WO2018179648A1 - 透明基材およびブラインド - Google Patents

透明基材およびブラインド Download PDF

Info

Publication number
WO2018179648A1
WO2018179648A1 PCT/JP2017/046705 JP2017046705W WO2018179648A1 WO 2018179648 A1 WO2018179648 A1 WO 2018179648A1 JP 2017046705 W JP2017046705 W JP 2017046705W WO 2018179648 A1 WO2018179648 A1 WO 2018179648A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
infrared light
transparent
cell layer
blind
Prior art date
Application number
PCT/JP2017/046705
Other languages
English (en)
French (fr)
Inventor
久史 石井
Original Assignee
株式会社Lixil
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Lixil filed Critical 株式会社Lixil
Priority to EP17903443.4A priority Critical patent/EP3604729A4/en
Publication of WO2018179648A1 publication Critical patent/WO2018179648A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B7/00Special arrangements or measures in connection with doors or windows
    • E06B7/02Special arrangements or measures in connection with doors or windows for providing ventilation, e.g. through double windows; Arrangement of ventilation roses
    • E06B7/08Louvre doors, windows or grilles
    • E06B7/084Louvre doors, windows or grilles with rotatable lamellae
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B9/26Lamellar or like blinds, e.g. venetian blinds
    • E06B9/28Lamellar or like blinds, e.g. venetian blinds with horizontal lamellae, e.g. non-liftable
    • E06B9/30Lamellar or like blinds, e.g. venetian blinds with horizontal lamellae, e.g. non-liftable liftable
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B9/26Lamellar or like blinds, e.g. venetian blinds
    • E06B9/38Other details
    • E06B9/386Details of lamellae
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0549Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising spectrum splitting means, e.g. dichroic mirrors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • H02S30/20Collapsible or foldable PV modules
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B2009/2476Solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a transparent substrate and a blind using the transparent substrate.
  • a blind for the purpose of positively controlling indoor temperature, a blind has been known in which one surface of a blind slat is a light reflecting surface and the other surface is a light absorbing surface (see, for example, Patent Document 1). .
  • the blind configured as described above, in summer, if the slat surface on which the light reflecting surface is formed is directed to the outside, the sunlight is effectively reflected. Can be suppressed. On the other hand, in winter, if the slat surface on which the light absorption surface is formed is directed to the outside, sunlight is effectively absorbed, so that the temperature rise in the room can be effectively promoted.
  • the blind as described above has a problem that the light transmittance is low when the slat is closed and the visibility from the indoor side is low.
  • This invention is made
  • the objective is to provide the transparent base material which can improve heat insulation, ensuring the light transmittance, and the blind using this transparent base material. is there.
  • a transparent substrate according to an aspect of the present invention is formed on a transparent member, an infrared light reflecting layer formed on one surface of the transparent member, and an infrared light reflecting layer.
  • a solar battery cell layer is formed on a transparent member, an infrared light reflecting layer formed on one surface of the transparent member, and an infrared light reflecting layer.
  • the transparent substrate includes a transparent substrate, a solar cell layer formed on one surface of the transparent member, and an infrared light reflecting layer formed on the other surface of the transparent member.
  • Still another aspect of the present invention is a blind provided with a slat using the above-described transparent substrate.
  • the present invention it is possible to provide a transparent base material capable of improving heat insulation while ensuring light transmittance, and a blind using the transparent base material.
  • FIGS. 3A and 3B are schematic cross-sectional views for explaining the configuration of a transparent substrate according to another embodiment of the present invention. It is a schematic sectional drawing for demonstrating the structure of the transparent base material which concerns on another embodiment of this invention.
  • FIGS. 5A and 5B are schematic cross-sectional views for explaining an example of a blind using a transparent substrate according to an embodiment of the present invention as a slat. It is a schematic horizontal sectional view for demonstrating the state where the blind shown in FIG. 5 was attached to the building.
  • FIGS. 7A to 7C are schematic side views for explaining a modified example of the blind using the transparent substrate according to the embodiment of the present invention as a slat.
  • FIG. 1 is a front view of a blind 10 to which a transparent substrate according to an embodiment of the present invention can be applied.
  • the blind 10 is configured by arranging a plurality (eight in this case) of slats 12 elongated in the horizontal direction in a comb shape in the vertical direction.
  • Each slat 12 is formed in, for example, a horizontally long substantially rectangular shape.
  • the slat 12 is formed using a transparent base material described later.
  • the blind 10 further includes a head box 14, a bottom rail 16, a ladder cord 18, and a lifting / lowering cord 17.
  • the head box 14 is provided on the upper stage of the plurality of slats 12 and constitutes the uppermost stage of the blind 10.
  • the head box 14 is fixed to a blind box or a window frame (not shown).
  • the head box 14 incorporates an angle adjusting mechanism (not shown) of the slat 12 and an elevating mechanism (not shown).
  • the bottom rail 16 is provided at the lower stage of the plurality of slats 12 and constitutes the lowermost stage of the blind 10.
  • the ladder cord 18 is a cord member for adjusting the angle of the slat 12 of the blind 10.
  • the ladder cord 18 is coupled to both sides of each slat 12 in the width direction.
  • the upper end of the ladder cord 18 is connected to an angle adjustment mechanism (not shown) in the head box 14.
  • the elevating cord 17 is a cord member for pulling up the bottom rail 16 to fold up and pulling up the plurality of slats 12 and lowering the bottom rail 16 to open and lower the plurality of slats 12.
  • the lower end of the lifting / lowering cord 17 is connected to the bottom rail 16 through a through hole 19 formed in the slat 12.
  • the upper end of the lifting / lowering cord 17 is connected to a lifting / lowering mechanism in the head box 14.
  • FIG. 2 is a schematic cross-sectional view for explaining the configuration of the transparent substrate 20 according to the embodiment of the present invention.
  • transparent means transparent to visible light, that is, capable of transmitting visible light.
  • the transparent base material 20 according to the present embodiment can be used for building materials arranged in an opening of a building such as a blind or a window.
  • the transparent substrate 20 includes a transparent member 22, an infrared light reflection layer 24 formed on one surface of the transparent member 22, and a sun formed on the infrared light reflection layer 24.
  • a battery cell layer 26 and an insulating layer 25 covering the entire transparent substrate 20 are provided.
  • the transparent member 22 may be a plate-like body made of a transparent resin such as polycarbonate or glass.
  • the infrared light reflection layer 24 is a reflection layer formed to reflect infrared light while transmitting visible light, and can be formed of, for example, a dielectric multilayer film.
  • the infrared light reflection layer 24 is a reflection layer having retroreflectivity that retroreflects infrared light, but the infrared light reflection layer 24 is a normal reflection layer that does not have retroreflection properties. Also good.
  • the solar battery cell layer 26 is a double-sided light receiving solar battery cell.
  • the solar battery cell may be a crystal cell or a cell having a structure that allows light to pass through the gap. As the crystal cell, a double-sided light receiving type can be selected and the infrared wavelength region can be converted into electricity by the photoelectric effect, so that the heat load in the room can be suppressed.
  • the solar battery cell may be an organic solar battery (OPV), a dye-sensitized solar battery (DSSC), or the like.
  • the insulating layer 25 may be, for example, an ETFE (ethylene-tetrafluoroethylene copolymer) film.
  • the solar cell layer 26 is a solar cell having high sensitivity to light having a wavelength in the infrared region. That is, the solar cell layer 26 is a solar cell having high photoelectric conversion efficiency with respect to light having a wavelength in the infrared region.
  • the transparent substrate 20 When the transparent substrate 20 according to the present embodiment is applied to the blind 10 as shown in FIG. 1, for example, the transparent substrate 20 is disposed so that the side on which the solar cell layer 26 is formed faces the outdoor.
  • FIG. 2 schematically shows visible light VL and infrared light IR incident on the transparent substrate 20. As shown in FIG. 2, the visible light VL passes through the entire transparent substrate 20 and is irradiated indoors.
  • a part of the infrared light IR is photoelectrically converted by the second solar cell layer 29 after passing through the insulating layer 25. Further, another part of the infrared light IR is retroreflected by the infrared light reflection layer 24 after passing through the insulating layer 25 and the solar battery cell layer 26. The retroreflected infrared light IR is photoelectrically converted by the first solar cell layer 27. Electricity generated by photoelectric conversion in the first solar cell layer 27 and the second solar cell layer 29 is taken out through the transparent conductive layer 28.
  • the visible light VL can be transmitted indoors. Further, since the infrared light IR is converted into electricity by the solar battery cell layer 26, almost no heat due to the infrared light IR is transmitted to the indoor side. Thus, according to the transparent base material 20 which concerns on this embodiment, heat-shielding property and a solar radiation heat acquisition rate can be made low, ensuring light transmittance, and it is effective in summer etc.
  • the transparent base material 20 is advantageous over a normal transparent base material in that it can generate power. Furthermore, in the transparent base material 20 according to the present embodiment, the infrared light reflecting layer 24 is disposed behind the solar battery cell layer 26, and power generation is possible on both sides of the solar battery cell layer 26. Can be improved.
  • the solar cell layer 26 is a double-sided light receiving solar cell layer, but the solar cell layer 26 may be a single-sided light receiving solar cell layer instead.
  • the transparent conductive layer 28 and the single-sided light receiving solar cell layer are stacked in this order on the infrared light reflection layer 24.
  • 3 (a) and 3 (b) are schematic cross-sectional views for explaining the configuration of a transparent substrate 30 according to another embodiment of the present invention.
  • the transparent base material 20 according to the present embodiment can also be used for building materials arranged in the opening of a building such as blinds and windows.
  • the transparent base material 30 according to the present embodiment is configured such that different effects can be obtained by rotating 180 ° between summer and winter.
  • FIG. 3A shows the usage state in the summer
  • FIG. 3B shows the usage state in the winter.
  • the infrared light reflection layer 24 and the solar battery cell layer 26 are formed on one surface of the transparent member 22, similarly to the transparent base material 20 described in FIG.
  • the transparent substrate 30 according to the present embodiment further includes an infrared light selective absorption layer 31 formed on the other surface of the transparent member 22 and an additional solar battery cell formed on the infrared light selective absorption layer 31.
  • Layer 34 is formed between the transparent member 22 and the additional solar battery cell layer 34.
  • the additional solar battery cell layer 34 is a single-sided light-receiving solar battery cell layer, in which a transparent conductive layer 32 and a solar battery cell layer 33 are sequentially laminated on the infrared light selective absorption layer 31.
  • the insulating layer 25 is formed so as to cover the entire transparent base material 30.
  • the transparent base material 30 is disposed and used so that the side on which the solar battery cell layer 26 and the infrared light reflection layer 24 are formed faces the outdoors as shown in FIG.
  • the visible light VL is transmitted through the entire transparent base material 20 and irradiated indoors as in the transparent base material 20 described in FIG. It is converted to electricity at layer 26.
  • the heat caused by the infrared light IR is transmitted to the indoor side while ensuring light transmittance.
  • the cooling efficiency in summer can be improved.
  • the transparent substrate 30 is arranged so that the side on which the infrared light selective absorption layer 31 and the additional solar battery cell layer 34 are formed faces the outdoors as shown in FIG. Used.
  • a part of the infrared light IR is photoelectrically converted by the additional solar battery cell layer 34 after passing through the insulating layer 25.
  • the generated electricity is taken out through the transparent conductive layer 32 (or a tab wire (not shown) in the case of crystalline silicon).
  • another part of the infrared light IR is absorbed by the infrared light selective absorption layer 31 after passing through the insulating layer 25 and the additional solar battery cell layer 34.
  • the heat absorbed by the infrared light selective absorption layer 31 is transmitted through the transparent member 22.
  • the transparent base material 30 configured as described above is used for the slats 12 of the blind 10 as described with reference to FIG. 1, it is easy to switch between the summer use state and the winter use state.
  • the transparent substrate 30 can also be applied to a rotating window that can rotate around an axis.
  • FIG. 4 is a schematic cross-sectional view for explaining the configuration of a transparent substrate 40 according to still another embodiment of the present invention.
  • the transparent base material 40 according to the present embodiment can also be used for building materials arranged at the opening of a building such as blinds and windows.
  • the transparent substrate 40 includes a transparent member 22, a solar cell layer 26 formed on one surface of the transparent member 22, and red formed on the other surface of the transparent member 22.
  • the exterior light reflection layer 24 and the insulating layer 25 which covers the transparent base material 40 whole are provided.
  • the solar cell layer 26 is a double-sided light-receiving solar cell, in which a first solar cell layer 27, a transparent conductive layer 28, and a second solar cell layer 29 are sequentially stacked on the transparent member 22. .
  • the transparent base material 40 according to this embodiment is different from the transparent base material 20 shown in FIG. 1 in the formation position of the infrared light reflection layer 24.
  • the side on which the solar battery cell layer 26 is formed faces the outdoor side, and the side on which the infrared light reflection layer 24 is formed. It is arranged to face the room.
  • the visible light VL passes through the entire transparent base material 40 and is irradiated indoors.
  • a part of the infrared light IR is photoelectrically converted by the second solar cell layer 29 after passing through the insulating layer 25.
  • Another part of the infrared light IR is retroreflected by the infrared light reflection layer 24 after passing through the insulating layer 25, the solar battery cell layer 26 and the transparent member 22.
  • the retroreflected infrared light IR is photoelectrically converted by the first solar cell layer 27 after passing through the transparent member 22. Electricity generated by photoelectric conversion in the first solar cell layer 27 and the second solar cell layer 29 is taken out through the transparent conductive layer 28.
  • the visible light VL can be transmitted to the indoor side.
  • the infrared light IR is converted into electricity by the solar battery cell layer 26, the amount of heat transmitted to the indoor side is small compared to the conventional one due to the infrared light IR.
  • heat insulation can be improved, ensuring light transmittance. Since the infrared light IR retroreflected by the infrared light reflecting layer 24 is received by the double-sided light receiving solar cell layer 26, the point that power generation efficiency can be improved is the same as that of the transparent substrate 20 shown in FIG. .
  • the solar cell layer 26 is a double-sided light receiving solar cell layer, but the solar cell layer 26 may be a single-sided light receiving solar cell layer instead.
  • the transparent conductive layer 28 and the single-sided light receiving solar cell layer are stacked on the transparent member 22 in this order.
  • FIGS. 5A and 5B are schematic cross-sectional views for explaining an example of the blind 50 using the transparent base material according to the embodiment of the present invention as a slat.
  • FIGS. 5A and 5B show a state in which a plurality (four in this case) of slats 52 formed using the transparent substrate 20 described in FIG. 2 are arranged in the vertical direction.
  • 5A shows a state in which the slat 52 is opened
  • FIG. 5B shows a state in which the slat 52 is closed.
  • Each slat 52 has a stepped portion 53 formed vertically.
  • the step 53 engages with the step 53 of the adjacent slat 52 when the slat 52 is closed, and the surface 52a of the slat 52 on the solar cell layer 26 side as shown in FIG. It is formed to be flush with each other.
  • the surface 52a of the slat 52 faces the outside when the blind 50 is attached to the opening of the building.
  • the slat was formed using the transparent base material 20 shown in FIG. 2, the slat may be formed using the transparent base material 30 shown in FIG. 3 or the transparent base material 40 shown in FIG.
  • FIG. 6 is a schematic horizontal sectional view for explaining a state where the blind 50 shown in FIG. 5 is attached to the building.
  • FIG. 6 shows a curtain wall structure in which a glass panel 60 is attached to a vertical 62 with a structural sealant 61.
  • the blind 50 is disposed inside (inside the room) the glass panel 60.
  • the lateral end of the blind 50 is in contact with the indoor surface 62 a of the stand 62.
  • the blind 50 is formed such that the surface 52a of the slat is flush with the slat being closed. Therefore, when the blind 50 is closed, the end 50a of the blind 50 and the indoor surface 62a of the vertical 62 can be brought into contact with each other with a small gap.
  • the glass panel 60 is an outer skin and the blind 50 is an inner skin, a state close to a curtain wall having a double skin structure can be created.
  • an intermediate air layer 65 is formed between the glass panel 60 and the blind 50. Since the intermediate air layer 65 functions as a heat insulating layer in winter, the indoor heating efficiency can be improved.
  • a cushioning material such as rubber is provided on at least one of the end portion 50a of the blind 50 or the indoor surface 62a of the stand 62, and the slat of the blind 50 is closed.
  • a cushioning material may be interposed between the indoor side surface 62a of 62 and the end portion 50a of the blind 50. In this case, it is possible to prevent a sound at the time of contact between the blind 50 and the vertical 62 and to prevent damage due to the contact between the blind 50 and the vertical 62.
  • FIGS. 7A to 7C are schematic side views for explaining a modified example of the blind 70 using the transparent substrate according to the embodiment of the present invention as a slat.
  • FIGS. 7A to 7C show a state in which a plurality (four in this case) of slats 72 are arranged in the vertical direction.
  • 7A shows a state where the slat 72 is closed
  • FIG. 7B shows a state where the slat 72 is opened 45 degrees
  • FIG. 7C shows a state where the slat 72 is folded.
  • the slat 72 has a shape that is bent in a substantially square shape in a side view. It can also be said that the first surface portion 72a and the second surface portion 72b of the slat 72 are connected at a predetermined angle.
  • the lifting / lowering cord 17 is connected to the bent portion 72 c of the slat 72, and the ladder cord 18 is connected to both end portions 72 d of the slat 72.
  • the slat 72 according to this modification may also be formed using the above-described transparent base material.
  • the surface of the first surface portion 72 a of the slat 72 is flush. Therefore, when the blind 70 according to the present modification is applied to a curtain wall as shown in FIG. 6, it can be brought into contact with a vertical indoor surface, and is in a state close to a double skin structure curtain wall. Can be made.
  • a transparent substrate includes a transparent member, an infrared light reflection layer formed on one surface of the transparent member, and a solar battery cell layer formed on the infrared light reflection layer.
  • visible light can be transmitted indoors. Moreover, since infrared light is converted into electricity in the solar battery cell layer, heat caused by infrared light is hardly transmitted indoors. Therefore, according to the transparent base material which concerns on this aspect, heat insulation can be improved, ensuring light transmittance.
  • the infrared light reflection layer may be an infrared light retroreflection layer.
  • the solar cell layer may be a double-sided light receiving solar cell layer. In the case of crystalline silicon, the solar cell layer may be a non-transparent solar cell provided with a gap to obtain transparency.
  • An additional solar cell layer may be provided on the other surface of the transparent member.
  • An infrared light selective absorption layer may be further provided between the transparent member and the additional solar battery cell layer.
  • the transparent substrate includes a transparent substrate, a solar cell layer formed on one surface of the transparent member, and an infrared light reflecting layer formed on the other surface of the transparent member.
  • visible light can be transmitted indoors. Moreover, since infrared light is converted into electricity in the solar battery cell layer, the amount of heat caused by the infrared light is transferred to the indoor side as compared with the conventional one. Therefore, according to the transparent base material which concerns on this aspect, heat insulation can be improved, ensuring light transmittance.
  • the infrared light reflection layer may be an infrared light retroreflection layer.
  • the solar cell layer may be a double-sided light receiving solar cell layer.
  • Still another aspect of the present invention is a blind provided with a slat using the above-described transparent substrate.
  • the blind of this aspect can improve heat insulation, ensuring light transmittance by forming the slat using the above-mentioned transparent base material.
  • the blind may be a vertical blind or a horizontal blind.
  • the present invention can be used for building materials such as blinds and windows that are arranged in building openings.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Blinds (AREA)
  • Special Wing (AREA)
  • Photovoltaic Devices (AREA)

Abstract

透明基材20は、透明部材22と、透明部材22の一方の面上に形成される赤外光反射層24と、赤外光反射層24上に形成される太陽電池セル層26とを備える。

Description

透明基材およびブラインド
 本発明は、透明基材および該透明基材を用いたブラインドに関する。
 従来より、室内の温度制御を積極的に行う目的で、ブラインドのスラットの一方の面を光反射面とし、他方の面を光吸収面としたブラインドが知られている(例えば特許文献1参照)。
 このように構成されたブラインドによれば、夏季においては、光反射面が形成されているスラット面を室外に向けるようにすれば、太陽光線を効果的に反射するから、室内の温度上昇を効果的に抑制できる。一方、冬季においては、光吸収面が形成されているスラット面を室外に向けるようにすれば、太陽光線を効果的に吸収するから、室内の温度上昇を効果的に促進できる。
特開2007-85082号公報
 しかしながら、上記のようなブラインドは、スラットを閉じた状態では光透過性が低く、室内側からの視認性が低いという課題がある。
 本発明は、このような課題に鑑みてなされ、その目的は、光透過性を確保しつつ、断熱性を向上することのできる透明基材および該透明基材を用いたブラインドを提供することにある。
 上記課題を解決するために、本発明のある態様の透明基材は、透明部材と、透明部材の一方の面上に形成される赤外光反射層と、赤外光反射層上に形成される太陽電池セル層と、を備える。
 本発明の別の態様も、透明基材である。この透明基材は、透明基材と、透明部材の一方の面上に形成される太陽電池セル層と、透明部材の他方の面上に形成される赤外光反射層と、を備える。
 本発明のさらに別の態様は、上述の透明基材を用いたスラットを備えるブラインドである。
 本発明によれば、光透過性を確保しつつ、断熱性を向上することのできる透明基材および該透明基材を用いたブラインドを提供できる。
本発明の実施形態に係る透明基材を適用可能なブラインドの正面図である。 本発明の実施形態に係る透明基材の構成を説明するための概略断面図である。 図3(a)および(b)は、本発明の別の実施形態に係る透明基材の構成を説明するための概略断面図である。 本発明のさらに別の実施形態に係る透明基材の構成を説明するための概略断面図である。 図5(a)および(b)は、本発明の実施形態に係る透明基材をスラットとして用いたブラインドの一例を説明するための概略断面図である。 図5に示すブラインドが建物に取り付けられた状態を説明するための概略水平断面図である。 図7(a)~(c)は、本発明の実施形態に係る透明基材をスラットとして用いたブラインドの変形例を説明するための概略側面図である。
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図面における部材の寸法は、理解を容易にするために適宜拡大、縮小して示される。また、各図面において実施の形態を説明する上で重要ではない部材の一部は省略して表示する。
 図1は、本発明の実施形態に係る透明基材を適用可能なブラインド10の正面図である。
 本実施形態に係るブラインド10は、横方向に長尺な複数(ここでは8枚)のスラット12を縦方向にすだれ状に配列して構成される。各スラット12は、例えば横長の略矩形状に形成される。スラット12は、後述の透明基材を用いて形成される。
 ブラインド10はさらに、ヘッドボックス14と、ボトムレール16と、ラダーコード18と、昇降コード17とを備える。
 ヘッドボックス14は複数のスラット12の上段に設けられブラインド10の最上段を構成する。ヘッドボックス14は、ブラインドボックスまたは窓枠(図示せず)に固定される。ヘッドボックス14にはスラット12の角度調整機構(図示せず)および昇降機構(図示せず)などが内蔵される。
 ボトムレール16は、複数のスラット12の下段に設けられブラインド10の最下段を構成する。
 ラダーコード18は、ブラインド10のスラット12の角度を調節するためのコード部材である。ラダーコード18は、各スラット12の幅方向の両サイドに結合される。ラダーコード18の上端は、ヘッドボックス14内の角度調整機構(図示せず)に連結される。
 昇降コード17は、ボトムレール16を引き上げることで複数のスラット12を畳んで引き上げ、ボトムレール16を降下させることで複数のスラット12を開いて降下させるためのコード部材である。昇降コード17の下端はスラット12に穿設された通孔19を通ってボトムレール16に連結される。昇降コード17の上端はヘッドボックス14内の昇降機構に連結される。
 図2は、本発明の実施形態に係る透明基材20の構成を説明するための概略断面図である。なお、本明細書において「透明」とは、可視光に対して透明であること、すなわち可視光を透過可能であることを意味する。本実施形態に係る透明基材20は、ブラインドや窓など建物の開口部に配置される建材に利用できる。
 図2に示すように、透明基材20は、透明部材22と、透明部材22の一方の面上に形成される赤外光反射層24と、赤外光反射層24上に形成される太陽電池セル層26と、透明基材20全体を覆う絶縁層25とを備える。
 透明部材22は、例えばポリカーボネート等の透明樹脂やガラスで形成された板状体であってよい。赤外光反射層24は、可視光線を透過しつつ、赤外光を反射するよう形成された反射層であり、例えば誘電体多層膜で形成できる。本実施形態において、赤外光反射層24は赤外光を再帰反射させる再帰反射性を有する反射層であるが、赤外光反射層24は再帰反射性を有しない通常の反射層であってもよい。
 本実施形態において、太陽電池セル層26は、両面受光型の太陽電池セルであり、例えば赤外光反射層24上に第1太陽電池セル層27、透明導電層28および第2太陽電池セル層29が順に積層されたものであってよい。太陽電池セルは、結晶系セルであってもよいし、隙間を設けて光を通す構造のセルであってもよい。結晶系のセルは両面受光型のものを選択でき、且つ赤外波長領域を光電効果で電気に変換できるため、室内への熱負荷を抑えることができる。太陽電池セルは、有機太陽電池(OPV)や色素増感太陽電池(DSSC)等であってよい。絶縁層25は、例えばETFE(エチレン-テトラフルオロエチレン共重合体)フィルムであってよい。
 太陽電池セル層26は、赤外領域の波長の光に感度の高い太陽電池セルである。すなわち、太陽電池セル層26は、赤外領域の波長の光に対して光電変換効率が高い太陽電池セルである。
 本実施形態に係る透明基材20を例えば図1に示すようなブラインド10に適用する場合、太陽電池セル層26が形成された側が室外に面するように配置される。
 図2には、透明基材20に入射する可視光VLと赤外光IRが模式的に図示されている。図2に示すように、可視光VLは、透明基材20全体を透過し、室内側に照射される。
 一方、赤外光IRの一部は、絶縁層25を通過した後、第2太陽電池セル層29で光電変換される。また、赤外光IRの別の一部は、絶縁層25および太陽電池セル層26を通過した後、赤外光反射層24で再帰反射する。そしてこの再帰反射した赤外光IRは第1太陽電池セル層27で光電変換される。第1太陽電池セル層27および第2太陽電池セル層29で光電変換されて生じた電気は、透明導電層28を介して外部に取り出される。
 このように、本実施形態に係る透明基材20では、可視光VLについては室内側に透過させることができる。また、赤外光IRについては太陽電池セル層26で電気に変換されるので、赤外光IRに起因する熱は殆ど室内側に伝わらない。このように、本実施形態に係る透明基材20によれば、光透過性を確保しつつ、遮熱性、日射熱取得率を低くすることができ、夏期などに有効である。
 また透明基材20は発電可能である点で通常の透明基材に対して有利である。さらに本実施形態に係る透明基材20では、赤外光反射層24を太陽電池セル層26の後ろに配置して、太陽電池セル層26の両面で発電可能となっているので、発電効率を向上することができる。
 本実施形態では太陽電池セル層26を両面受光型の太陽電池セル層としたが、これに代えて、太陽電池セル層26は片面受光型の太陽電池セル層であってもよい。この場合、赤外光反射層24上に、透明導電層28、片面受光型太陽電池セル層の順で積層される構成となる。
 図3(a)および(b)は、本発明の別の実施形態に係る透明基材30の構成を説明するための概略断面図である。本実施形態に係る透明基材20も、ブラインドや窓など建物の開口部に配置される建材に利用できる。
 本実施形態に係る透明基材30は、夏季と冬期とで180°回転して利用することで異なる効果が得られるように構成されている。図3(a)は夏期の使用状態を示し、図3(b)は冬期の使用状態を示す。
 透明基材30においても、図2で説明した透明基材20と同様に、透明部材22の一方の面上に赤外光反射層24および太陽電池セル層26が形成されている。本実施形態に係る透明基材30はさらに、透明部材22の他方の面上に形成される赤外光選択吸収層31と、赤外光選択吸収層31上に形成される追加の太陽電池セル層34とを備える。透明部材22と追加の太陽電池セル層34との間に赤外光選択吸収層31が形成されるということもできる。追加の太陽電池セル層34は、片面受光型の太陽電池セル層であり、赤外光選択吸収層31上に透明導電層32、太陽電池セル層33が順に積層されたものである。透明基材30においても、透明基材30全体を覆うように絶縁層25が形成される。
 夏期においては、透明基材30は、図3(a)に示すように太陽電池セル層26および赤外光反射層24が形成された側が室外に面するように配置して利用される。
 このように配置された場合、図2で説明した透明基材20と同様に、可視光VLは、透明基材20全体を透過して室内側に照射され、赤外光IRは、太陽電池セル層26で電気に変換される。これにより、光透過性を確保しつつ、赤外光IRに起因する熱が室内側に伝わるのを防止できる。その結果、夏期における冷房効率を向上できる。
 一方、冬期においては、透明基材30は、図3(b)に示すように赤外光選択吸収層31および追加の太陽電池セル層34が形成された側が室外に面するように配置して利用される。このように配置された場合、可視光VLは透明基材20全体を透過して室内側に照射される。
 一方、赤外光IRの一部は、絶縁層25を通過した後、追加の太陽電池セル層34で光電変換される。発電された電気は、透明導電層32(または結晶系シリコンの場合はタブ線(図示せず))を介して外部に取り出される。また、赤外光IRの別の一部は、絶縁層25および追加の太陽電池セル層34を通過した後、赤外光選択吸収層31で吸収される。赤外光選択吸収層31で吸収された熱は、透明部材22内を伝わる。このように透明部材22を伝わる熱が外部に放射されることにより、透明基材30の周辺の熱損失が緩和され、冬期における暖房効率を向上できる。
 上記のように構成された透明基材30を図1で説明したようなブラインド10のスラット12に用いれば、夏期の使用状態と冬期の使用状態との切り替えが容易である。また、透明基材30は、軸周りに回転可能な回転窓にも適用できる。
 図4は、本発明のさらに別の実施形態に係る透明基材40の構成を説明するための概略断面図である。本実施形態に係る透明基材40も、ブラインドや窓など建物の開口部に配置される建材に利用できる。
 図4に示すように、透明基材40は、透明部材22と、透明部材22の一方の面上に形成される太陽電池セル層26と、透明部材22の他方の面上に形成される赤外光反射層24と、透明基材40全体を覆う絶縁層25とを備える。太陽電池セル層26は、両面受光型の太陽電池セルであり、透明部材22上に第1太陽電池セル層27、透明導電層28および第2太陽電池セル層29が順に積層されたものである。本実施形態に係る透明基材40は、赤外光反射層24の形成位置が図1に示す透明基材20と異なる。
 本実施形態に係る透明基材40を例えば図1に示すようなブラインド10に適用する場合、太陽電池セル層26が形成された側が室外に面し、赤外光反射層24が形成された側が室内に面するように配置される。
 本実施形態において、可視光VLは、透明基材40全体を透過し、室内側に照射される。一方、赤外光IRの一部は、絶縁層25を通過した後、第2太陽電池セル層29で光電変換される。また、赤外光IRの別の一部は、絶縁層25、太陽電池セル層26および透明部材22を通過した後、赤外光反射層24で再帰反射する。そしてこの再帰反射した赤外光IRは、透明部材22を通過した後、第1太陽電池セル層27で光電変換される。第1太陽電池セル層27および第2太陽電池セル層29で光電変換されて生じた電気は、透明導電層28を介して外部に取り出される。
 このように、本実施形態に係る透明基材40においても、可視光VLについては室内側に透過させることができる。また、赤外光IRについては太陽電池セル層26で電気に変換されるので、赤外光IRに起因する熱は従来のものと比較して室内側に伝わる量が小さい。このように、本実施形態に係る透明基材40においても、光透過性を確保しつつ、断熱性を向上することができる。赤外光反射層24で再帰反射した赤外光IRを両面受光型の太陽電池セル層26で受けているため、発電効率を向上できる点も、図2に示す透明基材20と同様である。
 本実施形態では太陽電池セル層26を両面受光型の太陽電池セル層としたが、これに代えて、太陽電池セル層26は片面受光型の太陽電池セル層であってもよい。この場合、透明部材22上に、透明導電層28、片面受光型太陽電池セル層の順で積層される構成となる。
 図5(a)および(b)は、本発明の実施形態に係る透明基材をスラットとして用いたブラインド50の一例を説明するための概略断面図である。図5(a)および(b)は、図2で説明した透明基材20を用いて形成された複数(ここでは4つ)のスラット52が縦方向に配列されている様子を示す。図5(a)はスラット52が開いた状態を示し、図5(b)はスラット52が閉じた状態を示す。
 各スラット52には、上下に段部53が形成されている。この段部53は、スラット52を閉じたときに、隣接するスラット52の段部53と係合して、図5(b)に示すようにスラット52の太陽電池セル層26側の表面52aが面一となるように形成されている。スラット52の表面52aは、ブラインド50が建物の開口部に取り付けられたときに室外に面する。
 当然ながら、ここでは図2に示す透明基材20を用いてスラットを形成したが、図3に示す透明基材30や図4に示す透明基材40を用いてスラットを形成してもよい。
 図6は、図5に示すブラインド50が建物に取り付けられた状態を説明するための概略水平断面図である。図6は、ガラスパネル60が構造シーラント61で方立62に取り付けられたカーテンウォール構造を示す。
 図6に示すカーテンウォールにおいて、ブラインド50は、ガラスパネル60の内側(室内側)に配置されている。図6から分かるように、ブラインド50の横方向の端部は、方立62の室内側の面62aと当接している。上述したように、ブラインド50は、スラットを閉じた状態でスラットの表面52aが面一となるように形成されている。従って、ブラインド50を閉じた状態では、ブラインド50の端部50aと方立62の室内側の面62aとを隙間が少ない状態で当接させることができる。このとき、ガラスパネル60をアウタースキンとし、ブラインド50をインナースキンとして見れば、ダブルスキン構造のカーテンウォールと近い状態をつくることができる。
 図6に示すように、ガラスパネル60とブラインド50の間には中間空気層65が形成される。この中間空気層65は、冬期には断熱層として機能するため、室内側の暖房効率を向上することができる。
 図6に示すカーテンウォール構造において、ブラインド50の端部50aまたは方立62の室内側の面62aの少なくとも一方に例えばゴムなどの緩衝材を設け、ブラインド50のスラットが閉じた状態で、方立62の室内側の面62aとブラインド50の端部50aとの間に緩衝材を介在する構造としてもよい。この場合、ブラインド50と方立62との接触時の音を防止できるとともに、ブラインド50と方立62との接触による損傷を防止できる。
 図7(a)~(c)は、本発明の実施形態に係る透明基材をスラットとして用いたブラインド70の変形例を説明するための概略側面図である。図7(a)~(c)は、複数(ここでは4つ)のスラット72が縦方向に配列されている様子を示す。図7(a)はスラット72を閉じた状態を示し、図7(b)はスラット72を45度開いた状態を示し、図7(c)はスラット72を畳んだ状態を示す。
 本変形例において、スラット72は、側面視において略くの字状に折れ曲がった形状を有する。スラット72は、第1面部72aと第2面部72bが所定の角度で連結されていると言うこともできる。スラット72の折れ曲がり部分72cには昇降コード17が連結され、スラット72の両端部72dにはラダーコード18が連結される。
 本変形例に係るスラット72も、上述の透明基材を用いて形成されてよい。本変形例に係るブラインド70では、図7(a)に示すように、スラット72を閉じた状態では、スラット72の第1面部72aの表面が面一となる。従って、本変形例に係るブラインド70も、図6に示すようにカーテンウォールに適用したときに、方立の室内側の面と当接させることができ、ダブルスキン構造のカーテンウォールと近い状態をつくることができる。
 以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、いろいろな変形および変更が本発明の特許請求範囲内で可能なこと、またそうした変形例および変更も本発明の特許請求の範囲にあることは当業者に理解されるところである。従って、本明細書での記述および図面は限定的ではなく例証的に扱われるべきものである。
 以上の記載から、下記の発明が認識される。
 本発明のある態様の透明基材は、透明部材と、透明部材の一方の面上に形成される赤外光反射層と、赤外光反射層上に形成される太陽電池セル層とを備える。
 この態様によると、可視光については室内側に透過させることができる。また、赤外光については太陽電池セル層で電気に変換されるので、赤外光に起因する熱は殆ど室内側に伝わらない。従って、本態様に係る透明基材によれば、光透過性を確保しつつ、断熱性を向上することができる。
 赤外光反射層は、赤外光再帰反射層であってもよい。太陽電池セル層は、両面受光型の太陽電池セル層であってもよい。太陽電池セル層は、結晶系シリコンの場合、非透明太陽電池セルに隙間を設けて透過性を得るようにしたものであってもよい。透明部材の他方の面上に追加の太陽電池セル層を備えてもよい。透明部材と追加の太陽電池セル層との間に、赤外光選択吸収層をさらに備えてもよい。
 本発明の別の態様は、透明基材である。この透明基材は、透明基材と、透明部材の一方の面上に形成される太陽電池セル層と、透明部材の他方の面上に形成される赤外光反射層とを備える。
 この態様によると、可視光については室内側に透過させることができる。また、赤外光については太陽電池セル層で電気に変換されるので、赤外光に起因する熱は従来のものと比較すると室内側に伝わる量が少なくなる。従って、本態様に係る透明基材によれば、光透過性を確保しつつ、断熱性を向上することができる。
 赤外光反射層は、赤外光再帰反射層であってもよい。太陽電池セル層は、両面受光型の太陽電池セル層であってもよい。
 本発明のさらに別の態様は、上述の透明基材を用いたスラットを備えるブラインドである。この態様のブラインドは、上述の透明基材を用いてスラットを形成したことにより、光透過性を確保しつつ、断熱性を向上することができる。ブラインドは、縦型ブラインドであってもよいし、横型ブラインドであってもよい。
 10、50、70 ブラインド、 12、52、72 スラット、 14 ヘッドボックス、 16 ボトムレール、 18 ラダーコード、 20、30、40、 透明基材、 22 透明部材、 24 赤外光反射層、 25 絶縁層、 26、34 太陽電池セル層、 27 第1太陽電池セル層、 28 透明導電層、 29 第2太陽電池セル層、 31 赤外光選択吸収層、 32 透明導電層、 53 段部、 60 ガラスパネル、 62 方立、 65 中間空気層。
 本発明は、ブラインドや窓など建物の開口部に配置される建材に利用できる。

Claims (9)

  1.  透明部材と、
     前記透明部材の一方の面上に形成される赤外光反射層と、
     前記赤外光反射層上に形成される太陽電池セル層と、
     を備えることを特徴とする透明基材。
  2.  前記赤外光反射層は、赤外光再帰反射層であることを特徴とする請求項1に記載の透明基材。
  3.  前記太陽電池セル層は、両面受光型の太陽電池セル層であることを特徴とする請求項1または2に記載の透明基材。
  4.  前記透明部材の他方の面上に追加の太陽電池セル層を備えることを特徴とする請求項1から3のいずれかに記載の透明基材。
  5.  前記透明部材と前記追加の太陽電池セル層との間に、赤外光選択吸収層をさらに備えることを特徴とする請求項4に記載の透明基材。
  6.  透明部材と、
     前記透明部材の一方の面上に形成される太陽電池セル層と、
     前記透明部材の他方の面上に形成される赤外光反射層と、
     を備えることを特徴とする透明基材。
  7.  前記赤外光反射層は、赤外光再帰反射層であることを特徴とする請求項6に記載の透明基材。
  8.  前記太陽電池セル層は、両面受光型の太陽電池セル層であることを特徴とする請求項6または7に記載の透明基材。
  9.  請求項1から8のいずれかに記載の透明基材を用いたスラットを備えることを特徴とするブラインド。
PCT/JP2017/046705 2017-03-31 2017-12-26 透明基材およびブラインド WO2018179648A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17903443.4A EP3604729A4 (en) 2017-03-31 2017-12-26 TRANSPARENT SUBSTRATE AND STORE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-071550 2017-03-31
JP2017071550A JP6831084B2 (ja) 2017-03-31 2017-03-31 透明基材およびブラインド

Publications (1)

Publication Number Publication Date
WO2018179648A1 true WO2018179648A1 (ja) 2018-10-04

Family

ID=63677910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046705 WO2018179648A1 (ja) 2017-03-31 2017-12-26 透明基材およびブラインド

Country Status (3)

Country Link
EP (1) EP3604729A4 (ja)
JP (1) JP6831084B2 (ja)
WO (1) WO2018179648A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7261662B2 (ja) * 2019-06-12 2023-04-20 株式会社ニチベイ スラット及びこれを用いたブラインド

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466295U (ja) * 1990-10-18 1992-06-10
JPH0466292U (ja) * 1990-10-18 1992-06-10
JP2007085082A (ja) 2005-09-22 2007-04-05 Ryozo Kimihira ブラインド装置
JP2011003855A (ja) * 2009-06-22 2011-01-06 Toppan Printing Co Ltd 反射保護シート及びこれを備えた半導体発電装置
WO2014132516A1 (ja) * 2013-02-26 2014-09-04 三洋電機株式会社 太陽電池、太陽電池モジュール及び太陽電池の製造方法
JP2017002708A (ja) * 2015-06-11 2017-01-05 デクセリアルズ株式会社 スラット、及び日射調整装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2419369A (en) * 2004-10-14 2006-04-26 Solar And Wind Applic Ltd Window blinds having photovoltaic cells
CN105840084A (zh) * 2016-06-07 2016-08-10 南京二十六度建筑节能工程有限公司 一种逆向反光遮阳窗帘

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466295U (ja) * 1990-10-18 1992-06-10
JPH0466292U (ja) * 1990-10-18 1992-06-10
JP2007085082A (ja) 2005-09-22 2007-04-05 Ryozo Kimihira ブラインド装置
JP2011003855A (ja) * 2009-06-22 2011-01-06 Toppan Printing Co Ltd 反射保護シート及びこれを備えた半導体発電装置
WO2014132516A1 (ja) * 2013-02-26 2014-09-04 三洋電機株式会社 太陽電池、太陽電池モジュール及び太陽電池の製造方法
JP2017002708A (ja) * 2015-06-11 2017-01-05 デクセリアルズ株式会社 スラット、及び日射調整装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3604729A4

Also Published As

Publication number Publication date
JP2018172920A (ja) 2018-11-08
EP3604729A1 (en) 2020-02-05
EP3604729A4 (en) 2021-01-20
JP6831084B2 (ja) 2021-02-17

Similar Documents

Publication Publication Date Title
Peng et al. Study on the overall energy performance of a novel c-Si based semitransparent solar photovoltaic window
US20190036480A1 (en) Window-integrated transparent photovoltaic module
KR102507627B1 (ko) 개선된 코일 강도를 갖는 전위차 구동 셰이드, 이의 제조 방법 및 이의 작동 방법
JP5327923B2 (ja) デザイン層を備えた建物一体型太陽電池モジュール
KR102509838B1 (ko) Cigs 태양 전지를 갖는 전위차 구동 셰이드 및 이의 제조 방법
KR102507564B1 (ko) 개선된 코일 강도를 갖는 전위차 구동 셰이드, 이의 제조 방법 및 이의 작동 방법
KR101136866B1 (ko) 이중 개폐 기능을 가지는 블라인드 창호
CN112889216A (zh) 特别用于窗等的建筑物集成光伏设备、用于所述设备的方法和板条
KR101592403B1 (ko) 블라인드가 내장된 창호
KR20110087202A (ko) 태양광 발전 블라인드 및 태양광 발전 블라인드가 구비된 창
WO2012095847A1 (en) A window
JP2023107850A (ja) ガラス建材
KR102221970B1 (ko) 가동형 다기능 고효율 태양광 패널
WO2018179648A1 (ja) 透明基材およびブラインド
KR101481534B1 (ko) 건물 일체형 태양전지 모듈
JP2021055540A (ja) 透明基材およびブラインド
KR101173175B1 (ko) 이중 개폐 시스템 블라인드 창호
KR101255086B1 (ko) 창호
KR101501205B1 (ko) 창호
CN215369472U (zh) 一种具有内置式遮阳卷帘的节能门窗
JP2021011809A (ja) 太陽電池窓パネル
WO2023042125A1 (en) Motorized covering for a window
CN203701909U (zh) 电动控制可调节光电薄膜百叶
KR102476637B1 (ko) 창호 일체형 루버식 태양광 발전시스템
AU2012100413A4 (en) Solar window glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903443

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017903443

Country of ref document: EP

Effective date: 20191031