WO2018180577A1 - Semiconductor device and electronic apparatus - Google Patents

Semiconductor device and electronic apparatus Download PDF

Info

Publication number
WO2018180577A1
WO2018180577A1 PCT/JP2018/010395 JP2018010395W WO2018180577A1 WO 2018180577 A1 WO2018180577 A1 WO 2018180577A1 JP 2018010395 W JP2018010395 W JP 2018010395W WO 2018180577 A1 WO2018180577 A1 WO 2018180577A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
light
semiconductor device
light emitting
emitting element
Prior art date
Application number
PCT/JP2018/010395
Other languages
French (fr)
Japanese (ja)
Inventor
章太 北村
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2018180577A1 publication Critical patent/WO2018180577A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/127Active-matrix OLED [AMOLED] displays comprising two substrates, e.g. display comprising OLED array and TFT driving circuitry on different substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Definitions

  • the present technology relates to a semiconductor device and an electronic device, and more particularly, to a semiconductor device and an electronic device that enable further miniaturization in a device including both a light emitting element and a light receiving element.
  • a device having a light receiving element in a display area of a display device and having both an image display function and a light receiving function has been proposed.
  • Patent Document 1 also disclose a structure in which a light emitting element is formed on a substrate on which a light receiving element is formed.
  • the light emitting structure and the light receiving structure are configured on a single substrate, the light emitting element and the light receiving element are different elements, and therefore, the areas must be laid out separately.
  • the driving voltage and the driving timing are different between the light emitting element and the light receiving element, it is necessary to provide an electrical separation layer for suppressing the mutual influence to suppress the influence of noise. Since the separation layer is a value that is physically close to the limit value even at present, further miniaturization has become difficult.
  • Patent Document 3 a structure is proposed in which a substrate on which a light emitting element is formed and a substrate on which a light receiving element is formed are separated and stacked.
  • Patent Document 3 since the electrical connection between the substrates is performed at the edge of the screen edge, wiring from each element in the screen to the screen edge is required, and there is a limit to miniaturization.
  • the present technology has been made in view of such a situation, and enables further miniaturization in an apparatus including both a light emitting element and a light receiving element.
  • a semiconductor device includes a first substrate including a first transistor that drives a light receiving element, and a second substrate including a second transistor that drives a light emitting element.
  • the substrate includes the light emitting element and the light receiving element, and a through electrode that passes through the first substrate and transmits a drive signal of the light emitting element from the second substrate.
  • An electronic apparatus includes a first substrate that includes a first transistor that drives a light receiving element, and a second substrate that includes a second transistor that drives a light emitting element.
  • the substrate includes a semiconductor device having the light emitting element and the light receiving element, and a through electrode that passes through the first substrate and transmits a drive signal of the light emitting element from the second substrate.
  • a first substrate including a first transistor that drives a light receiving element and a second substrate including a second transistor that drives a light emitting element are provided,
  • One substrate is provided with the light emitting element and the light receiving element, and a through electrode that passes through the first substrate and transmits a drive signal of the light emitting element from the second substrate.
  • the semiconductor device and the electronic device may be independent devices, or may be modules incorporated in other devices.
  • FIG. 1 It is a sectional view concerning a 1st embodiment of a semiconductor device to which this art is applied. It is a figure which shows the circuit structure of each of a 1st board
  • FIG. 1 is a cross-sectional view according to a first embodiment of a semiconductor device to which the present technology is applied.
  • the semiconductor device 1 shown in FIG. 1 is a device having two functions of a light emitting function and an imaging function.
  • the light emitting function may be a display function for displaying a predetermined image, or may be a lighting function.
  • the semiconductor device 1 has a structure in which two substrates of a first substrate 21 and a second substrate 51 are stacked.
  • the first substrate 21 and the second substrate 51 are configured by a silicon substrate using, for example, silicon (Si) as a semiconductor.
  • FIG. 1 is a cross-sectional view of a portion of the semiconductor device 1 corresponding to one pixel in the pixel array unit 101 (FIG. 2) in which pixels are two-dimensionally arranged in a matrix in the row direction and the column direction.
  • each pixel includes a G light emitting unit 11G that emits light of G (green) color, an R light emitting unit 11R that emits light of R (red) color, and a B (blue) light.
  • a B light emitting unit 11B that emits light of a color and a light receiving unit 12 that receives light are arranged side by side in the planar direction.
  • positioning of G light emission part 11G, R light emission part 11R, B light emission part 11B, and the light-receiving part 12 is not limited to the example of FIG. 1, It is arbitrary.
  • a wiring layer 24 composed of a plurality of stacked metal wirings 22 and an interlayer insulating film 23 therebetween. Is formed.
  • a wiring layer 54 including a plurality of stacked metal wirings 52 and an interlayer insulating film 53 therebetween is also provided on the surface of the second substrate 51 facing the first substrate 21 (the upper surface in FIG. 1). Is formed.
  • copper (Cu), tungsten (W), aluminum (Al), or the like is used as a material for the metal wiring 22 and the metal wiring 52.
  • the wiring layer 24 of the first substrate 21 and the wiring layer 54 of the second substrate 51 are electrically connected by directly joining metal wirings in a part of the region.
  • the metal wiring 22-1 and the metal wiring 52-1 are electrically connected by Cu—Cu bonding.
  • the metal wiring 22-2 and the metal wiring 52-2, and the metal wiring 22-3 and the metal wiring 52-3 are electrically connected by Cu—Cu bonding.
  • a low voltage transistor Tra driven at a low voltage of about 1.0 to 1.8V and a photo formed in the region of the light receiving portion 12 in the first substrate 21.
  • a PD drive transistor Trb for driving the diode (PD) 25 is formed.
  • the photodiode 25 is a photoelectric conversion unit that converts incident light into an electrical signal (photoelectric conversion).
  • the PD drive transistor Trb is driven at a higher voltage than the low voltage transistor Tra, for example, about 2.0 to 4.0V.
  • the PD drive transistor Trb and the low voltage transistor Tra are CMOS transistors formed by a general CMOS process.
  • a through electrode 26 penetrating the first substrate 21 is formed in each region of the G light emitting unit 11 G, the R light emitting unit 11 R, and the B light emitting unit 11 B.
  • An insulating film 27 for insulating the through electrode 26 and the first substrate 21 is formed.
  • STI (Shallow Trench Isolation) 28 is formed at the boundary between the G light emitting portion 11G, the R light emitting portion 11R, the B light emitting portion 11B, and the light receiving portion 12 in the first substrate 21.
  • a fixed charge film 31 having a negative fixed charge for suppressing the generation of dark current.
  • the insulating films 32 and 33 are laminated.
  • a light emitting layer 40 formed by laminating a lower electrode 41, an organic EL film (light emitting element) 42, and an upper electrode 43 is disposed on the upper side of the insulating films 32 and 33.
  • the lower electrode 41 is made of a metal material
  • the upper electrode 43 is a transparent electrode that transmits light.
  • the lower electrode 41 is, for example, an anode electrode
  • the upper electrode 43 is a cathode electrode. The polarities of the lower electrode 41 and the upper electrode 43 may be reversed.
  • the organic EL film 42 as the intermediate layer can be a combination of various organic films.
  • Hole injection layer HIL: Hole Injection Layer
  • hole transport layer HTL: Hole Transport Layer
  • organic light emitting layer EML: Emission Transport Layer
  • electron transport layer ETL: Electron Transport Layer
  • EIL Electron Injection Layer
  • organic materials used include phthalocyanines, organic ions (Metal organometallic complexes), triphenylamines (Triarylamines), metal hydroxyquinolates (Metal 8-hydroxyquionlates), fullerenes, etc. Is mentioned.
  • the lower electrode 41 is formed separately for each of the G light emitting part 11G, the R light emitting part 11R, and the B light emitting part 11B, and is a lower electrode 41G, a lower electrode 41R, and a lower electrode 41B, respectively.
  • light emission is controlled for each of the G light emitting unit 11G, the R light emitting unit 11R, and the B light emitting unit 11B based on the drive signal transmitted from the second substrate 51 through the through electrode 26.
  • a G color filter 45G is formed on the upper side of the light emitting layer 40 (upper electrode 43) of the G light emitting portion 11G via a planarizing film 44.
  • the G light emitting portion 11G emits light in G color.
  • an R color filter 45R is formed above the R light emitting unit 11R
  • a B color filter 45B is formed above the B light emitting unit 11B.
  • the R light emitting unit 11R emits light of R color and emits B light.
  • the unit 11B emits light in the B color.
  • a protective film 46 is formed on the planarization film 44 and the upper surfaces of the color filters 45G, 45R, and 45B.
  • incident light is collected on the photodiode 25 on the same plane as the surface on which the light emitting layer 40 is formed and above the photodiode 25 formed in the first substrate 21.
  • An on-chip lens 47 that emits light is disposed.
  • the upper surface of the on-chip lens 47 is covered with a planarizing film 44, and a light shielding wall 48 is formed around the side.
  • a light shielding wall 49 is also provided on the outer periphery of the photodiode 25 in the first substrate 21.
  • the light shielding walls 48 and 49 block light so as not to be affected by light from the outside.
  • a low voltage transistor Trc driven at a low voltage of about 1.0 to 1.8V and a light emission driving transistor Trd for driving the light emitting layer 40 are formed.
  • the light emission drive transistor Trd and the low voltage transistor Trc are CMOS transistors formed by a general CMOS process.
  • the light emission drive transistor Trd is formed for each of the light emitting units 11 of the G light emitting unit 11G, the R light emitting unit 11R, and the B light emitting unit 11B, and is driven at a higher voltage than the low voltage transistor Trc, for example, about 10V.
  • the light emission drive transistor Trd is formed in units of R, G, B of each pixel, but only one is arranged in units of R, G, B of adjacent pixels. It is also possible to adopt a form in which the light emission drive transistor Trd drives the light emitting units 11 of the same color of a plurality of pixels.
  • An STI 55 is formed at the boundary between the G light emitting unit 11G, the R light emitting unit 11R, the B light emitting unit 11B, and the light receiving unit 12.
  • the semiconductor device 1 configured as described above drives the first substrate 21 including the PD drive transistor Trb (first transistor) that drives the photodiode 25 (light receiving element) and the organic EL film 42 (light emitting element). And a second substrate 51 including a light emission drive transistor Trd (second transistor).
  • the first substrate 21 passes through the photodiode 25 and the light emitting layer 40 and the first substrate 21 and transmits a drive signal for driving the organic EL film 42 from the light emission drive transistor Trd of the second substrate 51.
  • a through electrode 26 is provided.
  • the photodiode 25 is a back-illuminated light receiving element that receives light incident from the surface opposite to the surface on which the wiring layer 24 of the first substrate 21 is formed.
  • FIG. 2 shows a circuit configuration formed on each of the first substrate 21 and the second substrate 51 of the semiconductor device 1.
  • the first substrate 21 is provided with a pixel array unit 101, a constant current circuit 102, an ADC circuit 103, a row drive circuit 104, a logic circuit 105, an IF circuit 106, a power supply circuit 107, and an I / O circuit 108. ing.
  • the pixels 100 are periodically arranged in a matrix in the row direction and the column direction.
  • One pixel 100 includes, for example, a through electrode 26 formed in each region of the G light emitting unit 11G, R light emitting unit 11R, and B light emitting unit 11B, a photodiode 25 formed in the region of the light receiving unit 12, and PD driving. Includes transistor Trb.
  • the constant current circuit 102 has one load transistor (MOS transistor) corresponding to each pixel column of the pixel array unit 101, and constitutes a transistor and a source follower circuit in the pixel circuit.
  • MOS transistor load transistor
  • the ADC circuit 103 has one ADC (Analog-Digital Converter) corresponding to each pixel column of the pixel array unit 101, and converts a pixel signal output from the pixels in the same column into a CDS (Correlated Double Double Sampling). Sampling) processing and AD conversion processing.
  • ADC Analog-Digital Converter
  • the row driving circuit 104 drives the low voltage transistor Tra and the PD driving transistor Trb of each pixel 100 of the pixel array unit 101, and receives a light receiving period (exposure period) at the photodiode 25 and outputs a pixel signal to the ADC circuit 103. To control.
  • the logic circuit 105 and the IF circuit 106 perform signal conversion processing of input signals input from the outside, signal conversion processing of pixel signals generated by the pixel array unit 101, arithmetic processing, and the like.
  • the power supply circuit 107 converts the power supplied via the I / O circuit 108 into a predetermined power supply voltage and supplies it to each part of the first substrate 21 and the second substrate 51.
  • the I / O circuit 108 performs input / output of signals with the outside.
  • the second substrate 51 is provided with a pixel array unit 121, a vertical drive circuit 122, a horizontal drive circuit 123, logic circuits 124 and 125, an IF circuit 126, and an I / O circuit 127.
  • each region of the G light emitting unit 11G, the R light emitting unit 11R, and the B light emitting unit 11B is provided for each pixel 100 so as to correspond to the pixel 100 of the pixel array unit 101 of the first substrate 21.
  • a light emission driving transistor Trd and a low voltage transistor Trc for outputting a driving signal for driving the organic EL film 42 formed in the above are disposed.
  • the drive signal output from the light emission drive transistor Trd is transmitted in the order of the wiring layer 54 of the second substrate 51, the wiring layer 24 of the first substrate 21, and the through electrode 26, and is supplied to the lower electrode 41 of the light emitting layer 40.
  • the vertical drive circuit 122 controls the drive timing of each pixel 100 in the vertical direction
  • the horizontal drive circuit 123 controls the drive timing of each pixel 100 in the horizontal direction.
  • the vertical drive circuit 122 drives the low voltage transistor Trc, the light emission drive transistor Trd, and the like of each pixel 100, and controls the light emission periods of the G light emission unit 11G, the R light emission unit 11R, and the B light emission unit 11B of each pixel 100. .
  • the logic circuits 124 and 125 and the IF circuit 126 perform a signal conversion process from an input signal input from the outside to a drive signal, a predetermined calculation process, and the like.
  • the I / O circuit 127 performs input / output of signals with the outside.
  • control circuit that controls the imaging function is disposed on the first substrate 21, and the control circuit that controls the light emitting function is disposed on the second substrate 51.
  • the imaging function and the light emitting function are driven with different operation timings and operating voltages.
  • the PD drive transistor Trb that drives the photodiode 25 is driven with a drive voltage of about 2.0 to 4.0 V, for example, and the light emission drive transistor Trd that drives the organic EL film 42 has a drive voltage of about 10 V, for example. Driven.
  • the semiconductor device 1 is arranged separately on different substrates of the first substrate 21 and the second substrate 51, A robust structure can be realized without mutual interference.
  • a control circuit for controlling the imaging function is arranged on the first substrate 21 to control the light emitting function.
  • the control circuit is arranged on the second substrate 51, and the driving signal for driving the organic EL film 42 is directly transmitted from the lower side to the upper side of the organic EL film 42 by using the through electrode 26, whereby the driving signal is transmitted.
  • the wiring space for transmission can be omitted, thereby reducing the area of the entire chip. That is, further miniaturization can be realized.
  • the process until the wiring layer is formed is performed independently on each of the first substrate 21 and the second substrate 51.
  • the STI 28, the low voltage transistor Tra, the PD driving transistor Trb, the photodiode (PD) 25, and the like are formed on one interface with respect to the first substrate 21. Thereafter, a wiring layer 24 including a plurality of metal wirings 22 and an interlayer insulating film 23 therebetween is formed. In the uppermost layer of the wiring layer 24, the necessary number and positions of the metal wirings 22 for electrical connection with the metal wirings 52 of the second substrate 51 are formed.
  • the metal wiring 22 is formed using, for example, copper (Cu), aluminum (Al), tungsten (W) or the like, and the interlayer insulating film 23 is formed of, for example, a silicon oxide film, a silicon nitride film, or the like.
  • the plurality of metal wirings 22 and the interlayer insulating film 23 may be formed of the same material in all layers, or two or more materials may be used depending on the layer.
  • the first substrate 21 shown in FIG. 3 is in a state before the first substrate 21 is thinned, and has a thickness of about 700 ⁇ m, for example.
  • the second substrate 51 includes a plurality of metal wirings 52 and an interlayer insulating film 53 therebetween.
  • a wiring layer 54 is formed. In the uppermost layer of the wiring layer 54, the necessary number and positions of the metal wirings 52 for electrical connection with the metal wirings 22 of the first substrate 21 are formed.
  • the metal wiring 52 is formed using, for example, copper (Cu), aluminum (Al), tungsten (W) or the like, and the interlayer insulating film 53 is formed of, for example, a silicon oxide film, a silicon nitride film, or the like.
  • the plurality of metal wirings 52 and the interlayer insulating film 53 may be formed of the same material in all layers, or two or more materials may be used depending on the layer.
  • the first substrate 21 and the second substrate 51 manufactured separately are inverted so that the wiring layers face each other. It is pasted together.
  • the surface of the wiring layer to be bonded is subjected to surface treatment, and alignment is performed so that the bonding position does not shift.
  • the metal wiring 22-1 and the metal wiring 52-1, the metal wiring 22-2 and the metal wiring 52-2, and the metal wiring 22-3 and the metal wiring 52-3 are arranged in the most
  • the metal wirings 22 and 52 formed in the upper layer are electrically connected by metal bonding such as Cu-Cu bonding.
  • FIG. 5 after the first substrate 21 on which the photodiodes 25 and the like are formed is thinned to such an extent that the device characteristics are not affected, for example, about 2 to 10 ⁇ m, FIG. As shown in FIG. 2, a fixed charge film 31 for suppressing the generation of dark current and an insulating film 32 are formed on the surface of the first substrate 21 by, for example, a plasma CVD method.
  • the through electrode 26 that penetrates the first substrate 21 and the insulation outside the through electrode 26 A film 27 is formed.
  • the through electrode 26 and the insulating film 27 are formed by first patterning a resist so that a position where the through electrode 26 is formed is opened, and then forming a through hole in the first substrate 21 by dry etching.
  • the through hole is formed so as to reach the first metal wiring 22 of the wiring layer 24.
  • the insulating film 27 is formed in the formed through-hole using a plasma CVD method and the portion of the insulating film 27 connected to the first metal wiring 22 of the wiring layer 24 is removed using an etch-back method.
  • the through electrode 26 is formed by embedding copper in the through hole.
  • a method of embedding copper in the through hole for example, the following method can be adopted. First, a barrier metal film and a Cu seed layer for electroplating are formed using a sputtering method, and the Cu seed layer is reinforced by an electroless plating method or the like as necessary. Thereafter, after the copper is filled by the electrolytic plating method, excess copper is removed by the CMP method, whereby the through electrode 26 is formed.
  • a light shielding wall 49 is formed on the outer periphery of the photodiode 25.
  • a metal material such as copper (Cu), tungsten (W), aluminum (Al), etc., similar to the through electrode 26 can be used.
  • the material of the light shielding wall 49 the fixed charge film 31, the insulating film 32, and other oxide films may be embedded. Further, similarly to the through electrode 26, the inner metal material and the outer insulating film may be used.
  • the light shielding wall 49 may employ a structure in which a plurality of insulating films or a plurality of metal films are stacked in the depth direction, or a structure in which an insulating film and a metal film are stacked in the depth direction.
  • the through electrode 26 and the light shielding wall 49 are formed in separate steps, but may be formed simultaneously in the same step.
  • the G light emitting unit 11G, the R light emitting unit 11R, and the B light emitting unit 11B are formed.
  • the lower electrodes 41G, 41R, and 41B are formed by etching so as to leave only the corresponding portion of the metal film.
  • the organic EL film 42 and the upper electrode 43 are laminated and formed.
  • the upper electrode 43 is made of a transparent conductive material such as indium tin oxide (ITO), zinc oxide, or indium zinc oxide.
  • ITO indium tin oxide
  • zinc oxide zinc oxide
  • indium zinc oxide instead of the organic EL film 42, an inorganic film may be used.
  • the organic EL film 42 and the upper electrode 43 on the upper surface of the photodiode 25 are removed and opened, and an on-chip lens 47 and a light shielding wall 48 are formed there.
  • the material of the on-chip lens 47 for example, a silicon nitride film (SiN) or a resin material such as a styrene resin, an acrylic resin, a styrene-acrylic copolymer resin, or a siloxane resin is used.
  • a black resin (black organic film) or the like can be used in addition to a metal material such as tungsten or aluminum.
  • each region of the G light emitting unit 11G, the R light emitting unit 11R, and the B light emitting unit 11B is applied. Further, color filters 45G, 45R, and 45B are formed. As in the present embodiment, the color filter 45 may arrange the three primary colors R, G, and B in a predetermined arrangement (for example, a Bayer arrangement), cyan (C), magenta (M), yellow ( A complementary color of Y) or white (a filter that transmits light in the entire wavelength band) may be disposed.
  • a predetermined arrangement for example, a Bayer arrangement
  • C cyan
  • M magenta
  • yellow A complementary color of Y
  • white a filter that transmits light in the entire wavelength band
  • the protective film 46 may be omitted.
  • FIG. 14 is a cross-sectional view showing a first modification of the first embodiment.
  • a light shielding wall 201 is newly added to block light from adjacent sides and prevent mutual interference.
  • a black resin (black organic film) or the like can be used in addition to a metal material such as tungsten or aluminum, similarly to the light shielding wall 48 formed around the on-chip lens 47.
  • the light emission efficiency of the light emitting layer 40 can be increased by further providing a light shielding wall 201 at the boundary between the G light emitting unit 11G, the R light emitting unit 11R, and the B light emitting unit 11B.
  • FIG. 15 is a cross-sectional view showing a second modification of the first embodiment.
  • a filter 211 that passes only light of a predetermined wavelength such as infrared light (IR), R, G, B, etc. is formed on the upper surface of the flat film 44 above the on-chip lens 47.
  • the filter 211 may be configured by an interference film or a diffraction grating structure. By providing the filter 211 that allows only light of a predetermined wavelength to pass above the on-chip lens 47, the photodiode 25 can receive only desired light.
  • the filter 211 may be disposed on all the pixels in the pixel array unit 101 or may be disposed on only some of the pixels.
  • FIG. 16 is a cross-sectional view according to a second embodiment of a semiconductor device to which the present technology is applied.
  • Organic EL films 241G, 241R, and 241B are provided.
  • the organic EL films 241G, 241R, and 241B are separately formed in the same region as the lower electrode 41G, the lower electrode 41R, and the lower electrode 41B. Between the organic EL films 241G, 241R, and 241B and between the lower electrode 41G, the lower electrode 41R, and the lower electrode 41B are filled with an insulating film 242.
  • the light-emitting film of the light-emitting layer 40 is changed from a film that emits white light (single color) to a film that emits light of R, G, and B colors, so that the color filter 45G, 45R and 45B are omitted.
  • FIG. 17 is a cross-sectional view according to a third embodiment of a semiconductor device to which the present technology is applied.
  • two photodiodes 25 ⁇ are formed in the first substrate 21 of the light receiving unit 12 in the depth direction. 1 and 25-2 are formed.
  • the upper photodiode 25-1 near the on-chip lens 47 is a photoelectric conversion unit that receives B light
  • the upper photodiode 25-2 is a photoelectric conversion unit that receives R light.
  • the photoelectric conversion film 262 is a film that photoelectrically converts green light, and is formed of an organic photoelectric conversion material containing, for example, a rhodamine dye, a melocyanine dye, or quinacridone.
  • the photoelectric conversion film 262 and the lower electrode 261 and the upper electrode 263 sandwiching the photoelectric conversion film 262 between the upper and lower sides are photoelectric conversion units that photoelectrically convert green light.
  • the lower electrode 261 and the upper electrode 263 are formed of a transparent electrode film such as an indium tin oxide (ITO) film or an indium zinc oxide film.
  • ITO indium tin oxide
  • the insulating film 264 is provided to insulate the upper electrode 263 from the lower electrode 41 of the light emitting layer 40.
  • the light receiving unit 12 receives light of all wavelengths of visible light, whereas in the third embodiment, the light receiving unit 12 is green. Light is photoelectrically converted by the photoelectric conversion film 262 formed outside the first substrate 21, and blue and red light is photoelectrically converted by the photodiodes 25-1 and 25-2 in the first substrate 21. .
  • wavelength (color) light is received by which layer is not limited to this example, and can be arbitrarily determined.
  • FIG. 18 is a cross-sectional view according to a fourth embodiment of a semiconductor device to which the present technology is applied.
  • the glass substrate 281 on which the color filters 45G, 45R, and 45B are formed is disposed above the planarizing film 44.
  • the glass substrate 281 on which the color filters 45G, 45R, and 45B are formed may be arranged with a predetermined gap as shown in FIG. 18, or may be in close contact with the planarization film 44.
  • the semiconductor device 1 can employ a three-layer structure using the glass substrate 281 in addition to the two-layer structure of the first substrate 21 and the second substrate 51.
  • FIG. 19 is a cross-sectional view according to a fifth embodiment of a semiconductor device to which the present technology is applied.
  • the on-chip lens 47 is formed on the upper surface of the protective film 46 instead of the upper surface of the insulating film 32 above the photodiode 25.
  • an organic film is used as the protective film 46.
  • the formation position of the on-chip lens 47 can be arranged at a predetermined position above the photodiode 25 according to the optical design.
  • an on-chip lens 47 may be formed on the upper surface of the insulating film 33.
  • 20 is an example in which the arrangement of the on-chip lens 47 is changed with respect to the first embodiment of FIG. 1.
  • the on-chip lens 47 is arranged on the upper surface of the insulating film 33.
  • the light shielding wall 49 is also formed in the depth direction from the insulating film 33.
  • the semiconductor device 1 has two functions of a light emitting function and an imaging function, and the first substrate 21 on which a control circuit for controlling the imaging function (light receiving function) is formed. And a laminated structure of the second substrate 51 on which a control circuit for controlling the light emitting function is formed.
  • the light emitting operation of the organic EL film 42 and the light receiving operation of the photodiode 25 are executed at different timings, and the operating voltages are also different.
  • the control circuit for the light emitting operation and the control circuit for the light receiving operation are arranged separately on different substrates of the first substrate 21 and the second substrate 51, so that the semiconductor device 1 is robust against mutual interference. Can be realized.
  • the photodiode 25 and the organic EL film 42 are arranged on the first substrate 21 in the planar direction, and the drive signal of the organic EL film 42 is directly transmitted from the lower side to the upper side of the organic EL film 42 using the through electrode 26.
  • the wiring space for transmitting the drive signal can be omitted, and the area of the entire chip can be reduced. That is, further miniaturization can be realized.
  • the semiconductor device 1 described above includes, for example, a display device such as a head-mounted display and a head-up display, an imaging device such as a digital still camera and a digital video camera, a mobile phone having an imaging function, or an audio player having an imaging function. It can be applied to various electronic devices.
  • FIG. 21 is a block diagram illustrating a configuration example of an imaging apparatus as an electronic apparatus to which the present technology is applied.
  • An imaging device 301 shown in FIG. 21 includes an optical system 302, a shutter device 303, a semiconductor device 304, a control circuit 305, a signal processing circuit 306, a monitor 307, and a memory 308, and captures still images and moving images. Is possible.
  • the optical system 302 includes one or a plurality of lenses, guides light (incident light) from the subject to the semiconductor device 304 and forms an image on the light receiving surface of the semiconductor device 304.
  • the shutter device 303 is disposed between the optical system 302 and the semiconductor device 304, and controls the light irradiation period and the light shielding period to the semiconductor device 304 according to the control of the control circuit 305.
  • the semiconductor device 304 is configured by the semiconductor device 1 described above.
  • the semiconductor device 304 accumulates signal charges for a certain period according to the light imaged on the light receiving surface via the optical system 302 and the shutter device 303.
  • the signal charge accumulated in the semiconductor device 304 is transferred according to a drive signal (timing signal) supplied from the control circuit 305.
  • the semiconductor device 304 emits light at a predetermined timing in accordance with a drive signal (timing signal) supplied from the control circuit 305.
  • the light emission of the semiconductor device 304 may be used as an illumination function or a display function.
  • the semiconductor device 304 may be configured as a single chip as a single unit, or may be configured as a part of a camera module packaged together with the optical system 302 or the signal processing circuit 306.
  • the control circuit 305 outputs drive signals for controlling the transfer operation of the semiconductor device 304 and the shutter operation of the shutter device 303 to drive the semiconductor device 304 and the shutter device 303.
  • the signal processing circuit 306 performs various signal processing on the pixel signal output from the semiconductor device 304.
  • An image (image data) obtained by the signal processing by the signal processing circuit 306 is supplied to the monitor 307 and displayed, or supplied to the memory 308 and stored (recorded).
  • the imaging device 301 such as a video camera, a digital still camera, or a camera module for mobile devices such as a mobile phone can also be provided with a light emitting function and an imaging function, and downsizing of the device can be realized.
  • FIG. 22 is a diagram illustrating a usage example when the above-described semiconductor device 1 is used as an image sensor.
  • the image sensor using the semiconductor device 1 described above can be used in various cases for sensing light such as visible light, infrared light, ultraviolet light, and X-ray as follows.
  • Devices for taking images for viewing such as digital cameras and mobile devices with camera functions
  • Devices used for traffic such as in-vehicle sensors that capture the back, surroundings, and interiors of vehicles, surveillance cameras that monitor traveling vehicles and roads, and ranging sensors that measure distances between vehicles, etc.
  • Equipment used for home appliances such as TVs, refrigerators, air conditioners, etc. to take pictures and operate the equipment according to the gestures ⁇ Endoscopes, equipment that performs blood vessel photography by receiving infrared light, etc.
  • Equipment used for medical and health care ⁇ Security equipment such as security surveillance cameras and personal authentication cameras ⁇ Skin measuring instrument for photographing skin and scalp photography Such as a microscope to do beauty Equipment used for sports-Equipment used for sports such as action cameras and wearable cameras for sports applications-Used for agriculture such as cameras for monitoring the condition of fields and crops apparatus
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure may be applied to an in-vivo information acquisition system for a patient using a capsule endoscope.
  • FIG. 23 is a block diagram illustrating an example of a schematic configuration of a patient in-vivo information acquisition system using a capsule endoscope to which the technique according to the present disclosure (present technique) can be applied.
  • the in-vivo information acquisition system 10001 includes a capsule endoscope 10100 and an external control device 10200.
  • the capsule endoscope 10100 is swallowed by the patient at the time of examination.
  • the capsule endoscope 10100 has an imaging function and a wireless communication function, and moves inside the organ such as the stomach and the intestine by peristaltic motion or the like until it is spontaneously discharged from the patient.
  • Images (hereinafter also referred to as in-vivo images) are sequentially captured at predetermined intervals, and information about the in-vivo images is sequentially wirelessly transmitted to the external control device 10200 outside the body.
  • the external control device 10200 comprehensively controls the operation of the in-vivo information acquisition system 10001. Further, the external control device 10200 receives information about the in-vivo image transmitted from the capsule endoscope 10100 and, based on the received information about the in-vivo image, displays the in-vivo image on the display device (not shown). The image data for displaying is generated.
  • an in-vivo image obtained by imaging the inside of the patient's body can be obtained at any time in this manner until the capsule endoscope 10100 is swallowed and discharged.
  • the capsule endoscope 10100 includes a capsule-type casing 10101.
  • a light source unit 10111 In the casing 10101, a light source unit 10111, an imaging unit 10112, an image processing unit 10113, a wireless communication unit 10114, a power supply unit 10115, and a power supply unit 10116 and the control unit 10117 are stored.
  • the light source unit 10111 is composed of a light source such as an LED (Light Emitting Diode), for example, and irradiates the imaging field of the imaging unit 10112 with light.
  • a light source such as an LED (Light Emitting Diode), for example, and irradiates the imaging field of the imaging unit 10112 with light.
  • the image capturing unit 10112 includes an image sensor and an optical system including a plurality of lenses provided in front of the image sensor. Reflected light (hereinafter referred to as observation light) of light irradiated on the body tissue to be observed is collected by the optical system and enters the image sensor. In the imaging unit 10112, in the imaging element, the observation light incident thereon is photoelectrically converted, and an image signal corresponding to the observation light is generated. The image signal generated by the imaging unit 10112 is provided to the image processing unit 10113.
  • the image processing unit 10113 is configured by a processor such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit), and performs various signal processing on the image signal generated by the imaging unit 10112.
  • the image processing unit 10113 provides the radio communication unit 10114 with the image signal subjected to signal processing as RAW data.
  • the wireless communication unit 10114 performs predetermined processing such as modulation processing on the image signal that has been subjected to signal processing by the image processing unit 10113, and transmits the image signal to the external control apparatus 10200 via the antenna 10114A.
  • the wireless communication unit 10114 receives a control signal related to drive control of the capsule endoscope 10100 from the external control device 10200 via the antenna 10114A.
  • the wireless communication unit 10114 provides a control signal received from the external control device 10200 to the control unit 10117.
  • the power feeding unit 10115 includes a power receiving antenna coil, a power regeneration circuit that regenerates power from a current generated in the antenna coil, a booster circuit, and the like. In the power feeding unit 10115, electric power is generated using a so-called non-contact charging principle.
  • the power supply unit 10116 is composed of a secondary battery, and stores the electric power generated by the power supply unit 10115.
  • FIG. 23 in order to avoid complication of the drawing, illustration of an arrow or the like indicating a power supply destination from the power supply unit 10116 is omitted, but the power stored in the power supply unit 10116 is stored in the light source unit 10111.
  • the imaging unit 10112, the image processing unit 10113, the wireless communication unit 10114, and the control unit 10117 can be used for driving them.
  • the control unit 10117 includes a processor such as a CPU, and a control signal transmitted from the external control device 10200 to drive the light source unit 10111, the imaging unit 10112, the image processing unit 10113, the wireless communication unit 10114, and the power feeding unit 10115. Control accordingly.
  • a processor such as a CPU
  • the external control device 10200 is configured by a processor such as a CPU or GPU, or a microcomputer or a control board in which a processor and a storage element such as a memory are mounted.
  • the external control device 10200 controls the operation of the capsule endoscope 10100 by transmitting a control signal to the control unit 10117 of the capsule endoscope 10100 via the antenna 10200A.
  • the capsule endoscope 10100 for example, the light irradiation condition for the observation target in the light source unit 10111 can be changed by a control signal from the external control device 10200.
  • an imaging condition for example, a frame rate or an exposure value in the imaging unit 10112
  • a control signal from the external control device 10200 can be changed by a control signal from the external control device 10200.
  • the contents of processing in the image processing unit 10113 and the conditions (for example, the transmission interval, the number of transmission images, etc.) by which the wireless communication unit 10114 transmits an image signal may be changed by a control signal from the external control device 10200. .
  • the external control device 10200 performs various image processing on the image signal transmitted from the capsule endoscope 10100, and generates image data for displaying the captured in-vivo image on the display device.
  • image processing for example, development processing (demosaic processing), high image quality processing (band enhancement processing, super-resolution processing, NR (Noise reduction) processing and / or camera shake correction processing, etc.), and / or enlargement processing ( Various signal processing such as electronic zoom processing can be performed.
  • the external control device 10200 controls driving of the display device to display an in-vivo image captured based on the generated image data.
  • the external control device 10200 may cause the generated image data to be recorded on a recording device (not shown) or may be printed out on a printing device (not shown).
  • the technology according to the present disclosure can be applied to the imaging unit 10112 among the configurations described above.
  • the semiconductor device 1 according to each of the above-described embodiments can be applied as the imaging unit 10112.
  • the capsule endoscope 10100 can be further downsized, and thus the burden on the patient can be further reduced.
  • the size of the capsule endoscope 10100 can be reduced, and a clearer surgical part image can be obtained. Therefore, the accuracy of the examination is improved.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure may be applied to an endoscopic surgery system.
  • FIG. 24 is a diagram illustrating an example of a schematic configuration of an endoscopic surgery system to which the technology (present technology) according to the present disclosure can be applied.
  • FIG. 24 shows a state in which an operator (doctor) 11131 is performing an operation on a patient 11132 on a patient bed 11133 using an endoscopic operation system 11000.
  • an endoscopic surgery system 11000 includes an endoscope 11100, other surgical instruments 11110 such as an insufflation tube 11111 and an energy treatment instrument 11112, and a support arm device 11120 that supports the endoscope 11100. And a cart 11200 on which various devices for endoscopic surgery are mounted.
  • the endoscope 11100 includes a lens barrel 11101 in which a region having a predetermined length from the distal end is inserted into the body cavity of the patient 11132, and a camera head 11102 connected to the proximal end of the lens barrel 11101.
  • a lens barrel 11101 in which a region having a predetermined length from the distal end is inserted into the body cavity of the patient 11132, and a camera head 11102 connected to the proximal end of the lens barrel 11101.
  • an endoscope 11100 configured as a so-called rigid mirror having a rigid lens barrel 11101 is illustrated, but the endoscope 11100 may be configured as a so-called flexible mirror having a flexible lens barrel. Good.
  • An opening into which the objective lens is fitted is provided at the tip of the lens barrel 11101.
  • a light source device 11203 is connected to the endoscope 11100, and light generated by the light source device 11203 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 11101. Irradiation is performed toward the observation target in the body cavity of the patient 11132 through the lens.
  • the endoscope 11100 may be a direct endoscope, a perspective mirror, or a side endoscope.
  • An optical system and an image sensor are provided inside the camera head 11102, and reflected light (observation light) from the observation target is condensed on the image sensor by the optical system. Observation light is photoelectrically converted by the imaging element, and an electrical signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated.
  • the image signal is transmitted to a camera control unit (CCU: Camera Control Unit) 11201 as RAW data.
  • CCU Camera Control Unit
  • the CCU 11201 is configured by a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and comprehensively controls operations of the endoscope 11100 and the display device 11202. Further, the CCU 11201 receives an image signal from the camera head 11102 and performs various kinds of image processing for displaying an image based on the image signal, such as development processing (demosaic processing), for example.
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • the display device 11202 displays an image based on an image signal subjected to image processing by the CCU 11201 under the control of the CCU 11201.
  • the light source device 11203 is composed of a light source such as an LED (Light Emitting Diode), for example, and supplies irradiation light to the endoscope 11100 when photographing a surgical site or the like.
  • a light source such as an LED (Light Emitting Diode), for example, and supplies irradiation light to the endoscope 11100 when photographing a surgical site or the like.
  • the input device 11204 is an input interface for the endoscopic surgery system 11000.
  • a user can input various information and instructions to the endoscopic surgery system 11000 via the input device 11204.
  • the user inputs an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 11100.
  • the treatment instrument control device 11205 controls the drive of the energy treatment instrument 11112 for tissue ablation, incision, blood vessel sealing, or the like.
  • the pneumoperitoneum device 11206 passes gas into the body cavity via the pneumoperitoneum tube 11111.
  • the recorder 11207 is an apparatus capable of recording various types of information related to surgery.
  • the printer 11208 is a device that can print various types of information related to surgery in various formats such as text, images, or graphs.
  • the light source device 11203 that supplies the irradiation light when the surgical site is imaged to the endoscope 11100 can be configured by, for example, a white light source configured by an LED, a laser light source, or a combination thereof.
  • a white light source is configured by a combination of RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. Therefore, the light source device 11203 adjusts the white balance of the captured image. It can be carried out.
  • the driving of the light source device 11203 may be controlled so as to change the intensity of the output light every predetermined time. Synchronously with the timing of changing the intensity of the light, the drive of the image sensor of the camera head 11102 is controlled to acquire an image in a time-sharing manner, and the image is synthesized, so that high dynamic without so-called blackout and overexposure A range image can be generated.
  • the light source device 11203 may be configured to be able to supply light of a predetermined wavelength band corresponding to special light observation.
  • special light observation for example, by utilizing the wavelength dependence of light absorption in body tissue, the surface of the mucous membrane is irradiated by irradiating light in a narrow band compared to irradiation light (ie, white light) during normal observation.
  • a so-called narrow band imaging is performed in which a predetermined tissue such as a blood vessel is imaged with high contrast.
  • fluorescence observation may be performed in which an image is obtained by fluorescence generated by irradiating excitation light.
  • the body tissue is irradiated with excitation light to observe fluorescence from the body tissue (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally administered to the body tissue and applied to the body tissue. It is possible to obtain a fluorescence image by irradiating excitation light corresponding to the fluorescence wavelength of the reagent.
  • the light source device 11203 can be configured to be able to supply narrowband light and / or excitation light corresponding to such special light observation.
  • FIG. 25 is a block diagram illustrating an example of functional configurations of the camera head 11102 and the CCU 11201 illustrated in FIG.
  • the camera head 11102 includes a lens unit 11401, an imaging unit 11402, a drive unit 11403, a communication unit 11404, and a camera head control unit 11405.
  • the CCU 11201 includes a communication unit 11411, an image processing unit 11412, and a control unit 11413.
  • the camera head 11102 and the CCU 11201 are connected to each other by a transmission cable 11400 so that they can communicate with each other.
  • the lens unit 11401 is an optical system provided at a connection portion with the lens barrel 11101. Observation light taken from the tip of the lens barrel 11101 is guided to the camera head 11102 and enters the lens unit 11401.
  • the lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
  • the imaging unit 11402 includes an imaging element.
  • One (so-called single plate type) image sensor may be included in the imaging unit 11402, or a plurality (so-called multi-plate type) may be used.
  • image signals corresponding to RGB may be generated by each imaging element, and a color image may be obtained by combining them.
  • the imaging unit 11402 may be configured to include a pair of imaging elements for acquiring right-eye and left-eye image signals corresponding to 3D (Dimensional) display. By performing the 3D display, the operator 11131 can more accurately grasp the depth of the living tissue in the surgical site.
  • 3D 3D
  • the imaging unit 11402 is not necessarily provided in the camera head 11102.
  • the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
  • the driving unit 11403 is configured by an actuator, and moves the zoom lens and the focus lens of the lens unit 11401 by a predetermined distance along the optical axis under the control of the camera head control unit 11405. Thereby, the magnification and the focus of the image captured by the imaging unit 11402 can be adjusted as appropriate.
  • the communication unit 11404 is configured by a communication device for transmitting and receiving various types of information to and from the CCU 11201.
  • the communication unit 11404 transmits the image signal obtained from the imaging unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400.
  • the communication unit 11404 receives a control signal for controlling driving of the camera head 11102 from the CCU 11201 and supplies the control signal to the camera head control unit 11405.
  • the control signal includes, for example, information for designating the frame rate of the captured image, information for designating the exposure value at the time of imaging, and / or information for designating the magnification and focus of the captured image. Contains information about the condition.
  • the imaging conditions such as the frame rate, exposure value, magnification, and focus may be appropriately specified by the user, or may be automatically set by the control unit 11413 of the CCU 11201 based on the acquired image signal. Good. In the latter case, a so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function are mounted on the endoscope 11100.
  • AE Auto Exposure
  • AF Automatic Focus
  • AWB Auto White Balance
  • the camera head control unit 11405 controls driving of the camera head 11102 based on a control signal from the CCU 11201 received via the communication unit 11404.
  • the communication unit 11411 is configured by a communication device for transmitting and receiving various types of information to and from the camera head 11102.
  • the communication unit 11411 receives an image signal transmitted from the camera head 11102 via the transmission cable 11400.
  • the communication unit 11411 transmits a control signal for controlling driving of the camera head 11102 to the camera head 11102.
  • the image signal and the control signal can be transmitted by electrical communication, optical communication, or the like.
  • the image processing unit 11412 performs various types of image processing on the image signal that is RAW data transmitted from the camera head 11102.
  • the control unit 11413 performs various types of control related to imaging of the surgical site by the endoscope 11100 and display of a captured image obtained by imaging of the surgical site. For example, the control unit 11413 generates a control signal for controlling driving of the camera head 11102.
  • control unit 11413 causes the display device 11202 to display a picked-up image showing the surgical part or the like based on the image signal subjected to the image processing by the image processing unit 11412.
  • the control unit 11413 may recognize various objects in the captured image using various image recognition techniques.
  • the control unit 11413 detects surgical tools such as forceps, specific biological parts, bleeding, mist when using the energy treatment tool 11112, and the like by detecting the shape and color of the edge of the object included in the captured image. Can be recognized.
  • the control unit 11413 may display various types of surgery support information superimposed on the image of the surgical unit using the recognition result. Surgery support information is displayed in a superimposed manner and presented to the operator 11131, thereby reducing the burden on the operator 11131 and allowing the operator 11131 to proceed with surgery reliably.
  • the transmission cable 11400 for connecting the camera head 11102 and the CCU 11201 is an electric signal cable corresponding to electric signal communication, an optical fiber corresponding to optical communication, or a composite cable thereof.
  • communication is performed by wire using the transmission cable 11400.
  • communication between the camera head 11102 and the CCU 11201 may be performed wirelessly.
  • the technology according to the present disclosure can be applied to the imaging unit 11402 of the camera head 11102 among the configurations described above.
  • the semiconductor device 1 according to each embodiment described above can be applied as the imaging unit 11402.
  • a clearer surgical part image can be obtained while the camera head 11102 is downsized.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure is realized as a device that is mounted on any type of mobile body such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, personal mobility, an airplane, a drone, a ship, and a robot. May be.
  • FIG. 26 is a block diagram illustrating a schematic configuration example of a vehicle control system that is an example of a mobile control system to which the technology according to the present disclosure can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an in-vehicle information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (interface) 12053 are illustrated.
  • the drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 includes a driving force generator for generating a driving force of a vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism that adjusts and a braking device that generates a braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a headlamp, a back lamp, a brake lamp, a blinker, or a fog lamp.
  • the body control unit 12020 can be input with radio waves transmitted from a portable device that substitutes for a key or signals from various switches.
  • the body system control unit 12020 receives input of these radio waves or signals, and controls a door lock device, a power window device, a lamp, and the like of the vehicle.
  • the vehicle outside information detection unit 12030 detects information outside the vehicle on which the vehicle control system 12000 is mounted.
  • the imaging unit 12031 is connected to the vehicle exterior information detection unit 12030.
  • the vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image outside the vehicle and receives the captured image.
  • the vehicle outside information detection unit 12030 may perform an object detection process or a distance detection process such as a person, a car, an obstacle, a sign, or a character on a road surface based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal corresponding to the amount of received light.
  • the imaging unit 12031 can output an electrical signal as an image, or can output it as distance measurement information. Further, the light received by the imaging unit 12031 may be visible light or invisible light such as infrared rays.
  • the vehicle interior information detection unit 12040 detects vehicle interior information.
  • a driver state detection unit 12041 that detects a driver's state is connected to the in-vehicle information detection unit 12040.
  • the driver state detection unit 12041 includes, for example, a camera that images the driver, and the vehicle interior information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated or it may be determined whether the driver is asleep.
  • the microcomputer 12051 calculates a control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside / outside the vehicle acquired by the vehicle outside information detection unit 12030 or the vehicle interior information detection unit 12040, and the drive system control unit A control command can be output to 12010.
  • the microcomputer 12051 realizes an ADAS (Advanced Driver Assistance System) function including vehicle collision avoidance or impact mitigation, following traveling based on inter-vehicle distance, vehicle speed maintaining traveling, vehicle collision warning, or vehicle lane departure warning, etc. It is possible to perform cooperative control for the purpose.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040. It is possible to perform cooperative control for the purpose of automatic driving that autonomously travels without depending on the operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on information outside the vehicle acquired by the vehicle outside information detection unit 12030.
  • the microcomputer 12051 controls the headlamp according to the position of the preceding vehicle or the oncoming vehicle detected by the outside information detection unit 12030, and performs cooperative control for the purpose of anti-glare, such as switching from a high beam to a low beam. It can be carried out.
  • the sound image output unit 12052 transmits an output signal of at least one of sound and image to an output device capable of visually or audibly notifying information to a vehicle occupant or the outside of the vehicle.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices.
  • the display unit 12062 may include at least one of an on-board display and a head-up display, for example.
  • FIG. 27 is a diagram illustrating an example of an installation position of the imaging unit 12031.
  • the vehicle 12100 includes imaging units 12101, 12102, 12103, 12104, and 12105 as the imaging unit 12031.
  • the imaging units 12101, 12102, 12103, 12104, and 12105 are provided, for example, at positions such as a front nose, a side mirror, a rear bumper, a back door, and an upper part of a windshield in the vehicle interior of the vehicle 12100.
  • the imaging unit 12101 provided in the front nose and the imaging unit 12105 provided in the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100.
  • the imaging units 12102 and 12103 provided in the side mirror mainly acquire an image of the side of the vehicle 12100.
  • the imaging unit 12104 provided in the rear bumper or the back door mainly acquires an image behind the vehicle 12100.
  • the forward images acquired by the imaging units 12101 and 12105 are mainly used for detecting a preceding vehicle or a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
  • FIG. 27 shows an example of the shooting range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided in the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided in the side mirrors, respectively
  • the imaging range 12114 The imaging range of the imaging part 12104 provided in the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, an overhead image when the vehicle 12100 is viewed from above is obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the imaging units 12101 to 12104 may be a stereo camera including a plurality of imaging elements, or may be an imaging element having pixels for phase difference detection.
  • the microcomputer 12051 based on the distance information obtained from the imaging units 12101 to 12104, the distance to each three-dimensional object in the imaging range 12111 to 12114 and the temporal change in this distance (relative speed with respect to the vehicle 12100).
  • a predetermined speed for example, 0 km / h or more
  • the microcomputer 12051 can set an inter-vehicle distance to be secured in advance before the preceding vehicle, and can perform automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like.
  • automatic brake control including follow-up stop control
  • automatic acceleration control including follow-up start control
  • cooperative control for the purpose of autonomous driving or the like autonomously traveling without depending on the operation of the driver can be performed.
  • the microcomputer 12051 converts the three-dimensional object data related to the three-dimensional object to other three-dimensional objects such as a two-wheeled vehicle, a normal vehicle, a large vehicle, a pedestrian, and a utility pole based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles.
  • the microcomputer 12051 identifies obstacles around the vehicle 12100 as obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see.
  • the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 is connected via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration or avoidance steering via the drive system control unit 12010, driving assistance for collision avoidance can be performed.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether a pedestrian is present in the captured images of the imaging units 12101 to 12104. Such pedestrian recognition is, for example, whether or not the user is a pedestrian by performing a pattern matching process on a sequence of feature points indicating the outline of an object and a procedure for extracting feature points in the captured images of the imaging units 12101 to 12104 as infrared cameras. It is carried out by the procedure for determining.
  • the audio image output unit 12052 When the microcomputer 12051 determines that there is a pedestrian in the captured images of the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 has a rectangular contour line for emphasizing the recognized pedestrian.
  • the display unit 12062 is controlled so as to be superimposed and displayed.
  • voice image output part 12052 may control the display part 12062 so that the icon etc. which show a pedestrian may be displayed on a desired position.
  • the technology according to the present disclosure can be applied to the imaging unit 12031 among the configurations described above.
  • the semiconductor device 1 according to each of the above-described embodiments can be applied as the imaging unit 12031.
  • Embodiments of the present technology are not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present technology.
  • this technique can also take the following structures.
  • a second substrate including a second transistor for driving the light emitting element, The first substrate is The light emitting element and the light receiving element;
  • a semiconductor device comprising: a through electrode that passes through the first substrate and transmits a drive signal of the light emitting element from the second substrate.
  • the light emitting element is an organic EL film.
  • the light emitting element emits white light, The semiconductor device according to (9), further including an R, G, or B color filter on an upper side of the light emitting element.
  • the light emitting element emits white light, The semiconductor device according to (9), further including a glass substrate on which an R, G, or B color filter is formed above the light emitting element.
  • the light emitting element emits light of R, G, or B color.
  • the second substrate and the first substrate are electrically connected by directly bonding metal wirings of the wiring layers of each substrate in a partial region.
  • An electronic apparatus comprising: a semiconductor device having a through electrode that passes through the first substrate and transmits a driving signal of the light emitting element from the second substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

The present technology relates to: a semiconductor device that is provided with both a light emitting element and a light receiving element, said semiconductor device enabling further miniaturization; and an electronic apparatus. This semiconductor device is provided with: a first substrate, which includes a first transistor that drives a light receiving element; and a second substrate, which includes a second transistor that drives a light emitting element. The first substrate has: the light emitting element and the light receiving element; and a through electrode, which penetrates the first substrate, and transmits, from the second substrate, a drive signal for the light emitting element. The present technology can be applied to, for instance, an electronic apparatus that is provided with both a light emitting element and a light receiving element.

Description

半導体装置および電子機器Semiconductor device and electronic equipment
 本技術は、半導体装置および電子機器に関し、特に、発光素子と受光素子の両方を備える装置において、さらなる微細化を可能にした半導体装置および電子機器に関する。 The present technology relates to a semiconductor device and an electronic device, and more particularly, to a semiconductor device and an electronic device that enable further miniaturization in a device including both a light emitting element and a light receiving element.
 表示装置の表示領域内に受光素子を配置し、画像の表示機能と受光機能の両方を備える装置は、これまでにも提案されている。 A device having a light receiving element in a display area of a display device and having both an image display function and a light receiving function has been proposed.
 例えば、ドイツの研究機関であるFraunhoferのRigo Heroldらは、SID2012において、小型の有機ELディスプレイ(Micro OLED)にフォトダイオード(PD)を埋め込んだ構造の素子を作り、ヘッドマウントディスプレイ(HMD)での目の撮像へ応用した技術を発表している(例えば、非特許文献1参照)。また、特許文献1,2にも、受光素子が形成された基板上に発光素子を構成する構造が開示されている。 For example, Rigo Herold et al. Of Fraunhofer, a German research institution, created an element with a photodiode (PD) embedded in a small organic EL display (Micro OLED) at SID2012. A technology applied to imaging of eyes has been announced (for example, see Non-Patent Document 1). Patent Documents 1 and 2 also disclose a structure in which a light emitting element is formed on a substrate on which a light receiving element is formed.
 単一基板上に発光構造と受光構造を構成する場合、発光素子と受光素子は、異なる素子であることから、領域を分けてレイアウトしなければならない。また、発光素子と受光素子とでは駆動電圧や駆動タイミングが異なるため、相互影響を抑制するための電気的分離層を設けて、ノイズの影響を抑制する必要がある。この分離層については、現在においても物理的に限界値に近い値となっているため、これ以上の微細化が難しくなってきている。 When the light emitting structure and the light receiving structure are configured on a single substrate, the light emitting element and the light receiving element are different elements, and therefore, the areas must be laid out separately. In addition, since the driving voltage and the driving timing are different between the light emitting element and the light receiving element, it is necessary to provide an electrical separation layer for suppressing the mutual influence to suppress the influence of noise. Since the separation layer is a value that is physically close to the limit value even at present, further miniaturization has become difficult.
 そこで、例えば、特許文献3のように、発光素子を形成する基板と受光素子を形成する基板を分け、それらを積層した構造が提案されている。 Therefore, for example, as in Patent Document 3, a structure is proposed in which a substrate on which a light emitting element is formed and a substrate on which a light receiving element is formed are separated and stacked.
特開2000-253203号公報JP 2000-253203 A 特開2011-054929号公報JP 2011-054929 A 特開2011-021514号公報JP 2011-021514 A
 しかしながら、特許文献3では、基板相互の電気的接続は、画面縁の端部で行っているため、画面内の各素子から画面縁までの配線が必要となり、微細化に限界がある。 However, in Patent Document 3, since the electrical connection between the substrates is performed at the edge of the screen edge, wiring from each element in the screen to the screen edge is required, and there is a limit to miniaturization.
 本技術は、このような状況に鑑みてなされたものであり、発光素子と受光素子の両方を備える装置において、さらなる微細化を可能とするものである。 The present technology has been made in view of such a situation, and enables further miniaturization in an apparatus including both a light emitting element and a light receiving element.
 本技術の第1の側面の半導体装置は、受光素子を駆動する第1トランジスタを含む第1の基板と、発光素子を駆動する第2トランジスタを含む第2の基板とを備え、前記第1の基板は、前記発光素子及び前記受光素子と、前記第1の基板を貫通して前記第2の基板からの前記発光素子の駆動信号を伝送する貫通電極とを有する。 A semiconductor device according to a first aspect of the present technology includes a first substrate including a first transistor that drives a light receiving element, and a second substrate including a second transistor that drives a light emitting element. The substrate includes the light emitting element and the light receiving element, and a through electrode that passes through the first substrate and transmits a drive signal of the light emitting element from the second substrate.
 本技術の第2の側面の電子機器は、受光素子を駆動する第1トランジスタを含む第1の基板と、発光素子を駆動する第2トランジスタを含む第2の基板とを備え、前記第1の基板は、前記発光素子及び前記受光素子と、前記第1の基板を貫通して前記第2の基板からの前記発光素子の駆動信号を伝送する貫通電極とを有する半導体装置を備える。 An electronic apparatus according to a second aspect of the present technology includes a first substrate that includes a first transistor that drives a light receiving element, and a second substrate that includes a second transistor that drives a light emitting element. The substrate includes a semiconductor device having the light emitting element and the light receiving element, and a through electrode that passes through the first substrate and transmits a drive signal of the light emitting element from the second substrate.
 本技術の第1及び第2の側面においては、受光素子を駆動する第1トランジスタを含む第1の基板と、発光素子を駆動する第2トランジスタを含む第2の基板とが設けられ、前記第1の基板には、前記発光素子及び前記受光素子と、前記第1の基板を貫通して前記第2の基板からの前記発光素子の駆動信号を伝送する貫通電極とが配置される。 In the first and second aspects of the present technology, a first substrate including a first transistor that drives a light receiving element and a second substrate including a second transistor that drives a light emitting element are provided, One substrate is provided with the light emitting element and the light receiving element, and a through electrode that passes through the first substrate and transmits a drive signal of the light emitting element from the second substrate.
 半導体装置及び電子機器は、独立した装置であっても良いし、他の装置に組み込まれるモジュールであっても良い。 The semiconductor device and the electronic device may be independent devices, or may be modules incorporated in other devices.
 本技術の第1乃至第3の側面によれば、発光素子と受光素子の両方を備える装置において、さらなる微細化を可能とする。 According to the first to third aspects of the present technology, further miniaturization is enabled in an apparatus including both a light emitting element and a light receiving element.
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。 It should be noted that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
本技術を適用した半導体装置の第1の実施の形態に係る断面図である。It is a sectional view concerning a 1st embodiment of a semiconductor device to which this art is applied. 第1の基板と第2の基板それぞれの回路構成を示す図である。It is a figure which shows the circuit structure of each of a 1st board | substrate and a 2nd board | substrate. 図1の半導体装置1の製造方法を説明する図である。It is a figure explaining the manufacturing method of the semiconductor device 1 of FIG. 図1の半導体装置1の製造方法を説明する図である。It is a figure explaining the manufacturing method of the semiconductor device 1 of FIG. 図1の半導体装置1の製造方法を説明する図である。It is a figure explaining the manufacturing method of the semiconductor device of FIG. 図1の半導体装置1の製造方法を説明する図である。It is a figure explaining the manufacturing method of the semiconductor device 1 of FIG. 図1の半導体装置1の製造方法を説明する図である。It is a figure explaining the manufacturing method of the semiconductor device 1 of FIG. 図1の半導体装置1の製造方法を説明する図である。It is a figure explaining the manufacturing method of the semiconductor device 1 of FIG. 図1の半導体装置1の製造方法を説明する図である。It is a figure explaining the manufacturing method of the semiconductor device 1 of FIG. 図1の半導体装置1の製造方法を説明する図である。It is a figure explaining the manufacturing method of the semiconductor device 1 of FIG. 図1の半導体装置1の製造方法を説明する図である。It is a figure explaining the manufacturing method of the semiconductor device 1 of FIG. 図1の半導体装置1の製造方法を説明する図である。It is a figure explaining the manufacturing method of the semiconductor device 1 of FIG. 図1の半導体装置1の製造方法を説明する図である。It is a figure explaining the manufacturing method of the semiconductor device 1 of FIG. 第1の実施の形態の第1変形例を示す断面図である。It is sectional drawing which shows the 1st modification of 1st Embodiment. 第1の実施の形態の第2変形例を示す断面図である。It is sectional drawing which shows the 2nd modification of 1st Embodiment. 本技術を適用した半導体装置の第2の実施の形態に係る断面図である。It is a sectional view concerning a 2nd embodiment of a semiconductor device to which this art is applied. 本技術を適用した半導体装置の第3の実施の形態に係る断面図である。It is sectional drawing which concerns on 3rd Embodiment of the semiconductor device to which this technique is applied. 本技術を適用した半導体装置の第4の実施の形態に係る断面図である。It is sectional drawing which concerns on 4th Embodiment of the semiconductor device to which this technique is applied. 本技術を適用した半導体装置の第5の実施の形態に係る断面図である。It is sectional drawing which concerns on 5th Embodiment of the semiconductor device to which this technique is applied. 第1の実施の形態の第3変形例を示す断面図である。It is sectional drawing which shows the 3rd modification of 1st Embodiment. 本技術を適用した電子機器としての撮像装置の構成例を示すブロック図である。It is a block diagram showing an example of composition of an imaging device as electronic equipment to which this art is applied. 図1の半導体装置をイメージセンサとして用いた場合の使用例を示す図である。It is a figure which shows the usage example at the time of using the semiconductor device of FIG. 1 as an image sensor. 体内情報取得システムの概略的な構成の一例を示すブロック図であるIt is a block diagram which shows an example of a schematic structure of an in-vivo information acquisition system. 内視鏡手術システムの概略的な構成の一例を示す図である。It is a figure which shows an example of a schematic structure of an endoscopic surgery system. カメラヘッド及びCCUの機能構成の一例を示すブロック図である。It is a block diagram which shows an example of a function structure of a camera head and CCU. 車両制御システムの概略的な構成の一例を示すブロック図である。It is a block diagram which shows an example of a schematic structure of a vehicle control system. 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。It is explanatory drawing which shows an example of the installation position of a vehicle exterior information detection part and an imaging part.
 以下、本技術を実施するための形態(以下、実施の形態という)について説明する。なお、説明は以下の順序で行う。
1.第1の実施の形態
2.第2の実施の形態
3.第3の実施の形態
4.第4の実施の形態
5.第5の実施の形態
6.まとめ
7.電子機器への適用例
8.イメージセンサの使用例
9.体内情報取得システムへの応用例
10.内視鏡手術システムへの応用例
11.移動体への応用例
Hereinafter, modes for carrying out the present technology (hereinafter referred to as embodiments) will be described. The description will be given in the following order.
1. First Embodiment 2. FIG. Second Embodiment 3. FIG. Third embodiment 4. 4. Fourth embodiment Fifth Embodiment Summary 7. Application example to electronic equipment8. 8. Use example of image sensor 9. Application example to in-vivo information acquisition system 10. Application example to endoscopic surgery system Application examples for moving objects
<1.第1の実施の形態>
<1.1 半導体装置の断面図>
 図1は、本技術を適用した半導体装置の第1の実施の形態に係る断面図である。
<1. First Embodiment>
<1.1 Cross Section of Semiconductor Device>
FIG. 1 is a cross-sectional view according to a first embodiment of a semiconductor device to which the present technology is applied.
 図1に示される半導体装置1は、発光機能と撮像機能の2つの機能を備える装置である。発光機能は、所定の画像を表示するディスプレイとしての機能であってもよいし、照明機能であってもよい。 The semiconductor device 1 shown in FIG. 1 is a device having two functions of a light emitting function and an imaging function. The light emitting function may be a display function for displaying a predetermined image, or may be a lighting function.
 半導体装置1は、第1の基板21と、第2の基板51の2枚の基板を積層した構造を有する。第1の基板21及び第2の基板51は、半導体として例えばシリコン(Si)を用いたシリコン基板で構成される。 The semiconductor device 1 has a structure in which two substrates of a first substrate 21 and a second substrate 51 are stacked. The first substrate 21 and the second substrate 51 are configured by a silicon substrate using, for example, silicon (Si) as a semiconductor.
 図1は、画素が行方向及び列方向の行列状に2次元配置された画素アレイ部101(図2)のうち、1画素に相当する部分の半導体装置1の断面図である。 FIG. 1 is a cross-sectional view of a portion of the semiconductor device 1 corresponding to one pixel in the pixel array unit 101 (FIG. 2) in which pixels are two-dimensionally arranged in a matrix in the row direction and the column direction.
 図1に示されるように、1画素には、G(緑)の色の光を発光するG発光部11G、R(赤)の色の光を発光するR発光部11R、B(青)の色の光を発光するB発光部11B、及び、光を受光する受光部12が、平面方向に並んで配置されている。なお、G発光部11G、R発光部11R、B発光部11B、及び、受光部12の配置は、図1の例に限定されず、任意である。 As shown in FIG. 1, each pixel includes a G light emitting unit 11G that emits light of G (green) color, an R light emitting unit 11R that emits light of R (red) color, and a B (blue) light. A B light emitting unit 11B that emits light of a color and a light receiving unit 12 that receives light are arranged side by side in the planar direction. In addition, arrangement | positioning of G light emission part 11G, R light emission part 11R, B light emission part 11B, and the light-receiving part 12 is not limited to the example of FIG. 1, It is arbitrary.
 第1の基板21の第2の基板51側に向く面(図1において下側の面)には、積層された複数の金属配線22と、その間の層間絶縁膜23とからなる配線層24が形成されている。 On the surface of the first substrate 21 facing the second substrate 51 (the lower surface in FIG. 1), there is a wiring layer 24 composed of a plurality of stacked metal wirings 22 and an interlayer insulating film 23 therebetween. Is formed.
 また、第2の基板51の第1の基板21側に向く面(図1において上側の面)にも、積層された複数の金属配線52と、その間の層間絶縁膜53とからなる配線層54が形成されている。金属配線22と金属配線52の材料には、例えば、銅(Cu)、タングステン(W)、アルミニウム(Al)等が用いられる。 A wiring layer 54 including a plurality of stacked metal wirings 52 and an interlayer insulating film 53 therebetween is also provided on the surface of the second substrate 51 facing the first substrate 21 (the upper surface in FIG. 1). Is formed. For example, copper (Cu), tungsten (W), aluminum (Al), or the like is used as a material for the metal wiring 22 and the metal wiring 52.
 第1の基板21の配線層24と第2の基板51の配線層54は、一部の領域で金属配線どうしが直接接合されることにより、電気的に接続されている。図1の例では、金属配線22-1と金属配線52-1がCu-Cu接合により電気的に接続されている。また、金属配線22-2と金属配線52-2、及び、金属配線22-3と金属配線52-3が、Cu-Cu接合により電気的に接続されている。 The wiring layer 24 of the first substrate 21 and the wiring layer 54 of the second substrate 51 are electrically connected by directly joining metal wirings in a part of the region. In the example of FIG. 1, the metal wiring 22-1 and the metal wiring 52-1 are electrically connected by Cu—Cu bonding. Further, the metal wiring 22-2 and the metal wiring 52-2, and the metal wiring 22-3 and the metal wiring 52-3 are electrically connected by Cu—Cu bonding.
 第1の基板21と配線層24との界面には、1.0乃至1.8V程度の低電圧で駆動される低電圧トランジスタTraと、第1の基板21内の受光部12の領域に形成されたフォトダイオード(PD)25を駆動するPD駆動トランジスタTrbが形成されている。フォトダイオード25は、入射された光を電気信号に変換(光電変換)する光電変換部である。PD駆動トランジスタTrbは、低電圧トランジスタTraよりも高電圧の、例えば2.0乃至4.0V程度で駆動される。PD駆動トランジスタTrb及び低電圧トランジスタTraは、一般的なCMOSプロセスで形成されるCMOSトランジスタである。 At the interface between the first substrate 21 and the wiring layer 24, a low voltage transistor Tra driven at a low voltage of about 1.0 to 1.8V and a photo formed in the region of the light receiving portion 12 in the first substrate 21. A PD drive transistor Trb for driving the diode (PD) 25 is formed. The photodiode 25 is a photoelectric conversion unit that converts incident light into an electrical signal (photoelectric conversion). The PD drive transistor Trb is driven at a higher voltage than the low voltage transistor Tra, for example, about 2.0 to 4.0V. The PD drive transistor Trb and the low voltage transistor Tra are CMOS transistors formed by a general CMOS process.
 第1の基板21内には、G発光部11G、R発光部11R、及び、B発光部11Bの各領域に、第1の基板21を貫通する貫通電極26が形成され、貫通電極26の外側には、貫通電極26と第1の基板21とを絶縁するための絶縁膜27が形成されている。また、第1の基板21内のG発光部11G、R発光部11R、B発光部11B、及び、受光部12の境界には、STI(Shallow Trench Isolation)28が形成されている。 In the first substrate 21, a through electrode 26 penetrating the first substrate 21 is formed in each region of the G light emitting unit 11 G, the R light emitting unit 11 R, and the B light emitting unit 11 B. An insulating film 27 for insulating the through electrode 26 and the first substrate 21 is formed. Further, STI (Shallow Trench Isolation) 28 is formed at the boundary between the G light emitting portion 11G, the R light emitting portion 11R, the B light emitting portion 11B, and the light receiving portion 12 in the first substrate 21.
 第1の基板21の配線層24が形成された面と反対側の面(図1において上側の面)には、暗電流の発生を抑制するための負の固定電荷を有する固定電荷膜31と、絶縁膜32及び33が積層されている。 On the surface opposite to the surface on which the wiring layer 24 of the first substrate 21 is formed (the upper surface in FIG. 1), there is a fixed charge film 31 having a negative fixed charge for suppressing the generation of dark current. The insulating films 32 and 33 are laminated.
 絶縁膜32及び33の上側には、下部電極41、有機EL膜(発光素子)42、及び、上部電極43を積層して構成される発光層40が配置されている。下部電極41は、金属材料で形成され、上部電極43は、光を透過する透明電極とされる。下部電極41は、例えば、アノード電極であり、上部電極43は、カソード電極である。なお、下部電極41と上部電極43の極性は逆としてもよい。 On the upper side of the insulating films 32 and 33, a light emitting layer 40 formed by laminating a lower electrode 41, an organic EL film (light emitting element) 42, and an upper electrode 43 is disposed. The lower electrode 41 is made of a metal material, and the upper electrode 43 is a transparent electrode that transmits light. The lower electrode 41 is, for example, an anode electrode, and the upper electrode 43 is a cathode electrode. The polarities of the lower electrode 41 and the upper electrode 43 may be reversed.
 中間層としての有機EL膜42は、多種多様な有機膜の組み合わせが考えられる。正孔注入層(HIL:Hole Injection Layer)、正孔輸送層(HTL:Hole Transport Layer)、有機発光層(EML:Emission Layer)、電子輸送層(ETL:Electron Transport Layer)、電子注入層(EIL:Electron Injection Layer)などが単一あるいは複合の構造で積層されて形成されるのが一般的である。使用される有機材料の例として、フタロシアニン系(Phthalocyanine)、有機イオン系(Metal organometallic complexes)、トリフェニルアミン系(Triarylamines)、メタルヒドロキシキノレート系(Metal 8-hydroxyquionlates)、フラーレン型(Fullerene)などが挙げられる。 The organic EL film 42 as the intermediate layer can be a combination of various organic films. Hole injection layer (HIL: Hole Injection Layer), hole transport layer (HTL: Hole Transport Layer), organic light emitting layer (EML: Emission Transport Layer), electron transport layer (ETL: Electron Transport Layer), electron injection layer (EIL) : Electron Injection Layer) or the like is generally laminated by a single or composite structure. Examples of organic materials used include phthalocyanines, organic ions (Metal organometallic complexes), triphenylamines (Triarylamines), metal hydroxyquinolates (Metal 8-hydroxyquionlates), fullerenes, etc. Is mentioned.
 下部電極41は、G発光部11G、R発光部11R、及び、B発光部11Bごとに分離して形成されており、それぞれ、下部電極41G、下部電極41R、下部電極41Bとされている。発光層40では、貫通電極26を介して第2の基板51から伝送されてくる駆動信号に基づいて、G発光部11G、R発光部11R、及び、B発光部11Bごとに、発光が制御される。 The lower electrode 41 is formed separately for each of the G light emitting part 11G, the R light emitting part 11R, and the B light emitting part 11B, and is a lower electrode 41G, a lower electrode 41R, and a lower electrode 41B, respectively. In the light emitting layer 40, light emission is controlled for each of the G light emitting unit 11G, the R light emitting unit 11R, and the B light emitting unit 11B based on the drive signal transmitted from the second substrate 51 through the through electrode 26. The
 G発光部11Gの発光層40(上部電極43)の上側には、平坦化膜44を介してGのカラーフィルタ45Gが形成されており、発光層40が白色の発光をしたとき、G発光部11Gは、Gの色で発光する。同様に、R発光部11Rの上側にはRのカラーフィルタ45R、B発光部11Bの上側にはBのカラーフィルタ45Bが形成されており、R発光部11RはRの色で発光し、B発光部11Bは、Bの色で発光する。 A G color filter 45G is formed on the upper side of the light emitting layer 40 (upper electrode 43) of the G light emitting portion 11G via a planarizing film 44. When the light emitting layer 40 emits white light, the G light emitting portion 11G emits light in G color. Similarly, an R color filter 45R is formed above the R light emitting unit 11R, and a B color filter 45B is formed above the B light emitting unit 11B. The R light emitting unit 11R emits light of R color and emits B light. The unit 11B emits light in the B color.
 平坦化膜44、並びに、カラーフィルタ45G、45R、及び、45Bの上面には、保護膜46が形成されている。 A protective film 46 is formed on the planarization film 44 and the upper surfaces of the color filters 45G, 45R, and 45B.
 また、受光部12において、発光層40が形成されている面と同一平面上であって、第1の基板21内に形成されたフォトダイオード25の上側には、入射光をフォトダイオード25に集光するオンチップレンズ47が配置されている。オンチップレンズ47の上面は、平坦化膜44で覆われ、側方の周囲には、遮光壁48が形成されている。第1の基板21内のフォトダイオード25の外周にも、遮光壁49を備える。遮光壁48及び49は、外部からの光の影響を受けないように、光を遮断する。 In the light receiving unit 12, incident light is collected on the photodiode 25 on the same plane as the surface on which the light emitting layer 40 is formed and above the photodiode 25 formed in the first substrate 21. An on-chip lens 47 that emits light is disposed. The upper surface of the on-chip lens 47 is covered with a planarizing film 44, and a light shielding wall 48 is formed around the side. A light shielding wall 49 is also provided on the outer periphery of the photodiode 25 in the first substrate 21. The light shielding walls 48 and 49 block light so as not to be affected by light from the outside.
 一方、第2の基板51と配線層54との界面には、1.0乃至1.8V程度の低電圧で駆動される低電圧トランジスタTrcと、発光層40を駆動する発光駆動トランジスタTrdが形成されている。発光駆動トランジスタTrd及び低電圧トランジスタTrcは、一般的なCMOSプロセスで形成されるCMOSトランジスタである。 On the other hand, at the interface between the second substrate 51 and the wiring layer 54, a low voltage transistor Trc driven at a low voltage of about 1.0 to 1.8V and a light emission driving transistor Trd for driving the light emitting layer 40 are formed. . The light emission drive transistor Trd and the low voltage transistor Trc are CMOS transistors formed by a general CMOS process.
 発光駆動トランジスタTrdは、G発光部11G、R発光部11R、及び、B発光部11Bの発光部11ごとに形成され、低電圧トランジスタTrcよりも高電圧の、例えば10V程度で駆動される。図1では、発光駆動トランジスタTrdは、各画素のR,G,B単位に形成されているが、隣接する複数画素のR,G,B単位に1つだけ配置されるようにして、1つの発光駆動トランジスタTrdが複数画素の同色の発光部11を駆動する形態とすることも可能である。G発光部11G、R発光部11R、B発光部11B、及び、受光部12の境界には、STI55が形成されている。 The light emission drive transistor Trd is formed for each of the light emitting units 11 of the G light emitting unit 11G, the R light emitting unit 11R, and the B light emitting unit 11B, and is driven at a higher voltage than the low voltage transistor Trc, for example, about 10V. In FIG. 1, the light emission drive transistor Trd is formed in units of R, G, B of each pixel, but only one is arranged in units of R, G, B of adjacent pixels. It is also possible to adopt a form in which the light emission drive transistor Trd drives the light emitting units 11 of the same color of a plurality of pixels. An STI 55 is formed at the boundary between the G light emitting unit 11G, the R light emitting unit 11R, the B light emitting unit 11B, and the light receiving unit 12.
 以上のように構成される半導体装置1は、フォトダイオード25(受光素子)を駆動するPD駆動トランジスタTrb(第1トランジスタ)を含む第1の基板21と、有機EL膜42(発光素子)を駆動する発光駆動トランジスタTrd(第2トランジスタ)を含む第2の基板51とを備える。第1の基板21は、フォトダイオード25及び発光層40と、第1の基板21を貫通して、第2の基板51の発光駆動トランジスタTrdからの有機EL膜42を駆動する駆動信号を伝送する貫通電極26を有する。 The semiconductor device 1 configured as described above drives the first substrate 21 including the PD drive transistor Trb (first transistor) that drives the photodiode 25 (light receiving element) and the organic EL film 42 (light emitting element). And a second substrate 51 including a light emission drive transistor Trd (second transistor). The first substrate 21 passes through the photodiode 25 and the light emitting layer 40 and the first substrate 21 and transmits a drive signal for driving the organic EL film 42 from the light emission drive transistor Trd of the second substrate 51. A through electrode 26 is provided.
 フォトダイオード25は、第1の基板21の配線層24が形成された面と反対側の面から入射された光を受光する裏面照射型の受光素子である。 The photodiode 25 is a back-illuminated light receiving element that receives light incident from the surface opposite to the surface on which the wiring layer 24 of the first substrate 21 is formed.
<1.2 半導体装置の回路構成>
 図2は、半導体装置1の第1の基板21と第2の基板51のそれぞれに形成された回路構成を示している。
<1.2 Circuit Configuration of Semiconductor Device>
FIG. 2 shows a circuit configuration formed on each of the first substrate 21 and the second substrate 51 of the semiconductor device 1.
 第1の基板21には、画素アレイ部101、定電流回路102、ADC回路103、行駆動回路104、ロジック回路105、IF回路106、電源供給回路107、及び、I/O回路108が設けられている。 The first substrate 21 is provided with a pixel array unit 101, a constant current circuit 102, an ADC circuit 103, a row drive circuit 104, a logic circuit 105, an IF circuit 106, a power supply circuit 107, and an I / O circuit 108. ing.
 画素アレイ部101には、画素100が、行方向及び列方向の行列状に周期的に配置されている。1つの画素100は、例えば、G発光部11G、R発光部11R、及び、B発光部11Bの各領域に形成された貫通電極26、受光部12の領域に形成されたフォトダイオード25やPD駆動トランジスタTrbを含む。 In the pixel array unit 101, the pixels 100 are periodically arranged in a matrix in the row direction and the column direction. One pixel 100 includes, for example, a through electrode 26 formed in each region of the G light emitting unit 11G, R light emitting unit 11R, and B light emitting unit 11B, a photodiode 25 formed in the region of the light receiving unit 12, and PD driving. Includes transistor Trb.
 定電流回路102は、画素アレイ部101の各画素列に対応して1つの負荷トランジスタ(MOSトランジスタ)を有し、画素回路内のトランジスタとソースフォロワ回路を構成する。 The constant current circuit 102 has one load transistor (MOS transistor) corresponding to each pixel column of the pixel array unit 101, and constitutes a transistor and a source follower circuit in the pixel circuit.
 ADC回路103は、画素アレイ部101の各画素列に対応して1つのADC(Analog-Digital Converter)を有し、同列の画素から出力される画素信号を、CDS(Correlated Double Sampling;相関2重サンプリング)処理し、さらにAD変換処理する。 The ADC circuit 103 has one ADC (Analog-Digital Converter) corresponding to each pixel column of the pixel array unit 101, and converts a pixel signal output from the pixels in the same column into a CDS (Correlated Double Double Sampling). Sampling) processing and AD conversion processing.
 行駆動回路104は、画素アレイ部101の各画素100の低電圧トランジスタTra及びPD駆動トランジスタTrbを駆動し、フォトダイオード25での受光期間(露光期間)や、ADC回路103への画素信号の出力を制御する。 The row driving circuit 104 drives the low voltage transistor Tra and the PD driving transistor Trb of each pixel 100 of the pixel array unit 101, and receives a light receiving period (exposure period) at the photodiode 25 and outputs a pixel signal to the ADC circuit 103. To control.
 ロジック回路105及びIF回路106は、外部から入力された入力信号の信号変換処理や、画素アレイ部101で生成された画素信号の信号変換処理や演算処理などを行う。 The logic circuit 105 and the IF circuit 106 perform signal conversion processing of input signals input from the outside, signal conversion processing of pixel signals generated by the pixel array unit 101, arithmetic processing, and the like.
 電源供給回路107は、I/O回路108を介して供給された電源を所定の電源電圧に変換し、第1の基板21と第2の基板51の各部へ供給する。I/O回路108は、外部との信号の入出力を行う。 The power supply circuit 107 converts the power supplied via the I / O circuit 108 into a predetermined power supply voltage and supplies it to each part of the first substrate 21 and the second substrate 51. The I / O circuit 108 performs input / output of signals with the outside.
 第2の基板51には、画素アレイ部121、垂直駆動回路122、水平駆動回路123、ロジック回路124及び125、IF回路126、並びに、I/O回路127が設けられている。 The second substrate 51 is provided with a pixel array unit 121, a vertical drive circuit 122, a horizontal drive circuit 123, logic circuits 124 and 125, an IF circuit 126, and an I / O circuit 127.
 画素アレイ部121には、第1の基板21の画素アレイ部101の画素100と対応するように、画素100毎に、G発光部11G、R発光部11R、及び、B発光部11Bの各領域に形成された有機EL膜42を駆動する駆動信号を出力する発光駆動トランジスタTrdや低電圧トランジスタTrcが配置されている。発光駆動トランジスタTrdから出力された駆動信号は、第2の基板51の配線層54、第1の基板21の配線層24、貫通電極26の順に伝送され、発光層40の下部電極41に供給される。 In the pixel array unit 121, each region of the G light emitting unit 11G, the R light emitting unit 11R, and the B light emitting unit 11B is provided for each pixel 100 so as to correspond to the pixel 100 of the pixel array unit 101 of the first substrate 21. A light emission driving transistor Trd and a low voltage transistor Trc for outputting a driving signal for driving the organic EL film 42 formed in the above are disposed. The drive signal output from the light emission drive transistor Trd is transmitted in the order of the wiring layer 54 of the second substrate 51, the wiring layer 24 of the first substrate 21, and the through electrode 26, and is supplied to the lower electrode 41 of the light emitting layer 40. The
 垂直駆動回路122は、各画素100の垂直方向の駆動タイミングを制御し、水平駆動回路123は、各画素100の水平方向の駆動タイミングを制御する。垂直駆動回路122は、各画素100の低電圧トランジスタTrcや発光駆動トランジスタTrdなどを駆動し、各画素100のG発光部11G、R発光部11R、及び、B発光部11Bの発光期間を制御する。 The vertical drive circuit 122 controls the drive timing of each pixel 100 in the vertical direction, and the horizontal drive circuit 123 controls the drive timing of each pixel 100 in the horizontal direction. The vertical drive circuit 122 drives the low voltage transistor Trc, the light emission drive transistor Trd, and the like of each pixel 100, and controls the light emission periods of the G light emission unit 11G, the R light emission unit 11R, and the B light emission unit 11B of each pixel 100. .
 ロジック回路124及び125並びにIF回路126は、外部から入力された入力信号から駆動信号への信号変換処理や所定の演算処理などを行う。I/O回路127は、外部との信号の入出力を行う。 The logic circuits 124 and 125 and the IF circuit 126 perform a signal conversion process from an input signal input from the outside to a drive signal, a predetermined calculation process, and the like. The I / O circuit 127 performs input / output of signals with the outside.
 以上のように半導体装置1では、撮像機能を制御する制御回路は第1の基板21に配置され、発光機能を制御する制御回路は第2の基板51に配置されている。 As described above, in the semiconductor device 1, the control circuit that controls the imaging function is disposed on the first substrate 21, and the control circuit that controls the light emitting function is disposed on the second substrate 51.
 撮像機能と発光機能は、異なる動作タイミング・動作電圧で駆動される。例えば、フォトダイオード25を駆動するPD駆動トランジスタTrbは、例えば2.0乃至4.0V程度の駆動電圧で駆動され、有機EL膜42を駆動する発光駆動トランジスタTrdは、例えば10V程度の駆動電圧で駆動される。動作電圧の異なる回路を同一基板上に形成すると、相互干渉を起こす懸念があるが、半導体装置1は、第1の基板21と第2の基板51の異なる基板に分けて配置しているので、相互干渉を受けず、ロバストな構造を実現することができる。 The imaging function and the light emitting function are driven with different operation timings and operating voltages. For example, the PD drive transistor Trb that drives the photodiode 25 is driven with a drive voltage of about 2.0 to 4.0 V, for example, and the light emission drive transistor Trd that drives the organic EL film 42 has a drive voltage of about 10 V, for example. Driven. When circuits having different operating voltages are formed on the same substrate, there is a concern that mutual interference occurs. However, since the semiconductor device 1 is arranged separately on different substrates of the first substrate 21 and the second substrate 51, A robust structure can be realized without mutual interference.
 フォトダイオード25と発光層40(有機EL膜42)は第1の基板21に平面方向に配列させつつも、撮像機能を制御する制御回路を第1の基板21に配置し、発光機能を制御する制御回路を第2の基板51に配置した積層構造とし、有機EL膜42を駆動する駆動信号を、有機EL膜42の下方から上方へ貫通電極26を用いて直接伝送することで、駆動信号を伝送する配線スペースを省略することができ、これにより、チップ全体の面積を縮小することができる。すなわち、さらなる微細化を実現することができる。 While the photodiode 25 and the light emitting layer 40 (organic EL film 42) are arranged on the first substrate 21 in the planar direction, a control circuit for controlling the imaging function is arranged on the first substrate 21 to control the light emitting function. The control circuit is arranged on the second substrate 51, and the driving signal for driving the organic EL film 42 is directly transmitted from the lower side to the upper side of the organic EL film 42 by using the through electrode 26, whereby the driving signal is transmitted. The wiring space for transmission can be omitted, thereby reducing the area of the entire chip. That is, further miniaturization can be realized.
<1.3 製造方法>
 図3乃至図13を参照して、図1に示した断面構成の半導体装置1の製造方法について説明する。
<1.3 Manufacturing method>
A method for manufacturing the semiconductor device 1 having the cross-sectional configuration shown in FIG. 1 will be described with reference to FIGS.
 初めに、配線層を形成するまでの工程が、第1の基板21と第2の基板51のそれぞれにおいて独立して実行される。 First, the process until the wiring layer is formed is performed independently on each of the first substrate 21 and the second substrate 51.
 具体的には、図3に示されるように、第1の基板21に対しては、一方の界面にSTI28や低電圧トランジスタTra及びPD駆動トランジスタTrb、フォトダイオード(PD)25などが形成された後、複数の金属配線22と、その間の層間絶縁膜23とからなる配線層24が形成される。配線層24の最上層には、第2の基板51の金属配線52と電気的に接続するための金属配線22が、必要数、必要位置に形成されている。 Specifically, as shown in FIG. 3, the STI 28, the low voltage transistor Tra, the PD driving transistor Trb, the photodiode (PD) 25, and the like are formed on one interface with respect to the first substrate 21. Thereafter, a wiring layer 24 including a plurality of metal wirings 22 and an interlayer insulating film 23 therebetween is formed. In the uppermost layer of the wiring layer 24, the necessary number and positions of the metal wirings 22 for electrical connection with the metal wirings 52 of the second substrate 51 are formed.
 金属配線22は、例えば、銅(Cu)、アルミニウム(Al)、タングステン(W)などを用いて形成され、層間絶縁膜23は、例えば、シリコン酸化膜、シリコン窒化膜などで形成される。複数の金属配線22及び層間絶縁膜23のそれぞれは、全ての階層が同一の材料で形成されていてもよし、階層によって2つ以上の材料を使い分けてもよい。図3に示される第1の基板21は、第1の基板21が薄肉化される前の状態であり、例えば、700μm程度の厚みを有する。 The metal wiring 22 is formed using, for example, copper (Cu), aluminum (Al), tungsten (W) or the like, and the interlayer insulating film 23 is formed of, for example, a silicon oxide film, a silicon nitride film, or the like. Each of the plurality of metal wirings 22 and the interlayer insulating film 23 may be formed of the same material in all layers, or two or more materials may be used depending on the layer. The first substrate 21 shown in FIG. 3 is in a state before the first substrate 21 is thinned, and has a thickness of about 700 μm, for example.
 一方、第2の基板51に対しては、一方の界面にSTI55や低電圧トランジスタTrc及び発光駆動トランジスタTrdなどが形成された後、複数の金属配線52と、その間の層間絶縁膜53とからなる配線層54が形成される。配線層54の最上層には、第1の基板21の金属配線22と電気的に接続するための金属配線52が、必要数、必要位置に形成されている。 On the other hand, after the STI 55, the low voltage transistor Trc, the light emission drive transistor Trd, and the like are formed on one interface with respect to the second substrate 51, the second substrate 51 includes a plurality of metal wirings 52 and an interlayer insulating film 53 therebetween. A wiring layer 54 is formed. In the uppermost layer of the wiring layer 54, the necessary number and positions of the metal wirings 52 for electrical connection with the metal wirings 22 of the first substrate 21 are formed.
 金属配線52は、例えば、銅(Cu)、アルミニウム(Al)、タングステン(W)などを用いて形成され、層間絶縁膜53は、例えば、シリコン酸化膜、シリコン窒化膜などで形成される。複数の金属配線52及び層間絶縁膜53のそれぞれは、全ての階層が同一の材料で形成されていてもよし、階層によって2つ以上の材料を使い分けてもよい。 The metal wiring 52 is formed using, for example, copper (Cu), aluminum (Al), tungsten (W) or the like, and the interlayer insulating film 53 is formed of, for example, a silicon oxide film, a silicon nitride film, or the like. Each of the plurality of metal wirings 52 and the interlayer insulating film 53 may be formed of the same material in all layers, or two or more materials may be used depending on the layer.
 次に、図4に示されるように、別々に製造された第1の基板21と第2の基板51が、配線層どうしが向き合うように第1の基板21が反転されて、ウエハ接合技術によって貼り合わされる。貼り合わされる配線層表面は、表面処理が施され、貼り合わせ位置がずれないようにアライメントが実施される。これにより、例えば金属配線22-1と金属配線52-1、金属配線22-2と金属配線52-2、及び、金属配線22-3と金属配線52-3のように、各配線層の最上層に形成された金属配線22と52が、例えばCu-Cu接合などの金属接合により電気的に接続される。 Next, as shown in FIG. 4, the first substrate 21 and the second substrate 51 manufactured separately are inverted so that the wiring layers face each other. It is pasted together. The surface of the wiring layer to be bonded is subjected to surface treatment, and alignment is performed so that the bonding position does not shift. As a result, for example, the metal wiring 22-1 and the metal wiring 52-1, the metal wiring 22-2 and the metal wiring 52-2, and the metal wiring 22-3 and the metal wiring 52-3 are arranged in the most The metal wirings 22 and 52 formed in the upper layer are electrically connected by metal bonding such as Cu-Cu bonding.
 次に、図5に示されるように、フォトダイオード25などが形成されている第1の基板21が、デバイス特性に影響がない程度、例えば、2乃至10μm程度に薄肉化された後、図6に示されるように、第1の基板21の表面に、暗電流の発生を抑制するための固定電荷膜31と、絶縁膜32が、例えば、プラズマCVD法などにより成膜される。 Next, as shown in FIG. 5, after the first substrate 21 on which the photodiodes 25 and the like are formed is thinned to such an extent that the device characteristics are not affected, for example, about 2 to 10 μm, FIG. As shown in FIG. 2, a fixed charge film 31 for suppressing the generation of dark current and an insulating film 32 are formed on the surface of the first substrate 21 by, for example, a plasma CVD method.
 次に、図7に示されるように、G発光部11G、R発光部11R、及び、B発光部11Bごとに、第1の基板21を貫通する貫通電極26と、貫通電極26の外側の絶縁膜27が形成される。貫通電極26及び絶縁膜27の形成方法は、まず、貫通電極26を形成する位置が開口されるようにレジストをパターニング後、ドライエッチング法により、第1の基板21に貫通孔が形成される。また、貫通孔は、配線層24の1層目の金属配線22に到達するように形成される。形成された貫通孔に、プラズマCVD法を用いて絶縁膜27を形成し、エッチバック法を用いて、配線層24の1層目の金属配線22と接続する部分の絶縁膜27を除去した後、貫通孔に銅を埋め込むことにより、貫通電極26が形成される。貫通孔に銅を埋め込む方法は、例えば、次の方法を採用することができる。まず、スパッタ法を用いて、バリアメタル膜と電界めっき用のCuシード層を形成し、必要に応じて無電解めっき法などでCuシード層が補強される。その後、電解めっき法で銅が充填された後、余剰な銅が、CMP法で除去されることで、貫通電極26が形成される。 Next, as shown in FIG. 7, for each of the G light emitting part 11G, the R light emitting part 11R, and the B light emitting part 11B, the through electrode 26 that penetrates the first substrate 21 and the insulation outside the through electrode 26 A film 27 is formed. The through electrode 26 and the insulating film 27 are formed by first patterning a resist so that a position where the through electrode 26 is formed is opened, and then forming a through hole in the first substrate 21 by dry etching. The through hole is formed so as to reach the first metal wiring 22 of the wiring layer 24. After the insulating film 27 is formed in the formed through-hole using a plasma CVD method and the portion of the insulating film 27 connected to the first metal wiring 22 of the wiring layer 24 is removed using an etch-back method. The through electrode 26 is formed by embedding copper in the through hole. As a method of embedding copper in the through hole, for example, the following method can be adopted. First, a barrier metal film and a Cu seed layer for electroplating are formed using a sputtering method, and the Cu seed layer is reinforced by an electroless plating method or the like as necessary. Thereafter, after the copper is filled by the electrolytic plating method, excess copper is removed by the CMP method, whereby the through electrode 26 is formed.
 次に、図8に示されるように、フォトダイオード25の外周に、遮光壁49が形成される。遮光壁49の材料には、貫通電極26と同様の、銅(Cu)、タングステン(W)、アルミニウム(Al)等の金属材料を用いることができる。また、遮光壁49の材料として、固定電荷膜31や絶縁膜32、その他の酸化膜を埋め込んでもよい。また、貫通電極26と同様に、内側の金属材料と外周の絶縁膜で構成してもよい。さらに、遮光壁49は、複数の絶縁膜または複数の金属膜を深さ方向に積層する構造や、絶縁膜と金属膜を深さ方向に積層する構造を採用してもよい。なお、この例では、貫通電極26と遮光壁49を別工程で形成したが、同一工程で同時に形成してもよい。 Next, as shown in FIG. 8, a light shielding wall 49 is formed on the outer periphery of the photodiode 25. As the material of the light shielding wall 49, a metal material such as copper (Cu), tungsten (W), aluminum (Al), etc., similar to the through electrode 26 can be used. Further, as the material of the light shielding wall 49, the fixed charge film 31, the insulating film 32, and other oxide films may be embedded. Further, similarly to the through electrode 26, the inner metal material and the outer insulating film may be used. Furthermore, the light shielding wall 49 may employ a structure in which a plurality of insulating films or a plurality of metal films are stacked in the depth direction, or a structure in which an insulating film and a metal film are stacked in the depth direction. In this example, the through electrode 26 and the light shielding wall 49 are formed in separate steps, but may be formed simultaneously in the same step.
 次に、図9に示されるように、貫通電極26と絶縁膜32の上面に、絶縁膜33がさらに形成された後、貫通電極26上部と、フォトダイオード25上部の絶縁膜33が除去され、開口される。なお、フォトダイオード25上部の絶縁膜33については、この工程では除去せずに、図12で説明する有機EL膜42及び上部電極43を除去する工程で、絶縁膜33も除去するようにしてもよい。 Next, as shown in FIG. 9, after an insulating film 33 is further formed on the top surfaces of the through electrode 26 and the insulating film 32, the insulating film 33 on the through electrode 26 and the photodiode 25 is removed, Opened. Note that the insulating film 33 above the photodiode 25 is not removed in this step, and the insulating film 33 is also removed in the step of removing the organic EL film 42 and the upper electrode 43 described in FIG. Good.
 次に、図10に示されるように、絶縁膜33上面に、下部電極41の材料となる金属膜が成膜された後、G発光部11G、R発光部11R、及び、B発光部11Bに相当する部分の金属膜のみを残すようにエッチングすることで、下部電極41G、41R、及び41Bが形成される。 Next, as shown in FIG. 10, after a metal film as a material of the lower electrode 41 is formed on the upper surface of the insulating film 33, the G light emitting unit 11G, the R light emitting unit 11R, and the B light emitting unit 11B are formed. The lower electrodes 41G, 41R, and 41B are formed by etching so as to leave only the corresponding portion of the metal film.
 続いて、図11に示されるように、有機EL膜42及び上部電極43が積層して形成される。上部電極43の材料には、酸化インジウム錫(ITO)、酸化亜鉛、酸化インジウム亜鉛などの透明な導電材料が用いられる。有機EL膜42の代わりに、無機膜を用いてもよい。 Subsequently, as shown in FIG. 11, the organic EL film 42 and the upper electrode 43 are laminated and formed. The upper electrode 43 is made of a transparent conductive material such as indium tin oxide (ITO), zinc oxide, or indium zinc oxide. Instead of the organic EL film 42, an inorganic film may be used.
 そして、図12に示されるように、フォトダイオード25上面の有機EL膜42及び上部電極43が除去されて開口され、そこにオンチップレンズ47と遮光壁48が形成される。オンチップレンズ47の材料には、例えば、シリコン窒化膜(SiN)、または、スチレン系樹脂、アクリル系樹脂、スチレン-アクリル共重合系樹脂、若しくはシロキサン系樹脂等の樹脂系材料が用いられる。遮光壁48の材料には、タングステン、アルミニウム等の金属材料の他、黒色樹脂(黒色有機膜)等を用いることができる。オンチップレンズ47を設けることで光の集光効率を上げることができるが、オンチップレンズ47は省略してもよい。 Then, as shown in FIG. 12, the organic EL film 42 and the upper electrode 43 on the upper surface of the photodiode 25 are removed and opened, and an on-chip lens 47 and a light shielding wall 48 are formed there. As the material of the on-chip lens 47, for example, a silicon nitride film (SiN) or a resin material such as a styrene resin, an acrylic resin, a styrene-acrylic copolymer resin, or a siloxane resin is used. As the material of the light shielding wall 48, a black resin (black organic film) or the like can be used in addition to a metal material such as tungsten or aluminum. Although the light collection efficiency can be improved by providing the on-chip lens 47, the on-chip lens 47 may be omitted.
 次に、図13に示されるように、密着性や平坦性を確保するための平坦化膜44が塗布された後、G発光部11G、R発光部11R、及び、B発光部11Bの各領域に、カラーフィルタ45G、45R、及び、45Bが形成される。カラーフィルタ45は、本実施の形態のように、R,G,Bの3原色を所定の配列(例えばベイヤ配列)で配置してもよいし、シアン(C)、マゼンタ(M)、黄色(Y)の補色や、ホワイト(全波長帯の光を透過するフィルタ)を配置してもよい。 Next, as shown in FIG. 13, after the planarization film 44 for ensuring adhesion and flatness is applied, each region of the G light emitting unit 11G, the R light emitting unit 11R, and the B light emitting unit 11B is applied. Further, color filters 45G, 45R, and 45B are formed. As in the present embodiment, the color filter 45 may arrange the three primary colors R, G, and B in a predetermined arrangement (for example, a Bayer arrangement), cyan (C), magenta (M), yellow ( A complementary color of Y) or white (a filter that transmits light in the entire wavelength band) may be disposed.
 最後に、窒化膜(SiN)や有機膜等からなる保護膜46が形成されることにより、図1の半導体装置1が完成する。なお、保護膜46は省略してもよい。 Finally, by forming a protective film 46 made of a nitride film (SiN), an organic film, or the like, the semiconductor device 1 of FIG. 1 is completed. The protective film 46 may be omitted.
<1.4 変形例>
 図14は、第1の実施の形態の第1変形例を示す断面図である。
<1.4 Modification>
FIG. 14 is a cross-sectional view showing a first modification of the first embodiment.
 図14の第1変形例においては、図1と対応する部分については同一の符号を付してあり、その部分の説明は省略して、異なる部分について説明する。 In the first modification of FIG. 14, the same reference numerals are given to the portions corresponding to FIG. 1, and the description of the portions is omitted, and different portions will be described.
 図14の第1変形例では、発光層40が形成されている面と同一平面上であって、発光単位であるG発光部11G、R発光部11R、及び、B発光部11Bの境界に、隣りからの光を遮断し、相互干渉を防止するための遮光壁201が新たに追加されている。遮光壁201の材料には、オンチップレンズ47の周囲に形成される遮光壁48と同様に、タングステン、アルミニウム等の金属材料の他、黒色樹脂(黒色有機膜)等を用いることができる。 In the first modification of FIG. 14, on the same plane as the surface on which the light emitting layer 40 is formed and at the boundary of the G light emitting unit 11G, the R light emitting unit 11R, and the B light emitting unit 11B, which are light emitting units, A light shielding wall 201 is newly added to block light from adjacent sides and prevent mutual interference. As the material of the light shielding wall 201, a black resin (black organic film) or the like can be used in addition to a metal material such as tungsten or aluminum, similarly to the light shielding wall 48 formed around the on-chip lens 47.
 G発光部11G、R発光部11R、及び、B発光部11Bの境界に遮光壁201をさらに設けることにより、発光層40の発光効率を高めることができる。 The light emission efficiency of the light emitting layer 40 can be increased by further providing a light shielding wall 201 at the boundary between the G light emitting unit 11G, the R light emitting unit 11R, and the B light emitting unit 11B.
 図15は、第1の実施の形態の第2変形例を示す断面図である。 FIG. 15 is a cross-sectional view showing a second modification of the first embodiment.
 図15の第2変形例においても、図1と対応する部分については同一の符号を付してあり、その部分の説明は省略して、異なる部分について説明する。 In the second modification of FIG. 15 as well, parts corresponding to those in FIG. 1 are denoted by the same reference numerals, description of those parts is omitted, and different parts are described.
 図15の第2変形例では、オンチップレンズ47の上方となる平坦膜44上面に、赤外光(IR)、R,G,B等の所定の波長の光のみを通過させるフィルタ211が形成されている。フィルタ211は、干渉膜や回折格子構造で構成されてもよい。オンチップレンズ47の上方に、所定の波長の光のみを通過させるフィルタ211を設けることにより、フォトダイオード25に所望の光のみを受光させることができる。なお、フィルタ211は、画素アレイ部101内の全画素に配置されてもよいし、一部の画素のみに配置されてもよい。 In the second modification of FIG. 15, a filter 211 that passes only light of a predetermined wavelength such as infrared light (IR), R, G, B, etc. is formed on the upper surface of the flat film 44 above the on-chip lens 47. Has been. The filter 211 may be configured by an interference film or a diffraction grating structure. By providing the filter 211 that allows only light of a predetermined wavelength to pass above the on-chip lens 47, the photodiode 25 can receive only desired light. Note that the filter 211 may be disposed on all the pixels in the pixel array unit 101 or may be disposed on only some of the pixels.
<2.第2の実施の形態>
 図16は、本技術を適用した半導体装置の第2の実施の形態に係る断面図である。
<2. Second Embodiment>
FIG. 16 is a cross-sectional view according to a second embodiment of a semiconductor device to which the present technology is applied.
 図16の第2の実施の形態においては、図1で示した第1の実施の形態と対応する部分については同一の符号を付してあり、その部分の説明は省略して、異なる部分について説明する。後述する第3乃至第5の実施の形態についても同様とする。 In the second embodiment of FIG. 16, the same reference numerals are given to the parts corresponding to those of the first embodiment shown in FIG. explain. The same applies to third to fifth embodiments described later.
 図16の第2の実施の形態では、第1の実施の形態において、白色(単色)の発光を行う発光膜であった有機EL膜42に代えて、R,G,Bそれぞれの色の光を発光する有機EL膜241G、241R、及び、241Bが設けられている。有機EL膜241G、241R、及び、241Bは、下部電極41G、下部電極41R、及び、下部電極41Bと同一領域に分離して形成されている。有機EL膜241G、241R、及び、241Bの間、並びに、下部電極41G、下部電極41R、及び、下部電極41Bの間は、絶縁膜242で埋められている。 In the second embodiment shown in FIG. 16, instead of the organic EL film 42 that is a light emitting film that emits white (monochromatic) light in the first embodiment, light of each color of R, G, and B is used. Organic EL films 241G, 241R, and 241B are provided. The organic EL films 241G, 241R, and 241B are separately formed in the same region as the lower electrode 41G, the lower electrode 41R, and the lower electrode 41B. Between the organic EL films 241G, 241R, and 241B and between the lower electrode 41G, the lower electrode 41R, and the lower electrode 41B are filled with an insulating film 242.
 また、図16では、発光層40の発光膜が、白色(単色)の発光をする膜から、R,G,Bそれぞれの色の光を発光する膜へ変更されたことにより、カラーフィルタ45G、45R、及び、45Bが省略されている。 In FIG. 16, the light-emitting film of the light-emitting layer 40 is changed from a film that emits white light (single color) to a film that emits light of R, G, and B colors, so that the color filter 45G, 45R and 45B are omitted.
<3.第3の実施の形態>
 図17は、本技術を適用した半導体装置の第3の実施の形態に係る断面図である。
<3. Third Embodiment>
FIG. 17 is a cross-sectional view according to a third embodiment of a semiconductor device to which the present technology is applied.
 図17の第3の実施の形態を第1の実施の形態と比較すると、第3の実施の形態では、受光部12の第1の基板21内に、深さ方向に2つのフォトダイオード25-1及び25-2が形成されている。オンチップレンズ47に近い上側のフォトダイオード25-1は、Bの光を受光する光電変換部であり、上側のフォトダイオード25-2は、Rの光を受光する光電変換部である。 When the third embodiment of FIG. 17 is compared with the first embodiment, in the third embodiment, two photodiodes 25 − are formed in the first substrate 21 of the light receiving unit 12 in the depth direction. 1 and 25-2 are formed. The upper photodiode 25-1 near the on-chip lens 47 is a photoelectric conversion unit that receives B light, and the upper photodiode 25-2 is a photoelectric conversion unit that receives R light.
 また、絶縁膜33上には、下部電極261、光電変換膜262、上部電極263、及び、絶縁膜264が、新たに追加されている。光電変換膜262は、緑の光を光電変換する膜であり、例えば、ローダーミン系色素、メラシアニン系色素、キナクリドン等を含む有機光電変換材料で形成される。光電変換膜262とそれを上下で挟む下部電極261及び上部電極263は、緑の光を光電変換する光電変換部である。下部電極261及び上部電極263は、例えば、酸化インジウム錫(ITO)膜、酸化インジウム亜鉛膜等の透明性の電極膜で形成される。 Further, on the insulating film 33, a lower electrode 261, a photoelectric conversion film 262, an upper electrode 263, and an insulating film 264 are newly added. The photoelectric conversion film 262 is a film that photoelectrically converts green light, and is formed of an organic photoelectric conversion material containing, for example, a rhodamine dye, a melocyanine dye, or quinacridone. The photoelectric conversion film 262 and the lower electrode 261 and the upper electrode 263 sandwiching the photoelectric conversion film 262 between the upper and lower sides are photoelectric conversion units that photoelectrically convert green light. The lower electrode 261 and the upper electrode 263 are formed of a transparent electrode film such as an indium tin oxide (ITO) film or an indium zinc oxide film.
 絶縁膜264は、上部電極263と発光層40の下部電極41を絶縁するために設けられている。 The insulating film 264 is provided to insulate the upper electrode 263 from the lower electrode 41 of the light emitting layer 40.
 以上のように、第1の実施の形態では、受光部12が可視光の全波長の光を受光するものであるのに対して、第3の実施の形態では、受光部12は、緑の光については第1の基板21の外側に形成された光電変換膜262で光電変換し、青と赤の光については第1の基板21内のフォトダイオード25-1及び25-2で光電変換する。 As described above, in the first embodiment, the light receiving unit 12 receives light of all wavelengths of visible light, whereas in the third embodiment, the light receiving unit 12 is green. Light is photoelectrically converted by the photoelectric conversion film 262 formed outside the first substrate 21, and blue and red light is photoelectrically converted by the photodiodes 25-1 and 25-2 in the first substrate 21. .
 なお、どの波長(色)の光をどの層で受光するかは、この例に限らず、任意に決定することができる。 Note that which wavelength (color) light is received by which layer is not limited to this example, and can be arbitrarily determined.
<4.第4の実施の形態>
 図18は、本技術を適用した半導体装置の第4の実施の形態に係る断面図である。
<4. Fourth Embodiment>
FIG. 18 is a cross-sectional view according to a fourth embodiment of a semiconductor device to which the present technology is applied.
 図18の第4の実施の形態を第1の実施の形態と比較すると、第4の実施の形態では、ガラス基板281が新たに追加されており、そのガラス基板281上に、カラーフィルタ45G、45R、及び、45Bが形成されている。 When the fourth embodiment of FIG. 18 is compared with the first embodiment, a glass substrate 281 is newly added in the fourth embodiment, and the color filter 45G, 45R and 45B are formed.
 カラーフィルタ45G、45R、及び、45Bが形成されたガラス基板281は、平坦化膜44の上方に配置される。カラーフィルタ45G、45R、及び、45Bが形成されたガラス基板281は、図18のように、所定の空隙を開けて配置してもよいし、平坦化膜44と密着させてもよい。 The glass substrate 281 on which the color filters 45G, 45R, and 45B are formed is disposed above the planarizing film 44. The glass substrate 281 on which the color filters 45G, 45R, and 45B are formed may be arranged with a predetermined gap as shown in FIG. 18, or may be in close contact with the planarization film 44.
 このように、半導体装置1は、第1の基板21及び第2の基板51の2層の積層構造の他、ガラス基板281も用いた3層の積層構造を採用することもできる。 As described above, the semiconductor device 1 can employ a three-layer structure using the glass substrate 281 in addition to the two-layer structure of the first substrate 21 and the second substrate 51.
<5.第5の実施の形態>
 図19は、本技術を適用した半導体装置の第5の実施の形態に係る断面図である。
<5. Fifth embodiment>
FIG. 19 is a cross-sectional view according to a fifth embodiment of a semiconductor device to which the present technology is applied.
 図19の第5の実施の形態を第1の実施の形態と比較すると、オンチップレンズ47が、フォトダイオード25上方の絶縁膜32上面ではなく、保護膜46上面に形成されている点が、第1の実施の形態と異なる。この場合、保護膜46には有機膜が用いられる。 Comparing the fifth embodiment of FIG. 19 with the first embodiment, the on-chip lens 47 is formed on the upper surface of the protective film 46 instead of the upper surface of the insulating film 32 above the photodiode 25. Different from the first embodiment. In this case, an organic film is used as the protective film 46.
 このように、オンチップレンズ47の形成位置は、光学設計に応じて、フォトダイオード25上方の所定の位置に配置することができる。 Thus, the formation position of the on-chip lens 47 can be arranged at a predetermined position above the photodiode 25 according to the optical design.
 例えば、図20に示されるように、絶縁膜33上面に、オンチップレンズ47が形成されるようにしてもよい。図20は、図1の第1の実施の形態に対して、オンチップレンズ47の配置を変更した例であり、図20では、オンチップレンズ47が絶縁膜33上面に配置されるのに合わせて、遮光壁49も、絶縁膜33から深さ方向に形成されている。 For example, as shown in FIG. 20, an on-chip lens 47 may be formed on the upper surface of the insulating film 33. 20 is an example in which the arrangement of the on-chip lens 47 is changed with respect to the first embodiment of FIG. 1. In FIG. 20, the on-chip lens 47 is arranged on the upper surface of the insulating film 33. The light shielding wall 49 is also formed in the depth direction from the insulating film 33.
<6.まとめ>
 上述した第1乃至第5の実施の形態に係る半導体装置1は、発光機能と撮像機能の2つの機能を備え、撮像機能(受光機能)を制御する制御回路が形成された第1の基板21と、発光機能を制御する制御回路が形成された第2の基板51の積層構造で構成されている。
<6. Summary>
The semiconductor device 1 according to the first to fifth embodiments described above has two functions of a light emitting function and an imaging function, and the first substrate 21 on which a control circuit for controlling the imaging function (light receiving function) is formed. And a laminated structure of the second substrate 51 on which a control circuit for controlling the light emitting function is formed.
 有機EL膜42の発光動作と、フォトダイオード25の受光動作は、異なるタイミングで実行されるとともに、動作電圧も異なる。半導体装置1は、発光動作の制御回路と受光動作の制御回路を、第1の基板21と第2の基板51の異なる基板に分けて配置しているので、相互干渉を受けず、ロバストな構造を実現することができる。 The light emitting operation of the organic EL film 42 and the light receiving operation of the photodiode 25 are executed at different timings, and the operating voltages are also different. In the semiconductor device 1, the control circuit for the light emitting operation and the control circuit for the light receiving operation are arranged separately on different substrates of the first substrate 21 and the second substrate 51, so that the semiconductor device 1 is robust against mutual interference. Can be realized.
 フォトダイオード25と有機EL膜42は第1の基板21に平面方向に配列させ、有機EL膜42の駆動信号は、有機EL膜42の下方から上方へ貫通電極26を用いて直接伝送することで、駆動信号を伝送する配線スペースを省略することができ、これにより、チップ全体の面積を縮小することができる。すなわち、さらなる微細化を実現することができる。 The photodiode 25 and the organic EL film 42 are arranged on the first substrate 21 in the planar direction, and the drive signal of the organic EL film 42 is directly transmitted from the lower side to the upper side of the organic EL film 42 using the through electrode 26. The wiring space for transmitting the drive signal can be omitted, and the area of the entire chip can be reduced. That is, further miniaturization can be realized.
<7.電子機器への適用例>
 上述した半導体装置1は、例えば、ヘッドマウントディスプレイやヘッドアップディスプレイなどの表示装置、デジタルスチルカメラやデジタルビデオカメラなどの撮像装置、撮像機能を備えた携帯電話機、または、撮像機能を備えたオーディオプレーヤといった各種の電子機器に適用することができる。
<7. Application example to electronic equipment>
The semiconductor device 1 described above includes, for example, a display device such as a head-mounted display and a head-up display, an imaging device such as a digital still camera and a digital video camera, a mobile phone having an imaging function, or an audio player having an imaging function. It can be applied to various electronic devices.
 図21は、本技術を適用した電子機器としての撮像装置の構成例を示すブロック図である。 FIG. 21 is a block diagram illustrating a configuration example of an imaging apparatus as an electronic apparatus to which the present technology is applied.
 図21に示される撮像装置301は、光学系302、シャッタ装置303、半導体装置304、制御回路305、信号処理回路306、モニタ307、およびメモリ308を備えて構成され、静止画像および動画像を撮像可能である。 An imaging device 301 shown in FIG. 21 includes an optical system 302, a shutter device 303, a semiconductor device 304, a control circuit 305, a signal processing circuit 306, a monitor 307, and a memory 308, and captures still images and moving images. Is possible.
 光学系302は、1枚または複数枚のレンズを有して構成され、被写体からの光(入射光)を半導体装置304に導き、半導体装置304の受光面に結像させる。 The optical system 302 includes one or a plurality of lenses, guides light (incident light) from the subject to the semiconductor device 304 and forms an image on the light receiving surface of the semiconductor device 304.
 シャッタ装置303は、光学系302および半導体装置304の間に配置され、制御回路305の制御に従って、半導体装置304への光照射期間および遮光期間を制御する。 The shutter device 303 is disposed between the optical system 302 and the semiconductor device 304, and controls the light irradiation period and the light shielding period to the semiconductor device 304 according to the control of the control circuit 305.
 半導体装置304は、上述した半導体装置1により構成される。半導体装置304は、光学系302およびシャッタ装置303を介して受光面に結像される光に応じて、一定期間、信号電荷を蓄積する。半導体装置304に蓄積された信号電荷は、制御回路305から供給される駆動信号(タイミング信号)に従って転送される。また、半導体装置304は、制御回路305から供給される駆動信号(タイミング信号)に従って、所定のタイミングで発光する。半導体装置304の発光は、照明機能として利用されてもよいし、表示機能として利用されてもよい。 The semiconductor device 304 is configured by the semiconductor device 1 described above. The semiconductor device 304 accumulates signal charges for a certain period according to the light imaged on the light receiving surface via the optical system 302 and the shutter device 303. The signal charge accumulated in the semiconductor device 304 is transferred according to a drive signal (timing signal) supplied from the control circuit 305. The semiconductor device 304 emits light at a predetermined timing in accordance with a drive signal (timing signal) supplied from the control circuit 305. The light emission of the semiconductor device 304 may be used as an illumination function or a display function.
 半導体装置304は、それ単体でワンチップとして構成されてもよいし、光学系302ないし信号処理回路306などと一緒にパッケージングされたカメラモジュールの一部として構成されてもよい。 The semiconductor device 304 may be configured as a single chip as a single unit, or may be configured as a part of a camera module packaged together with the optical system 302 or the signal processing circuit 306.
 制御回路305は、半導体装置304の転送動作、および、シャッタ装置303のシャッタ動作を制御する駆動信号を出力して、半導体装置304およびシャッタ装置303を駆動する。 The control circuit 305 outputs drive signals for controlling the transfer operation of the semiconductor device 304 and the shutter operation of the shutter device 303 to drive the semiconductor device 304 and the shutter device 303.
 信号処理回路306は、半導体装置304から出力された画素信号に対して各種の信号処理を施す。信号処理回路306が信号処理を施すことにより得られた画像(画像データ)は、モニタ307に供給されて表示されたり、メモリ308に供給されて記憶(記録)されたりする。 The signal processing circuit 306 performs various signal processing on the pixel signal output from the semiconductor device 304. An image (image data) obtained by the signal processing by the signal processing circuit 306 is supplied to the monitor 307 and displayed, or supplied to the memory 308 and stored (recorded).
 上述したように、半導体装置304として、上述した各実施の形態を適用した半導体装置1を用いることで、発光機能と撮像機能を実現しつつ、微細化を実現することができる。従って、ビデオカメラやデジタルスチルカメラ、さらには携帯電話機等のモバイル機器向けカメラモジュールなどの撮像装置301においても、発光機能と撮像機能を備え、装置の小型化を実現することができる。 As described above, by using the semiconductor device 1 to which the above-described embodiments are applied as the semiconductor device 304, miniaturization can be realized while realizing a light emitting function and an imaging function. Therefore, the imaging device 301 such as a video camera, a digital still camera, or a camera module for mobile devices such as a mobile phone can also be provided with a light emitting function and an imaging function, and downsizing of the device can be realized.
<8.イメージセンサの使用例>
 図22は、上述の半導体装置1をイメージセンサとして用いた場合の使用例を示す図である。
<8. Examples of using image sensors>
FIG. 22 is a diagram illustrating a usage example when the above-described semiconductor device 1 is used as an image sensor.
 上述の半導体装置1を用いたイメージセンサは、例えば、以下のように、可視光や、赤外光、紫外光、X線等の光をセンシングする様々なケースに使用することができる。 The image sensor using the semiconductor device 1 described above can be used in various cases for sensing light such as visible light, infrared light, ultraviolet light, and X-ray as follows.
 ・ディジタルカメラや、カメラ機能付きの携帯機器等の、鑑賞の用に供される画像を撮影する装置
 ・自動停止等の安全運転や、運転者の状態の認識等のために、自動車の前方や後方、周囲、車内等を撮影する車載用センサ、走行車両や道路を監視する監視カメラ、車両間等の測距を行う測距センサ等の、交通の用に供される装置
 ・ユーザのジェスチャを撮影して、そのジェスチャに従った機器操作を行うために、TVや、冷蔵庫、エアーコンディショナ等の家電に供される装置
 ・内視鏡や、赤外光の受光による血管撮影を行う装置等の、医療やヘルスケアの用に供される装置
 ・防犯用途の監視カメラや、人物認証用途のカメラ等の、セキュリティの用に供される装置
 ・肌を撮影する肌測定器や、頭皮を撮影するマイクロスコープ等の、美容の用に供される装置
 ・スポーツ用途等向けのアクションカメラやウェアラブルカメラ等の、スポーツの用に供される装置
 ・畑や作物の状態を監視するためのカメラ等の、農業の用に供される装置
・ Devices for taking images for viewing, such as digital cameras and mobile devices with camera functions ・ For safe driving such as automatic stop and recognition of the driver's condition, Devices used for traffic, such as in-vehicle sensors that capture the back, surroundings, and interiors of vehicles, surveillance cameras that monitor traveling vehicles and roads, and ranging sensors that measure distances between vehicles, etc. Equipment used for home appliances such as TVs, refrigerators, air conditioners, etc. to take pictures and operate the equipment according to the gestures ・ Endoscopes, equipment that performs blood vessel photography by receiving infrared light, etc. Equipment used for medical and health care ・ Security equipment such as security surveillance cameras and personal authentication cameras ・ Skin measuring instrument for photographing skin and scalp photography Such as a microscope to do beauty Equipment used for sports-Equipment used for sports such as action cameras and wearable cameras for sports applications-Used for agriculture such as cameras for monitoring the condition of fields and crops apparatus
<9.体内情報取得システムへの応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、カプセル型内視鏡を用いた患者の体内情報取得システムに適用されてもよい。
<9. Application example for in-vivo information acquisition system>
The technology according to the present disclosure (present technology) can be applied to various products. For example, the technology according to the present disclosure may be applied to an in-vivo information acquisition system for a patient using a capsule endoscope.
 図23は、本開示に係る技術(本技術)が適用され得る、カプセル型内視鏡を用いた患者の体内情報取得システムの概略的な構成の一例を示すブロック図である。 FIG. 23 is a block diagram illustrating an example of a schematic configuration of a patient in-vivo information acquisition system using a capsule endoscope to which the technique according to the present disclosure (present technique) can be applied.
 体内情報取得システム10001は、カプセル型内視鏡10100と、外部制御装置10200とから構成される。 The in-vivo information acquisition system 10001 includes a capsule endoscope 10100 and an external control device 10200.
 カプセル型内視鏡10100は、検査時に、患者によって飲み込まれる。カプセル型内視鏡10100は、撮像機能及び無線通信機能を有し、患者から自然排出されるまでの間、胃や腸等の臓器の内部を蠕動運動等によって移動しつつ、当該臓器の内部の画像(以下、体内画像ともいう)を所定の間隔で順次撮像し、その体内画像についての情報を体外の外部制御装置10200に順次無線送信する。 The capsule endoscope 10100 is swallowed by the patient at the time of examination. The capsule endoscope 10100 has an imaging function and a wireless communication function, and moves inside the organ such as the stomach and the intestine by peristaltic motion or the like until it is spontaneously discharged from the patient. Images (hereinafter also referred to as in-vivo images) are sequentially captured at predetermined intervals, and information about the in-vivo images is sequentially wirelessly transmitted to the external control device 10200 outside the body.
 外部制御装置10200は、体内情報取得システム10001の動作を統括的に制御する。また、外部制御装置10200は、カプセル型内視鏡10100から送信されてくる体内画像についての情報を受信し、受信した体内画像についての情報に基づいて、表示装置(図示せず)に当該体内画像を表示するための画像データを生成する。 The external control device 10200 comprehensively controls the operation of the in-vivo information acquisition system 10001. Further, the external control device 10200 receives information about the in-vivo image transmitted from the capsule endoscope 10100 and, based on the received information about the in-vivo image, displays the in-vivo image on the display device (not shown). The image data for displaying is generated.
 体内情報取得システム10001では、このようにして、カプセル型内視鏡10100が飲み込まれてから排出されるまでの間、患者の体内の様子を撮像した体内画像を随時得ることができる。 In the in-vivo information acquisition system 10001, an in-vivo image obtained by imaging the inside of the patient's body can be obtained at any time in this manner until the capsule endoscope 10100 is swallowed and discharged.
 カプセル型内視鏡10100と外部制御装置10200の構成及び機能についてより詳細に説明する。 The configurations and functions of the capsule endoscope 10100 and the external control device 10200 will be described in more detail.
 カプセル型内視鏡10100は、カプセル型の筐体10101を有し、その筐体10101内には、光源部10111、撮像部10112、画像処理部10113、無線通信部10114、給電部10115、電源部10116、及び制御部10117が収納されている。 The capsule endoscope 10100 includes a capsule-type casing 10101. In the casing 10101, a light source unit 10111, an imaging unit 10112, an image processing unit 10113, a wireless communication unit 10114, a power supply unit 10115, and a power supply unit 10116 and the control unit 10117 are stored.
 光源部10111は、例えばLED(Light Emitting Diode)等の光源から構成され、撮像部10112の撮像視野に対して光を照射する。 The light source unit 10111 is composed of a light source such as an LED (Light Emitting Diode), for example, and irradiates the imaging field of the imaging unit 10112 with light.
 撮像部10112は、撮像素子、及び当該撮像素子の前段に設けられる複数のレンズからなる光学系から構成される。観察対象である体組織に照射された光の反射光(以下、観察光という)は、当該光学系によって集光され、当該撮像素子に入射する。撮像部10112では、撮像素子において、そこに入射した観察光が光電変換され、その観察光に対応する画像信号が生成される。撮像部10112によって生成された画像信号は、画像処理部10113に提供される。 The image capturing unit 10112 includes an image sensor and an optical system including a plurality of lenses provided in front of the image sensor. Reflected light (hereinafter referred to as observation light) of light irradiated on the body tissue to be observed is collected by the optical system and enters the image sensor. In the imaging unit 10112, in the imaging element, the observation light incident thereon is photoelectrically converted, and an image signal corresponding to the observation light is generated. The image signal generated by the imaging unit 10112 is provided to the image processing unit 10113.
 画像処理部10113は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等のプロセッサによって構成され、撮像部10112によって生成された画像信号に対して各種の信号処理を行う。画像処理部10113は、信号処理を施した画像信号を、RAWデータとして無線通信部10114に提供する。 The image processing unit 10113 is configured by a processor such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit), and performs various signal processing on the image signal generated by the imaging unit 10112. The image processing unit 10113 provides the radio communication unit 10114 with the image signal subjected to signal processing as RAW data.
 無線通信部10114は、画像処理部10113によって信号処理が施された画像信号に対して変調処理等の所定の処理を行い、その画像信号を、アンテナ10114Aを介して外部制御装置10200に送信する。また、無線通信部10114は、外部制御装置10200から、カプセル型内視鏡10100の駆動制御に関する制御信号を、アンテナ10114Aを介して受信する。無線通信部10114は、外部制御装置10200から受信した制御信号を制御部10117に提供する。 The wireless communication unit 10114 performs predetermined processing such as modulation processing on the image signal that has been subjected to signal processing by the image processing unit 10113, and transmits the image signal to the external control apparatus 10200 via the antenna 10114A. In addition, the wireless communication unit 10114 receives a control signal related to drive control of the capsule endoscope 10100 from the external control device 10200 via the antenna 10114A. The wireless communication unit 10114 provides a control signal received from the external control device 10200 to the control unit 10117.
 給電部10115は、受電用のアンテナコイル、当該アンテナコイルに発生した電流から電力を再生する電力再生回路、及び昇圧回路等から構成される。給電部10115では、いわゆる非接触充電の原理を用いて電力が生成される。 The power feeding unit 10115 includes a power receiving antenna coil, a power regeneration circuit that regenerates power from a current generated in the antenna coil, a booster circuit, and the like. In the power feeding unit 10115, electric power is generated using a so-called non-contact charging principle.
 電源部10116は、二次電池によって構成され、給電部10115によって生成された電力を蓄電する。図23では、図面が煩雑になることを避けるために、電源部10116からの電力の供給先を示す矢印等の図示を省略しているが、電源部10116に蓄電された電力は、光源部10111、撮像部10112、画像処理部10113、無線通信部10114、及び制御部10117に供給され、これらの駆動に用いられ得る。 The power supply unit 10116 is composed of a secondary battery, and stores the electric power generated by the power supply unit 10115. In FIG. 23, in order to avoid complication of the drawing, illustration of an arrow or the like indicating a power supply destination from the power supply unit 10116 is omitted, but the power stored in the power supply unit 10116 is stored in the light source unit 10111. The imaging unit 10112, the image processing unit 10113, the wireless communication unit 10114, and the control unit 10117 can be used for driving them.
 制御部10117は、CPU等のプロセッサによって構成され、光源部10111、撮像部10112、画像処理部10113、無線通信部10114、及び、給電部10115の駆動を、外部制御装置10200から送信される制御信号に従って適宜制御する。 The control unit 10117 includes a processor such as a CPU, and a control signal transmitted from the external control device 10200 to drive the light source unit 10111, the imaging unit 10112, the image processing unit 10113, the wireless communication unit 10114, and the power feeding unit 10115. Control accordingly.
 外部制御装置10200は、CPU,GPU等のプロセッサ、又はプロセッサとメモリ等の記憶素子が混載されたマイクロコンピュータ若しくは制御基板等で構成される。外部制御装置10200は、カプセル型内視鏡10100の制御部10117に対して制御信号を、アンテナ10200Aを介して送信することにより、カプセル型内視鏡10100の動作を制御する。カプセル型内視鏡10100では、例えば、外部制御装置10200からの制御信号により、光源部10111における観察対象に対する光の照射条件が変更され得る。また、外部制御装置10200からの制御信号により、撮像条件(例えば、撮像部10112におけるフレームレート、露出値等)が変更され得る。また、外部制御装置10200からの制御信号により、画像処理部10113における処理の内容や、無線通信部10114が画像信号を送信する条件(例えば、送信間隔、送信画像数等)が変更されてもよい。 The external control device 10200 is configured by a processor such as a CPU or GPU, or a microcomputer or a control board in which a processor and a storage element such as a memory are mounted. The external control device 10200 controls the operation of the capsule endoscope 10100 by transmitting a control signal to the control unit 10117 of the capsule endoscope 10100 via the antenna 10200A. In the capsule endoscope 10100, for example, the light irradiation condition for the observation target in the light source unit 10111 can be changed by a control signal from the external control device 10200. In addition, an imaging condition (for example, a frame rate or an exposure value in the imaging unit 10112) can be changed by a control signal from the external control device 10200. Further, the contents of processing in the image processing unit 10113 and the conditions (for example, the transmission interval, the number of transmission images, etc.) by which the wireless communication unit 10114 transmits an image signal may be changed by a control signal from the external control device 10200. .
 また、外部制御装置10200は、カプセル型内視鏡10100から送信される画像信号に対して、各種の画像処理を施し、撮像された体内画像を表示装置に表示するための画像データを生成する。当該画像処理としては、例えば現像処理(デモザイク処理)、高画質化処理(帯域強調処理、超解像処理、NR(Noise reduction)処理及び/若しくは手ブレ補正処理等)、並びに/又は拡大処理(電子ズーム処理)等、各種の信号処理を行うことができる。外部制御装置10200は、表示装置の駆動を制御して、生成した画像データに基づいて撮像された体内画像を表示させる。あるいは、外部制御装置10200は、生成した画像データを記録装置(図示せず)に記録させたり、印刷装置(図示せず)に印刷出力させてもよい。 Further, the external control device 10200 performs various image processing on the image signal transmitted from the capsule endoscope 10100, and generates image data for displaying the captured in-vivo image on the display device. As the image processing, for example, development processing (demosaic processing), high image quality processing (band enhancement processing, super-resolution processing, NR (Noise reduction) processing and / or camera shake correction processing, etc.), and / or enlargement processing ( Various signal processing such as electronic zoom processing can be performed. The external control device 10200 controls driving of the display device to display an in-vivo image captured based on the generated image data. Alternatively, the external control device 10200 may cause the generated image data to be recorded on a recording device (not shown) or may be printed out on a printing device (not shown).
 以上、本開示に係る技術が適用され得る体内情報取得システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、撮像部10112に適用され得る。具体的には、撮像部10112として、上述した各実施の形態に係る半導体装置1を適用することができる。撮像部10112に本開示に係る技術を適用することにより、カプセル型内視鏡10100をより小型化できるため、患者の負担を更に軽減することができる。また、カプセル型内視鏡10100を小型化しつつも、より鮮明な術部画像を得ることができるため、検査の精度が向上する。 Heretofore, an example of the in-vivo information acquisition system to which the technology according to the present disclosure can be applied has been described. The technology according to the present disclosure can be applied to the imaging unit 10112 among the configurations described above. Specifically, the semiconductor device 1 according to each of the above-described embodiments can be applied as the imaging unit 10112. By applying the technology according to the present disclosure to the imaging unit 10112, the capsule endoscope 10100 can be further downsized, and thus the burden on the patient can be further reduced. In addition, the size of the capsule endoscope 10100 can be reduced, and a clearer surgical part image can be obtained. Therefore, the accuracy of the examination is improved.
<10.内視鏡手術システムへの応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、内視鏡手術システムに適用されてもよい。
<10. Application example to endoscopic surgery system>
The technology according to the present disclosure (present technology) can be applied to various products. For example, the technology according to the present disclosure may be applied to an endoscopic surgery system.
 図24は、本開示に係る技術(本技術)が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。 FIG. 24 is a diagram illustrating an example of a schematic configuration of an endoscopic surgery system to which the technology (present technology) according to the present disclosure can be applied.
 図24では、術者(医師)11131が、内視鏡手術システム11000を用いて、患者ベッド11133上の患者11132に手術を行っている様子が図示されている。図示するように、内視鏡手術システム11000は、内視鏡11100と、気腹チューブ11111やエネルギー処置具11112等の、その他の術具11110と、内視鏡11100を支持する支持アーム装置11120と、内視鏡下手術のための各種の装置が搭載されたカート11200と、から構成される。 FIG. 24 shows a state in which an operator (doctor) 11131 is performing an operation on a patient 11132 on a patient bed 11133 using an endoscopic operation system 11000. As shown in the figure, an endoscopic surgery system 11000 includes an endoscope 11100, other surgical instruments 11110 such as an insufflation tube 11111 and an energy treatment instrument 11112, and a support arm device 11120 that supports the endoscope 11100. And a cart 11200 on which various devices for endoscopic surgery are mounted.
 内視鏡11100は、先端から所定の長さの領域が患者11132の体腔内に挿入される鏡筒11101と、鏡筒11101の基端に接続されるカメラヘッド11102と、から構成される。図示する例では、硬性の鏡筒11101を有するいわゆる硬性鏡として構成される内視鏡11100を図示しているが、内視鏡11100は、軟性の鏡筒を有するいわゆる軟性鏡として構成されてもよい。 The endoscope 11100 includes a lens barrel 11101 in which a region having a predetermined length from the distal end is inserted into the body cavity of the patient 11132, and a camera head 11102 connected to the proximal end of the lens barrel 11101. In the illustrated example, an endoscope 11100 configured as a so-called rigid mirror having a rigid lens barrel 11101 is illustrated, but the endoscope 11100 may be configured as a so-called flexible mirror having a flexible lens barrel. Good.
 鏡筒11101の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡11100には光源装置11203が接続されており、当該光源装置11203によって生成された光が、鏡筒11101の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者11132の体腔内の観察対象に向かって照射される。なお、内視鏡11100は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。 An opening into which the objective lens is fitted is provided at the tip of the lens barrel 11101. A light source device 11203 is connected to the endoscope 11100, and light generated by the light source device 11203 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 11101. Irradiation is performed toward the observation target in the body cavity of the patient 11132 through the lens. Note that the endoscope 11100 may be a direct endoscope, a perspective mirror, or a side endoscope.
 カメラヘッド11102の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU: Camera Control Unit)11201に送信される。 An optical system and an image sensor are provided inside the camera head 11102, and reflected light (observation light) from the observation target is condensed on the image sensor by the optical system. Observation light is photoelectrically converted by the imaging element, and an electrical signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated. The image signal is transmitted to a camera control unit (CCU: Camera Control Unit) 11201 as RAW data.
 CCU11201は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡11100及び表示装置11202の動作を統括的に制御する。さらに、CCU11201は、カメラヘッド11102から画像信号を受け取り、その画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。 The CCU 11201 is configured by a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and comprehensively controls operations of the endoscope 11100 and the display device 11202. Further, the CCU 11201 receives an image signal from the camera head 11102 and performs various kinds of image processing for displaying an image based on the image signal, such as development processing (demosaic processing), for example.
 表示装置11202は、CCU11201からの制御により、当該CCU11201によって画像処理が施された画像信号に基づく画像を表示する。 The display device 11202 displays an image based on an image signal subjected to image processing by the CCU 11201 under the control of the CCU 11201.
 光源装置11203は、例えばLED(Light Emitting Diode)等の光源から構成され、術部等を撮影する際の照射光を内視鏡11100に供給する。 The light source device 11203 is composed of a light source such as an LED (Light Emitting Diode), for example, and supplies irradiation light to the endoscope 11100 when photographing a surgical site or the like.
 入力装置11204は、内視鏡手術システム11000に対する入力インタフェースである。ユーザは、入力装置11204を介して、内視鏡手術システム11000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、内視鏡11100による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示等を入力する。 The input device 11204 is an input interface for the endoscopic surgery system 11000. A user can input various information and instructions to the endoscopic surgery system 11000 via the input device 11204. For example, the user inputs an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 11100.
 処置具制御装置11205は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具11112の駆動を制御する。気腹装置11206は、内視鏡11100による視野の確保及び術者の作業空間の確保の目的で、患者11132の体腔を膨らめるために、気腹チューブ11111を介して当該体腔内にガスを送り込む。レコーダ11207は、手術に関する各種の情報を記録可能な装置である。プリンタ11208は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。 The treatment instrument control device 11205 controls the drive of the energy treatment instrument 11112 for tissue ablation, incision, blood vessel sealing, or the like. In order to inflate the body cavity of the patient 11132 for the purpose of securing the field of view by the endoscope 11100 and securing the operator's work space, the pneumoperitoneum device 11206 passes gas into the body cavity via the pneumoperitoneum tube 11111. Send in. The recorder 11207 is an apparatus capable of recording various types of information related to surgery. The printer 11208 is a device that can print various types of information related to surgery in various formats such as text, images, or graphs.
 なお、内視鏡11100に術部を撮影する際の照射光を供給する光源装置11203は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成することができる。RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置11203において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド11102の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。 In addition, the light source device 11203 that supplies the irradiation light when the surgical site is imaged to the endoscope 11100 can be configured by, for example, a white light source configured by an LED, a laser light source, or a combination thereof. When a white light source is configured by a combination of RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. Therefore, the light source device 11203 adjusts the white balance of the captured image. It can be carried out. In this case, laser light from each of the RGB laser light sources is irradiated on the observation target in a time-sharing manner, and the drive of the image sensor of the camera head 11102 is controlled in synchronization with the irradiation timing, thereby corresponding to each RGB. It is also possible to take the images that have been taken in time division. According to this method, a color image can be obtained without providing a color filter in the image sensor.
 また、光源装置11203は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド11102の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。 Further, the driving of the light source device 11203 may be controlled so as to change the intensity of the output light every predetermined time. Synchronously with the timing of changing the intensity of the light, the drive of the image sensor of the camera head 11102 is controlled to acquire an image in a time-sharing manner, and the image is synthesized, so that high dynamic without so-called blackout and overexposure A range image can be generated.
 また、光源装置11203は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察すること(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得ること等を行うことができる。光源装置11203は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。 Further, the light source device 11203 may be configured to be able to supply light of a predetermined wavelength band corresponding to special light observation. In special light observation, for example, by utilizing the wavelength dependence of light absorption in body tissue, the surface of the mucous membrane is irradiated by irradiating light in a narrow band compared to irradiation light (ie, white light) during normal observation. A so-called narrow band imaging is performed in which a predetermined tissue such as a blood vessel is imaged with high contrast. Alternatively, in special light observation, fluorescence observation may be performed in which an image is obtained by fluorescence generated by irradiating excitation light. In fluorescence observation, the body tissue is irradiated with excitation light to observe fluorescence from the body tissue (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally administered to the body tissue and applied to the body tissue. It is possible to obtain a fluorescence image by irradiating excitation light corresponding to the fluorescence wavelength of the reagent. The light source device 11203 can be configured to be able to supply narrowband light and / or excitation light corresponding to such special light observation.
 図25は、図24に示すカメラヘッド11102及びCCU11201の機能構成の一例を示すブロック図である。 FIG. 25 is a block diagram illustrating an example of functional configurations of the camera head 11102 and the CCU 11201 illustrated in FIG.
 カメラヘッド11102は、レンズユニット11401と、撮像部11402と、駆動部11403と、通信部11404と、カメラヘッド制御部11405と、を有する。CCU11201は、通信部11411と、画像処理部11412と、制御部11413と、を有する。カメラヘッド11102とCCU11201とは、伝送ケーブル11400によって互いに通信可能に接続されている。 The camera head 11102 includes a lens unit 11401, an imaging unit 11402, a drive unit 11403, a communication unit 11404, and a camera head control unit 11405. The CCU 11201 includes a communication unit 11411, an image processing unit 11412, and a control unit 11413. The camera head 11102 and the CCU 11201 are connected to each other by a transmission cable 11400 so that they can communicate with each other.
 レンズユニット11401は、鏡筒11101との接続部に設けられる光学系である。鏡筒11101の先端から取り込まれた観察光は、カメラヘッド11102まで導光され、当該レンズユニット11401に入射する。レンズユニット11401は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。 The lens unit 11401 is an optical system provided at a connection portion with the lens barrel 11101. Observation light taken from the tip of the lens barrel 11101 is guided to the camera head 11102 and enters the lens unit 11401. The lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
 撮像部11402は、撮像素子で構成される。撮像部11402を構成する撮像素子は、1つ(いわゆる単板式)であってもよいし、複数(いわゆる多板式)であってもよい。撮像部11402が多板式で構成される場合には、例えば各撮像素子によってRGBそれぞれに対応する画像信号が生成され、それらが合成されることによりカラー画像が得られてもよい。あるいは、撮像部11402は、3D(Dimensional)表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成されてもよい。3D表示が行われることにより、術者11131は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部11402が多板式で構成される場合には、各撮像素子に対応して、レンズユニット11401も複数系統設けられ得る。 The imaging unit 11402 includes an imaging element. One (so-called single plate type) image sensor may be included in the imaging unit 11402, or a plurality (so-called multi-plate type) may be used. In the case where the imaging unit 11402 is configured as a multi-plate type, for example, image signals corresponding to RGB may be generated by each imaging element, and a color image may be obtained by combining them. Alternatively, the imaging unit 11402 may be configured to include a pair of imaging elements for acquiring right-eye and left-eye image signals corresponding to 3D (Dimensional) display. By performing the 3D display, the operator 11131 can more accurately grasp the depth of the living tissue in the surgical site. Note that in the case where the imaging unit 11402 is configured as a multi-plate type, a plurality of lens units 11401 can be provided corresponding to each imaging element.
 また、撮像部11402は、必ずしもカメラヘッド11102に設けられなくてもよい。例えば、撮像部11402は、鏡筒11101の内部に、対物レンズの直後に設けられてもよい。 Further, the imaging unit 11402 is not necessarily provided in the camera head 11102. For example, the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
 駆動部11403は、アクチュエータによって構成され、カメラヘッド制御部11405からの制御により、レンズユニット11401のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部11402による撮像画像の倍率及び焦点が適宜調整され得る。 The driving unit 11403 is configured by an actuator, and moves the zoom lens and the focus lens of the lens unit 11401 by a predetermined distance along the optical axis under the control of the camera head control unit 11405. Thereby, the magnification and the focus of the image captured by the imaging unit 11402 can be adjusted as appropriate.
 通信部11404は、CCU11201との間で各種の情報を送受信するための通信装置によって構成される。通信部11404は、撮像部11402から得た画像信号をRAWデータとして伝送ケーブル11400を介してCCU11201に送信する。 The communication unit 11404 is configured by a communication device for transmitting and receiving various types of information to and from the CCU 11201. The communication unit 11404 transmits the image signal obtained from the imaging unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400.
 また、通信部11404は、CCU11201から、カメラヘッド11102の駆動を制御するための制御信号を受信し、カメラヘッド制御部11405に供給する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。 Further, the communication unit 11404 receives a control signal for controlling driving of the camera head 11102 from the CCU 11201 and supplies the control signal to the camera head control unit 11405. The control signal includes, for example, information for designating the frame rate of the captured image, information for designating the exposure value at the time of imaging, and / or information for designating the magnification and focus of the captured image. Contains information about the condition.
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、ユーザによって適宜指定されてもよいし、取得された画像信号に基づいてCCU11201の制御部11413によって自動的に設定されてもよい。後者の場合には、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡11100に搭載されていることになる。 Note that the imaging conditions such as the frame rate, exposure value, magnification, and focus may be appropriately specified by the user, or may be automatically set by the control unit 11413 of the CCU 11201 based on the acquired image signal. Good. In the latter case, a so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function are mounted on the endoscope 11100.
 カメラヘッド制御部11405は、通信部11404を介して受信したCCU11201からの制御信号に基づいて、カメラヘッド11102の駆動を制御する。 The camera head control unit 11405 controls driving of the camera head 11102 based on a control signal from the CCU 11201 received via the communication unit 11404.
 通信部11411は、カメラヘッド11102との間で各種の情報を送受信するための通信装置によって構成される。通信部11411は、カメラヘッド11102から、伝送ケーブル11400を介して送信される画像信号を受信する。 The communication unit 11411 is configured by a communication device for transmitting and receiving various types of information to and from the camera head 11102. The communication unit 11411 receives an image signal transmitted from the camera head 11102 via the transmission cable 11400.
 また、通信部11411は、カメラヘッド11102に対して、カメラヘッド11102の駆動を制御するための制御信号を送信する。画像信号や制御信号は、電気通信や光通信等によって送信することができる。 Further, the communication unit 11411 transmits a control signal for controlling driving of the camera head 11102 to the camera head 11102. The image signal and the control signal can be transmitted by electrical communication, optical communication, or the like.
 画像処理部11412は、カメラヘッド11102から送信されたRAWデータである画像信号に対して各種の画像処理を施す。 The image processing unit 11412 performs various types of image processing on the image signal that is RAW data transmitted from the camera head 11102.
 制御部11413は、内視鏡11100による術部等の撮像、及び、術部等の撮像により得られる撮像画像の表示に関する各種の制御を行う。例えば、制御部11413は、カメラヘッド11102の駆動を制御するための制御信号を生成する。 The control unit 11413 performs various types of control related to imaging of the surgical site by the endoscope 11100 and display of a captured image obtained by imaging of the surgical site. For example, the control unit 11413 generates a control signal for controlling driving of the camera head 11102.
 また、制御部11413は、画像処理部11412によって画像処理が施された画像信号に基づいて、術部等が映った撮像画像を表示装置11202に表示させる。この際、制御部11413は、各種の画像認識技術を用いて撮像画像内における各種の物体を認識してもよい。例えば、制御部11413は、撮像画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具11112の使用時のミスト等を認識することができる。制御部11413は、表示装置11202に撮像画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させてもよい。手術支援情報が重畳表示され、術者11131に提示されることにより、術者11131の負担を軽減することや、術者11131が確実に手術を進めることが可能になる。 Further, the control unit 11413 causes the display device 11202 to display a picked-up image showing the surgical part or the like based on the image signal subjected to the image processing by the image processing unit 11412. At this time, the control unit 11413 may recognize various objects in the captured image using various image recognition techniques. For example, the control unit 11413 detects surgical tools such as forceps, specific biological parts, bleeding, mist when using the energy treatment tool 11112, and the like by detecting the shape and color of the edge of the object included in the captured image. Can be recognized. When displaying the captured image on the display device 11202, the control unit 11413 may display various types of surgery support information superimposed on the image of the surgical unit using the recognition result. Surgery support information is displayed in a superimposed manner and presented to the operator 11131, thereby reducing the burden on the operator 11131 and allowing the operator 11131 to proceed with surgery reliably.
 カメラヘッド11102及びCCU11201を接続する伝送ケーブル11400は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。 The transmission cable 11400 for connecting the camera head 11102 and the CCU 11201 is an electric signal cable corresponding to electric signal communication, an optical fiber corresponding to optical communication, or a composite cable thereof.
 ここで、図示する例では、伝送ケーブル11400を用いて有線で通信が行われていたが、カメラヘッド11102とCCU11201との間の通信は無線で行われてもよい。 Here, in the illustrated example, communication is performed by wire using the transmission cable 11400. However, communication between the camera head 11102 and the CCU 11201 may be performed wirelessly.
 以上、本開示に係る技術が適用され得る内視鏡手術システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、カメラヘッド11102の撮像部11402に適用され得る。具体的には、撮像部11402として、上述した各実施の形態に係る半導体装置1を適用することができる。撮像部11402に本開示に係る技術を適用することにより、カメラヘッド11102を小型化しつつも、より鮮明な術部画像を得ることができる。 In the foregoing, an example of an endoscopic surgery system to which the technology according to the present disclosure can be applied has been described. The technology according to the present disclosure can be applied to the imaging unit 11402 of the camera head 11102 among the configurations described above. Specifically, the semiconductor device 1 according to each embodiment described above can be applied as the imaging unit 11402. By applying the technique according to the present disclosure to the imaging unit 11402, a clearer surgical part image can be obtained while the camera head 11102 is downsized.
 なお、ここでは、一例として内視鏡手術システムについて説明したが、本開示に係る技術は、その他、例えば、顕微鏡手術システム等に適用されてもよい。 Note that although an endoscopic surgery system has been described here as an example, the technology according to the present disclosure may be applied to, for example, a microscope surgery system and the like.
<11.移動体への応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
<11. Application example to mobile objects>
The technology according to the present disclosure (present technology) can be applied to various products. For example, the technology according to the present disclosure is realized as a device that is mounted on any type of mobile body such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, personal mobility, an airplane, a drone, a ship, and a robot. May be.
 図26は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。 FIG. 26 is a block diagram illustrating a schematic configuration example of a vehicle control system that is an example of a mobile control system to which the technology according to the present disclosure can be applied.
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図26に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。 The vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001. In the example shown in FIG. 26, the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an in-vehicle information detection unit 12040, and an integrated control unit 12050. As a functional configuration of the integrated control unit 12050, a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (interface) 12053 are illustrated.
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。 The drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs. For example, the drive system control unit 12010 includes a driving force generator for generating a driving force of a vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism that adjusts and a braking device that generates a braking force of the vehicle.
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs. For example, the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a headlamp, a back lamp, a brake lamp, a blinker, or a fog lamp. In this case, the body control unit 12020 can be input with radio waves transmitted from a portable device that substitutes for a key or signals from various switches. The body system control unit 12020 receives input of these radio waves or signals, and controls a door lock device, a power window device, a lamp, and the like of the vehicle.
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。 The vehicle outside information detection unit 12030 detects information outside the vehicle on which the vehicle control system 12000 is mounted. For example, the imaging unit 12031 is connected to the vehicle exterior information detection unit 12030. The vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image outside the vehicle and receives the captured image. The vehicle outside information detection unit 12030 may perform an object detection process or a distance detection process such as a person, a car, an obstacle, a sign, or a character on a road surface based on the received image.
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。 The imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal corresponding to the amount of received light. The imaging unit 12031 can output an electrical signal as an image, or can output it as distance measurement information. Further, the light received by the imaging unit 12031 may be visible light or invisible light such as infrared rays.
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。 The vehicle interior information detection unit 12040 detects vehicle interior information. For example, a driver state detection unit 12041 that detects a driver's state is connected to the in-vehicle information detection unit 12040. The driver state detection unit 12041 includes, for example, a camera that images the driver, and the vehicle interior information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated or it may be determined whether the driver is asleep.
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。 The microcomputer 12051 calculates a control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside / outside the vehicle acquired by the vehicle outside information detection unit 12030 or the vehicle interior information detection unit 12040, and the drive system control unit A control command can be output to 12010. For example, the microcomputer 12051 realizes an ADAS (Advanced Driver Assistance System) function including vehicle collision avoidance or impact mitigation, following traveling based on inter-vehicle distance, vehicle speed maintaining traveling, vehicle collision warning, or vehicle lane departure warning, etc. It is possible to perform cooperative control for the purpose.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 Further, the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040. It is possible to perform cooperative control for the purpose of automatic driving that autonomously travels without depending on the operation.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。 Further, the microcomputer 12051 can output a control command to the body system control unit 12020 based on information outside the vehicle acquired by the vehicle outside information detection unit 12030. For example, the microcomputer 12051 controls the headlamp according to the position of the preceding vehicle or the oncoming vehicle detected by the outside information detection unit 12030, and performs cooperative control for the purpose of anti-glare, such as switching from a high beam to a low beam. It can be carried out.
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図26の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。 The sound image output unit 12052 transmits an output signal of at least one of sound and image to an output device capable of visually or audibly notifying information to a vehicle occupant or the outside of the vehicle. In the example of FIG. 26, an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices. The display unit 12062 may include at least one of an on-board display and a head-up display, for example.
 図27は、撮像部12031の設置位置の例を示す図である。 FIG. 27 is a diagram illustrating an example of an installation position of the imaging unit 12031.
 図27では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。 27, the vehicle 12100 includes imaging units 12101, 12102, 12103, 12104, and 12105 as the imaging unit 12031.
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。 The imaging units 12101, 12102, 12103, 12104, and 12105 are provided, for example, at positions such as a front nose, a side mirror, a rear bumper, a back door, and an upper part of a windshield in the vehicle interior of the vehicle 12100. The imaging unit 12101 provided in the front nose and the imaging unit 12105 provided in the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100. The imaging units 12102 and 12103 provided in the side mirror mainly acquire an image of the side of the vehicle 12100. The imaging unit 12104 provided in the rear bumper or the back door mainly acquires an image behind the vehicle 12100. The forward images acquired by the imaging units 12101 and 12105 are mainly used for detecting a preceding vehicle or a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
 なお、図27には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。 FIG. 27 shows an example of the shooting range of the imaging units 12101 to 12104. The imaging range 12111 indicates the imaging range of the imaging unit 12101 provided in the front nose, the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided in the side mirrors, respectively, and the imaging range 12114 The imaging range of the imaging part 12104 provided in the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, an overhead image when the vehicle 12100 is viewed from above is obtained.
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。 At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information. For example, at least one of the imaging units 12101 to 12104 may be a stereo camera including a plurality of imaging elements, or may be an imaging element having pixels for phase difference detection.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 For example, the microcomputer 12051, based on the distance information obtained from the imaging units 12101 to 12104, the distance to each three-dimensional object in the imaging range 12111 to 12114 and the temporal change in this distance (relative speed with respect to the vehicle 12100). In particular, it is possible to extract, as a preceding vehicle, a three-dimensional object that travels at a predetermined speed (for example, 0 km / h or more) in the same direction as the vehicle 12100, particularly the closest three-dimensional object on the traveling path of the vehicle 12100. it can. Further, the microcomputer 12051 can set an inter-vehicle distance to be secured in advance before the preceding vehicle, and can perform automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. Thus, cooperative control for the purpose of autonomous driving or the like autonomously traveling without depending on the operation of the driver can be performed.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。 For example, the microcomputer 12051 converts the three-dimensional object data related to the three-dimensional object to other three-dimensional objects such as a two-wheeled vehicle, a normal vehicle, a large vehicle, a pedestrian, and a utility pole based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 identifies obstacles around the vehicle 12100 as obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see. The microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 is connected via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration or avoidance steering via the drive system control unit 12010, driving assistance for collision avoidance can be performed.
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。 At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays. For example, the microcomputer 12051 can recognize a pedestrian by determining whether a pedestrian is present in the captured images of the imaging units 12101 to 12104. Such pedestrian recognition is, for example, whether or not the user is a pedestrian by performing a pattern matching process on a sequence of feature points indicating the outline of an object and a procedure for extracting feature points in the captured images of the imaging units 12101 to 12104 as infrared cameras. It is carried out by the procedure for determining. When the microcomputer 12051 determines that there is a pedestrian in the captured images of the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 has a rectangular contour line for emphasizing the recognized pedestrian. The display unit 12062 is controlled so as to be superimposed and displayed. Moreover, the audio | voice image output part 12052 may control the display part 12062 so that the icon etc. which show a pedestrian may be displayed on a desired position.
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、撮像部12031に適用され得る。具体的には、撮像部12031として、上述した各実施の形態に係る半導体装置1を適用することができる。撮像部12031に本開示に係る技術を適用することにより、小型化しつつも、より見やすい撮影画像を得ることができたり、距離情報を取得することができる。また、得られた撮影画像や距離情報を用いて、ドライバの疲労を軽減したり、ドライバや車両の安全度を高めることが可能になる。 Heretofore, an example of a vehicle control system to which the technology according to the present disclosure can be applied has been described. The technology according to the present disclosure can be applied to the imaging unit 12031 among the configurations described above. Specifically, the semiconductor device 1 according to each of the above-described embodiments can be applied as the imaging unit 12031. By applying the technology according to the present disclosure to the imaging unit 12031, it is possible to obtain a captured image that is easier to see and obtain distance information while downsizing. In addition, it is possible to reduce driver fatigue and increase the safety level of the driver and the vehicle by using the obtained captured image and distance information.
 本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。 Embodiments of the present technology are not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present technology.
 例えば、上述した複数の実施の形態の全てまたは一部を任意に組み合わせた形態を採用することができる。 For example, it is possible to adopt a form in which all or some of the plurality of embodiments described above are arbitrarily combined.
 なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、本明細書に記載されたもの以外の効果があってもよい。 It should be noted that the effects described in this specification are merely examples and are not limited, and there may be effects other than those described in this specification.
 なお、本技術は以下のような構成も取ることができる。
(1)
 受光素子を駆動する第1トランジスタを含む第1の基板と、
 発光素子を駆動する第2トランジスタを含む第2の基板と
 を備え、
 前記第1の基板は、
  前記発光素子及び前記受光素子と、
  前記第1の基板を貫通して前記第2の基板からの前記発光素子の駆動信号を伝送する貫通電極と
 を有する
 半導体装置。
(2)
 前記貫通電極は、画素ごとに設けられている
 前記(1)に記載の半導体装置。
(3)
 前記貫通電極は、各画素のR,G,Bの発光色ごとに設けられている
 前記(1)または(2)に記載の半導体装置。
(4)
 前記受光素子は、前記第1の基板の配線層が形成された面と反対側の面から入射された光を受光する裏面照射型である
 前記(1)乃至(3)のいずれかに記載の半導体装置。
(5)
 前記第2の基板と前記第1の基板は、半導体基板である
 前記(1)乃至(4)のいずれかに記載の半導体装置。
(6)
 前記受光素子は、前記第1の基板内に形成されたフォトダイオードである
 前記(1)乃至(5)のいずれかに記載の半導体装置。
(7)
 前記受光素子として、前記第1の基板内に形成された2つのフォトダイオードと、前記第1の基板上に形成された光電変換膜を備える
 前記(1)乃至(5)のいずれかに記載の半導体装置。
(8)
 前記第1の基板内に形成されたフォトダイオードの外周に遮光壁を備える
 前記(1)乃至(7)のいずれかに記載の半導体装置。
(9)
 前記発光素子は、有機EL膜である
 前記(1)乃至(8)のいずれかに記載の半導体装置。
(10)
 前記発光素子は、白色光を発光し、
 前記発光素子の上側に、R,G、または、Bのカラーフィルタを備える
 前記(9)に記載の半導体装置。
(11)
 前記発光素子は、白色光を発光し、
 前記発光素子の上側に、R,G、または、Bのカラーフィルタが形成されたガラス基板を備える
 前記(9)に記載の半導体装置。
(12)
 前記発光素子は、R,G、または、Bの色の光を発光する
 前記(9)に記載の半導体装置。
(13)
 R,G、または、Bの色の発光単位の境界に、遮光壁を備える
 前記(10)乃至(12)のいずれかに記載の半導体装置。
(14)
 前記第2トランジスタと前記第1トランジスタとは、駆動電圧が異なる
 前記(1)乃至(13)のいずれかに記載の半導体装置。
(15)
 前記第2の基板と前記第1の基板は、一部の領域で各基板の配線層の金属配線どうしが直接接合されることにより、電気的に接続されている
 前記(1)乃至(14)のいずれかに記載の半導体装置。
(16)
 前記発光素子が形成されている面と同一平面上に、入射光を前記受光素子に集光するオンチップレンズを備える
 前記(1)乃至(15)のいずれかに記載の半導体装置。
(17)
 前記オンチップレンズの周囲に、遮光壁を備える
 前記(16)に記載の半導体装置。
(18)
 前記オンチップレンズの上側に、所定の波長の光のみを通過させるフィルタを備える
 前記(16)または(17)に記載の半導体装置。
(19)
 前記受光素子の受光動作と前記発光素子の発光動作は、異なるタイミングで実行される
 前記(1)乃至(18)のいずれかに記載の半導体装置。
(20)
 受光素子を駆動する第1トランジスタを含む第1の基板と、
 発光素子を駆動する第2トランジスタを含む第2の基板と
 を備え、
 前記第1の基板は、
  前記発光素子及び前記受光素子と、
  前記第1の基板を貫通して前記第2の基板からの前記発光素子の駆動信号を伝送する貫通電極と
 を有する
 半導体装置
 を備える電子機器。
In addition, this technique can also take the following structures.
(1)
A first substrate including a first transistor for driving the light receiving element;
A second substrate including a second transistor for driving the light emitting element,
The first substrate is
The light emitting element and the light receiving element;
A semiconductor device comprising: a through electrode that passes through the first substrate and transmits a drive signal of the light emitting element from the second substrate.
(2)
The semiconductor device according to (1), wherein the through electrode is provided for each pixel.
(3)
The semiconductor device according to (1) or (2), wherein the through electrode is provided for each of R, G, and B emission colors of each pixel.
(4)
The light receiving element according to any one of (1) to (3), wherein the light receiving element is a back-illuminated type that receives light incident from a surface opposite to a surface on which the wiring layer of the first substrate is formed. Semiconductor device.
(5)
The semiconductor device according to any one of (1) to (4), wherein the second substrate and the first substrate are semiconductor substrates.
(6)
The semiconductor device according to any one of (1) to (5), wherein the light receiving element is a photodiode formed in the first substrate.
(7)
The photodiode according to any one of (1) to (5), wherein the light receiving element includes two photodiodes formed in the first substrate and a photoelectric conversion film formed on the first substrate. Semiconductor device.
(8)
The semiconductor device according to any one of (1) to (7), wherein a light-shielding wall is provided on an outer periphery of the photodiode formed in the first substrate.
(9)
The semiconductor device according to any one of (1) to (8), wherein the light emitting element is an organic EL film.
(10)
The light emitting element emits white light,
The semiconductor device according to (9), further including an R, G, or B color filter on an upper side of the light emitting element.
(11)
The light emitting element emits white light,
The semiconductor device according to (9), further including a glass substrate on which an R, G, or B color filter is formed above the light emitting element.
(12)
The semiconductor device according to (9), wherein the light emitting element emits light of R, G, or B color.
(13)
The semiconductor device according to any one of (10) to (12), wherein a light shielding wall is provided at a boundary between light emitting units of R, G, or B color.
(14)
The semiconductor device according to any one of (1) to (13), wherein the second transistor and the first transistor have different driving voltages.
(15)
The second substrate and the first substrate are electrically connected by directly bonding metal wirings of the wiring layers of each substrate in a partial region. (1) to (14) The semiconductor device according to any one of the above.
(16)
The semiconductor device according to any one of (1) to (15), further including an on-chip lens that condenses incident light on the light receiving element on the same plane as the surface on which the light emitting element is formed.
(17)
The semiconductor device according to (16), wherein a light shielding wall is provided around the on-chip lens.
(18)
The semiconductor device according to (16) or (17), further including a filter that allows only light having a predetermined wavelength to pass above the on-chip lens.
(19)
The semiconductor device according to any one of (1) to (18), wherein the light receiving operation of the light receiving element and the light emitting operation of the light emitting element are executed at different timings.
(20)
A first substrate including a first transistor for driving the light receiving element;
A second substrate including a second transistor for driving the light emitting element,
The first substrate is
The light emitting element and the light receiving element;
An electronic apparatus comprising: a semiconductor device having a through electrode that passes through the first substrate and transmits a driving signal of the light emitting element from the second substrate.
 1 半導体装置, 11 発光部, 11B B発光部, 11G G発光部, 11R R発光部, 12 受光部, 21 第1の基板, 22 金属配線, 24 配線層, 25 フォトダイオード, 26 貫通電極, 40 発光層(発光素子), 41(41B,41G,41R) 下部電極, 42 有機EL膜, 43 上部電極, 45G,45R,45B カラーフィルタ, 47 オンチップレンズ, 48,49 遮光壁, 51 第2の基板, 52 金属配線, 54 配線層, 100 画素, 101 画素アレイ部, 121 画素アレイ部, 201 遮光壁, 211 フィルタ, 241G,241R,241B 有機EL膜, 261 下部電極, 262 光電変換膜, 263 上部電極, 281 ガラス基板, 301 撮像装置, 304 半導体装置 DESCRIPTION OF SYMBOLS 1 Semiconductor device, 11 light emission part, 11B B light emission part, 11G G light emission part, 11R R light emission part, 12 light receiving part, 21 1st board | substrate, 22 metal wiring, 24 wiring layers, 25 photodiode, 26 penetration electrode, 40 Light emitting layer (light emitting element), 41 (41B, 41G, 41R) lower electrode, 42 organic EL film, 43 upper electrode, 45G, 45R, 45B color filter, 47 on-chip lens, 48, 49 shading wall, 51 second Substrate, 52 metal wiring, 54 wiring layers, 100 pixels, 101 pixel array section, 121 pixel array section, 201 shading wall, 211 filter, 241G, 241R, 241B organic EL film, 261 lower electrode, 262 photoelectric conversion film, 263 upper part Electrode, 281 glass substrate, 301 Image device, 304 a semiconductor device

Claims (20)

  1.  受光素子を駆動する第1トランジスタを含む第1の基板と、
     発光素子を駆動する第2トランジスタを含む第2の基板と
     を備え、
     前記第1の基板は、
      前記発光素子及び前記受光素子と、
      前記第1の基板を貫通して前記第2の基板からの前記発光素子の駆動信号を伝送する貫通電極と
     を有する
     半導体装置。
    A first substrate including a first transistor for driving the light receiving element;
    A second substrate including a second transistor for driving the light emitting element,
    The first substrate is
    The light emitting element and the light receiving element;
    A semiconductor device comprising: a through electrode that passes through the first substrate and transmits a drive signal of the light emitting element from the second substrate.
  2.  前記貫通電極は、画素ごとに設けられている
     請求項1に記載の半導体装置。
    The semiconductor device according to claim 1, wherein the through electrode is provided for each pixel.
  3.  前記貫通電極は、各画素のR,G,Bの発光色ごとに設けられている
     請求項1に記載の半導体装置。
    The semiconductor device according to claim 1, wherein the through electrode is provided for each of R, G, and B emission colors of each pixel.
  4.  前記受光素子は、前記第1の基板の配線層が形成された面と反対側の面から入射された光を受光する裏面照射型である
     請求項1に記載の半導体装置。
    The semiconductor device according to claim 1, wherein the light receiving element is a back-illuminated type that receives light incident from a surface opposite to the surface on which the wiring layer of the first substrate is formed.
  5.  前記第2の基板と前記第1の基板は、半導体基板である
     請求項1に記載の半導体装置。
    The semiconductor device according to claim 1, wherein the second substrate and the first substrate are semiconductor substrates.
  6.  前記受光素子は、前記第1の基板内に形成されたフォトダイオードである
     請求項1に記載の半導体装置。
    The semiconductor device according to claim 1, wherein the light receiving element is a photodiode formed in the first substrate.
  7.  前記受光素子として、前記第1の基板内に形成された2つのフォトダイオードと、前記第1の基板上に形成された光電変換膜を備える
     請求項1に記載の半導体装置。
    The semiconductor device according to claim 1, comprising two photodiodes formed in the first substrate and a photoelectric conversion film formed on the first substrate as the light receiving element.
  8.  前記第1の基板内に形成されたフォトダイオードの外周に遮光壁を備える
     請求項1に記載の半導体装置。
    The semiconductor device according to claim 1, wherein a light shielding wall is provided on an outer periphery of the photodiode formed in the first substrate.
  9.  前記発光素子は、有機EL膜である
     請求項1に記載の半導体装置。
    The semiconductor device according to claim 1, wherein the light emitting element is an organic EL film.
  10.  前記発光素子は、白色光を発光し、
     前記発光素子の上側に、R,G、または、Bのカラーフィルタを備える
     請求項9に記載の半導体装置。
    The light emitting element emits white light,
    The semiconductor device according to claim 9, further comprising an R, G, or B color filter on an upper side of the light emitting element.
  11.  前記発光素子は、白色光を発光し、
     前記発光素子の上側に、R,G、または、Bのカラーフィルタが形成されたガラス基板を備える
     請求項9に記載の半導体装置。
    The light emitting element emits white light,
    The semiconductor device according to claim 9, further comprising a glass substrate on which an R, G, or B color filter is formed above the light emitting element.
  12.  前記発光素子は、R,G、または、Bの色の光を発光する
     請求項9に記載の半導体装置。
    The semiconductor device according to claim 9, wherein the light emitting element emits light of R, G, or B color.
  13.  R,G、または、Bの色の発光単位の境界に、遮光壁を備える
     請求項10に記載の半導体装置。
    The semiconductor device according to claim 10, further comprising a light shielding wall at a boundary between light emitting units of R, G, or B color.
  14.  前記第2トランジスタと前記第1トランジスタとは、駆動電圧が異なる
     請求項1に記載の半導体装置。
    The semiconductor device according to claim 1, wherein the second transistor and the first transistor have different driving voltages.
  15.  前記第2の基板と前記第1の基板は、一部の領域で各基板の配線層の金属配線どうしが直接接合されることにより、電気的に接続されている
     請求項1に記載の半導体装置。
    2. The semiconductor device according to claim 1, wherein the second substrate and the first substrate are electrically connected to each other in a partial region by directly joining metal wirings of a wiring layer of each substrate. .
  16.  前記発光素子が形成されている面と同一平面上に、入射光を前記受光素子に集光するオンチップレンズを備える
     請求項1に記載の半導体装置。
    The semiconductor device according to claim 1, further comprising an on-chip lens that condenses incident light on the light receiving element on the same plane as the surface on which the light emitting element is formed.
  17.  前記オンチップレンズの周囲に、遮光壁を備える
     請求項16に記載の半導体装置。
    The semiconductor device according to claim 16, further comprising a light shielding wall around the on-chip lens.
  18.  前記オンチップレンズの上側に、所定の波長の光のみを通過させるフィルタを備える
     請求項16に記載の半導体装置。
    The semiconductor device according to claim 16, further comprising a filter that allows only light having a predetermined wavelength to pass above the on-chip lens.
  19.  前記受光素子の受光動作と前記発光素子の発光動作は、異なるタイミングで実行される
     請求項1に記載の半導体装置。
    The semiconductor device according to claim 1, wherein the light receiving operation of the light receiving element and the light emitting operation of the light emitting element are executed at different timings.
  20.  受光素子を駆動する第1トランジスタを含む第1の基板と、
     発光素子を駆動する第2トランジスタを含む第2の基板と
     を備え、
     前記第1の基板は、
      前記発光素子及び前記受光素子と、
      前記第1の基板を貫通して前記第2の基板からの前記発光素子の駆動信号を伝送する貫通電極と
     を有する
     半導体装置
     を備える電子機器。
    A first substrate including a first transistor for driving the light receiving element;
    A second substrate including a second transistor for driving the light emitting element,
    The first substrate is
    The light emitting element and the light receiving element;
    An electronic apparatus comprising: a semiconductor device having a through electrode that passes through the first substrate and transmits a driving signal of the light emitting element from the second substrate.
PCT/JP2018/010395 2017-03-31 2018-03-16 Semiconductor device and electronic apparatus WO2018180577A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017071883A JP2018174246A (en) 2017-03-31 2017-03-31 Semiconductor device and electronic equipment
JP2017-071883 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018180577A1 true WO2018180577A1 (en) 2018-10-04

Family

ID=63675927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010395 WO2018180577A1 (en) 2017-03-31 2018-03-16 Semiconductor device and electronic apparatus

Country Status (2)

Country Link
JP (1) JP2018174246A (en)
WO (1) WO2018180577A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020075002A1 (en) * 2018-10-11 2020-04-16 株式会社半導体エネルギー研究所 Imaging device, and authentication device
EP4138140A1 (en) * 2021-08-19 2023-02-22 Commissariat à l'énergie atomique et aux énergies alternatives Method for manufacturing an optoelectronic device
FR3126256A1 (en) * 2021-08-19 2023-02-24 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method of manufacturing an optoelectronic device
US11844236B2 (en) 2019-07-12 2023-12-12 Semiconductor Energy Laboratory Co., Ltd. Functional panel, display device, input/output device, and data processing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7398794B2 (en) * 2020-02-19 2023-12-15 国立大学法人豊橋技術科学大学 Semiconductor light emitting device array

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314756A (en) * 2001-04-13 2002-10-25 Sharp Corp Display device
JP2007081203A (en) * 2005-09-15 2007-03-29 Fujifilm Corp Area sensor, image input device, and electrophotographic device and the like in which same is incorporated
JP2008241827A (en) * 2007-03-26 2008-10-09 Seiko Epson Corp Electrooptical device and electronic apparatus
JP2009005082A (en) * 2007-06-21 2009-01-08 Fujifilm Corp Imaging element and imaging apparatus
JP2010021514A (en) * 2008-07-08 2010-01-28 Samsung Mobile Display Co Ltd Organic light-emitting display device
JP2010153834A (en) * 2008-11-28 2010-07-08 Semiconductor Energy Lab Co Ltd Photosensor and display device
JP2010245506A (en) * 2009-03-19 2010-10-28 Sony Corp Semiconductor device, manufacturing method of the same, and electronic appliance
JP2013073965A (en) * 2011-09-26 2013-04-22 Toshiba Corp Photoelectric conversion device and method for manufacturing the same
JP2014127545A (en) * 2012-12-26 2014-07-07 Sony Corp Solid-state imaging element and solid-state imaging device including the same
WO2018066225A1 (en) * 2016-10-07 2018-04-12 キヤノン株式会社 Imaging display device and wearable device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314756A (en) * 2001-04-13 2002-10-25 Sharp Corp Display device
JP2007081203A (en) * 2005-09-15 2007-03-29 Fujifilm Corp Area sensor, image input device, and electrophotographic device and the like in which same is incorporated
JP2008241827A (en) * 2007-03-26 2008-10-09 Seiko Epson Corp Electrooptical device and electronic apparatus
JP2009005082A (en) * 2007-06-21 2009-01-08 Fujifilm Corp Imaging element and imaging apparatus
JP2010021514A (en) * 2008-07-08 2010-01-28 Samsung Mobile Display Co Ltd Organic light-emitting display device
JP2010153834A (en) * 2008-11-28 2010-07-08 Semiconductor Energy Lab Co Ltd Photosensor and display device
JP2010245506A (en) * 2009-03-19 2010-10-28 Sony Corp Semiconductor device, manufacturing method of the same, and electronic appliance
JP2013073965A (en) * 2011-09-26 2013-04-22 Toshiba Corp Photoelectric conversion device and method for manufacturing the same
JP2014127545A (en) * 2012-12-26 2014-07-07 Sony Corp Solid-state imaging element and solid-state imaging device including the same
WO2018066225A1 (en) * 2016-10-07 2018-04-12 キヤノン株式会社 Imaging display device and wearable device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020075002A1 (en) * 2018-10-11 2020-04-16 株式会社半導体エネルギー研究所 Imaging device, and authentication device
US11844236B2 (en) 2019-07-12 2023-12-12 Semiconductor Energy Laboratory Co., Ltd. Functional panel, display device, input/output device, and data processing device
EP4138140A1 (en) * 2021-08-19 2023-02-22 Commissariat à l'énergie atomique et aux énergies alternatives Method for manufacturing an optoelectronic device
FR3126256A1 (en) * 2021-08-19 2023-02-24 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method of manufacturing an optoelectronic device
FR3126260A1 (en) * 2021-08-19 2023-02-24 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method of manufacturing an optoelectronic device

Also Published As

Publication number Publication date
JP2018174246A (en) 2018-11-08

Similar Documents

Publication Publication Date Title
JP7439214B2 (en) Solid-state image sensor and electronic equipment
WO2018043654A1 (en) Solid-state imaging device and manufacturing method therefor, and electronic apparatus
WO2019093135A1 (en) Image capture element, method of manufacturing same, and electronic apparatus
WO2018180577A1 (en) Semiconductor device and electronic apparatus
WO2018139278A1 (en) Image-capture element, manufacturing method, and electronic device
WO2019181489A1 (en) Solid-state image capture device, method of manufacturing same, and electronic apparatus
US11990486B2 (en) Solid-state imaging device
WO2018180569A1 (en) Solid-state image capture device and electronic apparatus
WO2018074250A1 (en) Semiconductor device, manufacturing method, and electronic unit
WO2019150981A1 (en) Solid-state imaging device and method for manufacturing same, and electronic apparatus
JP2019012739A (en) Solid state imaging device and imaging apparatus
US20220392942A1 (en) Imaging device and electronic apparatus
WO2020179290A1 (en) Sensor and distance measuring instrument
JP2018206837A (en) Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus
WO2018180575A1 (en) Solid-state imaging element, electronic device, and production method
US20210167106A1 (en) Solid-state imaging device and method for manufacturing the same
WO2020162196A1 (en) Imaging device and imaging system
WO2019239754A1 (en) Solid-state imaging element, method for manufacturing solid-state imaging element, and electronic device
WO2019188131A1 (en) Semiconductor device and method for manufacturing semiconductor device
WO2022172711A1 (en) Photoelectric conversion element and electronic device
WO2018180576A1 (en) Semiconductor device, solid-state imaging device, and electronic equipment
WO2024024269A1 (en) Solid-state imaging device and method for manufacturing same
WO2024038703A1 (en) Light detection device
WO2019230243A1 (en) Imaging device
WO2019176518A1 (en) Imaging device and production method for imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775440

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775440

Country of ref document: EP

Kind code of ref document: A1