JP5485793B2 - Solar cell module connection electrode and solar cell module - Google Patents

Solar cell module connection electrode and solar cell module Download PDF

Info

Publication number
JP5485793B2
JP5485793B2 JP2010123812A JP2010123812A JP5485793B2 JP 5485793 B2 JP5485793 B2 JP 5485793B2 JP 2010123812 A JP2010123812 A JP 2010123812A JP 2010123812 A JP2010123812 A JP 2010123812A JP 5485793 B2 JP5485793 B2 JP 5485793B2
Authority
JP
Japan
Prior art keywords
solar cell
dye
layer
conductive
cell module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010123812A
Other languages
Japanese (ja)
Other versions
JP2011249705A (en
Inventor
威吏 徳山
健了 佐々木
充 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Chemical Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2010123812A priority Critical patent/JP5485793B2/en
Publication of JP2011249705A publication Critical patent/JP2011249705A/en
Application granted granted Critical
Publication of JP5485793B2 publication Critical patent/JP5485793B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Description

本発明は、太陽電池モジュールの接続電極および太陽電池モジュールに関する。   The present invention relates to a connection electrode of a solar cell module and a solar cell module.

色素増感太陽電池は、湿式太陽電池あるいはグレッツェル電池等と呼ばれ、シリコン半導体を用いることなくヨウ素溶液に代表される電気化学的なセル構造を持つ点に特徴がある。一般的に、透明導電膜付き透明基板に二酸化チタン粉末等を焼付け、これに色素を吸着させて形成した二酸化チタン等の多孔質半導体層と、導電性基板からなる対極の間を、例えばホットメルトフィルム等の封止材により周縁部を封止した後、封止した内部に電解質としてヨウ素溶液等を配置した構造を有する。
色素増感太陽電池は、光が照射されると、吸着させた色素が励起することにより電子が発生する。発生した電子がアノード極となる透明導電膜層を通過して外部電気回路を通って対向する導電性基板に移動し、移動した電子が電解質中のイオンにより運ばれて色素が吸着した多孔質半導体層に戻る。このような一連の電子移動の繰り返しにより電気エネルギーが取り出される。
色素増感太陽電池は、材料が安価であり、作製に大掛かりな設備を必要としないことから、低コストの太陽電池として注目されている。
The dye-sensitized solar cell is called a wet solar cell or a Gretzel battery, and is characterized in that it has an electrochemical cell structure typified by an iodine solution without using a silicon semiconductor. In general, a titanium dioxide powder or the like is baked on a transparent substrate with a transparent conductive film, and a dye is adsorbed to the porous semiconductor layer such as titanium dioxide and a counter electrode made of a conductive substrate, for example, hot melt After the peripheral portion is sealed with a sealing material such as a film, an iodine solution or the like is disposed as an electrolyte in the sealed interior.
In the dye-sensitized solar cell, when light is irradiated, electrons are generated by exciting the adsorbed dye. Porous semiconductors in which the generated electrons pass through the transparent conductive film layer serving as the anode electrode, move to the opposing conductive substrate through the external electric circuit, and the transferred electrons are carried by the ions in the electrolyte to adsorb the dye Return to the layer. Electrical energy is extracted by repeating such a series of electron movements.
Dye-sensitized solar cells are attracting attention as low-cost solar cells because they are inexpensive and do not require large-scale equipment for production.

色素増感太陽電池の実用化に向けての大きな課題の一つに、高電圧の取り出しがある。
高電圧は1つの色素増感太陽電池では得ることが難しいため、複数の色素増感太陽電池セルを直列に接続することが行われている。
One of the major issues for the practical application of dye-sensitized solar cells is the extraction of high voltage.
Since it is difficult to obtain a high voltage with one dye-sensitized solar cell, a plurality of dye-sensitized solar cells are connected in series.

例えば、Z型モジュールと言われる色素増感太陽電池モジュールを改良したモジュールが提案されている(特許文献1参照)。
Z型モジュールは、1つの色素増感太陽電池のアノード側となる透明導電膜層と、隣接する別の色素増感太陽電池のカソード側である導電性基板とを電気的に接続し、この様な電気的接続が多数の色素増感太陽電池について繰り返されて一つのモジュールを形成する構造である。しかし、Z型モジュールは2枚の基板を必要とするため、薄型化や軽量化には不向きとされている。これを改良したモジュールは、基板を1枚のみ用い、対極を薄膜化したものである。
しかし、Zモジュール構造あるいは改良型のZモジュール構造のいずれにおいても、色素増感太陽電池を直列に接続するには、隣り合う色素増感太陽電池間を接続するために導電性ペーストを用いるため、直列に接続した数が増えるとそれに応じて内部の電気抵抗が増加し、発電効率が低下するおそれがある。
For example, a module obtained by improving a dye-sensitized solar cell module called a Z-type module has been proposed (see Patent Document 1).
The Z-type module electrically connects a transparent conductive film layer on the anode side of one dye-sensitized solar cell and a conductive substrate on the cathode side of another adjacent dye-sensitized solar cell. The electrical connection is repeated for a large number of dye-sensitized solar cells to form one module. However, since the Z-type module requires two substrates, it is not suitable for reducing the thickness and weight. The improved module uses only one substrate and thins the counter electrode.
However, in either the Z module structure or the improved Z module structure, in order to connect the dye-sensitized solar cells in series, the conductive paste is used to connect the adjacent dye-sensitized solar cells, When the number connected in series increases, the internal electrical resistance increases accordingly, and the power generation efficiency may decrease.

また、例えば、W型モジュールと言われる色素増感太陽電池モジュールを改良したモジュールが提案されている(特許文献2参照)。
W型モジュールは、隣接する色素増感太陽電池が上下180度反転しており、透明導電膜側から光を入射する色素増感太陽電池と、導電性基板側から光を入射する色素増感太陽電池とが交互に配置した構造をとる。しかし、W型モジュールは各セル(電池)の電流が一定になるように、隣接したセルの面積を変える必要があり、モジュール全体の光電変換効率が低くなるという問題がある。これを改良したモジュールは、単位面積出力電流の低いセルの受光面積を単位面積出力電流の高いセルの受光面積よりも大きくしたものである。
W型モジュール構造あるいは改良型のWモジュール構造のいずれにおいても、色素増感太陽電池間に絶縁層のみを形成するため、Z型モジュールと比べて非発電面積を小さくすることが容易である。また、色素増感太陽電池間の接続は,隣接した透明導電膜層と導電性基板を直接的に直列接続することが可能であり、接続部も短く、導電材料も不要である。
しかし、W型モジュール構造あるいは改良型のWモジュール構造のいずれにおいても、導電性基板側から光を入射する色素増感太陽電池は、導電性基板に光を効率的に入射させるために導電性基板の電解質側に配置されている金属触媒層は、非常に薄くなり電気抵抗は高くなる。そのため、光電変換時の電流電圧特性における曲線因子であるフィルファクターが低下し、発電効率も低下するおそれがある。
For example, a module obtained by improving a dye-sensitized solar cell module called a W-type module has been proposed (see Patent Document 2).
In the W-type module, adjacent dye-sensitized solar cells are inverted 180 degrees vertically, a dye-sensitized solar cell in which light enters from the transparent conductive film side, and a dye-sensitized solar in which light enters from the conductive substrate side It takes a structure in which batteries are arranged alternately. However, the W-type module needs to change the area of adjacent cells so that the current of each cell (battery) becomes constant, and there is a problem that the photoelectric conversion efficiency of the entire module is lowered. In the improved module, the light receiving area of a cell having a low unit area output current is made larger than the light receiving area of a cell having a high unit area output current.
In either the W-type module structure or the improved W-module structure, since only the insulating layer is formed between the dye-sensitized solar cells, it is easy to reduce the non-power generation area compared to the Z-type module. In addition, the connection between the dye-sensitized solar cells can directly connect the adjacent transparent conductive film layer and the conductive substrate in series, the connection portion is short, and no conductive material is required.
However, in either the W-type module structure or the improved W-module structure, the dye-sensitized solar cell in which light is incident from the conductive substrate side has a conductive substrate in order to efficiently make light incident on the conductive substrate. The metal catalyst layer disposed on the electrolyte side is very thin and the electrical resistance is high. Therefore, the fill factor, which is a curve factor in the current-voltage characteristics at the time of photoelectric conversion, may decrease, and power generation efficiency may also decrease.

特開2009−110796号公報JP 2009-110696 A 特開2009−9851号公報JP 2009-9851 A

解決しようとする問題点は、従来の電池セルを直列に接続した太陽電池モジュールにおいて、接続構造上、モジュールの発電効率の向上に限界がある点である。   The problem to be solved is that, in a conventional solar cell module in which battery cells are connected in series, there is a limit to the improvement in power generation efficiency of the module due to the connection structure.

本発明に係る太陽電池モジュールの接続電極は、絶縁層の両面の互いに異なる側の両端部に、それぞれ該絶縁層よりも短尺で平面視で一端部のみが該絶縁層の中央付近で重なる金属導電層部が配設され、重なり部分が電気的に層間接続される接続電極であって、
同一構造を有し受光面を同一方向に向けて隣り合う太陽電池間に配設され、一方の金属導電層部が1つの太陽電池のカソード電極に電気的に接続されるとともに、他方の金属導電層部が該1つの太陽電池と隣り合う太陽電池のアノード電極に電気的に接続されることを特徴とする。
The connection electrode of the solar cell module according to the present invention is a metal conductive layer in which both ends of the insulating layer on both sides different from each other are overlapped in the vicinity of the center of the insulating layer in a plan view shorter than the insulating layer. A connection electrode in which the layer portion is disposed and the overlapping portion is electrically connected to the interlayer,
It has the same structure and is arranged between adjacent solar cells with the light receiving surface facing in the same direction, and one metal conductive layer portion is electrically connected to the cathode electrode of one solar cell and the other metal conductive The layer portion is electrically connected to an anode electrode of a solar cell adjacent to the one solar cell.

また、本発明に係る太陽電池モジュールの接続電極は、好ましくは、前記重なり部分がスルーホールにより層間接続されることを特徴とする。   Moreover, the connection electrode of the solar cell module according to the present invention is preferably characterized in that the overlapping portion is interlayer-connected by a through hole.

また、本発明に係る太陽電池モジュールの接続電極は、好ましくは、前記太陽電池が色素増感太陽電池であることを特徴とする。   Moreover, the connection electrode of the solar cell module according to the present invention is preferably characterized in that the solar cell is a dye-sensitized solar cell.

また、本発明に係る太陽電池モジュールは、上記の太陽電池モジュールの接続電極を有することを特徴とする。   Moreover, the solar cell module according to the present invention includes the connection electrode of the solar cell module.

本発明に係る太陽電池モジュールの接続電極は、絶縁層の両面の互いに異なる側の両端部に、それぞれ絶縁層よりも短尺で平面視で一端部のみが絶縁層の中央付近で重なる金属導電層部が配設され、重なり部分が電気的に層間接続される接続電極であって、同一構造を有し受光面を同一方向に向けて隣り合う太陽電池間に配設され、一方の金属導電層部が1つの太陽電池のカソード電極に電気的に接続されるとともに、他方の金属導電層部が該1つの太陽電池と隣り合う太陽電池のアノード電極に電気的に接続されるため、モジュールの発電効率の向上を図ることができる。
また、本発明に係る太陽電池モジュールは、上記の太陽電池モジュールの接続電極を有するため、接続電極の作用効果を好適に得ることができる。
The connection electrode of the solar cell module according to the present invention is a metal conductive layer portion in which both ends of the insulating layer on both sides different from each other are shorter than the insulating layer and only one end portion overlaps near the center of the insulating layer in plan view. Is a connecting electrode that is electrically connected to the interlayer at the overlapping portion, and is disposed between adjacent solar cells having the same structure with the light receiving surface facing in the same direction, and one metal conductive layer portion Is electrically connected to the cathode electrode of one solar cell, and the other metal conductive layer portion is electrically connected to the anode electrode of the solar cell adjacent to the one solar cell. Can be improved.
Moreover, since the solar cell module which concerns on this invention has a connection electrode of said solar cell module, the effect of a connection electrode can be obtained suitably.

図1は本実施の形態例に係る接続電極の平面図である。FIG. 1 is a plan view of a connection electrode according to the present embodiment. 図2は本実施の形態の第一の例に係る色素増感太陽電池太陽電池モジュールの概略構成を示す図である。FIG. 2 is a diagram showing a schematic configuration of the dye-sensitized solar cell solar cell module according to the first example of the present embodiment. 図3は本実施の形態の第二の例に係る色素増感太陽電池太陽電池モジュールの概略構成を示す図である。FIG. 3 is a diagram showing a schematic configuration of a dye-sensitized solar cell solar cell module according to a second example of the present embodiment.

本発明の実施の形態について、太陽電池として色素増感太陽電池を例に取り、図を参照して、以下に説明する。   Embodiments of the present invention will be described below with reference to the drawings, taking a dye-sensitized solar cell as an example of a solar cell.

まず、本実施の形態例に係る接続電極について、図1を参照して説明する。
図1に示す接続電極の平面図において、本実施の形態例に係る接続電極10は、絶縁層12の両面にそれぞれ金属導電層部14、16が配設される。金属導電層部14、16は、それぞれ絶縁層12よりも短尺であり、絶縁層12の互いに異なる側の両端部に、平面視で一端部のみが絶縁層12の長手方向中央付近で重なるように設けられる。金属導電層部14、16の重なり部分はスルーホール18で電気的に層間接続される。
First, the connection electrode according to the present embodiment will be described with reference to FIG.
In the plan view of the connection electrode shown in FIG. 1, the connection electrode 10 according to the present embodiment is provided with metal conductive layer portions 14 and 16 on both surfaces of the insulating layer 12. Each of the metal conductive layer portions 14 and 16 is shorter than the insulating layer 12, so that only one end portion overlaps with both end portions on different sides of the insulating layer 12 in the vicinity of the center in the longitudinal direction of the insulating layer 12. Provided. The overlapping portions of the metal conductive layer portions 14 and 16 are electrically connected to each other through through holes 18.

絶縁層12の材料は、後述する色素増感太陽電池モジュールにおいて、電解質に膨潤または溶出せず、多孔質導電性金属層と導電性基板が絶縁されればどのような材料を使用しても良い。例えば、セラミック材料であれば、酸化アルミニウム、酸化ジルコニウム等で形成されていることが望ましい。また、プラスチック材料であれば、ポリオレフィン系プラスチック、ポリビニル系プラスチック、ポリエステル系プラスチック、ポリイミド系プラスチック等で形成されていることが望ましい。
絶縁層12の厚みは、10μm以上にすることが好ましい。厚みが10μmを下回ると、色素増感太陽電池の多孔質導電性金属層と導電性基板の間で漏電もしくは短絡を起こすおそれがある。また、絶縁層12の厚みを適宜調整することにより、所望の高低差の金属導電層部14、16を得ることができる。
As the material of the insulating layer 12, any material may be used as long as the porous conductive metal layer and the conductive substrate are insulated from each other in the dye-sensitized solar cell module described later without swelling or eluting into the electrolyte. . For example, in the case of a ceramic material, it is desirable to be formed of aluminum oxide, zirconium oxide or the like. In the case of a plastic material, it is preferably formed of a polyolefin plastic, a polyvinyl plastic, a polyester plastic, a polyimide plastic, or the like.
The thickness of the insulating layer 12 is preferably 10 μm or more. When the thickness is less than 10 μm, there is a risk of leakage or short circuit between the porous conductive metal layer of the dye-sensitized solar cell and the conductive substrate. In addition, by appropriately adjusting the thickness of the insulating layer 12, the desired metal conductive layer portions 14 and 16 with different heights can be obtained.

金属導電層部14、16の材料は、Ti、W、Ni、Zr、V、Nb、Cr、Mo、Pt、Auからなる群から選ばれる1種または2種以上の金属材料またはこれらの化合物材料で形成されているか、これらで被覆した材料であることが好ましい。これにより、電解質中のヨウ素等に対する耐食性の良好な金属導電層部を得ることができる。
金属導電層部14、16の厚みは、それぞれの厚みは250nm以上であって、合計厚みが150μm以内であることが好ましい。それぞれの厚みが250nmを下回ると電気抵抗が上昇するおそれがある。また、合計厚みが150μmを上回ると多孔質導電性金属層と導電性基板の間の距離が大きくなりすぎて発電効率低下の原因となるおそれがある。
The material of the metal conductive layer portions 14 and 16 is one or more metal materials selected from the group consisting of Ti, W, Ni, Zr, V, Nb, Cr, Mo, Pt, and Au, or a compound material thereof. It is preferable that the material is formed of or coated with these materials. Thereby, the metal conductive layer part with favorable corrosion resistance with respect to the iodine etc. in electrolyte can be obtained.
The thicknesses of the metal conductive layer portions 14 and 16 are each preferably 250 nm or more, and the total thickness is preferably within 150 μm. If each thickness is less than 250 nm, the electrical resistance may increase. On the other hand, if the total thickness exceeds 150 μm, the distance between the porous conductive metal layer and the conductive substrate becomes too large, which may cause a decrease in power generation efficiency.

スルーホール18は、絶縁層12に形成される貫通孔の内壁面に金属導電層部14、16の導通を取るために金属層あるいは金属膜を形成したものである。スルーホール18は、例えば無電解めっき及び電解めっきを施し、めっき層を設けたものとすることができる。また、スルーホール18は、例えば、金属ペーストを貫通孔に埋めたものであってもよい。
なお、スルーホール18を形成する上記貫通孔は、例えば、炭酸ガスレーザーを利用して、予め金属導電層部16にエッチングレジストの塗布、露光、現像、エッチング等を順に施して開口部を形成しておき、ついで、絶縁層12の表面が露出したこの開口部に向けて炭酸ガスレーザーを照射することで金属導電層部14が底面に露出する貫通孔を形成することができる。また、光学系で炭酸ガスレーザーのビーム径を絞ることで所望の径を有する貫通孔を形成することができる。貫通孔に上記と同様にめっき処理等を施して上下の金属導電層部14、16の導通をとるスルーホール18を得る。
層間接続は、スルーホールに代えて、例えばビアホールで行ってもよく、さらにまた、開口を必要としない他の方法で行ってもよい。
The through hole 18 is obtained by forming a metal layer or a metal film on the inner wall surface of the through hole formed in the insulating layer 12 in order to establish conduction between the metal conductive layer portions 14 and 16. The through-hole 18 can be provided with a plating layer by performing, for example, electroless plating and electrolytic plating. Further, the through hole 18 may be, for example, a metal paste filled in a through hole.
Note that the through hole for forming the through hole 18 is formed by, for example, using a carbon dioxide gas laser in advance by applying an etching resist to the metal conductive layer portion 16 in advance, exposing, developing, etching, and the like in order. Then, a through-hole in which the metal conductive layer portion 14 is exposed on the bottom surface can be formed by irradiating the carbon dioxide laser toward the opening where the surface of the insulating layer 12 is exposed. Moreover, the through-hole which has a desired diameter can be formed by restrict | squeezing the beam diameter of a carbon dioxide gas laser with an optical system. The through hole is plated in the same manner as described above to obtain a through hole 18 that establishes conduction between the upper and lower metal conductive layer portions 14 and 16.
The interlayer connection may be performed by, for example, a via hole instead of the through hole, and may be performed by another method that does not require an opening.

接続電極10を用いた本実施の形態の第一の例に係る色素増感太陽電池モジュールの接続電極および色素増感太陽電池モジュールについて、図2を参照して説明する。   A connection electrode and a dye-sensitized solar cell module of the dye-sensitized solar cell module according to the first example of the present embodiment using the connection electrode 10 will be described with reference to FIG.

図2に概略構成を示す色素増感太陽電池モジュール20は、同一構造を有する複数の色素増感太陽電池22が受光面を同一方向に向けて電気的に直列接続される。ここで、複数の色素増感太陽電池22が同一構造を有するとは、それぞれの色素増感太陽電池22が受光面として透明基板を、および対向基板として導電性基板を備えることをいう。なお、図2では2つの色素増感太陽電池22を直列接続する例を示しているが、色素増感太陽電池22直列接続する数に制限がないことはいうまでもない。以下の他の例についても同様である。複数の色素増感太陽電池22は、通常の色素増感太陽電池と同様の以下の構成を有する。
色素増感太陽電池22は、複数の色素増感太陽電池22で共用される透明基板24と、透明基板24と対向して設けられる導電性基板26を有する。導電性基板26は、基板26aと基板26a上に設けられる導電性金属層26bで構成される。なお、透明基板24は1つの色素増感太陽電池22ごとに個別に設けてもよい。
透明基板24と導電性基板26の間に、透明基板24に接してあるいは近接して配置される色素を吸着した多孔質半層体層28と、多孔質半導体層28の透明基板24とは反対側に配置される、貫通孔を有する導電性金属層30と、導電性金属層30の多孔質半導体層28とは反対側に配置される多孔質絶縁層32を備える。なお、多孔質絶縁層32は省略してもよい。
色素増感太陽電池モジュール20は、透明基板24と導電性基板26の周縁部が封止材35により封止され、電解質(電解液)33が封止材35の内側に封入される。また、隣り合う色素増感太陽電池22、22間にも隔壁としての封止材35が設けられる。
In the dye-sensitized solar cell module 20 having a schematic configuration shown in FIG. 2, a plurality of dye-sensitized solar cells 22 having the same structure are electrically connected in series with their light receiving surfaces facing in the same direction. Here, the plurality of dye-sensitized solar cells 22 having the same structure means that each dye-sensitized solar cell 22 includes a transparent substrate as a light receiving surface and a conductive substrate as a counter substrate. Although FIG. 2 shows an example in which two dye-sensitized solar cells 22 are connected in series, it goes without saying that the number of dye-sensitized solar cells 22 connected in series is not limited. The same applies to the following other examples. The several dye-sensitized solar cell 22 has the following structures similar to a normal dye-sensitized solar cell.
The dye-sensitized solar cell 22 includes a transparent substrate 24 shared by the plurality of dye-sensitized solar cells 22 and a conductive substrate 26 provided to face the transparent substrate 24. The conductive substrate 26 includes a substrate 26a and a conductive metal layer 26b provided on the substrate 26a. The transparent substrate 24 may be individually provided for each dye-sensitized solar cell 22.
The porous half-layer body layer 28 adsorbing a dye disposed between or adjacent to the transparent substrate 24 and the conductive substrate 26 is opposite to the transparent substrate 24 of the porous semiconductor layer 28. A conductive metal layer 30 having a through-hole disposed on the side and a porous insulating layer 32 disposed on the opposite side of the conductive metal layer 30 from the porous semiconductor layer 28 are provided. The porous insulating layer 32 may be omitted.
In the dye-sensitized solar cell module 20, the peripheral portions of the transparent substrate 24 and the conductive substrate 26 are sealed with a sealing material 35, and an electrolyte (electrolytic solution) 33 is sealed inside the sealing material 35. Further, a sealing material 35 as a partition wall is also provided between the adjacent dye-sensitized solar cells 22 and 22.

隣り合う色素増感太陽電池22、22間に設けられる接続電極10は、金属導電層部14が図2中左側の太陽電池22の導電性金属層(カソード極)26bに電気的に接続されるとともに、金属導電層部16が図2中右側の太陽電池22の導電性金属層(アノード極)30に電気的に接続される
色素増感太陽電池モジュール20の図2中左右両端部には、取り出し電極が設けられる。取り出し電極の構造は特に限定するものではなく、封止材35から延出する適宜の構造の電極であればよい。
図2に示す取り出し電極34は、絶縁層36の両面にそれぞれ金属導電層38、40が配設された構造を有する。図2中左側の取り出し電極34は、金属導電層40が左側の色素増感太陽電池22の導電性金属層30に電気的に接続される。一方、図2中右側の取り出し電極34は、金属導電層40が右側の色素増感太陽電池22の導電性金属層26bに電気的に接続される。なお、取り出し電極34の色素増感太陽電池22と電気的に接続されない金属導電層(例えば図2中左側の取り出し電極34の金属導電層38)は必ずしも設ける必要はないが、取り出し電極34を3層構造とすることで、スペーサーの役目を果たし、導電性金属層30と導電性基板26との距離を安定するのに役立つ。
In the connection electrode 10 provided between the adjacent dye-sensitized solar cells 22, 22, the metal conductive layer portion 14 is electrically connected to the conductive metal layer (cathode electrode) 26b of the solar cell 22 on the left side in FIG. In addition, the metal conductive layer portion 16 is electrically connected to the conductive metal layer (anode electrode) 30 of the solar cell 22 on the right side in FIG. 2 at both left and right ends in FIG. 2 of the dye-sensitized solar cell module 20. An extraction electrode is provided. The structure of the extraction electrode is not particularly limited as long as the electrode has an appropriate structure extending from the sealing material 35.
The extraction electrode 34 shown in FIG. 2 has a structure in which metal conductive layers 38 and 40 are disposed on both surfaces of the insulating layer 36, respectively. In the left extraction electrode 34 in FIG. 2, the metal conductive layer 40 is electrically connected to the conductive metal layer 30 of the left dye-sensitized solar cell 22. On the other hand, in the extraction electrode 34 on the right side in FIG. 2, the metal conductive layer 40 is electrically connected to the conductive metal layer 26 b of the right dye-sensitized solar cell 22. A metal conductive layer (for example, the metal conductive layer 38 of the extraction electrode 34 on the left side in FIG. 2) that is not electrically connected to the dye-sensitized solar cell 22 of the extraction electrode 34 is not necessarily provided. The layer structure serves as a spacer and helps stabilize the distance between the conductive metal layer 30 and the conductive substrate 26.

取り出し電極34は、例えば両面金属箔張積層板の作製方法により作製することができる。例えば、絶縁層36の両面に金属導電層38、40を重ね合せて熱圧着することができる。熱圧着法による3層体の作製条件は、加熱条件は80〜200℃にすることが好ましい。また、加圧条件は0.001〜0.2MPaが好ましい。
また、絶縁層36上に、塗布法、薄膜形成法、溶射法によって金属導電層38、40を形成しても良い。塗布法の場合、絶縁層26上に金属導電層38、40の材料である金属粒子のペーストを印刷し、加熱、乾燥し、さらに焼成する。一方、薄膜形成法の場合、絶縁層36上にスパッタリング、真空蒸着、メッキ等により金属導電層38、40を形成する。
また、金属導電層38、40の一方の金属導電層上に絶縁層材料のワニスまたはワニスの前駆体を塗布し、乾燥または熱処理後、金属導電層38、40の他方の金属導電層を絶縁層ワニス上に重ね合わせて熱圧着しても良い。
The extraction electrode 34 can be produced by, for example, a method for producing a double-sided metal foil-clad laminate. For example, the metal conductive layers 38 and 40 can be overlapped on both sides of the insulating layer 36 and thermocompression bonded. As for the production conditions of the three-layer body by the thermocompression bonding method, the heating conditions are preferably 80 to 200 ° C. Further, the pressure condition is preferably 0.001 to 0.2 MPa.
Further, the metal conductive layers 38 and 40 may be formed on the insulating layer 36 by a coating method, a thin film forming method, or a thermal spraying method. In the case of the coating method, a paste of metal particles that is a material of the metal conductive layers 38 and 40 is printed on the insulating layer 26, heated, dried, and further fired. On the other hand, in the case of the thin film formation method, the metal conductive layers 38 and 40 are formed on the insulating layer 36 by sputtering, vacuum deposition, plating, or the like.
Further, a varnish or a varnish precursor as an insulating layer material is applied onto one metal conductive layer of the metal conductive layers 38 and 40, and after drying or heat treatment, the other metal conductive layer of the metal conductive layers 38 and 40 is used as an insulating layer. It may be superposed on the varnish and thermocompression bonded.

色素増感太陽電池22は、接続電極10および取り出し電極34を除く他の構成要素については、通常の色素増感太陽電池と同様の構成とすることができる。以下、概略説明する。   The dye-sensitized solar cell 22 can have the same configuration as that of a normal dye-sensitized solar cell with respect to the other components except the connection electrode 10 and the extraction electrode 34. A brief description is given below.

透明基板24の材料は、例えば、ガラス板であってもよくあるいはプラスチック板であってもよい。プラスチック板を用いる場合、例えば、PP、PE、PS、ABS、PS、PC、PMMA、PVC、PA、POM、PET、PEN 、ポリイミド、ポリアミド、ポリオレフィン、ポリエステル、ポリエーテル、硬化アクリル樹脂、硬化エポキシ樹脂、硬化シリコーン樹脂、各種エンジニアリングプラスチックス、メタセシス重合で得られる環状ポリマ等の材料が挙げられる。
また、透明基板24に入射する光の利用効率を向上させるため、反射防止膜を最外面に設けることもできる。
The material of the transparent substrate 24 may be, for example, a glass plate or a plastic plate. When using plastic plates, for example, PP, PE, PS, ABS, PS, PC, PMMA, PVC, PA, POM, PET, PEN, polyimide, polyamide, polyolefin, polyester, polyether, cured acrylic resin, cured epoxy resin , Cured silicone resins, various engineering plastics, and materials such as cyclic polymers obtained by metathesis polymerization.
Moreover, in order to improve the utilization efficiency of the light incident on the transparent substrate 24, an antireflection film can be provided on the outermost surface.

導電性基板26は、透明基板24と同様の基板26aを用い、基板26aの電解質33に向けた面に、導電性金属層26bを設ける。導電性金属層26bは、例えば、ITO(スズをドープした酸化インジウム膜)、FTO(フッ素をドープした酸化スズ膜)、SnO2膜またはTi、W、Ni、Pt、Ta、Nb、ZrおよびAuからなる群から選ばれる1種または2種以上の金属材料またはこれらの化合物、さらにこれらの金属を被覆した材料、カーボン等の導電膜を積層し、さらに導電膜の上に例えば白金膜等貴金属や高表面積カーボン、触媒的な導電性高分子の触媒膜を設ける。
また、導電性基板26は、半透明にする必要がなければ、Ti、W、Ni、Pt、Ta、Nb、ZrおよびAuからなる群から選ばれる1種または2種以上の金属材料またはこれらの化合物、さらにこれらの金属を被覆した材料、カーボン等の導電膜を積層し、更に導電膜の上に例えば白金膜等貴金属や高表面積カーボン、触媒的な導電性高分子の触媒膜を設ける。
As the conductive substrate 26, a substrate 26a similar to the transparent substrate 24 is used, and a conductive metal layer 26b is provided on the surface of the substrate 26a facing the electrolyte 33. The conductive metal layer 26b is made of, for example, ITO (indium oxide film doped with tin), FTO (tin oxide film doped with fluorine), SnO2 film, or Ti, W, Ni, Pt, Ta, Nb, Zr, and Au. 1 type or 2 or more types of metal materials selected from the group consisting of these or a compound thereof, a material coated with these metals, and a conductive film such as carbon are laminated, and a noble metal such as a platinum film or the like is further deposited on the conductive film. A catalyst film of surface area carbon and catalytic conductive polymer is provided.
Further, the conductive substrate 26 may be one or more metal materials selected from the group consisting of Ti, W, Ni, Pt, Ta, Nb, Zr and Au, or these materials, unless it is necessary to be translucent. A compound, a material coated with these metals, and a conductive film such as carbon are laminated, and a noble metal such as a platinum film, high surface area carbon, or a catalytic film of a conductive polymer is provided on the conductive film.

多孔質半層体層28は、材料として、ZnOやSnO2、酸化ニオブ、酸化インジウム、酸化タングステン等適宜のものを用いることができるが、TiO2が好ましい。TiO2等の微粒子形状は特に限定するものではないが、1nm〜400nm程度が好ましい。
多孔質半導体層28の厚みは特に限定するものではないが、好ましくは、10μm以上の厚みとする。多孔質半導体層28は、TiO2のペーストの薄膜を形成した後に例えば300℃〜550℃の温度で焼成する操作を繰り返して所望の厚膜にすると好ましい。
多孔質半導体層28を構成する微粒子の表面に、色素を吸着する。色素は、400nm〜1000nmの波長に吸収を持つものであり、例えば、ルテニウム色素、フタロシアニン色素、オスミウム系、鉄系および白金系などの金属錯体、シアニン色素、メチン系、マーキュロクロム系、キサンテン系、ポルフィリン系、フタロシアニン系、サブフタロシアニン系、アゾ系、クマリン系などの有機色素を挙げることができる。吸着の方法は特に限定されないが、例えば、色素溶液に多孔質半導体層28を形成した貫通孔を有する導電性金属層30を浸し微粒子表面に色素を化学吸着させるいわゆる含浸法でもよい。
The porous half layer layer 28 may be made of any suitable material such as ZnO, SnO2, niobium oxide, indium oxide, tungsten oxide, etc., but TiO2 is preferred. The shape of fine particles such as TiO2 is not particularly limited, but is preferably about 1 nm to 400 nm.
The thickness of the porous semiconductor layer 28 is not particularly limited, but is preferably 10 μm or more. The porous semiconductor layer 28 is preferably formed into a desired thick film by repeating an operation of baking at a temperature of, for example, 300 ° C. to 550 ° C. after forming a thin film of TiO 2 paste.
A dye is adsorbed on the surface of the fine particles constituting the porous semiconductor layer 28. The dye has absorption at a wavelength of 400 nm to 1000 nm. For example, ruthenium dye, phthalocyanine dye, osmium-based, iron-based and platinum-based metal complexes, cyanine dye, methine-based, mercurochrome-based, xanthene-based, porphyrin Organic pigments such as phthalocyanine, phthalocyanine, subphthalocyanine, azo, and coumarin. The adsorption method is not particularly limited. For example, a so-called impregnation method in which a conductive metal layer 30 having a through hole in which a porous semiconductor layer 28 is formed in a dye solution is immersed and the dye is chemically adsorbed on the fine particle surface may be used.

導電性金属層30は、表裏に貫通している孔を有していれば、その形状は限定するものではなく、例えば、金網、メッシュ、不織布、金属箔にドリルやエッチング等で貫通孔を形成したもの、金属粒子の焼結体等が挙げられる。導電性金属層30は、貫通孔を有する金属多孔体で形成され、通過する電解質が多孔質半導体層28の各部に均一に浸透することが好ましい。
導電性金属層30の材料は、電解質33に溶出しないものであれば特に限定するものではないが、例えば、Ti、W、Ni、Pt、Ta、Nb、ZrおよびAuからなる群から選ばれる1種または2種以上の金属材料またはこれらの化合物であるか、これらで被覆した材料であることが好ましい。これにより、電解質33中のヨウ素等に対する耐食性の良好な貫通孔を有する導電性金属層を得ることができる。
導電性金属層30の厚みは、特に限定するものではないが、例えば、0.2μm〜600μmとすることが好ましい。導電性金属層30の厚みが、0.2μm未満の場合には電気抵抗が上昇するおそれがある。一方、導電性金属層30の厚みが600μmを超えると、内部を通過する電解質33の流動抵抗が大きすぎて、電解質33の移動が阻害されるおそれがある。
The shape of the conductive metal layer 30 is not limited as long as it has holes penetrating the front and back. For example, a through hole is formed in a metal mesh, mesh, nonwoven fabric, metal foil by drilling or etching. And sintered body of metal particles. The conductive metal layer 30 is preferably formed of a metal porous body having through holes, and the electrolyte passing therethrough uniformly penetrates into each part of the porous semiconductor layer 28.
The material of the conductive metal layer 30 is not particularly limited as long as it does not elute into the electrolyte 33. For example, 1 is selected from the group consisting of Ti, W, Ni, Pt, Ta, Nb, Zr and Au. It is preferable that it is a seed | species or 2 or more types of metal materials, these compounds, or the material coat | covered with these. Thereby, the electroconductive metal layer which has a through-hole with favorable corrosion resistance with respect to the iodine etc. in the electrolyte 33 can be obtained.
The thickness of the conductive metal layer 30 is not particularly limited, but is preferably 0.2 μm to 600 μm, for example. When the thickness of the conductive metal layer 30 is less than 0.2 μm, the electrical resistance may increase. On the other hand, if the thickness of the conductive metal layer 30 exceeds 600 μm, the flow resistance of the electrolyte 33 passing through the inside is too large, and the movement of the electrolyte 33 may be hindered.

多孔質絶縁層32は、例えば電解質33に対して耐腐食性を有し、かつ、電解質イオンの拡散を妨げないように十分な空孔を有するガラスペーパー、テフロンシート(テフロンは登録商標)、PPシート、PEシートなどが好ましい。
多孔質絶縁層32の厚みは150μm以下であることが好ましい。多孔質絶縁層32の厚みが150μm以上になると導電性金属層30と導電性基板26の間隔が大きくなりすぎて発電効率低下の原因となる。
多孔質絶縁層32を設けることにより、導電性金属層30と導電性基板26の短絡をより確実に防止することができる。
The porous insulating layer 32 is made of, for example, glass paper, Teflon sheet (Teflon is a registered trademark), PP, which has corrosion resistance to the electrolyte 33 and has sufficient pores so as not to prevent diffusion of electrolyte ions. Sheets, PE sheets and the like are preferable.
The thickness of the porous insulating layer 32 is preferably 150 μm or less. If the thickness of the porous insulating layer 32 is 150 μm or more, the distance between the conductive metal layer 30 and the conductive substrate 26 becomes too large, causing a reduction in power generation efficiency.
By providing the porous insulating layer 32, a short circuit between the conductive metal layer 30 and the conductive substrate 26 can be prevented more reliably.

封止材35の材料は特に制限されないが、絶縁性、ガスバリア性等を備えた材料が好ましい。例えば、エポキシ樹脂、紫外線硬化樹脂、アクリル樹脂、ポリイソブチレン樹脂、EVA(エチレンビニルアセテート)、シリコーン樹脂、その他各種熱融着樹脂等が挙げられる。   The material of the sealing material 35 is not particularly limited, but a material having insulating properties, gas barrier properties, and the like is preferable. For example, an epoxy resin, an ultraviolet curable resin, an acrylic resin, a polyisobutylene resin, EVA (ethylene vinyl acetate), a silicone resin, and other various heat sealing resins can be used.

以上説明した本実施の形態の第一の例に係る色素増感太陽電池モジュール20の接続電極10および色素増感太陽電池モジュール20は、シリコン太陽電池、有機薄膜地用電池等の他の太陽電池にも好適に用いることができ、接続電極10の2つの金属導電層部14、16はそれぞれ表面電極および裏面電極に電気的に接続される。
本実施の形態の第一の例に係る色素増感太陽電池モジュール20の接続電極10および色素増感太陽電池モジュール20によれば、モジュールの発電効率の向上を図ることができる。
すなわち、Zモジュールは、隣り合う色素増感太陽電池間をペースト状の導電層により接続する構造となるため、例えば隣り合う色素増感太陽電池間を接続する導電性ペーストの電気抵抗は、銀ペーストでは10−5Ω・cm台程度、カーボン系ペーストを用いれば10−2Ω・cm台である(株式会社アサヒ化学研究所 ポリマー型導電性ペースト)。これに対して、色素増感太陽電池モジュール20によれば、隣り合う色素増感太陽電池間の接続は、導電性金属層を用いているため、導電性金属層の電気抵抗は10−7Ω・cm台である(日本金属学会編 金属データブック参照)。従って、太陽電池モジュール20の直列につなぐ数が多くなれば、それだけ太陽電池モジュール20の方が内部の電気抵抗は小さく抑えられる。
接続電極10と導電性金属層(作用極)30または導電性金属層(対極)26bとの接続に一部導電性材料を使用する可能性はあるが、極めて少量であり、電気抵抗の増加は認められない。
また、接続電極10は、導電性ペーストのように濡れ広がるおそれはないため、TiO2層とのスペースも極力抑えることができる。
また、W型モジュール構造では、導電性基板に光を効率的に入射させるために導電性基板の電解質側に配置されている金属触媒層は、非常に薄くなり電気抵抗は高くなり、このため、光電変換時の電流電圧特性における曲線因子であるフィルファクターが低下し、発電効率も低下するおそれがあるが、これに対して、色素増感太陽電池モジュール20によれば同一構造のものを受光面を同一方向に向けて配置するため、このような不具合がない。
The connection electrode 10 and the dye-sensitized solar cell module 20 of the dye-sensitized solar cell module 20 according to the first example of the present embodiment described above are other solar cells such as a silicon solar cell and an organic thin-film ground cell battery. The two metal conductive layer portions 14 and 16 of the connection electrode 10 are electrically connected to the front electrode and the back electrode, respectively.
According to the connection electrode 10 and the dye-sensitized solar cell module 20 of the dye-sensitized solar cell module 20 according to the first example of the present embodiment, the power generation efficiency of the module can be improved.
That is, since the Z module has a structure in which adjacent dye-sensitized solar cells are connected by a paste-like conductive layer, for example, the electrical resistance of the conductive paste connecting adjacent dye-sensitized solar cells is a silver paste. Then, about 10 −5 Ω · cm, and 10 −2 Ω · cm if a carbon-based paste is used (Asahi Chemical Laboratory Co., Ltd. polymer-type conductive paste). On the other hand, according to the dye-sensitized solar cell module 20, since the conductive metal layer is used for the connection between the adjacent dye-sensitized solar cells, the electric resistance of the conductive metal layer is 10 −7 Ω.・ It is in the cm range (see Metal Data Book edited by the Japan Institute of Metals) Therefore, as the number of solar cell modules 20 connected in series increases, the internal electrical resistance of the solar cell module 20 can be suppressed to that extent.
There is a possibility that a part of the conductive material is used for the connection between the connection electrode 10 and the conductive metal layer (working electrode) 30 or the conductive metal layer (counter electrode) 26b. unacceptable.
In addition, since the connection electrode 10 is not likely to get wet like a conductive paste, the space with the TiO 2 layer can be suppressed as much as possible.
In addition, in the W-type module structure, the metal catalyst layer disposed on the electrolyte side of the conductive substrate in order to efficiently make light incident on the conductive substrate becomes very thin and the electrical resistance becomes high. The fill factor, which is a curve factor in the current-voltage characteristics at the time of photoelectric conversion, may decrease and the power generation efficiency may also decrease. On the other hand, according to the dye-sensitized solar cell module 20, the light receiving surface having the same structure is used. Are arranged in the same direction, so there is no such problem.

つぎに、本実施の形態の第二の例に係る色素増感太陽電池モジュールの接続電極および色素増感太陽電池モジュールについて、図3を参照して説明する。
図3に概略構成を示す本実施の形態の第二の例に係る色素増感太陽電池モジュール20aは、基本構成は本実施の形態の第一の例に係る色素増感太陽電池モジュール20と同様である。このため、同一の構成要素について同一の参照符号を付すとともに、重複する説明は省略する。
Next, the connection electrode and the dye-sensitized solar cell module of the dye-sensitized solar cell module according to the second example of the present embodiment will be described with reference to FIG.
The basic structure of the dye-sensitized solar cell module 20a according to the second example of the present embodiment whose schematic configuration is shown in FIG. 3 is the same as that of the dye-sensitized solar cell module 20 according to the first example of the present embodiment. It is. For this reason, the same reference numerals are assigned to the same components, and redundant description is omitted.

色素増感太陽電池モジュール20aは、透明基板24に接して導電性金属層30が設けられる、いわゆるTCO電極型である点、およびこれとの関係で、接続電極10aの絶縁層12aを厚膜とし、絶縁層12aの両面にそれぞれ金属導電層部14a、16aが配設されている点、および接続電極10aと同様に取り出し電極34aの絶縁層36aを厚膜とし、絶縁層36aの両面にそれぞれ金属導電層38a、40aが配設されている点が、太陽電池モジュール20と異なる。
本実施の形態の第二の例に係る太陽電池モジュール20aは、TCO電極型の色素増感太陽電池モジュールにおいて、本実施の形態の第一の例に係る色素増感太陽電池モジュール20の効果を好適に得ることができる。
The dye-sensitized solar cell module 20a is a so-called TCO electrode type in which the conductive metal layer 30 is provided in contact with the transparent substrate 24, and in relation to this, the insulating layer 12a of the connection electrode 10a is a thick film. Further, the metal conductive layer portions 14a and 16a are disposed on both surfaces of the insulating layer 12a, and the insulating layer 36a of the extraction electrode 34a is made thick as in the connection electrode 10a, and the metal is formed on both surfaces of the insulating layer 36a. It differs from the solar cell module 20 in that the conductive layers 38a and 40a are provided.
The solar cell module 20a according to the second example of the present embodiment is an effect of the dye-sensitized solar cell module 20 according to the first example of the present embodiment in the TCO electrode type dye-sensitized solar cell module. It can be suitably obtained.

以下、本発明の実施例について説明する。本発明はこの実施例に限定されるものではない。   Examples of the present invention will be described below. The present invention is not limited to this embodiment.

(実施例1)
図2に示す色素増感太陽電池モジュール(但し、色素増感太陽電池セル数は3)の実施例について以下に説明する。
厚み100μmの多孔質Tiシート(商品名タイポラス、大阪チタニウム)の5mm×20mmの範囲にチタニアペースト(商品名NanoxideD、ソーラロニクス社製)を塗布し、乾燥後、400℃で30分空気中で焼成した。焼成後のチタニア上に更にチタニアペーストを印刷、焼成する操作を合計3回繰返し、多孔質Tiシートの片面に12μmの厚さのチタニア層を形成した。N719色素(ソーラロニクス社製)のアセトニトリルとt-ブチルアルコールの混合溶媒溶液に、作製したチタニア層付き多孔質Tiシート基板を70時間含浸させ、チタニア表面に色素を吸着させた。吸着後の基板は、アセトニトリルとt-ブチルアルコールの混合溶媒で洗浄した。このような積層体(色素増感太陽電池セル)を3つ作製した。
一方、厚み60μm、20mm×100mmの熱可塑性樹脂シート(SX1170-60PF、SOLARONIX)の両面に20μm厚のチタン箔をラミネータにより張り合わせ、チタン箔/樹脂/チタン箔の3層体を作製した。作製後、3層体を20mm×5mmに切断し、3層体のチタン箔部分の一部をエッチングにより除去し、所定の位置にNCドリルにより直径1mm径の穴を中央部に開け、開けた穴にAgペーストを充填して両面が導通するスルーホールをもつ3層体(接続電極)を作製した。
図1に示す3層体の上部Ti層と、色素吸着したチタニア層付き多孔質Tiシート裏側で周縁部に近い部分とを1点スポット溶接した。このように溶接したTiシートを2枚作製した。その内の1枚を、図1の3層体と接続している辺と対称に図2に示す取り出し電極を同様にスポット溶接した。
一方、取り出し電極と色素吸着したチタニア層付き多孔質Tiシートとをスポット溶接したものを1枚作製し、このTiシートと対する対極と、3層体のみをスポット溶接したTiシートの3層体の下部Ti層とを導電性接着シートにより熱圧着した。
先に3層体のみをスポット溶接したTiシ−トに対する対極と、3層体と取り出し電極の2電極がスポット溶接により接続しているTiシートの3層体の下部Ti層とを導電性接着シートにより熱圧着した。
それぞれ色素増感太陽電池となるTiシートと対極の間にガラスペーパーを挟んで、それぞれのTiシートと対極が対するように位置を合わせ、3枚のTiシートを3直列になるよう固定した後、外周および各色素増感太陽電池の隔壁となる部分に封止材を塗布した。
厚み125μmのポリエチレンナフタレート(PEN)の透明基板と、スルーホールをもつ3層体により3つ直列に接続した色素吸着したチタニア層付き多孔質Tiシート基板とを封止材にて張合わせた。その後、電解液を注入し、色素増感太陽電池モジュールを得た。
直列に配列された3つの電池セルからなる色素増感太陽電池モジュールのI-V曲線を測定した。光電変換効率は約5.2%であった。また、この時の開放電圧は2.1Vであった。なお、これとは別に1つの電池セルのI-V曲線を測定したところ、光電変換効率は約6.2%であった。また、この時の開放電圧は0.70Vであった。
Example 1
Examples of the dye-sensitized solar cell module shown in FIG. 2 (however, the number of dye-sensitized solar cells is 3) will be described below.
A titania paste (trade name NanoxideD, manufactured by Solaronics) is applied to a 5 mm x 20 mm area of a porous Ti sheet (trade name Typorus, Osaka Titanium) with a thickness of 100 μm, dried, and then fired in air at 400 ° C. for 30 minutes. did. The operation of further printing and baking a titania paste on titania after firing was repeated three times in total to form a titania layer having a thickness of 12 μm on one side of the porous Ti sheet. The prepared porous Ti sheet substrate with titania layer was impregnated with a mixed solvent solution of N719 dye (manufactured by Solaronics) in acetonitrile and t-butyl alcohol for 70 hours to adsorb the dye on the titania surface. The substrate after adsorption was washed with a mixed solvent of acetonitrile and t-butyl alcohol. Three such laminates (dye-sensitized solar cells) were produced.
On the other hand, a titanium foil having a thickness of 20 μm was laminated on both sides of a thermoplastic resin sheet (SX1170-60PF, SOLARONIX) having a thickness of 60 μm and 20 mm × 100 mm with a laminator to prepare a three-layer body of titanium foil / resin / titanium foil. After the production, the three-layer body was cut into 20 mm × 5 mm, a part of the titanium foil portion of the three-layer body was removed by etching, and a hole with a diameter of 1 mm was drilled at a predetermined position with an NC drill in the center. A three-layer body (connection electrode) having through-holes in which both surfaces are conductive by filling the holes with Ag paste was produced.
The upper Ti layer of the three-layer body shown in FIG. 1 and the portion close to the peripheral edge on the back side of the porous Ti sheet with the titania layer adsorbed with the dye were spot-welded. Two Ti sheets welded in this way were produced. One of them was spot-welded in the same manner to the take-out electrode shown in FIG. 2 symmetrically with the side connected to the three-layer body of FIG.
On the other hand, a single sheet of a welded electrode and a dye-adsorbed porous Ti sheet with a titania layer was spot welded, and a counter electrode for the Ti sheet and a three-layered Ti sheet spot welded only on the three-layered body The lower Ti layer was thermocompression bonded with a conductive adhesive sheet.
Conductive bonding of the counter electrode to the Ti sheet where only the three-layer body was spot-welded first, and the lower Ti layer of the three-layer body of the Ti sheet where the three-layer body and the two electrodes of the extraction electrode are connected by spot welding The sheet was thermocompression bonded.
After sandwiching the glass paper between the Ti sheet and the counter electrode, each of which becomes a dye-sensitized solar cell, aligning the positions so that each Ti sheet and the counter electrode face each other, and fixing the three Ti sheets in three series, The sealing material was apply | coated to the outer periphery and the part used as the partition of each dye-sensitized solar cell.
A transparent substrate of polyethylene naphthalate (PEN) having a thickness of 125 μm and a porous Ti sheet substrate with a dye-adsorbed titania layer connected in series by a three-layer body having through-holes were bonded together with a sealing material. Then, electrolyte solution was inject | poured and the dye-sensitized solar cell module was obtained.
The IV curve of a dye-sensitized solar cell module composed of three battery cells arranged in series was measured. The photoelectric conversion efficiency was about 5.2%. Moreover, the open circuit voltage at this time was 2.1V. In addition, when the IV curve of one battery cell was measured separately, the photoelectric conversion efficiency was about 6.2%. Moreover, the open circuit voltage at this time was 0.70V.

(実施例2)
図3に示す色素増感太陽電池(但し、色素増感太陽電池セル数は3)の実施例について以下に説明する。
厚み400nmのITO層が付いた厚み1.8mmの透明ガラス基材の5mm×20mmの範囲にチタニアペースト(商品名NanoxideD、ソーラロニクス社製)を塗布し、乾燥後、500℃で30分空気中で焼成した。焼成後のチタニア上に更にチタニアペーストを印刷、焼成する操作を合計3回繰返し、透明ガラス基材のITO層上に12μmの厚さのチタニア層を形成した。N719色素(ソーラロニクス社製)のアセトニトリルとt-ブチルアルコールの混合溶媒溶液に、作製したチタニア層が付いたITO付き透明ガラス基材を70時間含浸させ、チタニア表面に色素を吸着させた。吸着後の基材は、アセトニトリルとt-ブチルアルコールの混合溶媒で洗浄した。
実施例1と同様の3層体を作製した後、図1に示す3層体の上部Ti層と、ITO透明ガラス基材の色素吸着している面で周縁部に近い部分で1点を導電性接着シートにより熱圧着した。このように作製した透明ガラス基材を2枚作製した。その内の1枚は、図1の3層体と接続している辺とは対称に図2に示す取り出し電極を同様にITO面に導電性接着シートにより熱圧着した。
一方、取り出し電極を接続した色素吸着しているITO透明ガラス基材を1枚作製し、この透明ガラス基材と対する対極と、3層体のみを接着した透明ガラス基材の3層体の下部Ti層とを導電性接着シートにより熱圧着した。
先に3層体のみが付いている透明ガラス基材と対する400nm厚みのPt層を片面にスパッタした厚み1.0mmのガラス基材の対極と、3層体と取り出し電極の2辺が接着している透明ガラス基材の3層体の下部Ti層とを導電性接着シートにより熱圧着した。
それぞれの色素増感太陽電池となる透明ガラス基材と対極の間に150μm厚の多孔質絶縁体であるガラスペーパーを挟んで、それぞれのITO付き透明ガラス基材と対極が対するよう位置を合わせ、3枚の透明ガラス基材を直列になるよう固定した後、外周および各色素増感太陽電池の隔壁となる部分に封止材を塗布した。
電解液を注入し、色素増感太陽電池モジュールを得た。
直列に配列された3つの電池セルからなる色素増感太陽電池モジュールについて、実施例1と同様にI-V曲線を測定した。光電変換効率は約5.6%であった。また、この時の開放電圧は2.16Vであった。なお、これとは別に1つの電池セルのI-V曲線を測定したところ、光電変換効率は約7.0%であった。また、この時の開放電圧は0.71Vであった。
(Example 2)
Examples of the dye-sensitized solar cell (however, the number of dye-sensitized solar cells is 3) shown in FIG. 3 will be described below.
A titania paste (trade name NanoxideD, manufactured by Solaronics) is applied to a 5 mm x 20 mm range of a 1.8 mm thick transparent glass substrate with a 400 nm thick ITO layer, dried, and then in air at 500 ° C for 30 minutes. Baked in. The operation of further printing and baking a titania paste on titania after firing was repeated a total of 3 times to form a titania layer having a thickness of 12 μm on the ITO layer of the transparent glass substrate. A transparent glass substrate with ITO with a prepared titania layer was impregnated with a mixed solvent solution of N719 dye (manufactured by Solaronics) in acetonitrile and t-butyl alcohol for 70 hours to adsorb the dye onto the titania surface. The substrate after adsorption was washed with a mixed solvent of acetonitrile and t-butyl alcohol.
After producing the same three-layered body as in Example 1, one point was conducted in the upper Ti layer of the three-layered body shown in FIG. Thermocompression bonding was performed with a conductive adhesive sheet. Two transparent glass substrates prepared in this way were prepared. One of the electrodes was thermocompression bonded to the ITO surface with a conductive adhesive sheet similarly to the side connected to the three-layer body of FIG. 1 in the same manner.
On the other hand, an ITO transparent glass base material adsorbing a dye connected to a take-out electrode is prepared, and the lower part of the three-layer body of the transparent glass base material to which only the three-layer body is bonded with the counter electrode for the transparent glass base material The Ti layer was thermocompression bonded with a conductive adhesive sheet.
A counter electrode of a 1.0 mm-thick glass substrate sputtered on one side with a 400-nm-thick Pt layer against a transparent glass substrate having only a three-layer body, and the two sides of the three-layer body and the extraction electrode are bonded. The lower Ti layer of the three-layered transparent glass substrate was thermocompression bonded with a conductive adhesive sheet.
The glass paper, which is a porous insulator with a thickness of 150 μm, is sandwiched between the transparent glass substrate and the counter electrode to be each dye-sensitized solar cell, and the transparent glass substrate with ITO and the counter electrode are aligned with each other, After fixing the three transparent glass substrates to be in series, a sealing material was applied to the outer periphery and the portions to be the partition walls of each dye-sensitized solar cell.
An electrolyte solution was injected to obtain a dye-sensitized solar cell module.
For the dye-sensitized solar cell module composed of three battery cells arranged in series, the IV curve was measured in the same manner as in Example 1. The photoelectric conversion efficiency was about 5.6%. Moreover, the open circuit voltage at this time was 2.16V. In addition, when the IV curve of one battery cell was measured separately, the photoelectric conversion efficiency was about 7.0%. Moreover, the open circuit voltage at this time was 0.71V.

10、10a 接続電極
12、12a、36、36a 絶縁層
14、16 金属導電層部
18 スルーホール
20、20a 色素増感太陽電池モジュール
22 色素増感太陽電池
24 透明基板
26 導電性基板
26a 基板
26b 導電性金属層
28 多孔質半層体層
30 導電性金属層
32 多孔質絶縁層
33 電解質
34、34a 取り出し電極
35 封止材
38、38a、40、40a 金属導電層
10, 10a Connecting electrode 12, 12a, 36, 36a Insulating layer 14, 16 Metal conductive layer 18 Through hole 20, 20a Dye-sensitized solar cell module 22 Dye-sensitized solar cell 24 Transparent substrate 26 Conductive substrate 26a Substrate 26b Conductive Conductive metal layer 28 Porous half-layer body 30 Conductive metal layer 32 Porous insulating layer 33 Electrolyte 34, 34a Extraction electrode 35 Sealing material 38, 38a, 40, 40a Metal conductive layer

Claims (4)

絶縁層の両面の互いに異なる側の両端部に、それぞれ該絶縁層よりも短尺で平面視で一端部のみが該絶縁層の中央付近で重なる金属導電層部が配設され、重なり部分が電気的に層間接続される接続電極であって、
同一構造を有し受光面を同一方向に向けて隣り合う太陽電池間に配設され、一方の金属導電層部が1つの太陽電池のカソード電極に電気的に接続されるとともに、他方の金属導電層部が該1つの太陽電池と隣り合う太陽電池のアノード電極に電気的に接続されることを特徴とする太陽電池モジュールの接続電極。
At both ends of the insulating layer on both sides different from each other, metal conductive layer portions that are shorter than the insulating layer and overlap with one end portion in the vicinity of the center of the insulating layer in plan view are disposed, and the overlapping portions are electrically A connection electrode connected between the layers,
It has the same structure and is arranged between adjacent solar cells with the light receiving surface facing in the same direction, and one metal conductive layer portion is electrically connected to the cathode electrode of one solar cell and the other metal conductive A connection electrode of a solar cell module, wherein the layer portion is electrically connected to an anode electrode of a solar cell adjacent to the one solar cell.
前記重なり部分がスルーホールにより層間接続されることを特徴とする請求項1記載の太陽電池モジュールの接続電極。   The connection electrode of the solar cell module according to claim 1, wherein the overlapping portion is interlayer-connected by a through hole. 前記太陽電池が色素増感太陽電池であることを特徴とする請求項1または2記載の太陽電池モジュールの接続電極。   The solar cell module connection electrode according to claim 1, wherein the solar cell is a dye-sensitized solar cell. 請求項1〜3のいずれか1項に記載の太陽電池モジュールの接続電極を有することを特徴とする太陽電池モジュール。   It has a connection electrode of the solar cell module of any one of Claims 1-3, The solar cell module characterized by the above-mentioned.
JP2010123812A 2010-05-31 2010-05-31 Solar cell module connection electrode and solar cell module Expired - Fee Related JP5485793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010123812A JP5485793B2 (en) 2010-05-31 2010-05-31 Solar cell module connection electrode and solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010123812A JP5485793B2 (en) 2010-05-31 2010-05-31 Solar cell module connection electrode and solar cell module

Publications (2)

Publication Number Publication Date
JP2011249705A JP2011249705A (en) 2011-12-08
JP5485793B2 true JP5485793B2 (en) 2014-05-07

Family

ID=45414559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010123812A Expired - Fee Related JP5485793B2 (en) 2010-05-31 2010-05-31 Solar cell module connection electrode and solar cell module

Country Status (1)

Country Link
JP (1) JP5485793B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140045015A (en) * 2012-10-05 2014-04-16 주식회사 동진쎄미켐 Dye-sensitized solar cell and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4696485B2 (en) * 2004-06-29 2011-06-08 パナソニック電工株式会社 Photoelectric conversion module and manufacturing method thereof
JP5086520B2 (en) * 2004-07-15 2012-11-28 パナソニック株式会社 Photoelectric conversion element module
JP5098185B2 (en) * 2006-02-20 2012-12-12 大日本印刷株式会社 Dye-sensitized solar cell module
JP5241186B2 (en) * 2007-09-27 2013-07-17 京セラ株式会社 Solar cell module and manufacturing method thereof
GB0818531D0 (en) * 2008-10-09 2008-11-19 Eastman Kodak Co Interconnection of adjacent devices
JP2010129403A (en) * 2008-11-28 2010-06-10 Sony Corp Transparent electrode board and manufacturing method therefor, and photoelectronic conversion device and manufacturing method therefor
JP2011216189A (en) * 2010-03-31 2011-10-27 Sony Corp Photoelectric conversion device and photoelectric conversion device module

Also Published As

Publication number Publication date
JP2011249705A (en) 2011-12-08

Similar Documents

Publication Publication Date Title
JP5678345B2 (en) Dye-sensitized solar cell and method for producing the same
JP5080018B2 (en) Dye-sensitized solar cell
EP1933387A2 (en) Dye-sensitized solar cell
JP5458271B2 (en) Dye-sensitized solar cell and method for producing the same
WO2011135811A1 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP2011216190A (en) Photoelectric conversion device and its manufacturing method
JP2006236960A (en) Dye-sensitized solar cell and its manufacturing method
JP2007066875A (en) Dye-sensitized solar cell
US20120118379A1 (en) Dye-sensitized solar cell
JP2009245750A (en) Dye-sensitized solar battery and method of manufacturing the same
JP6958559B2 (en) Solar cell module
JP5230961B2 (en) Dye-sensitized solar cell
JP2009218179A (en) Dye-sensitized solar cell
JP5364999B2 (en) Laminate for oxide semiconductor electrode, oxide semiconductor electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
JP2008192376A (en) Solar cell and dye-sensitized solar cell
JP5485793B2 (en) Solar cell module connection electrode and solar cell module
JP2008258028A (en) Dye-sensitized solar cell
JP2013200958A (en) Solar battery
JP5095148B2 (en) Working electrode substrate and photoelectric conversion element
JP5498265B2 (en) Extraction electrode for solar cell, solar cell and solar cell module
JP5685708B2 (en) Method for producing dye-sensitized solar cell
JP5303207B2 (en) Method for manufacturing photoelectric conversion element and photoelectric conversion element
JP5699334B2 (en) Mesh electrode substrate and method of manufacturing mesh electrode substrate
JP5376837B2 (en) Method for manufacturing photoelectric conversion element
JP2009218152A (en) Photoelectric conversion element and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140220

R150 Certificate of patent or registration of utility model

Ref document number: 5485793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees