WO2018181498A1 - ポリオレフィン系発泡シート、その製造方法及び粘着テープ - Google Patents

ポリオレフィン系発泡シート、その製造方法及び粘着テープ Download PDF

Info

Publication number
WO2018181498A1
WO2018181498A1 PCT/JP2018/012812 JP2018012812W WO2018181498A1 WO 2018181498 A1 WO2018181498 A1 WO 2018181498A1 JP 2018012812 W JP2018012812 W JP 2018012812W WO 2018181498 A1 WO2018181498 A1 WO 2018181498A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyolefin
foamed sheet
sheet
resin
sheet according
Prior art date
Application number
PCT/JP2018/012812
Other languages
English (en)
French (fr)
Inventor
健人 永井
麻美 永井
和幸 矢原
康成 日下
奈未 中島
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201880021353.6A priority Critical patent/CN110461922A/zh
Priority to JP2018519888A priority patent/JP7201431B2/ja
Priority to KR1020197028004A priority patent/KR102597457B1/ko
Publication of WO2018181498A1 publication Critical patent/WO2018181498A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/365Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/24Plastics; Metallised plastics based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/26Porous or cellular plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/066LDPE (radical process)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/06Metallocene or single site catalysts

Definitions

  • the present invention relates to a polyolefin foam sheet, a method for producing the same, and an adhesive tape having the polyolefin foam sheet.
  • a sealing material or a shock absorbing material made of a foamed sheet, and an adhesive tape based on the foamed sheet are used.
  • a display device used in the above-described electronic apparatus generally has a structure in which a protective panel is installed on a display panel such as an LCD. The protective panel is bonded to a frame portion outside the display panel. For this purpose, an adhesive tape based on a foam sheet is used.
  • a foam sheet used in an electronic device a crosslinked polyolefin resin foam sheet obtained by foaming and crosslinking a foamable polyolefin resin sheet containing a pyrolytic foaming agent is known (for example, patents). Reference 1).
  • the frame portion outside the display panel is becoming narrower due to downsizing of electronic devices and upsizing of display devices. Therefore, the foam sheet is required to have high flexibility and durability even when the foam sheet is thin as well as relatively thick.
  • the foam sheet has a low apparent density in order to increase flexibility.
  • attempts have been made to increase the delamination strength in order to enhance durability such as impact resistance.
  • the apparent density and mechanical strength of the foam sheet are generally in a trade-off relationship. For example, if the apparent density is lowered and the flexibility is increased, the delamination strength is lowered, and thus the high flexibility. It is difficult to achieve both strength and mechanical strength.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a foamed sheet in which both flexibility and mechanical strength are good even in a thin foamed sheet.
  • a polyolefin-based foamed sheet obtained by foaming a foamable composition containing a polyolefin resin, and has a strength in a range of 0.02 to 0.07 at a time of 20 milliseconds as measured by a pulse NMR Hahn Echo method. Polyolefin foam sheet.
  • the cross-linked polyolefin foam sheet according to the present invention (hereinafter, also simply referred to as “foam sheet”) is a foam obtained by foaming a foamable composition containing a polyolefin resin, and is measured by pulse NMRHahnEcho method measurement of the foam sheet.
  • the intensity at a time of 20 milliseconds is in the range of 0.02 to 0.07. In the present invention, if the strength exceeds 0.07, the value of delamination strength / density described later becomes low, and it becomes difficult to improve both flexibility and durability.
  • the strength is less than 0.02, it is difficult to control the foamed state, and it is difficult to practically produce a foam sheet. Further, from the viewpoint of improving both durability and flexibility, the strength is preferably 0.03 to 0.07, and more preferably 0.04 to 0.065.
  • polyolefin resin examples of the polyolefin resin used for the foamed sheet include a polyethylene resin, a polypropylene resin, and an ethylene-vinyl acetate copolymer. Among these, a polyethylene resin is preferable.
  • the polyethylene resin include a polyethylene resin polymerized with a polymerization catalyst such as a Ziegler-Natta compound, a metallocene compound, and a chromium oxide compound.
  • a polyethylene resin polymerized with a polymerization catalyst of a metallocene compound is used.
  • the polyethylene resin is preferably linear low density polyethylene.
  • linear low density polyethylene By using linear low density polyethylene, the foamed sheet obtained can have high flexibility and can be made thinner.
  • the linear low-density polyethylene is more preferably obtained using a polymerization catalyst such as a metallocene compound.
  • the linear low density polyethylene is obtained by copolymerizing ethylene (for example, 75% by mass or more, preferably 90% by mass or more with respect to the total amount of monomers) and, if necessary, a small amount of ⁇ -olefin. More preferred is linear low density polyethylene.
  • ⁇ -olefin examples include propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, and 1-octene. Of these, ⁇ -olefins having 4 to 10 carbon atoms are preferred.
  • Polyethylene resin for example the density of the above-mentioned linear low density polyethylene is preferably 0.870 ⁇ 0.910g / cm 3, more preferably 0.875 ⁇ 0.907g / cm 3, 0.880 ⁇ 0.903g / Cm 3 is more preferable.
  • the polyethylene resin a plurality of polyethylene resins can be used, and a polyethylene resin outside the above-described density range may be added.
  • metallocene compound examples include compounds such as a bis (cyclopentadienyl) metal complex having a structure in which a transition metal is sandwiched between ⁇ -electron unsaturated compounds. More specifically, tetravalent transition metals such as titanium, zirconium, nickel, palladium, hafnium, and platinum have one or more cyclopentadienyl rings or their analogs as ligands (ligands). Can be mentioned. Metallocene compounds have uniform active site properties and each active site has the same activity.
  • a polymer synthesized using a metallocene compound has high uniformity in molecular weight, molecular weight distribution, composition, composition distribution, etc., so when a sheet containing a polymer synthesized using a metallocene compound is crosslinked, the crosslinking is uniform. Proceed to. Since the uniformly cross-linked sheet is uniformly foamed, it is easy to reduce the variation in the bubble diameter. Moreover, since it can extend
  • Examples of the ligand include a cyclopentadienyl ring and an indenyl ring. These cyclic compounds may be substituted with a hydrocarbon group, a substituted hydrocarbon group or a hydrocarbon-substituted metalloid group.
  • Examples of the hydrocarbon group include a methyl group, an ethyl group, various propyl groups, various butyl groups, various amyl groups, various hexyl groups, 2-ethylhexyl groups, various heptyl groups, various octyl groups, various nonyl groups, and various decyl groups. , Various cetyl groups, phenyl groups and the like.
  • the “various” means various isomers including n-, sec-, tert-, and iso-. Moreover, what polymerized the cyclic compound as an oligomer may be used as a ligand. In addition to ⁇ -electron unsaturated compounds, monovalent anion ligands such as chlorine and bromine or divalent anion chelate ligands, hydrocarbons, alkoxides, arylamides, aryloxides, amides, arylamides, phosphides, aryls Phosphide or the like may be used.
  • monovalent anion ligands such as chlorine and bromine or divalent anion chelate ligands, hydrocarbons, alkoxides, arylamides, aryloxides, amides, arylamides, phosphides, aryls Phosphide or the like may be used.
  • metallocene compounds containing tetravalent transition metals and ligands include, for example, cyclopentadienyl titanium tris (dimethylamide), methylcyclopentadienyl titanium tris (dimethylamide), bis (cyclopentadienyl) titanium dichloride, dimethyl And silyltetramethylcyclopentadienyl-t-butylamidozirconium dichloride.
  • the metallocene compound exhibits an action as a catalyst in the polymerization of various olefins by combining with a specific cocatalyst (co-catalyst).
  • specific cocatalyst include methylaluminoxane (MAO) and boron compounds.
  • the proportion of the cocatalyst used with respect to the metallocene compound is preferably 100,000 to 1,000,000 mole times, more preferably 50 to 5,000 mole times.
  • Examples of the ethylene-vinyl acetate copolymer used as the polyolefin resin include an ethylene-vinyl acetate copolymer containing 50% by mass or more of ethylene.
  • the ethylene-vinyl acetate copolymer has a vinyl acetate content of, for example, 5 to 50% by mass, preferably 10 to 40% by mass, more preferably 15 to 35% by mass.
  • the vinyl acetate content is measured according to JIS K6924-1.
  • Examples of the polypropylene resin include polypropylene and a propylene- ⁇ -olefin copolymer containing 50% by mass or more of propylene. These may be used alone or in combination of two or more.
  • ⁇ -olefin constituting the propylene- ⁇ -olefin copolymer examples include ethylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1- Among these, ⁇ -olefins having 6 to 12 carbon atoms are preferable.
  • the above linear low density polyethylene may be used alone, or may be used in combination with other polyolefin resins.
  • the ratio of the other polyolefin resin to the total amount of the linear low density polyethylene and the other polyolefin resin is preferably 75% by mass or less, and 50% by mass or less. Is more preferable, and it is further more preferable that it is 20 mass% or less.
  • the other polyolefin resin is preferably an ethylene-vinyl acetate copolymer.
  • a polyolefin resin may be used alone, but a resin other than the polyolefin resin may be included as long as the effects of the present invention are not impaired.
  • the ratio of the polyolefin resin to the total amount of the resin is preferably 60 to 100% by mass, more preferably 70 to 100% by mass, and still more preferably 80 to 100% by mass.
  • resins other than polyolefin resins include styrene thermoplastic elastomers, thermoplastic elastomers such as EPDM, and rubber components.
  • the strength at 20 milliseconds by pulse NMR measurement tends to decrease.
  • a polyethylene resin such as linear low density polyethylene polymerized with a metallocene compound polymerization catalyst as described above, and by using a relatively high degree of crosslinking as described later, by pulse NMR measurement As described above, the strength at the time of 20 milliseconds tends to be 0.07 or less.
  • the foam sheet is a crosslinked foam, and the degree of crosslinking is preferably 30 to 70% by mass, more preferably 35 to 65% by mass, and further preferably 40 to 60% by mass. If the degree of cross-linking is greater than or equal to the lower limit, the strength at a time of 20 milliseconds as measured by the pulse NMR method is likely to be 0.07 or less. Moreover, when the degree of crosslinking is at least the lower limit value, it becomes easy to form fine bubbles.
  • the expansion ratio of the foam sheet is preferably 1.2 to 12 cm 3 / g, more preferably 1.3 to 10 cm 3 / g.
  • mechanical strength such as impact resistance is ensured while ensuring desired flexibility in a wide range of foaming ratios by setting the strength at 20 milliseconds by pulse NMR measurement within the predetermined range as described above. It becomes possible to improve.
  • the foamed sheet has a higher mechanical strength and is more easily improved in durability by reducing the expansion ratio even within the above-described range.
  • the expansion ratio of the foamed sheet from such point of view more preferably from 1.5 ⁇ 3cm 3 / g.
  • the foamed sheet should have a high foaming ratio from the viewpoint of flexibility, and 7 to 12 cm 3 / g is preferred from this viewpoint.
  • the apparent density of the foamed sheet is obtained according to JISK7222, and the reciprocal thereof is taken as the foaming ratio.
  • the foam sheet is a closed cell. That the bubbles are closed cells means that the ratio of closed cells to all bubbles (referred to as closed cell rate) is 70% or more.
  • the closed cell ratio is preferably 75% or more, more preferably 90% or more.
  • the closed cell ratio can be determined according to ASTM D2856 (1998). Commercially available measuring instruments include a dry automatic densitometer Accupic 1330 and the like.
  • the closed cell ratio is measured in the following manner.
  • a test piece having a flat square shape with a side of 5 cm and a constant thickness is cut out from the foam sheet.
  • the thickness of the test piece is measured, the apparent volume V 1 of the test piece is calculated, and the weight W 1 of the test piece is measured.
  • the apparent volume V 2 occupied by the bubbles is calculated based on the following formula.
  • the density of the resin constituting the test piece is 1 g / cm 3 .
  • Apparent volume occupied by bubbles V 2 V 1 ⁇ W 1
  • the test piece is submerged in distilled water at 23 ° C. to a depth of 100 mm from the water surface, and a pressure of 15 kPa is applied to the test piece over 3 minutes.
  • Open cell ratio F 1 (%) 100 ⁇ (W 2 ⁇ W 1 ) / V 2
  • Closed cell ratio F 2 (%) 100 ⁇ F 1
  • the thickness of the foamed sheet is preferably 0.02 to 0.8 mm. In the present invention, even within such a relatively wide thickness range, the above-described strength at 20 milliseconds is set within a predetermined range, so that the mechanical strength such as impact resistance is ensured while ensuring the flexibility of the foam sheet. Strength can be improved. Further, the thickness of the foam sheet is more preferably 0.08 to 0.50 mm, and further preferably 0.10 to 0.40 mm.
  • the foamed sheet is not particularly limited, but may be processed into a thin line shape. For example, the foamed sheet may be used with a width of 10 mm or less. For example, it may be 5 mm or less, and further 1 mm or less.
  • the width of the foamed sheet When the width of the foamed sheet is narrowed, it can be suitably used inside a miniaturized electronic device. Moreover, even if the width
  • variety of a foamed sheet is not specifically limited, For example, a 0.1 mm or more thing may be sufficient and a 0.2 mm or more thing may be sufficient.
  • the planar shape of the foam sheet is not particularly limited, and may be an elongated rectangular shape, a frame shape, an L shape, a U shape, or any other shape such as a square shape or a circular shape.
  • the 25% compressive strength of the foamed sheet is preferably 10 to 2000 kPa, more preferably 1000 to 1500 kPa, and even more preferably 500 to 1500 kPa.
  • the foamed sheet has impact absorbability and sealability, and can be suitably used as a buffer absorbent and a sealant.
  • 25% compressive strength means what measured the foamed sheet based on JISK6767.
  • the foam sheet preferably has a delamination strength of 0.7 MPa or more, more preferably 0.8 MPa or more, and more preferably 4.5 MPa or more.
  • the value of delamination strength is measured according to the method of the Example mentioned later.
  • the foamed sheet preferably has a delamination strength (MPa) divided by an apparent density (g / cm 3 ) (delamination strength / density) of 8 or more, preferably 8.5 or more. More preferred.
  • the higher the delamination strength / density the higher the delamination strength, even though it has the same apparent density, which means that it is easier to achieve both flexibility and mechanical strength.
  • the higher the delamination strength / density the better, but practically it is about 15 or less.
  • the foam sheet of the present invention is preferably formed by foaming a foamable composition containing a pyrolytic foaming agent in addition to the resin.
  • a pyrolytic foaming agent an organic foaming agent or an inorganic foaming agent can be used.
  • Organic foaming agents include azodicarbonamide, azodicarboxylic acid metal salts (such as barium azodicarboxylate), azo compounds such as azobisisobutyronitrile, nitroso compounds such as N, N′-dinitrosopentamethylenetetramine, And hydrazine derivatives such as hydrazodicarbonamide, 4,4′-oxybis (benzenesulfonylhydrazide) and toluenesulfonylhydrazide, and semicarbazide compounds such as toluenesulfonyl semicarbazide.
  • azodicarbonamide azodicarboxylic acid metal salts (such as barium azodicarboxylate)
  • azo compounds such as azobisisobutyronitrile
  • nitroso compounds such as N, N′-dinitrosopentamethylenetetramine
  • hydrazine derivatives such as hydrazodicarbonamide, 4,4′
  • the inorganic foaming agent examples include ammonium acid, sodium carbonate, ammonium hydrogen carbonate, sodium hydrogen carbonate, ammonium nitrite, sodium borohydride, anhydrous monosodium citrate, and the like.
  • an azo compound is preferable and azodicarbonamide is particularly preferable from the viewpoint of obtaining fine bubbles and from the viewpoints of economy and safety.
  • These pyrolytic foaming agents can be used alone or in combination of two or more.
  • the amount of the thermally decomposable foaming agent in the foamable composition is preferably 1 to 15 parts by weight, more preferably 1 to 12 parts by weight, and even more preferably 1.5 to 5 parts by weight with respect to 100 parts by weight of the resin. It is.
  • a foamable composition contains a cell nucleus regulator in addition to the said resin and a thermal decomposition type foaming agent.
  • the cell nucleus adjusting agent include zinc compounds such as zinc oxide and zinc stearate, and organic compounds such as citric acid and urea. Among these, zinc oxide is more preferable.
  • the blending amount of the cell nucleus adjusting agent is preferably 0.4 to 8 parts by mass, more preferably 0.5 to 5 parts by mass, and further preferably 0.8 to 2.5 parts by mass with respect to 100 parts by mass of the resin. It is. By blending the cell nucleus regulator, it is possible to suppress the variation in the bubble diameter of the fine bubbles.
  • the foamable composition contains additives generally used for foams such as antioxidants, heat stabilizers, colorants, flame retardants, antistatic agents, fillers, etc. You may do it.
  • the method for producing the foamed sheet is not particularly limited.
  • the foamed sheet is produced by heating a crosslinked foamable composition containing a polyolefin resin and a pyrolyzable foaming agent to foam the pyrolyzable foaming agent.
  • the foamable foamable composition may be further stretched or may not be stretched.
  • the foam sheet can be made relatively thin by stretching. Moreover, it becomes easy to raise the softness
  • the method for producing a foam sheet includes the following steps (1) to (3).
  • the method of forming the resin sheet is not particularly limited.
  • the polyolefin resin and the additive are supplied to an extruder and melt-kneaded, and the foamable composition is extruded into a sheet form from the extruder. What is necessary is just to shape
  • a method for crosslinking the foamable composition in the step (2) a method of irradiating the resin sheet with ionizing radiation such as electron beam, ⁇ ray, ⁇ ray, ⁇ ray and the like is used.
  • the irradiation amount of the ionizing radiation may be adjusted so that the degree of crosslinking of the foamed sheet to be obtained falls within the desired range described above, but is preferably 5 to 15 Mrad, more preferably 6 to 13 Mrad, More preferably, it is 6 to 8 Mrad.
  • the principle is not clear, but it is easy to decrease the strength at 20 milliseconds by pulse NMR.
  • the tensile strength of the resin sheet after crosslinking is preferably 0.2 to 0.7 MPa, more preferably 0.25 to 0.60 MPa, and further preferably 0.25 to 0.50 MPa at 110 ° C.
  • the tensile strength of the resin sheet after cross-linking can be within the above range by adjusting the irradiation amount of ionizing radiation and the like while the type of resin is as described above.
  • the heating temperature when the foamable composition is heated to foam the pyrolyzable foaming agent may be not less than the foaming temperature of the pyrolyzable foaming agent, preferably 200 to 300 ° C.
  • the temperature is preferably 220 to 280 ° C.
  • this manufacturing method may also include the process (process (4)) of extending
  • the stretching of the foam sheet in the step (4) may be performed after foaming the resin sheet to obtain the foam sheet, or may be performed while foaming the resin sheet.
  • the foamed sheet when the foamed sheet is stretched after foaming the resin sheet, the foamed sheet may be stretched continuously while maintaining the molten state at the time of foaming without cooling the foamed sheet. After the foam sheet is cooled, the foam sheet may be stretched again by heating it to a molten or softened state.
  • the foamed sheet may be heated to, for example, 100 to 280 ° C., preferably 150 to 260 ° C. during stretching.
  • a foamed sheet may be obtained by a method other than the above.
  • an organic peroxide may be blended in advance in the foamable composition, and crosslinking may be performed by a method in which the foamable composition is heated to decompose the organic peroxide. Good.
  • the foam sheet is not particularly limited, for example, it is preferably used inside an electronic device. Since the foamed sheet of the present invention has high durability even if it is thinned, the foamed sheet can be suitably used particularly in various portable electronic devices where a space for arranging the foamed sheet is small. Examples of the portable electronic device include a mobile phone, a camera, a game device, an electronic notebook, a tablet terminal, and a notebook personal computer.
  • the foam sheet can be used as an impact absorbing material and a sealing material inside the electronic device.
  • the pressure-sensitive adhesive tape of the present invention includes, for example, a foamed sheet and a pressure-sensitive adhesive layer provided on at least one surface of the foamed sheet, and a double-sided pressure-sensitive adhesive tape provided with a pressure-sensitive adhesive layer on both sides is preferable.
  • the thickness of the pressure-sensitive adhesive layer constituting the pressure-sensitive adhesive tape is preferably 5 to 200 ⁇ m.
  • the thickness of the pressure-sensitive adhesive layer is more preferably 7 to 150 ⁇ m, still more preferably 10 to 100 ⁇ m. When the thickness of the pressure-sensitive adhesive layer is in the range of 5 to 200 ⁇ m, the thickness of the structure fixed using the pressure-sensitive adhesive tape can be reduced.
  • an adhesive used for an adhesive layer For example, an acrylic adhesive, a urethane type adhesive, a rubber-type adhesive etc. can be used. Further, a release sheet such as a release paper may be further bonded on the pressure-sensitive adhesive layer.
  • the method of forming the pressure-sensitive adhesive layer on at least one surface of the foamed sheet is not particularly limited, but for example, a method of applying a pressure-sensitive adhesive using a coating machine such as a coater on at least one surface of the foamed sheet, on at least one surface of the foamed sheet Examples thereof include a method of spraying and applying an adhesive using a spray, and a method of applying an adhesive using a brush on at least one surface of a foamed sheet.
  • transfer the adhesive layer formed on the peeling sheet to at least one surface of a foam sheet are mentioned.
  • the measurement method and evaluation method of each physical property are as follows. ⁇ Intensity at 20 milliseconds> The intensity at a time of 20 milliseconds was measured by pulse NMR HahnEcho method measurement. The measurement conditions are as follows. (Pulse NMR Hahn Echo method measurement) Measurements were performed using a Bruker Biospin pulsed NMR: Minispeccmq20. 1) Sample 100 to 500 mg of a foam sheet was weighed into an NMR tube having a diameter of 10 mm and used for measurement. The sample was placed in a pulse NMR apparatus and cured at 120 ° C. for 10 hours or more.
  • ⁇ Apparent density and expansion ratio The apparent density of the foamed sheet was measured according to JISK7222, and the reciprocal thereof was taken as the foaming ratio.
  • ⁇ Degree of crosslinking> About 100 mg of a test piece is taken from the foamed sheet, and the weight A (mg) of the test piece is precisely weighed. Next, this test piece was immersed in 30 cm 3 of xylene at 120 ° C. and allowed to stand for 24 hours, then filtered through a 200-mesh wire mesh to collect the insoluble matter on the wire mesh, vacuum dried, and the weight of the insoluble matter. Weigh B (mg) precisely. From the obtained value, the degree of crosslinking (% by mass) was calculated by the following formula.
  • Crosslinking degree (% by mass) 100 ⁇ (B / A) ⁇ 25% compressive strength>
  • the foam sheet was measured for 25% compressive strength according to JISK6767.
  • a primer was applied to the surface of the cut foam sheet 7 to which the jig 9 was not adhered, and an adhesive 10 having a diameter of 5 mm was dropped onto the center of the applied portion.
  • an adhesive 10 having a diameter of 5 mm was dropped onto the center of the applied portion.
  • a 10 mm square aluminum jig 11 was placed on the adhesive dripping portion, and the foamed sheet 7 and the jig 11 were pressure-bonded with the adhesive 10.
  • cuts 12 were made in the foamed sheet along the size of the jig 11. This was allowed to stand at room temperature for 30 minutes to cure the adhesive, and used as a sample for measuring delamination strength.
  • the delamination strength was set so that the sheet surface of the foamed sheet 7 was perpendicular to the tensile direction in a testing machine (“Tensilon Universal Material Testing Machine” manufactured by A & D Co., Ltd.) equipped with a 1 kN load cell. A sample for measurement was attached. The jig 9 was pulled vertically upward at a speed of 100 mm / min, and only the 1 cm square area of the foamed sheet was delaminated. The maximum load at this time was measured and used as the first measurement result. The same operation was repeated three times, and the average value was defined as the delamination strength.
  • ⁇ Delamination strength / density> A value obtained by dividing the delamination strength (MPa) obtained above by the apparent density (g / cm 3 ) was calculated as delamination strength / density.
  • the delamination strength / density was 8 or more, it was evaluated as “A” because the mechanical strength was good for the foam sheet having the same apparent density.
  • it was less than 8 it was evaluated as “B” because the mechanical strength was not good with respect to the foam sheet having the same apparent density. Further, the case where good foamability was not observed and a sheet-like foam could not be produced was evaluated as “C”.
  • Example 1 100 parts by mass of a linear low density polyethylene resin (trade name “Affinity PL1850”, density: 0.902 g / cm 3 , manufactured by Dow Chemical Co., Ltd.) obtained by a polymerization catalyst of a metallocene compound, and a pyrolytic foaming agent 2.1 parts by mass of azodicarbonamide, 1.0 part by mass of zinc oxide as a cell nucleus modifier, and 0.5 parts by mass of antioxidant were supplied to the extruder. In an extruder, these were melt-kneaded at 130 ° C. and extruded into a long resin sheet having a thickness of 250 ⁇ m.
  • a linear low density polyethylene resin trade name “Affinity PL1850”, density: 0.902 g / cm 3 , manufactured by Dow Chemical Co., Ltd.
  • Example 2 This was carried out in the same manner as in Example 1 except that the blending amount of the pyrolytic foaming agent was changed to 10 parts by mass and the foamed sheet was not stretched in the TD and MD directions.
  • Example 3 It implemented similarly to Example 1 except the point which changed the electron beam irradiation amount into 6.2 Mrad.
  • Example 4 The resin composition was changed to 30 parts by mass of the above-mentioned linear low density polyethylene resin and 70 parts by mass of an ethylene-vinyl acetate copolymer (“Ultrasen 636” manufactured by Tosoh Corporation, vinyl acetate content: 19% by mass). The same operation as in Example 1 was performed except for the points described above.
  • Example 5 The resin composition was changed to 30 parts by mass of the above-described linear low density polyethylene resin and 70 parts by mass of an ethylene-vinyl acetate copolymer (“Ultrasen 636” manufactured by Tosoh Corporation), and the thermal decomposition type foaming agent The blending amount was changed to 5.5 parts by mass, and the same procedure as in Example 1 was performed except that the foamed sheet was not stretched in the TD and MD directions.
  • Ultrasen 636 ethylene-vinyl acetate copolymer manufactured by Tosoh Corporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

本発明のポリオレフィン系発泡シートは、ポリオレフィン樹脂を含む発泡性組成物を発泡させてなるポリオレフィン系発泡シートであって、パルスNMRHahnEcho法測定による時間20ミリ秒での強度が0.02~0.07の範囲にある。

Description

ポリオレフィン系発泡シート、その製造方法及び粘着テープ
 本発明は、ポリオレフィン系発泡シート、その製造方法及びポリオレフィン系発泡シートを有する粘着テープに関する。
 携帯電話、カメラ、ゲーム機器、電子手帳、パーソナルコンピュータ等の電子機器では、発泡シートからなるシール材又は衝撃吸収材、さらには、発泡シートを基材とした粘着テープ等が使用されている。例えば、上記した電子機器で使用される表示装置は、一般的に、LCD等の表示パネルの上に保護パネルを設置した構造を有するが、その保護パネルを、表示パネル外側の額縁部分と貼り合わせるために、発泡シートを基材とした粘着テープが使用される。
 従来、電子機器内部に使用される発泡シートとしては、熱分解型発泡剤を含む発泡性ポリオレフィン系樹脂シートを発泡かつ架橋させて得られる架橋ポリオレフィン系樹脂発泡シートが知られている(例えば、特許文献1参照)。
国際公開2005/007731号
 ところで、昨今、電子機器は小型化が進む一方で各種部品の高機能化も進み、電気機器内部のスペースの制約が大きくなってきている。例えば、表示パネル外側の額縁部分は、電子機器の小型化と、表示装置の大型化によりスペースが狭くなってきている。したがって、発泡シートは、比較的厚いものののみならず薄くした場合でも、高い柔軟性及び耐久性を有するものが求められている。
 発泡シートは、柔軟性を高めるために見かけ密度を低くすることが知られている。また、衝撃吸収材などでは、耐衝撃性などの耐久性を高めるために、層間剥離強度を高くすることが試みられている。しかし、発泡シートの見かけ密度と機械強度は、トレードオフの関係にあるのが一般的であり、例えば、見かけ密度を低くして柔軟性を高くしようとすると層間剥離強度が低くなるため、高い柔軟性と機械強度を両立するのは難しい。
 本発明は、以上の事情に鑑みてなされたものであり、薄厚の発泡シートにおいても、柔軟性及び機械強度がいずれも良好になる発泡シートを提供することを課題とする。
 本発明者らは鋭意検討の結果、パルスNMR測定による時間20ミリ秒での強度を一定の範囲にすると、層間剥離強度/密度の値が高くなり、発泡シートの柔軟性及び機械強度のいずれも良好にしやすくなることを見出し、以下の本発明を完成させた。
 すなわち、本発明は、以下の[1]~[11]を提供するものである。
[1]ポリオレフィン樹脂を含む発泡性組成物を発泡させてなるポリオレフィン系発泡シートであって、パルスNMR Hahn Echo法測定による時間20ミリ秒での強度が0.02~0.07の範囲にあるポリオレフィン系発泡シート。
[2]前記ポリオレフィン樹脂が、ポリエチレン樹脂である上記[1]に記載のポリオレフィン系発泡シート。
[3]前記ポリオレフィン樹脂が、メタロセン化合物の重合触媒で重合された直鎖状低密度ポリエチレンを含む上記[2]に記載のポリオレフィン系発泡シート。
[4]前記ポリオレフィン樹脂が、さらにエチレン-酢酸ビニル共重合体を含む上記[3]に記載のポリオレフィン系発泡シート。
[5]架橋度が30~70質量%である、上記[1]~[4]のいずれか1項に記載のポリオレフィン系発泡シート。
[6]厚さが0.02~0.8mmである、上記[1]~[5]のいずれか1項に記載のポリオレフィン系発泡シート。
[7]発泡倍率が、1.2~12cm/gである上記[1]~[6]のいずれか1項に記載のポリオレフィン系発泡シート。
[8]熱分解型発泡剤をさらに含む発泡性組成物を発泡してなる上記[1]~[7]のいずれか1項に記載のポリオレフィン系発泡シート。
[9]上記[1]~[8]のいずれか1項に記載のポリオレフィン系発泡シートの製造方法であって、ポリオレフィン系樹脂及び熱分解型発泡剤を含み、かつ架橋された発泡性組成物を加熱し、前記熱分解型発泡剤を発泡させるポリオレフィン系発泡シートの製造方法。
[10]前記発泡性組成物を発泡させ、さらに延伸させる上記[9]に記載のポリオレフィン系発泡シートの製造方法。
[11]上記[1]~[8]のいずれか1項に記載のポリオレフィン系発泡シートと、前記ポリオレフィン系発泡シートの少なくともいずれか一方の面に設けた粘着剤層とを備える粘着テープ。
 本発明によれば、シートを薄くしたような場合であっても、柔軟性及び耐久性のいずれも良好な発泡シートを提供することが可能である。
層間強度測定方法の説明図である。
 以下、本発明について実施形態を用いて詳細に説明する。
[ポリオレフィン系発泡シート]
 本発明に係る架橋ポリオレフィン系発泡シート(以下、単に“発泡シート”ともいう)は、ポリオレフィン樹脂を含む発泡性組成物を発泡させてなる発泡体であって、本発泡シートのパルスNMRHahnEcho法測定による時間20ミリ秒での強度が0.02~0.07の範囲にあるものである。
 本発明においては、上記強度が0.07を超えると、後述する層間剥離強度/密度の値が低くなり、柔軟性及び耐久性のいずれも良好にすることが困難になる。一方、上記強度が0.02未満であると、発泡状態の制御が難しく、発泡体シートとして実用的に製造することが難しくなる。
 また、耐久性及び柔軟性のいずれも良好にする観点から、上記強度は、0.03~0.07が好ましく、0.04~0.065がより好ましい。
(ポリオレフィン樹脂)
 発泡シートに使用されるポリオレフィン樹脂は、ポリエチレン樹脂、ポリプロピレン樹脂、エチレン-酢酸ビニル共重合体等が挙げられ、これらの中ではポリエチレン樹脂が好ましい。
 ポリエチレン樹脂としては、チーグラー・ナッタ化合物、メタロセン化合物、酸化クロム化合物等の重合触媒で重合されたポリエチレン樹脂が挙げられ、好ましくは、メタロセン化合物の重合触媒で重合されたポリエチレン樹脂が用いられる。
 また、ポリエチレン樹脂としては、直鎖状低密度ポリエチレンが好ましい。直鎖状低密度ポリエチレンを用いることにより、得られる発泡シートに高い柔軟性が得られるとともに、発泡シートの薄肉化が可能になる。この直鎖状低密度ポリエチレンは、メタロセン化合物等の重合触媒を用いて得たものがより好ましい。また、直鎖状低密度ポリエチレンは、エチレン(例えば、全モノマー量に対して75質量%以上、好ましくは90質量%以上)と必要に応じて少量のα-オレフィンとを共重合することにより得られる直鎖状低密度ポリエチレンがより好ましい。
 α-オレフィンとして、具体的には、プロピレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-ヘプテン、及び1-オクテン等が挙げられる。なかでも、炭素数4~10のα-オレフィンが好ましい。
 ポリエチレン樹脂、例えば上記した直鎖状低密度ポリエチレンの密度は、0.870~0.910g/cmが好ましく、0.875~0.907g/cmがより好ましく、0.880~0.903g/cmが更に好ましい。ポリエチレン樹脂としては、複数のポリエチレン樹脂を用いることもでき、また、上記した密度範囲以外のポリエチレン樹脂を加えてもよい。
(メタロセン化合物)
 メタロセン化合物としては、遷移金属をπ電子系の不飽和化合物で挟んだ構造を有するビス(シクロペンタジエニル)金属錯体等の化合物を挙げることができる。より具体的には、チタン、ジルコニウム、ニッケル、パラジウム、ハフニウム、及び白金等の四価の遷移金属に、1又は2以上のシクロペンタジエニル環又はその類縁体がリガンド(配位子)として存在する化合物を挙げることができる。
 メタロセン化合物は、活性点の性質が均一であり各活性点が同じ活性度を備えている。メタロセン化合物を用いて合成した重合体は、分子量、分子量分布、組成、組成分布等の均一性が高いため、メタロセン化合物を用いて合成した重合体を含むシートを架橋した場合には、架橋が均一に進行する。均一に架橋されたシートは、均一に発泡されるため、気泡径のばらつきを小さくしやすい。また、均一に延伸できるため、発泡シートの厚さを均一にできる。
 リガンドとしては、例えば、シクロペンタジエニル環、インデニル環等を挙げることができる。これらの環式化合物は、炭化水素基、置換炭化水素基又は炭化水素-置換メタロイド基により置換されていてもよい。炭化水素基としては、例えば、メチル基、エチル基、各種プロピル基、各種ブチル基、各種アミル基、各種ヘキシル基、2-エチルヘキシル基、各種ヘプチル基、各種オクチル基、各種ノニル基、各種デシル基、各種セチル基、フェニル基等が挙げられる。なお、「各種」とは、n-、sec-、tert-、iso-を含む各種異性体を意味する。
 また、環式化合物をオリゴマーとして重合したものをリガンドとして用いてもよい。
 更に、π電子系の不飽和化合物以外にも、塩素や臭素等の一価のアニオンリガンド又は二価のアニオンキレートリガンド、炭化水素、アルコキシド、アリールアミド、アリールオキシド、アミド、アリールアミド、ホスフィド、アリールホスフィド等を用いてもよい。
 四価の遷移金属やリガンドを含むメタロセン化合物としては、例えば、シクロペンタジエニルチタニウムトリス(ジメチルアミド)、メチルシクロペンタジエニルチタニウムトリス(ジメチルアミド)、ビス(シクロペンタジエニル)チタニウムジクロリド、ジメチルシリルテトラメチルシクロペンタジエニル-t-ブチルアミドジルコニウムジクロリド等が挙げられる。
 メタロセン化合物は、特定の共触媒(助触媒)と組み合わせることにより、各種オレフィンの重合の際に触媒としての作用を発揮する。具体的な共触媒としては、メチルアルミノキサン(MAO)、ホウ素系化合物等が挙げられる。なお、メタロセン化合物に対する共触媒の使用割合は、10~100万モル倍が好ましく、50~5,000モル倍がより好ましい。
 ポリオレフィン樹脂として使用するエチレン-酢酸ビニル共重合体は、例えば、エチレンを50質量%以上含有するエチレン-酢酸ビニル共重合体が挙げられる。また、エチレン-酢酸ビニル共重合体は、酢酸ビニル含有率が例えば5~50質量%、好ましくは10~40質量%、より好ましくは15~35質量%である。なお、酢酸ビニル含有率は、JIS K6924-1に準拠して測定したものである。
 また、ポリプロピレン樹脂としては、例えば、ポリプロピレン、プロピレンを50質量%以上含有するプロピレン-α-オレフィン共重合体等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 プロピレン-α-オレフィン共重合体を構成するα-オレフィンとしては、具体的には、エチレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン等が挙げることができ、これらの中では、炭素数6~12のα-オレフィンが好ましい。
 発泡シートに含まれるポリオレフィン樹脂は、上記した直鎖状低密度ポリエチレンを使用する場合、上記の直鎖状低密度ポリエチレンを単独で使用してもよいが、他のポリオレフィン樹脂と併用してもよく、例えば、上記した他のポリオレフィン樹脂と併用してもよい。
 他のポリオレフィン樹脂を含有する場合、直鎖状低密度ポリエチレンと他のポリオレフィン樹脂との合計量に対する他のポリオレフィン樹脂の割合は、75質量%以下であることが好ましく、50質量%以下であることがより好ましく、20質量%以下であることがさらに好ましい。ここで、他のポリオレフィン樹脂は、エチレン-酢酸ビニル共重合体であることが好ましい。
 また、発泡性組成物に含有される樹脂としては、ポリオレフィン樹脂を単独で使用してもよいが、本発明の効果を損なわない限り、ポリオレフィン樹脂以外の樹脂を含んでもよい。発泡シートにおいて、ポリオレフィン樹脂の樹脂全量に対する割合は、60~100質量%が好ましく、70~100質量%がより好ましく、80~100質量%が更に好ましい。ポリオレフィン樹脂以外の樹脂としては、スチレン系熱可塑性エラストマー、EPDM等の熱可塑性エラストマー、ゴム成分が挙げられる。
 本発明では、その原理は定かではないが、例えば、架橋後の樹脂シートの抗張力を高くすることで、パルスNMR測定による時間20ミリ秒での強度が低くなりやすくなる。また、例えば、上記のようにメタロセン化合物の重合触媒で重合された直鎖状低密度ポリエチレンなどのポリエチレン樹脂を使用し、かつ後述するように比較的高い架橋度とすることで、パルスNMR測定による時間20ミリ秒での強度が上記したように0.07以下となりやすくなる。
(架橋度)
 発泡シートは、架橋された発泡体であり、その架橋度は、30~70質量%であることが好ましく、35~65質量%がより好ましく、40~60質量%がさらに好ましい。架橋度を下限値以上とすると、パルスNMR法測定による時間20ミリ秒での強度が0.07以下としやすくなる。また、架橋度を下限値以上とすると、微細な気泡を形成しやすくなる。
(発泡倍率)
 発泡シートの発泡倍率は、1.2~12cm/gであることが好ましく、より好ましくは1.3~10cm/gである。本発明では、パルスNMR測定による時間20ミリ秒での強度を上記したような所定の範囲内とすることで、広範な発泡倍率において、所望の柔軟性を確保しながら耐衝撃性等の機械強度を向上させることが可能になる。
 また、発泡シートは、上記した範囲内でも発泡倍率を低くすることで、機械強度が高くなり耐久性をより向上させやすくなる。そのような観点から発泡シートの発泡倍率は、さらに好ましくは1.5~3cm/gである。
 また、発泡シートは、柔軟性の観点からは、発泡倍率は高いほうがよく、その観点からは、7~12cm/gが好ましい。
 なお、本発明では、JISK7222に従い発泡シートの見かけ密度を求め、その逆数を発泡倍率とする。
(独立気泡率)
 発泡シートは、気泡が独立気泡であることが好ましい。気泡が独立気泡であるとは、全気泡に対する独立気泡の割合(独立気泡率という)が70%以上となることを意味する。独立気泡率は、好ましくは75%以上、より好ましくは90%以上である。
 独立気泡率は、ASTMD2856(1998)に準拠して求めることができる。市販の測定器では、乾式自動密度計アキュピック1330などが挙げられる。
 独立気泡率は、より具体的には下記の要領で測定される。発泡シートから一辺が5cmの平面正方形状で、且つ一定厚みの試験片を切り出す。試験片の厚みを測定し、試験片の見掛け体積Vを算出するとともに試験片の重量Wを測定する。次に、気泡の占める見掛け体積Vを下記式に基づいて算出する。なお、試験片を構成している樹脂の密度は、1g/cmとする。
   気泡の占める見掛け体積V=V-W
 続いて、試験片を23℃の蒸留水中に水面から100mmの深さに沈めて、試験片に15kPaの圧力を3分間に亘って加える。しかる後、試験片を水中から取り出して試験片の表面に付着した水分を除去し、試験片の重量Wを測定し、下記式に基づいて連続気泡率F及び独立気泡率Fを算出する。
   連続気泡率F(%)=100×(W-W)/V
   独立気泡率F(%)=100-F
(発泡シートの寸法)
 発泡シートの厚さは、0.02~0.8mmであることが好ましい。本発明では、このように比較的広い厚さ範囲内でも、上記した時間20ミリ秒での強度を所定の範囲内とすることで、発泡シートの柔軟性を確保しながら耐衝撃性等の機械強度を向上させることが可能になる。また、発泡シートの厚さは、0.08~0.50mmであることがより好ましく、0.10~0.40mmであることがさらに好ましい。
 発泡シートは、特に限定されないが、細線状に加工したものでもよく、例えば発泡シートの幅を10mm以下にして使用してもよい。また、例えば5mm以下、さらには1mm以下であってもよい。発泡シートの幅を狭くすると、小型化された電子機器内部において好適に使用することが可能である。また、本発明の発泡シートは、幅を狭くしても、耐久性が良好に維持される。発泡シートの幅の下限値は特に限定されないが、例えば0.1mm以上のものであってもよいし、0.2mm以上のものであってもよい。なお、発泡シートの平面形状は、特に限定されず、細長矩形状、枠状、L字状、コの字状等でもよいし、四角形、円形等いかなる形状であってもよい。
(機械的特性)
 発泡シートの25%圧縮強度は、10~2000kPaであることが好ましく、1000~1500kPaであることがより好ましく、500~1500kPaがさらに好ましい。25%圧縮強度を2000kPa以下とすることで、発泡シートに衝撃吸収性、シール性を持たせ、緩衝吸収材及びシール材として好適に使用可能になる。また、圧縮強度を高くすることで機械強度を良好にしやすくなる。なお、25%圧縮強度は、発泡シートをJISK6767に準拠して測定したものをいう。
 発泡シートは、層間剥離強度が0.7MPa以上であることが好ましく、0.8MPa以上であることがさらに好ましく、4.5MPa以上であることがより好ましい。なお、層間剥離強度の値は、後述する実施例の方法に従って測定したものである。
 また、発泡シートは、層間剥離強度(MPa)を見かけ密度(g/cm3)で割った値(層間剥離強度/密度)が、8以上であることが好ましく、8.5以上であることがより好ましい。層間剥離強度/密度が高いほど、同じ見かけ密度でありながらも層間剥離強度が高いことを示し、柔軟性と機械強度の両立を図りやすいことを意味する。層間剥離強度/密度は、高ければ高いほどよいが、実用的には15以下程度である。
(熱分解型発泡剤)
 本発明の発泡シートは、上記樹脂に加えて、熱分解型発泡剤を含む発泡性組成物を発泡してなることが好ましい。
 熱分解型発泡剤としては、有機発泡剤、無機発泡剤が使用可能である。有機系発泡剤としては、アゾジカルボンアミド、アゾジカルボン酸金属塩(アゾジカルボン酸バリウム等)、アゾビスイソブチロニトリル等のアゾ化合物、N,N’-ジニトロソペンタメチレンテトラミン等のニトロソ化合物、ヒドラゾジカルボンアミド、4,4’-オキシビス(ベンゼンスルホニルヒドラジド)、トルエンスルホニルヒドラジド等のヒドラジン誘導体、トルエンスルホニルセミカルバジド等のセミカルバジド化合物等が挙げられる。
 無機系発泡剤としては、酸アンモニウム、炭酸ナトリウム、炭酸水素アンモニウム、炭酸水素ナトリウム、亜硝酸アンモニウム、水素化ホウ素ナトリウム、無水クエン酸モノソーダ等が挙げられる。
 これらの中では、微細な気泡を得る観点、及び経済性、安全面の観点から、アゾ化合物が好ましく、アゾジカルボンアミドが特に好ましい。これらの熱分解型発泡剤は、単独で又は2以上を組み合わせて使用することができる。
 発泡性組成物における熱分解型発泡剤の配合量は、樹脂100質量部に対して、好ましくは1~15質量部、より好ましくは1~12質量部、さらに好ましくは1.5~5質量部である。
 また、発泡性組成物は、上記樹脂と熱分解型発泡剤に加えて、気泡核調整剤を含有することが好ましい。気泡核調整剤としては、酸化亜鉛、ステアリン酸亜鉛等の亜鉛化合物、クエン酸、尿素の有機化合物等が挙げられるが、これらの中では、酸化亜鉛がより好ましい。気泡核調整剤の配合量は、樹脂100質量部に対して、好ましくは0.4~8質量部、より好ましくは0.5~5質量部、さらに好ましくは0.8~2.5質量部である。気泡核調整剤を配合することで、微細気泡の気泡径のばらつきを抑えることが可能になる。
 発泡性組成物は、必要に応じて、上記以外にも、酸化防止剤、熱安定剤、着色剤、難燃剤、帯電防止剤、充填材等の発泡体に一般的に使用する添加剤を含有していてもよい。
[発泡シートの製造方法]
 発泡シートの製造方法は、特に制限はないが、例えば、ポリオレフィン樹脂および熱分解型発泡剤を含み、かつ架橋された発泡性組成物を加熱し、熱分解型発泡剤を発泡させることで製造する。また、発泡させた発泡性組成物は、さらに延伸させてもよいし、延伸させなくてもよい。発泡シートは、延伸させることで、厚さを比較的薄くすることが可能である。また、耐久性を良好に維持しつつ、発泡シートの柔軟性を高めやすくなる。
 発泡シートの製造方法は、より具体的には、以下の工程(1)~(3)を含む。
工程(1):ポリオレフィン樹脂、及び熱分解型発泡剤を含む添加剤を混合して、シート状の発泡性組成物(樹脂シート)に成形する工程
工程(2):シート状の発泡性組成物に電離性放射線を照射して発泡性組成物を架橋させる工程
工程(3):架橋させた発泡性組成物を加熱し、熱分解型発泡剤を発泡させて、気泡を形成する工程
 工程(1)において、樹脂シートを成形する方法は、特に限定されないが、例えば、ポリオレフィン樹脂及び添加剤を押出機に供給して溶融混練し、押出機から発泡性組成物をシート状に押出すことによって樹脂シートを成形すればよい。
 工程(2)において発泡性組成物を架橋する方法としては、樹脂シートに電子線、α線、β線、γ線等の電離性放射線を照射する方法を用いる。上記電離放射線の照射量は、得られる発泡シートの架橋度が上記した所望の範囲となるように調整すればよいが、5~15Mradであることが好ましく、6~13Mradであることがより好ましく、6~8Mradであることがさらに好ましい。
 本製造方法においては、架橋後の樹脂シートの抗張力を高くすることが好ましい。架橋後の樹脂シートの抗張力を高くすると、その原理は定かではないが、パルスNMRによる時間20ミリ秒での強度を低くしやすくなる。架橋後の樹脂シートの抗張力は、110℃において、好ましくは0.2~0.7MPa、より好ましくは0.25~0.60MPa、さらに好ましくは0.25~0.50MPaである。なお、架橋後の樹脂シートの抗張力は、樹脂の種類を上記したものとしつつ、電離放射線の照射量などを調整することで上記範囲内とすることが可能である。
 工程(3)において、発泡性組成物を加熱し熱分解型発泡剤を発泡させるときの加熱温度は、熱分解型発泡剤の発泡温度以上であればよいが、好ましくは200~300℃、より好ましくは220~280℃である。
また、本製造方法は、MD方向又はTD方向のいずれか一方又は双方の方向に発泡シートを延伸する工程(工程(4))を含んでもよい。
 工程(4)における発泡シートの延伸は、樹脂シートを発泡させて発泡シートを得た後に行ってもよいし、樹脂シートを発泡させつつ行ってもよい。なお、樹脂シートを発泡させて発泡シートを得た後、発泡シートを延伸する場合には、発泡シートを冷却することなく発泡時の溶融状態を維持したまま続けて発泡シートを延伸してもよく、発泡シートを冷却した後、再度、発泡シートを加熱して溶融又は軟化状態とした上で発泡シートを延伸してもよい。延伸時に発泡シートは、例えば100~280℃、好ましくは150~260℃に加熱すればよい。
 ただし、本製造方法は、上記に限定されずに、上記以外の方法により、発泡シートを得てもよい。例えば、電離性放射線を照射する代わりに、発泡性組成物に予め有機過酸化物を配合しておき、発泡性組成物を加熱して有機過酸化物を分解させる方法等により架橋を行ってもよい。
 発泡シートの用途は、特に限定されないが、例えば電子機器内部で使用することが好ましい。本発明の発泡シートは、薄くしても高い耐久性を有するので、特に、発泡シートを配置するスペースが小さい各種の携帯電子機器内部で好適に使用できる。携帯電子機器としては、携帯電話、カメラ、ゲーム機器、電子手帳、タブレット端末、ノート型パーソナルコンピュータ等が挙げられる。発泡シートは、電子機器内部において、衝撃吸収材、シール材として使用可能である。また、発泡シートを基材とする粘着テープに使用してもよい。
[粘着テープ]
 本発明の粘着テープは、例えば、発泡シートと、発泡シートの少なくともいずれか一方の面に設けた粘着剤層とを備えるものであるが、両面に粘着剤層を設けた両面粘着テープが好ましい。
 粘着テープを構成する粘着剤層の厚さは、5~200μmであることが好ましい。粘着剤層の厚さは、より好ましくは7~150μmであり、更に好ましくは10~100μmである。粘着剤層の厚さが5~200μmの範囲であると、粘着テープを用いて固定した構成体の厚さを薄くできる。
 粘着剤層に使用する粘着剤としては、特に制限はなく、例えば、アクリル系粘着剤、ウレタン系粘着剤、ゴム系粘着剤等を用いることができる。
 また、粘着剤層の上には、さらに離型紙等の剥離シートが貼り合わされてもよい。
 発泡シートの少なくとも一面に粘着剤層を形成する方法は、特に限定されないが、例えば、発泡シートの少なくとも一面にコーター等の塗工機を用いて粘着剤を塗布する方法、発泡シートの少なくとも一面にスプレーを用いて粘着剤を噴霧、塗布する方法、発泡シートの少なくとも一面に刷毛を用いて粘着剤を塗布する方法などが挙げられる。また、剥離シート上に形成した粘着剤層を発泡シートの少なくとも一面に転写する方法等も挙げられる。
 本発明を実施例により更に詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
[測定方法]
 各物性の測定方法及び評価方法は、次の通りである。
<時間20ミリ秒での強度>
 パルスNMRHahnEcho法測定による時間20ミリ秒での強度を測定した。測定条件は、以下のとおりである。
(パルスNMR Hahn Echo法測定)
BrukerBiospin社製パルスNMR:Minispecmq20を用いて測定を実施した。
1)サンプル
 発泡シート100~500mgを直径10mmのNMR管に量り取り測定に用いた。サンプルをパルスNMR装置に設置し、120℃で10時間以上養生した。
2)測定条件 
Hahn Echo法 
First90°-180°Pulse Separation:0.01msec
Final Pulse Separation:50msec
Number of Data Poins Fitting:50points
Scans:8~64times 
温度:120℃
(時間20ミリ秒での強度の算出)
 上記手法で得られた、横磁化ベクトルの減衰曲線(緩和曲線)の横軸(時間)が20ミリ秒の強度を読み取り、時間20ミリ秒での強度とした。
<見かけ密度及び発泡倍率>
 発泡シートについてJISK7222に準拠して見かけ密度を測定し、その逆数を発泡倍率とした。
<架橋度>
 発泡シートから約100mgの試験片を採取し、試験片の重量A(mg)を精秤する。次に、この試験片を120℃のキシレン30cm中に浸漬して24時間放置した後、200メッシュの金網で濾過して金網上の不溶解分を採取、真空乾燥し、不溶解分の重量B(mg)を精秤する。得られた値から、下記式により架橋度(質量%)を算出した。
      架橋度(質量%)=100×(B/A)
<25%圧縮強度>
 発泡シートについてJISK6767に準拠して25%圧縮強度を測定した。
<架橋後の樹脂シートの抗張力>
 架橋後の樹脂シートの抗張力は、110℃の環境下、JIS K 7161に準拠して測定した。
<層間剥離強度>
(層間剥離強度測定用サンプルの作製)
 図1に示すように、発泡シート7の25mm角範囲にプライマー(セメダイン株式会社製「PPXプライマー」)を塗布した後、塗布部分の中央に直径5mm分の接着剤8(セメダイン株式会社製「PPX」)を滴下した。その後直ちに、接着剤滴下部分に25mm角のアルミ製の治具9を置き、発泡シート7と治具9とを接着剤8により圧着した。その後、治具9の大きさに沿って発泡シートをカットした。カットした発泡シート7の治具9を接着していない面にプライマーを塗布し、塗布部分の中央に直径5mm分の接着剤10を滴下した。その後直ちに、接着剤滴下部分に10mm角のアルミ製の治具11を置き、発泡シート7と治具11とを接着剤10により圧着した。治具11の周辺にはみ出した接着剤をふき取った後、治具11の大きさに沿って発泡シートに切り込み12を入れた。これを室温で30分間放置することで接着剤を養生し、層間剥離強度測定用サンプルとした。
(層間剥離強度の測定)
 続いて、1kNのロードセルを設置した試験機(株式会社エー・アンド・デイ製「テンシロン万能材料試験機」)に、発泡シート7のシート面が引張方向に対して垂直になるように層間剥離強度測定用サンプルを取り付けた。治具9を速度100mm/分で垂直上向きに引っ張り、発泡シートの1cm角の範囲のみを層間剥離させた。このときの最大荷重を測定し、1回目の測定結果とした。同様の操作を3回繰り返し、その平均値を層間剥離強度とした。
<層間剥離強度/密度>
 上記で得られた層間剥離強度(MPa)を、見かけ密度(g/cm3)で割った値を、層間剥離強度/密度として算出した。層間剥離強度/密度が8以上であると、同程度の見かけ密度の発泡シートに対して機械強度が良好になるとして“A”と評価した。一方で、8未満であると、同程度の見かけ密度の発泡シートに対して機械強度が良好にならないとして“B”と評価した。さらに、良好な発泡性が見られず、シート状の発泡体が作製できなかったものを“C”と評価した。
[実施例1]
 メタロセン化合物の重合触媒によって得られた直鎖状低密度ポリエチレン樹脂(ダウケミカル社製、商品名「アフィニティーPL1850」、密度:0.902g/cm)100質量部と、熱分解型発泡剤としてのアゾジカルボンアミド2.1質量部と、気泡核調整剤としての酸化亜鉛1.0質量部と、酸化防止剤0.5質量部とを押出機に供給した。押出機において、これらを130℃で溶融混練し、厚さが250μmの長尺状の樹脂シートに押出した。
 次に、上記長尺状の樹脂シートの両面に加速電圧500kVの電子線を7Mrad照射して樹脂シートを架橋した。架橋した樹脂シートの110℃下での抗張力は、0.3MPaであった。その後、架橋した樹脂シートを熱風及び赤外線ヒーターにより250℃に保持された発泡炉内に連続的に送り込んで加熱して発泡させて、厚さ300μmの発泡シートを得た。
 次いで、得られた発泡シートを発泡炉から連続的に送り出した後、この発泡シートをその両面の温度が200~250℃となるように維持した状態で、TD方向、MD方向に延伸して変形させ厚さ150μmの発泡シートを得た。得られた発泡シートを上記評価方法に従って評価し、その結果を表1に示す。
[実施例2]
 熱分解型発泡剤の配合量を10質量部に変更し、かつ発泡シートをTD、MD方向に延伸させなかった点を除いて実施例1と同様に実施した。
[実施例3]
 電子線照射量を6.2Mradに変更した点を除いて実施例1と同様に実施した。
[実施例4]
 樹脂組成を上記した直鎖状低密度ポリエチレン樹脂30質量部と、エチレン-酢酸ビニル共重合体(東ソー株式会社製「ウルトラセン636」、酢酸ビニル含有率:19質量%)70質量部とに変更した点を除いて実施例1と同様に実施した。
[実施例5]
 樹脂組成を上記した直鎖状低密度ポリエチレン樹脂30質量部と、エチレン-酢酸ビニル共重合体(東ソー株式会社製「ウルトラセン636」)70質量部とに変更し、かつ熱分解型発泡剤の配合量を5.5質量部に変更し、さらに発泡シートをTD、MD方向に延伸させなかった点を除いて実施例1と同様に実施した。
[比較例1]
 発泡剤の配合量を1.6質量部に変更し、電子線照射量を4.2Mradとした点を除いて実施例1と同様に実施した。
[比較例2]
 熱分解型発泡剤の配合量を7.5質量部に変更し、電子線照射量を4.5Mradとし、発泡シートをTD、MD方向に延伸させなかった点を除いて比較例1と同様に実施した。
[比較例3]
 熱分解型発泡剤の配合量を4.5質量部に変更し、かつ発泡シートをTD、MD方向に延伸させなかった点を除いて比較例1と同様に実施した。
[比較例4]
 電子線照射量を9.0Mradとした以外は、実施例1と同様に実施したが、発泡シートが得られなかった。
Figure JPOXMLDOC01-appb-T000001
 以上のように、実施例1~5では、パルスNMR測定による時間20ミリ秒での強度が所定の範囲内であったため、層間剥離強度/密度が8以上となり、柔軟性と機械強度のいずれも良好にすることができた。それに対して、比較例1~3では、パルスNMR測定による時間20ミリ秒での強度が大きくなったため、層間剥離強度/密度が8未満となり、柔軟性と機械強度の両方を良好にすることができなかった。また、比較例4では、パルスNMR測定による時間20ミリ秒での強度が小さかったため、発泡状態の制御が難しく、発泡体シートとして実用的に製造することが難しかった。
 7 発泡シート
 8 接着剤
 9 治具
 10 接着剤
 11 治具
 12 切り込み

Claims (11)

  1.  ポリオレフィン樹脂を含む発泡性組成物を発泡させてなるポリオレフィン系発泡シートであって、パルスNMRHahnEcho法測定による時間20ミリ秒での強度が0.02~0.07の範囲にあるポリオレフィン系発泡シート。
  2.  前記ポリオレフィン樹脂がポリエチレン樹脂である、請求項1に記載のポリオレフィン系発泡シート。
  3.  前記ポリオレフィン樹脂が、メタロセン化合物の重合触媒で重合された直鎖状低密度ポリエチレンを含む請求項1又は2に記載のポリオレフィン系発泡シート。
  4.  前記ポリオレフィン樹脂が、さらにエチレン-酢酸ビニル共重合体を含む請求項3に記載のポリオレフィン系発泡シート。
  5.  架橋度が30~70質量%である、請求項1~4のいずれか1項に記載のポリオレフィン系発泡シート。
  6.  厚さが0.02~0.8mmである、請求項1~5のいずれか1項に記載のポリオレフィン系発泡シート。
  7.  発泡倍率が1.2~12cm/gである、請求項1~6のいずれか1項に記載のポリオレフィン系発泡シート。
  8.  熱分解型発泡剤をさらに含む発泡性組成物を発泡してなる請求項1~7のいずれか1項に記載のポリオレフィン系発泡シート。
  9.  請求項1~8のいずれか1項に記載のポリオレフィン系発泡シートの製造方法であって、ポリオレフィン系樹脂及び熱分解型発泡剤を含み、かつ架橋された発泡性組成物を加熱し、前記熱分解型発泡剤を発泡させるポリオレフィン系発泡シートの製造方法。
  10.  前記発泡性組成物を発泡させ、さらに延伸させる請求項9に記載のポリオレフィン系発泡シートの製造方法。
  11.  請求項1~8のいずれか1項に記載のポリオレフィン系発泡シートと、前記ポリオレフィン系発泡シートの少なくともいずれか一方の面に設けた粘着剤層とを備える粘着テープ。
PCT/JP2018/012812 2017-03-31 2018-03-28 ポリオレフィン系発泡シート、その製造方法及び粘着テープ WO2018181498A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880021353.6A CN110461922A (zh) 2017-03-31 2018-03-28 聚烯烃系发泡片、其制造方法及胶带
JP2018519888A JP7201431B2 (ja) 2017-03-31 2018-03-28 ポリオレフィン系発泡シート、その製造方法及び粘着テープ
KR1020197028004A KR102597457B1 (ko) 2017-03-31 2018-03-28 폴리올레핀계 발포 시트, 그 제조 방법 및 점착 테이프

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017071385 2017-03-31
JP2017-071385 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018181498A1 true WO2018181498A1 (ja) 2018-10-04

Family

ID=63676004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012812 WO2018181498A1 (ja) 2017-03-31 2018-03-28 ポリオレフィン系発泡シート、その製造方法及び粘着テープ

Country Status (4)

Country Link
JP (1) JP7201431B2 (ja)
KR (1) KR102597457B1 (ja)
CN (1) CN110461922A (ja)
WO (1) WO2018181498A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020581A1 (ja) * 2019-07-31 2021-02-04 積水化学工業株式会社 ポリオレフィン系樹脂発泡体シート及びそれを用いた粘着テープ
WO2021201044A1 (ja) * 2020-03-31 2021-10-07 積水化学工業株式会社 発泡体シート

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152222A1 (ja) * 2014-03-31 2015-10-08 積水化学工業株式会社 ポリオレフィン系発泡シート及び粘着テープ
WO2016052556A1 (ja) * 2014-09-30 2016-04-07 積水化学工業株式会社 ポリオレフィン系樹脂発泡シート及び粘着テープ
WO2016052557A1 (ja) * 2014-09-30 2016-04-07 積水化学工業株式会社 ポリオレフィン系樹脂発泡シート及び粘着テープ
JP2017061669A (ja) * 2015-03-31 2017-03-30 積水化学工業株式会社 ポリオレフィン系樹脂発泡シート及び粘着テープ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281827A (ja) 1999-03-31 2000-10-10 Toray Ind Inc ポリオレフィン系架橋発泡体の製造方法
KR100563253B1 (ko) 2003-07-11 2006-03-27 한국과학기술원 미소간극 내 자기장을 이용한 탄소나노튜브 정렬방법과이를 이용한 탄소나노튜브 팁 제작방법
JP2011173941A (ja) 2010-02-23 2011-09-08 Toray Ind Inc ポリオレフィン系樹脂架橋発泡体
CN104774356B (zh) * 2014-01-14 2020-10-30 积水化学工业株式会社 发泡体及发泡体的制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152222A1 (ja) * 2014-03-31 2015-10-08 積水化学工業株式会社 ポリオレフィン系発泡シート及び粘着テープ
WO2016052556A1 (ja) * 2014-09-30 2016-04-07 積水化学工業株式会社 ポリオレフィン系樹脂発泡シート及び粘着テープ
WO2016052557A1 (ja) * 2014-09-30 2016-04-07 積水化学工業株式会社 ポリオレフィン系樹脂発泡シート及び粘着テープ
JP2017061669A (ja) * 2015-03-31 2017-03-30 積水化学工業株式会社 ポリオレフィン系樹脂発泡シート及び粘着テープ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020581A1 (ja) * 2019-07-31 2021-02-04 積水化学工業株式会社 ポリオレフィン系樹脂発泡体シート及びそれを用いた粘着テープ
JPWO2021020581A1 (ja) * 2019-07-31 2021-02-04
JP7474704B2 (ja) 2019-07-31 2024-04-25 積水化学工業株式会社 ポリオレフィン系樹脂発泡体シート及びそれを用いた粘着テープ
WO2021201044A1 (ja) * 2020-03-31 2021-10-07 積水化学工業株式会社 発泡体シート

Also Published As

Publication number Publication date
KR20190131039A (ko) 2019-11-25
JPWO2018181498A1 (ja) 2020-02-06
KR102597457B1 (ko) 2023-11-03
JP7201431B2 (ja) 2023-01-10
CN110461922A (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
CN105579501B (zh) 交联聚烯烃系树脂发泡片
JP2020147757A (ja) ポリオレフィン系樹脂発泡シート及び粘着テープ
US11046871B2 (en) Polyolefin resin foam sheet and adhesive tape
JP2013213104A (ja) 架橋ポリオレフィン樹脂発泡シート
JP7145069B2 (ja) 多層発泡シート、多層発泡シートの製造方法、及び粘着テープ
JP2019137795A (ja) 発泡シート、及び粘着テープ
US11352525B2 (en) Polyolefin resin foamed sheet and adhesive tape
KR102557823B1 (ko) 수지 발포 시트, 수지 발포 시트의 제조 방법, 및 점착 테이프
JP2019218563A (ja) ポリオレフィン系樹脂発泡シート及び粘着テープ
JP7071848B2 (ja) 発泡シート、及び粘着テープ
WO2018181498A1 (ja) ポリオレフィン系発泡シート、その製造方法及び粘着テープ
JP6625032B2 (ja) 独立気泡樹脂発泡体及びその製造方法
JP6918701B2 (ja) ポリオレフィン系発泡シート、その製造方法及び粘着テープ
JP6901476B2 (ja) 架橋樹脂発泡シート、その製造方法、及び粘着テープ
JP7188896B2 (ja) 電子部品用クッション材及び電子部品用粘着テープ
JP7209473B2 (ja) 樹脂発泡シート及び粘着テープ
JP6789053B2 (ja) 樹脂発泡シート、樹脂発泡シートの製造方法、及び粘着テープ
JP2020023723A (ja) 独立気泡樹脂発泡体及びその製造方法
JP2019065191A (ja) 樹脂発泡シート、樹脂発泡シートの製造方法、及び粘着テープ
JP2018135473A (ja) 樹脂発泡シート及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018519888

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18778158

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197028004

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18778158

Country of ref document: EP

Kind code of ref document: A1