WO2018180951A1 - Light source device and projection device - Google Patents

Light source device and projection device Download PDF

Info

Publication number
WO2018180951A1
WO2018180951A1 PCT/JP2018/011597 JP2018011597W WO2018180951A1 WO 2018180951 A1 WO2018180951 A1 WO 2018180951A1 JP 2018011597 W JP2018011597 W JP 2018011597W WO 2018180951 A1 WO2018180951 A1 WO 2018180951A1
Authority
WO
WIPO (PCT)
Prior art keywords
source device
light source
lens holder
optical element
base
Prior art date
Application number
PCT/JP2018/011597
Other languages
French (fr)
Japanese (ja)
Inventor
秀雄 山口
一幸 松村
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2018180951A1 publication Critical patent/WO2018180951A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/147Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
    • F21S41/148Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device the main emission direction of the LED being perpendicular to the optical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element

Definitions

  • the present disclosure relates to a light source device and a light projecting device, and more particularly to a display field such as a projection display device that uses light emitted by irradiating a wavelength conversion element with light emitted from a semiconductor light emitting device, or illumination for a vehicle.
  • the present invention relates to a light source device used in an illumination field such as medical illumination, and a light projecting device using the light source device.
  • a light source device using a semiconductor light emitting device composed of a semiconductor light emitting element such as a semiconductor laser in order to emit a high luminous flux, the light emitted from the semiconductor light emitting device is condensed on the wavelength conversion element to convert the wavelength. Radiate outside the element.
  • a light projecting device using a conventional light source device disclosed in Patent Document 1 will be described with reference to FIG.
  • FIG. 20 is a diagram for explaining a configuration of a conventional light projecting device 1001 and an optical path of light emitted from the semiconductor light emitting device 1011.
  • blue light (blue laser light) LB emitted from the semiconductor light emitting device 1011 is collected by the condenser lens 1012. It is reflected by the reflecting surface 1131 of the mirror 1013 while being collected, and enters the surface of the phosphor 1014 that emits yellow light from obliquely upward on the front side.
  • the blue light LB incident on the phosphor 1014 is mixed with the yellow light emitted from the phosphor 1014, and almost all of the blue light LB is emitted as a white light, which is emitted radially upward. .
  • This white light is reflected forward by the reflecting surface 1151 of the reflector 1015 and irradiated from the projection lens 1017 forward.
  • the phosphor 1014 is attached to a metal flat plate 1018 on which heat dissipating fins 1181 are formed.
  • the block on which the semiconductor light emitting device 1011 and the condenser lens 1012 are mounted is attached to a metal flat plate 1016.
  • the present disclosure has been made to solve such a problem, and an object thereof is to provide a light source device suitable for thickness reduction and a light projection device including the light source device.
  • a light source device includes a semiconductor light emitting element that emits laser light, a condensing lens that condenses the laser light emitted from the semiconductor light emitting element, and the condensing lens.
  • a reflective optical element that reflects the condensed laser light, a phosphor optical element that is irradiated with the laser light reflected by the reflective optical element, a base on which the phosphor optical element is disposed, and the light condensing
  • a lens holder that holds the lens; and a pressing member that presses the lens holder against the base.
  • the lens holder that holds the condenser lens is fixed by being pressed against the base on which the phosphor optical element is disposed, the position of the condenser lens can be brought close to the phosphor optical element, The light source device can be thinned.
  • the base includes a first surface, a second surface, and a side surface extending from the first surface in a direction perpendicular to the first surface.
  • the semiconductor light emitting element is disposed on the first surface
  • the phosphor optical element is disposed on the second surface
  • the lens holder is disposed on the side surface by the pressing member. It is good to be pressed.
  • the semiconductor light emitting element and the phosphor optical element are arranged on a base made of a single body, and the lens holder is pressed against the side surface of the base, so that the semiconductor light emitting element, the phosphor optical element, and the light collecting element
  • the lens can be brought closer, and the light source device can be made thinner. Further, since the lens holder can be moved along the side surface in the optical axis direction of the semiconductor light emitting element, the lens holder is unlikely to be displaced from the optical axis of the semiconductor light emitting element.
  • the second surface may be positioned above the first surface, and the side surface may be positioned between the first surface and the second surface.
  • the light source device has a lens holder having a length for adjusting the spot of light emitted from the semiconductor light emitting element, and can bring the reflecting optical element and the phosphor optical element close to each other. Therefore, the semiconductor light emitting element, the reflective optical element, the phosphor optical element, and the condenser lens can be brought close to each other, and the light source device can be made thinner.
  • the condenser lens holder with the condenser lens firmly mounted on the base on which the phosphor optical element is mounted is fixed with high accuracy, so that it depends on the external environment such as temperature change, humidity change, vibration, and impact. Adverse effects are suppressed.
  • a pin that is depressed in a direction intersecting an optical axis direction of the laser light emitted from the semiconductor light emitting element can be inserted into the outer peripheral surface of the lens holder.
  • a recess is formed, and the lens holder is preferably movable in the optical axis direction.
  • a collar portion protruding in a direction intersecting an optical axis direction of the laser light emitted from the semiconductor light emitting element is formed on the outer peripheral surface of the lens holder,
  • the lens holder may be configured to be movable in the optical axis direction.
  • the base is configured by an integral body having a first surface, a second surface, and a third surface parallel to the first surface and the second surface.
  • the semiconductor light emitting element is disposed on the first surface
  • the phosphor optical element is disposed on the second surface
  • the lens holder is pressed against the third surface by the pressing member. Is done.
  • the second surface is located above the first surface, and the third surface is located between the first surface and the second surface.
  • This configuration makes it possible to further reduce the thickness of the light source device.
  • the lens holder may be made of the same material as the base.
  • the lens holder may be made of a metal material.
  • the change in position can be reduced by the thermal expansion of the lens holder, so that a light source device that is resistant to changes in the external environment can be realized.
  • the light projecting device of the present disclosure includes a light source device and an optical member that changes a direction of light emitted from the light source device, the light source device including a semiconductor light emitting element that emits laser light, and the semiconductor
  • the light source device including a semiconductor light emitting element that emits laser light, and the semiconductor
  • a condensing lens that condenses the laser light emitted from the light emitting element, a reflective optical element that reflects the laser light condensed by the condensing lens, and the laser light reflected by the reflective optical element are irradiated.
  • the lens holder that holds the condenser lens is fixed by being pressed against the base on which the phosphor optical element is disposed, the position of the condenser lens can be brought close to the phosphor optical element,
  • the light source device can be made thinner, and the light projecting device can also be made thinner.
  • the light source device and the like it is possible to suppress the occurrence of deviation in the optical path that guides the emitted light from the semiconductor light emitting device to the phosphor element due to a change in the external environment.
  • the light source device can be radiated well and the light source device can be made thin.
  • FIG. 1 is a cross-sectional view for explaining the configuration of the light source device according to the first embodiment of the present disclosure.
  • FIG. 2 is a perspective view illustrating an appearance of the light source device according to the first embodiment of the present disclosure when viewed from above.
  • FIG. 3 is a perspective view illustrating an appearance of the light source device according to the first embodiment of the present disclosure when viewed from the lower surface.
  • FIG. 4 is an exploded view for explaining the configuration of the light source device according to the first embodiment of the present disclosure.
  • FIG. 5 is a front view for explaining the configuration of the light source device according to the first embodiment of the present disclosure.
  • FIG. 6 is a perspective view for explaining an adjustment function of the light source device according to the first embodiment of the present disclosure.
  • FIG. 7 is a cross-sectional view for explaining an adjustment function of the light source device according to the first embodiment of the present disclosure.
  • FIG. 8 is a front view for explaining the shape of the condensing lens holder according to the first embodiment of the present disclosure.
  • FIG. 9 is a perspective view for explaining the shape of the condensing lens holder according to the first embodiment of the present disclosure.
  • FIG. 10 is a cross-sectional view for explaining the configuration of the light projecting device according to the first embodiment of the present disclosure.
  • FIG. 11 is a front view for explaining the configuration of the light source device according to the second embodiment of the present disclosure.
  • FIG. 12 is a perspective view for explaining the function of the light source device according to the second embodiment of the present disclosure.
  • FIG. 13 is a cross-sectional view for explaining the function of the light source device according to the second embodiment of the present disclosure.
  • FIG. 14 is a front view for explaining the shape of the condensing lens holder according to the second embodiment of the present disclosure.
  • FIG. 15 is a perspective view for explaining the shape of the condenser lens holder according to the second embodiment of the present disclosure.
  • FIG. 16 is a front view for explaining the configuration of the light source device according to the third embodiment of the present disclosure.
  • FIG. 17 is a cross-sectional view for explaining the configuration of the light source device according to the third embodiment of the present disclosure.
  • FIG. 18 is a perspective view for explaining the shape of the condensing lens holder according to the third embodiment of the present disclosure.
  • FIG. 19 is a perspective view for explaining the function of the light source device according to the third embodiment of the present disclosure.
  • FIG. 20 is a cross-sectional view for explaining the configuration of a conventional light source device.
  • the X axis, the Y axis, and the Z axis represent the three axes of the three-dimensional orthogonal coordinate system.
  • the X axis and the Y axis are orthogonal to each other, and both are orthogonal to the Z axis.
  • the Z-axis positive direction side may be described as the upper side and the Z-axis negative direction side as the lower side.
  • the Y-axis positive direction side may be described as the rear and the Y-axis negative direction side as the front.
  • FIG. 1 is a cross-sectional view for explaining the configuration of the light source device 1 according to the first embodiment of the present disclosure.
  • FIG. 2 is a perspective view illustrating an appearance of the light source device 1 according to Embodiment 1 of the present disclosure when viewed from the top.
  • FIG. 3 is a perspective view illustrating an external appearance of the light source device 1 according to Embodiment 1 of the present disclosure when viewed from the lower surface.
  • FIG. 4 is an exploded view for explaining the configuration of the light source device 1 according to the first embodiment of the present disclosure.
  • FIG. 5 is a front view for explaining the configuration of the light source device 1 according to the first embodiment of the present disclosure.
  • the light source device 1 includes a semiconductor light emitting element 11, a condenser lens 26, a reflective optical element unit 20, a phosphor optical element 30, and a base 40. And a condensing lens holder (lens holder) 27 for holding the condensing lens 26 and a pressing spring (pressing member) 28.
  • the semiconductor light emitting device 10 and the phosphor optical element 30 are fixed to the base 40.
  • a reflective optical element unit 20 in which a reflective optical element 22 having a reflective surface 21 is fixed to a reflective optical element holding member 23 is fixed to a base 40.
  • the condensing lens unit 25 in which the condensing lens 26 is fixed to the condensing lens holder 27 is configured to be pressed and held by the base 40 by the pressing spring 28.
  • the semiconductor light emitting device 10 includes a semiconductor light emitting element 11 on which an optical waveguide is formed, and a package 12 for mounting the semiconductor light emitting element 11.
  • the internal space of the semiconductor light emitting device 10 is a sealed space, and high airtightness is maintained so that the semiconductor light emitting element 11 is shielded from the external atmosphere.
  • the semiconductor light emitting element 11 is a semiconductor laser element (for example, a laser chip) made of, for example, a nitride semiconductor, and emits laser light having a peak wavelength between 380 nm and 490 nm as emitted light 51.
  • a semiconductor laser element for example, a laser chip
  • the package 12 is, for example, a so-called CAN package, and includes a disk-shaped base 13, a post (not shown) for mounting the semiconductor light emitting element 11 on the base 13 directly or via a submount (not shown), and externally.
  • a lead pin 14 for supplying power to the semiconductor light emitting element 11 and a metal cap 15 disposed on the base 13 are provided.
  • a window glass 16 is attached to the cap 15 in order to seal the semiconductor light emitting element 11.
  • Window glass 16 is an example of a translucent member that transmits outgoing light 51 emitted from semiconductor light emitting element 11, and is a plate glass in the present embodiment.
  • the semiconductor light emitting element 11 is disposed in a sealed space surrounded by the base 13 and the cap 15.
  • the semiconductor light emitting element 11 is mounted on the base 13 so as to be thermally and physically connected to the base 13.
  • the semiconductor light emitting device 10 configured as described above is disposed on the first surface 42 of the base 40. Specifically, the semiconductor light emitting device 10 is mounted on the base 40 such that the surface of the base 13 opposite to the surface on which the semiconductor light emitting element 11 is disposed contacts the first surface 42 of the base 40.
  • the semiconductor light emitting device 10 As a means for mounting the semiconductor light emitting device 10 on the base 40, a means for fixing by bonding or soldering with an adhesive such as a resin material is conceivable.
  • the semiconductor light emitting device 10 is fixed in a pressed state to the first surface 42 of the base 40 by a ring screw 18 having a cylindrical shape and a threaded outer peripheral portion.
  • the semiconductor light emitting device 10 (specifically, the base 13) is thermally and physically connected to the first surface 42 of the base 40.
  • the condenser lens unit 25 is disposed between the reflective optical element unit 20 and the semiconductor light emitting device 10.
  • the condenser lens unit 25 includes a condenser lens 26 and a condenser lens holder 27.
  • the condenser lens 26 is a finite lens, and is fixed to the condenser lens holder 27 by adhesion or the like.
  • the condenser lens holder 27 is held on the base 40 by a pressing spring 28.
  • the condenser lens 26 has a function of condensing the emitted light 51 from the semiconductor light emitting device 10 at a predetermined focal position.
  • the condenser lens holder 27 is a holding member that holds the condenser lens 26.
  • the material of the condensing lens holder 27 is not specifically limited, For example, it is good to form with a metal material. By adopting a metal material as the material of the condensing lens holder 27, a change in position due to thermal expansion of the condensing lens holder 27 can be reduced. Therefore, it is possible to produce the light source device 1 that is resistant to changes in the external environment.
  • the condenser lens holder 27 may be made of the same material as the base 40. By doing so, changes due to thermal expansion of the condenser lens holder 27 and the base 40 are the same. Therefore, the light source device 1 that is resistant to changes in the external environment can be manufactured.
  • the reflection optical element 22 constituting the reflection optical element unit 20 is a planar reflection mirror, and has a planar reflection surface 21.
  • the reflective optical element 22 has a configuration in which a reflective film is formed on the surface of a flat substrate. The surface of this reflective film is a reflective surface 21.
  • the reflective optical element 22 reflects the laser light (emitted light 51) collected by the condenser lens 26.
  • the reflective surface 21 may be the back surface of the reflective optical element 22.
  • As the reflective film a multilayer reflective film made of a plurality of dielectric films having different refractive indexes, a metal film made of a metal such as Ag, Au, or Cu, or an alloy film made of an alloy thereof is used.
  • the reflective optical element unit 20 is attached to the base 40 so as to be disposed above the semiconductor light emitting device 10. Specifically, the reflective optical element unit 20 is configured such that the reflective optical element holding member 23 is in contact with a fourth surface 49 formed on the base 40 by the third screw 24 (see FIG. 4). It is fixed to the base 40 by being screwed to.
  • a substrate 37 joined to the lead pins 14 of the semiconductor light emitting device 10 by solder or the like, and a connector 38 mounted on the substrate 37 for supplying power from the outside are arranged. ing.
  • the substrate 37 is fixed to the base 40 by a first screw 39.
  • the phosphor optical element 30 includes a phosphor 31 and a phosphor holding member 32 that holds the phosphor 31.
  • the phosphor 31 is provided on the phosphor holding member 32, for example.
  • the phosphor optical element 30 is an example of a wavelength conversion element that converts the wavelength of incident light.
  • the phosphor optical element 30 includes a phosphor 31 as a wavelength conversion material that converts the wavelength of incident light.
  • the phosphor 31 emits fluorescence using incident light as excitation light.
  • the phosphor 31 is made of, for example, a cerium-activated yttrium aluminum garnet (YAG: Ce 3+ ) phosphor material.
  • YAG: Ce 3+ cerium-activated yttrium aluminum garnet
  • phosphor particles such as YAG: Ce 3+ mixed and dispersed in a transparent resin (binder) such as glass or silicone may be used, and for example, YAG: Ce 3+ may be used.
  • a ceramic phosphor plate formed by mixing and sintering phosphor particles such as alumina (Al 2 O 3 ) or the like may be used.
  • the phosphor 31 is not limited to the YAG system.
  • the phosphor holding member 32 is a ceramic body made of, for example, aluminum nitride.
  • a reflective film made of, for example, a silver alloy may be formed between the phosphor holding member 32 and the phosphor 31.
  • the phosphor optical element 30 configured as described above is disposed on the second surface 43 of the base 40. Specifically, the phosphor optical element 30 is fixed to the base 40 so that the phosphor holding member 32 side contacts the second surface 43. Accordingly, the phosphor optical element 30 (specifically, the phosphor holding member 32) is thermally and physically connected to the second surface 43 of the base 40.
  • the fluorescent optical element 30 is irradiated with the reflected light 52 from the reflective optical element unit 20. Specifically, the reflected light 52 from the reflective optical element unit 20 irradiates the phosphor 31. As a result, the phosphor 31 is excited by the reflected light 52 and emits fluorescence 93. As described above, the light source device 1 emits the radiated light 91 in which the scattered light 92 obtained by scattering the reflected light 52 by the phosphor optical element 30 and the fluorescent light 93 excited by the reflected light 52 and emitted. .
  • the pressing member 28 is a pressing member that presses the condenser lens holder 27 against the base 40.
  • the pressing member 28 only needs to bias the condenser lens holder 27 toward the base 40 side.
  • the pressing member 28 is a spring material.
  • the light source device 1 may include a light-transmitting cover 33 disposed above the phosphor optical element 30.
  • the translucent cover 33 is fixed to the translucent cover holding member 34 by means such as adhesion.
  • the semiconductor light emitting device 10 and the phosphor optical element 30 may be disposed in a closed space surrounded by the base 40, the translucent cover holding member 34, and the translucent cover 33.
  • the condenser lens 26 is disposed on the upper surface of the semiconductor light emitting device 10 disposed on the first surface 42 of the base 40. Further, the condenser lens 26 is fixed to the condenser lens holder 27 by means such as adhesion.
  • the condensing lens unit 25 is pressed in the pressing direction 70 by a pressing spring 28 fixed to the base 40 with a screw or the like, and the surface on which the base 40 is located, in the first embodiment, the first side face 45 and the second side. It is in contact with two surfaces, the side surface 46.
  • the pressing direction 70 is the Y axis positive direction.
  • FIG. 8 is a front view for explaining the shape of the condenser lens holder 27 according to the first embodiment of the present disclosure
  • FIG. 9 is the shape of the condenser lens holder 27 according to the first embodiment of the present disclosure. It is a perspective view for demonstrating.
  • the outer shape of the condenser lens holder 27 has a substantially circular shape coaxial with the outer shape of the condenser lens 26. Further, the condensing lens unit 25 on which the condensing lens 26 is mounted is configured to be movable on the base 40 in the optical axis direction 71 of the emitted light from the semiconductor light emitting device 10.
  • the outer peripheral surface of the condensing lens holder 27 is formed with a recess that is recessed in a direction intersecting the optical axis direction 71 of the laser light (emitted light 51) emitted from the semiconductor light emitting element 11 and into which a pin can be inserted. ing.
  • a first recess 72 into which a first adjustment pin (pin) 74 recessed in the X-axis direction can be inserted, and the side opposite to the first recess 72 And the 2nd recessed part (recessed part) 73 which can insert the 2nd adjustment pin (pin) 75 depressed in the X-axis direction is formed.
  • the condensing lens holder 27 is formed with a first recess 72 and a second recess 73 in a symmetrical shape.
  • a first adjustment pin 74 and a second adjustment pin 75 are disposed at a position facing the first adjustment pin 74.
  • FIG. 6 is a perspective view for explaining the adjustment function of the light source device 1 according to the first embodiment of the present disclosure
  • FIG. 7 illustrates the adjustment function of the light source device 1 according to the first embodiment of the present disclosure. It is sectional drawing for doing. 7 is a cross-sectional view taken along line VII-VII in FIG.
  • the first adjustment pin 74 When moving the condensing lens unit 25 in the optical axis direction 71, the first adjustment pin 74 is inserted into the first recess 72 of the condensing lens holder 27, and the second adjustment position is opposed to the first adjustment pin 74.
  • the adjustment pin 75 is inserted into the second recess 73 of the condenser lens holder 27.
  • the condenser lens unit 25 moves in the optical axis direction 71, and as a result, a spot irradiated on the phosphor optical element 30 The shape can be adjusted.
  • the condenser lens 26 is disposed in the vicinity of the semiconductor light emitting device 10 in order to take in the emitted light 51 from the semiconductor light emitting device 10 to the maximum extent.
  • the position of the condenser lens unit 25 is adjusted (moved)
  • the position of the condenser lens 26 is moved by several ⁇ m to several tens of ⁇ m in the X-axis direction or the Y-axis direction.
  • the outgoing light 51 emitted from the light is reflected by the reflective optical element 22, and the spot position 78 on the phosphor optical element 30 is irradiated to a position greatly deviated in the X-axis direction or the Y-axis direction.
  • the light irradiated to the position shifted from the desired position on the phosphor optical element 30 is projected forward by the reflector 160 described in the light projecting device 101 of FIG.
  • the center of the intensity distribution of the projected light is projected at a position shifted from a desired position.
  • a deviation from the desired position of the center of the intensity distribution of the light projected at a long distance becomes significant.
  • the condensing lens holder 27 provided in the light source device 1 according to Embodiment 1 of the present disclosure is in contact with the first side surface 45 and the second side surface 46 that are side surfaces of the base 40. Specifically, the condensing lens holder 27 hits the condensing lens holder 27 against the base 40 on which the semiconductor light emitting element 11 and the phosphor 31 are mounted. For this reason, the condensing lens holder 27 of the light source device 1 is less likely to be displaced with changes in the external environment.
  • the contact surface on which the condenser lens holder 27 and the base 40 according to the first embodiment of the present disclosure are in contact is the spot position 78 irradiated on the semiconductor light emitting device 10 and the phosphor optical element 30. It is arranged between.
  • the contact surface between the condenser lens holder 27 and the base 40 is between the first surface 42 on which the semiconductor light emitting device 10 is mounted and the second surface 43 on which the phosphor optical element 30 is mounted. Placed in.
  • the contact surfaces are the first side surface 45 and the second side surface 46. That is, the condenser lens holder 27 is pressed against the side surfaces (the first side surface 45 and the second side surface 46) by the pressing member 28.
  • the length of the contact surface of the condenser lens holder 27 with the base 40 in the optical axis direction 71 can be secured, and the condenser lens holder 27 is moved in the optical axis direction 71. Since the condenser lens holder 27 and the base 40 are in contact with each other, stable spot adjustment is possible.
  • the second surface 43 is located above the first surface 42, and the side surface where the condenser lens holder 27 and the base 40 are in contact with each other is preferably located between the first surface 42 and the second surface 43. .
  • the light source device 1 allows the condenser lens holder 27 to adjust the spot of light emitted from the semiconductor light emitting element 11, and the optical axis direction of the contact surface with the base 40 of the condenser lens holder 27.
  • the length of 71 can be secured.
  • the reflecting optical element 22 and the phosphor optical element 30 can be brought close to each other. Therefore, the semiconductor light emitting element 11, the reflective optical element 22, the phosphor optical element 30, and the condenser lens 26 can be brought close to each other, and the light source device 1 can be made thinner.
  • a pin that is recessed in a direction intersecting the optical axis direction 71 of the laser light emitted from the semiconductor light emitting element 11 can be inserted into the outer peripheral surface of the condenser lens holder 27 according to the first embodiment of the present disclosure.
  • a recess is formed.
  • the condenser lens holder 27 is arranged in the light source device 1 so as to be movable in the optical axis direction 71. With this configuration, by adjusting the position of the condenser lens 26 in the optical axis direction 71, it is possible to adjust the spot shape irradiated on the phosphor optical element 30, and the condenser lens 26 at the time of adjustment can be adjusted.
  • a stable light source device 1 with little in-plane (XY plane in the present embodiment) positional deviation can be provided.
  • the pressurizing unit After adjusting the condensing lens unit 25 described in the first embodiment of the present disclosure in the optical axis direction 71, from the rear of the pressing spring 28 (in the first embodiment, the Y-axis positive direction), the pressurizing unit The condensing lens unit 25 is fixed to the base 40 by pressing the pressing spring 28 with the second screw (pressing part) 79 that functions as: Therefore, the light source device 1 can reduce the deviation of the spot position 78 on the phosphor 31 from a desired position due to a change in the external environment.
  • the condenser lens unit 25 is fixed to the base 40 with an adhesive or the like. Thereafter, the condenser lens unit 25 is fixed with screws or the like.
  • a load such as a screw is directly applied to the condensing lens holder 27 or indirectly the rotational force of the screw. For this reason, the adjusted condenser lens unit 25 may be displaced.
  • the light source device 1 includes the second screw 79 that is a pressing portion that pressurizes the pressing spring 28 that is a pressing member toward the condenser lens holder 27 side. Specifically, the second screw 79 presses the condensing lens holder 27 to the base 40 via the pressing spring 28. Therefore, since the load of the second screw 79 is not directly applied to the condenser lens holder 27, it can be fixed with high accuracy.
  • the condenser lens holder 27 on which the condenser lens 26 is firmly mounted with high positional accuracy is fixed to the base 40 on which the phosphor optical element 30 is mounted, so that temperature change, humidity change, vibration, The adverse effects of the external environment such as impact can be suppressed.
  • the one that functions as the pressurizing unit 79 may be other than a screw.
  • the parallel pin is inserted into the base 40 and the pressing spring 28 is pushed from behind the pressing spring 28. In the state, the same effect can be obtained by fixing the parallel pin to the base.
  • FIG. 10 is a schematic cross-sectional view illustrating a configuration of the light projecting device 101 according to the first embodiment of the present disclosure.
  • the light projecting device 101 includes a heat radiating member 60, a light source device 1 attached to the heat radiating member 60, and a reflector 160 that reflects radiated light 91 emitted from the light source device 1 (emitted from the light source device 1).
  • the light projecting device 101 is, for example, a lamp for a vehicle headlamp. That is, the light source device 1 is used as a light source of the light projecting device 101.
  • the light source device 1 is attached to the heat dissipation member 60.
  • the heat radiating member 60 includes a base plate 61 for transferring heat generated in the light source device 1 to the heat radiating fins 62 and a heat radiating fin 62 for radiating heat generated in the light source device 1 to the outside air.
  • the light source device 1 is attached to the attachment portion 61 a of the base plate 61.
  • the attachment surface of the attachment part 61a is a flat surface, for example.
  • the light source device 1 is fixed to the attachment portion 61a by screws (not shown), for example.
  • the light source device 1 is disposed on the base plate 61 such that the heat radiation surface 41 of the base 40 and the mounting portion 61a are in contact with each other.
  • a power cable 63 that supplies power to the light source device 1 to turn on the light projecting device 101 is connected to the connector 38 of the light source device 1.
  • the reflector 160 is a reflecting member for projecting forward by changing the radiation angle of the radiated light 91 from the light source device 1, and is disposed so that the reflective surface that reflects the radiated light 91 faces the light source device 1. . Specifically, the reflector 160 is disposed above the phosphor optical element 30 so that the reflection surface is irradiated with the radiation light 91. More specifically, the reflector 160 is disposed so that the focal point of the reflector 160 substantially coincides with the light emitting point of the phosphor optical element 30 (specifically, the phosphor 31).
  • the light source device 1 can emit the emitted light 91 having a wide radiation angle.
  • emission direction of the emitted light 91 can be arrange
  • the emitted light 91 from the light source device 1 can be used with high efficiency, and the reflector 160 can be freely designed for downsizing and thinning.
  • the light source device is different from the first embodiment in the shape of the condenser lens holder, which is a mechanism for adjusting the condenser lens unit in the optical axis direction.
  • FIG. 11 is a front view for explaining the configuration of the light source device according to the second embodiment of the present disclosure.
  • FIG. 12 is a perspective view for explaining the adjustment function of the light source device according to the second embodiment of the present disclosure
  • FIG. 13 is a diagram for explaining the adjustment function of the light source device according to the second embodiment of the present disclosure.
  • FIG. 13 is a cross-sectional view taken along line XIII-XIII in FIG.
  • the condenser lens 26 is disposed on the upper surface side of the semiconductor light emitting device 10 disposed on the first surface 42 of the base 40.
  • the condenser lens 26 is fixed to the condenser lens holder 27a by adhesion or the like.
  • the condensing lens unit 25a is pressed in the pressing direction 70a by a pressing spring 28a fixed to the base 40 with a screw, and the surface on which the base 40 is located, in the second embodiment, the third side surface 47 and the fourth side surface 48. It touches the two sides.
  • the pressing direction 70a is the X-axis negative direction.
  • FIG. 14 is a front view for explaining the shape of the condensing lens holder 27a according to the second embodiment of the present disclosure
  • FIG. 15 is the shape of the condensing lens holder 27a according to the second embodiment of the present disclosure. It is a perspective view for demonstrating.
  • the outer shape of the condensing lens holder 27 a is substantially circular and coaxial with the outer shape of the condensing lens 26, and the condensing lens unit 25 a having the condensing lens 26 mounted on the base 40 is the semiconductor light emitting device 10. It is configured to be movable in the optical axis direction 71 of the outgoing light 51 from.
  • a flange portion protruding in a direction intersecting with the optical axis direction 71 of the laser light (emitted light 51) emitted from the semiconductor light emitting device 10 is formed.
  • the first collar portion 80 projecting in the X-axis direction on the outer peripheral surface of the condenser lens holder 27a is opposite to the first collar portion 80 and projects in the X-axis direction.
  • a second collar portion 81 is formed.
  • the first collar portion 80 and the second collar portion 81 are formed on the condenser lens holder 27a in a symmetrical shape.
  • an upper adjustment plate 82 and a lower adjustment plate 83 are provided between the first collar portion 80 and the second collar portion 81 of the condenser lens holder 27a. It is arranged in the vertical position.
  • adjustment is performed by sandwiching the first collar portion 80 and the second collar portion 81 from above and below by the upper adjustment plate 82 and the lower adjustment plate 83. Also good.
  • the clamping force at that time is such that when the lens is sandwiched, the condensing lens unit 25a must not be separated from the third side surface 47 and the fourth side surface 48 which are in contact with the base 40. The point is to use power.
  • the condenser lens 26 is disposed in the vicinity of the semiconductor light emitting device 10 in order to take in the emitted light 51 from the semiconductor light emitting device 10 to the maximum extent.
  • the position of the condenser lens unit 25a is adjusted, the position of the condenser lens 26 is moved by several ⁇ m to several tens of ⁇ m in the X-axis direction or the Y-axis direction.
  • the incident light 51 is reflected by the reflective optical element 22, and the spot position 78 on the phosphor optical element 30 is irradiated to a position largely deviated from a desired position in the X-axis direction or the Y-axis direction.
  • the light irradiated to the position shifted from the desired position of the phosphor optical element 30 is projected forward by the reflector 160 described in the light projecting device 101, but the center of the intensity distribution of the projected light is desired. There is a problem that it is projected at a position deviated from the position. In particular, when irradiating light far away, a deviation from the desired position of the center of the intensity distribution of the light projected at a long distance becomes significant.
  • the condensing lens holder 27a of the light source device according to the second embodiment of the present disclosure includes a first collar portion 80 and a second collar portion 81.
  • the first collar portion 80 and the second collar portion 81 are projecting portions that are erected in a direction perpendicular to the optical axis direction 71 from the outer peripheral surface of the condenser lens holder 27a.
  • the first collar portion 80 and the second collar portion 81 are used to adjust the movement of the condenser lens holder 27a in the optical axis direction 71.
  • the light source device according to Embodiment 2 can reduce the spot position deviation of the phosphor due to a change in the external environment.
  • the condenser lens unit 25 is fixed to the base 40 with an adhesive or the like. Thereafter, the condenser lens unit 25 is fixed with screws or the like.
  • a load such as a screw is applied directly to the condensing lens holder 27 or a rotational force of the screw. For this reason, a load such as a screw causes a position shift of the condenser lens unit adjusted. Therefore, in the second embodiment of the present disclosure, the pressing unit 79 presses the condenser lens holder 27 against the base 40 via the pressing spring 28a. Therefore, a load such as a screw is not directly applied to the condensing lens holder 27, so that it can be fixed with high accuracy.
  • the light source device is different from the first and second embodiments in that the direction in which the condenser lens holder is pressed by the pressing member is different.
  • FIG. 16 is a front view for explaining the configuration of the light source device according to the third embodiment of the present disclosure
  • FIG. 17 is a cross-section for explaining the configuration of the light source device according to the third embodiment of the present disclosure
  • FIG. FIG. 18 is a perspective view for explaining the shape of the condensing lens holder according to the third embodiment of the present disclosure.
  • the condenser lens 26 is disposed on the upper surface of the semiconductor light emitting device 10 disposed on the first surface 42 of the base 40a.
  • the condenser lens 26 is fixed to the condenser lens holder 27b by adhesion or the like.
  • the condensing lens holder 27b on which the condensing lens 26 is mounted has two positioning holes 85a and 85b.
  • the positioning hole 85a has a round hole shape
  • the positioning hole 85b has a long hole shape.
  • the positioning holes 85 a and 85 b are through holes that penetrate the condenser lens holder 27 b in the optical axis direction 71.
  • the positioning hole 85b which is a long hole shape has a long shape in the alignment direction of the positioning hole 85a and the positioning hole 85b.
  • two positioning bosses 84a and 84b are formed on the base 40a at positions facing the positioning holes 85a and 85b, respectively.
  • the two positioning bosses 84a and 84b are provided on the base 40a and regulate the position of the condenser lens unit 25b with respect to the base 40a.
  • the two positioning bosses 84a and 84b are formed to protrude from the base 40a in a direction parallel to the optical axis direction 71.
  • the light source device has two pressing springs 28b as shown in FIG.
  • the condenser lens unit 25b is fixed to the base 40a by being pressed in the pressing direction 70b shown in FIG. 17 by two pressing springs 28b fixed to the base 40a.
  • the condenser lens unit 25b is pressed against the third surface 44 of the base 40a shown in FIG.
  • the pressing direction 70b is a direction parallel to the optical axis direction 71 and a negative Z-axis direction.
  • the third surface 44 is a surface parallel to the first surface 42 on which the semiconductor light emitting device 10 formed on the base 40a is mounted and the second surface 43 on which the phosphor optical element 30 is mounted.
  • the base 40 a is configured by an integral body having a first surface 42, a second surface 43, and a first surface 42 and a third surface 44 parallel to the second surface 43.
  • the semiconductor light emitting element 11 is disposed on the first surface 42, and the phosphor optical element 30 is disposed on the second surface 43.
  • the condenser lens holder 27b is pressed against the third surface 44 by the pressing member 28b.
  • FIG. 19 is a perspective view for explaining the function of the light source device according to the third embodiment of the present disclosure.
  • the structure and mechanism for moving the condenser lens unit 25b in the optical axis direction 71 are the same as in the first embodiment, and the condenser lens holder 27b positions the condenser lens unit 25b in the optical axis direction 71.
  • the base 40a is fixed by adhesion or the like.
  • the condensing lens 26 is arranged in the vicinity of the semiconductor light emitting device 10 in order to take in the emitted light 51 (see FIG. 1) from the semiconductor light emitting device 10 to the maximum extent.
  • the position of the condensing lens unit 25b is adjusted, if the position of the condensing lens 26 is moved by several ⁇ m to several tens of ⁇ m in the X-axis direction or Y-axis direction, the light is emitted from the semiconductor light emitting device 10, and FIG. 19, the reflected light 52 (see FIG. 1) reflected by the reflecting optical element 22 (see FIG.
  • a base configured as an integral body having the first surface 42, the second surface 43, and the third surface 44 parallel to the first surface 42 and the second surface 43.
  • the third surface 44 is located between the first surface 42 and the second surface 43. Specifically, the third surface 44 is located between the first surface 42 and the second surface 43 in the optical axis direction 71.
  • the second surface 43 on which the phosphor optical element 30 formed on the base 40a is mounted is above the first surface 42 on which the semiconductor light emitting element 11 (specifically, the semiconductor light emitting device 10) is mounted.
  • the third surface 44 to which the condenser lens holder 27 b is pressed is positioned between the first surface 42 and the second surface 43. According to such a configuration, the light source device according to Embodiment 3 can be further reduced in thickness.
  • the light source device of the present disclosure can efficiently guide the light emitted from the semiconductor light emitting element to the phosphor, can reduce the distance between the semiconductor light emitting element and the lens, and the height of the light emitting device. Can be reduced, and the spot deviation of the phosphor due to the external environment change can be reduced, and the durability of the light source device can be improved. Therefore, the present disclosure can be widely used as various optical devices such as a light source device having a semiconductor light emitting element and a phosphor and a light projecting device using the light source device.

Abstract

This light source device (1) is provided with: a semiconductor light emitting element (11) which emits laser light (emission light (51)); a collecting lens (26) which collects the laser light emitted from the semiconductor light emitting element (11); a reflective optical element (22) which reflects the laser light collected by the collecting lens (26); a phosphor optical element (30) which is irradiated with the laser light that is reflected by the reflective optical element (22); a base (40) on which the phosphor optical element (30) is arranged; a lens holder (collecting lens holder) (27) which holds the collecting lens (26); and a press member (28) which presses the lens holder (27) against the base (40).

Description

光源装置および投光装置Light source device and light projecting device
 本開示は、光源装置および投光装置に関し、特に、半導体発光装置から出射した光を波長変換素子に照射することで放射される光を利用する、投写表示装置などのディスプレイ分野または車両用照明や医療用照明などの照明分野に用いられる光源装置、およびこの光源装置を用いた投光装置に関する。 The present disclosure relates to a light source device and a light projecting device, and more particularly to a display field such as a projection display device that uses light emitted by irradiating a wavelength conversion element with light emitted from a semiconductor light emitting device, or illumination for a vehicle. The present invention relates to a light source device used in an illumination field such as medical illumination, and a light projecting device using the light source device.
 半導体レーザなどの半導体発光素子で構成される半導体発光装置を用いた光源装置では、高光束の光を放射させるために、半導体発光装置から放射される光を波長変換素子に集光させて波長変換素子より外部に放射させる。以下、図20を用いて、特許文献1に開示されている従来の光源装置を用いた投光装置について説明する。 In a light source device using a semiconductor light emitting device composed of a semiconductor light emitting element such as a semiconductor laser, in order to emit a high luminous flux, the light emitted from the semiconductor light emitting device is condensed on the wavelength conversion element to convert the wavelength. Radiate outside the element. Hereinafter, a light projecting device using a conventional light source device disclosed in Patent Document 1 will be described with reference to FIG.
 図20は、従来の投光装置1001の構成と半導体発光装置1011から放射される光の光路を説明するための図である。 FIG. 20 is a diagram for explaining a configuration of a conventional light projecting device 1001 and an optical path of light emitted from the semiconductor light emitting device 1011.
 従来の投光装置1001では、半導体発光装置1011が発光状態とされると、図16に示すように、半導体発光装置1011から出射された青色光(青色レーザー光)LBは、集光レンズ1012で集光されつつミラー1013の反射面1131で反射されて、黄色光を発光する蛍光体1014の表面に前方斜め上方から入射する。蛍光体1014に入射した青色光LBは、蛍光体1014が発光する黄色光と混ざってその殆どが白色光となって上方へ放射状に出射し、これが光源装置からの出射光となりリフレクタ1015に入射する。この白色光は、リフレクタ1015の反射面1151で前方へ反射されて投影レンズ1017から前方へ照射される。投光装置1001において、蛍光体1014は、放熱フィン1181が形成された金属平板1018に取り付けられている。また、半導体発光装置1011と集光レンズ1012とを搭載したブロックは、金属平板1016に取り付けられている。 In the conventional light projecting device 1001, when the semiconductor light emitting device 1011 is in a light emitting state, as shown in FIG. 16, blue light (blue laser light) LB emitted from the semiconductor light emitting device 1011 is collected by the condenser lens 1012. It is reflected by the reflecting surface 1131 of the mirror 1013 while being collected, and enters the surface of the phosphor 1014 that emits yellow light from obliquely upward on the front side. The blue light LB incident on the phosphor 1014 is mixed with the yellow light emitted from the phosphor 1014, and almost all of the blue light LB is emitted as a white light, which is emitted radially upward. . This white light is reflected forward by the reflecting surface 1151 of the reflector 1015 and irradiated from the projection lens 1017 forward. In the light projecting device 1001, the phosphor 1014 is attached to a metal flat plate 1018 on which heat dissipating fins 1181 are formed. The block on which the semiconductor light emitting device 1011 and the condenser lens 1012 are mounted is attached to a metal flat plate 1016.
特開2012-59608号公報JP 2012-59608 A
 しかしながら、従来の投光装置(例えば特許文献1)においては、集光レンズ1012が、蛍光体1014が取り付けられた金属平板1018と別部材のブロックに固定されており、そのブロックが金属平板1016を介して取り付けられているため、光源装置を薄型化することができないという課題がある。 However, in the conventional projector (for example, Patent Document 1), the condensing lens 1012 is fixed to a metal plate 1018 to which the phosphor 1014 is attached and a separate block. Therefore, there is a problem that the light source device cannot be thinned.
 本開示は、このような課題を解決するためになされたものであり、薄型化に適した光源装置およびそれを備えた投光装置を提供することを目的とする。 The present disclosure has been made to solve such a problem, and an object thereof is to provide a light source device suitable for thickness reduction and a light projection device including the light source device.
 上記課題を解決するために、本開示に係る光源装置は、レーザ光を放射する半導体発光素子と、前記半導体発光素子から放射されたレーザ光を集光する集光レンズと、前記集光レンズにより集光されたレーザ光を反射する反射光学素子と、前記反射光学素子により反射されたレーザ光が照射される蛍光体光学素子と、前記蛍光体光学素子が配置される基台と、前記集光レンズを保持するレンズホルダと、前記レンズホルダを前記基台に押圧する押圧部材とを備える。 In order to solve the above problems, a light source device according to the present disclosure includes a semiconductor light emitting element that emits laser light, a condensing lens that condenses the laser light emitted from the semiconductor light emitting element, and the condensing lens. A reflective optical element that reflects the condensed laser light, a phosphor optical element that is irradiated with the laser light reflected by the reflective optical element, a base on which the phosphor optical element is disposed, and the light condensing A lens holder that holds the lens; and a pressing member that presses the lens holder against the base.
 この構成により、集光レンズを保持するレンズホルダが、蛍光体光学素子を配置した基台に押圧されることにより固定されるため、集光レンズの位置を蛍光体光学素子に近づけることができ、光源装置の薄型化が可能となる。 With this configuration, since the lens holder that holds the condenser lens is fixed by being pressed against the base on which the phosphor optical element is disposed, the position of the condenser lens can be brought close to the phosphor optical element, The light source device can be thinned.
 さらに、本開示に係る光源装置の一態様において、前記基台は、第1面と、第2面と、前記第1面から前記第1面に垂直な方向に延設される側面とを有する一体物により構成され、前記半導体発光素子は、前記第1面の上に配置され、前記蛍光体光学素子は、前記第2面の上に配置され、前記レンズホルダは、前記押圧部材により前記側面に押圧されるとよい。 Furthermore, in one aspect of the light source device according to the present disclosure, the base includes a first surface, a second surface, and a side surface extending from the first surface in a direction perpendicular to the first surface. The semiconductor light emitting element is disposed on the first surface, the phosphor optical element is disposed on the second surface, and the lens holder is disposed on the side surface by the pressing member. It is good to be pressed.
 この構成により、半導体発光素子と蛍光体光学素子とは一体物からなる基台に配置され、当該基台が有する側面にレンズホルダが押圧されるため、半導体発光素子、蛍光体光学素子および集光レンズをより近づけることができ、さらに光源装置の薄型化が可能となる。また、側面に沿ってレンズホルダを半導体発光素子の光軸方向に移動させることができるため、レンズホルダは半導体発光素子の光軸からの位置ずれが発生しにくい。 With this configuration, the semiconductor light emitting element and the phosphor optical element are arranged on a base made of a single body, and the lens holder is pressed against the side surface of the base, so that the semiconductor light emitting element, the phosphor optical element, and the light collecting element The lens can be brought closer, and the light source device can be made thinner. Further, since the lens holder can be moved along the side surface in the optical axis direction of the semiconductor light emitting element, the lens holder is unlikely to be displaced from the optical axis of the semiconductor light emitting element.
 さらに、本開示に係る光源装置の一態様において、前記第2面は、前記第1面の上方に位置し、前記側面は、前記第1面と前記第2面との間に位置するとよい。 Furthermore, in one aspect of the light source device according to the present disclosure, the second surface may be positioned above the first surface, and the side surface may be positioned between the first surface and the second surface.
 この構成により、光源装置は、レンズホルダを半導体発光素子から放射される光のスポットを調整するための長さを有し、且つ、反射光学素子と蛍光体光学素子とを近づけることができる。そのため、半導体発光素子、反射光学素子、蛍光体光学素子および集光レンズを近づけることができ、さらに光源装置の薄型化が可能となる。 With this configuration, the light source device has a lens holder having a length for adjusting the spot of light emitted from the semiconductor light emitting element, and can bring the reflecting optical element and the phosphor optical element close to each other. Therefore, the semiconductor light emitting element, the reflective optical element, the phosphor optical element, and the condenser lens can be brought close to each other, and the light source device can be made thinner.
 さらに、本開示に係る光源装置の一態様において、さらに、前記押圧部材を前記レンズホルダ側に加圧する加圧部を備えるとよい。 Furthermore, in one aspect of the light source device according to the present disclosure, it is preferable to further include a pressing unit that pressurizes the pressing member toward the lens holder.
 この構成により、蛍光体光学素子を搭載した基台に位置精度よく、強固に集光レンズを搭載した集光レンズホルダが固定されるので、温度変化、湿度変化、振動、衝撃等の外部環境による悪影響が抑えられる。 With this configuration, the condenser lens holder with the condenser lens firmly mounted on the base on which the phosphor optical element is mounted is fixed with high accuracy, so that it depends on the external environment such as temperature change, humidity change, vibration, and impact. Adverse effects are suppressed.
 さらに、本開示に係る光源装置の一態様において、前記レンズホルダの外周面には、前記半導体発光素子から放射される前記レーザ光の光軸方向と交差する方向に窪んだ、ピンが挿入可能な凹部が形成され、前記レンズホルダは、前記光軸方向に移動可能であるとよい。 Furthermore, in one aspect of the light source device according to the present disclosure, a pin that is depressed in a direction intersecting an optical axis direction of the laser light emitted from the semiconductor light emitting element can be inserted into the outer peripheral surface of the lens holder. A recess is formed, and the lens holder is preferably movable in the optical axis direction.
 この構成により、集光レンズを光軸方向に位置調整を実施することで、蛍光体光学素子に照射されるスポット形状を調整することが可能であり、調整時の集光レンズの面内位置ずれが少ないので、安定した光源装置が提供できる。 With this configuration, it is possible to adjust the spot shape irradiated to the phosphor optical element by adjusting the position of the condenser lens in the optical axis direction. Therefore, a stable light source device can be provided.
 また、本開示に係る光源装置の一態様において、前記レンズホルダの外周面には、前記半導体発光素子から放射される前記レーザ光の光軸方向と交差する方向に突出したつば部が形成され、前記レンズホルダは、前記光軸方向に移動可能な構成でもよい。 Further, in one aspect of the light source device according to the present disclosure, a collar portion protruding in a direction intersecting an optical axis direction of the laser light emitted from the semiconductor light emitting element is formed on the outer peripheral surface of the lens holder, The lens holder may be configured to be movable in the optical axis direction.
 この構成により、集光レンズを光軸方向に位置調整を実施することで、蛍光体光学素子に照射されるスポット形状を調整することが可能であり、調整時の集光レンズの面内位置ずれが少ないので、安定した光源装置が提供できる。 With this configuration, it is possible to adjust the spot shape irradiated to the phosphor optical element by adjusting the position of the condenser lens in the optical axis direction. Therefore, a stable light source device can be provided.
 また、本開示に係る光源装置の一態様において、前記基台は、第1面と、第2面と、前記第1面および前記第2面と平行な第3面とを有する一体物により構成され、前記半導体発光素子は、前記第1面の上に配置され、前記蛍光体光学素子は、前記第2面の上に配置され、前記レンズホルダは、前記押圧部材により前記第3面に押圧される。 Moreover, in one aspect of the light source device according to the present disclosure, the base is configured by an integral body having a first surface, a second surface, and a third surface parallel to the first surface and the second surface. The semiconductor light emitting element is disposed on the first surface, the phosphor optical element is disposed on the second surface, and the lens holder is pressed against the third surface by the pressing member. Is done.
 この構成においても、集光レンズを光軸方向に位置調整を実施することで、蛍光体光学素子に照射されるスポット形状を調整することが可能であり、調整時の集光レンズの面内位置ずれが少ないので、安定した光源装置が提供できる。 Even in this configuration, by adjusting the position of the condenser lens in the optical axis direction, it is possible to adjust the spot shape irradiated to the phosphor optical element, and the in-plane position of the condenser lens at the time of adjustment Since there is little deviation, a stable light source device can be provided.
 また、本開示に係る光源装置の一態様において、前記第2面は、前記第1面の上方に位置し、前記第3面は、前記第1面と前記第2面との間に位置する。 In the aspect of the light source device according to the present disclosure, the second surface is located above the first surface, and the third surface is located between the first surface and the second surface. .
 この構成により、光源装置のさらなる薄型化が可能となる。 This configuration makes it possible to further reduce the thickness of the light source device.
 さらに、本開示に係る光源装置の一態様において、前記レンズホルダは、前記基台と同一材料で構成されるとよい。 Furthermore, in one aspect of the light source device according to the present disclosure, the lens holder may be made of the same material as the base.
 この構成により、レンズホルダと基台の熱膨張による変化が同一であるので、外部環境の変化に強い、光源装置が実現可能である。 With this configuration, the change due to thermal expansion of the lens holder and the base is the same, and thus a light source device that is resistant to changes in the external environment can be realized.
 さらに、本開示に係る光源装置の一態様において、前記レンズホルダは、金属材料で構成されるとよい。 Furthermore, in one aspect of the light source device according to the present disclosure, the lens holder may be made of a metal material.
 この構成により、レンズホルダの熱膨張により位置変化を少なくできるので、外部環境の変化に強い、光源装置が実現可能である。 With this configuration, the change in position can be reduced by the thermal expansion of the lens holder, so that a light source device that is resistant to changes in the external environment can be realized.
 また、本開示の投光装置は、光源装置と、前記光源装置から出射された光の向きを変化させる光学部材とを備え、前記光源装置は、レーザ光を放射する半導体発光素子と、前記半導体発光素子から放射されたレーザ光を集光する集光レンズと、前記集光レンズにより集光されたレーザ光を反射する反射光学素子と、前記反射光学素子により反射されたレーザ光が照射される蛍光体光学素子と、前記蛍光体光学素子が配置される基台と、前記集光レンズを保持するレンズホルダと、前記レンズホルダを前記基台に押圧する押圧部材とを備える。 The light projecting device of the present disclosure includes a light source device and an optical member that changes a direction of light emitted from the light source device, the light source device including a semiconductor light emitting element that emits laser light, and the semiconductor A condensing lens that condenses the laser light emitted from the light emitting element, a reflective optical element that reflects the laser light condensed by the condensing lens, and the laser light reflected by the reflective optical element are irradiated. A phosphor optical element; a base on which the phosphor optical element is disposed; a lens holder that holds the condenser lens; and a pressing member that presses the lens holder against the base.
 この構成により、集光レンズを保持するレンズホルダが、蛍光体光学素子を配置した基台に押圧されることにより固定されるため、集光レンズの位置を蛍光体光学素子に近づけることができ、光源装置の薄型化が可能となり、投光装置も薄型化される。 With this configuration, since the lens holder that holds the condenser lens is fixed by being pressed against the base on which the phosphor optical element is disposed, the position of the condenser lens can be brought close to the phosphor optical element, The light source device can be made thinner, and the light projecting device can also be made thinner.
 本開示に係る光源装置等によれば、外部環境変化によって、半導体発光装置からの出射光を蛍光体素子へ導く光路にズレが生じることを抑制できるため、蛍光体素子から放射される光を効率良く外部へ放射することができ、且つ、光源装置の薄型化が可能である。 According to the light source device and the like according to the present disclosure, it is possible to suppress the occurrence of deviation in the optical path that guides the emitted light from the semiconductor light emitting device to the phosphor element due to a change in the external environment. The light source device can be radiated well and the light source device can be made thin.
図1は、本開示の実施の形態1に係る光源装置の構成を説明するための断面図である。FIG. 1 is a cross-sectional view for explaining the configuration of the light source device according to the first embodiment of the present disclosure. 図2は、本開示の実施の形態1に係る光源装置を上面から見たときの外観を示す斜視図である。FIG. 2 is a perspective view illustrating an appearance of the light source device according to the first embodiment of the present disclosure when viewed from above. 図3は、本開示の実施の形態1に係る光源装置を下面から見たときの外観を示す斜視図である。FIG. 3 is a perspective view illustrating an appearance of the light source device according to the first embodiment of the present disclosure when viewed from the lower surface. 図4は、本開示の実施の形態1に係る光源装置の構成を説明するための分解図である。FIG. 4 is an exploded view for explaining the configuration of the light source device according to the first embodiment of the present disclosure. 図5は、本開示の実施の形態1に係る光源装置の構成を説明するための正面図である。FIG. 5 is a front view for explaining the configuration of the light source device according to the first embodiment of the present disclosure. 図6は、本開示の実施の形態1に係る光源装置の調整機能を説明するための斜視図である。FIG. 6 is a perspective view for explaining an adjustment function of the light source device according to the first embodiment of the present disclosure. 図7は、本開示の実施の形態1に係る光源装置の調整機能を説明するための断面図である。FIG. 7 is a cross-sectional view for explaining an adjustment function of the light source device according to the first embodiment of the present disclosure. 図8は、本開示の実施の形態1に係る集光レンズホルダの形状を説明するための正面図である。FIG. 8 is a front view for explaining the shape of the condensing lens holder according to the first embodiment of the present disclosure. 図9は、本開示の実施の形態1に係る集光レンズホルダの形状を説明するための斜視図である。FIG. 9 is a perspective view for explaining the shape of the condensing lens holder according to the first embodiment of the present disclosure. 図10は、本開示の実施の形態1に係る投光装置の構成を説明するための断面図である。FIG. 10 is a cross-sectional view for explaining the configuration of the light projecting device according to the first embodiment of the present disclosure. 図11は、本開示の実施の形態2に係る光源装置の構成を説明するための正面図である。FIG. 11 is a front view for explaining the configuration of the light source device according to the second embodiment of the present disclosure. 図12は、本開示の実施の形態2に係る光源装置の機能を説明するための斜視図である。FIG. 12 is a perspective view for explaining the function of the light source device according to the second embodiment of the present disclosure. 図13は、本開示の実施の形態2に係る光源装置の機能を説明するための断面図である。FIG. 13 is a cross-sectional view for explaining the function of the light source device according to the second embodiment of the present disclosure. 図14は、本開示の実施の形態2に係る集光レンズホルダの形状を説明するための正面図である。FIG. 14 is a front view for explaining the shape of the condensing lens holder according to the second embodiment of the present disclosure. 図15は、本開示の実施の形態2に係る集光レンズホルダの形状を説明するための斜視図である。FIG. 15 is a perspective view for explaining the shape of the condenser lens holder according to the second embodiment of the present disclosure. 図16は、本開示の実施の形態3に係る光源装置の構成を説明するための正面図である。FIG. 16 is a front view for explaining the configuration of the light source device according to the third embodiment of the present disclosure. 図17は、本開示の実施の形態3に係る光源装置の構成を説明するための断面図である。FIG. 17 is a cross-sectional view for explaining the configuration of the light source device according to the third embodiment of the present disclosure. 図18は、本開示の実施の形態3に係る集光レンズホルダの形状を説明するための斜視図である。FIG. 18 is a perspective view for explaining the shape of the condensing lens holder according to the third embodiment of the present disclosure. 図19は、本開示の実施の形態3に係る光源装置の機能を説明するための斜視図である。FIG. 19 is a perspective view for explaining the function of the light source device according to the third embodiment of the present disclosure. 図20は、従来の光源装置の構成を説明するための断面図である。FIG. 20 is a cross-sectional view for explaining the configuration of a conventional light source device.
 本開示の実施の形態について、以下に図面を用いて説明する。なお、以下に説明する実施の形態は、いずれも本開示の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される、数値、構成要素、構成要素の配置位置および接続形態、並びに、工程(ステップ)および工程の順序等は、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Embodiments of the present disclosure will be described below with reference to the drawings. Note that each of the embodiments described below shows a preferred specific example of the present disclosure. Accordingly, the numerical values, components, arrangement positions and connection forms of components, and steps (steps), the order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present disclosure. . Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept of the present disclosure are described as arbitrary constituent elements.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、各図において縮尺などは必ずしも一致していない。各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。 Each figure is a schematic diagram and is not necessarily shown strictly. Accordingly, the scales and the like do not necessarily match in each drawing. In each figure, substantially the same components are denoted by the same reference numerals, and redundant descriptions are omitted or simplified.
 また、本明細書及び図面において、X軸、Y軸及びZ軸は、三次元直交座標系の三軸を表している。X軸及びY軸は、互いに直交し、且つ、いずれもZ軸に直交する軸である。また、以下の実施の形態において、Z軸正方向側を上方、Z軸負方向側を下方として記載する場合がある。また、以下の実施の形態において、Y軸正方向側を後方、Y軸負方向側を前方として記載する場合がある。 In the present specification and drawings, the X axis, the Y axis, and the Z axis represent the three axes of the three-dimensional orthogonal coordinate system. The X axis and the Y axis are orthogonal to each other, and both are orthogonal to the Z axis. In the following embodiments, the Z-axis positive direction side may be described as the upper side and the Z-axis negative direction side as the lower side. In the following embodiments, the Y-axis positive direction side may be described as the rear and the Y-axis negative direction side as the front.
 また、以下の実施の形態において、略一致などの「略」を用いた表現を用いている。例えば、略一致は、完全に一致とすることを意味するだけでなく、実質的に一致する、すなわち、例えば数%程度の差異を含むことも意味する。 In the following embodiments, expressions using “abbreviations” such as substantially coincidence are used. For example, approximately matching not only means that they are completely matched, but also means that they are substantially matched, that is, include a difference of, for example, several percent.
 (実施の形態1)
 以下、本開示の実施の形態1における光源装置および投光装置について図面を参照しながら説明する。
(Embodiment 1)
Hereinafter, the light source device and the light projecting device according to the first embodiment of the present disclosure will be described with reference to the drawings.
 [光源装置]
 <構成>
 図1は、本開示の実施の形態1に係る光源装置1の構成を説明するための断面図である。図2は、本開示の実施の形態1に係る光源装置1を上面から見たときの外観を示す斜視図である。図3は、本開示の実施の形態1に係る光源装置1を下面から見たときの外観を示す斜視図である。図4は、本開示の実施の形態1に係る光源装置1の構成を説明するための分解図である。図5は、本開示の実施の形態1に係る光源装置1の構成を説明するための正面図である。
[Light source device]
<Configuration>
FIG. 1 is a cross-sectional view for explaining the configuration of the light source device 1 according to the first embodiment of the present disclosure. FIG. 2 is a perspective view illustrating an appearance of the light source device 1 according to Embodiment 1 of the present disclosure when viewed from the top. FIG. 3 is a perspective view illustrating an external appearance of the light source device 1 according to Embodiment 1 of the present disclosure when viewed from the lower surface. FIG. 4 is an exploded view for explaining the configuration of the light source device 1 according to the first embodiment of the present disclosure. FIG. 5 is a front view for explaining the configuration of the light source device 1 according to the first embodiment of the present disclosure.
 図1から図5に示す本開示の実施の形態1における光源装置1は、半導体発光素子11と、集光レンズ26と、反射光学素子ユニット20と、蛍光体光学素子30と、基台40と、集光レンズ26を保持する集光レンズホルダ(レンズホルダ)27と、押圧ばね(押圧部材)28とを備える。基台40には、半導体発光装置10と蛍光体光学素子30とが固定されている。さらに、反射面21を有する反射光学素子22が反射光学素子保持部材23に固着されてなる反射光学素子ユニット20が、基台40に固定されている。また、集光レンズ26が集光レンズホルダ27に固着されてなる集光レンズユニット25が、押圧ばね28により基台40に押圧されて保持された構成となっている。 The light source device 1 according to the first embodiment of the present disclosure illustrated in FIGS. 1 to 5 includes a semiconductor light emitting element 11, a condenser lens 26, a reflective optical element unit 20, a phosphor optical element 30, and a base 40. And a condensing lens holder (lens holder) 27 for holding the condensing lens 26 and a pressing spring (pressing member) 28. The semiconductor light emitting device 10 and the phosphor optical element 30 are fixed to the base 40. Further, a reflective optical element unit 20 in which a reflective optical element 22 having a reflective surface 21 is fixed to a reflective optical element holding member 23 is fixed to a base 40. Further, the condensing lens unit 25 in which the condensing lens 26 is fixed to the condensing lens holder 27 is configured to be pressed and held by the base 40 by the pressing spring 28.
 半導体発光装置10は、光導波路が形成された半導体発光素子11と、半導体発光素子11を実装するためのパッケージ12とを備える。半導体発光装置10の内部空間は、密閉空間であり、半導体発光素子11が外部の雰囲気から遮断されるように高い気密性が保たれている。 The semiconductor light emitting device 10 includes a semiconductor light emitting element 11 on which an optical waveguide is formed, and a package 12 for mounting the semiconductor light emitting element 11. The internal space of the semiconductor light emitting device 10 is a sealed space, and high airtightness is maintained so that the semiconductor light emitting element 11 is shielded from the external atmosphere.
 半導体発光素子11は、例えば窒化物半導体からなる半導体レーザ素子(例えばレーザチップ)であり、波長380nmから490nmの間にピーク波長を有するレーザ光を出射光51として放射する。 The semiconductor light emitting element 11 is a semiconductor laser element (for example, a laser chip) made of, for example, a nitride semiconductor, and emits laser light having a peak wavelength between 380 nm and 490 nm as emitted light 51.
 パッケージ12は、例えば、いわゆるCANパッケージであり、円盤状のベース13と、ベース13上に半導体発光素子11が直接または図示しないサブマウントを介して実装するための図示していないポストと、外部から半導体発光素子11に電力を供給するためのリードピン14と、ベース13上に配置された金属製のキャップ15とを有する。 The package 12 is, for example, a so-called CAN package, and includes a disk-shaped base 13, a post (not shown) for mounting the semiconductor light emitting element 11 on the base 13 directly or via a submount (not shown), and externally. A lead pin 14 for supplying power to the semiconductor light emitting element 11 and a metal cap 15 disposed on the base 13 are provided.
 キャップ15には、半導体発光素子11を密閉するために窓ガラス16が取り付けられている。窓ガラス16は、半導体発光素子11から出射する出射光51を透過する透光部材の一例であり、本実施の形態では、板ガラスである。半導体発光素子11は、ベース13とキャップ15とで囲まれる密閉空間内に配置されている。また、半導体発光素子11は、ベース13に実装されることで、ベース13と熱的且つ物理的に接続される。 A window glass 16 is attached to the cap 15 in order to seal the semiconductor light emitting element 11. Window glass 16 is an example of a translucent member that transmits outgoing light 51 emitted from semiconductor light emitting element 11, and is a plate glass in the present embodiment. The semiconductor light emitting element 11 is disposed in a sealed space surrounded by the base 13 and the cap 15. In addition, the semiconductor light emitting element 11 is mounted on the base 13 so as to be thermally and physically connected to the base 13.
 このように構成される半導体発光装置10は、基台40の第1面42に配置される。具体的には、半導体発光装置10は、ベース13における半導体発光素子11が配置された面とは反対の面が基台40の第1面42に接触するように基台40に実装される。 The semiconductor light emitting device 10 configured as described above is disposed on the first surface 42 of the base 40. Specifically, the semiconductor light emitting device 10 is mounted on the base 40 such that the surface of the base 13 opposite to the surface on which the semiconductor light emitting element 11 is disposed contacts the first surface 42 of the base 40.
 半導体発光装置10を基台40に実装する手段としては、樹脂材料などの接着剤によって接着もしくは半田によって固定する手段が考えられる。本実施の形態では、半導体発光装置10は、円筒形状で外周部にねじが切られたリングネジ18により、基台40の第1面42に加圧された状態で固定されている。これにより、半導体発光装置10(具体的には、ベース13)は、基台40の第1面42と熱的且つ物理的に接続される。 As a means for mounting the semiconductor light emitting device 10 on the base 40, a means for fixing by bonding or soldering with an adhesive such as a resin material is conceivable. In the present embodiment, the semiconductor light emitting device 10 is fixed in a pressed state to the first surface 42 of the base 40 by a ring screw 18 having a cylindrical shape and a threaded outer peripheral portion. Thereby, the semiconductor light emitting device 10 (specifically, the base 13) is thermally and physically connected to the first surface 42 of the base 40.
 集光レンズユニット25は、反射光学素子ユニット20と半導体発光装置10との間に配置されている。集光レンズユニット25は、集光レンズ26と、集光レンズホルダ27とを備える。 The condenser lens unit 25 is disposed between the reflective optical element unit 20 and the semiconductor light emitting device 10. The condenser lens unit 25 includes a condenser lens 26 and a condenser lens holder 27.
 集光レンズ26は、有限系のレンズであり、集光レンズホルダ27に接着などにより固定されている。集光レンズホルダ27は、押圧ばね28により、基台40に保持されている。集光レンズ26は、半導体発光装置10からの出射光51を所定の焦点位置に集光する機能を有する。 The condenser lens 26 is a finite lens, and is fixed to the condenser lens holder 27 by adhesion or the like. The condenser lens holder 27 is held on the base 40 by a pressing spring 28. The condenser lens 26 has a function of condensing the emitted light 51 from the semiconductor light emitting device 10 at a predetermined focal position.
 集光レンズホルダ27は、集光レンズ26を保持する保持部材である。集光レンズホルダ27の材料は、特に限定されないが、例えば金属材料で形成されるとよい。集光レンズホルダ27の材料として金属材料が採用されることにより、集光レンズホルダ27の熱膨張による位置変化を少なくできる。そのため、外部環境の変化に強い、光源装置1を作製することが可能である。 The condenser lens holder 27 is a holding member that holds the condenser lens 26. Although the material of the condensing lens holder 27 is not specifically limited, For example, it is good to form with a metal material. By adopting a metal material as the material of the condensing lens holder 27, a change in position due to thermal expansion of the condensing lens holder 27 can be reduced. Therefore, it is possible to produce the light source device 1 that is resistant to changes in the external environment.
 また、集光レンズホルダ27は、基台40と同一材料で構成されるとよい。こうすることで、集光レンズホルダ27と基台40との熱膨張による変化が同一となる。そのため、外部環境の変化に強い光源装置1が作製可能となる。 Further, the condenser lens holder 27 may be made of the same material as the base 40. By doing so, changes due to thermal expansion of the condenser lens holder 27 and the base 40 are the same. Therefore, the light source device 1 that is resistant to changes in the external environment can be manufactured.
 反射光学素子ユニット20を構成する反射光学素子22は、平面状の反射ミラーとなっており、平面状の反射面21を有する。具体的には、反射光学素子22は、平板状の基板の表面に反射膜が形成された構成となっている。この反射膜の表面が反射面21となっている。反射光学素子22は、集光レンズ26により集光されたレーザ光(出射光51)を反射する。なお、反射面21が反射光学素子22の背面になっていてもよい。反射膜としては、異なる屈折率を有する複数の誘電体膜からなる多層反射膜、あるいは、Ag、Au、Cuなどの金属からなる金属膜またはその合金からなる合金膜などが用いられる。 The reflection optical element 22 constituting the reflection optical element unit 20 is a planar reflection mirror, and has a planar reflection surface 21. Specifically, the reflective optical element 22 has a configuration in which a reflective film is formed on the surface of a flat substrate. The surface of this reflective film is a reflective surface 21. The reflective optical element 22 reflects the laser light (emitted light 51) collected by the condenser lens 26. The reflective surface 21 may be the back surface of the reflective optical element 22. As the reflective film, a multilayer reflective film made of a plurality of dielectric films having different refractive indexes, a metal film made of a metal such as Ag, Au, or Cu, or an alloy film made of an alloy thereof is used.
 反射光学素子ユニット20は、半導体発光装置10の上方に配置されるように基台40に取り付けられる。具体的には、反射光学素子ユニット20は、反射光学素子保持部材23が基台40に形成された第4面49に当接された状態で第3ねじ24(図4参照)により基台40にねじ止めされることで基台40に固定される。 The reflective optical element unit 20 is attached to the base 40 so as to be disposed above the semiconductor light emitting device 10. Specifically, the reflective optical element unit 20 is configured such that the reflective optical element holding member 23 is in contact with a fourth surface 49 formed on the base 40 by the third screw 24 (see FIG. 4). It is fixed to the base 40 by being screwed to.
 基台40の放熱面41には、半導体発光装置10のリードピン14に、半田等により接合された基板37と、外部から電力を供給するための基板37上に実装されたコネクタ38とが配置されている。この基板37は、第1ねじ39により、基台40に固定されている。 On the heat radiation surface 41 of the base 40, a substrate 37 joined to the lead pins 14 of the semiconductor light emitting device 10 by solder or the like, and a connector 38 mounted on the substrate 37 for supplying power from the outside are arranged. ing. The substrate 37 is fixed to the base 40 by a first screw 39.
 蛍光体光学素子30は、蛍光体31と、蛍光体31を保持する蛍光体保持部材32とを有する。蛍光体31は、例えば蛍光体保持部材32上に設けられる。蛍光体光学素子30は、入射する光の波長を変換する波長変換素子の一例であり、本実施の形態では、入射する光の波長を変換する波長変換材として、蛍光体31を含む。 The phosphor optical element 30 includes a phosphor 31 and a phosphor holding member 32 that holds the phosphor 31. The phosphor 31 is provided on the phosphor holding member 32, for example. The phosphor optical element 30 is an example of a wavelength conversion element that converts the wavelength of incident light. In the present embodiment, the phosphor optical element 30 includes a phosphor 31 as a wavelength conversion material that converts the wavelength of incident light.
 蛍光体31は、入射する光を励起光として蛍光発光する。蛍光体31は、例えばセリウム賦活のイットリウム・アルミニウム・ガーネット(YAG:Ce3+)系の蛍光体材料によって構成される。蛍光体31としては、例えばYAG:Ce3+等の蛍光体粒子がガラスまたはシリコーン等の透明樹脂(バインダ)に混合分散されて層状に構成されたものを用いてもよいし、例えばYAG:Ce3+等の蛍光体粒子とアルミナ(Al)等とを混合して焼結することによって構成されたセラミック蛍光体板を用いてもよい。なお、蛍光体31は、YAG系に限るものではない。また、蛍光体保持部材32は、例えば窒化アルミニウムからなるセラミック体である。図示しないが、蛍光体保持部材32と蛍光体31との間には、例えば銀合金等からなる反射膜が形成されているとよい。 The phosphor 31 emits fluorescence using incident light as excitation light. The phosphor 31 is made of, for example, a cerium-activated yttrium aluminum garnet (YAG: Ce 3+ ) phosphor material. As the phosphor 31, for example, phosphor particles such as YAG: Ce 3+ mixed and dispersed in a transparent resin (binder) such as glass or silicone may be used, and for example, YAG: Ce 3+ may be used. A ceramic phosphor plate formed by mixing and sintering phosphor particles such as alumina (Al 2 O 3 ) or the like may be used. The phosphor 31 is not limited to the YAG system. The phosphor holding member 32 is a ceramic body made of, for example, aluminum nitride. Although not shown, a reflective film made of, for example, a silver alloy may be formed between the phosphor holding member 32 and the phosphor 31.
 このように構成される蛍光体光学素子30は、基台40の第2面43に配置される。具体的には、蛍光体光学素子30は、蛍光体保持部材32側が第2面43に接触するように基台40に固定される。これにより、蛍光体光学素子30(具体的には、蛍光体保持部材32)は、基台40の第2面43と熱的且つ物理的に接続される。 The phosphor optical element 30 configured as described above is disposed on the second surface 43 of the base 40. Specifically, the phosphor optical element 30 is fixed to the base 40 so that the phosphor holding member 32 side contacts the second surface 43. Accordingly, the phosphor optical element 30 (specifically, the phosphor holding member 32) is thermally and physically connected to the second surface 43 of the base 40.
 また、蛍光体光学素子30には、反射光学素子ユニット20からの反射光52が照射される。具体的には、反射光学素子ユニット20からの反射光52は、蛍光体31に照射する。これにより、蛍光体31は、反射光52で励起されて蛍光93を発する。このように、光源装置1からは、反射光52が蛍光体光学素子30で散乱された散乱光92と、反射光52により励起されて発せられる蛍光93とが合わさった放射光91が放射される。 Further, the fluorescent optical element 30 is irradiated with the reflected light 52 from the reflective optical element unit 20. Specifically, the reflected light 52 from the reflective optical element unit 20 irradiates the phosphor 31. As a result, the phosphor 31 is excited by the reflected light 52 and emits fluorescence 93. As described above, the light source device 1 emits the radiated light 91 in which the scattered light 92 obtained by scattering the reflected light 52 by the phosphor optical element 30 and the fluorescent light 93 excited by the reflected light 52 and emitted. .
 押圧部材28は、集光レンズホルダ27を基台40に押圧する押圧部材である。押圧部材28は、集光レンズホルダ27を基台40側へ付勢できればよい。本実施の形態においては、押圧部材28は、ばね材である。 The pressing member 28 is a pressing member that presses the condenser lens holder 27 against the base 40. The pressing member 28 only needs to bias the condenser lens holder 27 toward the base 40 side. In the present embodiment, the pressing member 28 is a spring material.
 なお、光源装置1は、蛍光体光学素子30の上方に配置された透光カバー33を備えてもよい。透光カバー33は、透光カバー保持部材34に接着などの手段により、固定されている。また、半導体発光装置10と蛍光体光学素子30とは、基台40と透光カバー保持部材34と透光カバー33とで囲まれる閉塞空間内に配置されているとよい。この構成により、光密度の高い出射光による光ピンセット効果により外部から塵やホコリを集塵して光学部品の効率を低下するのを抑制することができる。 The light source device 1 may include a light-transmitting cover 33 disposed above the phosphor optical element 30. The translucent cover 33 is fixed to the translucent cover holding member 34 by means such as adhesion. In addition, the semiconductor light emitting device 10 and the phosphor optical element 30 may be disposed in a closed space surrounded by the base 40, the translucent cover holding member 34, and the translucent cover 33. With this configuration, it is possible to prevent dust and dust from being collected from the outside due to the optical tweezer effect by the emitted light having a high light density, thereby reducing the efficiency of the optical component.
 <機能>
 続いて、図1、図4~図9を用いて、実施の形態1に係る光源装置1の、特に、集光レンズユニット25の動作および機能について説明する。
<Function>
Next, the operation and function of the light source device 1 according to the first embodiment, in particular, the condenser lens unit 25 will be described with reference to FIGS. 1 and 4 to 9.
 図4および図5に示すように、基台40の第1面42の上の配置された半導体発光装置10の上面には、集光レンズ26が配置されている。また、集光レンズ26は、集光レンズホルダ27に接着などの手段により固定されている。この集光レンズユニット25は、基台40にねじなどにて固定された押圧ばね28により、押圧方向70に押され、基台40のある面、実施の形態1では第1側面45と第2側面46との2つの面に接している。なお、実施の形態1において、押圧方向70は、Y軸正方向である。 As shown in FIGS. 4 and 5, the condenser lens 26 is disposed on the upper surface of the semiconductor light emitting device 10 disposed on the first surface 42 of the base 40. Further, the condenser lens 26 is fixed to the condenser lens holder 27 by means such as adhesion. The condensing lens unit 25 is pressed in the pressing direction 70 by a pressing spring 28 fixed to the base 40 with a screw or the like, and the surface on which the base 40 is located, in the first embodiment, the first side face 45 and the second side. It is in contact with two surfaces, the side surface 46. In the first embodiment, the pressing direction 70 is the Y axis positive direction.
 図8は、本開示の実施の形態1に係る集光レンズホルダ27の形状を説明するための正面図であり、図9は、本開示の実施の形態1に係る集光レンズホルダ27の形状を説明するための斜視図である。 FIG. 8 is a front view for explaining the shape of the condenser lens holder 27 according to the first embodiment of the present disclosure, and FIG. 9 is the shape of the condenser lens holder 27 according to the first embodiment of the present disclosure. It is a perspective view for demonstrating.
 集光レンズホルダ27の外形は、集光レンズ26の外形と同軸の略円形をしている。また、集光レンズ26を搭載した集光レンズユニット25は、基台40上にて、半導体発光装置10からの出射光の光軸方向71に、移動可能な構成となっている。 The outer shape of the condenser lens holder 27 has a substantially circular shape coaxial with the outer shape of the condenser lens 26. Further, the condensing lens unit 25 on which the condensing lens 26 is mounted is configured to be movable on the base 40 in the optical axis direction 71 of the emitted light from the semiconductor light emitting device 10.
 また、集光レンズホルダ27の外周面には、半導体発光素子11から放射されるレーザ光(出射光51)の光軸方向71と交差する方向に窪んだ、ピンが挿入可能な凹部が形成されている。実施の形態1においては、集光レンズホルダ27の外周面には、X軸方向に窪んだ第1調整ピン(ピン)74を挿入可能な第1凹部72と、第1凹部72とは反対側であって、X軸方向に窪んだ第2調整ピン(ピン)75が挿入可能な第2凹部(凹部)73が形成されている。言い換えると、集光レンズホルダ27には、左右対称形状で、第1凹部72と第2凹部73とが形成されている。集光レンズユニット25を光軸方向71に動かす機構として、第1調整ピン74と、第1調整ピン74と対向した位置に第2調整ピン75が、配置されている。 Further, the outer peripheral surface of the condensing lens holder 27 is formed with a recess that is recessed in a direction intersecting the optical axis direction 71 of the laser light (emitted light 51) emitted from the semiconductor light emitting element 11 and into which a pin can be inserted. ing. In the first embodiment, on the outer peripheral surface of the condensing lens holder 27, a first recess 72 into which a first adjustment pin (pin) 74 recessed in the X-axis direction can be inserted, and the side opposite to the first recess 72 And the 2nd recessed part (recessed part) 73 which can insert the 2nd adjustment pin (pin) 75 depressed in the X-axis direction is formed. In other words, the condensing lens holder 27 is formed with a first recess 72 and a second recess 73 in a symmetrical shape. As a mechanism for moving the condenser lens unit 25 in the optical axis direction 71, a first adjustment pin 74 and a second adjustment pin 75 are disposed at a position facing the first adjustment pin 74.
 図6は、本開示の実施の形態1に係る光源装置1の調整機能を説明するための斜視図であり、図7は、本開示の実施の形態1に係る光源装置1の調整機能を説明するための断面図である。なお、図7は、図6のVII―VII線における断面図である。 FIG. 6 is a perspective view for explaining the adjustment function of the light source device 1 according to the first embodiment of the present disclosure, and FIG. 7 illustrates the adjustment function of the light source device 1 according to the first embodiment of the present disclosure. It is sectional drawing for doing. 7 is a cross-sectional view taken along line VII-VII in FIG.
 集光レンズユニット25を光軸方向71に移動させる際には、第1調整ピン74が、集光レンズホルダ27の第1凹部72に挿入され、第1調整ピン74と対向する位置の第2調整ピン75が、集光レンズホルダ27の第2凹部73に挿入される。第1調整ピン74および第2調整ピン75が、光軸方向71に動かされることで、集光レンズユニット25が光軸方向71に動き、結果として、蛍光体光学素子30上に照射されるスポット形状が調整され得る。 When moving the condensing lens unit 25 in the optical axis direction 71, the first adjustment pin 74 is inserted into the first recess 72 of the condensing lens holder 27, and the second adjustment position is opposed to the first adjustment pin 74. The adjustment pin 75 is inserted into the second recess 73 of the condenser lens holder 27. When the first adjustment pin 74 and the second adjustment pin 75 are moved in the optical axis direction 71, the condenser lens unit 25 moves in the optical axis direction 71, and as a result, a spot irradiated on the phosphor optical element 30 The shape can be adjusted.
 ここで、集光レンズユニット25を動かす際に重要なポイントを、図6を用いて説明する。 Here, an important point when the condenser lens unit 25 is moved will be described with reference to FIG.
 集光レンズ26は、半導体発光装置10からの出射光51を最大限に取り込むために、半導体発光装置10の近傍に配置される。集光レンズユニット25の位置を調整(移動)する際に、集光レンズ26の位置がX軸方向、または、Y軸方向に、数μm~数十μm移動されることで、半導体発光装置10から出射された出射光51は、反射光学素子22で反射され、蛍光体光学素子30上のスポット位置78が、X軸方向、または、Y軸方向に大きくずれた位置に照射される。蛍光体光学素子30上の所望の位置からずれた位置に照射された光は、図10の投光装置101に記載のリフレクタ160により、前方に投射される。しかしながら、投射される光の強度分布のセンターが所望の位置からずれた位置に投影されるといった問題がある。特に、光を遠方に照射する場合には、遠方にて、投射される光の強度分布のセンターの、所望の位置からのずれが顕著にでてくる。 The condenser lens 26 is disposed in the vicinity of the semiconductor light emitting device 10 in order to take in the emitted light 51 from the semiconductor light emitting device 10 to the maximum extent. When the position of the condenser lens unit 25 is adjusted (moved), the position of the condenser lens 26 is moved by several μm to several tens of μm in the X-axis direction or the Y-axis direction. The outgoing light 51 emitted from the light is reflected by the reflective optical element 22, and the spot position 78 on the phosphor optical element 30 is irradiated to a position greatly deviated in the X-axis direction or the Y-axis direction. The light irradiated to the position shifted from the desired position on the phosphor optical element 30 is projected forward by the reflector 160 described in the light projecting device 101 of FIG. However, there is a problem that the center of the intensity distribution of the projected light is projected at a position shifted from a desired position. In particular, when irradiating light far away, a deviation from the desired position of the center of the intensity distribution of the light projected at a long distance becomes significant.
 本開示の実施の形態1に係る光源装置1が備える集光レンズホルダ27は、基台40の側面である第1側面45および第2側面46に当接されている。具体的には、集光レンズホルダ27は、半導体発光素子11と蛍光体31とが搭載されている基台40に集光レンズホルダ27が押し付けられるように当たっている。そのため、光源装置1の集光レンズホルダ27は、外部環境の変化に伴って位置ずれが発生しにくい。 The condensing lens holder 27 provided in the light source device 1 according to Embodiment 1 of the present disclosure is in contact with the first side surface 45 and the second side surface 46 that are side surfaces of the base 40. Specifically, the condensing lens holder 27 hits the condensing lens holder 27 against the base 40 on which the semiconductor light emitting element 11 and the phosphor 31 are mounted. For this reason, the condensing lens holder 27 of the light source device 1 is less likely to be displaced with changes in the external environment.
 また、本開示の実施の形態1に係る集光レンズホルダ27と基台40とが当接される当接面は、半導体発光装置10と蛍光体光学素子30上に照射されたスポット位置78との間に配置される。言い換えると、集光レンズホルダ27と基台40との当接面は、半導体発光装置10が搭載されている第1面42と蛍光体光学素子30が搭載されている第2面43との間に配置される。実施の形態1において、当該当接面は、第1側面45および第2側面46である。つまり、集光レンズホルダ27は、押圧部材28により側面(第1側面45および第2側面46)に押圧される。 Further, the contact surface on which the condenser lens holder 27 and the base 40 according to the first embodiment of the present disclosure are in contact is the spot position 78 irradiated on the semiconductor light emitting device 10 and the phosphor optical element 30. It is arranged between. In other words, the contact surface between the condenser lens holder 27 and the base 40 is between the first surface 42 on which the semiconductor light emitting device 10 is mounted and the second surface 43 on which the phosphor optical element 30 is mounted. Placed in. In the first embodiment, the contact surfaces are the first side surface 45 and the second side surface 46. That is, the condenser lens holder 27 is pressed against the side surfaces (the first side surface 45 and the second side surface 46) by the pressing member 28.
 このような構成にすることで、集光レンズホルダ27の基台40との当接面の光軸方向71の長さが確保でき、集光レンズホルダ27を光軸方向71に移動させた場合においても集光レンズホルダ27と基台40とが当接するために、安定したスポット調整が可能である。 With such a configuration, the length of the contact surface of the condenser lens holder 27 with the base 40 in the optical axis direction 71 can be secured, and the condenser lens holder 27 is moved in the optical axis direction 71. Since the condenser lens holder 27 and the base 40 are in contact with each other, stable spot adjustment is possible.
 また、第2面43は、第1面42の上方に位置し、集光レンズホルダ27と基台40とが当接する側面は、第1面42と第2面43との間に位置するとよい。 Further, the second surface 43 is located above the first surface 42, and the side surface where the condenser lens holder 27 and the base 40 are in contact with each other is preferably located between the first surface 42 and the second surface 43. .
 この構成により、光源装置1は、集光レンズホルダ27を半導体発光素子11から放射される光のスポットを調整するための、集光レンズホルダ27の基台40との当接面の光軸方向71の長さが確保できる。さらに、反射光学素子22と蛍光体光学素子30とを近づけることができる。そのため、半導体発光素子11、反射光学素子22、蛍光体光学素子30および集光レンズ26を近づけることができ、さらに光源装置1の薄型化が可能となる。 With this configuration, the light source device 1 allows the condenser lens holder 27 to adjust the spot of light emitted from the semiconductor light emitting element 11, and the optical axis direction of the contact surface with the base 40 of the condenser lens holder 27. The length of 71 can be secured. Further, the reflecting optical element 22 and the phosphor optical element 30 can be brought close to each other. Therefore, the semiconductor light emitting element 11, the reflective optical element 22, the phosphor optical element 30, and the condenser lens 26 can be brought close to each other, and the light source device 1 can be made thinner.
 また、本開示の実施の形態1に係る集光レンズホルダ27の外周面には、半導体発光素子11から放射されるレーザ光の光軸方向71と交差する方向に窪んだ、ピンが挿入可能な凹部が形成されている。また、集光レンズホルダ27は、光軸方向71に移動可能となるように、光源装置1に配置されている。この構成により、集光レンズ26を光軸方向71に位置調整を実施することで、蛍光体光学素子30に照射されるスポット形状を調整することが可能であり、調整時の集光レンズ26の面内(本実施の形態においては、XY平面)位置ずれが少ない安定した光源装置1が提供できる。 Further, a pin that is recessed in a direction intersecting the optical axis direction 71 of the laser light emitted from the semiconductor light emitting element 11 can be inserted into the outer peripheral surface of the condenser lens holder 27 according to the first embodiment of the present disclosure. A recess is formed. Further, the condenser lens holder 27 is arranged in the light source device 1 so as to be movable in the optical axis direction 71. With this configuration, by adjusting the position of the condenser lens 26 in the optical axis direction 71, it is possible to adjust the spot shape irradiated on the phosphor optical element 30, and the condenser lens 26 at the time of adjustment can be adjusted. A stable light source device 1 with little in-plane (XY plane in the present embodiment) positional deviation can be provided.
 また、本開示の実施の形態1に記載の集光レンズユニット25を光軸方向71に調整した後に、押圧ばね28の後方(実施の形態1においては、Y軸正方向)より、加圧部として機能する第2ねじ(加圧部)79にて押圧ばね28を押すことにより、集光レンズユニット25は基台40に固定される。そのため、光源装置1は、外部環境変化による蛍光体31上のスポット位置78の所望の位置からのずれを低減できる。 In addition, after adjusting the condensing lens unit 25 described in the first embodiment of the present disclosure in the optical axis direction 71, from the rear of the pressing spring 28 (in the first embodiment, the Y-axis positive direction), the pressurizing unit The condensing lens unit 25 is fixed to the base 40 by pressing the pressing spring 28 with the second screw (pressing part) 79 that functions as: Therefore, the light source device 1 can reduce the deviation of the spot position 78 on the phosphor 31 from a desired position due to a change in the external environment.
 また、集光レンズユニット25の位置を光軸方向71に調整した後に、集光レンズユニット25は、接着剤などにより基台40に固定される。その後に、ねじなどにより集光レンズユニット25を固定する。ここで、ねじなどにより集光レンズホルダ27に接触させて、基台40に対して固定すると、ねじなどの負荷が集光レンズホルダ27に直接、またはねじの回転力が間接的に作用する。そのため、調整した集光レンズユニット25の位置ずれの原因となってしまう。 Further, after adjusting the position of the condenser lens unit 25 in the optical axis direction 71, the condenser lens unit 25 is fixed to the base 40 with an adhesive or the like. Thereafter, the condenser lens unit 25 is fixed with screws or the like. Here, when the lens is brought into contact with the condensing lens holder 27 with a screw or the like and fixed to the base 40, a load such as a screw is directly applied to the condensing lens holder 27 or indirectly the rotational force of the screw. For this reason, the adjusted condenser lens unit 25 may be displaced.
 そこで、本開示の実施の形態1では、光源装置1は、押圧部材である押圧ばね28を集光レンズホルダ27側に加圧する加圧部である第2ねじ79を備える。具体的には、第2ねじ79は、押圧ばね28を介して集光レンズホルダ27を基台40に押している。そのため、第2ねじ79の負荷が直接集光レンズホルダ27にかかることがないので、精度よく固定することが可能である。つまり、この構成により、蛍光体光学素子30を搭載した基台40に位置精度よく、強固に集光レンズ26を搭載した集光レンズホルダ27が固定されるので、温度変化、湿度変化、振動、衝撃等の外部環境による悪影響が抑えられる。 Therefore, in the first embodiment of the present disclosure, the light source device 1 includes the second screw 79 that is a pressing portion that pressurizes the pressing spring 28 that is a pressing member toward the condenser lens holder 27 side. Specifically, the second screw 79 presses the condensing lens holder 27 to the base 40 via the pressing spring 28. Therefore, since the load of the second screw 79 is not directly applied to the condenser lens holder 27, it can be fixed with high accuracy. That is, with this configuration, the condenser lens holder 27 on which the condenser lens 26 is firmly mounted with high positional accuracy is fixed to the base 40 on which the phosphor optical element 30 is mounted, so that temperature change, humidity change, vibration, The adverse effects of the external environment such as impact can be suppressed.
 また、加圧部79として機能するものとしては、ねじ以外でもよく、例えば、平行ピンを使って、平行ピンを基台40に挿入して、押圧ばね28の後方より、押圧ばね28を押した状態で、平行ピンを基台に固定することでも同じ効果が得られる。 Further, the one that functions as the pressurizing unit 79 may be other than a screw. For example, using a parallel pin, the parallel pin is inserted into the base 40 and the pressing spring 28 is pushed from behind the pressing spring 28. In the state, the same effect can be obtained by fixing the parallel pin to the base.
 [投光装置]
 次に、本開示の実施の形態1に係る光源装置1を用いた投光装置101について、図10を用いて説明する。
[Light projector]
Next, the light projecting device 101 using the light source device 1 according to the first embodiment of the present disclosure will be described with reference to FIG.
 図10は、本開示の実施の形態1に係る投光装置101の構成を示す概略断面図である。 FIG. 10 is a schematic cross-sectional view illustrating a configuration of the light projecting device 101 according to the first embodiment of the present disclosure.
 図10に示すように、投光装置101は、放熱部材60と、放熱部材60に取り付けられた光源装置1と、光源装置1から出射する放射光91を反射するリフレクタ160(光源装置1から出射された放射光91の向きを変化させる光学部材)とを備える。投光装置101は、例えば、車両前照灯用の灯具である。つまり、光源装置1は、投光装置101の光源として用いられている。 As shown in FIG. 10, the light projecting device 101 includes a heat radiating member 60, a light source device 1 attached to the heat radiating member 60, and a reflector 160 that reflects radiated light 91 emitted from the light source device 1 (emitted from the light source device 1). An optical member that changes the direction of the emitted radiation 91). The light projecting device 101 is, for example, a lamp for a vehicle headlamp. That is, the light source device 1 is used as a light source of the light projecting device 101.
 放熱部材60には、光源装置1が取り付けられる。放熱部材60は、光源装置1で発生した熱を放熱フィン62に伝熱するためのベースプレート61と、光源装置1で発生した熱を外気に放熱するための放熱フィン62とによって構成される。 The light source device 1 is attached to the heat dissipation member 60. The heat radiating member 60 includes a base plate 61 for transferring heat generated in the light source device 1 to the heat radiating fins 62 and a heat radiating fin 62 for radiating heat generated in the light source device 1 to the outside air.
 光源装置1は、ベースプレート61の取り付け部61aに取り付けられる。取り付け部61aの取り付け面は、例えば平坦面である。光源装置1は、例えばねじ(不図示)によって取り付け部61aに固定される。このとき、光源装置1は、基台40の放熱面41と取り付け部61aとが互いに面で接触するようにベースプレート61に配置される。また、光源装置1のコネクタ38には、投光装置101を点灯させるために光源装置1に電力を供給する電源ケーブル63が接続される。 The light source device 1 is attached to the attachment portion 61 a of the base plate 61. The attachment surface of the attachment part 61a is a flat surface, for example. The light source device 1 is fixed to the attachment portion 61a by screws (not shown), for example. At this time, the light source device 1 is disposed on the base plate 61 such that the heat radiation surface 41 of the base 40 and the mounting portion 61a are in contact with each other. A power cable 63 that supplies power to the light source device 1 to turn on the light projecting device 101 is connected to the connector 38 of the light source device 1.
 リフレクタ160は、光源装置1からの放射光91の放射角度を変えて前方に投射するための反射部材であり、放射光91を反射する反射面が光源装置1と対向するように配置されている。具体的には、リフレクタ160は、反射面に放射光91が照射されるように、蛍光体光学素子30の上方に配置されている。より具体的には、リフレクタ160は、リフレクタ160の焦点が蛍光体光学素子30(具体的には、蛍光体31)の発光点と略一致するように配置されている。 The reflector 160 is a reflecting member for projecting forward by changing the radiation angle of the radiated light 91 from the light source device 1, and is disposed so that the reflective surface that reflects the radiated light 91 faces the light source device 1. . Specifically, the reflector 160 is disposed above the phosphor optical element 30 so that the reflection surface is irradiated with the radiation light 91. More specifically, the reflector 160 is disposed so that the focal point of the reflector 160 substantially coincides with the light emitting point of the phosphor optical element 30 (specifically, the phosphor 31).
 本実施の形態における投光装置101では、光源装置1からは広い放射角の放射光91を放射させることができる。このため、光源装置1の直上に放射光91の放射方向を変更するリフレクタ160を配置することができる。このため、投光装置101において光源装置1からの放射光91を高い効率で利用できるとともに、小型化および薄型化などのためにリフレクタ160を自由に設計することができる。 In the light projecting device 101 according to the present embodiment, the light source device 1 can emit the emitted light 91 having a wide radiation angle. For this reason, the reflector 160 which changes the radiation | emission direction of the emitted light 91 can be arrange | positioned immediately above the light source device 1. FIG. For this reason, in the light projector 101, the emitted light 91 from the light source device 1 can be used with high efficiency, and the reflector 160 can be freely designed for downsizing and thinning.
 (実施の形態2)
 以下、本開示の実施の形態2における光源装置について図面を参照しながら説明する。実施の形態2では、実施の形態1と異なる部分を中心に説明する。実施の形態1と実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する場合がある。
(Embodiment 2)
Hereinafter, the light source device according to the second embodiment of the present disclosure will be described with reference to the drawings. In the second embodiment, the description will focus on the parts different from the first embodiment. Components that are substantially the same as those of the first embodiment are denoted by the same reference numerals, and redundant description may be omitted or simplified.
 [光源装置]
 <構成>
 図11~図15を用いて、本開示の実施の形態2に係る光源装置について説明する。
[Light source device]
<Configuration>
The light source device according to the second embodiment of the present disclosure will be described with reference to FIGS.
 実施の形態2に係る光源装置が実施の形態1と異なる点は、集光レンズホルダの形状であり、集光レンズユニットを光軸方向に調整させる機構である。 The light source device according to the second embodiment is different from the first embodiment in the shape of the condenser lens holder, which is a mechanism for adjusting the condenser lens unit in the optical axis direction.
 図11は、本開示の実施の形態2に係る光源装置の構成を説明するための正面図である。図12は、本開示の実施の形態2に係る光源装置の調整機能を説明するための斜視図であり、図13は、本開示の実施の形態2に係る光源装置の調整機能を説明するための断面図である。なお、図13は、図12のXIII―XIII線における断面図である。 FIG. 11 is a front view for explaining the configuration of the light source device according to the second embodiment of the present disclosure. FIG. 12 is a perspective view for explaining the adjustment function of the light source device according to the second embodiment of the present disclosure, and FIG. 13 is a diagram for explaining the adjustment function of the light source device according to the second embodiment of the present disclosure. FIG. 13 is a cross-sectional view taken along line XIII-XIII in FIG.
 基台40の第1面42の上の配置された半導体発光装置10の上面側に、集光レンズ26が配置されている。集光レンズ26は、集光レンズホルダ27aに接着などにより固定されている。 The condenser lens 26 is disposed on the upper surface side of the semiconductor light emitting device 10 disposed on the first surface 42 of the base 40. The condenser lens 26 is fixed to the condenser lens holder 27a by adhesion or the like.
 集光レンズユニット25aは、基台40にねじにて固定された押圧ばね28aにより押圧方向70aに押され、基台40のある面、実施の形態2では、第3側面47と第4側面48との2つの面に接している。なお、実施の形態2において、押圧方向70aは、X軸負方向である。 The condensing lens unit 25a is pressed in the pressing direction 70a by a pressing spring 28a fixed to the base 40 with a screw, and the surface on which the base 40 is located, in the second embodiment, the third side surface 47 and the fourth side surface 48. It touches the two sides. In the second embodiment, the pressing direction 70a is the X-axis negative direction.
 図14は、本開示の実施の形態2に係る集光レンズホルダ27aの形状を説明するための正面図であり、図15は、本開示の実施の形態2に係る集光レンズホルダ27aの形状を説明するための斜視図である。 FIG. 14 is a front view for explaining the shape of the condensing lens holder 27a according to the second embodiment of the present disclosure, and FIG. 15 is the shape of the condensing lens holder 27a according to the second embodiment of the present disclosure. It is a perspective view for demonstrating.
 集光レンズホルダ27aの外形は、集光レンズ26の外形と同軸の略円形をしており、集光レンズ26を搭載した集光レンズユニット25aは、基台40上にて、半導体発光装置10からの出射光51の光軸方向71に、移動可能な構成となっている。 The outer shape of the condensing lens holder 27 a is substantially circular and coaxial with the outer shape of the condensing lens 26, and the condensing lens unit 25 a having the condensing lens 26 mounted on the base 40 is the semiconductor light emitting device 10. It is configured to be movable in the optical axis direction 71 of the outgoing light 51 from.
 また、集光レンズホルダ27aの外周面には、半導体発光装置10から放射されるレーザ光(出射光51)の光軸方向71と交差する方向に突出したつば部が形成されている。実施の形態2においては、集光レンズホルダ27aの外周面には、X軸方向に突出した第1つば部80と、第1つば部80とは反対側であって、X軸方向に突出した第2つば部81が形成されている。言い換えると、集光レンズホルダ27aには、左右対称形状で、第1つば部80と第2つば部81とが形成されている。 Further, on the outer peripheral surface of the condensing lens holder 27a, a flange portion protruding in a direction intersecting with the optical axis direction 71 of the laser light (emitted light 51) emitted from the semiconductor light emitting device 10 is formed. In the second embodiment, the first collar portion 80 projecting in the X-axis direction on the outer peripheral surface of the condenser lens holder 27a is opposite to the first collar portion 80 and projects in the X-axis direction. A second collar portion 81 is formed. In other words, the first collar portion 80 and the second collar portion 81 are formed on the condenser lens holder 27a in a symmetrical shape.
 集光レンズユニット25aを光軸方向71に動かすための機構としては、上部調整プレート82と、下部調整プレート83とが、集光レンズホルダ27aの第1つば部80と第2つば部81との上下の位置に配置されている。集光レンズユニット25aを光軸方向71に調整する際には、図13に示すように、集光レンズユニット25aを上方向に調整する場合は、集光レンズホルダ27の第1つば部80と第2つば部81は、下部調整プレート83と接触した状態で、上方向に移動する。また、集光レンズユニット25aを下方向に調整する場合は、集光レンズホルダ27aの第1つば部80と第2つば部81は、上部調整プレート82と接触した状態で、下方向に移動する。 As a mechanism for moving the condenser lens unit 25a in the optical axis direction 71, an upper adjustment plate 82 and a lower adjustment plate 83 are provided between the first collar portion 80 and the second collar portion 81 of the condenser lens holder 27a. It is arranged in the vertical position. When adjusting the condenser lens unit 25a in the optical axis direction 71, as shown in FIG. 13, when adjusting the condenser lens unit 25a in the upward direction, the first collar portion 80 of the condenser lens holder 27 and The second collar portion 81 moves upward while in contact with the lower adjustment plate 83. When the condenser lens unit 25a is adjusted downward, the first collar portion 80 and the second collar portion 81 of the condenser lens holder 27a move downward while in contact with the upper adjustment plate 82. .
 また、集光レンズユニット25aの位置を調整するための形態としては、第1つば部80および第2つば部81を上部調整プレート82と下部調整プレート83とで上下から挟み込んで調整を実施してもよい。その際の挟み込む力は、挟み込んだ際に、集光レンズユニット25aが、基台40と接している面である第3側面47と第4側面48とから離れてはいけないので、離れない程度の力にすることがポイントである。 Further, as a form for adjusting the position of the condenser lens unit 25a, adjustment is performed by sandwiching the first collar portion 80 and the second collar portion 81 from above and below by the upper adjustment plate 82 and the lower adjustment plate 83. Also good. The clamping force at that time is such that when the lens is sandwiched, the condensing lens unit 25a must not be separated from the third side surface 47 and the fourth side surface 48 which are in contact with the base 40. The point is to use power.
 ここで、集光レンズユニット25aを動かす際に重要なポイントを、図12を使って説明する。 Here, an important point when the condenser lens unit 25a is moved will be described with reference to FIG.
 集光レンズ26は、半導体発光装置10からの出射光51を最大限に取り込むために、半導体発光装置10の近傍に配置される。集光レンズユニット25aの位置を調整する際に、集光レンズ26の位置がX軸方向、またはY軸方向に数μm~数十μm移動されることで、半導体発光装置10から出射された出射光51は、反射光学素子22で反射され、蛍光体光学素子30上のスポット位置78が、X軸方向またはY軸方向に、所望の位置から大きくずれた位置に照射される。蛍光体光学素子30の所望の位置からずれた位置に照射された光は、投光装置101に記載のリフレクタ160により、前方に投射されるが、投射される光の強度分布のセンターが、所望の位置からずれた位置に投影されるといった問題がある。特に、光を遠方に照射する場合には、遠方にて、投射される光の強度分布のセンターの、所望の位置からのずれが顕著にでてくる。 The condenser lens 26 is disposed in the vicinity of the semiconductor light emitting device 10 in order to take in the emitted light 51 from the semiconductor light emitting device 10 to the maximum extent. When the position of the condenser lens unit 25a is adjusted, the position of the condenser lens 26 is moved by several μm to several tens of μm in the X-axis direction or the Y-axis direction. The incident light 51 is reflected by the reflective optical element 22, and the spot position 78 on the phosphor optical element 30 is irradiated to a position largely deviated from a desired position in the X-axis direction or the Y-axis direction. The light irradiated to the position shifted from the desired position of the phosphor optical element 30 is projected forward by the reflector 160 described in the light projecting device 101, but the center of the intensity distribution of the projected light is desired. There is a problem that it is projected at a position deviated from the position. In particular, when irradiating light far away, a deviation from the desired position of the center of the intensity distribution of the light projected at a long distance becomes significant.
 本開示の実施の形態2に係る光源装置の集光レンズホルダ27aは、第1つば部80および第2つば部81を有する。 The condensing lens holder 27a of the light source device according to the second embodiment of the present disclosure includes a first collar portion 80 and a second collar portion 81.
 第1つば部80および第2つば部81は、集光レンズホルダ27aの外周面から光軸方向71に対して垂直な方向に立設された突出部である。第1つば部80および第2つば部81は、集光レンズホルダ27aの光軸方向71の移動調整を行うために用いられる。 The first collar portion 80 and the second collar portion 81 are projecting portions that are erected in a direction perpendicular to the optical axis direction 71 from the outer peripheral surface of the condenser lens holder 27a. The first collar portion 80 and the second collar portion 81 are used to adjust the movement of the condenser lens holder 27a in the optical axis direction 71.
 このような構成にすることで、集光レンズホルダ27の厚み方向が薄くなったとしても、集光レンズ26の位置変化がない、安定したスポット調整が可能である。 With such a configuration, even if the thickness direction of the condenser lens holder 27 is thin, stable spot adjustment is possible without changing the position of the condenser lens 26.
 また、本開示の実施の形態2に記載の集光レンズユニット25を光軸方向71に調整した後に、押圧ばね28aの後方より、第2ねじ79にて押圧ばね28aを押すことにより、集光レンズユニット25は基台40に固定される。そのために、実施の形態2に係る光源装置は、外部環境変化による蛍光体のスポット位置ズレを低減できる。 Further, after the condenser lens unit 25 described in the second embodiment of the present disclosure is adjusted in the optical axis direction 71, the pressure spring 28a is pushed by the second screw 79 from the rear of the pressure spring 28a, thereby condensing the light. The lens unit 25 is fixed to the base 40. Therefore, the light source device according to Embodiment 2 can reduce the spot position deviation of the phosphor due to a change in the external environment.
 また、集光レンズユニット25を光軸方向71に調整した後に、集光レンズユニット25は、接着剤などにより基台40に固定される。その後に、ねじなどにより集光レンズユニット25を固定する。ここで、ねじなどにより集光レンズホルダ27に接触させて、基台40に対して固定すると、ねじなどの負荷が集光レンズホルダ27に直接、または、ねじの回転力が作用する。そのため、ねじなどの負荷が調整した集光レンズユニットの位置ずれの原因となってしまう。そこで、本開示の実施の形態2では、加圧部79は、押圧ばね28aを介して集光レンズホルダ27を基台40に押している。そのため、ねじなどの負荷が直接集光レンズホルダ27にかかることがないので、精度よく固定することが可能である。 Further, after the condenser lens unit 25 is adjusted in the optical axis direction 71, the condenser lens unit 25 is fixed to the base 40 with an adhesive or the like. Thereafter, the condenser lens unit 25 is fixed with screws or the like. Here, when the lens is brought into contact with the condensing lens holder 27 with a screw or the like and fixed to the base 40, a load such as a screw is applied directly to the condensing lens holder 27 or a rotational force of the screw. For this reason, a load such as a screw causes a position shift of the condenser lens unit adjusted. Therefore, in the second embodiment of the present disclosure, the pressing unit 79 presses the condenser lens holder 27 against the base 40 via the pressing spring 28a. Therefore, a load such as a screw is not directly applied to the condensing lens holder 27, so that it can be fixed with high accuracy.
 (実施の形態3)
 以下、本開示の実施の形態3における光源装置について図面を参照しながら説明する。実施の形態3では、実施の形態1および実施の形態2と異なる部分を中心に説明する。実施の形態1および実施の形態2と実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する場合がある。
(Embodiment 3)
Hereinafter, the light source device according to the third embodiment of the present disclosure will be described with reference to the drawings. In the third embodiment, a description will be given centering on differences from the first and second embodiments. Configurations that are substantially the same as those in the first and second embodiments are denoted by the same reference numerals, and redundant descriptions may be omitted or simplified.
 [光源装置]
 <構成>
 図16~図19を用いて、本開示の実施の形態3に係る光源装置について説明する。
[Light source device]
<Configuration>
The light source device according to the third embodiment of the present disclosure will be described with reference to FIGS.
 実施の形態3に係る光源装置が実施の形態1および実施の形態2と異なる点は、集光レンズホルダを押圧部材により押圧する方向が違うという点である。 The light source device according to the third embodiment is different from the first and second embodiments in that the direction in which the condenser lens holder is pressed by the pressing member is different.
 図16は、本開示の実施の形態3に係る光源装置の構成を説明するための正面図であり、図17は、本開示の実施の形態3に係る光源装置の構成を説明するための断面図である。図18は、本開示の実施の形態3に係る集光レンズホルダの形状を説明するための斜視図である。 FIG. 16 is a front view for explaining the configuration of the light source device according to the third embodiment of the present disclosure, and FIG. 17 is a cross-section for explaining the configuration of the light source device according to the third embodiment of the present disclosure. FIG. FIG. 18 is a perspective view for explaining the shape of the condensing lens holder according to the third embodiment of the present disclosure.
 図17に示すように、基台40aの第1面42の上の配置された半導体発光装置10の上面に、集光レンズ26が配置されている。集光レンズ26は、集光レンズホルダ27bに接着などにより固定されている。 As shown in FIG. 17, the condenser lens 26 is disposed on the upper surface of the semiconductor light emitting device 10 disposed on the first surface 42 of the base 40a. The condenser lens 26 is fixed to the condenser lens holder 27b by adhesion or the like.
 集光レンズ26を搭載した集光レンズホルダ27bは、図18に示すように、2つの穴である位置決め穴85a、85bが形成されている。本実施の形態では、位置決め穴85aは丸穴形状でありと、位置決め穴85bは、長穴形状である。位置決め穴85a、85bは、光軸方向71に集光レンズホルダ27bを貫通する貫通孔である。また、長穴形状である位置決め穴85bは、位置決め穴85aと位置決め穴85bとの並び方向に長尺な形状となっている。これにより、より精度良く集光レンズ26の光軸と、半導体発光装置から出射される光の光軸との位置合わせを精度良く行うことができる。 As shown in FIG. 18, the condensing lens holder 27b on which the condensing lens 26 is mounted has two positioning holes 85a and 85b. In the present embodiment, the positioning hole 85a has a round hole shape, and the positioning hole 85b has a long hole shape. The positioning holes 85 a and 85 b are through holes that penetrate the condenser lens holder 27 b in the optical axis direction 71. Moreover, the positioning hole 85b which is a long hole shape has a long shape in the alignment direction of the positioning hole 85a and the positioning hole 85b. Thereby, alignment with the optical axis of the condensing lens 26 and the optical axis of the light radiate | emitted from a semiconductor light-emitting device can be performed more accurately.
 また、位置決め穴85a、85bのそれぞれと対向した位置における基台40aには、2つの位置決めボス84a、84bが形成されている。2つの位置決めボス84a、84bは、基台40aに設けられており、基台40aに対する集光レンズユニット25bの位置を規制する。2つの位置決めボス84a、84bは、基台40aから、光軸方向71と平行な方向に突出して形成されている。基台40aに形成された2つの位置決めボス84a、84bに、集光レンズホルダ27bに形成された2つの位置決め穴85a、85bが挿入されることで、集光レンズ26は、光軸方向71に、移動可能な構成となり、且つ、光軸方向71に直交する平面においては、位置が精度良く保持される。 Further, two positioning bosses 84a and 84b are formed on the base 40a at positions facing the positioning holes 85a and 85b, respectively. The two positioning bosses 84a and 84b are provided on the base 40a and regulate the position of the condenser lens unit 25b with respect to the base 40a. The two positioning bosses 84a and 84b are formed to protrude from the base 40a in a direction parallel to the optical axis direction 71. By inserting the two positioning holes 85a and 85b formed in the condenser lens holder 27b into the two positioning bosses 84a and 84b formed in the base 40a, the condenser lens 26 is moved in the optical axis direction 71. In a plane that is movable and orthogonal to the optical axis direction 71, the position is accurately maintained.
 実施の形態3に係る光源装置は、図19に示すように2つの押圧ばね28bを有する。集光レンズユニット25bは、基台40aに固定された2つの押圧ばね28bにより、図17に示す押圧方向70bに押されて、基台40aに固定されている。実施の形態3では、集光レンズユニット25bは、図17に示す基台40aの第3面44に押されている。なお、実施の形態3において、押圧方向70bは、光軸方向71に平行な方向であり、Z軸負方向である。 The light source device according to Embodiment 3 has two pressing springs 28b as shown in FIG. The condenser lens unit 25b is fixed to the base 40a by being pressed in the pressing direction 70b shown in FIG. 17 by two pressing springs 28b fixed to the base 40a. In the third embodiment, the condenser lens unit 25b is pressed against the third surface 44 of the base 40a shown in FIG. In the third embodiment, the pressing direction 70b is a direction parallel to the optical axis direction 71 and a negative Z-axis direction.
 また、第3面44は、基台40a上に形成された半導体発光装置10が搭載された第1面42および蛍光体光学素子30が搭載された第2面43と平行な面である。言い換えると、基台40aは、第1面42と、第2面43と、第1面42および第2面43と平行な第3面44とを有する一体物により構成されている。半導体発光素子11は、第1面42の上に配置され、蛍光体光学素子30は、第2面43の上に配置されている。また、集光レンズホルダ27bは、押圧部材28bにより第3面44に押圧される。 Further, the third surface 44 is a surface parallel to the first surface 42 on which the semiconductor light emitting device 10 formed on the base 40a is mounted and the second surface 43 on which the phosphor optical element 30 is mounted. In other words, the base 40 a is configured by an integral body having a first surface 42, a second surface 43, and a first surface 42 and a third surface 44 parallel to the second surface 43. The semiconductor light emitting element 11 is disposed on the first surface 42, and the phosphor optical element 30 is disposed on the second surface 43. Further, the condenser lens holder 27b is pressed against the third surface 44 by the pressing member 28b.
 図19は、本開示の実施の形態3に係る光源装置の機能を説明するための斜視図である。 FIG. 19 is a perspective view for explaining the function of the light source device according to the third embodiment of the present disclosure.
 集光レンズユニット25bを光軸方向71に動かすための、構造、機構としては、実施の形態1と同様であり、集光レンズホルダ27bは、光軸方向71に集光レンズユニット25bの位置を調整した後に、基台40aに対して、接着などにより固定される。 The structure and mechanism for moving the condenser lens unit 25b in the optical axis direction 71 are the same as in the first embodiment, and the condenser lens holder 27b positions the condenser lens unit 25b in the optical axis direction 71. After adjustment, the base 40a is fixed by adhesion or the like.
 集光レンズ26は、半導体発光装置10からの出射光51(図1参照)を最大限に取り込むために、半導体発光装置10の近傍に配置される。集光レンズユニット25bの位置を調整する際に、集光レンズ26の位置がX軸方向、または、Y軸方向に数μm~数十μm移動されると、半導体発光装置10から出射され、図19においては図示を省略している反射光学素子22(図1参照)で反射された反射光52(図1参照)は、蛍光体光学素子30上のスポット位置78が、X軸方向、または、Y軸方向に、所望の位置から大きくずれる。蛍光体光学素子30上で所望の位置からずれた位置に照射された反射光52(図1参照)は、図10に示す投光装置101が備えるリフレクタ160により、前方(Y軸負方向)に投射される。ここで、投射された光の強度分布のセンターは、所望の位置からずれた位置に投影されるといった問題がある。特に、光を遠方に照射する場合には、遠方にて、投射される光の強度分布のセンターの、所望の位置からのずれが顕著にでてくる。 The condensing lens 26 is arranged in the vicinity of the semiconductor light emitting device 10 in order to take in the emitted light 51 (see FIG. 1) from the semiconductor light emitting device 10 to the maximum extent. When the position of the condensing lens unit 25b is adjusted, if the position of the condensing lens 26 is moved by several μm to several tens of μm in the X-axis direction or Y-axis direction, the light is emitted from the semiconductor light emitting device 10, and FIG. 19, the reflected light 52 (see FIG. 1) reflected by the reflecting optical element 22 (see FIG. 1), not shown, has a spot position 78 on the phosphor optical element 30 in the X-axis direction or In the Y-axis direction, it deviates greatly from the desired position. The reflected light 52 (see FIG. 1) irradiated on the phosphor optical element 30 at a position shifted from a desired position is forward (Y-axis negative direction) by the reflector 160 included in the light projecting device 101 shown in FIG. Projected. Here, there is a problem that the center of the intensity distribution of the projected light is projected at a position shifted from a desired position. In particular, when irradiating light far away, a deviation from the desired position of the center of the intensity distribution of the light projected at a long distance becomes significant.
 そこで、本実施の形態3のように、第1面42と、第2面43と、第1面42および第2面43と平行な第3面44とを有する一体物として構成された基台40aにおける第3面44に、集光レンズホルダ27bを押圧部材28bにより押圧する構成にすることで、集光レンズホルダ27bの厚み方向が薄くなったとしても、集光レンズ26の位置変化が抑制することができるため、安定したスポット調整が可能である。 Therefore, as in the third embodiment, a base configured as an integral body having the first surface 42, the second surface 43, and the third surface 44 parallel to the first surface 42 and the second surface 43. By adopting a configuration in which the condensing lens holder 27b is pressed against the third surface 44 of 40a by the pressing member 28b, even if the thickness direction of the condensing lens holder 27b is reduced, the position change of the condensing lens 26 is suppressed. Therefore, stable spot adjustment is possible.
 また、第3面44は、第1面42と第2面43との間に位置する。具体的には、第3面44は、光軸方向71において、第1面42と第2面43との間に位置する。言い換えると、基台40aに形成された蛍光体光学素子30が搭載される第2面43は、半導体発光素子11(具体的には、半導体発光装置10)が搭載される第1面42の上方に位置し、集光レンズホルダ27bが押し当てられる第3面44は、第1面42と第2面43との間に位置する。このような構成によれば、実施の形態3に係る光源装置の更なる薄型化が可能である。 Further, the third surface 44 is located between the first surface 42 and the second surface 43. Specifically, the third surface 44 is located between the first surface 42 and the second surface 43 in the optical axis direction 71. In other words, the second surface 43 on which the phosphor optical element 30 formed on the base 40a is mounted is above the first surface 42 on which the semiconductor light emitting element 11 (specifically, the semiconductor light emitting device 10) is mounted. The third surface 44 to which the condenser lens holder 27 b is pressed is positioned between the first surface 42 and the second surface 43. According to such a configuration, the light source device according to Embodiment 3 can be further reduced in thickness.
 (その他の変形例)
 以上、本開示に係る光源装置および投光装置について、実施の形態および変形例に基づいて説明したが、本開示は、上記の実施の形態および変形例に限定されるものではない。例えば、各実施の形態および変形例に対して当業者が思いつく各種変形を施して得られる形態や、本開示の趣旨を逸脱しない範囲で各実施の形態および変形例における構成要素および機能を任意に組み合わせることで実現される形態も本開示に含まれる。
(Other variations)
Although the light source device and the light projecting device according to the present disclosure have been described based on the embodiments and the modifications, the present disclosure is not limited to the above-described embodiments and modifications. For example, the form obtained by making various modifications conceived by those skilled in the art with respect to each embodiment and modification, and the components and functions in each embodiment and modification are arbitrarily set within the scope of the present disclosure. A form realized by combination is also included in the present disclosure.
 本開示の光源装置は、半導体発光素子から照射される光を効率よく、蛍光体に導くことが可能であり、半導体発光素子とレンズの間隔を短くすることが可能であり、発光装置の高さを薄くできる、また、外部環境変化による蛍光体のスポットズレを低減でき、光源装置の耐久性を改善させることができる。そのため本開示は、半導体発光素子と蛍光体とを有する光源装置およびこれを用いた投光装置等、種々の光デバイスとして広く利用することができる。 The light source device of the present disclosure can efficiently guide the light emitted from the semiconductor light emitting element to the phosphor, can reduce the distance between the semiconductor light emitting element and the lens, and the height of the light emitting device. Can be reduced, and the spot deviation of the phosphor due to the external environment change can be reduced, and the durability of the light source device can be improved. Therefore, the present disclosure can be widely used as various optical devices such as a light source device having a semiconductor light emitting element and a phosphor and a light projecting device using the light source device.
 1 光源装置
 10 半導体発光装置
 11 半導体発光素子
 12 パッケージ
 13 ベース
 14 リードピン
 15 キャップ
 16 窓ガラス
 18 リングネジ
 20 反射光学素子ユニット
 21 反射面
 22 反射光学素子
 23 反射光学素子保持部材
 24 第3ねじ
 25、25a、25b 集光レンズユニット
 26 集光レンズ
 27、27a、27b 集光レンズホルダ(レンズホルダ)
 28、28a、28b 押圧ばね(押圧部材)
 30 蛍光体光学素子
 31 蛍光体
 32 蛍光体保持部材
 33 透光カバー
 34 透光カバー保持部材
 37 基板
 38 コネクタ
 39 第1ねじ
 40、40a 基台
 41 放熱面
 42 第1面
 43 第2面
 44 第3面
 45 第1側面
 46 第2側面
 47 第3側面
 48 第4側面
 49 第4面
 51 出射光
 52 反射光
 60 放熱部材
 61 ベースプレート
 61a 取り付け部
 62 放熱フィン
 63 電源ケーブル
 70、70a、70b 押圧方向
 71 光軸方向
 72 第1凹部(凹部)
 73 第2凹部(凹部)
 74 第1調整ピン(ピン)
 75 第2調整ピン(ピン)
 78 スポット位置
 79 第2ねじ(加圧部)
 80 第1つば部
 81 第2つば部
 82 上部調整プレート
 83 下部調整プレート
 84a、84b 位置決めボス
 85a、85b 位置決め穴
 91 放射光
 92 散乱光
 93 蛍光
 101 投光装置
 160 リフレクタ
DESCRIPTION OF SYMBOLS 1 Light source device 10 Semiconductor light-emitting device 11 Semiconductor light-emitting device 12 Package 13 Base 14 Lead pin 15 Cap 16 Window glass 18 Ring screw 20 Reflective optical element unit 21 Reflective surface 22 Reflective optical element 23 Reflective optical element holding member 24 3rd screw 25, 25a, 25b Condensing lens unit 26 Condensing lens 27, 27a, 27b Condensing lens holder (lens holder)
28, 28a, 28b Pressing spring (pressing member)
DESCRIPTION OF SYMBOLS 30 Phosphor optical element 31 Phosphor 32 Phosphor holding member 33 Translucent cover 34 Translucent cover holding member 37 Substrate 38 Connector 39 1st screw 40, 40a Base 41 Heat radiation surface 42 First surface 43 Second surface 44 Third Surface 45 First side surface 46 Second side surface 47 Third side surface 48 Fourth side surface 49 Fourth surface 51 Emission light 52 Reflected light 60 Heat radiation member 61 Base plate 61a Mounting portion 62 Heat radiation fin 63 Power cable 70, 70a, 70b Pressing direction 71 Light Axial direction 72 First recess (recess)
73 Second recess (recess)
74 First adjustment pin (pin)
75 Second adjustment pin (pin)
78 Spot position 79 Second screw (pressurizing part)
80 First collar part 81 Second collar part 82 Upper adjustment plate 83 Lower adjustment plate 84a, 84b Positioning boss 85a, 85b Positioning hole 91 Radiation light 92 Scattered light 93 Fluorescence 101 Projection device 160 Reflector

Claims (11)

  1.  レーザ光を放射する半導体発光素子と、
     前記半導体発光素子から放射されたレーザ光を集光する集光レンズと、
     前記集光レンズにより集光されたレーザ光を反射する反射光学素子と、
     前記反射光学素子により反射されたレーザ光が照射される蛍光体光学素子と、
     前記蛍光体光学素子が配置される基台と、
     前記集光レンズを保持するレンズホルダと、
     前記レンズホルダを前記基台に押圧する押圧部材とを備える
     光源装置。
    A semiconductor light emitting device that emits laser light;
    A condensing lens that condenses the laser light emitted from the semiconductor light emitting element;
    A reflective optical element that reflects the laser light collected by the condenser lens;
    A phosphor optical element irradiated with laser light reflected by the reflective optical element;
    A base on which the phosphor optical element is disposed;
    A lens holder for holding the condenser lens;
    A light source device comprising: a pressing member that presses the lens holder against the base.
  2.  前記基台は、第1面と、第2面と、前記第1面から前記第1面に垂直な方向に延設される側面とを有する一体物により構成され、
     前記半導体発光素子は、前記第1面の上に配置され、
     前記蛍光体光学素子は、前記第2面の上に配置され、
     前記レンズホルダは、前記押圧部材により前記側面に押圧される
     請求項1に記載の光源装置。
    The base is constituted by an integral body having a first surface, a second surface, and a side surface extending from the first surface in a direction perpendicular to the first surface,
    The semiconductor light emitting device is disposed on the first surface,
    The phosphor optical element is disposed on the second surface;
    The light source device according to claim 1, wherein the lens holder is pressed against the side surface by the pressing member.
  3.  前記第2面は、前記第1面の上方に位置し、
     前記側面は、前記第1面と前記第2面との間に位置する
     請求項2に記載の光源装置。
    The second surface is located above the first surface;
    The light source device according to claim 2, wherein the side surface is located between the first surface and the second surface.
  4.  さらに、前記押圧部材を前記レンズホルダ側に加圧する加圧部を備える
     請求項1~3のいずれか1項に記載の光源装置。
    The light source device according to any one of claims 1 to 3, further comprising a pressurizing unit that pressurizes the pressing member toward the lens holder.
  5.  前記レンズホルダの外周面には、前記半導体発光素子から放射される前記レーザ光の光軸方向と交差する方向に窪んだ、ピンが挿入可能な凹部が形成されており、
     前記レンズホルダは、前記光軸方向に移動可能である
     請求項1~4のいずれか1項に記載の光源装置。
    On the outer peripheral surface of the lens holder, a recess that is recessed in a direction intersecting the optical axis direction of the laser light emitted from the semiconductor light emitting element and into which a pin can be inserted is formed.
    The light source device according to any one of claims 1 to 4, wherein the lens holder is movable in the optical axis direction.
  6.  前記レンズホルダの外周面には、前記半導体発光素子から放射される前記レーザ光の光軸方向と交差する方向に突出したつば部が形成されており、
     前記レンズホルダは、前記光軸方向に移動可能な構成である
     請求項1~4のいずれか1項に記載の光源装置。
    On the outer peripheral surface of the lens holder, a flange portion is formed that protrudes in a direction intersecting the optical axis direction of the laser light emitted from the semiconductor light emitting element,
    The light source device according to any one of claims 1 to 4, wherein the lens holder is configured to be movable in the optical axis direction.
  7.  前記基台は、第1面と、第2面と、前記第1面および前記第2面と平行な第3面とを有する一体物により構成され、
     前記半導体発光素子は、前記第1面の上に配置され、
     前記蛍光体光学素子は、前記第2面の上に配置され、
     前記レンズホルダは、前記押圧部材により前記第3面に押圧される
     請求項1に記載の光源装置。
    The base is constituted by an integral body having a first surface, a second surface, and a third surface parallel to the first surface and the second surface,
    The semiconductor light emitting device is disposed on the first surface,
    The phosphor optical element is disposed on the second surface;
    The light source device according to claim 1, wherein the lens holder is pressed against the third surface by the pressing member.
  8.  前記第2面は、前記第1面の上方に位置し、
     前記第3面は、前記第1面と前記第2面との間に位置する
     請求項7に記載の光源装置。
    The second surface is located above the first surface;
    The light source device according to claim 7, wherein the third surface is located between the first surface and the second surface.
  9.  前記レンズホルダは、前記基台と同一材料で構成される
     請求項1~8のいずれか1項に記載の光源装置。
    The light source device according to any one of claims 1 to 8, wherein the lens holder is made of the same material as the base.
  10.  前記レンズホルダは、金属材料で構成される
     請求項1~9のいずれか1項に記載の光源装置。
    The light source device according to any one of claims 1 to 9, wherein the lens holder is made of a metal material.
  11.  光源装置と、
     前記光源装置から出射された光の向きを変化させる光学部材とを備え、
     前記光源装置は、
     レーザ光を放射する半導体発光素子と、
     前記半導体発光素子から放射されたレーザ光を集光する集光レンズと、
     前記集光レンズにより集光されたレーザ光を反射する反射光学素子と、
     前記反射光学素子により反射されたレーザ光が照射される蛍光体光学素子と、
     前記蛍光体光学素子が配置される基台と、
     前記集光レンズを保持するレンズホルダと、
     前記レンズホルダを前記基台に押圧する押圧部材とを備える
     投光装置。
    A light source device;
    An optical member that changes the direction of light emitted from the light source device,
    The light source device
    A semiconductor light emitting device that emits laser light;
    A condensing lens that condenses the laser light emitted from the semiconductor light emitting element;
    A reflective optical element that reflects the laser light collected by the condenser lens;
    A phosphor optical element irradiated with laser light reflected by the reflective optical element;
    A base on which the phosphor optical element is disposed;
    A lens holder for holding the condenser lens;
    A light projecting device comprising: a pressing member that presses the lens holder against the base.
PCT/JP2018/011597 2017-03-27 2018-03-23 Light source device and projection device WO2018180951A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017061986A JP2020095773A (en) 2017-03-27 2017-03-27 Light source device and light projection device
JP2017-061986 2017-03-27

Publications (1)

Publication Number Publication Date
WO2018180951A1 true WO2018180951A1 (en) 2018-10-04

Family

ID=63677029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011597 WO2018180951A1 (en) 2017-03-27 2018-03-23 Light source device and projection device

Country Status (2)

Country Link
JP (1) JP2020095773A (en)
WO (1) WO2018180951A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012059608A (en) * 2010-09-10 2012-03-22 Stanley Electric Co Ltd Vehicular lighting fixture unit
JP2014149975A (en) * 2013-02-01 2014-08-21 Panasonic Corp Illumination device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012059608A (en) * 2010-09-10 2012-03-22 Stanley Electric Co Ltd Vehicular lighting fixture unit
JP2014149975A (en) * 2013-02-01 2014-08-21 Panasonic Corp Illumination device

Also Published As

Publication number Publication date
JP2020095773A (en) 2020-06-18

Similar Documents

Publication Publication Date Title
WO2017056469A1 (en) Light source device and projection device
US9595806B2 (en) Laser light-emitting apparatus
JP5095985B2 (en) Reflection angle transformer consisting of many parts
US20140169024A1 (en) Remote phosphor converter apparatus
US20050263784A1 (en) Collimating light from an LED device
JP5636877B2 (en) Semiconductor laser device and manufacturing method thereof
JP2011054759A (en) Wavelength converting member-holding member and method of manufacturing the same, heat radiation structure of the wavelength converting member, and light-emitting device
JP6665666B2 (en) Method for manufacturing light emitting device, method for manufacturing laser module, and light emitting device
JP2016092364A (en) Light emission device and lamp equipment
US11619365B2 (en) Light source unit, illumination device, processing equipment, and deflection element
JP2016018594A (en) Light source device and electrical apparatus
CN113917775B (en) Projector with a light source for projecting light
US20200081334A1 (en) Light source device and projector
JP2018190805A (en) Semiconductor laser device
JP6351090B2 (en) Light source unit, illumination optical system using light source unit
US20150198305A1 (en) Light Source System
JP7288173B2 (en) Method for manufacturing light-emitting device, method for manufacturing light-emitting module, and light-emitting device
WO2018180951A1 (en) Light source device and projection device
JP7046917B2 (en) Wavelength conversion element and light emitting device
JP2023161108A (en) Laser source and manufacturing method thereof
EP3875838B1 (en) Lighting device with light guide
JP2005353759A (en) Semiconductor laser device and its manufacturing method
JP2019160582A (en) Light projection device and manufacturing method for light projection device
CN112955692A (en) Compact hyperspectral radiation source comprising a parabolic mirror and a plano-convex phosphor
JP2019216205A (en) Light-emitting module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18776247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP