WO2018180302A1 - 共同利用料金算出システム - Google Patents

共同利用料金算出システム Download PDF

Info

Publication number
WO2018180302A1
WO2018180302A1 PCT/JP2018/008730 JP2018008730W WO2018180302A1 WO 2018180302 A1 WO2018180302 A1 WO 2018180302A1 JP 2018008730 W JP2018008730 W JP 2018008730W WO 2018180302 A1 WO2018180302 A1 WO 2018180302A1
Authority
WO
WIPO (PCT)
Prior art keywords
fee
charge
usage
user
calculation
Prior art date
Application number
PCT/JP2018/008730
Other languages
English (en)
French (fr)
Japanese (ja)
Inventor
亮 金森
Original Assignee
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学 filed Critical 国立大学法人名古屋大学
Publication of WO2018180302A1 publication Critical patent/WO2018180302A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising

Definitions

  • Patent Document 1 discloses a method for obtaining a fee distribution using as an index the difference between the actual required time when each user rides together and the required estimated time when no user rides.
  • the predetermined parameter is, for example, a boarding time and distance in the case of a taxi, and a usage time in a rental hall or the like.
  • the predetermined parameter can be arbitrarily set according to the service.
  • the calculation formula for calculating the fee is set as a function of these parameters. In machine learning, only the coefficient of the calculation formula is obtained. When calculating a fee using machine learning, the result obtained is not necessarily a function of a parameter, but according to the above aspect, a fee is obtained as a function of a parameter, so a more reasonable result There are advantages that you can get.
  • the calculation formula may use a variable other than a parameter that determines a metered fee. For example, the probability of joint use occurring in the service may be used in the calculation formula.
  • the present invention may further include a shared use control unit that determines whether to permit shared use for a service that is already being used by a user when a new use request is received. For this determination, for example, a disadvantage or loss that a user who is already using receives permission by joint use with a new user is determined, and whether or not the disadvantage or loss is within an allowable range of the user who is already using it. Depending on the method, it can be done. In addition, when there are a plurality of users already in use, it may be set as a requirement for joint use permission that a disadvantage or loss is included in the allowable range of all users. Furthermore, when there are a plurality of services that are already in use, an existing user with the smallest disadvantage or loss described above may be selected, and joint use with a new user may be permitted.
  • a shared use control unit determines whether to permit shared use for a service that is already being used by a user when a new use request is received. For this determination, for example, a disadvantage or loss that a user who
  • the occurrence probability of the carpooling may be obtained by calculating the ratio of cases where a new user rides on the mesh m out of the cases that have passed the mesh m in the past.
  • data d1, d2, and d3 in the figure and a plurality of types as shown are prepared. These are data classified according to attributes such as weather, day of the week, time zone, season or month. This is because the probability of carpooling varies depending on these attributes even in the same place.
  • the charge obtained in this way is used as the subsequent charge.
  • “Jin” in the cooperative game may be used, or the post-mortem fee may be calculated by other methods.
  • a fair gain sharing technique is a prerequisite.
  • the advance fee calculation system 10 divides teacher data into K ways in order to perform training and evaluation using a method called a cross-validation method.
  • K can be arbitrarily set, for example, it can be divided into ten.
  • the division means to group a plurality of existing teacher data, and does not mean to divide one teacher data. Further, the number of teacher data included in each divided group does not need to be exactly the same.
  • the present invention can be used to calculate a usage fee for each user in advance in a service that is shared by a plurality of users and adopts a pay-as-you-go fee.

Landscapes

  • Business, Economics & Management (AREA)
  • Strategic Management (AREA)
  • Engineering & Computer Science (AREA)
  • Accounting & Taxation (AREA)
  • Development Economics (AREA)
  • Finance (AREA)
  • Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Devices For Checking Fares Or Tickets At Control Points (AREA)
PCT/JP2018/008730 2017-03-31 2018-03-07 共同利用料金算出システム WO2018180302A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017069693A JP6548127B2 (ja) 2017-03-31 2017-03-31 共同利用料金算出システム
JP2017-069693 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018180302A1 true WO2018180302A1 (ja) 2018-10-04

Family

ID=63675492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008730 WO2018180302A1 (ja) 2017-03-31 2018-03-07 共同利用料金算出システム

Country Status (2)

Country Link
JP (1) JP6548127B2 (enrdf_load_stackoverflow)
WO (1) WO2018180302A1 (enrdf_load_stackoverflow)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112446696A (zh) * 2019-08-28 2021-03-05 本田技研工业株式会社 信息处理装置、信息处理系统、信息处理方法及存储介质
CN113362054A (zh) * 2021-06-03 2021-09-07 八维通科技有限公司 基于人工智能的城市公共交通支付的数字清分结算系统
CN117934098A (zh) * 2024-01-12 2024-04-26 北京白龙马云行科技有限公司 一种网约车费用预估的算法和装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7356822B2 (ja) * 2019-06-10 2023-10-05 日産自動車株式会社 遅延交渉の要否判断方法、遅延交渉の要否判断装置、及び遅延交渉の要否判断システム
KR102374042B1 (ko) * 2020-01-28 2022-03-14 주식회사 케이에스티모빌리티 승객 운송 서비스와 연계된 운전자 단말 및 통합 관리 서버와 그를 이용한 운행 정보 제공 및 관리 방법
KR102374043B1 (ko) * 2020-01-28 2022-03-14 주식회사 케이에스티모빌리티 승객 운송 서비스와 연계된 운행 정보 제공 시스템
JP2021128518A (ja) * 2020-02-13 2021-09-02 株式会社Mobility Technologies プログラム、利用者端末及び表示方法
JP7506485B2 (ja) * 2020-02-13 2024-06-26 Go株式会社 プログラム、利用者端末及び表示方法
JP7088252B2 (ja) * 2020-09-30 2022-06-21 沖電気工業株式会社 分配量算出装置、分配量算出方法およびプログラム
JP7553394B2 (ja) * 2021-03-30 2024-09-18 株式会社Nttドコモ 情報処理装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003233656A (ja) * 2002-02-13 2003-08-22 Aoba Asset Management:Kk タクシー相乗り支援システム
JP2003272084A (ja) * 2002-03-15 2003-09-26 Foundation For The Promotion Of Industrial Science 走行所要時間予測装置及び方法
JP2004362271A (ja) * 2003-06-04 2004-12-24 Nippon Telegr & Teleph Corp <Ntt> 相乗り乗車システム、乗車情報処理装置および相乗り乗車方法
JP2006259864A (ja) * 2005-03-15 2006-09-28 Nomura Research Institute Ltd タクシー料金を事前に決定するシステム及び方法
JP2013214167A (ja) * 2012-03-30 2013-10-17 Fujitsu Ltd 料金算出方法、料金算出プログラム及び料金算出装置
JP2014238831A (ja) * 2013-06-05 2014-12-18 富士通株式会社 輸送サービス予約方法、輸送サービス予約装置、及び輸送サービス予約プログラム
JP2016091212A (ja) * 2014-10-31 2016-05-23 富士通株式会社 相乗り料金計算プログラム、相乗り料金計算装置、及び相乗り料金計算方法
JP2016192064A (ja) * 2015-03-31 2016-11-10 三菱電機株式会社 費用予測装置およびプログラム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003233656A (ja) * 2002-02-13 2003-08-22 Aoba Asset Management:Kk タクシー相乗り支援システム
JP2003272084A (ja) * 2002-03-15 2003-09-26 Foundation For The Promotion Of Industrial Science 走行所要時間予測装置及び方法
JP2004362271A (ja) * 2003-06-04 2004-12-24 Nippon Telegr & Teleph Corp <Ntt> 相乗り乗車システム、乗車情報処理装置および相乗り乗車方法
JP2006259864A (ja) * 2005-03-15 2006-09-28 Nomura Research Institute Ltd タクシー料金を事前に決定するシステム及び方法
JP2013214167A (ja) * 2012-03-30 2013-10-17 Fujitsu Ltd 料金算出方法、料金算出プログラム及び料金算出装置
JP2014238831A (ja) * 2013-06-05 2014-12-18 富士通株式会社 輸送サービス予約方法、輸送サービス予約装置、及び輸送サービス予約プログラム
JP2016091212A (ja) * 2014-10-31 2016-05-23 富士通株式会社 相乗り料金計算プログラム、相乗り料金計算装置、及び相乗り料金計算方法
JP2016192064A (ja) * 2015-03-31 2016-11-10 三菱電機株式会社 費用予測装置およびプログラム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112446696A (zh) * 2019-08-28 2021-03-05 本田技研工业株式会社 信息处理装置、信息处理系统、信息处理方法及存储介质
CN113362054A (zh) * 2021-06-03 2021-09-07 八维通科技有限公司 基于人工智能的城市公共交通支付的数字清分结算系统
CN113362054B (zh) * 2021-06-03 2023-04-28 八维通科技有限公司 基于人工智能的城市公共交通支付的数字清分结算系统
CN117934098A (zh) * 2024-01-12 2024-04-26 北京白龙马云行科技有限公司 一种网约车费用预估的算法和装置

Also Published As

Publication number Publication date
JP2018173697A (ja) 2018-11-08
JP6548127B2 (ja) 2019-07-24

Similar Documents

Publication Publication Date Title
WO2018180302A1 (ja) 共同利用料金算出システム
Lee et al. Dynamic ridesharing: Is there a role for dedicated drivers?
US7679531B2 (en) System and method of optimizing a fixed-route transit network
Ordónez et al. Wardrop equilibria with risk-averse users
Cascetta et al. Assessment of schedule-based and frequency-based assignment models for strategic and operational planning of high-speed rail services
Qiu et al. Dynamic pricing in shared mobility on demand service
JP6375588B2 (ja) 知能型の列車スケジューリング方法
d'Orey et al. Can ride‐sharing become attractive? A case study of taxi‐sharing employing a simulation modelling approach
Monteiro et al. Optimization of carsharing fleet size to maximize the number of clients served
Tavassoli et al. Calibrating a transit assignment model using smart card data in a large-scale multi-modal transit network
Bärmann et al. A decomposition method for multiperiod railway network expansion—with a case study for Germany
Xiong et al. An integrated and personalized traveler information and incentive scheme for energy efficient mobility systems
JP7520706B2 (ja) 運行支援システムおよび運行支援方法
Lokhandwala et al. Understanding the impact of heterogeneous rider preferences on a shared autonomous vehicle system
Pham et al. A literature review on interactions between stakeholders through accessibility indicators under mobility as a service context
Gao et al. Optimal parameters of service in a public transportation market with pricing
Kumar et al. Mode choice for urban work-based daily trips: a multi-criteria decision making model using the Analytical Hierarchical Process
KR101813780B1 (ko) 모바일 택시풀링 서비스 과금 방법 및 장치
CN118506601A (zh) 基于分段预约与即时乘车的需求响应公交运营运作方法
US10989546B2 (en) Method and device for providing vehicle navigation simulation environment
Ma et al. Transit network frequency setting with multi-agent simulation to capture activity-based mode substitution
Roy Quantifying the impact of transportation network companies (tncs) on traffic congestion in san francisco
JP7721907B2 (ja) 情報処理装置
JP7158430B2 (ja) 情報処理装置、情報処理方法および情報処理プログラム
Guo et al. Design of Transit-Centric Multimodal Urban Mobility System with Autonomous Mobility-on-Demand

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776625

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18776625

Country of ref document: EP

Kind code of ref document: A1