (b). may be When the content of the thermoplastic resin is 20% by mass or more, the adhesive strength of the adhesive film tends to improve, and the film formability when forming the adhesive film from the adhesive composition tends to improve. If the amount is not more than % by mass, the adhesive film tends to be more fluid.
 熱可塑性樹脂として、応力緩和及び接着性向上を目的として、ゴム成分を用いることもできる。ゴム成分は、例えば、アクリルゴム、ポリイソプレン、ポリブタジエン、カルボキシル基末端ポリブタジエン、水酸基末端ポリブタジエン、1,2-ポリブタジエン、カルボキシル基末端1,2-ポリブタジエン、水酸基末端1,2-ポリブタジエン、スチレン-ブタジエンゴム、水酸基末端スチレン-ブタジエンゴム、カルボキシル化ニトリルゴム、水酸基末端ポリ(オキシプロピレン)、アルコキシシリル基末端ポリ(オキシプロピレン)、ポリ(オキシテトラメチレン)グリコール、ポリオレフィングリコール及びポリ-ε-カプロラクトンが挙げられる。ゴム成分は、接着性向上の観点から、高極性基であるシアノ基又はカルボキシル基を側鎖基又は末端基として有していてもよい。これらのゴム成分は、1種を単独で又は2種以上を組み合わせて用いることができる。 A rubber component can also be used as the thermoplastic resin for the purpose of relaxing stress and improving adhesion. Examples of rubber components include acrylic rubber, polyisoprene, polybutadiene, carboxyl-terminated polybutadiene, hydroxyl-terminated polybutadiene, 1,2-polybutadiene, carboxyl-terminated 1,2-polybutadiene, hydroxyl-terminated 1,2-polybutadiene, and styrene-butadiene rubber. , hydroxyl-terminated styrene-butadiene rubber, carboxylated nitrile rubber, hydroxyl-terminated poly(oxypropylene), alkoxysilyl-terminated poly(oxypropylene), poly(oxytetramethylene) glycol, polyolefin glycol and poly-ε-caprolactone. . From the viewpoint of improving adhesiveness, the rubber component may have a cyano group or a carboxyl group, which are highly polar groups, as side chain groups or terminal groups. These rubber components can be used individually by 1 type or in combination of 2 or more types.
 本実施形態に係る接着フィルムは、(b)ラジカル重合性化合物として任意のものを含んでいてもよいが、少なくとも(メタ)アクリレート化合物を含む。このラジカル重合性化合物は、モノマー及びオリゴマーのいずれであってもよいし、両者の組み合わせであってもよい。 The adhesive film according to the present embodiment may contain any radically polymerizable compound (b), but it contains at least a (meth)acrylate compound. This radically polymerizable compound may be either a monomer or an oligomer, or a combination of both.
 ラジカル重合性化合物は、2つ以上の(メタ)アクリロイルオキシ基を有する1種又は2種以上の多官能の(メタ)アクリレート化合物であってもよい。このような(メタ)アクリレート化合物は、例えば、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエーテル(メタ)アクリレート及びポリエステル(メタ)アクリレート等のモノマー又はオリゴマー、トリメチロールプロパントリ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリアルキレングリコールジ(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニロキシエチル(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、イソシアヌル酸変性2官能(メタ)アクリレート、イソシアヌル酸変性3官能(メタ)アクリレート、ビスフェノールフルオレンジグリシジルエーテルの2つのグリシジル基に(メタ)アクリル酸が付加して生成するエポキシ(メタ)アクリレート、並びに、ビスフェノールフルオレンジグリシジルエーテルの2つのグリシジル基にエチレングリコール及び/又はプロピレングリコールを付加させた化合物に(メタ)アクリロイルオキシ基を導入した化合物が挙げられる。これらの化合物は1種を単独で使用してもよいし、2種以上を組み合わせてもよい。 The radically polymerizable compound may be one or more polyfunctional (meth)acrylate compounds having two or more (meth)acryloyloxy groups. Such (meth)acrylate compounds are, for example, monomers or oligomers such as epoxy (meth)acrylates, urethane (meth)acrylates, polyether (meth)acrylates and polyester (meth)acrylates, trimethylolpropane tri(meth)acrylate , polyethylene glycol di(meth)acrylate, polyalkylene glycol di(meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate, neopentyl glycol di(meth)acrylate, dipentaerythritol hexa (Meth) acrylate, isocyanuric acid-modified bifunctional (meth) acrylate, isocyanuric acid-modified tri-functional (meth) acrylate, epoxy (meth) produced by addition of (meth) acrylic acid to two glycidyl groups of bisphenol fluorenediglycidyl ether ) acrylates, and compounds obtained by adding ethylene glycol and/or propylene glycol to two glycidyl groups of bisphenol fluorenediglycidyl ether and introducing a (meth)acryloyloxy group. These compounds may be used individually by 1 type, and may combine 2 or more types.
 接着フィルムは、流動性の調節等を目的として、(b)ラジカル重合性化合物として、単官能(メタ)アクリレート化合物を含んでいてもよい。単官能(メタ)アクリレート化合物は、例えば、ペンタエリスリトール(メタ)アクリレート、2-シアノエチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニロキシエチル(メタ)アクリレート、2-(2-エトキシエトキシ)エチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、イソボルニル(メタ)アクリレート、イソデシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、n-ラウリル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルホスフェート、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレート、及び(メタ)アクリロイルモルホリンが挙げられる。これらの化合物は1種を単独で使用してもよいし、2種以上を組み合わせてもよい。 The adhesive film may contain a monofunctional (meth)acrylate compound as the (b) radically polymerizable compound for the purpose of adjusting fluidity and the like. Monofunctional (meth)acrylate compounds include, for example, pentaerythritol (meth)acrylate, 2-cyanoethyl (meth)acrylate, cyclohexyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate , 2-(2-ethoxyethoxy)ethyl (meth)acrylate, 2-ethoxyethyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-hexyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, hydroxy propyl (meth)acrylate, isobornyl (meth)acrylate, isodecyl (meth)acrylate, isooctyl (meth)acrylate, n-lauryl (meth)acrylate, 2-methoxyethyl (meth)acrylate, 2-phenoxyethyl (meth)acrylate, Tetrahydrofurfuryl (meth)acrylate, 2-(meth)acryloyloxyethyl phosphate, N,N-dimethylaminoethyl (meth)acrylate, N,N-dimethylaminopropyl (meth)acrylate, and (meth)acryloylmorpholine mentioned. These compounds may be used individually by 1 type, and may combine 2 or more types.
 接着フィルムは、橋架け率の向上等を目的として、(b)ラジカル重合性化合物として、上記(メタ)アクリレート化合物の他に、アリール基、マレイミド基及びビニル基等のラジカル重合性の官能基を有する化合物を含んでいてもよい。そのような化合物は、例えば、N-ビニルイミダゾール、N-ビニルピリジン、N-ビニルピロリドン、N-ビニルホルムアミド、N-ビニルカプロラクタム、4,4’-ビニリデンビス(N,N-ジメチルアニリン)、N-ビニルアセトアミド、N,N-ジメチルアクリルアミド、N-イソプロピルアクリルアミド及びN,N-ジエチルアクリルアミドが挙げられる。 For the purpose of improving the cross-linking rate, etc., the adhesive film contains, in addition to the above (meth)acrylate compound, a radically polymerizable functional group such as an aryl group, a maleimide group, and a vinyl group as the (b) radically polymerizable compound. It may contain a compound having Such compounds are, for example, N-vinylimidazole, N-vinylpyridine, N-vinylpyrrolidone, N-vinylformamide, N-vinylcaprolactam, 4,4′-vinylidenebis(N,N-dimethylaniline), N -vinylacetamide, N,N-dimethylacrylamide, N-isopropylacrylamide and N,N-diethylacrylamide.
 接着フィルムは、接着力の向上を目的として、(b)ラジカル重合性化合物として、リン酸基を有するラジカル重合性化合物を含有してもよい。リン酸基を有するラジカル重合性化合物は、例えば、下記式(1)、(2)又は(3)で表される化合物が挙げられる。 The adhesive film may contain a radically polymerizable compound having a phosphoric acid group as (b) a radically polymerizable compound for the purpose of improving adhesive strength. Examples of radically polymerizable compounds having a phosphoric acid group include compounds represented by the following formulas (1), (2), and (3).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)中、Rは(メタ)アクリロイルオキシ基を示し、Rは水素原子又はメチル基を示し、w及びxはそれぞれ独立に1~8の整数を示す。同一分子中の複数のR、R、w及びxは、それぞれ同一でも異なっていてもよい。 In formula (1), R 5 represents a (meth)acryloyloxy group, R 6 represents a hydrogen atom or a methyl group, and w and x each independently represents an integer of 1-8. Plural R 5 , R 6 , w and x in the same molecule may be the same or different.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(2)中、Rは(メタ)アクリロイルオキシ基を示し、y及びzはそれぞれ独立に1~8の整数を示す。同一分子中の複数のR、y及びzは、それぞれ同一でも異なっていてもよい。 In formula (2), R 7 represents a (meth)acryloyloxy group, and y and z each independently represents an integer of 1-8. Plural R 7 , y and z in the same molecule may be the same or different.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(3)中、Rは水素原子又はメチル基を示し、Rは(メタ)アクリロイルオキシ基を示し、b及びcはそれぞれ独立に1~8の整数を示す。同一分子中のRは同一でも異なっていてもよい。 In formula (3), R 8 represents a hydrogen atom or a methyl group, R 9 represents a (meth)acryloyloxy group, and b and c each independently represent an integer of 1-8. R8 in the same molecule may be the same or different.
 リン酸基を有するラジカル重合性化合物は、例えば、アシッドホスホオキシエチルメタクリレート、アシッドホスホオキシエチルアクリレート、アシッドホスホオキシプロピルメタクリレート、アシッドホスホオキシポリオキシエチレングリコールモノメタクリレート、アシッドホスホオキシポリオキシプロピレングリコールモノメタクリレート、2,2’-ジ(メタ)アクリロイロキシジエチルホスフェート、EO変性リン酸ジメタクリレート、リン酸変性エポキシアクリレート及びリン酸ビニルが挙げられる。 Radically polymerizable compounds having a phosphoric acid group include, for example, acid phosphooxyethyl methacrylate, acid phosphooxyethyl acrylate, acid phosphooxypropyl methacrylate, acid phosphooxypolyoxyethylene glycol monomethacrylate, acid phosphooxypolyoxypropylene glycol monomethacrylate. , 2,2′-di(meth)acryloyloxydiethyl phosphate, EO-modified dimethacrylate phosphate, phosphate-modified epoxy acrylate and vinyl phosphate.
 リン酸基を有するラジカル重合性化合物の含有量は、(a)成分及び(b)成分の総量を基準として、0.1~15質量%であってもよく、0.5~10質量%であってもよい。リン酸基を有するラジカル重合性化合物の含有量が0.1質量%以上であれば、高い接着強度が得られやすい傾向があり、15質量%以下であると、硬化後の接着フィルムの物性低下が生じにくく、信頼性向上の効果が良好となる。 The content of the radically polymerizable compound having a phosphoric acid group may be 0.1 to 15% by mass, or 0.5 to 10% by mass, based on the total amount of components (a) and (b). There may be. If the content of the radically polymerizable compound having a phosphate group is 0.1% by mass or more, high adhesive strength tends to be obtained, and if it is 15% by mass or less, the physical properties of the adhesive film after curing deteriorate. is less likely to occur, and the effect of improving reliability is good.
 接着フィルムに含まれる(b)ラジカル重合性化合物の総含有量は、(a)成分及び(b)成分の総量を基準として、20~80質量%であってもよく、25~70質量%であってもよく、30~60質量%であってもよい。この総含有量が20質量%以上であれば、耐熱性が向上する傾向があり、80質量%以下であると、高温高湿環境に放置後の剥離抑制の効果が大きくなる傾向がある。 The total content of the (b) radically polymerizable compound contained in the adhesive film may be 20 to 80% by mass, preferably 25 to 70% by mass, based on the total amount of components (a) and (b). It may be present, and may be 30 to 60% by mass. When the total content is 20% by mass or more, the heat resistance tends to be improved, and when the total content is 80% by mass or less, the effect of suppressing peeling after being left in a high-temperature and high-humidity environment tends to increase.
 (c)ラジカル重合開始剤は、過酸化物及びアゾ化合物等の化合物から任意に選択することができる。安定性、反応性及び相溶性の観点から、1分間半減期温度が90~175℃で、かつ分子量が180~1000の過酸化物であってもよい。「1分間半減期温度」とは、過酸化物の半減期が1分である温度をいう。「半減期」とは、所定の温度において化合物の濃度が初期値の半分に減少するまでの時間をいう。 (c) The radical polymerization initiator can be arbitrarily selected from compounds such as peroxides and azo compounds. From the viewpoint of stability, reactivity and compatibility, a peroxide having a 1-minute half-life temperature of 90 to 175° C. and a molecular weight of 180 to 1,000 may be used. "1 minute half-life temperature" refers to the temperature at which the peroxide half-life is 1 minute. "Half-life" refers to the time it takes for the concentration of a compound to decrease to half of its initial value at a given temperature.
 ラジカル重合開始剤は、例えば、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、ジ(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ(2-エチルヘキシル)パーオキシジカーボネート、クミルパーオキシネオデカノエート、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、ジラウロイルパーオキサイド、1-シクロヘキシル-1-メチルエチルパーオキシネオデカノエート、t-ヘキシルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、t-ブチルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイルパーオキシ)ヘキサン、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシネオヘプタノエート、t-アミルパーオキシ-2-エチルヘキサノエート、ジ-t-ブチルパーオキシヘキサヒドロテレフタレート、t-アミルパーオキシ-3,5,5-トリメチルヘキサノエート、3-ヒドロキシ-1,1-ジメチルブチルパーオキシネオデカノエート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、t-アミルパーオキシネオデカノエート、t-アミルパーオキシ-2-エチルヘキサノエート、3-メチルベンゾイルパーオキサイド、4-メチルベンゾイルパーオキサイド、ジ(3-メチルベンゾイル)パーオキサイド、ジベンゾイルパーオキサイド、ジ(4-メチルベンゾイル)パーオキサイド、2,2’-アゾビス-2,4-ジメチルバレロニトリル、1,1’-アゾビス(1-アセトキシ-1-フェニルエタン)、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、ジメチル-2,2’-アゾビスイソブチロニトリル、4,4’-アゾビス(4-シアノバレリン酸)、1,1’-アゾビス(1-シクロヘキサンカルボニトリル)、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート、2,5-ジメチル-2,5-ジ(3-メチルベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシベンゾエート、ジブチルパーオキシトリメチルアジペート、t-アミルパーオキシノルマルオクトエート、t-アミルパーオキシイソノナノエート及びt-アミルパーオキシベンゾエートが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いることができる。 Radical polymerization initiators include, for example, 1,1,3,3-tetramethylbutyl peroxyneodecanoate, di(4-t-butylcyclohexyl)peroxydicarbonate, di(2-ethylhexyl)peroxydicarbonate , cumyl peroxyneodecanoate, 1,1,3,3-tetramethylbutyl peroxyneodecanoate, dilauroyl peroxide, 1-cyclohexyl-1-methylethyl peroxyneodecanoate, t-hexyl peroxyneodecanoate, t-butyl peroxyneodecanoate, t-butyl peroxypivalate, 1,1,3,3-tetramethylbutyl peroxy-2-ethylhexanoate, 2,5- Dimethyl-2,5-di(2-ethylhexanoylperoxy)hexane, t-hexylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, t-butylperoxyneo Heptanoate, t-amylperoxy-2-ethylhexanoate, di-t-butylperoxyhexahydroterephthalate, t-amylperoxy-3,5,5-trimethylhexanoate, 3-hydroxy-1 ,1-dimethylbutyl peroxyneodecanoate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, t-amylperoxyneodecanoate, t-amylperoxy-2 -ethylhexanoate, 3-methylbenzoyl peroxide, 4-methylbenzoyl peroxide, di(3-methylbenzoyl) peroxide, dibenzoyl peroxide, di(4-methylbenzoyl) peroxide, 2,2'- Azobis-2,4-dimethylvaleronitrile, 1,1′-azobis(1-acetoxy-1-phenylethane), 2,2′-azobisisobutyronitrile, 2,2′-azobis(2-methylbutyronitrile) ronitrile), dimethyl-2,2'-azobisisobutyronitrile, 4,4'-azobis(4-cyanovaleric acid), 1,1'-azobis(1-cyclohexanecarbonitrile), t-hexylperoxy isopropyl monocarbonate, t-butyl peroxymaleic acid, t-butyl peroxy-3,5,5-trimethylhexanoate, t-butyl peroxylaurate, 2,5-dimethyl-2,5-di(3 -methylbenzoylperoxy)hexane, t-butylperoxy-2-ethylhexyl monocarbonate t, t-hexyl peroxybenzoate, 2,5-dimethyl-2,5-di(benzoylperoxy)hexane, t-butyl peroxybenzoate, dibutyl peroxytrimethyl adipate, t-amyl peroxy normal octoate, t -amyl peroxyisononanoate and t-amyl peroxybenzoate. These can be used individually by 1 type or in combination of 2 or more types.
 ラジカル重合開始剤として、波長150~750nmの光照射によってラジカルを発生する化合物を用いることもできる。このような化合物は、特に制限はないが、例えば、光照射に対する感度が高いことから、Photoinitiation,Photopolymerization,and Photocuring,J.-P. Fouassier,Hanser Publishers(1995年)、p17~p35に記載されているα-アセトアミノフェノン誘導体及びホスフィンオキサイド誘導体であってもよい。これらの化合物は、1種を単独で又は2種以上を組み合わせて用いられる。これら化合物と、上記過酸化物及びアゾ化合物とを組み合わせてもよい。あるいは、超音波、電磁波等によりラジカルを発生するラジカル重合開始剤を接着フィルムが含んでいてもよい。 A compound that generates radicals upon irradiation with light having a wavelength of 150 to 750 nm can also be used as the radical polymerization initiator. Such compounds are not particularly limited. -P. α-acetaminophenone derivatives and phosphine oxide derivatives described in Fouassier, Hanser Publishers (1995), pp.17-35. These compounds are used individually by 1 type or in combination of 2 or more types. These compounds may be combined with the above peroxides and azo compounds. Alternatively, the adhesive film may contain a radical polymerization initiator that generates radicals by ultrasonic waves, electromagnetic waves, or the like.
 回路部材の接続端子(回路電極)の腐食を抑えるために、ラジカル重合開始剤中に含有される塩素イオン又は有機酸の量は5000ppm以下であってもよい。同様の観点から、分解後に発生する有機酸が少ないラジカル重合性化合物であってもよい。回路接続材料の安定性が向上することから、室温、常圧下で24時間の開放放置後に20質量%以上の質量保持率を有するラジカル重合開始剤であってもよい。 The amount of chlorine ions or organic acid contained in the radical polymerization initiator may be 5000 ppm or less in order to suppress corrosion of the connection terminals (circuit electrodes) of the circuit members. From the same point of view, it may be a radically polymerizable compound that generates less organic acid after decomposition. It may be a radical polymerization initiator having a mass retention rate of 20% by mass or more after being left open for 24 hours at room temperature and normal pressure because it improves the stability of the circuit connecting material.
 ラジカル重合開始剤の含有量は、(a)成分及び(b)成分の総量100質量部に対して、0.5~15質量部であってもよく、1.5~10質量部であってもよい。 The content of the radical polymerization initiator may be 0.5 to 15 parts by mass, or 1.5 to 10 parts by mass, with respect to 100 parts by mass of the total amount of components (a) and (b). good too.
 接着フィルムは、(d)絶縁性粒子を含有する。絶縁性粒子としては、有機微粒子及び無機微粒子が挙げられる。 The adhesive film contains (d) insulating particles. The insulating particles include organic fine particles and inorganic fine particles.
 無機微粒子としては、例えば、シリカ微粒子、アルミナ微粒子、シリカ-アルミナ微粒子、チタニア微粒子及びジルコニア微粒子等に代表される金属酸化物微粒子、並びに窒化物微粒子が挙げられる。 Examples of inorganic fine particles include metal oxide fine particles represented by silica fine particles, alumina fine particles, silica-alumina fine particles, titania fine particles and zirconia fine particles, and nitride fine particles.
 有機微粒子としては、例えば、ウレタン微粒子、シリコーン微粒子、メタクリレート-ブタジエン-スチレン微粒子、アクリル-シリコーン微粒子、ポリアミド微粒子及びポリイミド微粒子が挙げられる。有機微粒子は、応力緩和性を有する耐衝撃緩和剤としての機能を有するものである。 Examples of organic fine particles include urethane fine particles, silicone fine particles, methacrylate-butadiene-styrene fine particles, acryl-silicone fine particles, polyamide fine particles and polyimide fine particles. The organic fine particles have a function as a shock absorbing agent having stress relaxation properties.
 これらの絶縁性粒子は、均一な構造を有していてもよいし、コア-シェル型構造を有していてもよい。 These insulating particles may have a uniform structure or a core-shell structure.
 絶縁性粒子は1種を単独で又は2種以上を組み合わせて用いることができる。絶縁性粒子は、無機微粒子と有機微粒子とを組み合わせて用いてもよい。無機微粒子と有機微粒子とを組み合わせて用いることにより、接着フィルムを用いて形成された接続体の耐塩水性をより向上できる傾向がある。 The insulating particles can be used singly or in combination of two or more. As the insulating particles, inorganic fine particles and organic fine particles may be used in combination. By using the inorganic fine particles and the organic fine particles in combination, there is a tendency that the salt water resistance of the connecting body formed using the adhesive film can be further improved.
 絶縁性粒子の平均粒径は、0.001~35μmであってもよく、0.005~20μmであってもよく、0.001~10μmであってもよい。平均粒径が0.001μm以上であることで、絶縁性粒子の凝集力が向上する傾向があり、35μm以下であることで、絶縁性粒子の分散性が向上する傾向がある。 The average particle diameter of the insulating particles may be 0.001-35 μm, 0.005-20 μm, or 0.001-10 μm. When the average particle size is 0.001 μm or more, the cohesive force of the insulating particles tends to improve, and when the average particle size is 35 μm or less, the dispersibility of the insulating particles tends to improve.
 本明細書における平均粒径は、例えば走査型電子顕微鏡(SEM)により測定することができる。 The average particle size in this specification can be measured, for example, with a scanning electron microscope (SEM).
 絶縁性粒子の含有量は、(a)成分及び(b)成分の総量100質量部に対して、5質量部以上であってもよく、7.5質量部以上であってもよく、10質量部以上であってもよく、15質量部以上であってもよく、20質量部以上であってもよい。絶縁性粒子の含有量が5質量部以上であれば、相対する電極間の電気的接続を維持することが比較的容易になる傾向がある。また、絶縁性粒子の含有量は、(a)成分及び(b)成分の総量100質量部に対して、45質量部以下であってもよく、40質量部以下であってもよく、35質量部以下であってもよい。絶縁性粒子の含有量が45質量部以下であれば、接着フィルムの流動性が向上する傾向がある。また、絶縁性粒子の種類及び含有量は、接着フィルムのフロー率及び線膨張係数に影響する。そのため、接着フィルムのフロー率及び線膨張係数が特定の範囲内となるように、絶縁性粒子の種類及び含有量を調整してもよい。 The content of the insulating particles may be 5 parts by mass or more, 7.5 parts by mass or more, or 10 parts by mass with respect to 100 parts by mass as the total amount of components (a) and (b). parts or more, 15 parts by mass or more, or 20 parts by mass or more. If the content of the insulating particles is 5 parts by mass or more, it tends to be relatively easy to maintain the electrical connection between the facing electrodes. In addition, the content of the insulating particles may be 45 parts by mass or less, 40 parts by mass or less, or 35 parts by mass with respect to the total amount of 100 parts by mass of the components (a) and (b). It may be less than part. If the content of the insulating particles is 45 parts by mass or less, the fluidity of the adhesive film tends to improve. Also, the type and content of the insulating particles affect the flow rate and coefficient of linear expansion of the adhesive film. Therefore, the type and content of the insulating particles may be adjusted so that the flow rate and coefficient of linear expansion of the adhesive film are within specific ranges.
 本実施形態に係る接着フィルムは、シランカップリング剤を含有していてもよい。シランカップリング剤は、下記式(4)で表される化合物であってもよい。 The adhesive film according to this embodiment may contain a silane coupling agent. The silane coupling agent may be a compound represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000004
 式(4)中、R、R及びRはそれぞれ独立に、水素原子、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数1~5のアルコキシカルボニル基又はアリール基を示す。R、R及びRのうち少なくとも1つはアルコキシ基である。Rは(メタ)アクリロイル基、ビニル基、イソシアネート基、イミダゾール基、メルカプト基、アミノ基、メチルアミノ基、ジメチルアミノ基、ベンジルアミノ基、フェニルアミノ基、シクロヘキシルアミノ基、モルホリノ基、ピペラジノ基、ウレイド基又はグリシジル基を示す。aは1~10の整数を示す。
Figure JPOXMLDOC01-appb-C000004
In formula (4), R 1 , R 2 and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkoxycarbonyl group having 1 to 5 carbon atoms, or represents an aryl group. At least one of R 1 , R 2 and R 3 is an alkoxy group. R4 is a (meth)acryloyl group, vinyl group, isocyanate group, imidazole group, mercapto group, amino group, methylamino group, dimethylamino group, benzylamino group, phenylamino group, cyclohexylamino group, morpholino group, piperazino group, It represents a ureido group or a glycidyl group. a represents an integer of 1 to 10;
 式(4)のシランカップリング剤は、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2(アミノエチル)3-アミノプロピルメチルジメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、及び3-イソシアネートプロピルトリエトキシシランが挙げられる。 Silane coupling agents of formula (4) are, for example, vinyltrimethoxysilane, vinyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-methacryloxypropylmethyl Dimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2 (aminoethyl) 3-amino Propylmethyldimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, and 3-isocyanatopropyltriethoxysilane.
 シランカップリング剤の含有量は、(a)成分及び(b)成分の総量100質量部に対して、0.1~10質量部であってもよく、0.25~7質量部であってもよく、0.5~5質量部であってもよい。シランカップリング剤の含有量が0.1質量部以上であれば、回路部材と回路接続材料の界面の剥離気泡発生を抑制する効果がより大きくなる傾向があり、シランカップリング剤の含有量が10質量部以下であると、接着フィルムを長期間保管した際の流動性の低下を抑制しやすい傾向がある。 The content of the silane coupling agent may be 0.1 to 10 parts by mass, or 0.25 to 7 parts by mass, with respect to 100 parts by mass of the total amount of components (a) and (b). may be 0.5 to 5 parts by mass. If the content of the silane coupling agent is 0.1 parts by mass or more, the effect of suppressing the generation of peeling bubbles at the interface between the circuit member and the circuit connecting material tends to be greater, and the content of the silane coupling agent tends to be greater. When the content is 10 parts by mass or less, there is a tendency to easily suppress deterioration in fluidity when the adhesive film is stored for a long period of time.
 本実施形態に係る接着フィルムは、(e)導電性粒子を更に含有していてもよい。導電性粒子を含有する接着フィルムは、異方導電性接着フィルムとして特に好適に用いることができる。 The adhesive film according to the present embodiment may further contain (e) conductive particles. An adhesive film containing conductive particles can be particularly suitably used as an anisotropically conductive adhesive film.
 導電性粒子は、例えば、Au、Ag、Pd、Ni、Cu及びはんだ等を含む金属粒子、カーボン粒子などが挙げられる。また、導電性粒子は、ガラス、セラミック及びプラスチック等の非導電性材料からなる核体粒子と、該核体粒子を被覆する金属、金属粒子及びカーボン等を含む導電層と、を有する複合粒子であってもよい。金属粒子は、銅粒子及び銅粒子を被覆する銀層を有する粒子であってもよい。複合粒子の核体粒子は、プラスチック粒子であってもよい。 Examples of conductive particles include metal particles containing Au, Ag, Pd, Ni, Cu, solder, etc., and carbon particles. The conductive particles are composite particles having core particles made of a non-conductive material such as glass, ceramic, plastic, etc., and a conductive layer containing a metal, metal particles, carbon, etc. covering the core particles. There may be. The metal particles may be particles having copper particles and a silver layer coating the copper particles. The core particles of the composite particles may be plastic particles.
 上記プラスチック粒子を核体粒子とする複合粒子は、加熱及び加圧によって変形する変形性を有するので、回路部材同士を接着する際に、該回路部材が有する回路電極と導電性粒子との接触面積を増加させることができる。そのため、これらの複合粒子を導電性粒子として含有する接着フィルムによれば、接続信頼性の点でより一層優れる接続体が得られる。 Since the composite particles having the plastic particles as the core particles have the deformability of being deformed by heat and pressure, when the circuit members are bonded together, the contact area between the circuit electrodes of the circuit members and the conductive particles can be increased. Therefore, with an adhesive film containing these composite particles as conductive particles, it is possible to obtain a connected body that is even more excellent in terms of connection reliability.
 上記導電性粒子と、その表面の少なくとも一部を被覆する絶縁層又は絶縁性粒子とを有する絶縁被覆導電性粒子を、接着フィルムが含有していてもよい。絶縁層は、ハイブリダイゼーション等の方法により設けることができる。絶縁層又は絶縁性粒子は、高分子樹脂等の絶縁性材料から形成される。このような絶縁被覆導電性粒子を用いることで、隣接する導電性粒子同士の接触による短絡が生じにくくなる。 The adhesive film may contain insulating coated conductive particles having the above conductive particles and an insulating layer or insulating particles covering at least part of the surface thereof. The insulating layer can be provided by a method such as hybridization. The insulating layer or insulating particles are formed from an insulating material such as a polymeric resin. By using such insulating-coated conductive particles, short circuits due to contact between adjacent conductive particles are less likely to occur.
 導電性粒子の平均粒径は、良好な分散性及び導電性を得る観点から、1~18μmであってもよい。本明細書では、任意の導電性粒子300個(pcs)について、走査型電子顕微鏡(SEM)を用いた観察により粒径の測定を行い、得られた粒径の平均値を平均粒径とする。 The average particle size of the conductive particles may be 1 to 18 μm from the viewpoint of obtaining good dispersibility and conductivity. In this specification, for 300 arbitrary conductive particles (pcs), the particle size is measured by observation using a scanning electron microscope (SEM), and the average value of the obtained particle sizes is taken as the average particle size. .
 導電性粒子の含有量は、特に制限されないが、接着フィルムの全体積を基準として、0.1~30体積%であってもよく、0.1~10体積%であってもよく、0.5~7.5体積%であってもよい。導電性粒子の含有量が0.1体積%以上であれば、導電性が向上する傾向がある。導電性粒子の含有量が30体積%以下であれば、回路電極間の短絡が生じにくくなる傾向がある。導電性粒子の含有量(体積%)は、硬化前の接着フィルム又は硬化前の接着剤組成物を構成する各成分の23℃での体積に基づいて決定される。各成分の体積は、比重を利用して質量を体積に換算することで求めることができる。体積を測定しようとする成分を溶解したり膨潤させたりせず、その成分をよくぬらすことができる適当な溶媒(水、アルコール等)をメスシリンダー等に入れ、そこへ測定対象の成分を導入して増加した体積をその成分の体積として求めることもできる。 The content of the conductive particles is not particularly limited, but may be 0.1 to 30% by volume, 0.1 to 10% by volume, or 0.1 to 10% by volume based on the total volume of the adhesive film. It may be 5 to 7.5% by volume. If the content of the conductive particles is 0.1% by volume or more, the conductivity tends to improve. If the content of the conductive particles is 30% by volume or less, short circuits between circuit electrodes tend to be less likely to occur. The content (% by volume) of the conductive particles is determined based on the volume at 23° C. of each component constituting the adhesive film before curing or the adhesive composition before curing. The volume of each component can be determined by converting mass into volume using specific gravity. An appropriate solvent (water, alcohol, etc.) that can wet the component well without dissolving or swelling the component whose volume is to be measured is placed in a graduated cylinder or the like, and the component to be measured is introduced into it. It is also possible to obtain the volume increased by
 接着フィルムは、硬化速度の制御及び貯蔵安定性を付与するために、安定化剤を含有することができる。このような安定化剤は、特に制限されないが、例えば、ベンゾキノン及びハイドロキノン等のキノン誘導体、4-メトキシフェノール及び4-t-ブチルカテコール等のフェノール誘導体、2,2,6,6-テトラメチルピペリジン-1-オキシル及び4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル等のアミノキシル誘導体、並びに、テトラメチルピペリジルメタクリレート等のヒンダードアミン誘導体が挙げられる。 The adhesive film can contain stabilizers to control the curing speed and provide storage stability. Examples of such stabilizers include, but are not limited to, quinone derivatives such as benzoquinone and hydroquinone, phenol derivatives such as 4-methoxyphenol and 4-t-butylcatechol, and 2,2,6,6-tetramethylpiperidine. -1-oxyl and aminoxyl derivatives such as 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl, and hindered amine derivatives such as tetramethylpiperidyl methacrylate.
 安定化剤の含有量は、(a)成分及び(b)成分の総量100質量部に対して、0.01~30質量部であってもよく、0.05~10質量部であってもよい。安定化剤の含有量が0.01質量部以上であると、安定化剤の効果が大きくなる傾向がある。安定化剤の含有量が30質量部以下であると、他の成分との相溶性が低下することを抑制できる傾向がある。 The content of the stabilizer may be 0.01 to 30 parts by mass, or 0.05 to 10 parts by mass with respect to 100 parts by mass of the total amount of components (a) and (b). good. When the content of the stabilizer is 0.01 part by mass or more, the effect of the stabilizer tends to increase. When the content of the stabilizer is 30 parts by mass or less, there is a tendency that the decrease in compatibility with other components can be suppressed.
 本実施形態に係る接着フィルムは、上述した各成分を含む接着剤組成物をフィルム状に成形して、フィルム状接着剤としたものである。接着フィルムは、例えば、接着剤組成物に必要に応じて溶剤等を加えるなどして得られた溶液を、フッ素樹脂フィルム、ポリエチレンテレフタレートフィルム、離型紙等の剥離性支持体上に塗布し、あるいは不織布等の基材に上記溶液を含浸させて剥離性基材上に載置し、溶剤等を除去する方法により、得ることができる。接着フィルムは、取り扱い性等の点から便利である。 The adhesive film according to the present embodiment is a film-like adhesive obtained by molding the adhesive composition containing the components described above into a film. The adhesive film can be obtained, for example, by applying a solution obtained by adding a solvent or the like to the adhesive composition as necessary on a release support such as a fluororesin film, polyethylene terephthalate film, or release paper, or It can be obtained by a method of impregnating a base material such as a non-woven fabric with the above solution, placing the base material on a peelable base material, and removing the solvent and the like. Adhesive films are convenient in terms of handleability and the like.
 本実施形態に係る接着フィルムのフロー率は、加熱温度160℃、圧力2MPa、加熱時間5秒間で140%以上である。接着フィルムのフロー率が140%以上であることで、回路部材同士の接続時に接着フィルムが流動して回路部材間から適度にはみ出し、そのはみ出した部分が回路接続部を保護する蓋の役割を果たすことができる。そのため、本実施形態に係る接着フィルムを用いて得られた接続体は、回路部材と接続部材との界面への塩水の成分の侵入を防ぐことができ、優れた耐塩水性を有することができる。上記効果をより向上させる観点から、接着フィルムのフロー率は145%以上であってもよい。接着フィルムのフロー率は、実施例に示した方法で測定することができる。 The flow rate of the adhesive film according to this embodiment is 140% or more at a heating temperature of 160°C, a pressure of 2 MPa, and a heating time of 5 seconds. When the flow rate of the adhesive film is 140% or more, the adhesive film flows when the circuit members are connected to each other and protrudes moderately from between the circuit members, and the protruding portion serves as a lid to protect the circuit connection part. be able to. Therefore, the connection body obtained using the adhesive film according to the present embodiment can prevent salt water components from entering the interface between the circuit member and the connection member, and has excellent salt water resistance. From the viewpoint of further improving the above effects, the adhesive film may have a flow rate of 145% or more. The flow rate of the adhesive film can be measured by the method shown in Examples.
 本実施形態に係る接着フィルムの硬化物の線膨張係数(CTE)は、80~90℃の平均で130ppm/K以下である。接着フィルムの硬化物のCTEが130ppm/K以下であることで、接続体を形成した場合に、塩水の成分の浸み込みを防げるほどに、回路部材と接続部材との界面の密着性を高めることができ、接続体が塩水にさらされた場合であっても剥離が生じることを抑制することができる。上記効果をより向上させる観点から、接着フィルムの硬化物のCTEは128ppm/K以下であってもよい。接着フィルムの硬化物のCTEは、実施例に示した方法で測定することができる。 The coefficient of linear expansion (CTE) of the cured product of the adhesive film according to this embodiment is 130 ppm/K or less on average at 80 to 90°C. When the cured product of the adhesive film has a CTE of 130 ppm/K or less, the adhesiveness of the interface between the circuit member and the connection member is increased to the extent that the infiltration of salt water components can be prevented when the connection body is formed. Thus, even when the connection body is exposed to salt water, it is possible to suppress the occurrence of detachment. From the viewpoint of further improving the above effects, the cured product of the adhesive film may have a CTE of 128 ppm/K or less. The CTE of the cured product of the adhesive film can be measured by the method shown in Examples.
 図1は、接着フィルムを有する積層フィルムの一実施形態を示す模式断面図である。図1に示す積層フィルム100は、支持体8と、支持体8上に設けられた接着フィルム40とを有する。接着フィルム40は、フィルム状に成形された上述の接着剤組成物であり、絶縁性接着剤層5と、絶縁性接着剤層5中に分散した絶縁性粒子6及び導電性粒子7とから構成される。絶縁性接着剤層5は、上述の接着剤組成物のうち絶縁性粒子及び導電性粒子以外の成分から構成される。この接着フィルムによれば、取り扱いが容易であり、被着体へ容易に設置することができ、接続作業を容易に行うことができる。接着フィルムは、2種以上の層からなる多層構成を有していてもよい。接着フィルムは導電性粒子を含まなくてもよいが、接着フィルムが導電性粒子を含有する場合、接着フィルムを異方導電性フィルムとして好適に用いることができる。 FIG. 1 is a schematic cross-sectional view showing one embodiment of a laminated film having an adhesive film. A laminated film 100 shown in FIG. 1 has a support 8 and an adhesive film 40 provided on the support 8 . The adhesive film 40 is the above-described adhesive composition formed into a film, and is composed of an insulating adhesive layer 5 and insulating particles 6 and conductive particles 7 dispersed in the insulating adhesive layer 5. be done. The insulating adhesive layer 5 is composed of components other than the insulating particles and the conductive particles in the adhesive composition described above. This adhesive film is easy to handle, can be easily installed on an adherend, and can be easily connected. The adhesive film may have a multilayer construction consisting of two or more layers. The adhesive film may not contain conductive particles, but when the adhesive film contains conductive particles, the adhesive film can be suitably used as an anisotropically conductive film.
 本実施形態に係る接着フィルムによれば、通常、加熱及び加圧を併用して被着体同士を接着させることができる。加熱温度は特に制限されないが、100~250℃であってもよい。圧力は、被着体に損傷を与えない範囲であれば特に制限されないが、一般的には0.1~10MPaであってもよい。これらの加熱及び加圧は、0.5秒~120秒間の範囲で行ってもよい。本実施形態に係る接着フィルムによれば、例えば、140~200℃、1MPa程度の条件にて、5秒間の短時間の加熱及び加圧でも被着体同士を十分に接着させることが可能である。 According to the adhesive film according to the present embodiment, the adherends can be adhered to each other by using both heating and pressure. Although the heating temperature is not particularly limited, it may be 100 to 250°C. The pressure is not particularly limited as long as it does not damage the adherend, but generally it may be 0.1 to 10 MPa. These heating and pressurization may be performed within the range of 0.5 seconds to 120 seconds. According to the adhesive film according to the present embodiment, for example, it is possible to sufficiently bond the adherends together under the conditions of 140 to 200° C. and 1 MPa for a short time of heating and pressing for 5 seconds. .
 本実施形態に係る接着フィルムは、熱膨張係数の異なる異種の被着体の接着剤として使用することができる。具体的には、異方導電接着剤、銀ペースト及び銀フィルム等に代表される回路接続材料、又は、CSP用エラストマー、CSP用アンダーフィル材及びLOCテープ等に代表される半導体素子接着材料として接着フィルムを使用することができる。 The adhesive film according to this embodiment can be used as an adhesive for different types of adherends with different thermal expansion coefficients. Specifically, it is used as an anisotropic conductive adhesive, a circuit connection material represented by silver paste and silver film, or a semiconductor element adhesive material represented by elastomer for CSP, underfill material for CSP, and LOC tape. Film can be used.
 以下、本実施形態に係る接着フィルムを異方導電性フィルムとして使用して、回路基板及び回路基板の主面上に形成された回路電極を有する回路部材同士を被着体として接続し、接続体を製造する一例について説明する。 Hereinafter, using the adhesive film according to the present embodiment as an anisotropic conductive film, a circuit board and circuit members having circuit electrodes formed on the main surface of the circuit board are connected as adherends, An example of manufacturing will be described.
 図2は、本実施形態に係る接着フィルムの硬化物からなる接続部材を備える接続体の一実施形態を示す模式断面図である。図2に示す接続体1は、対向配置された第一の回路部材20及び第二の回路部材30を備えている。第一の回路部材20と第二の回路部材30との間には、これらを接着及び接続する接続部材10が設けられている。 FIG. 2 is a schematic cross-sectional view showing one embodiment of a connecting body provided with a connecting member made of a cured adhesive film according to this embodiment. The connection body 1 shown in FIG. 2 includes a first circuit member 20 and a second circuit member 30 that are arranged to face each other. A connection member 10 is provided between the first circuit member 20 and the second circuit member 30 to adhere and connect them.
 第一の回路部材20は、第一の回路基板21と、回路基板21の主面21a上に形成された第一の回路電極22とを備える。回路基板21の主面21a上には、絶縁層が形成されていてもよい。 The first circuit member 20 includes a first circuit board 21 and first circuit electrodes 22 formed on the main surface 21 a of the circuit board 21 . An insulating layer may be formed on the main surface 21 a of the circuit board 21 .
 第二の回路部材30は、第二の回路基板31と、回路基板31の主面31a上に形成された第二の回路電極32とを備える。回路基板31の主面31a上にも、絶縁層が形成されていてもよい。 The second circuit member 30 includes a second circuit board 31 and second circuit electrodes 32 formed on the main surface 31 a of the circuit board 31 . An insulating layer may also be formed on the main surface 31 a of the circuit board 31 .
 第一及び第二の回路部材20,30は、電気的接続を必要とする回路電極を有するものであれば特に制限はない。回路基板21,31は、例えば、半導体、ガラス及びセラミック等の無機材料の基板、ポリイミド及びポリカーボネート等の有機材料の基板、ガラス/エポキシ等の無機物と有機物とを含む基板が挙げられる。第一の回路基板21がガラス基板であり、第二の回路基板31がフレキシブル基板(例えば、ポリイミドフィルム等の樹脂フィルム)であってもよい。 The first and second circuit members 20, 30 are not particularly limited as long as they have circuit electrodes that require electrical connection. Examples of the circuit boards 21 and 31 include substrates of inorganic materials such as semiconductors, glass and ceramics, substrates of organic materials such as polyimide and polycarbonate, and substrates containing inorganic and organic materials such as glass/epoxy. The first circuit board 21 may be a glass board, and the second circuit board 31 may be a flexible board (for example, a resin film such as a polyimide film).
 接続される回路部材の具体例としては、液晶ディスプレイに用いられている、ITO(indium tin oxide)膜等の電極が形成されているガラス又はプラスチック基板、プリント配線板、セラミック配線板、フレキシブル配線板、半導体シリコンチップ等が挙げられる。これらは必要に応じて組み合わせて使用される。このように、本実施形態に係る接着フィルムによれば、プリント配線板及びポリイミドフィルム等の、有機材料から形成された表面を有する部材の他、銅及びアルミニウム等の金属、ITO、窒化ケイ素(SiN)、及び二酸化ケイ素(SiO)などの無機材料から形成された表面を有する部材のように、多種多様な表面状態を有する回路部材を接着するために用いることができる。 Specific examples of circuit members to be connected include glass or plastic substrates, printed wiring boards, ceramic wiring boards, and flexible wiring boards on which electrodes such as ITO (indium tin oxide) films are formed, which are used in liquid crystal displays. , semiconductor silicon chips, and the like. These are used in combination as necessary. Thus, according to the adhesive film according to the present embodiment, in addition to members having surfaces formed of organic materials such as printed wiring boards and polyimide films, metals such as copper and aluminum, ITO, silicon nitride (SiN x ), and members having surfaces formed from inorganic materials such as silicon dioxide ( SiO2 ).
 例えば、一方の回路部材が、フィンガー電極及びバスバー電極等の電極を有する太陽電池セルであり、他方の回路部材がタブ線であるとき、これらを接続して得られる接続体は、太陽電池セル、タブ線及びこれらを接着する接続部材(接着フィルムの硬化物)を備える太陽電池モジュールである。 For example, when one circuit member is a solar cell having electrodes such as finger electrodes and busbar electrodes, and the other circuit member is a tab wire, the connection body obtained by connecting these is the solar cell, The solar cell module includes tab wires and a connecting member (cured product of an adhesive film) for bonding them.
 接続部材10は、本実施形態に係る接着フィルムの硬化物からなる。接続部材10は、絶縁層11及び絶縁層11中に分散した導電性粒子7を含有している。導電性粒子7は、対向する回路電極22と回路電極32との間のみならず、主面21a,31aの間にも配置されている。回路電極22,32は、導電性粒子7を介して電気的に接続されている。導電性粒子7は、回路電極22,32の双方に直接接触している。このため、回路電極22,32間の接続抵抗が十分に低減される。従って、回路電極22,32間の電流の流れを円滑にすることができ、回路の持つ機能を十分に発揮することができる。接続部材が導電性粒子を含有していない場合には、回路電極22と回路電極32とが直接接触することで、電気的に接続される。 The connection member 10 is made of a cured adhesive film according to this embodiment. The connection member 10 contains an insulating layer 11 and conductive particles 7 dispersed in the insulating layer 11 . The conductive particles 7 are arranged not only between the opposing circuit electrodes 22 and 32, but also between the major surfaces 21a and 31a. The circuit electrodes 22 , 32 are electrically connected via the conductive particles 7 . Conductive particles 7 are in direct contact with both circuit electrodes 22 and 32 . Therefore, the connection resistance between the circuit electrodes 22 and 32 is sufficiently reduced. Therefore, the current flow between the circuit electrodes 22 and 32 can be made smooth, and the functions of the circuit can be fully exhibited. When the connection member does not contain conductive particles, the circuit electrodes 22 and the circuit electrodes 32 are electrically connected by direct contact.
 接続部材10が本実施形態に係る接着フィルムの硬化物によって形成されていることから、回路部材20又は30に対する接続部材10の接着強度は十分に高い。そのため、信頼性試験(高温高湿試験)後においても接着強度の低下及び接続抵抗の増大を十分に抑制することができる。 Since the connection member 10 is formed of the cured adhesive film according to this embodiment, the adhesion strength of the connection member 10 to the circuit member 20 or 30 is sufficiently high. Therefore, even after a reliability test (high-temperature, high-humidity test), it is possible to sufficiently suppress a decrease in adhesive strength and an increase in connection resistance.
 接続体1は、例えば、回路電極を有し対向配置された一対の回路部材を、接着剤組成物からなる接着フィルムを間に挟んで配置する工程と、一対の回路部材及び接着フィルムを、接着フィルムの厚み方向に加圧しながら加熱して硬化することにより、一対の回路部材を接着フィルムの硬化物を介して接着する工程(本接続工程)とを備える方法により、製造することができる。 The connection body 1 is formed by, for example, a step of arranging a pair of circuit members having circuit electrodes and facing each other with an adhesive film made of an adhesive composition sandwiched therebetween, and bonding the pair of circuit members and the adhesive film. It can be manufactured by a method comprising a step of bonding a pair of circuit members via the cured adhesive film (main connecting step) by heating and curing while applying pressure to the film in the thickness direction.
 図3は、本実施形態に係る接着フィルムにより接続体を製造する方法の一実施形態を示す概略断面図である。図3の(a)に示されるように、接着フィルム40が、第一の回路部材20の回路電極22側の主面上に載せられる。接着フィルム40が上述の支持体上に設けられている場合、接着フィルム40が第一の回路部材20側に位置する向きで、接着フィルム及び支持体の積層体が回路部材に載せされる。接着フィルム40は、フィルム状であることから取り扱いが容易である。このため、第一の回路部材20と第二の回路部材30との間に接着フィルム40を容易に介在させることができ、第一の回路部材20と第二の回路部材30との接続作業を容易に行うことができる。 FIG. 3 is a schematic cross-sectional view showing one embodiment of a method for manufacturing a connected body using the adhesive film according to this embodiment. As shown in (a) of FIG. 3, an adhesive film 40 is placed on the main surface of the first circuit member 20 on the circuit electrode 22 side. When the adhesive film 40 is provided on the support described above, the laminate of the adhesive film and the support is placed on the circuit member such that the adhesive film 40 faces the first circuit member 20 . Since the adhesive film 40 is in the form of a film, it is easy to handle. Therefore, the adhesive film 40 can be easily interposed between the first circuit member 20 and the second circuit member 30, and the work of connecting the first circuit member 20 and the second circuit member 30 can be performed. can be easily done.
 接着フィルム40は、フィルム状に成形された上述の接着剤組成物(回路接続材料)であり、絶縁性粒子6、導電性粒子7及び絶縁性接着剤層5を有する。接着フィルムは、導電性粒子を含有しない場合も、異方導電性接着のために回路接続材料として使用できる。導電性粒子を含有しない回路接続材料は、NCF(Non-Conductive Film)と呼ばれることもある。接着フィルムが導電性粒子を含有する場合、これを用いた回路接続材料は、ACF(Anisotropic Conductive Film)と呼ばれることもある。 The adhesive film 40 is the above-described adhesive composition (circuit connecting material) formed into a film, and has insulating particles 6 , conductive particles 7 and an insulating adhesive layer 5 . Even if the adhesive film does not contain conductive particles, it can be used as a circuit connecting material for anisotropic conductive adhesion. A circuit-connecting material that does not contain conductive particles is sometimes called an NCF (Non-Conductive Film). When the adhesive film contains conductive particles, the circuit connecting material using this is sometimes called ACF (Anisotropic Conductive Film).
 接着フィルム40の厚さは、10~50μmであってもよい。接着フィルム40の厚さが10μm以上であれば、回路電極22,32間が、接着フィルムにより充填されやすくなる傾向がある。接着フィルムの厚さが50μm以下であれば、回路電極22,32間の接着フィルムを十分に排除しきることができ、回路電極22,32間の導通を容易に確保することができる。 The thickness of the adhesive film 40 may be 10-50 μm. If the thickness of the adhesive film 40 is 10 μm or more, the space between the circuit electrodes 22 and 32 tends to be easily filled with the adhesive film. If the thickness of the adhesive film is 50 μm or less, the adhesive film between the circuit electrodes 22 and 32 can be sufficiently removed, and the electrical connection between the circuit electrodes 22 and 32 can be easily secured.
 接着フィルム40の厚み方向に、図3の(a)に示されるように圧力A,Bを加えることにより、接着フィルム40が第一の回路部材20に仮接続される(図3の(b)を参照)。このとき、加熱しながら加圧してもよい。但し、加熱温度は接着フィルム40中の接着剤組成物が硬化しない温度、すなわちラジカル重合開始剤がラジカルを急激に発生する温度よりも十分に低い温度に設定される。 The adhesive film 40 is temporarily connected to the first circuit member 20 by applying pressures A and B in the thickness direction of the adhesive film 40 as shown in FIG. ). At this time, the pressure may be applied while heating. However, the heating temperature is set to a temperature at which the adhesive composition in the adhesive film 40 does not cure, that is, a temperature sufficiently lower than the temperature at which the radical polymerization initiator rapidly generates radicals.
 続いて、図3の(c)に示されるように、第二の回路部材30を、第二の回路電極が第一の回路部材20側に位置する向きで接着フィルム40上に載せる。接着フィルム40が支持体上に設けられている場合は、支持体を剥離してから第二の回路部材30を接着フィルム40上に載せる。 Subsequently, as shown in (c) of FIG. 3, the second circuit member 30 is placed on the adhesive film 40 with the second circuit electrode facing the first circuit member 20 side. When the adhesive film 40 is provided on the support, the second circuit member 30 is placed on the adhesive film 40 after peeling off the support.
 その後、接着フィルム40を、その厚み方向に圧力A,Bを加えながら、加熱する。このときの加熱温度は、ラジカル重合開始剤がラジカルを十分に発生する温度に設定される。これにより、ラジカル重合開始剤からラジカルが発生し、ラジカル重合性化合物の重合が開始される。接着フィルム40を加熱することにより、第一の回路電極22と第二の回路電極32との間の距離を十分に小さくした状態で絶縁性接着剤が硬化して絶縁層11を形成する。その結果、第一の回路部材20と第二の回路部材30とが、絶縁層11を含む接続部材10を介して強固に接続される。この本接続により、図2に示す接続体が得られる。 After that, the adhesive film 40 is heated while applying pressures A and B in its thickness direction. The heating temperature at this time is set to a temperature at which the radical polymerization initiator sufficiently generates radicals. As a result, radicals are generated from the radical polymerization initiator, and polymerization of the radically polymerizable compound is initiated. By heating the adhesive film 40 , the insulating adhesive is cured to form the insulating layer 11 while the distance between the first circuit electrode 22 and the second circuit electrode 32 is sufficiently reduced. As a result, the first circuit member 20 and the second circuit member 30 are firmly connected via the connection member 10 including the insulating layer 11 . With this permanent connection, the connection body shown in FIG. 2 is obtained.
 本接続は、加熱温度が100~250℃、圧力が0.1~10MPa、加圧時間が0.5~120秒の条件で行われてもよい。これらの条件は、使用する用途、接着フィルム、回路部材によって適宜選択される。本接続後、必要に応じて、後硬化を行ってもよい。 This connection may be performed under the conditions of a heating temperature of 100 to 250°C, a pressure of 0.1 to 10 MPa, and a pressurization time of 0.5 to 120 seconds. These conditions are appropriately selected depending on the intended use, adhesive film, and circuit member. Post-curing may be performed after the main connection, if necessary.
 本接続の圧力は、加えられる荷重と、圧着面積とから、式:荷重/圧着面積により算出される。圧着面積は、接着フィルムの厚み方向から見たときに、第一の回路電極と第二の回路電極とが重なる部分全体を囲む最小の矩形の領域のうち、加圧される部分の面積である。 The pressure of this connection is calculated from the applied load and the crimped area by the formula: load/crimped area. The crimping area is the area of the portion to be pressed among the smallest rectangular regions surrounding the entire overlapping portion of the first circuit electrode and the second circuit electrode when viewed from the thickness direction of the adhesive film. .
 接着フィルムが、光照射によりラジカルを発生するラジカル重合開始剤を含む場合、本接続のために接着フィルムを硬化する際、加熱に代えて光照射を行えばよい。また、予め準備した接着フィルムに代えて、例えばペースト状の接着剤組成物を回路接続材料として用いてもよい。例えば、接着剤組成物を必要により溶媒に溶解して調製した塗工液を、第一の回路部材20又は第二の回路部材30に塗布し、塗膜を乾燥させる工程を含む方法により接着フィルムを形成させることができる。 When the adhesive film contains a radical polymerization initiator that generates radicals upon irradiation with light, light irradiation may be performed instead of heating when curing the adhesive film for this connection. Also, instead of the adhesive film prepared in advance, for example, a paste-like adhesive composition may be used as the circuit connecting material. For example, a coating liquid prepared by dissolving the adhesive composition in a solvent if necessary is applied to the first circuit member 20 or the second circuit member 30, and the adhesive film is formed by a method including the step of drying the coating film. can be formed.
 以下、実施例及び比較例を挙げて、本開示についてより具体的に説明する。ただし、本開示は以下の実施例に限定されるものではない。 Hereinafter, the present disclosure will be described more specifically with examples and comparative examples. However, the present disclosure is not limited to the following examples.
(ポリウレタン樹脂の合成)
 還流冷却器、温度計及び撹拌器を備えたセパラブルフラスコに、エステル結合を有するジオールであるポリプロピレングリコール(Mn=2000)1000質量部及び溶媒としてのメチルエチルケトン4000質量部を加え、40℃で30分間撹拌した。溶液を70℃まで昇温した後、触媒としてのジメチル錫ラウレート0.0127質量部を加えた。次いで、この溶液に対して、ジイソシアネート化合物としての4,4-ジフェニルメタン-ジイソシアネート125質量部をメチルエチルケトン125質量部に溶解させた溶液を、1時間かけて滴下した。その後、赤外分光光度計でNCOの吸収ピークが見られなくなるまでこの温度で撹拌を続け、ポリウレタン樹脂のメチルエチルケトン溶液を得た。なお、この溶液の固形分濃度(ポリウレタン樹脂の濃度)が30質量%となるように調整した。得られたポリウレタン樹脂の重量平均分子量は、GPCによる測定の結果、320000(標準ポリスチレン換算値)であった。以下の表1にGPCの分析条件を示す。
(Synthesis of polyurethane resin)
A separable flask equipped with a reflux condenser, a thermometer and a stirrer was charged with 1000 parts by mass of polypropylene glycol (Mn = 2000), which is a diol having an ester bond, and 4000 parts by mass of methyl ethyl ketone as a solvent, and the mixture was heated at 40°C for 30 minutes. Stirred. After heating the solution to 70° C., 0.0127 parts by mass of dimethyltin laurate as a catalyst was added. Then, a solution prepared by dissolving 125 parts by mass of 4,4-diphenylmethane-diisocyanate as a diisocyanate compound in 125 parts by mass of methyl ethyl ketone was added dropwise to this solution over 1 hour. Thereafter, stirring was continued at this temperature until no absorption peak of NCO was observed with an infrared spectrophotometer to obtain a methyl ethyl ketone solution of polyurethane resin. The solid content concentration (polyurethane resin concentration) of this solution was adjusted to 30% by mass. The weight average molecular weight of the obtained polyurethane resin was 320000 (standard polystyrene conversion value) as a result of measurement by GPC. The analysis conditions for GPC are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(ウレタンアクリレートの合成)
 温度計、攪拌機、不活性ガス導入口、及び還流冷却器を装着した2リットルの四つ口フラスコに、ポリカーボネートジオール(アルドリッチ社製、数平均分子量2000)を4000質量部と、2-ヒドロキシエチルアクリレート238質量部と、ハイドロキノンモノメチルエーテル0.49質量部と、錫系触媒4.9質量部とを仕込んで反応液を調製した。70℃に加熱した反応液に対して、イソホロンジイソシアネート(IPDI)666質量部を3時間かけて均一に滴下し、反応させた。滴下完了後、15時間反応を継続し、電位差自動滴定装置(商品名AT-510、京都電子工業株式会社製)にてNCO含有量が0.2質量%以下となったことを確認した時点で反応を終了し、ウレタンアクリレートを得た。GPCによる分析の結果、ウレタンアクリレートの重量平均分子量は8500(標準ポリスチレン換算値)であった。なお、GPCによる分析は前述のポリウレタン樹脂の重量平均分子量の分析と同様の条件で行った。
(Synthesis of urethane acrylate)
A 2-liter four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet, and a reflux condenser was charged with 4000 parts by mass of polycarbonate diol (manufactured by Aldrich, number average molecular weight 2000) and 2-hydroxyethyl acrylate. 238 parts by mass, 0.49 parts by mass of hydroquinone monomethyl ether, and 4.9 parts by mass of a tin-based catalyst were charged to prepare a reaction solution. To the reaction solution heated to 70° C., 666 parts by mass of isophorone diisocyanate (IPDI) was uniformly added dropwise over 3 hours to react. After the completion of dropping, the reaction was continued for 15 hours, and when it was confirmed that the NCO content was 0.2% by mass or less with an automatic potentiometric titrator (trade name: AT-510, manufactured by Kyoto Electronics Industry Co., Ltd.). The reaction was terminated to obtain urethane acrylate. As a result of GPC analysis, the weight average molecular weight of urethane acrylate was 8500 (standard polystyrene conversion value). The analysis by GPC was performed under the same conditions as the analysis of the weight average molecular weight of the polyurethane resin described above.
(導電性粒子の作製)
 ポリスチレン粒子の表面に、厚さ0.2μmのニッケル層を形成し、更にこのニッケル層の外側に、厚さ0.04μmの金層を形成させた。こうして平均粒径5μmの導電性粒子を作製した。
(Preparation of conductive particles)
A nickel layer with a thickness of 0.2 μm was formed on the surface of the polystyrene particles, and a gold layer with a thickness of 0.04 μm was further formed on the outside of this nickel layer. In this way, conductive particles having an average particle size of 5 μm were produced.
[実施例1~5及び比較例1~3]
(接着フィルムを有する積層フィルムの作製)
 表2に示す原料を、表2に示す質量比(固形分質量比)で混合し、接着フィルムを形成するための塗工液を得た。この塗工液を厚さ50μmのポリエチレンテレフタレート(PET)フィルムに塗工装置を用いて塗布した。塗膜を70℃で10分間熱風乾燥して、厚さ16μmの接着フィルムを形成させた。これにより、支持体であるPETフィルム上に接着フィルムを積層した積層フィルムを得た。
[Examples 1 to 5 and Comparative Examples 1 to 3]
(Preparation of laminated film having adhesive film)
The raw materials shown in Table 2 were mixed at the mass ratio (solid content mass ratio) shown in Table 2 to obtain a coating liquid for forming an adhesive film. This coating liquid was applied to a polyethylene terephthalate (PET) film having a thickness of 50 μm using a coating device. The coating film was dried with hot air at 70° C. for 10 minutes to form an adhesive film with a thickness of 16 μm. As a result, a laminated film was obtained in which the adhesive film was laminated on the PET film as the support.
 なお、表2に示す各成分の詳細は以下の通りである。
((a)成分:熱可塑性樹脂)
 ポリウレタン樹脂:上記のとおり合成したポリウレタン樹脂を用いた。
 フェノキシ樹脂:PKHC(ユニオンカーバイド株式会社製、商品名、重量平均分子量45000)40gをメチルエチルケトン60gに溶解して調製した40質量%溶液の形態で用いた。
((b)成分:ラジカル重合性化合物)
 ウレタンアクリレート:上記のとおり合成したウレタンアクリレートを用いた。
 リン酸アクリレート:P-2M(共栄社化学株式会社、商品名)
((c)成分:ラジカル重合開始剤)
 過酸化物:1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート(商品名:パーオクタO、日油株式会社製、1分間半減期温度:124.3℃)を用いた。
((d)成分:絶縁性粒子)
 シリカ微粒子:R104(日本アエロジル株式会社製、商品名、平均粒径:12nm)10gをトルエン45g及び酢酸エチル45gの混合溶剤に分散させた、固形分10質量%の分散液の形態で用いた。
 有機微粒子A:BTA 751(ローム・アンド・ハース製、商品名、コアシェル型微粒子、平均粒径:0.2~0.3μm)10gをメチルエチルケトン90gに分散させた、固形分10質量%の分散液の形態で用いた。
 有機微粒子B:CE-800T(根上工業株式会社製、商品名、ポリウレタンビーズ、平均粒径:6μm)10gをメチルエチルケトン90gに分散させた、固形分10質量%の分散液の形態で用いた。
((e)成分:導電性粒子)
 導電性粒子:上記のとおり作製した導電性粒子を用いた。
(その他成分)
 シランカップリング剤:KBM-503(信越化学工業株式会社製、商品名)
The details of each component shown in Table 2 are as follows.
((a) component: thermoplastic resin)
Polyurethane resin: The polyurethane resin synthesized as described above was used.
Phenoxy resin: Used in the form of a 40% by mass solution prepared by dissolving 40 g of PKHC (manufactured by Union Carbide Co., Ltd., trade name, weight average molecular weight: 45000) in 60 g of methyl ethyl ketone.
((b) component: radically polymerizable compound)
Urethane acrylate: The urethane acrylate synthesized as described above was used.
Phosphate acrylate: P-2M (Kyoeisha Chemical Co., Ltd., trade name)
((c) component: radical polymerization initiator)
Peroxide: 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate (trade name: Perocta O, manufactured by NOF Corporation, 1 minute half-life temperature: 124.3 ° C.) board.
((d) component: insulating particles)
Silica fine particles: R104 (manufactured by Nippon Aerosil Co., Ltd., trade name, average particle size: 12 nm) was dispersed in a mixed solvent of 45 g of toluene and 45 g of ethyl acetate, and used in the form of a dispersion having a solid content of 10% by mass.
Organic fine particles A: 10 g of BTA 751 (manufactured by Rohm and Haas, trade name, core-shell type fine particles, average particle diameter: 0.2 to 0.3 μm) dispersed in 90 g of methyl ethyl ketone, dispersion liquid having a solid content of 10% by mass. used in the form of
Organic fine particles B: CE-800T (manufactured by Negami Kogyo Co., Ltd., trade name, polyurethane beads, average particle size: 6 μm) 10 g were dispersed in 90 g of methyl ethyl ketone, and used in the form of a dispersion having a solid content of 10% by mass.
((e) component: conductive particles)
Conductive particles: Conductive particles prepared as described above were used.
(Other ingredients)
Silane coupling agent: KBM-503 (manufactured by Shin-Etsu Chemical Co., Ltd., trade name)
(接続体の作製)
 上記接着フィルムを回路接続材料として用いて、ライン幅75μm、ピッチ150μm及び厚さ18μmの銅回路を220本有するフレキシブル回路板(FPC)と、ガラス基板とを接続した。接続は、熱圧着装置(加熱方式:コンスタントヒート型、日化設備エンジニアリング株式会社製)を用い、160℃、2MPaで5秒間の加熱及び加圧により行った。これにより、幅1.2mmにわたりFPCとガラス基板とが接着フィルムの硬化物により接続された接続体を作製した。
(Production of connecting body)
A flexible circuit board (FPC) having 220 copper circuits with a line width of 75 μm, a pitch of 150 μm, and a thickness of 18 μm was connected to a glass substrate using the above adhesive film as a circuit connecting material. The connection was performed by heating and pressurizing at 160° C. and 2 MPa for 5 seconds using a thermocompression bonding device (heating method: constant heat type, manufactured by Nikka Setsubi Engineering Co., Ltd.). As a result, a connected body in which the FPC and the glass substrate were connected by the cured adhesive film over a width of 1.2 mm was produced.
(平均線膨張係数(CTE)の測定)
 上記接着フィルムを、厚さ100±20μmになるようにラミネーターを用いて複数貼り合わせた後、オーブンにて180℃で1時間加熱して硬化させ、硬化物サンプルを作製した。得られた硬化物サンプルの線膨張係数を、熱膨張係数測定装置(株式会社日立ハイテクサイエンス製)を用いて、サンプルの長さ10mm及び幅5mm、測定モードは引張りモード、荷重は断面積(mm)に163.4mN/mmを乗じた値を用い、温度範囲-5~250℃、昇温速度は毎分5℃の条件下で測定した。測定結果から、80~90℃における平均線膨張係数(CTE)を読み取った。
(Measurement of average linear expansion coefficient (CTE))
A plurality of the above adhesive films were laminated using a laminator so as to have a thickness of 100±20 μm, and then cured by heating in an oven at 180° C. for 1 hour to prepare a cured product sample. The linear expansion coefficient of the obtained cured product sample was measured using a thermal expansion coefficient measuring device (manufactured by Hitachi High-Tech Science Co., Ltd.), the sample length was 10 mm and the width was 5 mm, the measurement mode was the tensile mode, and the load was the cross-sectional area (mm 2 ) multiplied by 163.4 mN/mm 2 , the temperature range was -5 to 250°C, and the heating rate was 5°C per minute. The average coefficient of linear expansion (CTE) at 80 to 90° C. was read from the measurement results.
(フロー率の測定)
 上記接着フィルムを直径1.0mmの円形に打ち抜き、カバーガラス(アズワン(株)製)で挟み試験片とし、顕微鏡((株)ニコン製)を用いて接着フィルム部分の写真を撮影し、画像解析ソフトNIS-Elements D((株)ニコン製)にて接着フィルムの面積A1を測定した。次いでフリップチップボンダFCB3(パナソニック(株)製)を用いて160℃、2MPaで5秒間の加熱及び加圧を行い、同様にして接着フィルムの面積A2を測定した。加熱及び加圧前後の上記接着フィルムの面積の変化率(下記式参照)からフロー率を算出した。
 フロー率(%)=(A2/A1)×100
(Measurement of flow rate)
The adhesive film was punched out into a circle with a diameter of 1.0 mm, sandwiched between cover glasses (manufactured by AS ONE Corporation) to form a test piece, and a photograph of the adhesive film portion was taken using a microscope (manufactured by Nikon Corporation) and image analysis was performed. The area A1 of the adhesive film was measured using soft NIS-Elements D (manufactured by Nikon Corporation). Then, using a flip chip bonder FCB3 (manufactured by Panasonic Corporation), heating and pressing were performed at 160° C. and 2 MPa for 5 seconds, and the area A2 of the adhesive film was measured in the same manner. The flow rate was calculated from the rate of change in the area of the adhesive film before and after heating and pressing (see the formula below).
Flow rate (%) = (A2/A1) x 100
(耐塩水性の評価)
 濃度5質量%に調整したNaCl水溶液に、上記のとおり作製した接続体を、25℃、12時間の条件で浸漬させた後、乾燥させ、回路接続部位の剥離の有無を、顕微鏡(商品名:ECLIPSE L200、(株)ニコン製)を用いて確認した。回路接続部全体の面積のうち、回路部材(FPC及びガラス基板)から剥離している割合を求め、剥離が生じていないものをA、剥離が少量生じている(剥離部分の割合が全体の面積の20%未満)ものをB、剥離が生じている(剥離部分の割合が全体の面積の20%以上)ものをCとした。結果を表2に示す。
(Evaluation of salt water resistance)
The connector prepared as described above was immersed in an aqueous solution of NaCl adjusted to a concentration of 5% by mass under conditions of 25° C. for 12 hours and then dried. This was confirmed using ECLIPSE L200 (manufactured by Nikon Corporation). Of the total area of the circuit connection part, the ratio of peeling from the circuit member (FPC and glass substrate) is determined, and A is for no peeling, and a small amount of peeling is occurring (the ratio of the peeled part is the total area (less than 20% of the total area) was rated B, and C was rated when peeling occurred (the percentage of the peeled portion was 20% or more of the total area). Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表2に示した結果から明らかなように、実施例の接着フィルムによれば、フロー率が、加熱温度160℃、圧力2MPa、加熱時間5秒間で140%以上であり、また、CTEが80~90℃の平均で130ppm/K以下であることで、優れた耐塩水性を示すことが確認された。これに対し、フロー率が140%未満、もしくはCTEが130ppm/Kよりも大きいと、優れた耐塩水性が得られないことが確認された。 As is clear from the results shown in Table 2, according to the adhesive films of Examples, the flow rate is 140% or more at a heating temperature of 160° C., a pressure of 2 MPa, and a heating time of 5 seconds, and the CTE is 80 to 80%. It was confirmed that an average of 130 ppm/K or less at 90° C. exhibits excellent salt water resistance. On the other hand, it was confirmed that when the flow rate is less than 140% or the CTE is greater than 130 ppm/K, excellent saltwater resistance cannot be obtained.
 1…接続体、5…絶縁性接着剤層、6…絶縁性粒子、7…導電性粒子、8…支持体、10…接続部材、11…絶縁層、20…第一の回路部材、21…第一の回路基板、21a…主面、22…第一の回路電極、30…第二の回路部材、31…第二の回路基板、31a…主面、32…第二の回路電極、40…接着フィルム、100…積層フィルム。 DESCRIPTION OF SYMBOLS 1... Connector 5... Insulating adhesive layer 6... Insulating particle 7... Conductive particle 8... Support 10... Connecting member 11... Insulating layer 20... First circuit member 21... First circuit board 21a Main surface 22 First circuit electrode 30 Second circuit member 31 Second circuit board 31a Main surface 32 Second circuit electrode 40 Adhesive film, 100... Laminated film.

Claims (7)

  1.  第一の基板の主面上に第一の回路電極が形成された第一の回路部材と、第二の基板の主面上に第二の回路電極が形成された第二の回路部材とを、前記第一の回路電極及び前記第二の回路電極を対向配置させた状態で接続するための回路接続用接着フィルムであって、
     前記接着フィルムは、(a)熱可塑性樹脂、(b)ラジカル重合性化合物、(c)ラジカル重合開始剤、及び、(d)絶縁性粒子を含み、
     前記(b)ラジカル重合性化合物は、(メタ)アクリレート化合物を含み、
     前記接着フィルムのフロー率が、加熱温度160℃、圧力2MPa、加熱時間5秒間で140%以上であり、前記接着フィルムの硬化物の線膨張係数が、80~90℃の平均で130ppm/K以下である、回路接続用接着フィルム。
    A first circuit member having a first circuit electrode formed on the main surface of a first substrate and a second circuit member having a second circuit electrode formed on the main surface of a second substrate , a circuit connection adhesive film for connecting the first circuit electrode and the second circuit electrode in a state of facing each other,
    The adhesive film contains (a) a thermoplastic resin, (b) a radical polymerizable compound, (c) a radical polymerization initiator, and (d) insulating particles,
    The (b) radically polymerizable compound includes a (meth)acrylate compound,
    The flow rate of the adhesive film is 140% or more at a heating temperature of 160° C., a pressure of 2 MPa, and a heating time of 5 seconds, and the linear expansion coefficient of the cured product of the adhesive film is 130 ppm/K or less on average at 80 to 90° C. An adhesive film for circuit connection.
  2.  前記(d)絶縁性粒子が、シリカ微粒子を含む、請求項1に記載の回路接続用接着フィルム。 The adhesive film for circuit connection according to claim 1, wherein the (d) insulating particles contain silica fine particles.
  3.  前記(d)絶縁性粒子が、有機微粒子を含む、請求項1又は2に記載の回路接続用接着フィルム。 The adhesive film for circuit connection according to claim 1 or 2, wherein the (d) insulating particles contain organic fine particles.
  4.  前記有機微粒子が、ポリウレタン樹脂及びシリコーン樹脂からなる群より選択される少なくとも一種の樹脂からなる微粒子を含む、請求項3に記載の回路接続用接着フィルム。 The adhesive film for circuit connection according to claim 3, wherein the organic fine particles contain fine particles made of at least one kind of resin selected from the group consisting of polyurethane resins and silicone resins.
  5.  前記(d)絶縁性粒子の平均粒径が、0.001~35μmである、請求項1~4のいずれか一項に記載の回路接続用接着フィルム。 The adhesive film for circuit connection according to any one of claims 1 to 4, wherein the (d) insulating particles have an average particle diameter of 0.001 to 35 µm.
  6.  (e)導電性粒子を更に含有する、請求項1~5のいずれか一項に記載の回路接続用接着フィルム。 The adhesive film for circuit connection according to any one of claims 1 to 5, further comprising (e) conductive particles.
  7.  回路電極を有し対向配置された一対の回路部材と、前記一対の回路部材の間に設けられ、前記一対の回路部材同士を接着する接続部材と、を備え、一方の前記回路部材の前記回路電極と他方の前記回路部材の前記回路電極とが電気的に接続されており、前記接続部材が、請求項1~6のいずれか一項に記載の回路接続用接着フィルムの硬化物である、接続体。 A pair of circuit members having circuit electrodes and arranged facing each other, and a connection member provided between the pair of circuit members and bonding the pair of circuit members, wherein the circuit of one of the circuit members The electrode and the circuit electrode of the other circuit member are electrically connected, and the connection member is a cured product of the adhesive film for circuit connection according to any one of claims 1 to 6, connection.
PCT/JP2022/007383 2021-03-01 2022-02-22 Bonding film for circuit connection and connected body WO2022186016A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237031590A KR20230154877A (en) 2021-03-01 2022-02-22 Adhesive film and connector for circuit connection
CN202280016266.8A CN116917429A (en) 2021-03-01 2022-02-22 Adhesive film for circuit connection and connector
JP2023503743A JPWO2022186016A1 (en) 2021-03-01 2022-02-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-031908 2021-03-01
JP2021031908 2021-03-01

Publications (1)

Publication Number Publication Date
WO2022186016A1 true WO2022186016A1 (en) 2022-09-09

Family

ID=83155079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007383 WO2022186016A1 (en) 2021-03-01 2022-02-22 Bonding film for circuit connection and connected body

Country Status (5)

Country Link
JP (1) JPWO2022186016A1 (en)
KR (1) KR20230154877A (en)
CN (1) CN116917429A (en)
TW (1) TW202239933A (en)
WO (1) WO2022186016A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161713A1 (en) * 2012-04-25 2013-10-31 日立化成株式会社 Circuit connection material, circuit connection structure, adhesive film, and wound body
JP2013227420A (en) * 2012-04-25 2013-11-07 Hitachi Chemical Co Ltd Circuit connection material, circuit connection structure, adhesion film and wound body
JP2015166406A (en) * 2014-03-03 2015-09-24 日立化成株式会社 Adhesive composition and connection body
JP2016098329A (en) * 2014-11-21 2016-05-30 デクセリアルズ株式会社 Coating composition, and super water-repellent film
WO2018181589A1 (en) * 2017-03-29 2018-10-04 日立化成株式会社 Adhesive composition and structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151762A (en) 2001-11-09 2003-05-23 Hitachi Ltd Display device
JP2012203628A (en) 2011-03-25 2012-10-22 Hosiden Corp Touch panel and electronic device including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161713A1 (en) * 2012-04-25 2013-10-31 日立化成株式会社 Circuit connection material, circuit connection structure, adhesive film, and wound body
JP2013227420A (en) * 2012-04-25 2013-11-07 Hitachi Chemical Co Ltd Circuit connection material, circuit connection structure, adhesion film and wound body
JP2015166406A (en) * 2014-03-03 2015-09-24 日立化成株式会社 Adhesive composition and connection body
JP2016098329A (en) * 2014-11-21 2016-05-30 デクセリアルズ株式会社 Coating composition, and super water-repellent film
WO2018181589A1 (en) * 2017-03-29 2018-10-04 日立化成株式会社 Adhesive composition and structure

Also Published As

Publication number Publication date
CN116917429A (en) 2023-10-20
TW202239933A (en) 2022-10-16
KR20230154877A (en) 2023-11-09
JPWO2022186016A1 (en) 2022-09-09

Similar Documents

Publication Publication Date Title
JP5867508B2 (en) Circuit connection material and connection body
JP7014236B2 (en) Adhesive compositions and connectors
JP6307966B2 (en) Adhesive composition, anisotropic conductive adhesive composition, circuit connection material and connector
JP7173258B2 (en) Adhesive composition and structure
WO2022186016A1 (en) Bonding film for circuit connection and connected body
JP6417675B2 (en) Adhesive composition and connector
KR102467385B1 (en) Connection structure, circuit connection member and adhesive composition
CN107636107B (en) Adhesive composition and connected body
JP2018184607A (en) Adhesive composition and connection body
TWI685554B (en) Adhesive composition and connector
TWI690580B (en) Adhesive composition, anisotropic conductive adhesive composition, circuit connecting material and connector
JP6631631B2 (en) Adhesive composition, anisotropic conductive adhesive composition, circuit connection material and connection body
TWI570208B (en) Circuit connecting material and connection body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22763072

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023503743

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280016266.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237031590

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22763072

Country of ref document: EP

Kind code of ref document: A1