WO2018181393A1 - Laminate and manufacturing method of organic solar battery - Google Patents

Laminate and manufacturing method of organic solar battery Download PDF

Info

Publication number
WO2018181393A1
WO2018181393A1 PCT/JP2018/012571 JP2018012571W WO2018181393A1 WO 2018181393 A1 WO2018181393 A1 WO 2018181393A1 JP 2018012571 W JP2018012571 W JP 2018012571W WO 2018181393 A1 WO2018181393 A1 WO 2018181393A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
organic solar
solar cell
support
adhesive layer
Prior art date
Application number
PCT/JP2018/012571
Other languages
French (fr)
Japanese (ja)
Inventor
聡 前田
祐二 柴田
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2019509933A priority Critical patent/JP7070551B2/en
Priority to CN201880017294.5A priority patent/CN110431648B/en
Publication of WO2018181393A1 publication Critical patent/WO2018181393A1/en
Priority to JP2021205542A priority patent/JP2022049017A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a laminate and a method for producing an organic solar cell.
  • organic solar cells such as dye-sensitized solar cells and perovskite solar cells have attracted attention as photoelectric conversion elements that convert light energy into electric power.
  • a dye-sensitized solar cell includes a working electrode (photoelectrode), a counter electrode (counter electrode), a sensitizing dye layer carried on the working electrode, and an electrolyte layer disposed between the working electrode and the counter electrode.
  • Perovskite solar cells generally have a working electrode (negative electrode), a counter electrode (positive electrode), a perovskite crystal layer, an electron accepting layer, and a hole accepting layer.
  • a resin film is used as a substrate constituting an electrode.
  • handling properties are poor, positioning is difficult, displacement occurs during patterning and bonding, and the production efficiency decreases. .
  • Patent Document 1 proposes holding a working electrode substrate on a transport plate via an ionic liquid.
  • Patent Document 1 if the working electrode substrate is held on the transport plate via the ionic liquid, there is a problem that the back surface of the substrate needs to be cleaned.
  • the resin film when the resin film is fixed on the support by the adhesive layer, it is bent to the resin film of the organic solar cell substrate when the support is peeled off from the resin film after completion of the predetermined manufacturing process of the organic solar cell. There is also a problem that the organic solar cell is damaged.
  • the present invention efficiently reduces the risk of damage to the resin film or the constituent member of the organic solar cell formed on the resin film or the organic solar cell. It aims at providing the manufacturing method of the organic solar cell using the laminated body which can manufacture an organic solar cell, and the said laminated body.
  • the laminate according to the present invention is in turn, Resin film as organic solar cell substrate, It is a laminate including a resin adhesive layer containing a resin adhesive and a support,
  • the said support body is a laminated body which has a through-hole which connects the surface which contacts the said resin adhesive layer of the said support body, and surfaces other than the said surface of the said support body.
  • the laminate according to the present invention has a through-hole that connects the surface of the resin-based pressure-sensitive adhesive layer that contacts the support and the surface that contacts the resin film,
  • the through hole of the resin-based pressure-sensitive adhesive layer is preferably present at a position overlapping with the through-hole existing on the surface of the support that contacts the resin-based pressure-sensitive adhesive layer when viewed from the stacking direction.
  • the through-hole present on the surface of the support that contacts the resin-based adhesive layer does not overlap with the portion that forms the wiring pattern on the resin film when viewed from the lamination direction. Is preferred.
  • the area of the through hole existing on the surface of the support that contacts the resin-based adhesive layer is 0.007 mm 2 or more, and the through hole is 200 cm on the surface. per 2, it is preferable that there are one or more.
  • the method for manufacturing an organic solar cell according to the present invention is a method for manufacturing an organic solar cell, which includes a step of injecting a fluid into the through hole of the support of the laminate described above.
  • the fluid is preferably air.
  • the organic solar cell is preferably a dye-sensitized solar cell.
  • the present invention when a resin film is used as the substrate, the risk of damage to the resin film or the constituent member of the organic solar cell formed on the resin film or the organic solar cell can be reduced efficiently.
  • the laminated body which can manufacture an organic solar cell, and the manufacturing method of the organic solar cell using the said laminated body can be provided.
  • FIG. 1 is a schematic perspective view of an example of a laminate according to the present invention.
  • FIG. 2A is a schematic top view of another example of the laminate according to the present invention.
  • FIG. 2B is a schematic cross-sectional view taken along line AA of the laminate of FIG. 2A.
  • FIG. 3 is a schematic cross-sectional view of another example of a laminate according to the present invention.
  • a numerical range is intended to include the lower limit and the upper limit of the range unless otherwise specified.
  • 2 to 80 nm is intended to include a lower limit of 2 nm and an upper limit of 80 nm, and means 2 nm to 80 nm.
  • a dye-sensitized solar cell typically has a photoelectrode (working electrode), a counter electrode (counter electrode), and an electrolyte layer.
  • the dye-sensitized solar cell may optionally have a known functional layer such as a protective layer, an antireflection layer, or a gas barrier layer on one or both of the photoelectrode and the counter electrode.
  • a well-known separator for short circuit prevention may be used to be used to be used.
  • the photoelectrode may be any electrode that receives light and can emit electrons to an external circuit, and a known photoelectrode for a dye-sensitized solar cell can be used.
  • the photoelectrode typically includes a photoelectrode substrate, a conductive film formed on the photoelectrode substrate, a porous semiconductor fine particle layer formed on the conductive film, and a surface of the porous semiconductor fine particle layer. And a sensitizing dye layer formed by adsorbing a sensitizing dye.
  • the photoelectrode substrate plays a role of supporting a porous semiconductor fine particle layer and the like and a role of a current collector.
  • substrate what laminated
  • a known resin film or glass substrate can be used as the substrate.
  • the resin film include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), syndiotactic polystyrene (SPS), polyphenylene sulfide (PPS), polycarbonate (PC), polyarylate (PAr), polysulfone (PSF), Examples thereof include those obtained by molding a resin composition containing a synthetic resin such as polyester sulfone (PES), polyetherimide (PEI), transparent polyimide (PI), and cycloolefin polymer (COP).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • SPS syndiotactic polystyrene
  • PPS polyphenylene sulfide
  • PC polycarbonate
  • PAr polyarylate
  • PSF polysulfone
  • Examples thereof include those obtained by molding a resin composition containing a synthetic resin such as polyester sulfone (PES
  • Examples of the material constituting the conductive film include metals such as platinum, gold, silver, copper, aluminum, indium, and titanium; conductive metal oxides such as tin oxide and zinc oxide; indium-tin oxide (ITO), Examples thereof include composite metal oxides such as indium-zinc oxide (IZO).
  • metals such as platinum, gold, silver, copper, aluminum, indium, and titanium
  • conductive metal oxides such as tin oxide and zinc oxide
  • ITO indium-tin oxide
  • ITO indium-tin oxide
  • Examples thereof include composite metal oxides such as indium-zinc oxide (IZO).
  • the porous semiconductor fine particle layer is a porous layer containing semiconductor fine particles.
  • the porous semiconductor fine particle layer is a porous layer containing semiconductor fine particles.
  • semiconductor fine particles examples include metal oxide particles such as titanium oxide, zinc oxide, and tin oxide.
  • the particle diameter of semiconductor fine particles (average particle diameter of primary particles) is preferably 2 to 80 nm, more preferably 2 to 60 nm.
  • the surface area is large and the amount of the sensitizing dye supported is large, so that the electrolytic solution constituting the electrolytic solution layer can diffuse to the details of the porous semiconductor fine particle layer.
  • the solid content concentration contained in the semiconductor fine particle dispersion is 0.1 to 60 wt%, preferably 0.5 to 40 wt%, and more preferably 1.0 to 25 wt%.
  • the thickness of the porous semiconductor fine particle layer is not particularly limited, but is usually 0.1 to 50 ⁇ m, preferably 5 to 30 ⁇ m, more preferably 15 ⁇ m or less.
  • the porous semiconductor fine particle layer may be a single layer or a stack of two or more layers. The particle size and composition of the semiconductor fine particles in these layers may be different.
  • the sensitizing dye layer is a layer formed by adsorbing a compound (sensitizing dye) that can be excited by light to pass electrons to the porous semiconductor fine particle layer on the surface of the porous semiconductor fine particle layer.
  • Sensitizing dyes include organic dyes such as cyanine dyes, merocyanine dyes, oxonol dyes, xanthene dyes, squarylium dyes, polymethine dyes, coumarin dyes, riboflavin dyes, perylene dyes; metal phthalocyanine complexes such as iron, copper, ruthenium, and porphyrins. Metal complex dyes such as complexes; and the like. Two or more kinds of dyes may be mixed and used.
  • the solvent used to dissolve the sensitizing dye is particularly a solvent that can dissolve the sensitizing dye and does not dissolve the porous semiconductor fine particle layer or react with the semiconductor fine particles. Not limited.
  • Preferred examples of the solvent include alcohols, nitriles, halogenated hydrocarbons, ethers, amides, esters, carbonates, ketones, hydrocarbons, aromatics, nitromethanes and the like.
  • Preferred examples of the solvent used for dissolving the sensitizing dye in the present invention include methanol, ethanol, isopropanol, 1-methoxy-2-propanol, n-butanol, t-butanol, butoxyethanol, N, N-dimethylformamide, N-methylpyrrolidone, acetone, methyl ethyl ketone, methyl isobutyl ketone, 3-methoxypropiontonyl, butyronitrile, propiolactone, ⁇ -butyrolactone, toluene, DMSO and the like can be mentioned.
  • the concentration of the sensitizing dye in the dye solution is preferably 0.01 mM to 10 mM, more preferably 0.1 mM to 10 mM.
  • the total amount of dye adsorbed is preferably 0.01 to 100 M per unit surface area (1 m 2 ) of the conductive support.
  • the amount of the dye adsorbed on the semiconductor fine particles is preferably in the range of 0.001M to 1M per gram of semiconductor fine particles.
  • cationic compounds for example, tertiary ammonium compounds, quaternary ammonium compounds, pyridine compounds, imidazolium compounds, acid compounds (for example, cholic acid, deoxychol)
  • carboxylic acid compound such as an acid, a phosphoric acid compound, a phosphonic acid compound, a sulfonic acid compound, etc.
  • concentration of these in the dye solution is preferably 0.1 mM to 100 mM.
  • the molar equivalent is preferably 1 to 1000 molar equivalents.
  • a cleaning method there are a method of spraying a solvent on a dye-sensitized porous semiconductor fine particle layer and washing it away, or a method of immersing a substrate on which a dye-sensitized porous semiconductor fine particle layer is formed in a cleaning solvent tank.
  • the substrate on which the dye-sensitized porous semiconductor fine particle layer thus obtained is formed can be further dried to obtain a photoelectrode.
  • the drying conditions are not particularly limited, but preferably 30 ° C. to 150 ° C. for 0.5 minutes to 30 minutes.
  • the counter electrode includes a counter electrode substrate and a conductive film on the counter electrode substrate.
  • a catalyst layer may be provided on the conductive film.
  • the counter electrode substrate is the same as the resin film or glass mentioned in the photoelectrode.
  • Examples of the material constituting the conductive film include metals such as platinum, gold, silver, copper, aluminum, indium, and titanium; conductive metal oxides such as tin oxide and zinc oxide; indium-tin oxide (ITO), Examples thereof include composite metal oxides such as indium-zinc oxide (IZO); carbon materials such as carbon nanotubes and fullerenes.
  • metals such as platinum, gold, silver, copper, aluminum, indium, and titanium
  • conductive metal oxides such as tin oxide and zinc oxide
  • ITO indium-tin oxide
  • ITO indium-tin oxide
  • Examples thereof include composite metal oxides such as indium-zinc oxide (IZO); carbon materials such as carbon nanotubes and fullerenes.
  • a known catalyst layer such as a conductive polymer such as platinum or polythiophene (PEDOT) or a carbon material such as carbon black, graphene, carbon nanotube, or fullerene may be used.
  • PEDOT polythiophene
  • a carbon material such as carbon black, graphene, carbon nanotube, or fullerene
  • the electrolyte layer is a layer for separating the photoelectrode and the counter electrode and efficiently performing charge transfer.
  • the electrolyte layer is not particularly limited, and examples thereof include an electrolytic solution, a gel electrolyte, or a solid electrolyte.
  • the electrolytic solution contains a supporting electrolyte, a redox couple (a pair of chemical species that can be reversibly converted into an oxidized form and a reduced form in a redox reaction), a solvent, and the like.
  • Examples of the supporting electrolyte include salts containing cations such as lithium ions, imidazolium ions, and quaternary ammonium ions.
  • any known one can be used as long as it can reduce the oxidized sensitizing dye.
  • the redox pair chlorine compound-chlorine, iodine compound-iodine, bromine compound-bromine, thallium ion (III) -thallium ion (I), ruthenium ion (III) -ruthenium ion (II), copper ion (II) -Copper ion (I), Iron ion (III)-Iron ion (II), Cobalt ion (III)-Cobalt ion (II), Vanadium ion (III)-Vanadium ion (II), Manganate ion-Permanganate And ions, ferricyanide-ferrocyanide, quinone-hydroquinone, fumaric acid-succinic acid, and the like.
  • the solvent a known solvent for forming an electrolyte layer of a solar cell can be used.
  • the solvent include acetonitrile, methoxyacetonitrile, methoxypropionitrile, N, N-dimethylformamide, ethylmethylimidazolium bistrifluoromethylsulfonylimide, ⁇ -butyrolactone, propylene carbonate, and the like.
  • the organic solar cell may be a perovskite solar cell in addition to the dye-sensitized solar cell described above.
  • a perovskite solar cell typically has a perovskite crystal layer between a working electrode and a counter electrode. In addition, you may have the positive hole transport layer and electron-accepting layer which are located so that a perovskite crystal layer may be pinched
  • Examples of the perovskite solar cell include the perovskite solar cells described in Japanese Patent Application Laid-Open Nos. 2014-049631, 2015-046583, 2016-009737, and the like.
  • the laminate according to the present invention is in turn, Resin film as organic solar cell substrate, It is a laminate including a resin adhesive layer containing a resin adhesive and a support,
  • the said support body is a laminated body which has a through-hole which connects the surface which contacts the said resin adhesive layer of the said support body, and surfaces other than the said surface of the said support body.
  • FIG. 1 is a perspective view schematically showing an example of a laminate according to the present invention.
  • the resin film 30, the resin adhesive layer 20, and the support body 10 are included in order.
  • the support 10 has a through hole 40.
  • FIG. 2A is a schematic top view of another example of the laminate according to the present invention.
  • a plurality of through holes 40 are arranged in the support 10 at regular intervals.
  • FIG. 2B is a schematic cross-sectional view taken along the line AA of the laminate of FIG. 2A.
  • a through hole 40 is present in the support 10, and the through hole 40 is a surface that contacts the resin-based adhesive layer 20 of the support 10 and a surface opposite to the surface of the support 10. Are connected.
  • FIG. 3 is a schematic cross-sectional view of another example of the laminate according to the present invention.
  • this laminate 1 through holes 40 are present in the support 10 and the resin-based pressure-sensitive adhesive layer 20, and the through-holes 40 of the resin-based pressure-sensitive adhesive layer 20 are viewed from the stacking direction. It exists in the position which overlaps with the through-hole 40 which exists in the surface which contacts the layer 20.
  • FIG. 1 is a schematic cross-sectional view of another example of the laminate according to the present invention.
  • through holes 40 are present in the support 10 and the resin-based pressure-sensitive adhesive layer 20, and the through-holes 40 of the resin-based pressure-sensitive adhesive layer 20 are viewed from the stacking direction. It exists in the position which overlaps with the through-hole 40 which exists in the surface which contacts the layer 20.
  • the material of the support is any selected from the group consisting of glass, plastic and metal.
  • the support may be subjected to a surface treatment or the like.
  • glass of the support material examples include borosilicate glass, silicate glass, silica glass, alkali-free glass, and quartz glass.
  • plastic material of the support examples include, for example, acrylic, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), polyester such as liquid crystal polyester, polyethylene ( PE), polypropylene (PP), polybutylene, polymethylpentene (PMP) and other polyolefins, cycloolefin polymers (COP, COC) and other cyclic olefin polymers, styrenic resins, polyoxymethylene (POM), polyamide ( PA), polycarbonate (PC), polymethylene methacrylate (PMMA), polyvinyl chloride (PVC), polyphenylene sulfide (PPS), polyphenylene ether (PPE), modified P E, polyimide (PI), polyamideimide (PAI), polyetherimide (PEI), polysulfone (PSU), polyethersulfone, polyketone (PK), polyetherket
  • Examples of the metal of the support material include stainless steel, iron, aluminum, brass and copper.
  • the thickness of the support may be, for example, 0.5 to 10 mm, and the end face may be subjected to C surface processing or R processing as necessary.
  • the support is a surface other than the surface in contact with the resin-based pressure-sensitive adhesive layer of the support (hereinafter sometimes referred to as the “first surface of the support”) and the surface of the support (the first surface of the support). (Hereinafter, also referred to as “the second surface of the support”). There may be one through hole or a plurality of through holes.
  • the arrangement of the through holes is not particularly limited and can be set as appropriate.
  • it may be regularly arranged at a predetermined interval, may be irregularly arranged, or a combination thereof.
  • the combination is, for example, a case where a plurality of through holes in one row are regularly arranged and a plurality of through holes in another row are arranged irregularly.
  • the second surface of the support may be a surface other than the first surface of the support.
  • the second surface may be a surface opposite to the first surface of the support.
  • the number of the second surface may be one, or two or more.
  • the shape, size and number of through-holes existing on the first surface of the support may be the same as the shape, size (hole diameter) and number of through-holes existing on the second surface of the support, respectively. And may be different.
  • the size of the through hole existing on the first surface of the support may be larger than the size of the through hole existing on the second surface of the support.
  • the connection between the through holes in the support body causes the connection of one through hole existing on the first surface of the support member and two through holes existing on the second surface of the support member.
  • the number of through holes present on one surface may be different from the number of through holes present on the second surface of the support.
  • the through-hole present in the surface (first surface) that contacts the resin-based pressure-sensitive adhesive layer of the support overlaps with the portion that forms the wiring pattern on the resin film as viewed from the lamination direction. It is preferable not to be. Thereby, the danger of the damage of the structural member of an organic solar cell formed on the resin film or the resin film, or an organic solar cell can be reduced more, and an organic solar cell can be manufactured efficiently.
  • the area of the through hole present on the surface (first surface) that contacts the resin-based pressure-sensitive adhesive layer of the support is 0.007 mm 2 or more, and the through hole is It is preferable that one or more exists per 200 cm 2 of the surface (first surface).
  • the area of the through hole is more preferably 0.19 mm 2 to 320 mm 2 , and the shape is preferably a circle or a square, but is not particularly limited thereto. If the area of the through-hole is 0.007 mm 2 or more, it becomes easy to inject a fluid into the through-hole during the peeling process, and the organic solar cell component or the organic solar battery formed on the resin film or the resin film at the time of peeling. The risk of breakage can be reduced.
  • the size of the through hole is 320 mm 2 or less, it is possible to suppress a decrease in the strength of the through hole portion, and to reduce the possibility that the through hole portion is deformed and damaged during the production of the organic solar cell. Furthermore, the presence of one or more through-holes per 200 cm 2 of the first surface can suppress the concentration of stress applied to the resin film during the peeling process, and the risk of damage to the constituent members of the organic solar cell or the organic solar cell Therefore, the organic solar cell can be efficiently manufactured.
  • the resin adhesive layer includes a resin adhesive.
  • a resin adhesive a known resin adhesive can be used.
  • the resin-based pressure-sensitive adhesive layer may or may not have a base material. Regardless of the presence or absence of the base material, the resin-based pressure-sensitive adhesive layer preferably has a light transmittance at a wavelength of 400 nm of the resin-based pressure-sensitive adhesive layer including the base material of 40% or more, and preferably 60% or more. More preferred. Moreover, what formed unevenness
  • Examples of the base material for the resin-based pressure-sensitive adhesive layer include base materials such as polyester such as polyethylene terephthalate, polyimide, cycloolefin polymer (COP, COC), polymethylpentene, and thin film glass. In particular, those having excellent heat resistance and transparency are preferable.
  • base materials such as polyester such as polyethylene terephthalate, polyimide, cycloolefin polymer (COP, COC), polymethylpentene, and thin film glass. In particular, those having excellent heat resistance and transparency are preferable.
  • the resin adhesive of the resin adhesive layer is not particularly limited and may be appropriately selected.
  • resin adhesives are silicone resin adhesives, acrylic resin adhesives, urea resin adhesives, melamine resin adhesives, phenol resin adhesives, vinyl acetate resin solvent adhesives, natural rubber adhesives Solvent adhesive, vinyl acetate resin emulsion adhesive, vinyl acetate copolymer resin emulsion adhesive, EVA (ethylene / vinyl acetate copolymer) resin emulsion adhesive, isocyanate adhesive, synthetic rubber latex It is preferably at least one selected from the group consisting of a mold adhesive, an epoxy resin adhesive, a cyanoacrylate adhesive, and a polyurethane adhesive.
  • the resin adhesive is one or more selected from the group consisting of a silicone resin adhesive, an acrylic resin adhesive, and a rubber adhesive.
  • the resin-based pressure-sensitive adhesive is heated in the peeling step (step of peeling the support) after using the laminate according to the present invention or after producing an organic solar cell by the production method according to the present invention described later. It is preferably a resin-based pressure-sensitive adhesive whose peel strength is reduced by irradiation with electromagnetic waves such as ultraviolet rays, electron beams and radiation, and temperature changes such as cooling. These may be used alone or in combination of two or more. Accordingly, in the peeling step, the resin-based pressure-sensitive adhesive layer is heated, cooled, or irradiated with electromagnetic waves such as ultraviolet rays, electron beams, or radiation to reduce the peeling strength, so that the organic solar cell or electrode is removed from the support. The formed resin film can be easily peeled off.
  • a resin-based pressure-sensitive adhesive examples include a temperature-sensitive pressure-sensitive adhesive sheet (Intellimer tape) manufactured by NITTA, and SOMATAC (registered trademark) UV manufactured by SOMAR.
  • a stimulus may be given in a timely manner according to the pressure-sensitive adhesive.
  • a temperature-sensitive sheet a temperature of ⁇ 20 ° C. to 200 ° C. may be given for 0.01 to 10 hours.
  • an electromagnetic wave containing a necessary wavelength in a timely manner may be applied for 0.01 to 10 hours.
  • the support described above may have a through-hole, but the surface of the resin-based pressure-sensitive adhesive layer is also referred to as the “first surface of the resin-based pressure-sensitive adhesive layer”. And a through-hole that connects a surface in contact with the resin film (hereinafter sometimes referred to as “second surface of the resin-based pressure-sensitive adhesive layer”). There may be one or more through-holes in the resin-based pressure-sensitive adhesive layer.
  • the arrangement of the through holes is not particularly limited and can be set as appropriate.
  • it may be regularly arranged at a predetermined interval, may be irregularly arranged, or a combination thereof.
  • the combination is, for example, a case where a plurality of through holes in one row are regularly arranged and a plurality of through holes in another row are arranged irregularly.
  • the shape, size and number of through-holes present on the first surface of the resin-based pressure-sensitive adhesive layer are the same as the shape, size and number of through-holes present on the second surface of the resin-based pressure-sensitive adhesive layer, respectively. It may be different or different.
  • the through-holes present on the first surface and / or the second surface of the resin-based pressure-sensitive adhesive layer do not overlap with the portion forming the wiring pattern on the resin film when viewed from the lamination direction. Is preferred. Thereby, the danger of the damage of the structural member of an organic solar cell formed on the resin film or the resin film, or an organic solar cell can be reduced more, and an organic solar cell can be manufactured efficiently.
  • the resin-based pressure-sensitive adhesive layer has a surface in contact with the support (first surface of the resin-based pressure-sensitive adhesive layer) and a surface in contact with the resin film (second surface of the resin-based pressure-sensitive adhesive layer).
  • the through hole of the resin-based pressure-sensitive adhesive layer is a through hole existing on the surface (first surface of the support) that contacts the resin-based pressure-sensitive adhesive layer of the support as viewed from the stacking direction. It is preferable that it exists in the position which overlaps with a hole. Thereby, a resin adhesive layer can be easily peeled from a resin film, without leaving a resin adhesive layer in a resin film.
  • the size (hole diameter) of the through-holes in the resin-based pressure-sensitive adhesive layer is the same as the size of the through-holes (hole diameter) existing on the first surface of the support. It may be different or different. In one embodiment, the size of the through hole of the resin-based pressure-sensitive adhesive layer is larger than the size of the through hole existing on the first surface of the support.
  • the resin adhesive layer formed from the resin adhesive may be one layer or two or more layers. In the case of two or more layers, each layer may be the same or different from each other.
  • the thickness of the resin-based pressure-sensitive adhesive layer is not particularly limited, but is preferably 1 to 150 ⁇ m, more preferably 1 to 100 ⁇ m, and still more preferably 1 to 50 ⁇ m.
  • the resin film is a member that becomes a substrate such as a working electrode and a counter electrode of the organic solar cell.
  • a substrate such as a working electrode and a counter electrode of the organic solar cell.
  • one or both of the photoelectrode substrate and the counter electrode substrate is preferably a resin film.
  • the resin film a known resin film can be used.
  • a known resin film can be used.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • SPS syndiotactic polystyrene
  • PPS polyphenylene sulfide
  • PC polycarbonate
  • PAr polyarylate
  • PSF polysulfone
  • PET Polyetherimide
  • PI transparent polyimide
  • COP cycloolefin polymer
  • PMP polymethylpentene
  • the light transmittance at a wavelength of 400 nm of the resin film is preferably 40% or more, and more preferably 70% or more.
  • the thickness of the resin film may be appropriately adjusted according to the use.
  • the thickness is 10 to 10,000 ⁇ m.
  • the conductive film described above may be present on the surface of the resin film of the laminate.
  • the method of forming the laminate is a method for obtaining a laminate having a structure of at least three layers including a resin film, a resin-based pressure-sensitive adhesive layer, and a support in this order, and if the support has the above-described through holes, in particular It is not limited, What is necessary is just to select suitably, such as application
  • a resin adhesive is applied to form a resin adhesive layer
  • the method is not particularly limited, and a known printing method can be used. Examples include spin coating, dip coating, air knife coating, curtain coating, roller coating, wire bar coating, gravure coating, extrusion coating using a hopper, and multilayer simultaneous coating.
  • a resin-type adhesive layer When forming a resin-type adhesive layer by bonding, a resin-type adhesive layer can be bonded to a support body or a resin film using a bonding apparatus, for example.
  • the timing for providing the through hole in the support may be before, after laminating the support and the resin adhesive layer, or before or after laminating the support, the resin adhesive layer and the resin film. Good.
  • the manufacturing method of the organic solar cell which concerns on this invention is a manufacturing method of an organic solar cell which has the process of inject
  • the method for producing an organic solar cell according to the present invention is not particularly limited, except that a fluid is injected into the through hole from the second surface side of the support using the above-described laminate, and a known organic solar cell is used.
  • a battery manufacturing method can be employed. That is, in the conventional method for manufacturing an organic solar cell, in the process of using a resin film as a substrate, instead of the resin film alone, using the above-described laminate according to the present invention, film formation, fixation, printing, What is necessary is just to perform each process, such as bonding.
  • a fluid is inject
  • Examples of the fluid to be injected into the through hole of the support include, for example, air, dry air, inert gas such as nitrogen gas and argon gas, water, alcohol, acetonitrile, toluene, tetrahydrofuran (THF) and other common organic materials. A solvent etc. are mentioned.
  • the temperature of the fluid is not particularly limited, but is preferably ⁇ 80 ° C. to 200 ° C.
  • the fluid is preferably air or dry air.
  • the fluid to be injected from the second surface side may be injected over the entire surface, or may be partially injected into the center portion or a specific portion of the support. Further, the timing of injecting the fluid may be shifted depending on the portion to be injected.
  • the fluid may be pressurized when injected, and it is preferable to apply a pressure of 0.001 to 1 MPa.
  • the laminate or the support may be cooled or heated at the time of peeling, and the peeling environment may be carried out in a dry atmosphere or in an inert gas.
  • the organic solar cell is preferably a dye-sensitized solar cell.
  • a method for producing an organic solar cell will be described using a dye-sensitized solar cell having a photoelectrode (working electrode), a counter electrode (counter electrode), and an electrolyte layer as an example.
  • the steps of the method for producing an organic solar cell include, for example, a step of forming a conductive film on the photoelectrode substrate, a step of forming a porous semiconductor fine particle layer on the conductive film on the photoelectrode substrate, and a porous semiconductor fine particle layer
  • Photoelectrode manufacturing process such as a process of forming a sensitizing dye layer on the surface
  • Manufacturing process of a counter electrode such as a process of forming a conductive film on the counter electrode substrate, a process of forming a catalyst layer on the conductive film on the counter electrode substrate Applying a sealant composition on the photoelectrode and / or the counter electrode, irradiating with energy rays and curing to form a sealant; placing an electrolyte layer between the photoelectrode and the counter electrode;
  • the general process of the manufacturing method of well-known organic type solar cells such as; For example, refer to Japanese Unexamined Patent Application Publication No. 2014-120219.
  • the conductive film can be formed by forming a film on a photoelectrode substrate or a counter electrode substrate by a known method such as a sputtering method, a coating method, a vapor deposition method, a spray pyrolysis method, or a chemical vapor deposition (CVD) method. These conductive films may be processed using a laser such as CO 2 or YAG to form conductive patterns.
  • the porous semiconductor fine particle layer can be formed by a known method such as a press method, a hydrothermal decomposition method, an electrophoretic electrodeposition method, a binder-free coating method, and an aerosol deposition (AD) method.
  • a porous semiconductor fine particle layer is obtained by applying a titanium oxide paste using a screen printer or a baker type applicator, drying the coating film at room temperature, and then drying by heating in a thermostatic layer at 150 ° C. Can be formed.
  • the sensitizing dye layer can be formed by, for example, a method of immersing the porous semiconductor fine particle layer in a sensitizing dye solution or a method of applying a sensitizing dye solution on the porous semiconductor fine particle layer.
  • the sensitizing dye layer can be formed by dipping the porous semiconductor fine particle layer in an ethanol solution containing the dye.
  • the catalyst layer can be formed by a known method. For example, in a catalyst layer containing carbon nanotubes (A) as described in JP 2014-120219 A, a dispersion containing carbon nanotubes (A) is prepared, and this dispersion is used as a conductive film on a counter electrode substrate. It can form by apply
  • the electrolyte layer can be formed by applying a solution (electrolyte) containing the constituent components onto the photoelectrode, or by producing a cell having a photoelectrode and a counter electrode, and injecting the electrolyte into the gap. it can.
  • the energy rays for curing the sealing agent may be energy rays such as ultraviolet rays, visible light, infrared rays, and electron beams. Of these, ultraviolet rays and electron beams are preferred.
  • a light source usually containing light in the range of 200 to 500 nm, for example, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, a gallium lamp, a xenon lamp, a carbon arc lamp, or the like can be used.
  • an electron beam accelerator having an energy of usually 100 to 500 eV can be used.
  • Integrated irradiation dose of energy rays is usually 100 ⁇ 5000mJ / cm 2, preferably 200 ⁇ 4000mJ / cm 2.
  • the application method of the sealant composition is not particularly limited, and flexographic printing, gravure printing, screen printing, inkjet printing, offset printing, or bar coating method, dip coating method, flow coating method, spray coating method, spin coating method, Methods such as roller coating, reverse coating, air knife, and dispensing can be used.
  • the structure of the organic solar cell module is not particularly limited, and includes a Z-type, a W-type, a parallel type, a current collection type, a monolithic type, and the like.
  • a plurality of these modules may be connected in series or in parallel by combining one or two or more.
  • you may produce in a module by well-known means, such as a current collection electrode and an extraction electrode.
  • a connection method a known means may be used, and solder, a metal plate, a cable, a flat cable, a flexible base material, a cable, or the like may be appropriately selected.
  • the method for assembling the module is not particularly limited, and the module can be manufactured by a known method such as a vacuum bonding method (One Drop Fill method: ODF method) or an end seal method.
  • ODF method One Drop Fill method
  • end seal method examples include the method described in International Publication No. 2007/046499.
  • end seal method examples include a method described in JP-A-2006-004827.
  • an ultraviolet cut layer, an oxygen or moisture barrier layer, an antireflection layer, an antifouling layer, a hard coat layer, a reinforcing member, or the like may be disposed around the module or on the exterior surface as appropriate. These may be a known method such as vapor deposition, coating, or installing a sheet.
  • the blending amount means parts by mass.
  • the support, resin adhesive, resin film, and UV curable resin used in the examples are as follows.
  • Borosilicate glass Product name Tempax glass (thickness 3 mm, length 300 mm, width 210 mm) manufactured by Schott (Resin adhesive)
  • Silicone resin adhesive silicone rubber double-sided adhesive tape 9030W manufactured by Teraoka Seisakusho Co., Ltd.
  • Resin film A 300 nm long, 210 mm wide, 125 ⁇ m thick PEN film with a 300 nm ITO film.
  • UV curable resin UV curable resin: Liquid polyisobutylene sealant
  • Example 1 A resin-based pressure-sensitive adhesive layer is formed by applying 30 ⁇ m of a silicone resin-based pressure-sensitive adhesive on a support having through-holes with a spacing of 50 mm and a diameter of 1 mm (area 0.79 mm 2 ) on one surface and the opposite surface.
  • the resin film was disposed so that the surface on the ITO film side was opposite to the resin-based pressure-sensitive adhesive layer to form a laminate.
  • the through hole of the support was formed so as to avoid the printed pattern of the resin film.
  • Example 2 In Example 1, after forming the resin-based pressure-sensitive adhesive layer, the resin-based pressure-sensitive adhesive layer having the same diameter as that of the through-hole and the same position as the through-hole existing in the first surface of the support as viewed from the stacking direction A through-hole penetrating to the second surface was provided in the resin-based pressure-sensitive adhesive layer. Thereafter, in the same manner as in Example 1, a resin film was disposed to form a laminate.
  • Example 3 In Example 1, instead of a silicone resin adhesive, NITTA Intellimer Tape CS2325NA2 was used as a resin adhesive layer, and then a resin film was placed in the same manner as in Example 1 to form a laminate. Formed.
  • Example 4 Intellimer Tape CS2325NA2 manufactured by Nitta Co., Ltd. was used as the resin-based adhesive layer instead of the resin-based adhesive. Thereafter, as in Example 2, when viewed from the stacking direction, After the resin adhesive layer is provided with a through hole penetrating to the second surface of the resin-based adhesive layer at the same position as the through-hole that overlaps the through-hole existing on one surface, the resin film is disposed. Thus, a laminate was formed.
  • Example 5 In Example 1, through-holes were provided at intervals of 100 mm and a diameter of 2 mm (area 3.19 mm 2 ), and then a resin film was disposed to form a laminate as in Example 1.
  • Comparative Example 1 In Example 1, a comparative laminate was formed in the same manner as in Production Example 1 except that a support having no through hole was used.
  • organic solar cells were manufactured through the following steps of manufacturing an organic solar cell.
  • ⁇ Step of forming a sensitizing dye layer (immersion step)> A dye solution obtained by dissolving a laminate formed with a porous semiconductor fine particle layer so that a sensitizing dye has a concentration of 3 ⁇ 10 ⁇ 1 mol / liter (sensitizing dye: ruthenium complex (N719, manufactured by Solaronics)) , Solvent: ethanol) at 40 ° C. for 120 minutes to form a sensitizing dye layer to obtain a photoelectrode.
  • ⁇ Process for forming sealing agent (UV curing process)> After drawing a UV curable resin as a sealant composition on a laminate in which a sensitizing dye layer is formed on the porous semiconductor fine particle layer so as to surround the periphery of the porous semiconductor fine particle layer by a dispensing method, the porous semiconductor A UV curable resin is applied by applying an electrolytic solution on the fine particle layer, bonding the prepared photoelectrode and the counter electrode under vacuum using an automatic bonding apparatus, and irradiating 100 mW metal halide light from the photoelectrode side for 60 seconds. Was cured to form a sealant.
  • the present invention when a resin film is used as the substrate, the risk of damage to the resin film or the constituent member of the organic solar cell formed on the resin film or the organic solar cell can be reduced efficiently.
  • the laminated body which can manufacture an organic solar cell, and the manufacturing method of the organic solar cell using the said laminated body can be provided.
  • Laminate 10 Support 20: Resin-based adhesive layer 30: Resin film 40: Through-hole

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)
  • Hybrid Cells (AREA)

Abstract

A laminate which, when a resin film is used as the substrate, makes possible the efficient manufacture of organic solar batteries by reducing the danger of damage to the resin film, to the components of the organic solar battery formed on the resin film, or to the organic solar battery, and a manufacturing method of an organic solar battery that uses said laminate are provided. This laminate includes, in order, a resin film as the organic solar battery substrate, a resin-base adhesive layer containing a resin-base adhesive, and a support body, wherein the support body has through-holes which connect the surface of the support body that contacts the resin-base adhesive layer and a surface of the support body other than said surface.<u> <b/> </u> <u> <b/> </u>

Description

積層体および有機系太陽電池の製造方法Laminated body and organic solar cell manufacturing method
 本発明は、積層体および有機系太陽電池の製造方法に関する。 The present invention relates to a laminate and a method for producing an organic solar cell.
 近年、光エネルギーを電力に変換する光電変換素子として、色素増感型太陽電池、ペロブスカイト型太陽電池などの有機系太陽電池が注目されている。 In recent years, organic solar cells such as dye-sensitized solar cells and perovskite solar cells have attracted attention as photoelectric conversion elements that convert light energy into electric power.
 色素増感型太陽電池は、一般に、作用極(光電極)と、対極(対向電極)と、作用極に担持されている増感色素層と、作用極及び対極間に配置される電解質層とを有する。 In general, a dye-sensitized solar cell includes a working electrode (photoelectrode), a counter electrode (counter electrode), a sensitizing dye layer carried on the working electrode, and an electrolyte layer disposed between the working electrode and the counter electrode. Have
 ペロブスカイト型太陽電池は、一般に、作用極(負極)と、対極(正極)と、ペロブスカイト結晶層と、電子受容層と、正孔受容層とを有する。 Perovskite solar cells generally have a working electrode (negative electrode), a counter electrode (positive electrode), a perovskite crystal layer, an electron accepting layer, and a hole accepting layer.
 フレキシブルな有機系太陽電池では、電極を構成する基板として樹脂フィルムが用いられるが、ハンドリング性が悪く、また、位置決めを行い難く、パターニングや貼り合わせ時にずれなどが生じ、生産効率低下の要因となる。 In a flexible organic solar cell, a resin film is used as a substrate constituting an electrode. However, handling properties are poor, positioning is difficult, displacement occurs during patterning and bonding, and the production efficiency decreases. .
 この問題に対して、支持体上に粘着剤層などを設けて樹脂フィルムを固定または保持する技術がある。例えば、特許文献1では、イオン液体を介して搬送板上に作用極用基板を保持することを提案している。 For this problem, there is a technique for fixing or holding a resin film by providing an adhesive layer or the like on a support. For example, Patent Document 1 proposes holding a working electrode substrate on a transport plate via an ionic liquid.
特開2010-153294号公報JP 2010-153294 A
 しかし、特許文献1のように、イオン液体を介して搬送板上に作用極用基板を保持すると、基板の裏面の洗浄が必要となる問題がある。また、粘着剤層によって樹脂フィルムを支持体上に固定した場合、有機系太陽電池の所定の製造工程の終了後、支持体を樹脂フィルムから剥離させる際に有機系太陽電池基板の樹脂フィルムに曲げなどの負荷がかかり、有機系太陽電池が破損する問題もある。 However, as in Patent Document 1, if the working electrode substrate is held on the transport plate via the ionic liquid, there is a problem that the back surface of the substrate needs to be cleaned. In addition, when the resin film is fixed on the support by the adhesive layer, it is bent to the resin film of the organic solar cell substrate when the support is peeled off from the resin film after completion of the predetermined manufacturing process of the organic solar cell. There is also a problem that the organic solar cell is damaged.
 そこで、本発明は、基板として樹脂フィルムを用いた場合に、樹脂フィルムもしくは樹脂フィルム上に形成された有機系太陽電池の構成部材または有機系太陽電池の破損の危険性を低減して、効率よく、有機系太陽電池を製造可能な積層体と当該積層体を用いた有機系太陽電池の製造方法を提供することを目的とする。 Therefore, when using a resin film as the substrate, the present invention efficiently reduces the risk of damage to the resin film or the constituent member of the organic solar cell formed on the resin film or the organic solar cell. It aims at providing the manufacturing method of the organic solar cell using the laminated body which can manufacture an organic solar cell, and the said laminated body.
 本発明に係る積層体は、
 順に、
 有機系太陽電池基板としての樹脂フィルム、
 樹脂系粘着剤を含む樹脂系粘着剤層および
 支持体
 を含む積層体であり、
 前記支持体は、前記支持体の前記樹脂系粘着剤層と接触する面と、前記支持体の当該面以外の面とをつなぐ貫通孔を有する、積層体である。これにより、基板として樹脂フィルムを用いた場合に、樹脂フィルムもしくは樹脂フィルム上に形成された有機系太陽電池の構成部材または有機系太陽電池の破損の危険性を低減して、効率よく、有機系太陽電池を製造可能である。
The laminate according to the present invention is
In turn,
Resin film as organic solar cell substrate,
It is a laminate including a resin adhesive layer containing a resin adhesive and a support,
The said support body is a laminated body which has a through-hole which connects the surface which contacts the said resin adhesive layer of the said support body, and surfaces other than the said surface of the said support body. As a result, when a resin film is used as the substrate, the risk of damage to the organic solar cell component or the organic solar cell formed on the resin film or the resin film is reduced, and the organic Solar cells can be manufactured.
 本発明に係る積層体は、前記樹脂系粘着剤層が、前記支持体と接触する面と、前記樹脂フィルムと接触する面とをつなぐ貫通孔を有し、
 当該樹脂系粘着剤層の貫通孔は、積層方向から見て、前記支持体の前記樹脂系粘着剤層と接触する面に存在する貫通孔と重なる位置に存在することが好ましい。これにより、樹脂系粘着剤層を樹脂フィルムに残存させることなく、簡単に樹脂系粘着剤層を樹脂フィルムから剥離することができる。
The laminate according to the present invention has a through-hole that connects the surface of the resin-based pressure-sensitive adhesive layer that contacts the support and the surface that contacts the resin film,
The through hole of the resin-based pressure-sensitive adhesive layer is preferably present at a position overlapping with the through-hole existing on the surface of the support that contacts the resin-based pressure-sensitive adhesive layer when viewed from the stacking direction. Thereby, a resin adhesive layer can be easily peeled from a resin film, without leaving a resin adhesive layer in a resin film.
 本発明に係る積層体は、前記支持体の前記樹脂系粘着剤層と接触する面に存在する貫通孔が、積層方向から見て、前記樹脂フィルム上の配線パターンを形成する部分と重ならないことが好ましい。 In the laminate according to the present invention, the through-hole present on the surface of the support that contacts the resin-based adhesive layer does not overlap with the portion that forms the wiring pattern on the resin film when viewed from the lamination direction. Is preferred.
 本発明に係る積層体は、前記支持体の前記樹脂系粘着剤層と接触する面に存在する貫通孔の面積が、0.007mm以上であり、かつ、当該貫通孔が、当該面の200cmあたり、1つ以上存在することが好ましい。 In the laminate according to the present invention, the area of the through hole existing on the surface of the support that contacts the resin-based adhesive layer is 0.007 mm 2 or more, and the through hole is 200 cm on the surface. per 2, it is preferable that there are one or more.
 本発明に係る有機系太陽電池の製造方法は、上記いずれかに記載の積層体の前記支持体の貫通孔に流体を注入する工程を有する、有機系太陽電池の製造方法である。これにより、基板として樹脂フィルムを用いた場合に、樹脂フィルムもしくは樹脂フィルム上に形成された有機系太陽電池の構成部材または有機系太陽電池の破損の危険性を低減して、効率よく、有機系太陽電池を製造可能である。 The method for manufacturing an organic solar cell according to the present invention is a method for manufacturing an organic solar cell, which includes a step of injecting a fluid into the through hole of the support of the laminate described above. As a result, when a resin film is used as the substrate, the risk of damage to the organic solar cell component or the organic solar cell formed on the resin film or the resin film is reduced, and the organic Solar cells can be manufactured.
 本発明に係る有機系太陽電池の製造方法は、前記流体が、空気であることが好ましい。 In the method for producing an organic solar cell according to the present invention, the fluid is preferably air.
 本発明に係る有機系太陽電池の製造方法は、前記有機系太陽電池が色素増感型太陽電池であることが好ましい。 In the method for producing an organic solar cell according to the present invention, the organic solar cell is preferably a dye-sensitized solar cell.
 本発明によれば、基板として樹脂フィルムを用いた場合に、樹脂フィルムもしくは樹脂フィルム上に形成された有機系太陽電池の構成部材または有機系太陽電池の破損の危険性を低減して、効率よく、有機系太陽電池を製造可能な積層体と当該積層体を用いた有機系太陽電池の製造方法を提供することができる。 According to the present invention, when a resin film is used as the substrate, the risk of damage to the resin film or the constituent member of the organic solar cell formed on the resin film or the organic solar cell can be reduced efficiently. The laminated body which can manufacture an organic solar cell, and the manufacturing method of the organic solar cell using the said laminated body can be provided.
図1は、本発明に係る積層体の一例の模式的な斜視図である。FIG. 1 is a schematic perspective view of an example of a laminate according to the present invention. 図2Aは、本発明に係る積層体の別の一例の模式的な上面図である。FIG. 2A is a schematic top view of another example of the laminate according to the present invention. 図2Bは、図2Aの積層体のA-A線による模式的な断面図である。FIG. 2B is a schematic cross-sectional view taken along line AA of the laminate of FIG. 2A. 図3は、本発明に係る積層体の別の一例の模式的な断面図である。FIG. 3 is a schematic cross-sectional view of another example of a laminate according to the present invention.
 以下、本発明の実施形態について説明する。これらの記載は、本発明の例示を目的とするものであり、本発明を何ら限定するものではない。 Hereinafter, embodiments of the present invention will be described. These descriptions are intended to exemplify the present invention and do not limit the present invention in any way.
 本明細書において、数値範囲は、別段の記載がない限り、その範囲の下限値および上限値を含むことを意図している。例えば、2~80nmは、下限値2nmと上限値80nmを含むことを意図しており、2nm以上80nm以下を意味する。 In this specification, a numerical range is intended to include the lower limit and the upper limit of the range unless otherwise specified. For example, 2 to 80 nm is intended to include a lower limit of 2 nm and an upper limit of 80 nm, and means 2 nm to 80 nm.
 <有機系太陽電池>
 本発明に係る積層体および当該積層体を用いた有機系太陽電池の製造方法を説明する前に、典型的な有機系太陽電池としての色素増感型太陽電池の構成の一例を説明する。
<Organic solar cells>
Before describing the laminate according to the present invention and the method for producing an organic solar cell using the laminate, an example of the configuration of a dye-sensitized solar cell as a typical organic solar cell will be described.
 色素増感型太陽電池は、典型的には、光電極(作用極)、対向電極(対極)および電解質層を有する。例えば、特開2014-120219号公報を参照。この他、色素増感型太陽電池は、任意に光電極および対向電極の一方または両方に、保護層、反射防止層、ガスバリア層などの公知の機能層を有していてもよい。また、短絡防止のための公知のセパレータを有していてもよい。 A dye-sensitized solar cell typically has a photoelectrode (working electrode), a counter electrode (counter electrode), and an electrolyte layer. For example, see Japanese Patent Application Laid-Open No. 2014-120219. In addition, the dye-sensitized solar cell may optionally have a known functional layer such as a protective layer, an antireflection layer, or a gas barrier layer on one or both of the photoelectrode and the counter electrode. Moreover, you may have a well-known separator for short circuit prevention.
 光電極は、光を受けることで、外部の回路に電子を放出し得る電極であればよく、色素増感型太陽電池の光電極として公知のものを用いることができる。光電極は、典型的には、光電極基板と、その光電極基板上に形成された導電膜と、その導電膜上に形成された多孔質半導体微粒子層と、この多孔質半導体微粒子層の表面に増感色素が吸着されて形成された増感色素層とからなる。 The photoelectrode may be any electrode that receives light and can emit electrons to an external circuit, and a known photoelectrode for a dye-sensitized solar cell can be used. The photoelectrode typically includes a photoelectrode substrate, a conductive film formed on the photoelectrode substrate, a porous semiconductor fine particle layer formed on the conductive film, and a surface of the porous semiconductor fine particle layer. And a sensitizing dye layer formed by adsorbing a sensitizing dye.
 光電極基板は、多孔質半導体微粒子層などを担持する役割と、集電体としての役割を担う。光電極基板としては、例えば、基板としての後述する樹脂フィルムの上に導電膜を積層したものが挙げられる。 The photoelectrode substrate plays a role of supporting a porous semiconductor fine particle layer and the like and a role of a current collector. As a photoelectrode board | substrate, what laminated | stacked the electrically conductive film on the resin film mentioned later as a board | substrate is mentioned, for example.
 基板としては、公知の樹脂フィルムやガラスなどの基板を用いることができる。樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、シンジオタクチックポリスチレン(SPS)、ポリフェニレンスルフィド(PPS)、ポリカーボネート(PC)、ポリアリレート(PAr)、ポリスルホン(PSF)、ポリエステルスルホン(PES)、ポリエーテルイミド(PEI)、透明ポリイミド(PI)、シクロオレフィンポリマー(COP)などの合成樹脂を含む樹脂組成物を成形して得られるものが挙げられる。 As the substrate, a known resin film or glass substrate can be used. Examples of the resin film include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), syndiotactic polystyrene (SPS), polyphenylene sulfide (PPS), polycarbonate (PC), polyarylate (PAr), polysulfone (PSF), Examples thereof include those obtained by molding a resin composition containing a synthetic resin such as polyester sulfone (PES), polyetherimide (PEI), transparent polyimide (PI), and cycloolefin polymer (COP).
 導電膜を構成する材料としては、例えば、白金、金、銀、銅、アルミニウム、インジウム、チタンなどの金属;酸化スズ、酸化亜鉛などの導電性金属酸化物;インジウム-スズ酸化物(ITO)、インジウム-亜鉛酸化物(IZO)などの複合金属酸化物などが挙げられる。 Examples of the material constituting the conductive film include metals such as platinum, gold, silver, copper, aluminum, indium, and titanium; conductive metal oxides such as tin oxide and zinc oxide; indium-tin oxide (ITO), Examples thereof include composite metal oxides such as indium-zinc oxide (IZO).
 多孔質半導体微粒子層は、半導体微粒子を含有する多孔質状の層である。多孔質状の層であることで、増感色素の吸着量が増え、変換効率が高い色素増感型太陽電池が得られやすくなる。 The porous semiconductor fine particle layer is a porous layer containing semiconductor fine particles. By being a porous layer, the amount of sensitizing dye adsorbed increases, and a dye-sensitized solar cell with high conversion efficiency is easily obtained.
 半導体微粒子としては、酸化チタン、酸化亜鉛、酸化スズなどの金属酸化物の粒子が挙げられる。半導体微粒子の粒子径(一次粒子の平均粒子径)は、好ましくは2~80nm、より好ましくは2~60nmである。表面積が大きく増感色素の担持量が多く、電解液層を構成する電解液が多孔質半導体微粒子層の細部にまで拡散できる。分散安定性の観点から半導体微粒子分散液に含まれる固形分濃度は0.1~60wt%であり、0.5~40wt%が好ましく、1.0~25wt%がより好ましい。 Examples of semiconductor fine particles include metal oxide particles such as titanium oxide, zinc oxide, and tin oxide. The particle diameter of semiconductor fine particles (average particle diameter of primary particles) is preferably 2 to 80 nm, more preferably 2 to 60 nm. The surface area is large and the amount of the sensitizing dye supported is large, so that the electrolytic solution constituting the electrolytic solution layer can diffuse to the details of the porous semiconductor fine particle layer. From the viewpoint of dispersion stability, the solid content concentration contained in the semiconductor fine particle dispersion is 0.1 to 60 wt%, preferably 0.5 to 40 wt%, and more preferably 1.0 to 25 wt%.
 多孔質半導体微粒子層の厚みは、特に限定されないが、通常、0.1~50μm、好ましくは5~30μm、より好ましくは15μm以下である。また多孔質半導体微粒子層は、一層または二層以上の層が積層されていてもよい。これらの層の半導体微粒子の粒径や組成が異なっていてもよい。 The thickness of the porous semiconductor fine particle layer is not particularly limited, but is usually 0.1 to 50 μm, preferably 5 to 30 μm, more preferably 15 μm or less. The porous semiconductor fine particle layer may be a single layer or a stack of two or more layers. The particle size and composition of the semiconductor fine particles in these layers may be different.
 増感色素層は、光によって励起されて多孔質半導体微粒子層に電子を渡し得る化合物(増感色素)が、多孔質半導体微粒子層の表面に吸着されてなる層である。 The sensitizing dye layer is a layer formed by adsorbing a compound (sensitizing dye) that can be excited by light to pass electrons to the porous semiconductor fine particle layer on the surface of the porous semiconductor fine particle layer.
 増感色素としては、シアニン色素、メロシアニン色素、オキソノール色素、キサンテン色素、スクワリリウム色素、ポリメチン色素、クマリン色素、リボフラビン色素、ペリレン色素などの有機色素;鉄、銅、ルテニウムなどの金属のフタロシアニン錯体やポルフィリン錯体などの金属錯体色素;などが挙げられる。
 二種類以上の色素を混合して用いてもよい。増感色素などを溶解するのに用いる溶媒は、増感色素を溶解することができ、かつ多孔質半導体微粒子層を溶解したり、該半導体微粒子と反応したりすることのない溶媒であれば特に制限されない。溶媒としては好ましくはアルコール類、ニトリル類、ハロゲン化炭化水素類、エーテル類、アミド類、エステル類、炭酸エステル類、ケトン類、炭化水素類、芳香族類、ニトロメタン類などがある。本願発明における増感色素の溶解に用いる溶媒の好ましい具体例としては、メタノール、エタノール、イソプロパノール、1-メトキシ-2-プロパノール、n-ブタノール、t-ブタノール、ブトキシエタノール、N,N-ジメチルホルムアミド、N-メチルピロリドン、アセトン、メチルエチルケトン、メチルイソブチルケトン、3-メトキシプロピオニトニル、ブチロニトリル、プロピオラクトン、γ-ブチロラクトン、トルエン、DMSOなどを挙げることができる。なお、これらの溶媒は単独でもよいが2種類以上の溶媒を用いた混合溶媒でもよい。色素溶液中における増感色素の濃度は、好ましくは0.01mM~10mMであり、より好ましくは0.1mM~10mMである。また、色素の全吸着量は、導電性支持体の単位表面積(1m)当たり0.01M~100Mが好ましい。また色素の半導体微粒子に対する吸着量は、半導体微粒子1g当たり0.001M~1Mの範囲であるのが好ましい。
 本願発明では増感色素の他に、他の併用素材(例えば、カチオン系化合物(例えば、3級アンモニウム化合物、4級アンモニウム化合物、ピリジン化合物、イミダゾリウム化合物、酸化合物(例えば、コール酸、デオキシコール酸などカルボン酸化合物、リン酸化合物、フォスフォン酸化合物、スルフォン酸化合物など)を併用することも好ましい。色素溶液中における本これらの濃度は、好ましくは0.1mM~100mMである。色素のモル当量に対して1モル当量~1000モル当量が好ましい。
 なお、多孔質半導体微粒子層に増感色素を吸着させた後、余分な増感色素溶液を除去するために溶媒を用いて洗浄することが好ましい。この場合には、洗浄溶媒として前述した溶媒が推奨される。洗浄方法としては、溶媒を色素増感多孔質半導体微粒子層に吹き付けて洗い流す方法、あるいは、洗浄溶媒タンクに色素増感多孔質半導体微粒子層を形成した基板を浸漬する方法がある。このようにして得られた色素増感多孔質半導体微粒子層を形成した基板は、さらに乾燥処理することで光電極を得ることができる。乾燥条件は特に限定されないが、好ましくは30℃~150℃で0.5分~30分が好ましい。
Sensitizing dyes include organic dyes such as cyanine dyes, merocyanine dyes, oxonol dyes, xanthene dyes, squarylium dyes, polymethine dyes, coumarin dyes, riboflavin dyes, perylene dyes; metal phthalocyanine complexes such as iron, copper, ruthenium, and porphyrins. Metal complex dyes such as complexes; and the like.
Two or more kinds of dyes may be mixed and used. The solvent used to dissolve the sensitizing dye is particularly a solvent that can dissolve the sensitizing dye and does not dissolve the porous semiconductor fine particle layer or react with the semiconductor fine particles. Not limited. Preferred examples of the solvent include alcohols, nitriles, halogenated hydrocarbons, ethers, amides, esters, carbonates, ketones, hydrocarbons, aromatics, nitromethanes and the like. Preferred examples of the solvent used for dissolving the sensitizing dye in the present invention include methanol, ethanol, isopropanol, 1-methoxy-2-propanol, n-butanol, t-butanol, butoxyethanol, N, N-dimethylformamide, N-methylpyrrolidone, acetone, methyl ethyl ketone, methyl isobutyl ketone, 3-methoxypropiontonyl, butyronitrile, propiolactone, γ-butyrolactone, toluene, DMSO and the like can be mentioned. These solvents may be used alone or as a mixed solvent using two or more kinds of solvents. The concentration of the sensitizing dye in the dye solution is preferably 0.01 mM to 10 mM, more preferably 0.1 mM to 10 mM. The total amount of dye adsorbed is preferably 0.01 to 100 M per unit surface area (1 m 2 ) of the conductive support. The amount of the dye adsorbed on the semiconductor fine particles is preferably in the range of 0.001M to 1M per gram of semiconductor fine particles.
In the present invention, in addition to the sensitizing dye, other combination materials (for example, cationic compounds (for example, tertiary ammonium compounds, quaternary ammonium compounds, pyridine compounds, imidazolium compounds, acid compounds (for example, cholic acid, deoxychol) It is also preferable to use a carboxylic acid compound such as an acid, a phosphoric acid compound, a phosphonic acid compound, a sulfonic acid compound, etc.) The concentration of these in the dye solution is preferably 0.1 mM to 100 mM. The molar equivalent is preferably 1 to 1000 molar equivalents.
In addition, after making a porous semiconductor fine particle layer adsorb | suck a sensitizing dye, in order to remove an excess sensitizing dye solution, it is preferable to wash | clean using a solvent. In this case, the above-mentioned solvents are recommended as cleaning solvents. As a cleaning method, there are a method of spraying a solvent on a dye-sensitized porous semiconductor fine particle layer and washing it away, or a method of immersing a substrate on which a dye-sensitized porous semiconductor fine particle layer is formed in a cleaning solvent tank. The substrate on which the dye-sensitized porous semiconductor fine particle layer thus obtained is formed can be further dried to obtain a photoelectrode. The drying conditions are not particularly limited, but preferably 30 ° C. to 150 ° C. for 0.5 minutes to 30 minutes.
 対向電極は、対向電極基板と、対向電極基板上の導電膜とからなる。この他、導電膜上に、触媒層を有していてもよい。 The counter electrode includes a counter electrode substrate and a conductive film on the counter electrode substrate. In addition, a catalyst layer may be provided on the conductive film.
 対向電極基板としては、上記光電極で挙げた樹脂フィルムやガラスと同様である。 The counter electrode substrate is the same as the resin film or glass mentioned in the photoelectrode.
 導電膜を構成する材料としては、例えば、白金、金、銀、銅、アルミニウム、インジウム、チタンなどの金属;酸化スズ、酸化亜鉛などの導電性金属酸化物;インジウム-スズ酸化物(ITO)、インジウム-亜鉛酸化物(IZO)などの複合金属酸化物;カーボンナノチューブ、フラーレンなどの炭素材料などが挙げられる。 Examples of the material constituting the conductive film include metals such as platinum, gold, silver, copper, aluminum, indium, and titanium; conductive metal oxides such as tin oxide and zinc oxide; indium-tin oxide (ITO), Examples thereof include composite metal oxides such as indium-zinc oxide (IZO); carbon materials such as carbon nanotubes and fullerenes.
 触媒層としては、白金、ポリチオフェン(PEDOT)など導電性高分子やカーボンブラック、グラフェン、カーボンナノチューブ、フラーレンなど炭素材料等の公知の触媒層を用いても良く、例えば、特開2014-120219号公報に記載のカーボンナノチューブ(A)を含有する触媒層が挙げられる。 As the catalyst layer, a known catalyst layer such as a conductive polymer such as platinum or polythiophene (PEDOT) or a carbon material such as carbon black, graphene, carbon nanotube, or fullerene may be used. For example, JP-A-2014-120219 And a catalyst layer containing the carbon nanotube (A) described in 1.
 電解質層は、光電極と対向電極とを分離するとともに、電荷移動を効率よく行わせるための層である。 The electrolyte layer is a layer for separating the photoelectrode and the counter electrode and efficiently performing charge transfer.
 電解質層は、特に限定されないが電解液、ゲル状電解質または固体電解質などが挙げられる。例えば、電解液には、支持電解質、酸化還元対(酸化還元反応において可逆的に酸化体および還元体の形で相互に変換しうる一対の化学種)、溶媒などを含有する。 The electrolyte layer is not particularly limited, and examples thereof include an electrolytic solution, a gel electrolyte, or a solid electrolyte. For example, the electrolytic solution contains a supporting electrolyte, a redox couple (a pair of chemical species that can be reversibly converted into an oxidized form and a reduced form in a redox reaction), a solvent, and the like.
 支持電解質としては、リチウムイオン、イミダゾリウムイオン、4級アンモニウムイオンなどの陽イオンを含む塩が挙げられる。 Examples of the supporting electrolyte include salts containing cations such as lithium ions, imidazolium ions, and quaternary ammonium ions.
 酸化還元対としては、酸化された増感色素を還元し得るものであれば、公知のものを用いることができる。酸化還元対としては、塩素化合物-塩素、ヨウ素化合物-ヨウ素、臭素化合物-臭素、タリウムイオン(III)-タリウムイオン(I)、ルテニウムイオン(III)-ルテニウムイオン(II)、銅イオン(II)-銅イオン(I)、鉄イオン(III)-鉄イオン(II)、コバルトイオン(III)-コバルトイオン(II)、バナジウムイオン(III)-バナジウムイオン(II)、マンガン酸イオン-過マンガン酸イオン、フェリシアン化物-フェロシアン化物、キノン-ヒドロキノン、フマル酸-コハク酸などが挙げられる。 As the redox couple, any known one can be used as long as it can reduce the oxidized sensitizing dye. As the redox pair, chlorine compound-chlorine, iodine compound-iodine, bromine compound-bromine, thallium ion (III) -thallium ion (I), ruthenium ion (III) -ruthenium ion (II), copper ion (II) -Copper ion (I), Iron ion (III)-Iron ion (II), Cobalt ion (III)-Cobalt ion (II), Vanadium ion (III)-Vanadium ion (II), Manganate ion-Permanganate And ions, ferricyanide-ferrocyanide, quinone-hydroquinone, fumaric acid-succinic acid, and the like.
 溶媒としては、太陽電池の電解質層の形成用溶媒として公知のものを用いることができる。溶媒としては、アセトニトリル、メトキシアセトニトリル、メトキシプロピオニトリル、N,N-ジメチルホルムアミド、エチルメチルイミダゾリウムビストリフルオロメチルスルホニルイミド、γ-ブチロラクトン、炭酸プロピレンなどが挙げられる。 As the solvent, a known solvent for forming an electrolyte layer of a solar cell can be used. Examples of the solvent include acetonitrile, methoxyacetonitrile, methoxypropionitrile, N, N-dimethylformamide, ethylmethylimidazolium bistrifluoromethylsulfonylimide, γ-butyrolactone, propylene carbonate, and the like.
 有機系太陽電池は、上述した色素増感型太陽電池の他、ペロブスカイト型太陽電池であってもよい。ペロブスカイト型太陽電池は、典型的には、作用極と、対極との間に、ペロブスカイト結晶層を有する。この他、ペロブスカイト結晶層を挟むように位置する正孔輸送層および電子受容層を有していても良い。ペロブスカイト型太陽電池の例としては、例えば、特開2014-049631号公報、特開2015-046583号公報、特開2016-009737号公報などに記載のペロブスカイト型太陽電池が挙げられる。 The organic solar cell may be a perovskite solar cell in addition to the dye-sensitized solar cell described above. A perovskite solar cell typically has a perovskite crystal layer between a working electrode and a counter electrode. In addition, you may have the positive hole transport layer and electron-accepting layer which are located so that a perovskite crystal layer may be pinched | interposed. Examples of the perovskite solar cell include the perovskite solar cells described in Japanese Patent Application Laid-Open Nos. 2014-049631, 2015-046583, 2016-009737, and the like.
 (積層体)
 本発明に係る積層体は、
 順に、
 有機系太陽電池基板としての樹脂フィルム、
 樹脂系粘着剤を含む樹脂系粘着剤層および
 支持体
 を含む積層体であり、
 前記支持体は、前記支持体の前記樹脂系粘着剤層と接触する面と、前記支持体の当該面以外の面とをつなぐ貫通孔を有する、積層体である。これにより、基板として樹脂フィルムを用いた場合に、樹脂フィルムもしくは樹脂フィルム上に形成された有機系太陽電池の構成部材または有機系太陽電池の破損の危険性を低減して、効率よく、有機系太陽電池を製造可能である。
(Laminate)
The laminate according to the present invention is
In turn,
Resin film as organic solar cell substrate,
It is a laminate including a resin adhesive layer containing a resin adhesive and a support,
The said support body is a laminated body which has a through-hole which connects the surface which contacts the said resin adhesive layer of the said support body, and surfaces other than the said surface of the said support body. As a result, when a resin film is used as the substrate, the risk of damage to the organic solar cell component or the organic solar cell formed on the resin film or the resin film is reduced, and the organic Solar cells can be manufactured.
 図1は、本発明に係る積層体の一例を模式的に示した斜視図である。図1に示す積層体1では、順に、樹脂フィルム30、樹脂系粘着剤層20および支持体10を含む。支持体10は、貫通孔40を有する。 FIG. 1 is a perspective view schematically showing an example of a laminate according to the present invention. In the laminated body 1 shown in FIG. 1, the resin film 30, the resin adhesive layer 20, and the support body 10 are included in order. The support 10 has a through hole 40.
 図2Aは、本発明に係る積層体の別の一例の模式的な上面図である。この積層体1では、支持体10に複数個の貫通孔40が、一定間隔で配列されている。 FIG. 2A is a schematic top view of another example of the laminate according to the present invention. In the laminate 1, a plurality of through holes 40 are arranged in the support 10 at regular intervals.
 図2Bは、図2Aの積層体のA-A線による模式的な断面図である。この積層体1では、支持体10に貫通孔40が存在し、貫通孔40は、支持体10の樹脂系粘着剤層20と接触する面と、支持体10の当該面とは反対側の面とをつないでいる。 FIG. 2B is a schematic cross-sectional view taken along the line AA of the laminate of FIG. 2A. In this laminated body 1, a through hole 40 is present in the support 10, and the through hole 40 is a surface that contacts the resin-based adhesive layer 20 of the support 10 and a surface opposite to the surface of the support 10. Are connected.
 図3は、本発明に係る積層体の別の一例の模式的な断面図である。この積層体1では、支持体10および樹脂系粘着剤層20に貫通孔40が存在し、樹脂系粘着剤層20の貫通孔40は、積層方向から見て、支持体10の樹脂系粘着剤層20と接触する面に存在する貫通孔40と重なる位置に存在する。 FIG. 3 is a schematic cross-sectional view of another example of the laminate according to the present invention. In this laminate 1, through holes 40 are present in the support 10 and the resin-based pressure-sensitive adhesive layer 20, and the through-holes 40 of the resin-based pressure-sensitive adhesive layer 20 are viewed from the stacking direction. It exists in the position which overlaps with the through-hole 40 which exists in the surface which contacts the layer 20. FIG.
 <支持体>
 支持体の材質は、ガラス、プラスチックおよび金属からなる群より選択されるいずれかである。支持体に対し、表面処理等してあっても良い。
<Support>
The material of the support is any selected from the group consisting of glass, plastic and metal. The support may be subjected to a surface treatment or the like.
 支持体の材質のガラスとしては、例えば、ホウケイ酸ガラス、ケイ酸塩ガラス、シリカガラス、無アルカリガラス、石英ガラスなどが挙げられる。 Examples of the glass of the support material include borosilicate glass, silicate glass, silica glass, alkali-free glass, and quartz glass.
 支持体の材質のプラスチックとしては、例えば、アクリル、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)、液晶ポリエステル等のポリエステルや、ポリエチレン(PE)、ポリプロピレン(PP)、ポリブチレン、ポリメチルペンテン(PMP)等のポリオレフィンや、シクロオレフィンポリマー(COP、COC)などの環状オレフィンポリマー、スチレン系樹脂の他、ポリオキシメチレン(POM)、ポリアミド(PA)、ポリカーボネート(PC)、ポリメチレンメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフェニレンスルフィド(PPS)、ポリフェニレンエーテル(PPE)、変性PPE、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリスルホン(PSU)、ポリエーテルスルホン、ポリケトン(PK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリアリレート(PAR)、ポリエーテルニトリル、フェノール系樹脂、フェノキシ樹脂、ポリテトラフルオロエチレンなどのフッ素系樹脂などが挙げられる。支持体として耐熱性、透明性が高いものが好ましい。好ましくは、ホウケイ酸ガラス、石英ガラスである。 Examples of the plastic material of the support include, for example, acrylic, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), polyester such as liquid crystal polyester, polyethylene ( PE), polypropylene (PP), polybutylene, polymethylpentene (PMP) and other polyolefins, cycloolefin polymers (COP, COC) and other cyclic olefin polymers, styrenic resins, polyoxymethylene (POM), polyamide ( PA), polycarbonate (PC), polymethylene methacrylate (PMMA), polyvinyl chloride (PVC), polyphenylene sulfide (PPS), polyphenylene ether (PPE), modified P E, polyimide (PI), polyamideimide (PAI), polyetherimide (PEI), polysulfone (PSU), polyethersulfone, polyketone (PK), polyetherketone (PEK), polyetheretherketone (PEEK), poly Fluorine resins such as ether ketone ketone (PEKK), polyarylate (PAR), polyether nitrile, phenolic resin, phenoxy resin, polytetrafluoroethylene and the like can be mentioned. A support having high heat resistance and high transparency is preferred. Borosilicate glass and quartz glass are preferable.
 支持体の材質の金属としては、例えば、ステンレス鋼、鉄、アルミ、真鍮および銅などが挙げられる。 Examples of the metal of the support material include stainless steel, iron, aluminum, brass and copper.
 支持体の厚みは、例えば、0.5~10mmとすればよく、必要に応じて端面をC面加工やR加工を施してもよい。 The thickness of the support may be, for example, 0.5 to 10 mm, and the end face may be subjected to C surface processing or R processing as necessary.
 支持体は、支持体の樹脂系粘着剤層と接触する面(以下、「支持体の第1面」ということがある)と、支持体の当該面(支持体の第1面)以外の面(以下、「支持体の第2面」ということがある)とをつなぐ貫通孔を有する。貫通孔は、1個でもよいし、複数個でもよい。 The support is a surface other than the surface in contact with the resin-based pressure-sensitive adhesive layer of the support (hereinafter sometimes referred to as the “first surface of the support”) and the surface of the support (the first surface of the support). (Hereinafter, also referred to as “the second surface of the support”). There may be one through hole or a plurality of through holes.
 支持体に貫通孔が複数ある場合、貫通孔の配列は特に限定されず、適宜設定することができる。例えば、所定の間隔で規則的に配列していてもよいし、不規則的に配列していてもよいし、これらの組み合わせであってもよい。組み合わせとは、例えば、ある列の複数の貫通孔は規則的に配列し、別の列の複数の貫通孔は不規則的に配列している場合である。 When the support has a plurality of through holes, the arrangement of the through holes is not particularly limited and can be set as appropriate. For example, it may be regularly arranged at a predetermined interval, may be irregularly arranged, or a combination thereof. The combination is, for example, a case where a plurality of through holes in one row are regularly arranged and a plurality of through holes in another row are arranged irregularly.
 支持体の第2面は、支持体の第1面以外の面であればよい。例えば、図2Bに示すように、第2面は、支持体の第1面とは反対側の面であってもよい。また、支持体に貫通孔が複数ある場合、第2面は1つでもよいし、2つ以上でもよい。 The second surface of the support may be a surface other than the first surface of the support. For example, as shown in FIG. 2B, the second surface may be a surface opposite to the first surface of the support. Further, when the support has a plurality of through holes, the number of the second surface may be one, or two or more.
 支持体の第1面に存在する貫通孔の形状、大きさおよび数は、それぞれ、支持体の第2面に存在する貫通孔の形状、大きさ(孔径)および数と同じであってもよいし、異なっていてもよい。例えば、支持体の第1面に存在する貫通孔の大きさが、支持体の第2面に存在する貫通孔の大きさよりも大きくてもよい。また、支持体内での貫通孔同士の繋がりによって、支持体の第1面に存在する貫通孔1個と支持体の第2面に存在する貫通孔2個とがつながるなどによって、支持体の第1面に存在する貫通孔の数と支持体の第2面に存在する貫通孔の数は異なり得る。 The shape, size and number of through-holes existing on the first surface of the support may be the same as the shape, size (hole diameter) and number of through-holes existing on the second surface of the support, respectively. And may be different. For example, the size of the through hole existing on the first surface of the support may be larger than the size of the through hole existing on the second surface of the support. In addition, the connection between the through holes in the support body causes the connection of one through hole existing on the first surface of the support member and two through holes existing on the second surface of the support member. The number of through holes present on one surface may be different from the number of through holes present on the second surface of the support.
 本発明に係る積層体は、支持体の樹脂系粘着剤層と接触する面(第1面)に存在する貫通孔が、積層方向から見て、樹脂フィルム上の配線パターンを形成する部分と重ならないことが好ましい。これにより、樹脂フィルムもしくは樹脂フィルム上に形成された有機系太陽電池の構成部材または有機系太陽電池の破損の危険性をより低減して、効率よく、有機系太陽電池を製造可能である。 In the laminate according to the present invention, the through-hole present in the surface (first surface) that contacts the resin-based pressure-sensitive adhesive layer of the support overlaps with the portion that forms the wiring pattern on the resin film as viewed from the lamination direction. It is preferable not to be. Thereby, the danger of the damage of the structural member of an organic solar cell formed on the resin film or the resin film, or an organic solar cell can be reduced more, and an organic solar cell can be manufactured efficiently.
 本発明に係る積層体は、支持体の樹脂系粘着剤層と接触する面(第1面)に存在する貫通孔の面積が、0.007mm以上であり、かつ、当該貫通孔が、当該面(第1面)の200cmあたり、1つ以上存在することが好ましい。貫通孔の面積は、より好ましくは、0.19mm~320mmであり、形状は円や四角等の形状が望ましいが、特にこれらに限定されない。貫通孔の面積が0.007mm以上であれば剥離工程時に貫通孔に流体を注入し易くなり、剥離時に樹脂フィルムもしくは樹脂フィルム上に形成された有機系太陽電池の構成部材または有機系太陽電池の破損のおそれを低減することができる。貫通孔の大きさが320mm以下であれば、貫通孔部分の強度の低下を抑制し、有機系太陽電池製造時に貫通孔部分が変形して破損するおそれを低減することができる。さらに、貫通孔が第1面の200cmあたり1つ以上存在することで、剥離工程時に樹脂フィルムにかかる応力の集中を抑えられ、有機系太陽電池の構成部材または有機系太陽電池の破損の危険性をより低減して、効率よく、有機系太陽電池を製造可能である。 In the laminate according to the present invention, the area of the through hole present on the surface (first surface) that contacts the resin-based pressure-sensitive adhesive layer of the support is 0.007 mm 2 or more, and the through hole is It is preferable that one or more exists per 200 cm 2 of the surface (first surface). The area of the through hole is more preferably 0.19 mm 2 to 320 mm 2 , and the shape is preferably a circle or a square, but is not particularly limited thereto. If the area of the through-hole is 0.007 mm 2 or more, it becomes easy to inject a fluid into the through-hole during the peeling process, and the organic solar cell component or the organic solar battery formed on the resin film or the resin film at the time of peeling. The risk of breakage can be reduced. If the size of the through hole is 320 mm 2 or less, it is possible to suppress a decrease in the strength of the through hole portion, and to reduce the possibility that the through hole portion is deformed and damaged during the production of the organic solar cell. Furthermore, the presence of one or more through-holes per 200 cm 2 of the first surface can suppress the concentration of stress applied to the resin film during the peeling process, and the risk of damage to the constituent members of the organic solar cell or the organic solar cell Therefore, the organic solar cell can be efficiently manufactured.
 <樹脂系粘着剤層>
 樹脂系粘着剤層は、樹脂系粘着剤を含む。樹脂系粘着剤としては、公知の樹脂系粘着剤を用いることができる。樹脂系粘着剤層は、基材を有していてもよいし、有さなくてもよい。樹脂系粘着剤層は、基材の有無にかかわらず、基材を含めた樹脂系粘着剤層の波長400nmにおける光透過率が、40%以上であることが好ましく、60%以上であることがより好ましい。また、発泡などで表面に凹凸を形成し吸着力を発現させたものでもよい。
<Resin adhesive layer>
The resin adhesive layer includes a resin adhesive. As the resin adhesive, a known resin adhesive can be used. The resin-based pressure-sensitive adhesive layer may or may not have a base material. Regardless of the presence or absence of the base material, the resin-based pressure-sensitive adhesive layer preferably has a light transmittance at a wavelength of 400 nm of the resin-based pressure-sensitive adhesive layer including the base material of 40% or more, and preferably 60% or more. More preferred. Moreover, what formed unevenness | corrugation on the surface by foaming etc. and expressed adsorption power may be used.
 樹脂系粘着剤層の基材としては、例えば、ポリエチレンテレフタレートなどのポリエステル、ポリイミド、シクロオレフィンポリマー(COP、COC)、ポリメチルペンテン、薄膜ガラスなどの基材が挙げられる。特に耐熱性と透明性が優れるものがよい。 Examples of the base material for the resin-based pressure-sensitive adhesive layer include base materials such as polyester such as polyethylene terephthalate, polyimide, cycloolefin polymer (COP, COC), polymethylpentene, and thin film glass. In particular, those having excellent heat resistance and transparency are preferable.
 樹脂系粘着剤層の樹脂系粘着剤は、特に限定されず、適宜選択すればよい。例えば、樹脂系粘着剤は、シリコーン樹脂系粘着剤、アクリル樹脂系接着剤、ユリア樹脂系接着剤、メラミン樹脂系接着剤、フェノール樹脂系接着剤、酢酸ビニル樹脂系溶剤形接着剤、天然ゴム系溶剤形接着剤、酢酸ビニル樹脂系エマルジョン形接着剤、酢酸ビニル共重合樹脂系エマルジョン形接着剤、EVA(エチレン・酢酸ビニル共重合)樹脂系エマルジョン形接着剤、イソシアネート系接着剤、合成ゴム系ラテックス型接着剤、エポキシ樹脂系接着剤、シアノアクリレート系接着剤およびポリウレタン系接着剤からなる群より選択される少なくとも1種であることが好ましい。 The resin adhesive of the resin adhesive layer is not particularly limited and may be appropriately selected. For example, resin adhesives are silicone resin adhesives, acrylic resin adhesives, urea resin adhesives, melamine resin adhesives, phenol resin adhesives, vinyl acetate resin solvent adhesives, natural rubber adhesives Solvent adhesive, vinyl acetate resin emulsion adhesive, vinyl acetate copolymer resin emulsion adhesive, EVA (ethylene / vinyl acetate copolymer) resin emulsion adhesive, isocyanate adhesive, synthetic rubber latex It is preferably at least one selected from the group consisting of a mold adhesive, an epoxy resin adhesive, a cyanoacrylate adhesive, and a polyurethane adhesive.
 一実施形態では、樹脂系粘着剤は、シリコーン樹脂系粘着剤、アクリル樹脂系粘着剤およびゴム系粘着剤からなる群より選択される1種以上である。 In one embodiment, the resin adhesive is one or more selected from the group consisting of a silicone resin adhesive, an acrylic resin adhesive, and a rubber adhesive.
 樹脂系粘着剤は、本発明に係る積層体を使用した後、あるいは、後述の本発明に係る製造方法により有機系太陽電池を作製した後の剥離工程(支持体を剥離する工程)において、加熱、冷却などの温度変化や、紫外線、電子線及び放射線などの電磁波の照射をすることにより剥離強度が低下する樹脂系粘着剤であることが好ましい。これらは、一種単独または二種以上を組み合わせてもよい。これにより、当該剥離工程で、樹脂系粘着剤層を加熱、冷却や、紫外線、電子線または放射線などの電磁波を照射することにより剥離強度を低下させて、支持体から有機系太陽電池または電極が形成された樹脂フィルムを容易に剥離することができる。このような樹脂系粘着剤としては、例えば、ニッタ社製の感温性粘着シート(インテリマーテープ)、ソマール社製のソマタック(登録商標)UVなどが挙げられる。剥離時に、粘着剤に応じて適時刺激を与えてもよく、例えば感温性シートの場合、-20℃~200℃の温度を0.01~10時間与えてもよく、電磁波剥離性シートの場合、適時必要な波長を含む電磁波を0.01~10時間与えてもよい。 The resin-based pressure-sensitive adhesive is heated in the peeling step (step of peeling the support) after using the laminate according to the present invention or after producing an organic solar cell by the production method according to the present invention described later. It is preferably a resin-based pressure-sensitive adhesive whose peel strength is reduced by irradiation with electromagnetic waves such as ultraviolet rays, electron beams and radiation, and temperature changes such as cooling. These may be used alone or in combination of two or more. Accordingly, in the peeling step, the resin-based pressure-sensitive adhesive layer is heated, cooled, or irradiated with electromagnetic waves such as ultraviolet rays, electron beams, or radiation to reduce the peeling strength, so that the organic solar cell or electrode is removed from the support. The formed resin film can be easily peeled off. Examples of such a resin-based pressure-sensitive adhesive include a temperature-sensitive pressure-sensitive adhesive sheet (Intellimer tape) manufactured by NITTA, and SOMATAC (registered trademark) UV manufactured by SOMAR. When peeling, a stimulus may be given in a timely manner according to the pressure-sensitive adhesive. For example, in the case of a temperature-sensitive sheet, a temperature of −20 ° C. to 200 ° C. may be given for 0.01 to 10 hours. Alternatively, an electromagnetic wave containing a necessary wavelength in a timely manner may be applied for 0.01 to 10 hours.
 本発明に係る積層体は、上述した支持体が貫通孔を有すればよいが、樹脂系粘着剤層も支持体と接触する面(以下、「樹脂系粘着剤層の第1面」ということがある)と、樹脂フィルムと接触する面(以下、「樹脂系粘着剤層の第2面」ということがある)とをつなぐ貫通孔を有していてもよい。樹脂系粘着剤層の貫通孔は、1個でもよいし、複数個でもよい。 In the laminate according to the present invention, the support described above may have a through-hole, but the surface of the resin-based pressure-sensitive adhesive layer is also referred to as the “first surface of the resin-based pressure-sensitive adhesive layer”. And a through-hole that connects a surface in contact with the resin film (hereinafter sometimes referred to as “second surface of the resin-based pressure-sensitive adhesive layer”). There may be one or more through-holes in the resin-based pressure-sensitive adhesive layer.
 樹脂系粘着剤層に貫通孔が複数ある場合、貫通孔の配列は特に限定されず、適宜設定することができる。例えば、所定の間隔で規則的に配列していてもよいし、不規則的に配列していてもよいし、これらの組み合わせであってもよい。組み合わせとは、例えば、ある列の複数の貫通孔は規則的に配列し、別の列の複数の貫通孔は不規則的に配列している場合である。 When there are a plurality of through holes in the resin-based pressure-sensitive adhesive layer, the arrangement of the through holes is not particularly limited and can be set as appropriate. For example, it may be regularly arranged at a predetermined interval, may be irregularly arranged, or a combination thereof. The combination is, for example, a case where a plurality of through holes in one row are regularly arranged and a plurality of through holes in another row are arranged irregularly.
 樹脂系粘着剤層の第1面に存在する貫通孔の形状、大きさおよび数は、それぞれ、樹脂系粘着剤層の第2面に存在する貫通孔の形状、大きさおよび数と同じであってもよいし、異なっていてもよい。 The shape, size and number of through-holes present on the first surface of the resin-based pressure-sensitive adhesive layer are the same as the shape, size and number of through-holes present on the second surface of the resin-based pressure-sensitive adhesive layer, respectively. It may be different or different.
 本発明に係る積層体は、樹脂系粘着剤層の第1面および/または第2面に存在する貫通孔が、積層方向から見て、樹脂フィルム上の配線パターンを形成する部分と重ならないことが好ましい。これにより、樹脂フィルムもしくは樹脂フィルム上に形成された有機系太陽電池の構成部材または有機系太陽電池の破損の危険性をより低減して、効率よく、有機系太陽電池を製造可能である。 In the laminate according to the present invention, the through-holes present on the first surface and / or the second surface of the resin-based pressure-sensitive adhesive layer do not overlap with the portion forming the wiring pattern on the resin film when viewed from the lamination direction. Is preferred. Thereby, the danger of the damage of the structural member of an organic solar cell formed on the resin film or the resin film, or an organic solar cell can be reduced more, and an organic solar cell can be manufactured efficiently.
 本発明に係る積層体は、樹脂系粘着剤層が、支持体と接触する面(樹脂系粘着剤層の第1面)と、樹脂フィルムと接触する面(樹脂系粘着剤層の第2面)とをつなぐ貫通孔を有し、樹脂系粘着剤層の貫通孔は、積層方向から見て、支持体の樹脂系粘着剤層と接触する面(支持体の第1面)に存在する貫通孔と重なる位置に存在することが好ましい。これにより、樹脂系粘着剤層を樹脂フィルムに残存させることなく、簡単に樹脂系粘着剤層を樹脂フィルムから剥離することができる。 In the laminate according to the present invention, the resin-based pressure-sensitive adhesive layer has a surface in contact with the support (first surface of the resin-based pressure-sensitive adhesive layer) and a surface in contact with the resin film (second surface of the resin-based pressure-sensitive adhesive layer). ), And the through hole of the resin-based pressure-sensitive adhesive layer is a through hole existing on the surface (first surface of the support) that contacts the resin-based pressure-sensitive adhesive layer of the support as viewed from the stacking direction. It is preferable that it exists in the position which overlaps with a hole. Thereby, a resin adhesive layer can be easily peeled from a resin film, without leaving a resin adhesive layer in a resin film.
 樹脂系粘着剤層が、貫通孔を有する場合、樹脂系粘着剤層の貫通孔の大きさ(孔径)は、支持体の第1面に存在する貫通孔の大きさ(孔径)と同じであってもよいし、異なっていてもよい。一実施形態では、樹脂系粘着剤層の貫通孔の大きさは、支持体の第1面に存在する貫通孔の大きさよりも大きい。 When the resin-based pressure-sensitive adhesive layer has through-holes, the size (hole diameter) of the through-holes in the resin-based pressure-sensitive adhesive layer is the same as the size of the through-holes (hole diameter) existing on the first surface of the support. It may be different or different. In one embodiment, the size of the through hole of the resin-based pressure-sensitive adhesive layer is larger than the size of the through hole existing on the first surface of the support.
 樹脂系粘着剤から形成される樹脂系粘着剤層は、1層でもよいし、2層以上でもよい。2層以上の場合は、各層が同じであっても良いし、互いに異なっていてもよい。 The resin adhesive layer formed from the resin adhesive may be one layer or two or more layers. In the case of two or more layers, each layer may be the same or different from each other.
 樹脂系粘着剤層の厚みは、特に限定されないが、例えば、1~150μmが好ましく、1~100μmがより好ましく、1~50μmが更に好ましい。 The thickness of the resin-based pressure-sensitive adhesive layer is not particularly limited, but is preferably 1 to 150 μm, more preferably 1 to 100 μm, and still more preferably 1 to 50 μm.
 <樹脂フィルム>
 樹脂フィルムは、有機系太陽電池の作用極、対極などの基板となる部材である。上述した色素増感型太陽電池であれば、光電極基板および対向電極基板の一方または両方が樹脂フィルムであることが好ましい。
<Resin film>
The resin film is a member that becomes a substrate such as a working electrode and a counter electrode of the organic solar cell. In the case of the dye-sensitized solar cell described above, one or both of the photoelectrode substrate and the counter electrode substrate is preferably a resin film.
 樹脂フィルムとしては、公知の樹脂フィルムを用いることができる。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、シンジオタクチックポリスチレン(SPS)、ポリフェニレンスルフィド(PPS)、ポリカーボネート(PC)、ポリアリレート(PAr)、ポリスルホン(PSF)、ポリエステルスルホン(PES)、ポリエーテルイミド(PEI)、透明ポリイミド(PI)、シクロオレフィンポリマー(COP)、ポリメチルペンテン(PMP)などの合成樹脂を含む樹脂組成物を成形して得られるものが挙げられる。 As the resin film, a known resin film can be used. For example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), syndiotactic polystyrene (SPS), polyphenylene sulfide (PPS), polycarbonate (PC), polyarylate (PAr), polysulfone (PSF), polyestersulfone (PES) , Polyetherimide (PEI), transparent polyimide (PI), cycloolefin polymer (COP), and a resin composition obtained by molding a resin composition containing a polymethylpentene (PMP).
 樹脂フィルムの波長400nmにおける光透過率は、40%以上であることが好ましく、70%以上であることがより好ましい。 The light transmittance at a wavelength of 400 nm of the resin film is preferably 40% or more, and more preferably 70% or more.
 樹脂フィルムの厚みは、用途などに応じて適宜調節すればよい。例えば、10~10,000μmである。 The thickness of the resin film may be appropriately adjusted according to the use. For example, the thickness is 10 to 10,000 μm.
 積層体の樹脂フィルムの表面に、上述した導電膜があってもよい。 The conductive film described above may be present on the surface of the resin film of the laminate.
 積層体の形成方法は、順に樹脂フィルム、樹脂系粘着剤層および支持体を含む少なくとも3層の構成の積層体が得られる方法であって、支持体が上述した貫通孔を有すれば、特に限定されず、塗布、貼り合せなど適宜選択すればよい。樹脂系粘着剤を塗布して樹脂系粘着剤層を形成する場合は、その方法は特に限定されず、公知の印刷方法を用いることができる。例えば、スピンコート法、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、ホッパーを使用するエクストルージョンコート法、多層同時塗布方法などが挙げられる。樹脂系粘着剤層を貼り合せによって形成する場合は、例えば、貼合装置を用いて支持体または樹脂フィルムに樹脂系粘着剤層を貼り合せることができる。支持体に貫通孔を設けるタイミングは、支持体と樹脂系粘着剤層を積層する前、積層した後、または支持体と樹脂系粘着剤層と樹脂フィルムを積層する前、積層した後のいずれでもよい。 The method of forming the laminate is a method for obtaining a laminate having a structure of at least three layers including a resin film, a resin-based pressure-sensitive adhesive layer, and a support in this order, and if the support has the above-described through holes, in particular It is not limited, What is necessary is just to select suitably, such as application | coating and bonding. When a resin adhesive is applied to form a resin adhesive layer, the method is not particularly limited, and a known printing method can be used. Examples include spin coating, dip coating, air knife coating, curtain coating, roller coating, wire bar coating, gravure coating, extrusion coating using a hopper, and multilayer simultaneous coating. When forming a resin-type adhesive layer by bonding, a resin-type adhesive layer can be bonded to a support body or a resin film using a bonding apparatus, for example. The timing for providing the through hole in the support may be before, after laminating the support and the resin adhesive layer, or before or after laminating the support, the resin adhesive layer and the resin film. Good.
 (有機系太陽電池の製造方法)
 本発明に係る有機系太陽電池の製造方法は、上記いずれかに記載の積層体の前記支持体の貫通孔に流体を注入する工程を有する、有機系太陽電池の製造方法である。これにより、基板として樹脂フィルムを用いた場合に、樹脂フィルムもしくは樹脂フィルム上に形成された有機系太陽電池の構成部材または有機系太陽電池の破損の危険性を低減して、効率よく、有機系太陽電池を製造可能である。
(Method for producing organic solar cell)
The manufacturing method of the organic solar cell which concerns on this invention is a manufacturing method of an organic solar cell which has the process of inject | pouring a fluid into the through-hole of the said support body of the laminated body in any one of the said. As a result, when a resin film is used as the substrate, the risk of damage to the organic solar cell component or the organic solar cell formed on the resin film or the resin film is reduced, and the organic Solar cells can be manufactured.
 本発明に係る有機系太陽電池の製造方法は、上述した積層体を用いて、貫通孔に支持体の第2面側から流体を注入すること以外は、特に限定されず、公知の有機系太陽電池の製造方法を採用することができる。すなわち、従来の有機系太陽電池の製造方法において、基板として樹脂フィルムを用いていた工程において、樹脂フィルム単体に代えて、上述した本発明に係る積層体を用いて、成膜、固定、印刷、貼合などの各工程を行えばよい。そして、上記積層体を使用した後、あるいは、有機系太陽電池を作製した後の剥離工程(支持体を剥離する工程)において、支持体の貫通孔に流体を注入して、樹脂フィルムから支持体と樹脂系粘着剤層を剥離させればよい。 The method for producing an organic solar cell according to the present invention is not particularly limited, except that a fluid is injected into the through hole from the second surface side of the support using the above-described laminate, and a known organic solar cell is used. A battery manufacturing method can be employed. That is, in the conventional method for manufacturing an organic solar cell, in the process of using a resin film as a substrate, instead of the resin film alone, using the above-described laminate according to the present invention, film formation, fixation, printing, What is necessary is just to perform each process, such as bonding. And in the peeling process (process which peels a support body) after using the said laminated body or producing an organic type solar cell, a fluid is inject | poured into the through-hole of a support body, and a support body from a resin film And the resin adhesive layer may be peeled off.
 支持体の貫通孔に注入する流体としては、例えば、空気、乾燥空気の他、窒素ガス、アルゴンガスなどの不活性ガス、水、アルコール、アセトニトリル、トルエン、テトラヒドロフラン(THF)等の一般的な有機溶媒などが挙げられる。流体の温度は特に限定されないが、-80℃~200℃などが好ましい。 Examples of the fluid to be injected into the through hole of the support include, for example, air, dry air, inert gas such as nitrogen gas and argon gas, water, alcohol, acetonitrile, toluene, tetrahydrofuran (THF) and other common organic materials. A solvent etc. are mentioned. The temperature of the fluid is not particularly limited, but is preferably −80 ° C. to 200 ° C.
 本発明に係る有機系太陽電池の製造方法は、前記流体が、空気、乾燥空気であることが好ましい。 In the method for manufacturing an organic solar cell according to the present invention, the fluid is preferably air or dry air.
 第2面側から注入する前記流体は全面に注入してもよいし、あるいは支持体の中央部分、特定の部分など、部分的に注入してもよい。さらに、注入する部分によって前記流体を注入するタイミングをずらしてもよい。前記流体は注入する際に圧力をかけてもよく、0.001~1Mpaの圧力をかけることが好ましい。 The fluid to be injected from the second surface side may be injected over the entire surface, or may be partially injected into the center portion or a specific portion of the support. Further, the timing of injecting the fluid may be shifted depending on the portion to be injected. The fluid may be pressurized when injected, and it is preferable to apply a pressure of 0.001 to 1 MPa.
 剥離の際に積層体や支持体を冷却下や加熱下においてもよいし、剥離時の環境をドライ雰囲気下で実施してもよいし、不活性ガス中で実施してもよい。 The laminate or the support may be cooled or heated at the time of peeling, and the peeling environment may be carried out in a dry atmosphere or in an inert gas.
 本発明に係る有機系太陽電池の製造方法は、前記有機系太陽電池が色素増感型太陽電池であることが好ましい。 In the method for producing an organic solar cell according to the present invention, the organic solar cell is preferably a dye-sensitized solar cell.
 以下、光電極(作用極)、対向電極(対極)および電解質層を有する色素増感型太陽電池を一例として、有機系太陽電池の製造方法を説明する。 Hereinafter, a method for producing an organic solar cell will be described using a dye-sensitized solar cell having a photoelectrode (working electrode), a counter electrode (counter electrode), and an electrolyte layer as an example.
 有機系太陽電池の製造方法の工程としては、例えば、光電極基板上に導電膜を形成する工程、光電極基板上の導電膜上に多孔質半導体微粒子層を形成する工程および多孔質半導体微粒子層上に増感色素層を形成する工程などの光電極製造工程;対向電極基板上に導電膜を形成する工程、対向電極基板上の導電膜上に触媒層を形成する工程などの対向電極製造工程;光電極及び/又対向電極上にシール剤組成物を塗布して、エネルギー線照射して、硬化させ、シール剤を形成する工程;光電極と対向電極との間に電解質層を配置する工程;などの公知の有機系太陽電池の製造方法の一般的な工程が挙げられる。例えば、特開2014-120219号公報が参照される。 The steps of the method for producing an organic solar cell include, for example, a step of forming a conductive film on the photoelectrode substrate, a step of forming a porous semiconductor fine particle layer on the conductive film on the photoelectrode substrate, and a porous semiconductor fine particle layer Photoelectrode manufacturing process such as a process of forming a sensitizing dye layer on the surface; Manufacturing process of a counter electrode such as a process of forming a conductive film on the counter electrode substrate, a process of forming a catalyst layer on the conductive film on the counter electrode substrate Applying a sealant composition on the photoelectrode and / or the counter electrode, irradiating with energy rays and curing to form a sealant; placing an electrolyte layer between the photoelectrode and the counter electrode; The general process of the manufacturing method of well-known organic type solar cells, such as; For example, refer to Japanese Unexamined Patent Application Publication No. 2014-120219.
 導電膜は、スパッタリング法、コーティング法、蒸着法、スプレー熱分解法、化学蒸着(CVD)法などの公知の方法により光電極基板または対向電極基板上に成膜することで形成することができる。これらの導電膜にCOやYAGなどのレーザー等を用いて加工し、導電パターンを形成してもよい。 The conductive film can be formed by forming a film on a photoelectrode substrate or a counter electrode substrate by a known method such as a sputtering method, a coating method, a vapor deposition method, a spray pyrolysis method, or a chemical vapor deposition (CVD) method. These conductive films may be processed using a laser such as CO 2 or YAG to form conductive patterns.
 多孔質半導体微粒子層は、例えば、プレス法、水熱分解法、泳動電着法、バインダーフリーコーティング法、エアロゾルデポジション(AD)法、など公知の方法により形成することができる。例えば、酸化チタンペーストを、スクリーン印刷機やベーカー式アプリケーターを用いて、塗布し、その塗膜を常温で乾燥させ、次いで、150℃の恒温層中で加熱乾燥することで、多孔質半導体微粒子層を形成することができる。 The porous semiconductor fine particle layer can be formed by a known method such as a press method, a hydrothermal decomposition method, an electrophoretic electrodeposition method, a binder-free coating method, and an aerosol deposition (AD) method. For example, a porous semiconductor fine particle layer is obtained by applying a titanium oxide paste using a screen printer or a baker type applicator, drying the coating film at room temperature, and then drying by heating in a thermostatic layer at 150 ° C. Can be formed.
 増感色素層は、例えば、増感色素の溶液中に多孔質半導体微粒子層を浸漬する方法や、増感色素の溶液を多孔質半導体微粒子層上に塗布する方法などにより形成することができる。浸漬する方法では、例えば、色素を含有するエタノール溶液中に、多孔質半導体微粒子層を浸漬することで、増感色素層を形成することができる。 The sensitizing dye layer can be formed by, for example, a method of immersing the porous semiconductor fine particle layer in a sensitizing dye solution or a method of applying a sensitizing dye solution on the porous semiconductor fine particle layer. In the dipping method, for example, the sensitizing dye layer can be formed by dipping the porous semiconductor fine particle layer in an ethanol solution containing the dye.
 触媒層は、公知の方法により形成することができる。例えば、特開2014-120219号公報に記載のようなカーボンナノチューブ(A)を含む触媒層では、カーボンナノチューブ(A)を含有する分散液を調製し、この分散液を対向電極基板上の導電膜上に塗布し、得られた塗膜を乾燥させることで、形成することができる。 The catalyst layer can be formed by a known method. For example, in a catalyst layer containing carbon nanotubes (A) as described in JP 2014-120219 A, a dispersion containing carbon nanotubes (A) is prepared, and this dispersion is used as a conductive film on a counter electrode substrate. It can form by apply | coating on top and drying the obtained coating film.
 電解質層は、その構成成分を含有する溶液(電解液)を光電極上に塗布する、または、光電極と対向電極を有するセルを作製し、その隙間に電解液を注入することで形成することができる。 The electrolyte layer can be formed by applying a solution (electrolyte) containing the constituent components onto the photoelectrode, or by producing a cell having a photoelectrode and a counter electrode, and injecting the electrolyte into the gap. it can.
 シール剤を硬化させるエネルギー線は、紫外線、可視光、赤外線、電子線などのエネルギー線を用いても良い。これらのうち、紫外線、電子線が好ましい。 The energy rays for curing the sealing agent may be energy rays such as ultraviolet rays, visible light, infrared rays, and electron beams. Of these, ultraviolet rays and electron beams are preferred.
 紫外線照射装置としては、通常200~500nmの範囲の光を含む光源、たとえば、高圧水銀灯、超高圧水銀灯、メタルハライド灯、ガリウム灯、キセノン灯、カーボンアーク灯などを有するものが使用できる。一方、電子線により硬化させる場合、通常100~500eVのエネルギーを有する電子線加速装置が使用できる。 As the ultraviolet irradiation device, a light source usually containing light in the range of 200 to 500 nm, for example, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, a gallium lamp, a xenon lamp, a carbon arc lamp, or the like can be used. On the other hand, when curing with an electron beam, an electron beam accelerator having an energy of usually 100 to 500 eV can be used.
 硬化条件などは、通常実施される公知の条件で行えばよい。エネルギー線の積算照射量は通常100~5000mJ/cm、好ましくは200~4000mJ/cmである。 What is necessary is just to perform hardening conditions etc. on the well-known conditions normally implemented. Integrated irradiation dose of energy rays is usually 100 ~ 5000mJ / cm 2, preferably 200 ~ 4000mJ / cm 2.
 シール剤組成物の塗布方法は、特に限定されず、フレキソ印刷、グラビア印刷、スクリーン印刷、インクジェット印刷、オフセット印刷、あるいはバーコート法、ディップコート法、フローコート法、スプレーコート法、スピンコート法、ローラーコート法、リバースコート、エアナイフ、ディスペンスなどの方法を使用できる。 The application method of the sealant composition is not particularly limited, and flexographic printing, gravure printing, screen printing, inkjet printing, offset printing, or bar coating method, dip coating method, flow coating method, spray coating method, spin coating method, Methods such as roller coating, reverse coating, air knife, and dispensing can be used.
 有機系太陽電池モジュールの構造としては、特に限定されず、Z型、W型、並列型、集電配列型、モノリシック型などがある。これらのモジュールを一つまたは2つ以上組み合わせて直列や並列接続して、複数接続してもよい。また集電電極や取出し電極など公知の手段でモジュールに作成してもよい。接続方法は、公知の手段を用いればよく、半田、金属板、ケーブル、フラットケーブル、フレキシブル基材、ケーブルなどを適宜選択すればよい。 The structure of the organic solar cell module is not particularly limited, and includes a Z-type, a W-type, a parallel type, a current collection type, a monolithic type, and the like. A plurality of these modules may be connected in series or in parallel by combining one or two or more. Moreover, you may produce in a module by well-known means, such as a current collection electrode and an extraction electrode. As a connection method, a known means may be used, and solder, a metal plate, a cable, a flat cable, a flexible base material, a cable, or the like may be appropriately selected.
 モジュールの組み立て法は特に限定されず、真空貼り合わせ法(One Drop Fill法:ODF法)や、エンドシール法など、公知の方法で製造することができる。ODF法としては、例えば、国際公開第2007/046499号に記載の方法が挙げられる。エンドシール法としては、例えば、特開2006-004827号公報に記載の方法が挙げられる。
 その他モジュールの周囲や外装面に、紫外線カット層、酸素や水分のバリア層、反射防止層、防汚層、ハードコート層や補強部材など適時、配置してもよい。これらは蒸着や塗布、シート状のものを設置するなど公知の方法を用いればよい。
The method for assembling the module is not particularly limited, and the module can be manufactured by a known method such as a vacuum bonding method (One Drop Fill method: ODF method) or an end seal method. Examples of the ODF method include the method described in International Publication No. 2007/046499. Examples of the end seal method include a method described in JP-A-2006-004827.
In addition, an ultraviolet cut layer, an oxygen or moisture barrier layer, an antireflection layer, an antifouling layer, a hard coat layer, a reinforcing member, or the like may be disposed around the module or on the exterior surface as appropriate. These may be a known method such as vapor deposition, coating, or installing a sheet.
 以下、実施例を挙げて本発明をさらに詳しく説明するが、これらの実施例は、本発明の例示を目的とするものであり、本発明を何ら限定するものではない。特に断らない限り、配合量は、質量部を意味する。 Hereinafter, the present invention will be described in more detail with reference to examples. However, these examples are intended to illustrate the present invention and do not limit the present invention in any way. Unless otherwise specified, the blending amount means parts by mass.
 実施例で使用した支持体、樹脂系粘着剤、樹脂フィルム、UV硬化樹脂は以下のとおりである。
(支持体)
ホウケイ酸ガラス:ショット社製の製品名テンパックスガラス(厚さ3mm、縦300mm、横210mm)
(樹脂系粘着剤)
シリコーン樹脂系粘着剤:寺岡製作所社製のシリコーンゴム両面粘着テープ9030W、
(樹脂フィルム)
縦300mm、横210mm、厚み125μmのPENフィルムの表面に300nmのITO膜を形成したもの。
(UV硬化樹脂)
UV硬化樹脂:液状ポリイソブチレン系シール材
The support, resin adhesive, resin film, and UV curable resin used in the examples are as follows.
(Support)
Borosilicate glass: Product name Tempax glass (thickness 3 mm, length 300 mm, width 210 mm) manufactured by Schott
(Resin adhesive)
Silicone resin adhesive: silicone rubber double-sided adhesive tape 9030W manufactured by Teraoka Seisakusho Co., Ltd.
(Resin film)
A 300 nm long, 210 mm wide, 125 μm thick PEN film with a 300 nm ITO film.
(UV curable resin)
UV curable resin: Liquid polyisobutylene sealant
 実施例1
 50mm間隔、直径1mm(面積0.79mm)の貫通孔を一方の面とその反対側の面に有する支持体上にシリコーン樹脂系粘着剤を30μm塗布して、樹脂系粘着剤層を形成し、その樹脂系粘着剤層上に、樹脂フィルムをITO膜側の面を樹脂系粘着剤層とは反対側になるように配置し、積層体を形成した。支持体の貫通孔は、樹脂フィルムの印刷パターンを避けるように形成した。
Example 1
A resin-based pressure-sensitive adhesive layer is formed by applying 30 μm of a silicone resin-based pressure-sensitive adhesive on a support having through-holes with a spacing of 50 mm and a diameter of 1 mm (area 0.79 mm 2 ) on one surface and the opposite surface. On the resin-based pressure-sensitive adhesive layer, the resin film was disposed so that the surface on the ITO film side was opposite to the resin-based pressure-sensitive adhesive layer to form a laminate. The through hole of the support was formed so as to avoid the printed pattern of the resin film.
 実施例2
 実施例1において、樹脂系粘着剤層を形成した後、積層方向から見て、支持体の第1面に存在する貫通孔と重なる同じ位置に、その貫通孔と同じ直径かつ樹脂系粘着剤層の第2面まで貫通する貫通孔を樹脂系粘着剤層に設けた。その後、実施例1と同様に、樹脂フィルムを配置して積層体を形成した。
Example 2
In Example 1, after forming the resin-based pressure-sensitive adhesive layer, the resin-based pressure-sensitive adhesive layer having the same diameter as that of the through-hole and the same position as the through-hole existing in the first surface of the support as viewed from the stacking direction A through-hole penetrating to the second surface was provided in the resin-based pressure-sensitive adhesive layer. Thereafter, in the same manner as in Example 1, a resin film was disposed to form a laminate.
 実施例3
 実施例1において、シリコーン樹脂系粘着剤の代わりにニッタ(株)製インテリマーテープCS2325NA2を樹脂系粘着剤層として使用し、その後、実施例1と同様に、樹脂フィルムを配置して積層体を形成した。
Example 3
In Example 1, instead of a silicone resin adhesive, NITTA Intellimer Tape CS2325NA2 was used as a resin adhesive layer, and then a resin film was placed in the same manner as in Example 1 to form a laminate. Formed.
 実施例4
 実施例2において、樹脂系粘着剤の代わりにニッタ(株)製インテリマーテープCS2325NA2を樹脂系粘着剤層として使用し、その後、実施例2と同様に、積層方向から見て、支持体の第1面に存在する貫通孔と重なる同じ位置に、その貫通孔と同じ直径かつ樹脂系粘着剤層の第2面まで貫通する貫通孔を樹脂系粘着剤層に設けた後に、樹脂フィルムを配置して積層体を形成した。
Example 4
In Example 2, Intellimer Tape CS2325NA2 manufactured by Nitta Co., Ltd. was used as the resin-based adhesive layer instead of the resin-based adhesive. Thereafter, as in Example 2, when viewed from the stacking direction, After the resin adhesive layer is provided with a through hole penetrating to the second surface of the resin-based adhesive layer at the same position as the through-hole that overlaps the through-hole existing on one surface, the resin film is disposed. Thus, a laminate was formed.
 実施例5
 実施例1において、100mm間隔、直径2mm(面積3.19mm)として貫通孔を設け、その後、実施例1と同様に、樹脂フィルムを配置して積層体を形成した。
Example 5
In Example 1, through-holes were provided at intervals of 100 mm and a diameter of 2 mm (area 3.19 mm 2 ), and then a resin film was disposed to form a laminate as in Example 1.
 比較例1
 実施例1において、貫通孔のない支持体を用いたこと以外は、製造例1と同様にして、比較積層体を形成した。
Comparative Example 1
In Example 1, a comparative laminate was formed in the same manner as in Production Example 1 except that a support having no through hole was used.
 実施例1~5で得られた積層体または比較積層体を用いて、有機系太陽電池製造の以下の各工程を通して有機系太陽電池の製造を行った。 Using the laminates obtained in Examples 1 to 5 or the comparative laminate, organic solar cells were manufactured through the following steps of manufacturing an organic solar cell.
(1)光電極の作成
 <多孔質半導体微粒子層を形成する工程(加熱工程)>
 積層体のITO面上に、バインダーフリーの酸化チタンペースト(PECC-C01-06、ペクセル・テクノロジーズ社製)を、ベーカー式アプリケーターを用いて塗布した。得られた塗膜を常温で10分間乾燥させた後、150℃の恒温層中でさらに5分間加熱乾燥して、7μmの多孔質半導体微粒子層を形成した。
(1) Creation of photoelectrode <Process for forming porous semiconductor fine particle layer (heating process)>
On the ITO surface of the laminate, a binder-free titanium oxide paste (PECC-C01-06, manufactured by Pexel Technologies) was applied using a Baker type applicator. The obtained coating film was dried at room temperature for 10 minutes, and then further heated and dried in a constant temperature layer at 150 ° C. for 5 minutes to form a 7 μm porous semiconductor fine particle layer.
 <増感色素層を形成する工程(浸漬工程)>
 多孔質半導体微粒子層を形成した積層体を、増感色素を濃度3×10-1モル/リットルとなるように溶解して得た色素溶液(増感色素:ルテニウム錯体(N719、ソラロニクス社製)、溶媒:エタノール)に、40℃で120分間浸漬して、増感色素層を形成して、光電極を得た。
<Step of forming a sensitizing dye layer (immersion step)>
A dye solution obtained by dissolving a laminate formed with a porous semiconductor fine particle layer so that a sensitizing dye has a concentration of 3 × 10 −1 mol / liter (sensitizing dye: ruthenium complex (N719, manufactured by Solaronics)) , Solvent: ethanol) at 40 ° C. for 120 minutes to form a sensitizing dye layer to obtain a photoelectrode.
(2)対向電極の作成
 光電極の作成に用いた積層体とは別の積層体のITO面上に白金ナノコロイド溶液(田中貴金属製)を、バーコートにより塗布し、乾燥した。その後、加熱水蒸気(100℃、5分)で処理することにより、白金触媒を定着させて触媒層を形成して、対向電極を得た。
(2) Creation of counter electrode A platinum nanocolloid solution (manufactured by Tanaka Kikinzoku) was applied by bar coating on the ITO surface of a laminate different from the laminate used for producing the photoelectrode, and dried. Then, by treating with heated steam (100 ° C., 5 minutes), the platinum catalyst was fixed and a catalyst layer was formed to obtain a counter electrode.
(3)電解液の調製
 各成分の濃度がヨウ素0.05mol/L、ヨウ化リチウム0.1mol/L、t-ブチルピリジン0.5mol/L、および、1,2-ジメチル-3-プロピルイミダゾリウムヨージド0.6mol/Lとなるように、上記各成分をメトキシアセトニトリルに溶解して、電解液を得た。
(3) Preparation of electrolyte solution The concentration of each component is 0.05 mol / L iodine, 0.1 mol / L lithium iodide, 0.5 mol / L t-butylpyridine, and 1,2-dimethyl-3-propylimidazo The above components were dissolved in methoxyacetonitrile to obtain an electrolytic solution so that the amount of lithium iodide was 0.6 mol / L.
 <シール剤を形成する工程(UV硬化工程)>
 多孔質半導体微粒子層上に増感色素層を形成した積層体上にシール剤組成物としてのUV硬化性樹脂をディスペンス法にて多孔質半導体微粒子層の周囲を取り囲むように描画後、多孔質半導体微粒子層上に電解液を塗布し、自動貼り合せ装置を用いて真空下、作成した光電極と対向電極を貼り合せ、100mWのメタルハライドライトを光電極側から60秒間照射することでUV硬化性樹脂を硬化させ、シール剤を形成した。
<Process for forming sealing agent (UV curing process)>
After drawing a UV curable resin as a sealant composition on a laminate in which a sensitizing dye layer is formed on the porous semiconductor fine particle layer so as to surround the periphery of the porous semiconductor fine particle layer by a dispensing method, the porous semiconductor A UV curable resin is applied by applying an electrolytic solution on the fine particle layer, bonding the prepared photoelectrode and the counter electrode under vacuum using an automatic bonding apparatus, and irradiating 100 mW metal halide light from the photoelectrode side for 60 seconds. Was cured to form a sealant.
 <支持体を剥離する工程>
 シール剤で貼りあわされた積層体に対して、光電極側と対向電極側、それぞれの支持体を剥離することで、有機系太陽電池を得た。
実施例1、5の積層体を用いた場合では、端部からゆっくりと剥離することで有機系太陽電池を得た。実施例2の積層体を用いて貫通孔に空気を注入しないで支持体を剥離した場合、端部から支持体を剥離することで有機系太陽電池を得た。また、実施例2の積層体を用いて貫通孔に空気を注入しながら支持体を剥離することでも有機系太陽電池を得た。実施例3、4においては、積層体を5℃まで冷却した後に剥離をすることで有機系太陽電池を得た。比較例1の比較積層体を用いた場合では、シール剤部分が破壊され、支持体の剥離が出来なかった。
<Step of peeling the support>
An organic solar cell was obtained by peeling off the support on the photoelectrode side and the counter electrode side from the laminate laminated with the sealant.
In the case where the laminates of Examples 1 and 5 were used, organic solar cells were obtained by slowly peeling from the end portions. When the support was peeled off without injecting air into the through-hole using the laminate of Example 2, an organic solar cell was obtained by peeling the support from the end. Moreover, the organic solar cell was obtained also by peeling off a support body, inject | pouring air into a through-hole using the laminated body of Example 2. FIG. In Examples 3 and 4, an organic solar cell was obtained by peeling the laminate after cooling to 5 ° C. When the comparative laminate of Comparative Example 1 was used, the sealant portion was destroyed and the support could not be peeled off.
 本発明によれば、基板として樹脂フィルムを用いた場合に、樹脂フィルムもしくは樹脂フィルム上に形成された有機系太陽電池の構成部材または有機系太陽電池の破損の危険性を低減して、効率よく、有機系太陽電池を製造可能な積層体と当該積層体を用いた有機系太陽電池の製造方法を提供することができる。 According to the present invention, when a resin film is used as the substrate, the risk of damage to the resin film or the constituent member of the organic solar cell formed on the resin film or the organic solar cell can be reduced efficiently. The laminated body which can manufacture an organic solar cell, and the manufacturing method of the organic solar cell using the said laminated body can be provided.
1:積層体
10:支持体
20:樹脂系粘着剤層
30:樹脂フィルム
40:貫通孔
1: Laminate 10: Support 20: Resin-based adhesive layer 30: Resin film 40: Through-hole

Claims (7)

  1.  順に、
     有機系太陽電池基板としての樹脂フィルム、
     樹脂系粘着剤を含む樹脂系粘着剤層および
     支持体
     を含む積層体であり、
     前記支持体は、前記支持体の前記樹脂系粘着剤層と接触する面と、前記支持体の当該面以外の面とをつなぐ貫通孔を有する、積層体。
    In turn,
    Resin film as organic solar cell substrate,
    It is a laminate including a resin adhesive layer containing a resin adhesive and a support,
    The said support body is a laminated body which has a through-hole which connects the surface which contacts the said resin adhesive layer of the said support body, and surfaces other than the said surface of the said support body.
  2.  前記樹脂系粘着剤層は、前記支持体と接触する面と、前記樹脂フィルムと接触する面とをつなぐ貫通孔を有し、
     当該樹脂系粘着剤層の貫通孔は、積層方向から見て、前記支持体の前記樹脂系粘着剤層と接触する面に存在する貫通孔と重なる位置に存在する、請求項1に記載の積層体。
    The resin-based pressure-sensitive adhesive layer has a through hole that connects a surface in contact with the support and a surface in contact with the resin film,
    The lamination according to claim 1, wherein the through-hole of the resin-based pressure-sensitive adhesive layer is present at a position overlapping with the through-hole existing on the surface of the support that is in contact with the resin-based pressure-sensitive adhesive layer when viewed from the lamination direction. body.
  3.  前記支持体の前記樹脂系粘着剤層と接触する面に存在する貫通孔が、積層方向から見て、前記樹脂フィルム上の配線パターンを形成する部分と重ならない、請求項1または2に記載の積層体。 The through-hole which exists in the surface which contacts the said resin adhesive layer of the said support body does not overlap with the part which forms the wiring pattern on the said resin film seeing from a lamination direction. Laminated body.
  4.  前記支持体の前記樹脂系粘着剤層と接触する面に存在する貫通孔の面積が、0.007mm以上であり、かつ、当該貫通孔が、当該面の200cmあたり、1つ以上存在する、請求項1~3のいずれかに記載の積層体。 The area of the through hole that exists on the surface of the support that contacts the resin-based pressure-sensitive adhesive layer is 0.007 mm 2 or more, and there are one or more through holes per 200 cm 2 of the surface. The laminate according to any one of claims 1 to 3.
  5.  請求項1~4のいずれかに記載の積層体の前記支持体の貫通孔に流体を注入する工程を有する、有機系太陽電池の製造方法。 A method for producing an organic solar cell, comprising a step of injecting a fluid into the through hole of the support of the laminate according to any one of claims 1 to 4.
  6.  前記流体が、空気である、請求項5に記載の有機系太陽電池の製造方法。 The method for producing an organic solar cell according to claim 5, wherein the fluid is air.
  7.  前記有機系太陽電池が色素増感型太陽電池である、請求項5または6に記載の有機系太陽電池の製造方法。 The method for producing an organic solar cell according to claim 5 or 6, wherein the organic solar cell is a dye-sensitized solar cell.
PCT/JP2018/012571 2017-03-29 2018-03-27 Laminate and manufacturing method of organic solar battery WO2018181393A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019509933A JP7070551B2 (en) 2017-03-29 2018-03-27 Manufacturing method of laminated body and organic solar cell
CN201880017294.5A CN110431648B (en) 2017-03-29 2018-03-27 Laminate and method for manufacturing organic solar cell
JP2021205542A JP2022049017A (en) 2017-03-29 2021-12-17 Laminate and manufacturing method of organic solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-065565 2017-03-29
JP2017065565 2017-03-29

Publications (1)

Publication Number Publication Date
WO2018181393A1 true WO2018181393A1 (en) 2018-10-04

Family

ID=63675960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012571 WO2018181393A1 (en) 2017-03-29 2018-03-27 Laminate and manufacturing method of organic solar battery

Country Status (4)

Country Link
JP (2) JP7070551B2 (en)
CN (1) CN110431648B (en)
TW (1) TW201840403A (en)
WO (1) WO2018181393A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7249160B2 (en) * 2019-01-29 2023-03-30 日東電工株式会社 laminate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005228615A (en) * 2004-02-13 2005-08-25 Bridgestone Corp Dye-sensitized solar cell and its electrode
JP2008150694A (en) * 2006-12-20 2008-07-03 Dainippon Screen Mfg Co Ltd Plating system, plating method, and manufacturing system and manufacturing method for dye-sensitized solar cell
JP2011183792A (en) * 2009-07-03 2011-09-22 Nippon Electric Glass Co Ltd Glass film laminate
JP2015193101A (en) * 2014-03-31 2015-11-05 東洋紡株式会社 Polymer film laminated body and method for producing flexible electronic device using the same
JP2016083926A (en) * 2014-10-27 2016-05-19 三菱樹脂株式会社 Laminate having resin/glass composite

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003288028A (en) * 2001-12-25 2003-10-10 Canon Inc Method for disassembling image display apparatus, method for producing image display apparatus, method for producing support member, method for producing image display unit, method for producing working material, and image display apparatus
JP4546910B2 (en) * 2005-09-22 2010-09-22 三菱樹脂株式会社 Method for producing porous laminate and porous laminate
EP2025650A1 (en) * 2006-05-08 2009-02-18 Asahi Glass Company, Limited Thin-sheet glass laminate, process for manufacturing display apparatus using the laminate, and supporting glass substrate
JP2013077521A (en) * 2011-09-30 2013-04-25 Dainippon Printing Co Ltd Substrate for electromagnetic wave detachable flexible device and method of manufacturing electronic element using the same
JP2013125666A (en) * 2011-12-15 2013-06-24 Kyodo Printing Co Ltd Sheet with movable contact, manufacturing method of the same, and electronic apparatus
JP2013209484A (en) * 2012-03-30 2013-10-10 Hitachi Chemical Co Ltd Adhesive composition, filmy adhesive and method for peeling adherend
JP6326815B2 (en) * 2013-12-27 2018-05-23 日本ゼオン株式会社 Solar cell electrode substrate
KR20170086032A (en) * 2014-11-21 2017-07-25 아사히 가라스 가부시키가이샤 Glass laminate, method for producing same and method for manufacturing electronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005228615A (en) * 2004-02-13 2005-08-25 Bridgestone Corp Dye-sensitized solar cell and its electrode
JP2008150694A (en) * 2006-12-20 2008-07-03 Dainippon Screen Mfg Co Ltd Plating system, plating method, and manufacturing system and manufacturing method for dye-sensitized solar cell
JP2011183792A (en) * 2009-07-03 2011-09-22 Nippon Electric Glass Co Ltd Glass film laminate
JP2015193101A (en) * 2014-03-31 2015-11-05 東洋紡株式会社 Polymer film laminated body and method for producing flexible electronic device using the same
JP2016083926A (en) * 2014-10-27 2016-05-19 三菱樹脂株式会社 Laminate having resin/glass composite

Also Published As

Publication number Publication date
TW201840403A (en) 2018-11-16
JP7070551B2 (en) 2022-05-18
JPWO2018181393A1 (en) 2020-02-06
JP2022049017A (en) 2022-03-28
CN110431648B (en) 2022-05-13
CN110431648A (en) 2019-11-08

Similar Documents

Publication Publication Date Title
JP5140588B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
EP2421084B1 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
EP2533352A1 (en) Dye-sensitized solar cell and method for manufacturing the same
JP2008016351A (en) Dye-sensitized solar battery module and its manufacturing method
JP2008153180A (en) Photoelectric conversion element, and manufacturing method of counter electrode for the photoelectric conversion element
EP3511965B1 (en) Solar battery module
JP5162346B2 (en) Dye-sensitized solar cell, method for producing the same, and dye-sensitized solar cell module
JP5084170B2 (en) Method for producing transparent electrode substrate for dye-sensitized solar cell
US20200350125A1 (en) Organic-inorganic hybrid solar cell and method for manufacturing organic-inorganic hybrid solar cell
JP2022049017A (en) Laminate and manufacturing method of organic solar cell
JP2009217970A (en) Laminate for oxide semiconductor electrode, oxide semiconductor electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
JP5364999B2 (en) Laminate for oxide semiconductor electrode, oxide semiconductor electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
JP2012094321A (en) Dye-sensitized solar cell anode electrode manufacturing method
WO2018181388A1 (en) Laminate and manufacturing method of organic solar battery
KR20120119073A (en) Manufacturing method of dye sensitized solar cell
JP2011040288A (en) Method of manufacturing semiconductor film, the semiconductor film, and dye-sensitized solar cell
WO2005091425A1 (en) Dye sensitizing solar cell module and manufacturing method thereof
JP5485793B2 (en) Solar cell module connection electrode and solar cell module
JP2013077578A (en) Photoelectric conversion element
JP2015191984A (en) Dye-sensitized solar battery and manufacturing method thereof
JP2008041576A (en) Transfer body for manufacturing metal oxide electrode
JP5376837B2 (en) Method for manufacturing photoelectric conversion element
JP4894133B2 (en) Method for producing metal oxide semiconductor fine particle layer laminate
JP5251149B2 (en) Laminated body for oxide semiconductor electrode, oxide semiconductor electrode, and dye-sensitized solar cell module
JP6338458B2 (en) Photoelectric conversion element, photoelectric conversion module, and method for manufacturing photoelectric conversion element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774465

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509933

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18774465

Country of ref document: EP

Kind code of ref document: A1