WO2018180044A1 - 血液浄化装置及びそのプライミング方法 - Google Patents

血液浄化装置及びそのプライミング方法 Download PDF

Info

Publication number
WO2018180044A1
WO2018180044A1 PCT/JP2018/006250 JP2018006250W WO2018180044A1 WO 2018180044 A1 WO2018180044 A1 WO 2018180044A1 JP 2018006250 W JP2018006250 W JP 2018006250W WO 2018180044 A1 WO2018180044 A1 WO 2018180044A1
Authority
WO
WIPO (PCT)
Prior art keywords
infusion
pump
channel
priming
detector
Prior art date
Application number
PCT/JP2018/006250
Other languages
English (en)
French (fr)
Inventor
裕也 五反田
Original Assignee
旭化成メディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成メディカル株式会社 filed Critical 旭化成メディカル株式会社
Priority to CN201880020988.4A priority Critical patent/CN110461388B/zh
Priority to EP18774412.3A priority patent/EP3603695B1/en
Priority to JP2019508786A priority patent/JP6700481B2/ja
Publication of WO2018180044A1 publication Critical patent/WO2018180044A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3626Gas bubble detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3643Priming, rinsing before or after use

Definitions

  • the present invention relates to a blood purification apparatus and a priming method thereof.
  • blood purification treatment has been performed in which blood is taken out from a patient's body, and the etiological substances and specific white blood cells are removed from the blood and returned to the body.
  • a blood circuit for circulating blood taken out from the body and returning it to the body, and a blood purifier having a treatment material such as an adsorbent and a separation material for removing / separating a specific substance; are used.
  • JP 2005-253555 A Japanese Patent Laid-Open No. 2007-190068
  • the cleaning liquid storage part for storing the cleaning liquid may become empty.
  • an empty detector is provided in the cleaning flow path connected to the cleaning liquid reservoir, and when air bubbles are detected by this empty detector, priming is automatically stopped, and then the cleaning is performed.
  • the cleaning liquid is filled in the cleaning flow path between the drip cylinder and the cleaning liquid storage unit to remove bubbles.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to automatically remove air bubbles while maintaining the cleanliness of the device when air bubbles are detected during priming of the blood purification device. .
  • a blood purification apparatus includes a blood purification device, a washing liquid storage part in which a washing liquid is stored, a washing channel that connects the blood purification unit and the washing liquid storage unit, and a washing channel.
  • a detector for detecting bubbles Provided on the flow path between the detector and the infusion storage section, a detector for detecting bubbles, a discharge channel for communicating with the blood purifier and discharging the cleaning liquid, an infusion storage section for storing the infusion liquid, And a control unit that operates the pump to supply the infusion solution from the infusion storage unit to the cleaning solution storage unit via the detector when the detector detects bubbles.
  • the priming method according to the present invention includes a blood purifier, a cleaning liquid storage section storing cleaning liquid, a cleaning flow path connecting the blood purifier and the cleaning liquid storage section, and detecting air bubbles provided on the cleaning flow path.
  • a detector a discharge channel that communicates with the blood purifier and discharges the cleaning solution, an infusion storage unit that stores the infusion solution, and a pump that is provided on the channel between the detector and the infusion storage unit.
  • a method for priming a blood purification device wherein when a detector detects bubbles during priming, a step of operating a pump so as to supply an infusion from the infusion reservoir to the cleaning fluid reservoir via the detector Is included.
  • the pump when such a configuration and method are employed, when the detector provided on the cleaning channel detects air bubbles, the pump is operated so as to supply the infusion from the infusion storage section to the cleaning liquid storage section via the detector. be able to. Therefore, bubbles present in the cleaning channel can be removed by infusion. To remove bubbles present in the cleaning flow path, simply reversing the pump placed in the cleaning flow path or the discharge flow path will suck in used waste liquid or air from the end of the discharge flow path. By operating a pump provided between the detector and the infusion storage section as in this device and supplying the infusion liquid from the infusion storage section to the cleaning liquid storage section via the detector, It is possible to prevent the used drainage and air from being sucked from the end, and the cleanliness of the apparatus can be maintained.
  • an infusion channel that connects the infusion reservoir and the drain channel, a first on-off valve that opens and closes the infusion channel, and a downstream side of the infusion channel of the drain channel And a second on-off valve that opens and closes the discharge channel, and a pump can be provided on the discharge channel between the detector and the infusion channel.
  • control unit closes the infusion flow path with the first on-off valve at the time of priming and opens the second on-off valve and operates the pump in the forward direction, while the detector detects bubbles,
  • the infusion flow path is opened by the first on-off valve, the second on-off valve is closed, and the pump is operated in reverse to supply the infusion liquid from the infusion storage section to the cleaning liquid storage section via the detector.
  • an infusion channel that connects the infusion reservoir and the drain channel, and a priming pump that is provided downstream of the infusion channel on the drain channel
  • An infusion pump provided on the infusion channel can be employed.
  • the control unit operates the priming pump in the normal direction at the time of priming, and when the detector detects bubbles, the control unit stops the priming pump and operates the infusion pump to pass the detector from the infusion storage unit.
  • the infusion can be supplied to the cleaning liquid reservoir (second aspect).
  • the blood purification apparatus includes an infusion channel connecting the infusion storage part and the discharge channel, and an infusion pump provided on the infusion channel.
  • a priming pump provided on the upstream side can be employed.
  • the control unit operates the priming pump in the forward direction at the time of priming, and when the detector detects bubbles, the control unit moves the priming pump in the reverse direction to operate the infusion pump to move the detector from the infusion storage unit.
  • the infusion solution can be supplied to the cleaning solution reservoir via the route.
  • the control unit can make the flow rate of the priming pump smaller than the flow rate of the infusion pump when the infusion pump is operated by reversing the priming pump (third aspect).
  • the blood purification apparatus includes an infusion channel that connects the infusion reservoir and the cleaning channel or the blood purifier, and a priming pump provided on the discharge channel.
  • An infusion pump provided can be employed.
  • the control unit operates the priming pump in the normal direction at the time of priming, and when the detector detects bubbles, the control unit stops the priming pump and operates the infusion pump to pass the detector from the infusion storage unit.
  • the infusion solution can be supplied to the cleaning liquid reservoir (fourth aspect).
  • a venous line connecting the patient blood return unit and the blood purification device can be employed as the washing flow path.
  • an infusion channel that connects the infusion reservoir and the drain channel, a first on-off valve that opens and closes the infusion channel, and a downstream side of the infusion channel of the drain channel And a second on-off valve provided in the pump, and the pump can be provided on the cleaning channel.
  • the control unit closes the infusion channel with the first on-off valve and opens the discharge channel with the second on-off valve during priming and operates the pump in the forward direction, while the detector detects bubbles.
  • the infusion flow path is opened by the first on-off valve, the discharge flow path is closed by the second on-off valve, and the pump is operated reversely, whereby the cleaning liquid storage section is passed from the infusion storage section via the detector.
  • An infusion solution can be supplied to the patient (fifth aspect).
  • the blood purification apparatus comprises an infusion channel connecting the infusion storage part and the discharge channel, and a priming pump provided on the washing channel, and the infusion provided on the infusion channel as a pump A pump can be employed.
  • the control unit operates the priming pump in the forward direction at the time of priming, and when the detector detects bubbles, the control unit moves the priming pump in the reverse direction to operate the infusion pump to move the detector from the infusion storage unit.
  • the infusion solution can be supplied to the cleaning solution reservoir via (via the sixth aspect).
  • an infusion channel that connects the infusion reservoir and the cleaning channel, and a priming pump provided on the upstream side of the infusion channel on the cleaning channel, as a pump
  • An infusion pump provided on the infusion channel can be employed.
  • the control unit operates the priming pump in the forward direction at the time of priming, and when the detector detects bubbles, the control unit moves the priming pump in the reverse direction to operate the infusion pump to move the detector from the infusion storage unit.
  • the infusion solution can be supplied to the cleaning solution reservoir via (via the seventh aspect).
  • the blood purification apparatus includes an infusion channel that connects the infusion reservoir and the blood purifier, and a priming pump that is provided on the cleaning channel, and the infusion provided on the infusion channel as a pump A pump can be employed.
  • the control unit operates the priming pump in the forward direction at the time of priming, and when the detector detects bubbles, the control unit moves the priming pump in the reverse direction to operate the infusion pump to move the detector from the infusion storage unit.
  • the infusion solution can be supplied to the cleaning solution reservoir via (via the eighth aspect).
  • control unit can make the flow rate of the priming pump smaller than the flow rate of the infusion pump when operating the infusion pump by reversing the priming pump.
  • an infusion channel connecting the infusion reservoir and the cleaning channel, and a priming pump provided on the downstream side of the infusion channel on the cleaning channel, as a pump An infusion pump provided on the infusion channel can be employed.
  • the control unit operates the priming pump in the normal direction at the time of priming, and when the detector detects bubbles, the control unit stops the priming pump and operates the infusion pump to pass the detector from the infusion storage unit.
  • the infusion solution can be supplied to the cleaning solution reservoir (the ninth aspect).
  • an arterial line connecting the patient blood removal part and the blood purification device can be adopted as the washing flow path.
  • the washing flow path may have a priming line arranged in an arterial line connecting the patient blood removal unit and the blood purification device.
  • the control unit when the detector detects air bubbles, can generate an alarm after operating the pump by a predetermined amount.
  • the control unit can also generate an alarm and stop the pump when the detector detects air bubbles, and can operate the pump after the alarm is released.
  • FIG. 9 is a configuration diagram for explaining a modification of the blood purification apparatus according to the fifth to ninth embodiments of the present invention.
  • the blood purification apparatus 1 is used for so-called leukocyte removal therapy (LCAP).
  • LCAP leukocyte removal therapy
  • the blood purification apparatus 10 the cleaning liquid reservoir 20, the cleaning flow path 30, and the bubble detector. 40, a discharge channel 50, an infusion storage unit 60, an infusion channel 70, a priming pump 80, a control unit 90, and the like.
  • the blood purifier 10 purifies the activated white blood cells contained in blood introduced from the blood inlet by removing it with a filter, and discharges the purified blood from the blood outlet.
  • a filter having an adsorbent that removes white blood cells can be employed.
  • the cleaning liquid storage unit 20 is a container for storing a cleaning liquid for priming (for example, physiological saline), and is connected to the end of the cleaning flow path 30.
  • the cleaning flow path 30 is a flow path for connecting the blood purifier 10 and the cleaning liquid storage unit 20 and allowing the cleaning liquid supplied from the cleaning liquid storage unit 20 to flow to the blood purifier 10.
  • a venous line that connects the patient blood return unit and the blood purifier 10 is employed as the washing channel 30.
  • the bubble detector 40 is provided on the cleaning channel 30 and detects bubbles contained in the cleaning liquid flowing through the cleaning channel 30. Information regarding the detection result of the bubble detector 40 is sent to the control unit 90 and used for controlling the priming pump 80 and the like.
  • the discharge flow path 50 is a flow path for circulating the cleaning liquid that has passed through the blood purifier 10 and discharging it to the outside, and communicates with the blood purifier 10.
  • an arterial line connecting the patient blood removal unit and the blood purifier 10 is employed as the discharge channel 50.
  • a second on-off valve 51 that operates under the control of the control unit 90 to open and close the discharge channel 50 is provided on the downstream side of the infusion channel 70 of the discharge channel 50.
  • the infusion storage section 60 is a container for storing an infusion (for example, physiological saline), and is connected to the discharge channel 50 via the infusion channel 70.
  • the infusion channel 70 is provided with a first on-off valve 71 that operates under the control of the control unit 90 to open and close the infusion channel 70.
  • the priming pump 80 is provided upstream of the infusion flow path 70 on the discharge flow path 50 (between the bubble detector 40 and the infusion storage section 60), and is normally operated under the control of the control section 90. By doing so, the priming process is realized. Further, the priming pump 80 performs the bubble removal process by rotating in reverse under the control of the control unit 90.
  • “upstream side” and “downstream side” are based on the direction in which the cleaning liquid flows during priming, the cleaning liquid reservoir 20 side is “upstream side”, and the second on-off valve 51 side is “ It is called “downstream”.
  • the control unit 90 is configured by a computer including, for example, a memory, a CPU (Central Processing Unit), and the like, and controls various devices of the blood purification apparatus 1 by the CPU executing various programs recorded in the memory.
  • a computer including, for example, a memory, a CPU (Central Processing Unit), and the like, and controls various devices of the blood purification apparatus 1 by the CPU executing various programs recorded in the memory.
  • CPU Central Processing Unit
  • the control unit 90 in the present embodiment closes the infusion flow path 70 with the first on-off valve 71 and opens the discharge flow path 50 with the second on-off valve 51 and operates the priming pump 80 in the normal direction.
  • a priming process (a process in which the cleaning liquid in the cleaning liquid storage unit 20 is distributed to the blood purifier 10 via the cleaning flow path 30 and then discharged via the discharge flow path 50) is realized.
  • the control unit 90 opens the infusion channel 70 with the first on-off valve 71 and closes the discharge channel 50 with the second on-off valve 51.
  • the bubble removal process infusion solution in the infusion storage unit 60 is sequentially passed through the infusion channel 70, the discharge channel 50, the blood purifier 10, and the washing channel 30, Processing to be supplied to the cleaning liquid reservoir 20.
  • the “forward rotation operation” of the priming pump 80 is to rotate the priming pump 80 so that the cleaning liquid flows from the upstream side to the downstream side, and the “reverse rotation operation” refers to the priming pump 80 in the opposite direction. Is to rotate.
  • the control unit 90 in the present embodiment when the bubble detector 40 detects bubbles during priming, the control unit 90 in the present embodiment generates an alarm after operating the priming pump 80 for a predetermined amount.
  • the control unit 90 can also generate an alarm and stop the priming pump 80 when the bubble detector 40 detects a bubble during priming, and can operate the priming pump 80 after the alarm is released.
  • the control part 90 can also operate the priming pump 80 after alarm cancellation based on an operator's instruction
  • the control unit 90 of the blood purification apparatus 1 closes the infusion channel 70 with the first on-off valve 71 and opens the discharge channel 50 with the second on-off valve 51, and causes the priming pump 80 to rotate forward.
  • a process (priming process) for discharging via the discharge flow path 50 is implemented (priming execution). Process).
  • the control unit 90 opens the infusion channel 70 with the first on-off valve 71 and opens the discharge channel 50 with the second on-off valve 51.
  • the priming pump 80 and closing the priming pump 80 the infusion solution in the infusion solution storage unit 60 sequentially passes through the infusion channel 70, the discharge channel 50, the blood purifier 10, and the washing channel 30 to store the washing solution.
  • the process (bubble removal process) supplied to the unit 20 is realized (bubble removal process).
  • the priming pump 80 can be operated so as to supply the infusion solution to the cleaning solution reservoir 20. Therefore, bubbles present in the cleaning channel 30 can be removed by infusion.
  • simply draining the priming pump 80 disposed in the discharge flow path 70 reverses the used waste liquid or air from the end of the discharge flow path 70.
  • the priming pump 80 provided between the bubble detector 40 and the infusion storage part 60 as in the present apparatus 1 is operated, and the infusion storage part 60 passes through the bubble detector 40 to the cleaning liquid storage part 20.
  • the blood purification apparatus 1A according to the second embodiment of the present invention is obtained by omitting the on-off valves 51 and 71 in the first embodiment, changing the position of the infusion channel 70, providing an infusion pump 72, and changing the control mode.
  • the configuration is substantially the same as in the first embodiment. Therefore, about the structure which is common in 1st embodiment, the same code
  • the blood purification apparatus 1 ⁇ / b> A includes a blood purification device 10, a cleaning liquid storage unit 20, a cleaning channel 30, a bubble detector 40, a discharge channel 50, an infusion storage unit 60, an infusion flow.
  • a passage 70, an infusion pump 72, a priming pump 80, a control unit 90A, and the like are provided. Since the blood purifier 10, the washing liquid storage unit 20, the washing channel 30, the bubble detector 40, the discharge channel 50, the infusion storage unit 60, and the priming pump 80 are the same as those in the first embodiment, a detailed description will be given. Omitted.
  • the infusion channel 70 is provided on the upstream side of the priming pump 80 on the discharge channel 50. That is, the priming pump 80 in the present embodiment is disposed downstream of the infusion channel 70 on the discharge channel 50.
  • both “upstream side” and “downstream side” are based on the direction in which the cleaning liquid flows during priming, the cleaning liquid reservoir 20 side is the “upstream side”, and the end of the discharge channel 50 The part side is referred to as “downstream side”.
  • the infusion pump 72 is provided on the infusion channel 70 as shown in FIG. 2, and operates under the control of the control unit 90A to realize the bubble removal process.
  • control units 90 A of control parts in this embodiment operate
  • the control unit 90A stops the priming pump 80 and activates the infusion pump 72, thereby removing the bubbles (the infusion in the infusion storage unit 60).
  • the “operation” of the infusion pump 72 is to rotate the infusion pump 72 so as to supply the infusion from the infusion storage section 60 to the discharge channel 50.
  • the control unit 90A in the present embodiment when the bubble detector 40 detects bubbles during priming, the control unit 90A in the present embodiment generates an alarm after operating the infusion pump 72 by a predetermined amount. In addition, when the bubble detector 40 detects bubbles during priming, the control unit 90A can generate an alarm, stop the infusion pump 72, and operate the infusion pump 72 after the alarm is released. Further, the control unit 90A can also operate the infusion pump 72 after the alarm is released based on an instruction from the operator.
  • the control unit 90A of the blood purification apparatus 1A causes the priming pump 80 to rotate forward so that the cleaning liquid in the cleaning liquid storage unit 20 is circulated to the blood purifier 10 via the cleaning channel 30 and then discharged.
  • a process (priming process) for discharging via the path 50 is realized (priming process).
  • the control unit 90A stops the priming pump 80 and operates the infusion pump 72, thereby causing the infusion in the infusion storage unit 60 to flow.
  • a process (bubble removing process) for supplying the cleaning liquid reservoir 20 through the passage 70, the discharge channel 50, the blood purifier 10, and the washing channel 30 in order is realized (bubble removing process).
  • the blood purification apparatus 1B according to the present embodiment changes the position of the infusion channel 70 in the second embodiment and the control mode, and the other configurations are substantially the same as those in the second embodiment. is there. Therefore, about the structure which is common in 2nd embodiment, suppose that the same code
  • the blood purification apparatus 1 ⁇ / b> B includes a blood purification device 10, a washing liquid storage unit 20, a washing channel 30, a bubble detector 40, a discharge channel 50, an infusion storage unit 60, an infusion flow.
  • a passage 70, an infusion pump 72, a priming pump 80, a control unit 90B, and the like are provided. Since the blood purifier 10, the washing liquid storage unit 20, the washing channel 30, the bubble detector 40, the discharge channel 50, the infusion storage unit 60, the infusion pump 72, and the priming pump 80 are the same as those in the second embodiment, Detailed description is omitted.
  • the infusion flow path 70 is provided on the downstream side of the priming pump 80 on the discharge flow path 50. That is, the priming pump 80 in the present embodiment is disposed on the upstream side of the infusion channel 70 on the discharge channel 50.
  • both “upstream side” and “downstream side” are based on the direction in which the cleaning liquid flows during priming, the cleaning liquid reservoir 20 side is the “upstream side”, and the end of the discharge channel 50 The part side is referred to as “downstream side”.
  • the control unit 90B in the present embodiment causes the priming pump 80 to rotate forward so that the priming process (the cleaning liquid in the cleaning liquid storage unit 20 is circulated to the blood purifier 10 via the cleaning flow path 30; The process of discharging via the discharge channel 50) is realized.
  • the control unit 90B operates the infusion pump 72 by reversing the priming pump 80 to operate the bubble removal process (infusion solution in the infusion storage unit 60). Is supplied to the cleaning liquid storage section 20 through the infusion flow path 70, the discharge flow path 50, the blood purifier 10 and the cleaning flow path 30 sequentially.
  • the controller 90B causes the flow rate of the priming pump 80 to be equal to or smaller than the flow rate of the infusion pump 72 when the infusion pump 72 is operated by operating the priming pump 80 in the reverse direction.
  • the “forward rotation operation” of the priming pump 80 is to rotate the priming pump 80 so that the cleaning liquid flows from the upstream side to the downstream side
  • the “reverse rotation operation” refers to the priming pump 80 in the opposite direction. Is to rotate.
  • the “operation” of the infusion pump 72 is to rotate the infusion pump 72 so as to supply the infusion from the infusion storage section 60 to the discharge channel 50.
  • the control unit 90B in the present embodiment when the bubble detector 40 detects bubbles during priming, the control unit 90B in the present embodiment generates an alarm after operating the priming pump 80 and the infusion pump 72 by a predetermined amount.
  • the control unit 90B generates an alarm and stops the priming pump 80 and the infusion pump 72 when the bubble detector 40 detects bubbles during priming, and operates the priming pump 80 and the infusion pump 72 after the alarm is released. It can also be made.
  • the control unit 90B can also operate the priming pump 80 and the infusion pump 72 after the alarm is released based on an instruction from the operator.
  • the control unit 90B of the blood purification apparatus 1B causes the priming pump 80 to rotate forward so that the cleaning liquid in the cleaning liquid storage unit 20 is circulated to the blood purifier 10 via the cleaning channel 30 and then discharged.
  • a process (priming process) for discharging via the path 50 is realized (priming process).
  • the control unit 90B operates the infusion pump 72 by reversing the priming pump 80, thereby injecting the infusion in the infusion storage unit 60.
  • a process (bubble removal process) of supplying the cleaning liquid reservoir 20 through the flow path 70, the discharge flow path 50, the blood purifier 10 and the cleaning flow path 30 in order is realized (bubble removal process).
  • the same operational effects as those of the blood purification apparatus 1 according to the first embodiment can be obtained.
  • a blood purification apparatus 1C according to a fourth embodiment of the present invention will be described using FIG. 4 and FIG.
  • the blood purification apparatus 1C according to the present embodiment changes the position of the infusion channel 70 in the second embodiment and the control mode, and the other configurations are substantially the same as those in the second embodiment. is there. Therefore, about the structure which is common in 2nd embodiment, suppose that the same code
  • the blood purification apparatus 1 ⁇ / b> C includes a blood purification device 10, a washing liquid storage unit 20, a washing channel 30, a bubble detector 40, a discharge channel 50, an infusion storage unit 60, an infusion flow.
  • a passage 70, an infusion pump (replacement pump) 72, a priming pump 80, a control unit 90C, and the like are provided. Since the blood purifier 10, the washing liquid storage unit 20, the washing channel 30, the bubble detector 40, the discharge channel 50, the infusion storage unit 60, the infusion pump 72, and the priming pump 80 are the same as those in the second embodiment, Detailed description is omitted.
  • the infusion channel 70 is connected to the cleaning channel 30.
  • the control unit 90C in the present embodiment causes the priming pump 80 to rotate forward so that the priming process (the cleaning liquid in the cleaning liquid storage unit 20 is circulated to the blood purifier 10 via the cleaning flow path 30; The process of discharging via the discharge channel 50) is realized.
  • the control unit 90C stops the priming pump 80 and operates the infusion pump 72, thereby removing the bubbles (the infusion in the infusion storage unit 60). , Processing for sequentially passing through the infusion flow path 70 and the cleaning flow path 30 and supplying the cleaning liquid reservoir 20).
  • the “forward operation” of the priming pump 80 is to rotate the priming pump 80 so that the cleaning liquid flows from the upstream side to the downstream side
  • the “operation” of the infusion pump 72 refers to the infusion storage section 60.
  • the infusion pump 72 is rotated so as to supply the infusion solution to the cleaning flow path 30 from the liquid.
  • control unit 90C in the present embodiment generates an alarm after operating the infusion pump 72 for a predetermined amount when the bubble detector 40 detects bubbles during priming.
  • the control unit 90C can also generate an alarm and stop the infusion pump 72 when the bubble detector 40 detects a bubble during priming, and can operate the infusion pump 72 after the alarm is released. Further, the control unit 90C can also operate the infusion pump 72 after the alarm is released based on an instruction from the operator.
  • the control unit 90C of the blood purification apparatus 1C causes the cleaning liquid in the cleaning liquid storage unit 20 to flow through the blood flow path 30 to the blood purifier 10 by rotating the priming pump 80 in the normal direction, and then discharges the cleaning liquid.
  • a process (priming process) for discharging via the path 50 is realized (priming process).
  • the control unit 90C stops the priming pump 80 and operates the infusion pump 72, thereby causing the infusion in the infusion storage unit 60 to flow.
  • a process (bubble removing process) for supplying the cleaning liquid reservoir 20 through the passage 70 and the cleaning channel 30 in order is realized (bubble removing process).
  • the same operational effects as those of the blood purification apparatus 1 according to the first embodiment can be obtained.
  • the infusion channel 70 is washed Instead of connecting to the flow path 30, the infusion flow path 70 may be connected to the blood purifier 10, as shown in FIG. Even when such a configuration is adopted, the priming process and the bubble removing process can be realized by performing the same control with the control unit 90C. In such a case, the infusion pump 72 functions as a dialysate pump.
  • the blood purification apparatus 1D according to the present embodiment changes the position of the washing flow path 30 and the discharge flow path 50 in the first embodiment and changes the control mode, and the other configurations are the same as those of the first embodiment. It is substantially the same. Therefore, about the structure which is common in 1st embodiment, the same code
  • the blood purification apparatus 1 ⁇ / b> D includes a blood purification device 10, a cleaning liquid storage unit 20, a cleaning flow channel 30 ⁇ / b> D, a bubble detector 40, a discharge flow channel 50 ⁇ / b> D, an infusion storage unit 60, an infusion flow.
  • a passage 70, a priming pump 80, a control unit 90D, and the like are provided. Since the blood purifier 10, the washing liquid storage unit 20, the bubble detector 40, the infusion storage unit 60, the infusion channel 70, and the priming pump 80 are the same as those in the first embodiment, detailed description thereof is omitted.
  • an arterial line connecting the patient blood removal part and the blood purifier 10 is adopted as the washing flow path 30D, and a vein line connecting the patient return part and the blood purifier 10 as the discharge flow path 50D.
  • the priming pump 80 is provided in the cleaning channel 30D, the infusion channel 70 is connected to the discharge channel 50D,
  • the infusion channel 70 is provided with a first on-off valve 71 that operates under the control of the control unit 90D to open and close the infusion channel 70.
  • a second on-off valve 51D that operates under the control of the control unit 90D to open and close the discharge channel 50D is provided on the downstream side of the infusion channel 70 of the discharge channel 50D.
  • the “downstream side” is based on the direction in which the cleaning liquid flows during priming, and the cleaning liquid reservoir 20 side is referred to as the “upstream side” and the second on-off valve 51D side is referred to as the “downstream side”. ing. That is, the flow direction of the cleaning liquid during priming in this embodiment is opposite to the flow of the cleaning liquid in the first to fourth embodiments.
  • the control unit 90D in the present embodiment closes the infusion channel 70 with the first on-off valve 71, opens the discharge channel 50D with the second on-off valve 51D, and operates the priming pump 80 in the normal direction.
  • a priming process (a process in which the cleaning liquid in the cleaning liquid storage unit 20 is circulated to the blood purifier 10 via the cleaning flow path 30D and then discharged via the discharge flow path 50D) is realized.
  • the control unit 90D opens the infusion channel 70 with the first on-off valve 71 and closes the discharge channel 50D with the second on-off valve 51D.
  • the bubble removal process infusion solution in the infusion storage part 60 is sequentially passed through the infusion channel 70, the discharge channel 50D, the blood purifier 10 and the washing channel 30D, Processing to be supplied to the cleaning liquid reservoir 20.
  • the “forward rotation operation” of the priming pump 80 is to rotate the priming pump 80 so that the cleaning liquid flows from the upstream side to the downstream side
  • the “reverse rotation operation” refers to the priming pump 80 in the opposite direction. Is to rotate.
  • the “operation” of the infusion pump 72 is to rotate the infusion pump 72 so as to supply the infusion from the infusion storage section 60 to the discharge channel 50D.
  • the control unit 90D in the present embodiment when the bubble detector 40 detects bubbles during priming, the control unit 90D in the present embodiment generates an alarm after operating the priming pump 80 for a predetermined amount. In addition, when the bubble detector 40 detects a bubble during priming, the control unit 90D can generate an alarm, stop the priming pump 80, and operate the priming pump 80 after canceling the alarm. Further, the control unit 90D can also operate the priming pump 80 after the alarm is released based on an instruction from the operator.
  • the control unit 90D of the blood purification apparatus 1D causes the priming pump 80 to rotate forward so that the cleaning liquid in the cleaning liquid storage unit 20 is circulated to the blood purifier 10 via the cleaning channel 30D, and then discharged.
  • a process (priming process) of discharging via the path 50D is realized (priming execution process).
  • the control unit 90D opens the infusion channel 70 with the first on-off valve 71 and opens the discharge channel 50D with the second on-off valve 51D.
  • the priming pump 80 and closing the priming pump 80 the infusion solution in the infusion solution storage unit 60 is sequentially passed through the infusion channel 70, the discharge channel 50D, the blood purifier 10 and the washing channel 30D, and the washing solution storage unit.
  • the process (bubble removal process) supplied to 20 is realized (bubble removal process).
  • the same operational effects as those of the blood purification apparatus 1 according to the first embodiment can be obtained.
  • FIG. 1E a blood purification apparatus 1E according to a sixth embodiment of the present invention will be described using FIG.
  • the blood purification apparatus 1E according to this embodiment is provided with an infusion pump 72 in place of omitting the on-off valves 51D and 71 in the fifth embodiment, and the control mode is changed.
  • Other configurations are the same as those of the fifth embodiment. It is the same. Therefore, about the structure which is common in 5th embodiment, the code
  • the blood purification apparatus 1E includes a blood purification device 10, a cleaning liquid storage unit 20, a cleaning flow channel 30D, a bubble detector 40, a discharge flow channel 50D, an infusion storage unit 60, an infusion flow.
  • a passage 70, an infusion pump 72, a priming pump 80, a control unit 90E, and the like are provided.
  • the blood purifier 10, the cleaning liquid storage unit 20, the cleaning flow path 30D, the bubble detector 40, the discharge flow path 50D, the infusion storage part 60, the infusion flow path 70, and the priming pump 80 are the same as in the fifth embodiment. Detailed description will be omitted.
  • the infusion pump 72 in the present embodiment is provided on the infusion channel 70 as shown in FIG. 7 and operates under the control of the control unit 90E to realize the bubble removal process.
  • the control unit 90E in the present embodiment causes the priming pump 80 to rotate forward, thereby allowing the priming process (the cleaning liquid in the cleaning liquid storage unit 20 to flow to the blood purifier 10 via the cleaning channel 30D, The process of discharging via the discharge flow path 50D) is realized.
  • the control unit 90E operates the bubble removal process (infusion solution in the infusion storage unit 60) by operating the infusion pump 72 by reversing the priming pump 80.
  • the controller 90E causes the flow rate of the priming pump 80 to be equal to or smaller than the flow rate of the infusion pump 72 when the infusion pump 72 is operated by reversing the priming pump 80.
  • the “forward rotation operation” of the priming pump 80 is to rotate the priming pump 80 so that the cleaning liquid flows from the upstream side to the downstream side, and the “reverse rotation operation” refers to the priming pump 80 in the opposite direction. Is to rotate.
  • the “operation” of the infusion pump 72 is to rotate the infusion pump 72 so as to supply the infusion from the infusion storage section 60 to the discharge channel 50D.
  • the control unit 90E in the present embodiment when the bubble detector 40 detects bubbles during priming, the control unit 90E in the present embodiment generates an alarm after operating the priming pump 80 and the infusion pump 72 by a predetermined amount.
  • the control unit 90E generates an alarm and stops the priming pump 80 and the infusion pump 72 when the bubble detector 40 detects bubbles during priming, and operates the priming pump 80 and the infusion pump 72 after the alarm is released. It can also be made.
  • the control unit 90E can also operate the priming pump 80 and the infusion pump 72 after the alarm is released based on an instruction from the operator.
  • the control unit 90E of the blood purification device 1E causes the priming pump 80 to rotate forward so that the cleaning liquid in the cleaning liquid storage unit 20 is circulated to the blood purifier 10 via the cleaning flow path 30D, and then discharged.
  • a process (priming process) of discharging via the path 50D is realized (priming execution process).
  • the control unit 90E operates the infusion pump 72 by reversing the priming pump 80, thereby injecting the infusion in the infusion storage unit 60.
  • a process (bubble removal process) of supplying the cleaning liquid reservoir 20 through the flow path 70, the discharge flow path 50D, the blood purifier 10 and the cleaning flow path 30D in order is realized (bubble removal process).
  • the same operational effects as those of the blood purification apparatus 1 according to the first embodiment can be obtained.
  • a blood purification apparatus 1F according to a seventh embodiment of the present invention will be described using FIG.
  • the blood purification apparatus 1F according to the present embodiment is obtained by changing the position of the infusion flow path 70 in the fifth embodiment and changing the control mode, and other configurations are the same as those in the sixth embodiment. Therefore, about the structure which is common in 6th embodiment, the same code
  • the blood purification apparatus 1F includes a blood purification device 10, a cleaning liquid storage unit 20, a cleaning flow channel 30D, a bubble detector 40, a discharge flow channel 50D, an infusion storage unit 60, an infusion flow.
  • a passage 70, an infusion pump 72, a priming pump 80, a control unit 90F, and the like are provided. Since the blood purifier 10, the cleaning liquid reservoir 20, the cleaning flow path 30D, the bubble detector 40, the discharge flow path 50D, the infusion storage section 60, the infusion pump 72, and the priming pump 80 are the same as in the sixth embodiment, Detailed description is omitted.
  • the infusion channel 70 is connected to the downstream side of the priming pump 80 on the cleaning channel 30D. That is, in the present embodiment, the priming pump 80 is provided upstream of the infusion channel 70 on the cleaning channel 30D.
  • upstream side and downstream side are based on the direction in which the cleaning liquid flows during priming, the cleaning liquid reservoir 20 side is “upstream side”, and the end side of the discharge channel 50D is It is called “downstream”.
  • the control unit 90F in the present embodiment causes the priming pump 80 to rotate forward so that the priming process (the cleaning liquid in the cleaning liquid storage unit 20 is circulated to the blood purifier 10 via the cleaning channel 30D, The process of discharging via the discharge flow path 50D) is realized.
  • the control unit 90F operates the infusion pump 72 by reversing the priming pump 80 to operate the bubble removal process (infusion solution in the infusion storage unit 60). To the cleaning liquid reservoir 20 through the infusion channel 70 and the cleaning channel 30D in order.
  • the controller 90F causes the flow rate of the priming pump 80 to be equal to or smaller than the flow rate of the infusion pump 72 when the infusion pump 72E is operated by reversely operating the priming pump 80.
  • the “forward rotation operation” of the priming pump 80 is to rotate the priming pump 80 so that the cleaning liquid flows from the upstream side to the downstream side
  • the “reverse rotation operation” refers to the priming pump 80 in the opposite direction. Is to rotate.
  • the “operation” of the infusion pump 72 is to rotate the infusion pump 72 so as to supply the infusion from the infusion storage section 60 to the cleaning channel 30D.
  • the control unit 90F in the present embodiment when the bubble detector 40 detects bubbles during priming, the control unit 90F in the present embodiment generates an alarm after operating the priming pump 80 and the infusion pump 72 by a predetermined amount.
  • the control unit 90F generates an alarm and stops the priming pump 80 and the infusion pump 72 when the bubble detector 40 detects bubbles during priming, and operates the priming pump 80 and the infusion pump 72 after the alarm is released. It can also be made. Further, the control unit 90F can also operate the priming pump 80 and the infusion pump 72 after the alarm is released based on an instruction from the operator.
  • the control unit 90F of the blood purification apparatus 1F causes the priming pump 80 to rotate forward so that the cleaning liquid in the cleaning liquid storage unit 20 is circulated to the blood purifier 10 via the cleaning channel 30D, and then discharged.
  • a process (priming process) of discharging via the path 50D is realized (priming execution process).
  • the control unit 90F operates the infusion pump 72 by reversing the priming pump 80, thereby infusion of the infusion in the infusion storage unit 60.
  • a process (bubble removal process) for supplying the cleaning liquid reservoir 20 through the flow path 70 and the cleaning flow path 30D in order is realized (bubble removal process).
  • the same operational effects as those of the blood purification apparatus 1 according to the first embodiment can be obtained.
  • a blood purification apparatus 1G according to an eighth embodiment of the present invention will be described using FIG.
  • the blood purification apparatus 1G according to the present embodiment is obtained by changing the position of the infusion flow path 70 in the seventh embodiment, and the other configurations are the same as those in the seventh embodiment. Therefore, about the structure which is common in 7th embodiment, the code
  • the blood purifier 10 a dialyzer or the like that allows fluid to flow from the inside of the membrane to the outside (or vice versa) and has a fluid circulation port such as dialysate on the outside, etc. To do.
  • the infusion flow path 70 is connected to the blood purification device 10 as shown in FIG.
  • the control unit 90G in the present embodiment operates the priming pump 80 in the normal direction so that the priming process (the cleaning liquid in the cleaning liquid storage unit 20 is circulated to the blood purifier 10 via the cleaning channel 30D, The process of discharging via the discharge flow path 50D) is realized.
  • the control unit 90G operates the bubble removal process (infusion solution in the infusion storage unit 60) by operating the infusion pump 72 by reversing the priming pump 80.
  • the controller 90G causes the flow rate of the priming pump 80 to be equal to or smaller than the flow rate of the infusion pump 72 when the infusion pump 72 is operated by reversing the priming pump 80.
  • the control unit 90G in this embodiment generates an alarm after operating the priming pump 80 and the infusion pump 72 by a predetermined amount.
  • the control unit 90G generates an alarm and stops the priming pump 80 and the infusion pump 72 when the bubble detector 40 detects bubbles during priming, and operates the priming pump 80 and the infusion pump 72 after the alarm is released. It can also be made.
  • the control unit 90G can also operate the priming pump 80 and the infusion pump 72 after the alarm is released based on an instruction from the operator.
  • the control unit 90G of the blood purification apparatus 1G causes the priming pump 80 to rotate forward so that the cleaning liquid in the cleaning liquid storage unit 20 is circulated to the blood purifier 10 via the cleaning flow path 30D, and then discharged.
  • a process (priming process) of discharging via the path 50D is realized (priming execution process).
  • the control unit 90G operates the infusion pump 72 by reversing the priming pump 80 to thereby infuse the infusion in the infusion storage unit 60.
  • a process (bubble removal process) for supplying the cleaning liquid reservoir 20 through the flow path 70, the blood treatment device 10 and the washing flow path 30D in order is realized (bubble removal process).
  • the blood purification apparatus 1G According to the blood purification apparatus 1G according to the embodiment described above, it is possible to obtain the same effects as the blood purification apparatus 1 according to the first embodiment.
  • the blood purification apparatus 1H according to the present embodiment changes the position of the infusion flow path 70 in the fifth embodiment and changes the control mode, and the other configurations are the same as in the fifth embodiment. Therefore, about the structure which is common in 5th embodiment, the code
  • the infusion channel 70 is connected to the upstream side of the priming pump 80 on the cleaning channel 30D. That is, in the present embodiment, the priming pump 80 is provided on the downstream side of the infusion channel 70 on the cleaning channel 30D.
  • upstream side and downstream side are based on the direction in which the cleaning liquid flows during priming, the cleaning liquid reservoir 20 side is “upstream side”, and the end side of the discharge channel 50D is It is called “downstream”.
  • the control unit 90H in the present embodiment operates the priming pump 80 in the normal direction to cause the priming process (after flowing the cleaning liquid in the cleaning liquid storage unit 20 to the blood purifier 10 via the cleaning channel 30D, The process of discharging via the discharge flow path 50D) is realized.
  • the control unit 90H stops the priming pump 80 and operates the infusion pump 72, thereby removing the bubbles (the infusion in the infusion storage unit 60). , Processing for sequentially passing through the infusion flow path 70 and the cleaning flow path 30D to the cleaning liquid storage unit 20).
  • the “forward operation” of the priming pump 80 is to rotate the priming pump 80 so that the cleaning liquid flows from the upstream side to the downstream side
  • the “operation” of the infusion pump 72 refers to the infusion storage section 60. Is to rotate the infusion pump 72 so as to supply the infusion solution to the cleaning channel 30D.
  • control unit 90H in the present embodiment when the bubble detector 40 detects bubbles during priming, the control unit 90H in the present embodiment generates an alarm after operating the infusion pump 72 by a predetermined amount. In addition, when the bubble detector 40 detects bubbles during priming, the control unit 90H can generate an alarm, stop the infusion pump 72, and operate the infusion pump 72 after the alarm is released. The control unit 90H can also operate the infusion pump 72 after the alarm is released based on an instruction from the operator.
  • the control unit 90H of the blood purification apparatus 1H causes the priming pump 80 to rotate forward so that the cleaning liquid in the cleaning liquid storage unit 20 is circulated to the blood purifier 10 via the cleaning channel 30D, and then discharged.
  • a process (priming process) of discharging via the path 50D is realized (priming execution process).
  • the control unit 90H stops the priming pump 80 and activates the infusion pump 72, thereby causing the infusion in the infusion storage unit 60 to flow.
  • a process (bubble removing process) for supplying the cleaning liquid storage unit 20 through the passage 70 and the cleaning channel 30D in order is realized (bubble removing process).
  • the same effects as the blood purification apparatus 1 according to the first embodiment can be obtained.
  • the cleaning liquid reservoir 20 is connected to the tip of the priming line 110, and the bubble detector 40 can be provided in the priming line 110.
  • the control unit 90D distributes the cleaning solution in the cleaning solution storage unit 20 to the blood purifier 10 via the priming line 110 and the arterial line 100, and then discharges the cleaning solution via the discharge channel 50D (priming). Processing) can be realized.
  • the control unit 90D opens the infusion channel 70 with the first on-off valve 71 and closes the discharge channel 50D with the second on-off valve 51D.
  • the priming pump 80 is reversely operated, so that the infusion in the infusion reservoir 60 is sequentially passed through the infusion channel 70, the discharge channel 50D, the blood purifier 10, the arterial line 100, and the priming line 110, and then the washing solution
  • the process (bubble removal process) supplied to the storage unit 20 can be realized.
  • the controller 90D closes the artery line 100 with the third on-off valve 101 when performing the priming process and the bubble removing process.
  • physiological saline is used as a cleaning solution and an infusion solution
  • other liquids dialysis solution, replacement fluid, fresh frozen plasma, Albumin, body cavity fluid, etc.
  • cleaning liquid storage part 20 and the infusion storage part 60 does not need to be the same liquid, and may be a combination of the liquids (dialysis solution, replacement fluid, fresh frozen plasma, albumin, body cavity fluid, etc.).
  • the present invention can also be applied to other blood purification devices including an infusion container, a first on-off valve, a second infusion line, a second on-off valve, an infusion pump, and the like.
  • LCAP leukocyte removal therapy
  • PE plasma exchange therapy
  • DFPP double filtration plasma exchange therapy
  • CHF continuous hemofiltration therapy
  • CHD continuous hemodialysis therapy
  • CHDF continuous hemodiafiltration therapy
  • the present invention can also be applied to a blood purification apparatus provided with a blood purifier for filtration and diffusion.
  • each element provided in each embodiment and its arrangement, material, condition, shape, size, and the like are not limited to those illustrated, and can be appropriately changed.
  • each element with which each said embodiment is provided can be combined as much as technically possible, and the combination of these is also included in the scope of the present invention as long as the characteristics of the present invention are included.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Cardiology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • External Artificial Organs (AREA)

Abstract

血液浄化装置のプライミング中に気泡が検出された場合に、装置の清潔性を維持しつつ自動的に気泡を除去する。血液浄化装置1は、血液浄化器10と、洗浄液が貯留された洗浄液貯留部20と、血液浄化器10と洗浄液貯留部20とを接続する洗浄流路30と、洗浄流路30上に設けられ気泡を検知する検知器40と、血液浄化器10に連通し洗浄液を排出する排出流路50と、輸液を貯留する輸液貯留部60と、検知器40と輸液貯留部60との間の流路上に設けられたポンプ80と、検知器40が気泡を検知した場合に、輸液貯留部60から検知器40を経由して洗浄液貯留部20へと輸液を供給するようにポンプ80を作動させる制御部90と、を備える。

Description

血液浄化装置及びそのプライミング方法
 本発明は、血液浄化装置及びそのプライミング方法に関する。
 従来より、患者の体内から血液を取り出しこの血液から病因物質や特定の白血球等を除去して体内に戻す血液浄化治療が実施されている。このような血液浄化治療においては、体内から取り出した血液を循環させて体内に戻すための血液回路と、特定の物質を除去・分離する吸着材や分離材等の処理材を有する血液浄化器と、を備える血液浄化装置が使用されている。
 このような血液浄化装置を用いて血液浄化治療を実施する前には、使用する血液回路や血液処理器の内部を、生理食塩水や透析液等の清浄な液体(洗浄液)で洗浄する「プライミング」という処理を行うのが一般的である。現在においては、このようなプライミングを自動的に行うための技術が種々提案されている(例えば、特許文献1及び2参照)。
特開2005-253555号公報 特開2007-190068号公報
 ところで、プライミング中に洗浄液が消費された結果、洗浄液を貯留する洗浄液貯留部が空になる場合がある。従来は、このような事態に備えて、洗浄液貯留部に接続された洗浄流路に空検知器を設け、この空検知器で気泡を検知した場合に自動的にプライミングを停止させ、その後、洗浄流路に設けられた点滴筒をユーザが押しつぶす操作を行うことで、点滴筒と洗浄液貯留部との間の洗浄流路に洗浄液を充填して気泡を除去していた。
 但し、点滴筒を押しつぶす操作は煩雑であるため、近年においては、空検知器で気泡を検知した場合に洗浄流路に設けたポンプを逆転させることにより自動的に気泡を除去する技術も検討されている。ところが、このようにポンプを逆転させると、洗浄に使用された排液や空気を血液回路の他端から吸い込んでしまうため、清潔性を維持できないという問題があった。
 本発明は、かかる事情に鑑みてなされたものであり、血液浄化装置のプライミング中に気泡が検出された場合に、装置の清潔性を維持しつつ自動的に気泡を除去することを目的とする。
 前記目的を達成するため、本発明に係る血液浄化装置は、血液浄化器と、洗浄液が貯留された洗浄液貯留部と、血液浄化器と洗浄液貯留部とを接続する洗浄流路と、洗浄流路上に設けられ気泡を検知する検知器と、血液浄化器に連通し洗浄液を排出する排出流路と、輸液を貯留する輸液貯留部と、検知器と輸液貯留部との間の流路上に設けられたポンプと、検知器が気泡を検知した場合に、輸液貯留部から検知器を経由して洗浄液貯留部へと輸液を供給するようにポンプを作動させる制御部と、を備えるものである。
 また、本発明に係るプライミング方法は、血液浄化器と、洗浄液が貯留された洗浄液貯留部と、血液浄化器と洗浄液貯留部とを接続する洗浄流路と、洗浄流路上に設けられ気泡を検知する検知器と、血液浄化器に連通し洗浄液を排出する排出流路と、輸液を貯留する輸液貯留部と、検知器と輸液貯留部との間の流路上に設けられたポンプと、を備える血液浄化装置のプライミング方法であって、検知器がプライミング中に気泡を検知した場合に、輸液貯留部から検知器を経由して洗浄液貯留部へと輸液を供給するようにポンプを作動させる工程を含むものである。
 かかる構成及び方法を採用すると、洗浄流路上に設けられた検知器が気泡を検知した場合に、輸液貯留部から検知器を経由して洗浄液貯留部へと輸液を供給するようにポンプを作動させることができる。従って、洗浄流路に存在する気泡を輸液によって除去することができる。洗浄流路に存在する気泡を除去するために、洗浄流路や排出流路に配置したポンプを単に逆転させるだけでは、排出流路の末端から使用済みの排液や空気を吸い込むことになるが、本装置のように検知器と輸液貯留部との間に設けたポンプを作動させて、輸液貯留部から検知器を経由して洗浄液貯留部へと輸液を供給することにより、排出流路の末端から使用済みの排液や空気を吸い込むことを防止することができ、装置の清潔性を維持することができる。
 本発明に係る血液浄化装置において、輸液貯留部と排出流路とを接続する輸液流路と、輸液流路の開閉を行う第一の開閉弁と、排出流路の輸液流路よりも下流側に設けられて排出流路の開閉を行う第二の開閉弁と、を備え、検知器と輸液流路との間の排出流路上にポンプを設けることができる。かかる場合において、制御部は、プライミング時に第一の開閉弁で輸液流路を閉鎖して第二の開閉弁を開放するとともにポンプを正転作動させる一方、検知器が気泡を検知した場合に、第一の開閉弁で輸液流路を開放して第二の開閉弁を閉塞するとともにポンプを逆転作動させることにより輸液貯留部から検知器を経由して洗浄液貯留部へと輸液を供給することができる(第一の態様)。
 本発明に係る血液浄化装置において、輸液貯留部と排出流路とを接続する輸液流路と、排出流路上の輸液流路よりも下流側に設けられたプライミングポンプと、を備え、ポンプとして、輸液流路上に設けられた輸液ポンプを採用することができる。かかる場合において、制御部は、プライミング時にプライミングポンプを正転作動させる一方、検知器が気泡を検知した場合に、プライミングポンプを停止させて輸液ポンプを作動させることにより輸液貯留部から検知器を経由して洗浄液貯留部へと輸液を供給することができる(第二の態様)。
 本発明に係る血液浄化装置において、輸液貯留部と排出流路とを接続する輸液流路と、輸液流路上に設けられた輸液ポンプと、を備え、ポンプとして、排出流路上の輸液流路よりも上流側に設けられたプライミングポンプを採用することができる。かかる場合において、制御部は、プライミング時にプライミングポンプを正転作動させる一方、検知器が気泡を検知した場合に、プライミングポンプを逆転作動させて輸液ポンプを作動させることにより輸液貯留部から検知器を経由して洗浄液貯留部へと輸液を供給することができる。また、制御部は、プライミングポンプを逆転作動させて輸液ポンプを作動させる際に、プライミングポンプの流量を輸液ポンプの流量よりも小さくすることができる(第三の態様)。
 本発明に係る血液浄化装置において、輸液貯留部と洗浄流路又は血液浄化器とを接続する輸液流路と、排出流路上に設けられたプライミングポンプと、を備え、ポンプとして、輸液流路上に設けられた輸液ポンプを採用することができる。かかる場合において、制御部は、プライミング時にプライミングポンプを正転作動させる一方、検知器が気泡を検知した場合に、プライミングポンプを停止させて輸液ポンプを作動させることにより輸液貯留部から検知器を経由して洗浄液貯留部へと輸液を供給することができる(第四の態様)。
 第一~第四の態様の血液浄化装置においては、洗浄流路として、患者返血部と血液浄化器を接続する静脈ラインを採用することができる。
 本発明に係る血液浄化装置において、輸液貯留部と排出流路とを接続する輸液流路と、輸液流路の開閉を行う第一の開閉弁と、排出流路の輸液流路よりも下流側に設けられた第二の開閉弁と、を備え、ポンプを、洗浄流路上に設けることができる。かかる場合において、制御部は、プライミング時に第一の開閉弁で輸液流路を閉鎖して第二の開閉弁で排出流路を開放するとともにポンプを正転作動させる一方、検知器が気泡を検知した場合に、第一の開閉弁で輸液流路を開放して第二の開閉弁で排出流路を閉塞するとともにポンプを逆転作動させることにより輸液貯留部から検知器を経由して洗浄液貯留部へと輸液を供給することができる(第五の態様)。
 本発明に係る血液浄化装置において、輸液貯留部と排出流路とを接続する輸液流路と、洗浄流路上に設けられたプライミングポンプと、を備え、ポンプとして、輸液流路上に設けられた輸液ポンプを採用することができる。かかる場合において、制御部は、プライミング時にプライミングポンプを正転作動させる一方、検知器が気泡を検知した場合に、プライミングポンプを逆転作動させて輸液ポンプを作動させることにより輸液貯留部から検知器を経由して洗浄液貯留部へと輸液を供給することができる(第六の態様)。
 本発明に係る血液浄化装置において、輸液貯留部と洗浄流路とを接続する輸液流路と、洗浄流路上の輸液流路よりも上流側に設けられたプライミングポンプと、を備え、ポンプとして、輸液流路上に設けられた輸液ポンプを採用することができる。かかる場合において、制御部は、プライミング時にプライミングポンプを正転作動させる一方、検知器が気泡を検知した場合に、プライミングポンプを逆転作動させて輸液ポンプを作動させることにより輸液貯留部から検知器を経由して洗浄液貯留部へと輸液を供給することができる(第七の態様)。
 本発明に係る血液浄化装置において、輸液貯留部と血液浄化器とを接続する輸液流路と、洗浄流路上に設けられたプライミングポンプと、を備え、ポンプとして、輸液流路上に設けられた輸液ポンプを採用することができる。かかる場合において、制御部は、プライミング時にプライミングポンプを正転作動させる一方、検知器が気泡を検知した場合に、プライミングポンプを逆転作動させて輸液ポンプを作動させることにより輸液貯留部から検知器を経由して洗浄液貯留部へと輸液を供給することができる(第八の態様)。
 第六~第八の態様の血液浄化装置において、制御部は、プライミングポンプを逆転作動させて輸液ポンプを作動させる際に、プライミングポンプの流量を輸液ポンプの流量よりも小さくすることができる。
 本発明に係る血液浄化装置において、輸液貯留部と洗浄流路とを接続する輸液流路と、洗浄流路上の輸液流路よりも下流側に設けられたプライミングポンプと、を備え、ポンプとして、輸液流路上に設けられた輸液ポンプを採用することができる。かかる場合において、制御部は、プライミング時にプライミングポンプを正転作動させる一方、検知器が気泡を検知した場合に、プライミングポンプを停止させて輸液ポンプを作動させることにより輸液貯留部から検知器を経由して洗浄液貯留部へと輸液を供給することができる(第九の態様)。
 第五~第九の態様の血液浄化装置においては、洗浄流路として、患者脱血部と血液浄化器を接続する動脈ラインを採用することができる。また、第五~第九の態様の血液浄化装置においては、洗浄流路は、患者脱血部と血液浄化器を接続する動脈ラインに配置されたプライミングラインを有してもよい。
 本発明に係る血液浄化装置において、制御部は、検知器が気泡を検知した場合に、ポンプを所定量作動させた後に警報を発生させることができる。また、制御部は、検知器が気泡を検知した場合に、警報を発生させるとともにポンプを停止させ、警報解除後にポンプを作動させることもできる。
 本発明によれば、血液浄化装置のプライミング中に気泡が検出された場合に、装置の清潔性を維持しつつ自動的に気泡を除去することが可能となる。
本発明の第一実施形態に係る血液浄化装置の構成を説明するための構成図である。 本発明の第二実施形態に係る血液浄化装置の構成を説明するための構成図である。 本発明の第三実施形態に係る血液浄化装置の構成を説明するための構成図である。 本発明の第四実施形態に係る血液浄化装置の構成を説明するための構成図である。 本発明の第四実施形態に係る血液浄化装置の変形例を説明するための構成図である。 本発明の第五実施形態に係る血液浄化装置の構成を説明するための構成図である。 本発明の第六実施形態に係る血液浄化装置の構成を説明するための構成図である。 本発明の第七実施形態に係る血液浄化装置の構成を説明するための構成図である。 本発明の第八実施形態に係る血液浄化装置の構成を説明するための構成図である。 本発明の第九実施形態に係る血液浄化装置の構成を説明するための構成図である。 本発明の第五~九実施形態に係る血液浄化装置の変形例を説明するための構成図である。
 以下、図面を参照して、本発明の各実施形態について説明する。なお、以下の各実施形態はあくまでも好適な適用例であって、本発明の適用範囲がこれに限定されるものではない。
<第一実施形態>
 まず、図1を用いて、本発明の第一実施形態に係る血液浄化装置1の構成について説明する。
 本実施形態に係る血液浄化装置1は、いわゆる白血球除去療法(LCAP)に用いられるものであり、図1に示すように、血液浄化器10、洗浄液貯留部20、洗浄流路30、気泡検知器40、排出流路50、輸液貯留部60、輸液流路70、プライミングポンプ80、制御部90、等を備えている。
 血液浄化器10は、血液入口から導入された血液に含まれる活性化した白血球をフィルタにより除去することにより浄化し、浄化された血液を血液出口から排出するものである。フィルタとしては、白血球を除去する吸着材を有するものを採用することができる。
 洗浄液貯留部20は、プライミング用の洗浄液(例えば生理食塩水等)を貯留する容器であり、洗浄流路30の端部に接続されている。洗浄流路30は、血液浄化器10と洗浄液貯留部20とを接続し、洗浄液貯留部20から供給される洗浄液を血液浄化器10へと流通させるための流路である。本実施形態においては、洗浄流路30として、患者返血部と血液浄化器10を接続する静脈ラインを採用している。
 気泡検知器40は、洗浄流路30上に設けられて、洗浄流路30を流通する洗浄液に含まれる気泡を検知するものである。気泡検知器40の検知結果に関する情報は、制御部90に送られて、プライミングポンプ80等の制御に用いられる。
 排出流路50は、血液浄化器10を経由した洗浄液を流通させて外部に排出するための流路であり、血液浄化器10に連通している。本実施形態においては、排出流路50として、患者脱血部と血液浄化器10を接続する動脈ラインを採用している。排出流路50の輸液流路70よりも下流側には、制御部90の制御の下で作動して排出流路50の開閉を行う第二の開閉弁51が設けられている。
 輸液貯留部60は、輸液(例えば生理食塩水等)を貯留する容器であり、輸液流路70を介して排出流路50に接続されている。輸液流路70には、制御部90の制御の下で作動して輸液流路70の開閉を行う第一の開閉弁71が設けられている。
 プライミングポンプ80は、排出流路50上の輸液流路70よりも上流側(気泡検知器40と輸液貯留部60との間)に設けられており、制御部90の制御の下で正転作動することにより、プライミング処理を実現させる。また、プライミングポンプ80は、制御部90の制御の下で逆転作動することにより、気泡除去処理を実現させる。なお、本実施形態において「上流側」及び「下流側」とは、プライミング時において洗浄液の流れる方向を基準としており、洗浄液貯留部20側を「上流側」、第二の開閉弁51側を「下流側」と称している。
 制御部90は、例えばメモリやCPU(Central Processing Unit)等を備えたコンピュータにより構成され、メモリに記録された各種プログラムをCPUが実行することにより、血液浄化装置1の各種機器を制御する。
 本実施形態における制御部90は、第一の開閉弁71で輸液流路70を閉鎖して第二の開閉弁51で排出流路50を開放するとともにプライミングポンプ80を正転作動させることにより、プライミング処理(洗浄液貯留部20内の洗浄液を、洗浄流路30を経由させて血液浄化器10に流通させた後、排出流路50を経由させて排出する処理)を実現させる。一方、制御部90は、気泡検知器40がプライミング中に気泡を検知した場合に、第一の開閉弁71で輸液流路70を開放して第二の開閉弁51で排出流路50を閉塞するとともにプライミングポンプ80を逆転作動させることにより、気泡除去処理(輸液貯留部60内の輸液を、輸液流路70、排出流路50、血液浄化器10及び洗浄流路30を順次経由させて、洗浄液貯留部20へと供給する処理)を実現させる。なお、プライミングポンプ80の「正転作動」とは、洗浄液を上流側から下流側に流通させるようにプライミングポンプ80を回転させることであり、「逆転作動」とは、その反対方向にプライミングポンプ80を回転させることである。
 また、本実施形態における制御部90は、気泡検知器40がプライミング中に気泡を検知した場合に、プライミングポンプ80を所定量作動させた後に警報を発生させる。なお、制御部90は、気泡検知器40がプライミング中に気泡を検知した場合に、警報を発生させるとともにプライミングポンプ80を停止させ、警報解除後にプライミングポンプ80を作動させることもできる。また、制御部90は、操作者の指示に基づいて、警報解除後にプライミングポンプ80を作動させることもできる。
 次に、本実施形態に係る血液浄化装置1のプライミング方法について説明する。
 血液浄化装置1の制御部90は、第一の開閉弁71で輸液流路70を閉鎖して第二の開閉弁51で排出流路50を開放するとともに、プライミングポンプ80を正転作動させることにより、洗浄液貯留部20内の洗浄液を、洗浄流路30を経由させて血液浄化器10に流通させた後、排出流路50を経由させて排出する処理(プライミング処理)を実現させる(プライミング実施工程)。
 ここで、制御部90は、気泡検知器40がプライミング中に気泡を検知した場合に、第一の開閉弁71で輸液流路70を開放して第二の開閉弁51で排出流路50を閉塞するとともに、プライミングポンプ80を逆転作動させることにより、輸液貯留部60内の輸液を、輸液流路70、排出流路50、血液浄化器10及び洗浄流路30を順次経由させて、洗浄液貯留部20へと供給する処理(気泡除去処理)を実現させる(気泡除去工程)。
 以上説明した実施形態に係る血液浄化装置1においては、洗浄流路30上に設けられた気泡検知器40がプライミング中に気泡を検知した場合に、輸液貯留部60から気泡検知器40を経由して洗浄液貯留部20へと輸液を供給するようにプライミングポンプ80を作動させることができる。従って、洗浄流路30に存在する気泡を輸液によって除去することができる。洗浄流路30に存在する気泡を除去するために、排出流路70に配置したプライミングポンプ80を単に逆転させるだけでは、排出流路70の末端から使用済みの排液や空気を吸い込むことになるが、本装置1のように気泡検知器40と輸液貯留部60との間に設けたプライミングポンプ80を作動させて、輸液貯留部60から気泡検知器40を経由して洗浄液貯留部20へと輸液を供給することにより、排出流路70の末端から使用済みの排液や空気を吸い込むことを防止することができ、装置1の清潔性を維持することができる。
<第二実施形態>
 次に、図2を用いて、本発明の第二実施形態に係る血液浄化装置1Aについて説明する。本実施形態に係る血液浄化装置1Aは、第一実施形態における開閉弁51・71を省き、輸液流路70の位置を変更し、輸液ポンプ72を設け、制御態様を変更したものであり、その他の構成については第一実施形態と実質的に同様である。従って、第一実施形態と共通する構成については、第一実施形態と同一の符号を付して詳細な説明を省略することとする。
 本実施形態に係る血液浄化装置1Aは、図2に示すように、血液浄化器10、洗浄液貯留部20、洗浄流路30、気泡検知器40、排出流路50、輸液貯留部60、輸液流路70、輸液ポンプ72、プライミングポンプ80、制御部90A、等を備えている。血液浄化器10、洗浄液貯留部20、洗浄流路30、気泡検知器40、排出流路50、輸液貯留部60及びプライミングポンプ80については、第一実施形態と同様であるので、詳細な説明を省略する。
 本実施形態においては、図2に示すように、輸液流路70を、排出流路50上のプライミングポンプ80よりも上流側に設けている。すなわち、本実施形態におけるプライミングポンプ80は、排出流路50上の輸液流路70よりも下流側に配置されている。なお、本実施形態において「上流側」及び「下流側」とは、いずれも、プライミング時において洗浄液の流れる方向を基準としており、洗浄液貯留部20側を「上流側」、排出流路50の端部側を「下流側」と称している。
 輸液ポンプ72は、図2に示すように輸液流路70上に設けられており、制御部90Aの制御の下で作動することにより、気泡除去処理を実現させる。
本実施形態における制御部90Aは、プライミングポンプ80を正転作動させることにより、プライミング処理(洗浄液貯留部20内の洗浄液を、洗浄流路30を経由させて血液浄化器10に流通させた後、排出流路50を経由させて排出する処理)を実現させる。一方、制御部90Aは、気泡検知器40がプライミング中に気泡を検知した場合に、プライミングポンプ80を停止させて輸液ポンプ72を作動させることにより、気泡除去処理(輸液貯留部60内の輸液を、輸液流路70、排出流路50、血液浄化器10及び洗浄流路30を順次経由させて、洗浄液貯留部20へと供給する処理)を実現させる。なお、輸液ポンプ72の「作動」とは、輸液貯留部60から排出流路50へと輸液を供給するように輸液ポンプ72を回転させることである。
 また、本実施形態における制御部90Aは、気泡検知器40がプライミング中に気泡を検知した場合に、輸液ポンプ72を所定量作動させた後に警報を発生させる。なお、制御部90Aは、気泡検知器40がプライミング中に気泡を検知した場合に、警報を発生させるとともに輸液ポンプ72を停止させ、警報解除後に輸液ポンプ72を作動させることもできる。また、制御部90Aは、操作者の指示に基づいて、警報解除後に輸液ポンプ72を作動させることもできる。
 次に、本実施形態に係る血液浄化装置1Aのプライミング方法について説明する。
 血液浄化装置1Aの制御部90Aは、プライミングポンプ80を正転作動させることにより、洗浄液貯留部20内の洗浄液を、洗浄流路30を経由させて血液浄化器10に流通させた後、排出流路50を経由させて排出する処理(プライミング処理)を実現させる(プライミング実施工程)。
 ここで、制御部90Aは、気泡検知器40がプライミング中に気泡を検知した場合に、プライミングポンプ80を停止させて輸液ポンプ72を作動させることにより、輸液貯留部60内の輸液を、輸液流路70、排出流路50、血液浄化器10及び洗浄流路30を順次経由させて、洗浄液貯留部20へと供給する処理(気泡除去処理)を実現させる(気泡除去工程)。
 以上説明した実施形態に係る血液浄化装置1Aによれば、第一実施形態に係る血液浄化装置1と同様の作用効果を得ることができる。
<第三実施形態>
 次に、図3を用いて、本発明の第三実施形態に係る血液浄化装置1Bについて説明する。本実施形態に係る血液浄化装置1Bは、第二実施形態における輸液流路70の位置を変更するとともに制御態様を変更したものであり、その他の構成については第二実施形態と実質的に同様である。従って、第二実施形態と共通する構成については、第二実施形態と同一の符号を付して詳細な説明を省略することとする。
 本実施形態に係る血液浄化装置1Bは、図3に示すように、血液浄化器10、洗浄液貯留部20、洗浄流路30、気泡検知器40、排出流路50、輸液貯留部60、輸液流路70、輸液ポンプ72、プライミングポンプ80、制御部90B、等を備えている。血液浄化器10、洗浄液貯留部20、洗浄流路30、気泡検知器40、排出流路50、輸液貯留部60、輸液ポンプ72及びプライミングポンプ80については、第二実施形態と同様であるので、詳細な説明を省略する。
 本実施形態においては、図3に示すように、輸液流路70を、排出流路50上のプライミングポンプ80よりも下流側に設けている。すなわち、本実施形態におけるプライミングポンプ80は、排出流路50上の輸液流路70よりも上流側に配置されている。なお、本実施形態において「上流側」及び「下流側」とは、いずれも、プライミング時において洗浄液の流れる方向を基準としており、洗浄液貯留部20側を「上流側」、排出流路50の端部側を「下流側」と称している。
本実施形態における制御部90Bは、プライミングポンプ80を正転作動させることにより、プライミング処理(洗浄液貯留部20内の洗浄液を、洗浄流路30を経由させて血液浄化器10に流通させた後、排出流路50を経由させて排出する処理)を実現させる。一方、制御部90Bは、気泡検知器40がプライミング中に気泡を検知した場合に、プライミングポンプ80を逆転作動させて輸液ポンプ72を作動させることにより、気泡除去処理(輸液貯留部60内の輸液を、輸液流路70、排出流路50、血液浄化器10及び洗浄流路30を順次経由させて、洗浄液貯留部20へと供給する処理)を実現させる。また、制御部90Bは、プライミングポンプ80を逆転作動させて輸液ポンプ72を作動させる際に、プライミングポンプ80の流量を輸液ポンプ72の流量と同等かそれよりも小さくする。なお、プライミングポンプ80の「正転作動」とは、洗浄液を上流側から下流側に流通させるようにプライミングポンプ80を回転させることであり、「逆転作動」とは、その反対方向にプライミングポンプ80を回転させることである。また、輸液ポンプ72の「作動」とは、輸液貯留部60から排出流路50へと輸液を供給するように輸液ポンプ72を回転させることである。
 また、本実施形態における制御部90Bは、気泡検知器40がプライミング中に気泡を検知した場合に、プライミングポンプ80及び輸液ポンプ72を所定量作動させた後に警報を発生させる。なお、制御部90Bは、気泡検知器40がプライミング中に気泡を検知した場合に、警報を発生させるとともにプライミングポンプ80及び輸液ポンプ72を停止させ、警報解除後にプライミングポンプ80及び輸液ポンプ72を作動させることもできる。また、制御部90Bは、操作者の指示に基づいて、警報解除後にプライミングポンプ80及び輸液ポンプ72を作動させることもできる。
 次に、本実施形態に係る血液浄化装置1Bのプライミング方法について説明する。
 血液浄化装置1Bの制御部90Bは、プライミングポンプ80を正転作動させることにより、洗浄液貯留部20内の洗浄液を、洗浄流路30を経由させて血液浄化器10に流通させた後、排出流路50を経由させて排出する処理(プライミング処理)を実現させる(プライミング実施工程)。
 ここで、制御部90Bは、気泡検知器40がプライミング中に気泡を検知した場合に、プライミングポンプ80を逆転作動させて輸液ポンプ72を作動させることにより、輸液貯留部60内の輸液を、輸液流路70、排出流路50、血液浄化器10及び洗浄流路30を順次経由させて、洗浄液貯留部20へと供給する処理(気泡除去処理)を実現させる(気泡除去工程)。
 以上説明した実施形態に係る血液浄化装置1Bによれば、第一実施形態に係る血液浄化装置1と同様の作用効果を得ることができる。
<第四実施形態>
 次に、図4及び図5を用いて、本発明の第四実施形態に係る血液浄化装置1Cについて説明する。本実施形態に係る血液浄化装置1Cは、第二実施形態における輸液流路70の位置を変更するとともに制御態様を変更したものであり、その他の構成については第二実施形態と実質的に同様である。従って、第二実施形態と共通する構成については、第二実施形態と同一の符号を付して詳細な説明を省略することとする。
 本実施形態に係る血液浄化装置1Cは、図4に示すように、血液浄化器10、洗浄液貯留部20、洗浄流路30、気泡検知器40、排出流路50、輸液貯留部60、輸液流路70、輸液ポンプ(補液ポンプ)72、プライミングポンプ80、制御部90C、等を備えている。血液浄化器10、洗浄液貯留部20、洗浄流路30、気泡検知器40、排出流路50、輸液貯留部60、輸液ポンプ72及びプライミングポンプ80については、第二実施形態と同様であるので、詳細な説明を省略する。
 本実施形態においては、図4に示すように、輸液流路70を洗浄流路30に接続している。本実施形態における制御部90Cは、プライミングポンプ80を正転作動させることにより、プライミング処理(洗浄液貯留部20内の洗浄液を、洗浄流路30を経由させて血液浄化器10に流通させた後、排出流路50を経由させて排出する処理)を実現させる。一方、制御部90Cは、気泡検知器40がプライミング中に気泡を検知した場合に、プライミングポンプ80を停止させて輸液ポンプ72を作動させることにより、気泡除去処理(輸液貯留部60内の輸液を、輸液流路70及び洗浄流路30を順次経由させて、洗浄液貯留部20へと供給する処理)を実現させる。なお、プライミングポンプ80の「正転作動」とは、洗浄液を上流側から下流側に流通させるようにプライミングポンプ80を回転させることであり、輸液ポンプ72の「作動」とは、輸液貯留部60から洗浄流路30へと輸液を供給するように輸液ポンプ72を回転させることである。
 また、本実施形態における制御部90Cは、気泡検知器40がプライミング中に気泡を検知した場合に、輸液ポンプ72を所定量作動させた後に警報を発生させる。なお、制御部90Cは、気泡検知器40がプライミング中に気泡を検知した場合に、警報を発生させるとともに輸液ポンプ72を停止させ、警報解除後に輸液ポンプ72を作動させることもできる。また、制御部90Cは、操作者の指示に基づいて、警報解除後に輸液ポンプ72を作動させることもできる。
 次に、本実施形態に係る血液浄化装置1Cのプライミング方法について説明する。
 血液浄化装置1Cの制御部90Cは、プライミングポンプ80を正転作動させることにより、洗浄液貯留部20内の洗浄液を、洗浄流路30を経由させて血液浄化器10に流通させた後、排出流路50を経由させて排出する処理(プライミング処理)を実現させる(プライミング実施工程)。
 ここで、制御部90Cは、気泡検知器40がプライミング中に気泡を検知した場合に、プライミングポンプ80を停止させて輸液ポンプ72を作動させることにより、輸液貯留部60内の輸液を、輸液流路70及び洗浄流路30を順次経由させて、洗浄液貯留部20へと供給する処理(気泡除去処理)を実現させる(気泡除去工程)。
 以上説明した実施形態に係る血液浄化装置1Cによれば、第一実施形態に係る血液浄化装置1と同様の作用効果を得ることができる。
 なお、血液浄化器10が、膜の内側から外側(又はその逆)に液体が流通可能でかつ外側に透析液等の流体流通口を有する透析器等の場合には、輸液流路70を洗浄流路30に接続することに代えて、図5に示すように、輸液流路70を血液浄化器10に接続してもよい。このような構成を採用した場合においても、制御部90Cで同様の制御を行うことにより、プライミング処理及び気泡除去処理を実現させることができる。かかる場合には、輸液ポンプ72は、透析液ポンプとして機能することとなる。
<第五実施形態>
 次に、図6を用いて、本発明の第五実施形態に係る血液浄化装置1Dについて説明する。本実施形態に係る血液浄化装置1Dは、第一実施形態における洗浄流路30や排出流路50の位置を変更するとともに制御態様を変更したものであり、その他の構成については第一実施形態と実質的に同様である。従って、第一実施形態と共通する構成については、第一実施形態と同一の符号を付して詳細な説明を省略することとする。
 本実施形態に係る血液浄化装置1Dは、図6に示すように、血液浄化器10、洗浄液貯留部20、洗浄流路30D、気泡検知器40、排出流路50D、輸液貯留部60、輸液流路70、プライミングポンプ80、制御部90D、等を備えている。血液浄化器10、洗浄液貯留部20、気泡検知器40、輸液貯留部60、輸液流路70及びプライミングポンプ80については、第一実施形態と同様であるので、詳細な説明を省略する。
 本実施形態においては、洗浄流路30Dとして、患者脱血部と血液浄化器10を接続する動脈ラインを採用し、排出流路50Dとして、患者返血部と血液浄化器10を接続する静脈ラインを採用している。また、本実施形態においては、プライミングポンプ80は洗浄流路30Dに設けられており、輸液流路70は排出流路50Dに接続されており、
 輸液流路70には、制御部90Dの制御の下で作動して輸液流路70の開閉を行う第一の開閉弁71が設けられている。また、排出流路50Dの輸液流路70よりも下流側には、制御部90Dの制御の下で作動して排出流路50Dの開閉を行う第二の開閉弁51Dが設けられている。なお、本実施形態において「下流側」とは、プライミング時において洗浄液が流れる方向を基準としており、洗浄液貯留部20側を「上流側」、第二の開閉弁51D側を「下流側」と称している。すなわち、本実施形態のプライミング時における洗浄液の流れの方向は、第一~第四実施形態における洗浄液の流れとは反対となる。
本実施形態における制御部90Dは、第一の開閉弁71で輸液流路70を閉鎖して第二の開閉弁51Dで排出流路50Dを開放するとともにプライミングポンプ80を正転作動させることにより、プライミング処理(洗浄液貯留部20内の洗浄液を、洗浄流路30Dを経由させて血液浄化器10に流通させた後、排出流路50Dを経由させて排出する処理)を実現させる。一方、制御部90Dは、気泡検知器40がプライミング中に気泡を検知した場合に、第一の開閉弁71で輸液流路70を開放して第二の開閉弁51Dで排出流路50Dを閉塞するとともにプライミングポンプ80を逆転作動させることにより、気泡除去処理(輸液貯留部60内の輸液を、輸液流路70、排出流路50D、血液浄化器10及び洗浄流路30Dを順次経由させて、洗浄液貯留部20へと供給する処理)を実現させる。なお、プライミングポンプ80の「正転作動」とは、洗浄液を上流側から下流側に流通させるようにプライミングポンプ80を回転させることであり、「逆転作動」とは、その反対方向にプライミングポンプ80を回転させることである。また、輸液ポンプ72の「作動」とは、輸液貯留部60から排出流路50Dへと輸液を供給するように輸液ポンプ72を回転させることである。
 また、本実施形態における制御部90Dは、気泡検知器40がプライミング中に気泡を検知した場合に、プライミングポンプ80を所定量作動させた後に警報を発生させる。なお、制御部90Dは、気泡検知器40がプライミング中に気泡を検知した場合に、警報を発生させるとともにプライミングポンプ80を停止させ、警報解除後にプライミングポンプ80を作動させることもできる。また、制御部90Dは、操作者の指示に基づいて、警報解除後にプライミングポンプ80を作動させることもできる。
 次に、本実施形態に係る血液浄化装置1Dのプライミング方法について説明する。
 血液浄化装置1Dの制御部90Dは、プライミングポンプ80を正転作動させることにより、洗浄液貯留部20内の洗浄液を、洗浄流路30Dを経由させて血液浄化器10に流通させた後、排出流路50Dを経由させて排出する処理(プライミング処理)を実現させる(プライミング実施工程)。
 ここで、制御部90Dは、気泡検知器40がプライミング中に気泡を検知した場合に、第一の開閉弁71で輸液流路70を開放して第二の開閉弁51Dで排出流路50Dを閉塞するとともにプライミングポンプ80を逆転作動させることにより、輸液貯留部60内の輸液を、輸液流路70、排出流路50D、血液浄化器10及び洗浄流路30Dを順次経由させて、洗浄液貯留部20へと供給する処理(気泡除去処理)を実現させる(気泡除去工程)。
 以上説明した実施形態に係る血液浄化装置1Dによれば、第一実施形態に係る血液浄化装置1と同様の作用効果を得ることができる。
<第六実施形態>
 次に、図7を用いて、本発明の第六実施形態に係る血液浄化装置1Eについて説明する。本実施形態に係る血液浄化装置1Eは、第五実施形態における開閉弁51D・71を省く代わりに輸液ポンプ72を設けて制御態様を変更したものであり、その他の構成については第五実施形態と同様である。従って、第五実施形態と共通する構成については、第五実施形態と同一の符号を付して詳細な説明を省略することとする。
 本実施形態に係る血液浄化装置1Eは、図7に示すように、血液浄化器10、洗浄液貯留部20、洗浄流路30D、気泡検知器40、排出流路50D、輸液貯留部60、輸液流路70、輸液ポンプ72、プライミングポンプ80、制御部90E、等を備えている。血液浄化器10、洗浄液貯留部20、洗浄流路30D、気泡検知器40、排出流路50D、輸液貯留部60、輸液流路70及びプライミングポンプ80については、第五実施形態と同様であるので、詳細な説明を省略する。
 本実施形態における輸液ポンプ72は、図7に示すように輸液流路70上に設けられており、制御部90Eの制御の下で作動することにより、気泡除去処理を実現させる。本実施形態における制御部90Eは、プライミングポンプ80を正転作動させることにより、プライミング処理(洗浄液貯留部20内の洗浄液を、洗浄流路30Dを経由させて血液浄化器10に流通させた後、排出流路50Dを経由させて排出する処理)を実現させる。一方、制御部90Eは、気泡検知器40がプライミング中に気泡を検知した場合に、プライミングポンプ80を逆転作動させて輸液ポンプ72を作動させることにより、気泡除去処理(輸液貯留部60内の輸液を、輸液流路70、排出流路50D、血液浄化器10及び洗浄流路30Dを順次経由させて、洗浄液貯留部20へと供給する処理)を実現させる。また、制御部90Eは、プライミングポンプ80を逆転作動させて輸液ポンプ72を作動させる際に、プライミングポンプ80の流量を輸液ポンプ72の流量と同等かそれよりも小さくする。なお、プライミングポンプ80の「正転作動」とは、洗浄液を上流側から下流側に流通させるようにプライミングポンプ80を回転させることであり、「逆転作動」とは、その反対方向にプライミングポンプ80を回転させることである。また、輸液ポンプ72の「作動」とは、輸液貯留部60から排出流路50Dへと輸液を供給するように輸液ポンプ72を回転させることである。
 また、本実施形態における制御部90Eは、気泡検知器40がプライミング中に気泡を検知した場合に、プライミングポンプ80及び輸液ポンプ72を所定量作動させた後に警報を発生させる。なお、制御部90Eは、気泡検知器40がプライミング中に気泡を検知した場合に、警報を発生させるとともにプライミングポンプ80及び輸液ポンプ72を停止させ、警報解除後にプライミングポンプ80及び輸液ポンプ72を作動させることもできる。また、制御部90Eは、操作者の指示に基づいて、警報解除後にプライミングポンプ80及び輸液ポンプ72を作動させることもできる。
 次に、本実施形態に係る血液浄化装置1Eのプライミング方法について説明する。
 血液浄化装置1Eの制御部90Eは、プライミングポンプ80を正転作動させることにより、洗浄液貯留部20内の洗浄液を、洗浄流路30Dを経由させて血液浄化器10に流通させた後、排出流路50Dを経由させて排出する処理(プライミング処理)を実現させる(プライミング実施工程)。
 ここで、制御部90Eは、気泡検知器40がプライミング中に気泡を検知した場合に、プライミングポンプ80を逆転作動させて輸液ポンプ72を作動させることにより、輸液貯留部60内の輸液を、輸液流路70、排出流路50D、血液浄化器10及び洗浄流路30Dを順次経由させて、洗浄液貯留部20へと供給する処理(気泡除去処理)を実現させる(気泡除去工程)。
 以上説明した実施形態に係る血液浄化装置1Eによれば、第一実施形態に係る血液浄化装置1と同様の作用効果を得ることができる。
<第七実施形態>
 次に、図8を用いて、本発明の第七実施形態に係る血液浄化装置1Fについて説明する。本実施形態に係る血液浄化装置1Fは、第五実施形態における輸液流路70の位置を変更するとともに制御態様を変更したものであり、その他の構成については第六実施形態と同様である。従って、第六実施形態と共通する構成については、第六実施形態と同一の符号を付して詳細な説明を省略することとする。
 本実施形態に係る血液浄化装置1Fは、図8に示すように、血液浄化器10、洗浄液貯留部20、洗浄流路30D、気泡検知器40、排出流路50D、輸液貯留部60、輸液流路70、輸液ポンプ72、プライミングポンプ80、制御部90F、等を備えている。血液浄化器10、洗浄液貯留部20、洗浄流路30D、気泡検知器40、排出流路50D、輸液貯留部60、輸液ポンプ72、プライミングポンプ80については、第六実施形態と同様であるので、詳細な説明を省略する。
 本実施形態においては、図8に示すように、輸液流路70を、洗浄流路30D上のプライミングポンプ80よりも下流側に接続している。すなわち、本実施形態においては、プライミングポンプ80が、洗浄流路30D上の輸液流路70よりも上流側に設けられている。なお、本実施形態において「上流側」及び「下流側」とは、プライミング時において洗浄液が流れる方向を基準としており、洗浄液貯留部20側を「上流側」、排出流路50Dの端部側を「下流側」と称している。
 本実施形態における制御部90Fは、プライミングポンプ80を正転作動させることにより、プライミング処理(洗浄液貯留部20内の洗浄液を、洗浄流路30Dを経由させて血液浄化器10に流通させた後、排出流路50Dを経由させて排出する処理)を実現させる。一方、制御部90Fは、気泡検知器40がプライミング中に気泡を検知した場合に、プライミングポンプ80を逆転作動させて輸液ポンプ72を作動させることにより、気泡除去処理(輸液貯留部60内の輸液を、輸液流路70及び洗浄流路30Dを順次経由させて、洗浄液貯留部20へと供給する処理)を実現させる。また、制御部90Fは、プライミングポンプ80を逆転作動させて輸液ポンプ72Eを作動させる際に、プライミングポンプ80の流量を輸液ポンプ72の流量と同等かそれよりも小さくする。なお、プライミングポンプ80の「正転作動」とは、洗浄液を上流側から下流側に流通させるようにプライミングポンプ80を回転させることであり、「逆転作動」とは、その反対方向にプライミングポンプ80を回転させることである。また、輸液ポンプ72の「作動」とは、輸液貯留部60から洗浄流路30Dへと輸液を供給するように輸液ポンプ72を回転させることである。
 また、本実施形態における制御部90Fは、気泡検知器40がプライミング中に気泡を検知した場合に、プライミングポンプ80及び輸液ポンプ72を所定量作動させた後に警報を発生させる。なお、制御部90Fは、気泡検知器40がプライミング中に気泡を検知した場合に、警報を発生させるとともにプライミングポンプ80及び輸液ポンプ72を停止させ、警報解除後にプライミングポンプ80及び輸液ポンプ72を作動させることもできる。また、制御部90Fは、操作者の指示に基づいて、警報解除後にプライミングポンプ80及び輸液ポンプ72を作動させることもできる。
 次に、本実施形態に係る血液浄化装置1Fのプライミング方法について説明する。
 血液浄化装置1Fの制御部90Fは、プライミングポンプ80を正転作動させることにより、洗浄液貯留部20内の洗浄液を、洗浄流路30Dを経由させて血液浄化器10に流通させた後、排出流路50Dを経由させて排出する処理(プライミング処理)を実現させる(プライミング実施工程)。
 ここで、制御部90Fは、気泡検知器40がプライミング中に気泡を検知した場合に、プライミングポンプ80を逆転作動させて輸液ポンプ72を作動させることにより、輸液貯留部60内の輸液を、輸液流路70及び洗浄流路30Dを順次経由させて、洗浄液貯留部20へと供給する処理(気泡除去処理)を実現させる(気泡除去工程)。
 以上説明した実施形態に係る血液浄化装置1Fによれば、第一実施形態に係る血液浄化装置1と同様の作用効果を得ることができる。
<第八実施形態>
 次に、図9を用いて、本発明の第八実施形態に係る血液浄化装置1Gについて説明する。本実施形態に係る血液浄化装置1Gは、第七実施形態における輸液流路70の位置を変更したものであり、その他の構成については第七実施形態と同様である。従って、第七実施形態と共通する構成については、第七実施形態と同一の符号を付して詳細な説明を省略することとする。なお、本実施形態においては、血液浄化器10として、膜の内側から外側(又はその逆)に液体が流通可能でかつ外側に透析液等の流体流通口を有する透析器等を採用することとする。
 本実施形態に係る血液浄化装置1Gにおいては、図9に示すように、輸液流路70が血液浄化器10に接続されている。本実施形態における制御部90Gは、プライミングポンプ80を正転作動させることにより、プライミング処理(洗浄液貯留部20内の洗浄液を、洗浄流路30Dを経由させて血液浄化器10に流通させた後、排出流路50Dを経由させて排出する処理)を実現させる。一方、制御部90Gは、気泡検知器40がプライミング中に気泡を検知した場合に、プライミングポンプ80を逆転作動させて輸液ポンプ72を作動させることにより、気泡除去処理(輸液貯留部60内の輸液を、輸液流路70、血液処理器10及び洗浄流路30Dを順次経由させて、洗浄液貯留部20へと供給する処理)を実現させる。なお、制御部90Gは、プライミングポンプ80を逆転作動させて輸液ポンプ72を作動させる際に、プライミングポンプ80の流量を輸液ポンプ72の流量と同等かそれよりも小さくする。
 また、本実施形態における制御部90Gは、気泡検知器40がプライミング中に気泡を検知した場合に、プライミングポンプ80及び輸液ポンプ72を所定量作動させた後に警報を発生させる。なお、制御部90Gは、気泡検知器40がプライミング中に気泡を検知した場合に、警報を発生させるとともにプライミングポンプ80及び輸液ポンプ72を停止させ、警報解除後にプライミングポンプ80及び輸液ポンプ72を作動させることもできる。また、制御部90Gは、操作者の指示に基づいて、警報解除後にプライミングポンプ80及び輸液ポンプ72を作動させることもできる。
 次に、本実施形態に係る血液浄化装置1Gのプライミング方法について説明する。
 血液浄化装置1Gの制御部90Gは、プライミングポンプ80を正転作動させることにより、洗浄液貯留部20内の洗浄液を、洗浄流路30Dを経由させて血液浄化器10に流通させた後、排出流路50Dを経由させて排出する処理(プライミング処理)を実現させる(プライミング実施工程)。
 ここで、制御部90Gは、気泡検知器40がプライミング中に気泡を検知した場合に、プライミングポンプ80を逆転作動させて輸液ポンプ72を作動させることにより、輸液貯留部60内の輸液を、輸液流路70、血液処理器10及び洗浄流路30Dを順次経由させて、洗浄液貯留部20へと供給する処理(気泡除去処理)を実現させる(気泡除去工程)。
 以上説明した実施形態に係る血液浄化装置1Gによれば、第一実施形態に係る血液浄化装置1と同様の作用効果を得ることができる。
<第九実施形態>
 次に、図10を用いて、本発明の第九実施形態に係る血液浄化装置1Hについて説明する。本実施形態に係る血液浄化装置1Hは、第五実施形態における輸液流路70の位置を変更するとともに制御態様を変更したものであり、その他の構成については第五実施形態と同様である。従って、第五実施形態と共通する構成については、第五実施形態と同一の符号を付して詳細な説明を省略することとする。
 本実施形態に係る血液浄化装置1Hにおいては、図10に示すように、輸液流路70が、洗浄流路30D上のプライミングポンプ80よりも上流側に接続している。すなわち、本実施形態においては、プライミングポンプ80が、洗浄流路30D上の輸液流路70よりも下流側に設けられている。なお、本実施形態において「上流側」及び「下流側」とは、プライミング時において洗浄液が流れる方向を基準としており、洗浄液貯留部20側を「上流側」、排出流路50Dの端部側を「下流側」と称している。
 本実施形態における制御部90Hは、プライミングポンプ80を正転作動させることにより、プライミング処理(洗浄液貯留部20内の洗浄液を、洗浄流路30Dを経由させて血液浄化器10に流通させた後、排出流路50Dを経由させて排出する処理)を実現させる。一方、制御部90Hは、気泡検知器40がプライミング中に気泡を検知した場合に、プライミングポンプ80を停止させて輸液ポンプ72を作動させることにより、気泡除去処理(輸液貯留部60内の輸液を、輸液流路70及び洗浄流路30Dを順次経由させて、洗浄液貯留部20へと供給する処理)を実現させる。なお、プライミングポンプ80の「正転作動」とは、洗浄液を上流側から下流側に流通させるようにプライミングポンプ80を回転させることであり、輸液ポンプ72の「作動」とは、輸液貯留部60から洗浄流路30Dへと輸液を供給するように輸液ポンプ72を回転させることである。
 また、本実施形態における制御部90Hは、気泡検知器40がプライミング中に気泡を検知した場合に、輸液ポンプ72を所定量作動させた後に警報を発生させる。なお、制御部90Hは、気泡検知器40がプライミング中に気泡を検知した場合に、警報を発生させるとともに輸液ポンプ72を停止させ、警報解除後に輸液ポンプ72を作動させることもできる。また、制御部90Hは、操作者の指示に基づいて、警報解除後に輸液ポンプ72を作動させることもできる。
 次に、本実施形態に係る血液浄化装置1Hのプライミング方法について説明する。
 血液浄化装置1Hの制御部90Hは、プライミングポンプ80を正転作動させることにより、洗浄液貯留部20内の洗浄液を、洗浄流路30Dを経由させて血液浄化器10に流通させた後、排出流路50Dを経由させて排出する処理(プライミング処理)を実現させる(プライミング実施工程)。
 ここで、制御部90Hは、気泡検知器40がプライミング中に気泡を検知した場合に、プライミングポンプ80を停止させて輸液ポンプ72を作動させることにより、輸液貯留部60内の輸液を、輸液流路70及び洗浄流路30Dを順次経由させて、洗浄液貯留部20へと供給する処理(気泡除去処理)を実現させる(気泡除去工程)。
 以上説明した実施形態に係る血液浄化装置1Hによれば、第一実施形態に係る血液浄化装置1と同様の作用効果を得ることができる。
 なお、第五~第九実施形態においては、洗浄流路30Dとして、患者脱血部と血液浄化器10を接続する動脈ラインを採用した例(図6~図10)を示したが、例えば図11に示すように、動脈ライン100に接続したプライミングライン110を洗浄流路の一部として使用することもできる。
 すなわち、図11に示すように、プライミングライン110の先端に洗浄液貯留部20を接続するとともに、プライミングライン110に気泡検知器40を設けることができる。そして、制御部90Dは、洗浄液貯留部20内の洗浄液を、プライミングライン110及び動脈ライン100を経由させて血液浄化器10に流通させた後、排出流路50Dを経由させて排出する処理(プライミング処理)を実現させることができる。一方、制御部90Dは、気泡検知器40がプライミング中に気泡を検知した場合に、第一の開閉弁71で輸液流路70を開放して第二の開閉弁51Dで排出流路50Dを閉塞するとともにプライミングポンプ80を逆転作動させることにより、輸液貯留部60内の輸液を、輸液流路70、排出流路50D、血液浄化器10、動脈ライン100及びプライミングライン110を順次経由させて、洗浄液貯留部20へと供給する処理(気泡除去処理)を実現させることができる。なお、制御部90Dは、プライミング処理及び気泡除去処理を実施する際に、第三の開閉弁101で動脈ライン100を閉塞することとする。
 また、以上の各実施形態においては、動脈ラインや静脈ラインを排出流路とした例を示したが、透析における濾過ラインや透析液ライン等、洗浄液を排出できる他の流路を排出流路とすることもできる。
 また、以上の各実施形態においては、洗浄液及び輸液として生理食塩水を採用した例を示したが、血液浄化器の洗浄液や輸液として使用可能な他の液体(透析液、補液、新鮮凍結血漿、アルブミン、体腔液等)を採用することもできる。また、洗浄液貯留部20及び輸液貯留部60内の液体は、同一の液体である必要はなく、前記液体(透析液、補液、新鮮凍結血漿、アルブミン、体腔液等)の組み合わせであってもよい。
 また、以上の各実施形態においては、白血球除去療法(LCAP)に使用される血液浄化装置に本発明を適用した例を示したが、同様の構成(脱血ライン、血液ポンプ、第一輸液ライン、輸液容器、第一開閉弁、第二輸液ライン、第二開閉弁、輸液ポンプ等)を備える他の血液浄化装置に本発明を適用することもできる。例えば、単純血漿交換療法(PE)、二重濾過血漿交換療法(DFPP)、持続的血液濾過療法(CHF)、持続的血液透析療法(CHD)、持続的血液濾過透析療法(CHDF)等に使用される濾過・拡散用の血液浄化器を備えた血液浄化装置に本発明を適用することもできる。
 本発明は、以上の各実施形態に限定されるものではなく、これらの実施形態に当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。すなわち、前記各実施形態が備える各要素及びその配置、材料、条件、形状、サイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、前記各実施形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。
 1・1A~1H…血液浄化装置
 10…血液浄化器
 20…洗浄液貯留部
 30・30D…洗浄流路
 40…気泡検知器
 50・50D…排出流路
 51・51D…第二の開閉弁
 60…輸液貯留部
 70…輸液流路
 71…第一の開閉弁
 72…輸液ポンプ
 80…プライミングポンプ
 90・90A~90H…制御部
 100…動脈ライン(洗浄流路)
 110…プライミングライン(洗浄流路)

Claims (18)

  1.  血液浄化器と、
     洗浄液が貯留された洗浄液貯留部と、
     前記血液浄化器と前記洗浄液貯留部とを接続する洗浄流路と、
     前記洗浄流路上に設けられ気泡を検知する検知器と、
     前記血液浄化器に連通し前記洗浄液を排出する排出流路と、
     輸液を貯留する輸液貯留部と、
     前記検知器と前記輸液貯留部との間の流路上に設けられたポンプと、
     前記検知器が気泡を検知した場合に、前記輸液貯留部から前記検知器を経由して前記洗浄液貯留部へと前記輸液を供給するように前記ポンプを作動させる制御部と、
    を備える、血液浄化装置。
  2.  前記輸液貯留部と前記排出流路とを接続する輸液流路と、
     前記輸液流路の開閉を行う第一の開閉弁と、
     前記排出流路の前記輸液流路よりも下流側に設けられて前記排出流路の開閉を行う第二の開閉弁と、を備え、
     前記ポンプは、前記検知器と前記輸液流路との間の前記排出流路上に設けられており、
     前記制御部は、プライミング時に前記第一の開閉弁で前記輸液流路を閉鎖して前記第二の開閉弁で前記排出流路を開放するとともに前記ポンプを正転作動させる一方、前記検知器が気泡を検知した場合に、前記第一の開閉弁で前記輸液流路を開放して前記第二の開閉弁で前記排出流路を閉塞するとともに前記ポンプを逆転作動させることにより前記輸液貯留部から前記検知器を経由して前記洗浄液貯留部へと前記輸液を供給する、請求項1に記載の血液浄化装置。
  3.  前記輸液貯留部と前記排出流路とを接続する輸液流路と、
    前記排出流路上の前記輸液流路よりも下流側に設けられたプライミングポンプと、を備え、
     前記ポンプは、前記輸液流路上に設けられた輸液ポンプであり、
     前記制御部は、プライミング時に前記プライミングポンプを正転作動させる一方、前記検知器が気泡を検知した場合に、前記プライミングポンプを停止させて前記輸液ポンプを作動させることにより前記輸液貯留部から前記検知器を経由して前記洗浄液貯留部へと前記輸液を供給する、請求項1に記載の血液浄化装置。
  4.  前記輸液貯留部と前記排出流路とを接続する輸液流路と、
     前記輸液流路上に設けられた輸液ポンプと、を備え、
     前記ポンプは、前記排出流路上の前記輸液流路よりも上流側に設けられたプライミングポンプであり、
     前記制御部は、プライミング時に前記プライミングポンプを正転作動させる一方、前記検知器が気泡を検知した場合に、前記プライミングポンプを逆転作動させて前記輸液ポンプを作動させることにより前記輸液貯留部から前記検知器を経由して前記洗浄液貯留部へと前記輸液を供給する、請求項1に記載の血液浄化装置。
  5.  前記制御部は、前記プライミングポンプを逆転作動させて前記輸液ポンプを作動させる際に、前記プライミングポンプの流量を前記輸液ポンプの流量よりも小さくする、請求項4に記載の血液浄化装置。
  6.  前記輸液貯留部と前記洗浄流路又は前記血液浄化器とを接続する輸液流路と、
     前記排出流路上に設けられたプライミングポンプと、を備え、
     前記ポンプは、前記輸液流路上に設けられた輸液ポンプであり、
     前記制御部は、プライミング時に前記プライミングポンプを正転作動させる一方、前記検知器が気泡を検知した場合に、前記プライミングポンプを停止させて前記輸液ポンプを作動させることにより前記輸液貯留部から前記検知器を経由して前記洗浄液貯留部へと前記輸液を供給する、請求項1に記載の血液浄化装置。
  7.  前記洗浄流路は、患者返血部と前記血液浄化器を接続する静脈ラインである、請求項2から6の何れか一項に記載の血液浄化装置。
  8.  前記輸液貯留部と前記排出流路とを接続する輸液流路と、
     前記輸液流路の開閉を行う第一の開閉弁と、
     前記排出流路の前記輸液流路よりも下流側に設けられた第二の開閉弁と、を備え、
     前記ポンプは、前記洗浄流路上に設けられており、
     前記制御部は、プライミング時に前記第一の開閉弁で前記輸液流路を閉鎖して前記第二の開閉弁で前記排出流路を開放するとともに前記ポンプを正転作動させる一方、前記検知器が気泡を検知した場合に、前記第一の開閉弁で前記輸液流路を開放して前記第二の開閉弁で前記排出流路を閉塞するとともに前記ポンプを逆転作動させることにより前記輸液貯留部から前記検知器を経由して前記洗浄液貯留部へと前記輸液を供給する、請求項1に記載の血液浄化装置。
  9.  前記輸液貯留部と前記排出流路とを接続する輸液流路と、
     前記洗浄流路上に設けられたプライミングポンプと、を備え、
     前記ポンプは、前記輸液流路上に設けられた輸液ポンプであり、
     前記制御部は、プライミング時に前記プライミングポンプを正転作動させる一方、前記検知器が気泡を検知した場合に、前記プライミングポンプを逆転作動させて前記輸液ポンプを作動させることにより前記輸液貯留部から前記検知器を経由して前記洗浄液貯留部へと前記輸液を供給する、請求項1に記載の血液浄化装置。
  10.  前記輸液貯留部と前記洗浄流路とを接続する輸液流路と、
     前記洗浄流路上の前記輸液流路よりも上流側に設けられたプライミングポンプと、を備え、
     前記ポンプは、前記輸液流路上に設けられた輸液ポンプであり、
     前記制御部は、プライミング時に前記プライミングポンプを正転作動させる一方、前記検知器が気泡を検知した場合に、前記プライミングポンプを逆転作動させて前記輸液ポンプを作動させることにより前記輸液貯留部から前記検知器を経由して前記洗浄液貯留部へと前記輸液を供給する、請求項1に記載の血液浄化装置。
  11.  前記輸液貯留部と前記血液浄化器とを接続する輸液流路と、
     前記洗浄流路上に設けられたプライミングポンプと、を備え、
     前記ポンプは、前記輸液流路上に設けられた輸液ポンプであり、
     前記制御部は、プライミング時に前記プライミングポンプを正転作動させる一方、前記検知器が気泡を検知した場合に、前記プライミングポンプを逆転作動させて前記輸液ポンプを作動させることにより前記輸液貯留部から前記検知器を経由して前記洗浄液貯留部へと前記輸液を供給する、請求項1に記載の血液浄化装置。
  12.  前記制御部は、前記プライミングポンプを逆転作動させて前記輸液ポンプを作動させる際に、前記プライミングポンプの流量を前記輸液ポンプの流量よりも小さくする、請求項9から11の何れか一項に記載の血液浄化装置。
  13.  前記輸液貯留部と前記洗浄流路とを接続する輸液流路と、
     前記洗浄流路上の前記輸液流路よりも下流側に設けられたプライミングポンプと、を備え、
     前記ポンプは、前記輸液流路上に設けられた輸液ポンプであり、
     前記制御部は、プライミング時に前記プライミングポンプを正転作動させる一方、前記検知器が気泡を検知した場合に、前記プライミングポンプを停止させて前記輸液ポンプを作動させることにより前記輸液貯留部から前記検知器を経由して前記洗浄液貯留部へと前記輸液を供給する、請求項1に記載の血液浄化装置。
  14.  前記洗浄流路は、患者脱血部と前記血液浄化器を接続する動脈ラインである、請求項8から13の何れか一項に記載の血液浄化装置。
  15.  前記洗浄流路は、患者脱血部と前記血液浄化器を接続する動脈ラインに配置されたプライミングラインを有する、請求項8から13の何れか一項に記載の血液浄化装置。
  16.  前記制御部は、前記検知器が気泡を検知した場合に、前記ポンプを所定量作動させた後に警報を発生させる、請求項1から15の何れか一項に記載の血液浄化装置。
  17.  前記制御部は、前記検知器が気泡を検知した場合に、警報を発生させるとともに前記ポンプを停止させ、警報解除後に前記ポンプを作動させる、請求項1から15の何れか一項に記載の血液浄化装置。
  18.  血液浄化器と、洗浄液が貯留された洗浄液貯留部と、前記血液浄化器と前記洗浄液貯留部とを接続する洗浄流路と、前記洗浄流路上に設けられ気泡を検知する検知器と、前記血液浄化器に連通し前記洗浄液を排出する排出流路と、輸液を貯留する輸液貯留部と、前記検知器と前記輸液貯留部との間の流路上に設けられたポンプと、を備える血液浄化装置のプライミング方法であって、
     前記検知器がプライミング中に気泡を検知した場合に、前記輸液貯留部から前記検知器を経由して前記洗浄液貯留部へと前記輸液を供給するように前記ポンプを作動させる工程を含む、血液浄化装置のプライミング方法。
PCT/JP2018/006250 2017-03-31 2018-02-21 血液浄化装置及びそのプライミング方法 WO2018180044A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880020988.4A CN110461388B (zh) 2017-03-31 2018-02-21 血液净化装置及其启动加注方法
EP18774412.3A EP3603695B1 (en) 2017-03-31 2018-02-21 Blood purification device and priming method thereof
JP2019508786A JP6700481B2 (ja) 2017-03-31 2018-02-21 血液浄化装置及びそのプライミング方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-072430 2017-03-31
JP2017072430 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018180044A1 true WO2018180044A1 (ja) 2018-10-04

Family

ID=63674861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006250 WO2018180044A1 (ja) 2017-03-31 2018-02-21 血液浄化装置及びそのプライミング方法

Country Status (4)

Country Link
EP (1) EP3603695B1 (ja)
JP (1) JP6700481B2 (ja)
CN (1) CN110461388B (ja)
WO (1) WO2018180044A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519076Y2 (ja) * 1987-09-29 1993-05-20
JP2004357957A (ja) * 2003-06-05 2004-12-24 Nipro Corp 血液浄化装置および血液回路の自動プライミング方法と自動返血方法
JP2005253555A (ja) 2004-03-10 2005-09-22 Asahi Kasei Medical Co Ltd 血液浄化装置のプライミング方法および血液浄化装置
JP2007190068A (ja) 2006-01-17 2007-08-02 Nipro Corp 血液浄化装置及びその血液循環路の自動プライミング方法
JP2012139405A (ja) * 2010-12-29 2012-07-26 Nipro Corp 血液浄化装置及びその血液循環路の自動プライミング方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002026288A2 (en) * 2000-09-27 2002-04-04 Cobe Cardiovascular, Inc. Disposable cartridge for a blood perfusion system
JP4899866B2 (ja) * 2005-01-07 2012-03-21 株式会社ジェイ・エム・エス 自動プライミング方法
US20090211985A1 (en) * 2008-02-27 2009-08-27 Kartike Gulati Automated Pre-Filtration Air Management and Filtration Systems and Methods
JP5294985B2 (ja) * 2008-12-16 2013-09-18 日機装株式会社 血液浄化装置及びそのプライミング方法
JP5431199B2 (ja) * 2010-02-10 2014-03-05 日機装株式会社 血液浄化装置及びそのプライミング方法
US10850016B2 (en) * 2013-02-01 2020-12-01 Medtronic, Inc. Modular fluid therapy system having jumpered flow paths and systems and methods for cleaning and disinfection
CN203935459U (zh) * 2014-07-07 2014-11-12 重庆医科大学附属儿童医院 泵前稀释血液净化系统
US9486590B2 (en) * 2014-09-29 2016-11-08 Fenwal, Inc. Automatic purging of air from a fluid processing system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519076Y2 (ja) * 1987-09-29 1993-05-20
JP2004357957A (ja) * 2003-06-05 2004-12-24 Nipro Corp 血液浄化装置および血液回路の自動プライミング方法と自動返血方法
JP2005253555A (ja) 2004-03-10 2005-09-22 Asahi Kasei Medical Co Ltd 血液浄化装置のプライミング方法および血液浄化装置
JP2007190068A (ja) 2006-01-17 2007-08-02 Nipro Corp 血液浄化装置及びその血液循環路の自動プライミング方法
JP2012139405A (ja) * 2010-12-29 2012-07-26 Nipro Corp 血液浄化装置及びその血液循環路の自動プライミング方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3603695A4

Also Published As

Publication number Publication date
JPWO2018180044A1 (ja) 2019-11-07
EP3603695A4 (en) 2020-03-11
CN110461388A (zh) 2019-11-15
JP6700481B2 (ja) 2020-05-27
CN110461388B (zh) 2022-02-25
EP3603695B1 (en) 2021-04-07
EP3603695A1 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
US10195336B2 (en) Blood purification apparatus and priming method thereof
JP5205036B2 (ja) 血液浄化装置
JP5519427B2 (ja) 血液透析装置
US9913939B2 (en) Valve arrangement for use in an extracorporeal blood circuit and method
JP5247864B2 (ja) 血液浄化装置
WO2010070886A1 (ja) 血液浄化装置及びそのプライミング方法
JP5693890B2 (ja) 血液浄化装置
US10576197B2 (en) Blood purification device and priming method
JP5431228B2 (ja) 血液浄化装置
WO2018180043A1 (ja) 血液浄化装置及びその制御方法
JP5558260B2 (ja) 血液処理器のプライミングシステム
WO2018180044A1 (ja) 血液浄化装置及びそのプライミング方法
WO2022009583A1 (ja) 血液浄化装置
JP6296057B2 (ja) 血液浄化治療中に発生した停電等緊急時における自動返血方法
JP5404458B2 (ja) 血液浄化装置及び血液浄化装置における血液回路内の液体排出方法
JP5822152B2 (ja) 血液透析装置
JP7114466B2 (ja) 血液浄化装置およびプライミング方法
JP6725749B2 (ja) 血液浄化装置及びその制御方法並びに脱血不良解消方法
JP6835654B2 (ja) 血液浄化装置及びその制御方法並びに脱血不良解消方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774412

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019508786

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018774412

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018774412

Country of ref document: EP

Effective date: 20191031