WO2018181132A1 - Système de commutateur optique par lots multicœur à grande vitesse - Google Patents

Système de commutateur optique par lots multicœur à grande vitesse Download PDF

Info

Publication number
WO2018181132A1
WO2018181132A1 PCT/JP2018/012043 JP2018012043W WO2018181132A1 WO 2018181132 A1 WO2018181132 A1 WO 2018181132A1 JP 2018012043 W JP2018012043 W JP 2018012043W WO 2018181132 A1 WO2018181132 A1 WO 2018181132A1
Authority
WO
WIPO (PCT)
Prior art keywords
spatial light
emitted
light modulator
cores
optical switch
Prior art date
Application number
PCT/JP2018/012043
Other languages
English (en)
Japanese (ja)
Inventor
英昭 古川
尚也 和田
小林 哲也
武敏 高畠
Original Assignee
国立研究開発法人情報通信研究機構
株式会社オプトクエスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人情報通信研究機構, 株式会社オプトクエスト filed Critical 国立研究開発法人情報通信研究機構
Publication of WO2018181132A1 publication Critical patent/WO2018181132A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/33Acousto-optical deflection devices

Definitions

  • the present invention relates to optical communication technology, and more specifically, the present invention relates to a system capable of collectively switching light from multi-core fibers.
  • a multi-core batch optical switch having a 1-input 2-output port corresponding to a 7-core optical fiber composed of a core separation element, a condensing optical system, and a micromirror optical switch element has been proposed.
  • This switch device uses a core separation element connected to a multi-core optical fiber, emits the optical signal of each core of the multi-core optical fiber as a light beam into the space in the same direction, and collects the light beam of all cores by a condensing optical system.
  • the path switching is performed by changing the traveling direction of the light beam of all cores at once by controlling the mirror accuracy.
  • the above switch device uses a micromirror optical switch element.
  • the micromirror optical switch element needs to be mechanically driven. For this reason, the above switch device has a problem that high-speed path switching cannot be realized.
  • the present invention basically includes a spatial light modulation element that does not need to be mechanically driven and a telecentric optical system that can make the principal ray of the light beam parallel to the optical axis.
  • Spatial light modulation elements change the physical properties such as refractive index and transmittance at high speed by applying external force such as voltage and pressure to the element, and diffract multiple light beams by forming a diffraction grating in the entire element.
  • the traveling direction of all the beam bundles passing through is collectively controlled at high speed.
  • the optical axes of the light beams of all the cores of the multi-core optical fiber are aligned in parallel, and the incident angle to the spatial light modulator As a result, the diffracted light intensity and diffraction angle of the light beams of all the cores are made constant, so that a spatial light modulator capable of high-speed operation can be used as an element of the multi-core batch optical switch.
  • the spatial light modulation element 5 is preferably an acousto-optic element that deflects at high speed with sound waves.
  • the present invention provides an optical switch method.
  • Light beams emitted from a plurality of cores of the multi-core fiber 3 are adjusted using the collimating lens 11 and the condenser lens 13 and adjusted so as to be incident on the spatial light modulator 5 at a desired angle.
  • the entire spatial light modulator 5 By controlling the entire spatial light modulator 5 collectively, the direction in which the plurality of light beams incident on the spatial light modulator 5 are emitted from the spatial light modulator 5 is controlled. Then, each of the plurality of light beams traveling in the controlled direction travels to each core of the selected multi-core fiber.
  • the present invention can provide a switch system that does not need to be mechanically driven and can realize high-speed path switching.
  • FIG. 1 is a conceptual diagram for explaining an optical switch system of the present invention.
  • the optical switch system includes a multi-core fiber 3 (first multi-core fiber), a spatial light modulator 5, and a control unit 7.
  • the spatial light modulation element 5 is an element for collectively switching the beam bundle emitted from a plurality of cores of the multi-core fiber 3 to one of the plurality of multi-core fibers 23 and 25.
  • the control unit 7 includes a control unit 7 for controlling the spatial light modulation element 5. *
  • the multicore fiber 3 is also called a multicore optical fiber, and is an optical fiber having a plurality of cores in one fiber. Examples of the number of cores are 7, 12, 19, 32, and 39.
  • the spatial light modulator 5 means an element whose refractive index and physical properties change when an external force such as voltage or pressure is applied.
  • the control unit 7 controls the spatial light modulation element 5 (for example, by performing phase modulation or changing the refractive index)
  • the traveling direction of the beam bundle output from the spatial light modulation element 5 is collectively changed. To do. For this reason, the beam bundles emitted from the plurality of cores of the multicore fiber 3 can be collectively switched to one of the plurality of multicore fibers.
  • the spatial light modulation element 5 is preferably an acousto-optic element.
  • acousto-optic device By using the acousto-optic device, a plurality of light beams are collectively controlled by one control signal.
  • an electrical control signal is given from the control unit 7 to the acousto-optic element, the grating width of the diffraction grating formed on the entire element changes, and the deflection angle changes.
  • an electrical control signal of 0V to 3.3V can be switched and applied at a cycle of 10 microseconds. In this way, the traveling direction of the beam bundle is changed collectively.
  • the controller 7 may store in advance the electric signal to be given and the change in the traveling direction of the beam bundle, and change the signal applied to the spatial light modulator 5 based on the input information. In this way, the beam bundle can be guided to the intended multi-core fibers 23 and 25 by changing the control signal from the control unit 7.
  • acoustooptic elements are an acoustooptic variable filter (AOTF), an acoustooptic modulator (AOM), an acoustooptic deflector (AOD), an acoustooptic beam splitter (AOBS), and an acoustooptic beam manager (AOBM).
  • AOTF acoustooptic variable filter
  • AOM acoustooptic modulator
  • AOD acoustooptic deflector
  • AOBS acoustooptic beam splitter
  • AOBM acoustooptic beam manager
  • the basic structure of an acousto-optic device includes a crystal and a transduc
  • the transducer is typically configured to receive an electronic signal in the radio frequency range of 30 Mhz to 800 Mhz.
  • the transducer converts the electronic signal into an acoustic signal by physically contracting and expanding according to the electronic signal.
  • the quartz crystal oscillates physically according to the acoustic signal, thus forming an optical equivalent of an optical diffraction grating that selectively deflects light of a specific wavelength.
  • the characteristics of quartz result in each acoustic wavelength deflecting only a specific light wavelength, or in particular a narrow light wavelength bandwidth, for example about 3 nm.
  • the crystal in this case refers to a typical material that can be used for an acoustooptic device, and is not limited thereto.
  • This optical switch system preferably further includes a first optical system 9 for transmitting beam bundles emitted from a plurality of cores of the multi-core fiber 3 to the spatial light modulator 5.
  • the first optical system 9 constitutes, for example, a front telecentric optical system. This is usually for reducing the beam width of the beam bundle emitted from the plurality of cores of the multi-core fiber 3 and transmitting it to the spatial light modulator 5.
  • the first optical system 9 includes a first collimating lens 11 and a first condenser lens 15.
  • the collimating lens 11 is an optical element for making a light beam emitted (emitted and diverged) from a plurality of cores of the multi-core fiber 3 into a collimated beam.
  • the condenser lens 15 is an optical element that reduces the beam diameter of a bundle of the plurality of collimated beams so that the plurality of collimated beams emitted from the collimator lens 11 can enter the spatial light modulator 5.
  • the first optical system 9 includes a first collimating lens 11 and a first condenser lens 15.
  • the collimating lens 11 has a shorter focal length than the condensing lens 15 so that the entire diameter of all beam beams including the outgoing beams from all the cores is minimized.
  • the rear telecentric optical system 21 may be configured from the spatial light modulation element to the output fiber. That is, the beam bundle may be guided to the respective multi-core fibers 23 and 25 using an optical system having lenses 27 and 31 and collimators 29 and 33. Each light beam output from the collimator may be designed to reach the corresponding core of the multi-core fiber.
  • the rear telecentric optical system 21 from the spatial light modulator to the output fiber is not limited to the two-path output, and may be a switch for switching ON and OFF of the one-path output for extracting only the first-order diffracted light.
  • a multi-path selector switch that extracts the next diffracted light may be used.
  • the present invention provides an optical switch method.
  • the light beams emitted from the plurality of cores of the first multi-core fiber 3 are adjusted using the collimating lens 11 and the condensing lens 15 so as to be incident on the spatial light modulator 5 at a desired angle.
  • the control unit 7 controls the entire spatial light modulation element 5 collectively, thereby controlling the direction in which the plurality of light beams incident on the spatial light modulation element 5 are emitted from the spatial light modulation element 5.
  • the light beams emitted from the plurality of cores of the first multi-core fiber 3 reach the desired multi-core fibers 23 and 25.
  • each of the plurality of light beams traveling in the controlled direction travels to the respective cores of the selected multicore fiber.
  • a light beam emitted from a plurality of cores of the first multi-core fiber 3 is converted into a telecentric optical system in which a principal ray and an optical axis from each core are parallel by an optical system 9 including a collimating lens 11 and a condenser lens 15. Furthermore, the spatial light modulator 5 is arranged at an angle and a position where the maximum diffraction efficiency is obtained with respect to the spatial light modulator 5.
  • the spatial modulation element 5 does not diffract
  • the condensing lens 27, the collimating lens 29, and the multi-core fiber 23 are arranged so as to form a double-sided telecentric optical system centering on the spatial modulation element 5, and the spatial modulation element 5 is diffracted.
  • a condensing lens 31, a collimating lens 33, and a multi-core fiber 25 are arranged so as to be a double-sided telecentric optical system.
  • the optical switch operates.
  • the present invention can be used in the field of optical information communication.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

Le problème décrit par la présente invention est de fournir un système de commutateur et un procédé qui permettent une commutation de trajet à grande vitesse sans nécessiter d'entraînement mécanique. À cet effet, l'invention concerne un système de commutateur optique comprenant : une fibre multicœur 3 ; un élément de modulation optique spatiale 5 permettant de commuter collectivement un groupe de faisceaux émis à partir d'une pluralité de cœurs de la fibre multicœur 3 vers l'une quelconque d'une pluralité de fibres multicœurs ; et une unité de commande 7 permettant de commander l'élément de modulation optique spatiale 5. Un procédé de commutation optique comprend : une étape de réalisation d'un ajustement à l'aide d'une lentille de collimateur 11 et d'une lentille de condenseur 13 de telle sorte que des faisceaux optiques émis à partir d'une pluralité de cœurs d'une fibre multicœur 3 entrent dans un élément de modulation optique spatiale 5 ; et une étape de commande d'une direction dans laquelle une pluralité de faisceaux optiques qui sont entrés dans l'élément de modulation optique spatiale 5 sont émis à partir de l'élément de modulation optique spatiale 5 par commande collective de l'élément de modulation optique spatiale 5 entier.
PCT/JP2018/012043 2017-03-31 2018-03-26 Système de commutateur optique par lots multicœur à grande vitesse WO2018181132A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017071494A JP6943370B2 (ja) 2017-03-31 2017-03-31 高速マルチコア一括光スイッチシステム
JP2017-071494 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018181132A1 true WO2018181132A1 (fr) 2018-10-04

Family

ID=63677041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012043 WO2018181132A1 (fr) 2017-03-31 2018-03-26 Système de commutateur optique par lots multicœur à grande vitesse

Country Status (2)

Country Link
JP (1) JP6943370B2 (fr)
WO (1) WO2018181132A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111562653A (zh) * 2020-04-12 2020-08-21 桂林电子科技大学 一种基于阵列mems反射器的多芯光纤交换器
CN111596413A (zh) * 2020-04-12 2020-08-28 桂林电子科技大学 一种基于mems反射器的多芯光纤开关
EP4345518A1 (fr) * 2022-09-29 2024-04-03 Panduit Corp. Appareil et procédé pour communications optiques en espace libre à faible latence

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017189577A (ja) * 2016-04-12 2017-10-19 株式会社三洋物産 遊技機
JP2017189596A (ja) * 2016-12-29 2017-10-19 株式会社三洋物産 遊技機
WO2022013931A1 (fr) * 2020-07-13 2022-01-20 日本電信電話株式会社 Commutateur à fibre optique

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5165104A (en) * 1991-03-01 1992-11-17 Optivideo Corporation Optical interconnecting device and method
US6236479B1 (en) * 1997-05-26 2001-05-22 France Telecom Space-division optical switching system having a multichannel acousto-optical deflector
US20040151422A1 (en) * 2003-02-05 2004-08-05 Shah Manhar L. Fiber-optic matrix switch using phased array acousto-optic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5165104A (en) * 1991-03-01 1992-11-17 Optivideo Corporation Optical interconnecting device and method
US6236479B1 (en) * 1997-05-26 2001-05-22 France Telecom Space-division optical switching system having a multichannel acousto-optical deflector
US20040151422A1 (en) * 2003-02-05 2004-08-05 Shah Manhar L. Fiber-optic matrix switch using phased array acousto-optic device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MENDINUETA ET AL.: "Experimental Demonstration of a 53 Tb/s Coherent SDM-TDMAdd/Drop/Through Optical Network with Time-division SpatialSuper-channels and High-speed Joint Switching System , Proc. of the 43rd European Conference and Exhibition on Optical Communications (ECOC", TH. PDP. B.3., September 2017 (2017-09-01), Gothenburg, Sweden *
NELSON ET AL.: "Spatial Superchannel Routing in a Two-SpanROADM System for Space Division Multiplexing", JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 32, no. 4, 15 February 2014 (2014-02-15), pages 783 - 789, XP055550753 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111562653A (zh) * 2020-04-12 2020-08-21 桂林电子科技大学 一种基于阵列mems反射器的多芯光纤交换器
CN111596413A (zh) * 2020-04-12 2020-08-28 桂林电子科技大学 一种基于mems反射器的多芯光纤开关
EP4345518A1 (fr) * 2022-09-29 2024-04-03 Panduit Corp. Appareil et procédé pour communications optiques en espace libre à faible latence

Also Published As

Publication number Publication date
JP6943370B2 (ja) 2021-09-29
JP2018173535A (ja) 2018-11-08

Similar Documents

Publication Publication Date Title
WO2018181132A1 (fr) Système de commutateur optique par lots multicœur à grande vitesse
US8190025B2 (en) Wavelength selective switch having distinct planes of operation
JP5899331B2 (ja) 光入出力装置
US9307301B2 (en) Optical switch
JP5692865B2 (ja) 波長クロスコネクト装置
US9641917B2 (en) Optical communications apparatus and method
JP6609789B2 (ja) 波長選択スイッチアレイ
US20050213978A1 (en) Wavelength demultiplexing unit
CN105229512B (zh) 使用LCoS装置并且具有减少的串扰的波长选择开关
US10126556B2 (en) Light operation device
US11728919B2 (en) Optical communications apparatus and wavelength selection method
WO2017147770A1 (fr) Appareil de commutation de sélection de longueur d'onde, dispositif de communication et procédé de commutation de longueur d'onde
US9046657B2 (en) Systems and methods for reducing off-axis optical aberrations in wavelength dispersed devices
JP2012185312A (ja) 光スイッチ装置
CN102707387B (zh) 波长选择开关及切换方法
US20160234576A1 (en) Wavelength selective switch having multi-layer reflector
JP5852198B1 (ja) 光入出力装置およびその制御方法
US10254625B2 (en) Optical signal processing device
US7333686B1 (en) System and method for a re-configurable optical channel dropping de-multiplexer
JP2015158651A (ja) 光スイッチ
JP2014197154A (ja) 光操作装置
JP5839586B2 (ja) 光信号処理装置
CN106291964B (zh) 一种基于plzt薄膜阵列的波长选择装置及方法
WO2023017563A1 (fr) Multiplexeur optique
JP6431461B2 (ja) 光入出力装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18774324

Country of ref document: EP

Kind code of ref document: A1