WO2018178554A1 - Procede de production et de purification du 2,3,3,3-tetrafluoropropene. - Google Patents

Procede de production et de purification du 2,3,3,3-tetrafluoropropene. Download PDF

Info

Publication number
WO2018178554A1
WO2018178554A1 PCT/FR2018/050734 FR2018050734W WO2018178554A1 WO 2018178554 A1 WO2018178554 A1 WO 2018178554A1 FR 2018050734 W FR2018050734 W FR 2018050734W WO 2018178554 A1 WO2018178554 A1 WO 2018178554A1
Authority
WO
WIPO (PCT)
Prior art keywords
stream
glc
current
propene
tetrafluoropropene
Prior art date
Application number
PCT/FR2018/050734
Other languages
English (en)
Inventor
Dominique Deur-Bert
Laurent Wendlinger
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Publication of WO2018178554A1 publication Critical patent/WO2018178554A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/23Preparation of halogenated hydrocarbons by dehalogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/383Separation; Purification; Stabilisation; Use of additives by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/383Separation; Purification; Stabilisation; Use of additives by distillation
    • C07C17/386Separation; Purification; Stabilisation; Use of additives by distillation with auxiliary compounds

Definitions

  • the invention relates to a process for purifying 2,3,3,3-tetrafluoro-1-propene.
  • the invention also relates to a process for producing and purifying 2,3,3,3-tetrafluoro-1-propene.
  • Hydrofluorocarbons such as 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf)
  • HFOs hydrofluoroolefins
  • HFO-1234yf 2,3,3,3-tetrafluoro-1-propene
  • hydrofluoroolefin manufacturing processes involve a fluorination and / or dehydrohalogenation reaction. This type of reaction is carried out in the gas phase and generates impurities which must therefore be eliminated in order to obtain the desired compound in a degree of purity sufficient for the intended applications.
  • impurities are isomers of the main compounds intended to be obtained by the process for the production of 2,3,3,3-tetrafluoro-1-propene in addition to the latter, ie 2-chloro-3,3,3-trifluoro-1- propene (1233xf) and 1,1,1,2,2-pentafluoropropane (245cb).
  • 2-chloro-3,3,3-trifluoro-1-propene (1233zd) trans-1,3,3,3-tetrafluoro-1-propene (1234ze) and the 1,1,1,3,3-pentafluoropropane (245fa)
  • these can accumulate in the reaction loop and thus prevent the formation of the products of interest.
  • EP 0 864 554 discloses a process for purifying a mixture comprising 1,1,1,3,3-pentafluoropropane (245fa) and 1-chloro-3,3,3-trifluoro-trans-1-propene (1233zd ) by distillation in the presence of a solvent having a boiling point higher than that of 1-chloro-3,3,3-trifluoro-trans-1-propene.
  • WO 03/068716 discloses a process for recovering pentafluoroethane from a mixture comprising pentafluoroethane and chloropentafluoroethane by distillation in the presence of hexafluoropropene.
  • WO 98/19982 also discloses a process for purifying 1,1-difluoroethane by extractive distillation.
  • the method comprises contacting an extractant with a mixture of 1,1-difluoroethane and vinyl chloride.
  • the extraction agent is chosen from hydrocarbons, alcohols and chlorocarbons having a boiling point of between 10 ° C. and 120 ° C.
  • the selection of the extraction agent can be complex depending on the products to be separated.
  • the choice of particular operating conditions may favor the presence of certain impurities or isomers thereof.
  • impurities such as 1,3,3,3-tetrafluoro-1-propene (1234ze) can be observed just like that of 1-chloro-3,3,3-trifluoro-1-propene (1233zd) and 1 1,1,3,3-pentafluoropropane (245fa).
  • impurities may arise from secondary reactions induced by intermediately produced compounds during the production of 2,3,3,3-tetrafluoro-1-propene, and may have physical properties such that their removal may be complex.
  • the present invention makes it possible in particular to produce 2,3,3,3-tetrafluoro-1-propene with improved purity.
  • step b2) distilling said current Glb obtained in step b1) to form a current Glc comprising 2,3,3,3-tetrafluoropropene (1234yf), a portion of said unreacted HF, a portion of said portion of the intermediate products; B and a portion of said portion of the by-products C, advantageously at the top of the distillation column, and a stream Gld comprising a portion of said portion of the intermediate products B and a portion of said portion of the by-products C, advantageously at the bottom of the column distillation, preferably the current Gld is recycled in step a), in particular the current Gld is liquid; b3) contacting the current Glc with an aqueous solution of hydrofluoric acid of concentration greater than 40% to form a two-phase Glc 'stream comprising 2,3,3,3-tetrafluoropropene (1234yf), hydrofluoric acid, a portion of said portion of intermediate products B and a portion of said portion of secondary products C
  • the method also comprises the steps of: b6) neutralizing said current Glc "obtained in step b5) with an aqueous alkaline solution to form a neutralized stream, and
  • the aqueous hydrofluoric acid solution used in step b3) is at a temperature of between 0 and 30 ° C. before being put in contact with the current Glc.
  • said two-phase current consists of a gas phase comprising 2,3,3,3-tetrafluoropropene (1234yf), a portion of said portion of intermediate products B and a portion of said part of secondary products C and a liquid phase comprising hydrofluoric acid and less than 5% by weight of organic compounds selected from the group consisting of 2,3,3,3-tetrafluoropropene (1234yf), a portion of said portion of intermediate products B and a portion of said part of the secondary products C on the basis of the total weight of said liquid phase.
  • the liquid phase resulting from the mixing of said liquid phase of said current Glc 'and of the current Glc' is distilled to form a stream G2c, preferably at the top of the distillation column, comprising hydrofluoric acid containing less than 500 ppm of water and a stream G3c, preferably at the bottom of the distillation column, comprising hydrofluoric acid in the form of an aqueous solution with a concentration of less than 50% by weight.
  • the Glc "current or the Glc” "stream comprises less than 5% by weight of hydrofluoric acid based on the total weight of said Glc" current or said Glc "" current.
  • the method comprises a step c), subsequent to step b5) or step b7), in which the current Glc "obtained in step b5) or the current Glc "" obtained in step b7) comprises 2,3,3,3-tetrafluoropropene (1234yf), 1,1,1,2,2-pentafluoropropane (245cb) and trans-1,3,3,3-tetrafluoro 1-propene (1234zeE); and said Glc "or Glc""stream is distilled to form a Gle stream comprising 2,3,3,3-tetrafluoropropene (1234yf) and a Gif stream comprising 1,1,1,2,2-pentafluoropropane (245cb) and trans -1,3,3,3-tetrafluoro-1-propene (1234zeE), advantageously the Gif stream obtained in step c) is separated by extractive distillation.
  • the method comprises a step c), subsequent to step b5) or step b7), in which the current Glc "obtained in step b5) or the current Glc" " obtained in step b7) comprises 2,3,3,3-tetrafluoropropene (1234yf), 1,1,1,2,2-pentafluoropropane (245cb) and trans-1,3,3,3-tetrafluoro-1 propene (1234zeE), and said Glc "or Glc” "stream is distilled to form a Gle 'stream comprising 2,3,3,3-tetrafluoropropene (1234yf) and 1,1,1,2,2-pentafluoropropane (245cb) and a Gif stream comprising trans-1,1,3,3-tetrafluoro-1-propene (1234zeE), preferably the Glc - or Glc "- stream is distilled by extractive distillation.
  • the current Glc "or Glc” " is distilled by extractive distillation according to the steps:
  • said liquid stream L1 comprises part of the intermediate products B and all or part of the secondary products C, and part of the liquid stream L1 is heated to low temperature, advantageously between -50 ° C and 20 ° C to form a first phase Lia comprising a portion of unreacted HF and a second phase Llb comprising said intermediate products B and said secondary products C; optionally or not, said current G11 formed in step b2) is mixed with the liquid stream L1 before the latter is heated to low temperature, preferably said first phase Lia is recycled in step a).
  • said second phase Llb is distilled to recover a Lie stream comprising 1,1,1,2,2-pentafluoropropane (245cb) and trans-1,3,3,3-tetrafluoro-1-propene ( 1234zeE), advantageously at the top of the distillation column, and a stream Lld comprising 2-chloro-3,3,3-trifluoro-1-propene (1233xf), E1-chloro-3,3,3-trifluoro-1-propene (1233zdE) and 1,1,1,3,3-pentafluoropropane (245fa); advantageously at the bottom of the distillation column, advantageously said Lie stream is recycled in step a).
  • said Lld stream is separated to form a stream comprising 2-chloro-3,3,3-trifluoro-1-propene (1233xf) and a stream comprising E1-chloro-3,3,3-trifluoro 1-propene (1233zdE) and 1,1,1,3,3-pentafluoropropane (245fa), advantageously the separation of said Lld current is carried out by extractive distillation.
  • Figure 1 schematically shows a device implementing a process for producing 2,3,3,3-tetrafluoro-1-propene according to a particular embodiment of the present invention.
  • Figures 2 and 3 show schematically a device implementing the purification of 2,3,3,3-tetrafluoro-1-propene according to another particular embodiment of the present invention.
  • Figure 4 schematically shows a portion of the 2,3,3,3-tetrafluoro-1-propene purification device according to a particular embodiment of the present invention.
  • the present invention allows the production and purification of 2,3,3,3-tetrafluoropropene (1234yf).
  • a carbon-carbon double bond may be present to complete the valency of these.
  • said process comprises the step a) of contacting, in the presence of a catalyst, the starting composition with HF to produce a composition A comprising HCl, part of the unreacted HF, 2,3,3,3-tetrafluoropropene (1234yf), intermediates B 2-chloro-3,3,3-trifluoropropene (1233xf), 1,1, 1,2,2-pentafluoropropane (245cb), and by-products C 1-chloro-3,3,3-trifluoro-1-propene (1233zdE), trans-1, 3,3,3-tetrafluoro-1 propene (1234zeE) and 1,1,1,3,3-pentafluoropropane (245fa);
  • the purification of said composition A carried out in step b) comprises the distillation of said composition A to recover at the top of the distillation column a gas stream G1 comprising HCl and 2,3,3,3-tetrafluoropropene (1234yf) ; and at the bottom of the distillation column a liquid stream L1 comprising said part of the HF.
  • All or part of the intermediate products B and all or part of the secondary products C can be contained in said gas stream G1 and / or in said liquid stream L1.
  • 1,1,1,2,2-pentafluoropropane (245cb) may be contained in said gas stream G1. All or part of 1,1,1,2,2-pentafluoropropane (245cb) may also be contained in said liquid stream L1.
  • trans-1,1,3,3-tetrafluoro-1-propene (1234zeE) may be contained in said gas stream G1.
  • All or part of trans-1, 3,3,3-tetrafluoro-1-propene (1234zeE) can also be contained in said liquid stream L1.
  • 2-chloro-3,3,3-trifluoropropene (1233xf) may be contained in said gas stream G1. All or part of the 2-chloro-3,3,3-trifluoropropene (1233xf) may also be contained in said liquid stream L1.
  • 2-chloro-3,3,3-trifluoropropene (1233xf) is contained in said liquid stream L1, advantageously at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 85% or at least 90% of the 2-chloro-3,3,3-trifluoropropene (1233xf) is contained in said liquid stream L1 with respect to said gas stream G1.
  • E-1-chloro-3,3,3-trifluoro-1-propene (1233zdE) may be contained in said gas stream G1. All or part of the E-1-chloro-3,3,3-trifluoro-1-propene (1233zdE) may also be contained in said liquid stream L1.
  • the 1-chloro-3,3,3-trifluoro-1-propene (1233zdE) is contained in said liquid stream L1, advantageously at least 50%, at least 60%, at least 70%, at least 75%. %, at least 80%, at least 85%, at least 90% or at least 95% of 1-chloro-3,3,3-trifluoro-1-propene (1233zd) is contained in said liquid stream L1 in relation to said gas stream Gl.
  • 1,1,1,3,3-pentafluoropropane (245fa) may be contained in said gas stream G1. All or part of 1,1,1,3,3-pentafluoropropane (245fa) may also be contained in said liquid stream L1.
  • the 1,1,1,3,3-pentafluoropropane (245fa) is contained in said liquid stream L1, advantageously at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90% or at least 95% of the 1,1,1,3,3-pentafluoropropane (245fa) is contained in said liquid stream L1 with respect to said gas stream G1.
  • the recovery of said composition A and its purification makes it possible to form and recover a first g gas stream comprising HCl, 2,3,3,3-tetrafluoropropene (1234yf), a part of the HF n unreacted, some of the intermediates B and some of the by-products C; and a stream, preferably liquid, L1 comprising a portion of the unreacted HF, a portion of the intermediate B and a portion of the C side products.
  • said first stream is a G gas stream purified by the following steps:
  • step b2) distilling said current Glb obtained in step b1) to form a current Glc comprising 2,3,3,3-tetrafluoropropene (1234yf), a portion of said unreacted HF, a portion of said portion of the intermediate products; B and a portion of said portion of the by-products C, advantageously at the top of the distillation column, and a stream Gld comprising a portion of said portion of the intermediate products B and a portion of said portion of the by-products C, advantageously at the bottom of the column distillation, preferably the stream Gld is recycled to step a), preferably the Gld current is liquid; b3) contacting the current Glc with an aqueous solution of hydrofluoric acid of concentration greater than 40% to form a two-phase Glc 'stream comprising 2,3,3,3-tetrafluoropropene (1234yf), hydrofluoric acid, a portion of said portion of intermediate products B and a portion of said portion of secondary products C
  • the current Glc formed in step b2) may comprise 2,3,3,3-tetrafluoropropene (1234yf), 1,1,1,2,2-pentafluoropropane (245cb) and 1,3,3,3 -tetrafluoro-1-propene (1234ze).
  • the stream G1 1 formed in step b2) may comprise 1,1,1,2,2-pentafluoropropane (245cb), trans-1, 3,3,3-tetrafluoro-1-propene (1234zeE), 2 chloro-3,3,3-trifluoropropene (1233xf) and optionally or not El-chloro-3,3,3-trifluoro-1-propene (1233zdE) and 1,1,1,3,3-pentafluoropropane (245fa) .
  • the content of 1,1,1,2,2-pentafluoropropane (245cb) is greater in the Gld current than in the Glc current.
  • the Gld stream can contain 55%, 60%, 65%, 70%, 75%, 78% or 80% of the 1,1,1,2,2-pentafluoropropane (245cb) based on the total content of 1.1 1,2,2-pentafluoropropane (245cb) in the Gld and Glc stream.
  • Stream Gld may be recycled in step a) of the present process.
  • the aqueous hydrofluoric acid solution used in step b3) is of concentration greater than 40% by weight.
  • the hydrofluoric acid aqueous solution is of concentration greater than 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52% 53% 54% 55% 56% 57% 58% 59% 60% 61% 62% 63% 64% 65% 66% 67% 68% 69 % 70% 71% 72% 73% 74% 75% 76% 77% 78% 79% 80% 81% 82% 83% 84% 85% 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94% or 95% by weight.
  • the aqueous solution of hydrofluoric acid is of concentration greater than or equal to 50% by weight, or greater than or equal to 60% by weight or greater than or equal to 70% by weight.
  • the aqueous hydrofluoric acid solution used in step b3) can be between any of the values mentioned above.
  • the hydrofluoric acid aqueous solution may be between 45% and 95% by weight, between 50% and 90% by weight, between 55% and 85% by weight, between 60% by weight and 80% by weight or between 65% by weight and 75% by weight.
  • the method also comprises the steps of: b6) neutralizing said current Glc "obtained in step b5) with an aqueous alkaline solution to form a neutralized stream, and
  • the aqueous hydrofluoric acid solution used in step b3) is at a temperature of between -20 ° C. and 80 ° C. before contacting it with the current Glc, advantageously between -15 ° C. and 70 ° C. C., preferably between -10 ° C. and 60 ° C., more preferably between -5 ° C. and 50 ° C., in particular between -5 ° C. and 40 ° C., more particularly between 0 ° C. and 30 ° C.
  • the temperature of the hydrofluoric acid aqueous solution used in step b3), before it is brought into contact with the Glc current can be 0 ° C., 1 ° C., 2 ° C. C, 3 C, 4 C, 5 C, 6 C, 7 C, 8 C, 9 C, 10 C, 11 C, 12 C, 13 C, 14 C , 15 ° C, 16 ° C, 17 ° C, 18 ° C, 19 ° C, 20 ° C, 21 ° C, 22 ° C, 23 ° C, 24 ° C, 25 ° C, 26 ° C, 27 ° C, 28 ° C, 29 ° C or 30 ° C.
  • the implementation of said aqueous hydrofluoric acid solution at the temperatures mentioned above is intended to control the exothermicity occurring when the latter is brought into contact with the current Glc.
  • said two-phase current consists of a gaseous phase comprising 2,3,3,3-tetrafluoropropene (1234yf), a portion of said portion of intermediate products B and a portion of said portion of secondary products C.
  • gas phase may optionally include traces of hydrofluoric acid.
  • the hydrofluoric acid content in said gas phase of said two-phase current is less than 5% by weight based on the total weight of said gaseous phase, in particular less than 2% by weight based on the total weight of said gaseous phase more particularly less than 1% by weight based on the total weight of said gas phase.
  • the liquid phase of said two-phase stream comprises hydrofluoric acid.
  • the liquid phase of said two-phase stream may also comprise less than 5% by weight based on the total weight of said liquid phase of organic compounds selected from the group consisting of 2,3,3,3-tetrafluoropropene (1234yf), a portion of said part of intermediate products B and a portion of said part of secondary products C; preferably less than 1% by weight, in particular less than 5000 ppm, more preferably less than 1000 ppm, more preferably less than 500 ppm, particularly preferably less than 100 ppm of organic compounds selected from the group consisting of 2, 3,3,3-tetrafluoropropene (1234yf), a portion of said portion of intermediate products B and a portion of said portion of by-products C based on the total weight of said liquid phase.
  • the concentration of hydrofluoric acid in said liquid phase of said second diphasic current is greater than the concentration of said aqueous hydrofluoric acid solution used in step b3).
  • Said liquid phase of said second two-phase current may have a hydrofluoric acid concentration greater than 41% by weight based on the weight total of said liquid phase of said second two-phase current.
  • said liquid phase of said second two-phase current may have a hydrofluoric acid concentration greater than 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52% 53% 54% 55% 56% 57% 58% 59% 60% 61% 62% 63% 64% 65% 66% 67% 68% 69 % 70% 71% 72% 73% 74% 75% 76% 77% 78% 79% 80% 81% 82% 83% 84% 85% 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94% or 95% by weight based on the total weight of said liquid phase of said second two-phase current.
  • said liquid phase of said second two-phase stream may have a hydrofluoric acid concentration of between 45% and 95% by weight, between 50% and 90% by weight, between 55% and 85% by weight, and between 60% by weight. and 80% by weight or between 65% by weight and 75% by weight while being greater than the concentration of said hydrofluoric acid aqueous solution used in step b3).
  • step b4) of the method according to the present invention implements the storage of said second two-phase current in a buffer tank, said second two-phase current consisting of said liquid phase and of said gaseous phase as described herein. -above.
  • step b5) of the process according to the present invention implements the passage of said gaseous phase of said second diphasic current in an absorption column fed countercurrently with an aqueous stream to form a current.
  • Glc comprising compound A and a current Glc '" comprising hydrofluoric acid.
  • the flow rate of the aqueous stream used in step b5) is determined as a function of the amount of hydrofluoric acid contained in said current Glc.
  • the ratio between the flow rate of the aqueous flow expressed in kg / h feeding the absorption column in step b5) and the amount of hydrofluoric acid in said current Glc expressed in kg / h is between 0.05 and 1.22.
  • the ratio between the flow rate of the aqueous flow supplying the absorption column in step b5) and the amount of hydrofluoric acid in said current Glc expressed in kg / h may be between 0.11 and 1.00, preferably between 0.18 and 0.82, more preferably between 0.25 and 0.67, in particular between 0.33 and 0.54.
  • the ratio between the flow rate of the aqueous flow supplying the absorption column in step b5) and the amount of hydrofluoric acid in said current Glc expressed in kg / h can be 0.25, 0.26, 0, 27, 0.28, 0.29, 0.30, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.40, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.50, 0.51, 0, 52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.60, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69 or 0.70.
  • An additional aqueous stream corresponding to the vaporized water fraction at the top of said absorption column can also feed said column.
  • the aqueous stream as described above is different from said additional aqueous stream linked to the vaporized water fraction at the top of the column and does not include it.
  • said absorption column implemented in step b5) comprises at least one absorption stage.
  • said absorption column implemented in step b5) comprises at least two absorption stages.
  • said absorption column implemented in step b5) comprises at least three absorption stages.
  • Said absorption column implemented in step b5) may thus comprise two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen or fifteen absorption stages.
  • an absorption column having at least one absorption stage advantageously at least two absorption stages, preferably at least three absorption stages, makes it possible to obtain a current Glc "having a low
  • said current Glc “comprises less than 1000 ppm of hydrofluoric acid by weight based on the total weight of said current Glc", preferably less than 900 ppm of hydrofluoric acid, more preferably less than 800 ppm of hydrofluoric acid.
  • hydrofluoric acid in particular less than 700 ppm of hydrofluoric acid, more particularly less than 600 ppm of hydrofluoric acid, preferably less than 500 ppm of hydrofluoric acid, even more preferred less than 400 ppm of acid hydrofluoric acid, preferentially preferred less than 300 ppm of hydrofluoric acid, particularly preferably less than 200 ppm of hydrofluoric acid, more particularly less than 100 ppm hydrofluoric acid.
  • said current Glc " may have a hydrofluoric acid content of between 1 and 200 ppm, between 5 and 190 ppm, between 10 and 180 ppm, between 15 and 170 ppm, between 20 and 160 ppm, between 25 and 150 ppm or between 30 and 140 ppm by weight based on the total weight of said Glc "current.
  • At least 80% by weight of the hydrofluoric acid optionally present in said gas phase of said second two-phase current is absorbed by the first absorption stage of said absorption column, in particular at least 85% by weight of the hydrofluoric acid optionally present in said gas phase of said second two-phase current is absorbed by the first absorption stage of said absorption column, more particularly at least 90% by weight of the hydrofluoric acid possibly present in said gaseous phase of said second two-phase current is absorbed by the first absorption stage of said absorption column.
  • said aqueous stream can be introduced at least at the head of the absorption column.
  • said current Glc '" is in the form of an aqueous solution of hydrofluoric acid
  • said current Glc'" is a solution of hydrofluoric acid with a concentration of less than 30% by weight on a base the total weight of said fourth stream.
  • said current Glc '" is a hydrofluoric acid solution of concentration less than 25% by weight based on the total weight of said current Glc'".
  • said current Glc '" is a solution of hydrofluoric acid with a concentration of between 5 and 25% by weight based on the total weight of said current Glc'", more particularly between 10 and 20% by weight based on the weight
  • said current Glc '' is recycled in step b4). Said current Glc '"is thus mixed with the liquid phase of said second two-phase current.
  • said method also comprises the steps of: b6) neutralizing said current Glc "obtained in step b5) with an aqueous alkaline solution to form a neutralized current, and
  • step b6) drying said neutralized stream obtained in step b6), preferably on molecular sieve to form a neutralized and dried Glc - "stream.
  • said aqueous alkaline solution may be an aqueous solution of hydroxide of an alkali metal or alkaline earth metal.
  • the aqueous alkaline solution may be an aqueous solution of sodium hydroxide, potassium hydroxide, calcium hydroxide or magnesium hydroxide or a mixture thereof.
  • said aqueous alkaline solution has a concentration of between 5 and 50% by weight based on the total weight of said alkaline aqueous solution.
  • said alkaline aqueous solution has a concentration of at least 5%, at least 6%, at least 7%, at least 8%, at least 9%, at least 10%.
  • Said neutralized stream formed in step b6) preferably comprises 2,3,3,3-tetrafluoropropene (1234yf), a portion of said portion of intermediate products B and a portion of said portion of secondary products C.
  • said neutralized current formed in step b6) preferably comprises 2,3,3,3-tetrafluoropropene (1234yf), 1,1,1,2,2-pentafluoropropane (245cb) and trans-1,33,3,3-tetrafluoropropane.
  • the hydrofluoric acid content in said neutralized stream is lower than the hydrofluoric acid content of said Glc "stream prior to its neutralization, and said neutralized stream formed in step b6) may also contain water.
  • Said neutralized stream formed in step b6) can thus be dried in step b7) of the present process.
  • said neutralized stream formed in step b6) is dried on molecular sieve.
  • said neutralized stream formed in step b6) is dried on 3A molecular sieve, such as siliporite.
  • Step b7) of the present process allows the formation of a neutralized and dried stream
  • Glc "" comprising 2,3,3,3-tetrafluoropropene (1234yf), a portion of said portion of intermediate products B and a portion of said portion of side products C.
  • Said Glc "" stream may optionally be compressed and liquefied at a rate of pressure of at most 8 bara to form a compressed stream in which 2,3,3,3-tetrafluoropropene (1234yf), a portion of said portion of intermediate products B and a portion of said portion of by-products C are in liquid form .
  • the liquid phase resulting from the mixing of said liquid phase of said second two-phase current with said current Glc '' is recycled to stage b3.
  • the liquid phase resulting from the mixing of said liquid phase of said second two-phase current with said current Glc '" may have a hydrofluoric acid concentration greater than 41% by weight based on the total weight of said liquid phase resulting from the mixing of said liquid phase of said second two-phase current with said current Glc'".
  • the phase liquid resulting from the mixing of said liquid phase of said second two-phase current with said current Glc '" may have a hydrofluoric acid concentration greater than 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49% 50% 51% 52% 53% 54% 55% 56% 57% 58% 59% 60% 61% 62% 63% 64% 65% 66 % 67% 68% 69% 70% 71% 72% 73% 74% 75% 76% 77% 78% 79% 80% 81% 82% 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94% or 95% by weight based on the total weight of said liquid phase resulting from the mixing of said liquid phase of said second two-phase current with said Glc '"current.
  • the liquid phase resulting from the mixing of said liquid phase of said second diphasic stream with said current Glc '" may have a concentration of hydrofluoric acid of between 45% and 95% by weight, between 50% and 90% by weight, between 55% and 85% by weight, between 60% by weight and 80% by weight or between 65% by weight and 75% by weight on based on the total weight of the liquid phase resulting from the mixing of said liquid phase of said second two-phase current with said current Glc '".
  • the liquid phase resulting from the mixing of said liquid phase of said second two-phase current with said current Glc '" is distilled to form a stream G2c, preferably at the top of the distillation column
  • said current G2c comprises hydrofluoric acid containing less than 3000 ppm of water, preferably less than 2000 ppm of water, more preferably less than 1000 ppm of water, in particular less than 500 ppm of water, more particularly less than 200 ppm of water; ppm of water, preferably less than 100 ppm of water, more preferably less than 50 ppm of water based on the total weight of the G2c stream, said G2c stream may also comprise less than 50 ppm of hydrochloric acid preferably less than 45 ppm of hydrochloric acid, preferably less than 40 ppm of hydrochloric acid, more preferably less than 35 ppm of hydrochloric acid, in particular less than 30 ppm of hydrochloric acid.
  • Said stream G2c may also comprise less than 50 ppm of organic compounds, advantageously less than 45 ppm of organic compounds, preferably less than 40 ppm of organic compounds, more preferably less than 35 ppm of organic compounds, in particular less than 30 ppm of organic compounds.
  • organic compounds more particularly less than 20 ppm of organic compounds based on the total weight of G2c.
  • An organic compound is a compound comprising at least one carbon atom.
  • the distillation of the liquid phase resulting from the mixing of said liquid phase of said second diphasic stream with said current Glc "forms a stream G3c, preferably at the bottom of the distillation column, comprising hydrofluoric acid in the form of an aqueous solution with a concentration of less than 50% by weight
  • said stream G3c comprising hydrofluoric acid in the form of an aqueous solution with a concentration of less than 50% by weight, 49% by weight and 48% by weight, % by weight, 46% by weight, 45% by weight, 44% by weight, 43% by weight, 42% by weight based on the total weight of said G3c stream
  • said stream G3c comprising hydrofluoric acid in the form of an aqueous solution of higher concentration 21% by weight, 22% by weight, 23 % by weight,
  • the liquid phase resulting from the mixing of said liquid phase of said second two-phase current with said current Glc '" can thus be either distilled or recycled in step b3.
  • a part of the liquid phase resulting from the mixing of said liquid phase said second diphasic current with said current Glc '" is distilled while the other part of the liquid phase resulting from the mixing of said liquid phase of said second two-phase current with said current Glc'" is recycled to step b3).
  • step b3 at least 50%, more preferably at least 60%, in particular at least 70%, more particularly at least 80%, preferably at least 90% by weight of the liquid phase resulting from the mixing of said liquid phase of said second stream two-phase with said current Glc '"is recycled in step b3); and less than 50%, preferably less than 40%, more preferably less than 30%, especially less than 20%, more preferably less than 10% by weight is distilled.
  • the method comprises a step c), subsequent to step b5) or step b7), in which the current Glc "obtained in step b5) or the current Glc" "obtained in step b7) comprises 2,3,3,3-tetrafluoropropene (1234yf), 1,1,1,2,2-pentafluoropropane (245cb) and trans-1,3,3,3-tetrafluoro-1-propene (1234zeE) and said Glc "or Glc" "stream is distilled to form a Gle stream comprising 2,3,3,3-tetrafluoropropene (1234yf) and a Gif stream comprising 1,1,1,2,2-pentafluoropropane ( 245cb) and trans-1,3,3,3-tetrafluoro-1-propene (1234zeE).
  • the Gif current obtained in step c) can be separated by extractive distillation.
  • the current Gif obtained in step c) is separated by extractive distillation according to the steps:
  • step cl contacting said Gif stream obtained in step c) with an organic extractant to form a Glg stream
  • the Gli stream comprising trans-1,3,3,3-tetrafluoro-1-propene (1234zeE) and said organic extractant is separated by distillation to form a stream G1 comprising said organic extractant and a Glk current comprising trans-1, 3,3,3-tetrafluoro-1-propene (1234zeE).
  • the current Glj comprising said organic extraction agent can be recycled in step c1).
  • the Glk stream comprising trans-1,3,3,3-tetrafluoro-1-propene (1234zeE) can be either purified or destroyed by incineration.
  • said organic extraction agent is a solvent selected from the group consisting of hydrohalocarbon, alcohol, ketone, amine, ester, ether, aldehyde, nitrile, carbonate, thioalkyl, amide, heterocycle.
  • said organic extraction agent is a solvent selected from the group consisting of alcohol, ketone, amine, ester and heterocycle.
  • said organic extraction agent has a boiling point between 10 and 150 ° C.
  • PI represents the saturated vapor pressure of 1,1,1,2,2-pentafluoropropane
  • s represents the activity coefficient of said trans-1,3,3,3-tetrafluoro-1-propene (1234zeE) in said organic infinite dilution extractant
  • P2 represents the saturated vapor pressure of said trans-1,1,3,3-tetrafluoro-1-propene (1234zeE);
  • the separation factor is greater than or equal to 1.2, preferably greater than or equal to 1.4, more preferably greater than or equal to 1.6, in particular greater than or equal to 1.8, more particularly greater than or equal to at 2.0.
  • the saturation vapor pressure is considered for a temperature of 25 ° C.
  • the C2, s separation capacity is greater than or equal to 0.40, preferably greater than or equal to 0.60, more preferably greater than or equal to 0.80, in particular greater than or equal to 1.0.
  • said organic extractant may have a separation factor Si, 2 greater than or equal to 1.5 and a C2, s absorption capacity greater than or equal to 0.6 and be selected from the group consisting of ethylamine , acetaldehyde, isopropylamine, methylformate, diethylether, 1,2-epoxypropane, ethylmethylamine, dimethoxymethane, 2-amino-2-methylpropane, methylcyclopropylether, n-propylamine, isopropylmethylamine, 2-ethoxy-propane, methyl-t-butylether, diethylamine, propanone, methylacetate, 4- methoxy-2-methyl-2-butanethiol, 2-butanamine, n-methylpropylamine, isobutanal, tetrahydrofuran, isopropylformate, diisopropylether, 2-ethoxy-2-methylpropane, 1-butylamine
  • said organic extraction agent may have a separation factor Si, 2 greater than or equal to 1.8 and / or an absorption capacity C2, s greater than or equal to 0.8; and being selected from the group consisting of ethylamine, isopropylamine, ethylmethylamine, 2-amino-2-methylpropane, n-propylamine, isopropylmethylamine, diethylamine, propanone, 2-butanamine, n-methylpropylamine, tetrahydrofuran, 1-butylamine, ethylacetate, butanone, 1,2-dimethoxyethane, 3-methyl-2-butanamine, 3-pentylamine, n-methylbutylamine, 1-methoxy-2-propanamine, 2-methoxyethanamine, ethylpropionate, 1,4-dioxane, 3-pentanone, 2-pentanone, 2-methoxy-1-propanamine, trimethoxymethane, n-
  • said organic extraction agent may have a separation factor Si, 2 greater than or equal to 1.9 and / or an absorption capacity C2, s greater than or equal to 0.9 and be selected from the group consisting of ethylamine, isopropylamine, ethylmethylamine, 2-amino-2-methylpropane, n-propylamine, isopropylmethylamine, diethylamine, propanone, 2-butanamine, n-methylpropylamine, tetrahydrofuran, 1-butylamine, ethylacetate, butanone, 1,2-dimethoxyethane, 3 2-methyl-2-butanamine, 3-pentylamine, n-methylbutylamine, 1-methoxy-2-propanamine, 2-methoxyethanamine, ethylpropionate, 1,4-dioxane, 3-pentanone, 2-pentanone, 2-methoxy-1-propanamine, -pentylamine, 3,3
  • said organic extractant is selected from the group consisting of ethylamine, isopropylamine, n-propylamine, diethylamine, propanone, tetrahydrofuran, ethylacetate, butanone, 3-pentylamine, 2-methoxyethanamine, 1,4-dioxane, 3- pentanone, 2-pentanone, n-pentylamine, 1,3-dioxane, 1,2-diaminoethane, 1,2-propanediamine, 2-methoxyethanol, n-butylacetate, 1-ethoxy-2-propanol.
  • Said Glh stream comprising 1,1,1,2,2-pentafluoropropane (245cb) can be recycled in step a) of the present process.
  • the Gli stream comprising trans-1,3,3,3-tetrafluoro-1-propene (1234zeE) and said organic extractant is distilled to separate the agent.
  • organic extraction of trans-1, 3,3,3-tetrafluoro-1-propene (1234zeE), preferably said organic extraction agent thus separated is recycled in step c1).
  • Trans-1,3,3,3-tetrafluoro-1-propene (1234zeE) can be incinerated or purified for later use or for sale.
  • Stream Gle can be purified, for example by extractive distillation, to remove trans-1,3,3,3-tetrafluoro-1-propene (1234ze-E) possibly present.
  • said organic extraction agent is a solvent selected from the group consisting of hydrocarbon, hydrohalocarbon, alcohol, ketone, amine, ester, ether, aldehyde, nitrile, carbonate, thioalkyl, amide and heterocycle; or said organic extractant is difluorodiethylsilane, triethylfluorosilane or perfluorobutanoic acid; preferably from the group consisting of amine, ether, ketone, ester, alcohol, aldehyde, heterocycle.
  • the boiling point of said organic extractant may be from 10 to 150 ° C.
  • said organic extraction agent can be ethylamine, isopropylamine, diethylether, ethoxy-ethene, dimethoxymethane, n-propylamine, methyl-t-butylether, diethylamine, propanone, methylacetate, isobutanal, tetrahydrofuran, isopropylformate, diisopropylether, 2-ethoxy- 2-methyl-propane, ethylacetate, butanone, diethoxymethane, isopropylacetate, 3-pentylamine, 2-methoxyethanamine, tert-butylacetate, 1,4-dioxane, 3-pentanone, 1,1-diethoxyethane, 2- pentanone, trimethoxymethane, n-pentylamine, 1,3-dioxane, 3,3-dimethyl-2-butanone, sec-butylacetate, 4-methyl-2-p
  • the process comprises a step c), subsequent to step b5) or step b7), in which the current Glc "obtained in step b5) or the current Glc" “obtained in step b7 ) comprises 2,3,3,3-tetrafluoropropene (1234yf), 1,1,2,2-pentafluoropropane (245cb) and trans-1,3,3,3-tetrafluoro-1-propene (1234zeE), and said current Glc “or Glc” "is distilled to form a stream Gle 'comprising 2,3,3,3-tetrafluoropropene (1234yf) and 1,1,1,2,2-pentafluoropropane (245cb) and a Gif stream comprising trans 1,1,3,3-tetrafluoro-1-propene (1234zeE), advantageously the Glc "or Glc” "stream is distilled off by extractive distillation.
  • the current Glc "or Glc” " is distilled by extractive distillation according to the steps:
  • said organic extractant can be ethylamine, isopropylamine, diethylether, ethylmethylamine, 2-amino-2-methylpropane, n-propylamine, isopropylmethylamine, 2-ethoxy-propane, methyl-t-butylether , diethylamine, propanone, methylacetate, 2-butanamine, n-methylpropylamine, isobutanal, tetrahydrofuran, 1-butylamine, ethylacetate, butanone, n-propylformate, 2,2-dimethoxypropane, 1-ethoxy-2-methylpropane, 1,2-dimethoxyethane , 3-methyl-2-butanamine, diethoxymethane, isopropylacetate, 3-pentylamine, n-methylbutylamine, 1- ethoxybutane, 1-methoxy-2-propanamine, 2-methylbutanal, 2-me
  • the Gle 'stream comprising 2,3,3,3-tetrafluoropropene (1234yf) and 1,1,1,2,2-pentafluoropropane (245cb) may be subjected to subsequent purification steps.
  • 2,3,3,3-tetrafluoropropene (1234yf) can be separated, preferably by distillation, from 1,1,1,2,2-pentafluoropropane (245cb) to form a stream comprising 2,3,3,3 tetrafluoropropene (1234yf) and a stream Gli 'comprising 1,1,1,2,2-pentafluoropropane (245cb), said stream Gli' being recycled in step a).
  • 2,3,3,3-Tetrafluoropropene (1234yf) can be further subjected to purification steps in order to obtain a degree of purity sufficient for marketing. For example, it may be purified, for example by extractive distillation, to remove trans-1,3,3,3-tetrafluoro-1-propene (1234ze-E) possibly present.
  • the current Glh 'comprising trans-1,1,3,3-tetrafluoro-1-propene (1234zeE) and said organic extraction agent is separated by distillation to form a stream G1' comprising said organic extraction agent. and a Glk 'stream comprising trans-1,1,3,3-tetrafluoro-1-propene (1234zeE).
  • the current Glj 'comprising said agent organic extraction can be recycled in step c1 ').
  • the Glk 'stream comprising trans-1,3,3,3-tetrafluoro-1-propene (1234zeE) can be either purified or destroyed by incineration.
  • the current Glc comprises impurities having a boiling point lower than that of 2,3,3,3-tetrafluoro-1-propene
  • they can be removed by distillation.
  • Said impurities having a boiling point lower than that of 2,3,3,3-tetrafluoro-1-propene may be trifluoromethane (F23), monofluoromethane (F41), difluoromethane (F32), pentafluoroethane (F125), 1,1 1-trifluoroethane (F143a), trifluoropropyl or 1-chloro-pentafluoroethane (F115); and these can be recovered at the top of the distillation column.
  • the stream recovered at the bottom of the distillation column can then be used as described above for the Glc stream in step b) and the subsequent steps.
  • said liquid stream L1 comprises all or part of intermediate products B and all or part of secondary products C; and all or part of this stream L1 is heated at low temperature, advantageously between -50 ° C and 20 ° C, to form a first phase Lia comprising a portion of the unreacted HF and a second phase Llb comprising said intermediate products B and said secondary products C.
  • said liquid stream L1 can comprise a part of the intermediate products B and a part of the by-products C; and all or part of this stream L1 is heated at low temperature, advantageously between -50 ° C and 20 ° C, to form a first phase Lia comprising a portion of the unreacted HF and a second phase Llb comprising said intermediate products B and said secondary products C.
  • said low temperature is between -50 ° C and 15 ° C, preferably between -40 ° C and 10 ° C, in particular between -30 ° C and 0 ° C. This step can be performed continuously or discontinuously.
  • Said first phase Lia can be recycled in step a).
  • said current G11 formed in step b2) can be mixed with the liquid stream L1 before all or part of the latter is heated to a low temperature.
  • 1,1,1,2,2-pentafluoropropane (245cb) may also be contained in said liquid stream L1 and then in said second phase L1b.
  • All or part of 2-chloro-3,3,3-trifluoropropene (1233xf) can also be contained in said liquid stream L1 and then in said second phase L1b.
  • All or part of the 1-chloro-3,3,3-trifluoro-1-propene (1233zdE) may also be contained in said liquid stream L1 and then in said second phase L1b.
  • All or part of the 1,1,1,3,3-pentafluoropropane (245fa) may also be contained in said liquid stream L1 and then in said second phase L1b.
  • said second L1b phase may comprise 1,1,1,3,3-pentafluoropropane (245fa), E1-chloro-3,3,3-trifluoro-1-propene (1233zdE), 2-chloro-3,3 3-trifluoropropene (1233xf), 1,3,3,3-tetrafluoro-1-propene (1234ze) and 1,1,1,2,2-pentafluoropropane (245cb).
  • said second phase Llb is distilled to recover a Lie stream comprising 1,1,1,2,2-pentafluoropropane (245cb) and 1,3,3,3-tetrafluoro-1-propene (1234ze) , advantageously at the top of the distillation column, and a stream Lld comprising 2-chloro-3,3,3-trifluoro-1-propene (1233xf), E1-chloro-3,3,3-trifluoro-1-propene (1233zdE ) and 1,1,1,3,3-pentafluoropropane (245fa); advantageously at the bottom of the distillation column.
  • Said Lie current can be recycled in step a).
  • Said current Lie may therefore be one of the said one or more recycled streams in step a) during step c) of the present process.
  • said Lie stream may be purified to separate 1,1,1,2,2-pentafluoropropane (245cb) and 1,3,3,3-tetrafluoro-1-propene (1234ze). This can be done by extractive distillation as explained above in connection with the separation of the Gif stream.
  • said Lld stream can be separated to form a stream comprising 2-chloro-3,3,3-trifluoro-1-propene (1233xf) and a stream comprising E-chloro-3,3,3- trifluoro-1-propene (1233zdE) and 1,1,1,3,3-pentafluoropropane (245fa).
  • the separation of said Lld current can be carried out by extractive distillation.
  • said Lld stream may be an azeotropic or quasiazeotropic composition comprising 2-chloro-3,3,3-trifluoro-1-propene (1233xf), E1-chloro-3,3,3-trifluoro-1-propene (1233zdE) and 1,1,1,3,3-pentafluoropropane (245fa).
  • said separation can be carried out by extractive distillation.
  • Said extractive distillation of said Lld stream comprises the steps of:
  • the stream L1 is then separated by distillation to form a stream L1 comprising said organic extraction agent and a stream L1 comprising E1-chloro-3,3,3-trifluoro-1-propene (1233zd E) and 1, 1, 1,3,3-pentafluoropropane (245fa).
  • the current Llh can be recycled to be contacted with a current Lld to form a composition Lie.
  • Lli stream comprising E-1-chloro-3,3,3-trifluoro-1-propene (1233zd E) and 1,1,1,3,3-pentafluoropropane (245fa) can be either purified or destroyed by incineration.
  • said organic extraction agent brought into contact with the Lld current is a solvent selected from the group consisting of hydrocarbon, hydrohalocarbon, alcohol, ketone, amine, ester, ether, aldehyde, nitrile, carbonate, sulfoxide. sulfate, thioalkyl, amide, heterocycle and phosphate or the organic extractant is perfluorobutanoic acid.
  • said organic extraction agent has a boiling point between 50 and 200 ° C.
  • yi, s represents the coefficient of activity of 2-chloro-3,3,3-trifluoropropene in said organic infinite dilution extractant
  • PI represents the saturated vapor pressure of 2-chloro-3,3,3-trifluoropropene
  • Y2 represents the activity coefficient of 1,1,3,3,3-pentafluoropropane (245fa) in said extractant infinite dilution organic
  • P2 represents the saturated vapor pressure of 1,1,3,3,3-pentafluoropropane (245fa); advantageously, the separation factor Si, 2 is greater than or equal to 1.2, preferably greater than or equal to 1.4, more preferably greater than or equal to 1.6, in particular greater than or equal to 1.8, more particularly greater than or equal to 2.0;
  • said organic extraction agent may be chosen from the group consisting of ethanedial, propanone, methylacetate, methylglyoxal, ethylacetate, butanone, propionitrile, 1,4-dioxane, trimethoxymethane and 1,3-dioxane.
  • 1,3,5-trioxane 1,2-diaminoethane, 1-methoxy-2-propanol, diethylcarbonate, 2-methoxyl-propanol, 1-methoxy-2-acetoxypropane, dimethylformamide, 3-methoxy-1-butanol, diacetone alcohol, methylacetoacetate, ⁇ , ⁇ -dimethylpropanamide, dimethylmalonate, diethylsulfoxide, 2- (2-methoxyethoxy) ethanol, trimethylphosphate, diethylmalonate; preferably said organic extractant may be selected from the group consisting of propanone, methylacetate, ethylacetate, butanone, 1,4-dioxane, trimethoxymethane, 1,3-dioxane, 1,3,5-trioxane, 1,2-dioxane, diaminoethane, 1-methoxy-2-propanol.
  • this particular embodiment can effectively
  • yi, s represents the coefficient of activity of 2-chloro-3,3,3-trifluoropropene in said organic infinite dilution extractant
  • PI represents the saturating vapor pressure of 2-chloro-3,3,3-trifluoropropene
  • Y2 s represents the activity coefficient of E-1-chloro-3,3,3-trifluoro-1-propene
  • P2 represents the saturating vapor pressure of E-1-chloro-3,3,3-trifluoro-1-propene
  • the separation factor Si, 2 is greater than or equal to 1.2, preferably greater than or equal to 1.4, more preferably greater than or equal to 1.6, in particular greater than or equal to 1.8, more particularly greater than or equal to 2.0;
  • said organic extraction agent may be chosen from the group consisting of isopropylmethylamine, methyl-t-butylether, diethylamine, propanone, methylacetate, 2-butanamine, n-methylpropylamine, tetrahydrofuran, 1-butylamine.
  • ethylacetate butanone, n-propylformate, dimethoxypropane, diisopropylamine, 1,2-dimethoxyethane, 3-methyl-2-butanamine, diethoxymethane, isopropylacetate, 3-pentylamine, n-methylbutylamine, 1-methoxy-2-propanamine, 2- methoxyethanamine, tert-butylacetate, ethylpropionate, 1,2-dimethoxypropane, 1,4-dioxane,
  • said organic extraction agent contacted with the Lld stream may be selected from the group consisting of propanone, methylacetate, ethylacetate, butanone, 1,4-dioxane, trimethoxymethane, 1,3-dioxane, 1,2-diaminoethane, -methoxy-2-propanol, diethylcarbonate, 2-methoxyl-propanol, 1-methoxy-2-acetoxypropane, dimethylformamide, 3-methoxy-1-butanol, diacetone alcohol, ⁇ , ⁇ -dimethylpropanamide, diethylsulfoxide, 2- (2-methoxyethoxy) ethanol , trimethylphosphate, diethylmalonate.
  • said organic extractant may be selected from the group consisting of propanone, methylacetate, ethylacetate, butanone, 1,4-dioxane, trimethoxymethane, 1,3-dioxane, 1,2-diaminoethane, 1-methoxy-2-propanol , 3-methoxy-1-butanol, diacetone alcohol.
  • said current Llg comprising E1-chloro-3,3,3-trifluoro-1-propene (1233zdE), 1,1,1,3,3-pentafluoropropane (245fa) and said extractant organic can be distilled to separate on the one hand said organic extraction agent and on the other hand E1-chloro-3,3,3-trifluoro-1-propene (1233zdE) and 1,1,1,3, 3-pentafluoropropane (245fa).
  • said organic extraction agent can be recycled.
  • the flow Llf comprising 2-chloro-3,3,3-trifluoro-1-propene (1233xf) is recycled in step a).
  • heavy impurities are present in said stream Lld, it can be distilled prior to its separation to eliminate them.
  • the Lld current as described above can be recovered at the top of the distillation column, the heavy impurities being recovered at the bottom of the distillation column.
  • the heavy impurities may contain, for example, 1,2-dichloro-3,3,3-trifluoropropene (1223xd), dimers or trimers derived from one of the compounds present in the composition or the current under consideration.
  • the starting composition may comprise 1,1,2,3-tetrachloropropene, 2,3,3,3-tetrachloropropene, 1,1,1,2,3-pentachloropropane, 1,1,1,3-tetrachloropropene, , 2,2-pentachloropropane, 1,2-dichloro-3,3,3-trifluoropropane, 2-chloro-2,3,3,3-tetrafluoropropane, 1,1,1,2,2-pentafluoropropane and 1-chloro-1,3,3,3-tetrafluoropropane, preferably 1,1,1,2,3-pentachloropropane, 1,1,2,3, tetrachloropropene, 1,1,1,2,2-pentafluoropropane and / or 2-chloro-3,3,3- trifluoro-1-propene, 1,2-dichloro-3,3,3-trifluoropropane; in particular 1,1,1,2,3-pentachlor
  • the catalyst used in the present process for producing 2,3,3,3-tetrafluoropropene may for example be based on a metal comprising a transition metal oxide or a derivative or a halide or an oxyhalide of such a metal.
  • a metal comprising a transition metal oxide or a derivative or a halide or an oxyhalide of such a metal.
  • FeCU chromium oxyfluoride
  • chromium oxides possibly subjected to fluorination treatments
  • chromium fluorides and mixtures thereof may be mentioned.
  • Other possible catalysts are carbon-supported catalysts, antimony catalysts, aluminum catalysts (eg AlF 3 and Al 2 O 3, alumina oxyfluoride and alumina fluoride).
  • a chromium oxyfluoride a fluoride or an aluminum oxyfluoride, or a supported or non-supported catalyst containing a metal such as Cr, Ni, Fe, Zn, Ti, V, Zr, Mo, Ge or Sn. Pb, Mg, Sb.
  • the catalyst is more preferably based on chromium and it is more particularly a mixed catalyst comprising chromium.
  • a mixed catalyst comprising chromium and nickel is used.
  • the molar ratio Cr / Ni (based on the metal element) is generally 0.5 to 5, for example 0.7 to 2, for example about 1.
  • the catalyst may contain from 0.5 to 20% by weight of nickel.
  • the metal may be present in metallic form or in the form of a derivative, for example an oxide, halide or oxyhalide. These derivatives are preferably obtained by activation of the catalytic metal.
  • the support is preferably made of aluminum, for example alumina, activated alumina or aluminum derivatives, such as aluminum halides and aluminum oxyhalides, for example described in US Pat. US 4,902,838, or obtained by the activation method described above.
  • aluminum for example alumina, activated alumina or aluminum derivatives, such as aluminum halides and aluminum oxyhalides, for example described in US Pat. US 4,902,838, or obtained by the activation method described above.
  • the catalyst may comprise chromium and nickel in an activated or non-activated form, on a support which has been subjected to activation or not.
  • WO 2009/118628 especially at p.4, l.30-p.7 1.16, which is expressly referred to herein.
  • Another preferred embodiment is based on a chromium-containing mixed catalyst and at least one element selected from Mg and Zn.
  • the atomic ratio of Mg or Zn / Cr is preferably from 0.01 to 5.
  • the catalyst Prior to use, the catalyst is preferably activated with air, oxygen or chlorine and / or with HF.
  • the catalyst is preferably subjected to activation with air or oxygen and HF at a temperature of 100 to 500 ° C, preferably 250 to 500 ° C and more preferably 300 to 400 ° C. ° C.
  • the activation time is preferably from 1 to 200 hours and more particularly from 1 to 50 hours.
  • This activation may be followed by a final fluorination activation step in the presence of an oxidizing agent, HF and organic compounds.
  • the molar ratio of HF / organic compounds is preferably from 2 to 40 and the molar ratio of oxidation agent / organic compounds is preferably from 0.04 to 25.
  • the temperature of the final activation is preferably from 300 to 400 ° C. C and its duration preferably from 6 to 100 h.
  • the fluorination reaction in the gas phase can be carried out:
  • contact time 3 to 100 seconds, preferably 4 to 75 seconds and more particularly 5 to 50 seconds (volume of catalyst divided by the total incoming flow, adjusted to the temperature and to the operating pressure);
  • a temperature (temperature of the catalyst bed) of 200 to 450 ° C., preferably of 250 to 400 ° C., and more particularly of 280 to 380 ° C.
  • the duration of the reaction step is typically from 10 to 8000 hours, preferably from 50 to 5000 hours and more preferably from 70 to 1000 hours.
  • An oxidizing agent preferably oxygen
  • oxygen may optionally be added during the fluorination reaction.
  • the molar ratio oxygen / organic compounds can be from 0.005 to 2, preferably from 0.01 to 1.5.
  • the oxygen can be introduced pure or in the form of air or oxygen / nitrogen mixture. Oxygen can also be replaced by chlorine.
  • Fig. 1 schematically illustrates a device implementing a process for producing 2,3,3,3-tetrafluoropropene according to a particular embodiment of the present invention.
  • the hydrofluoric acid 1 is brought into contact with 1,1,1,2,3-pentachloropropane (240db) 2 in one or more reactors 3.
  • the resulting mixture comprising 2,3,3,3-tetrafluoro-1 propene, 1,1,1,2,2-pentafluoropropane (245cb), trans-1,3,3,3-tetrafluoro-1-propene (1234zeE), 2-chloro-3,3,3-trifluoropropene (1233xf) , E1-chloro-3,3,3-trifluoro-1-propene (1233zdE) and 1,1,1,3,3-pentafluoropropane (245fa) is recovered at the outlet of the reactor and conveyed to a distillation column 5 by the
  • the mixture may also comprise HCl, unreacted HF and heavy impurities or impurities having a boiling point lower than that of 2,3,3,3-tetrafluoro-1-propene.
  • All or part of the stream obtained at the bottom of the distillation column is conveyed to the purification device 13 via line 17.
  • From this purification device 13 can be extracted HF, 2-chloro-3,3,3-trifluoropropene (1233xf) and 1,1,1,2,2-pentafluoropropane (245cb), and optionally trans-1,3,3,3-tetrafluoro-1-propene (1234zeE), which are recycled to the reactor 3 via line 15.
  • El 3,3,3-trifluoro-1-propene (1233zdE) and 1,1,1,3,3-pentafluoropropane (245fa) may also be removed from the device 13 to be discharged at 14 to an incinerator or a device of purification.
  • a stream is also recovered at the top of the distillation column 5 and conveyed to a purification device 7 via the conduit 6. From the purification device 7, a stream comprising 2,3,3,3-tetrafluoro-1-propene is recovered at 11 via line 8.
  • a flow comprising 1,1,1,2,2-pentafluoropropane (245cb), and optionally trans-1,3,3,3-tetrafluoro-1-propene (1234zeE), is also obtained and recycled to the reactor 3 via the conduit 10.
  • a stream comprising trans-1,3,3,3-tetrafluoro-1-propene (1234zeE) can be recovered at 12 via the conduit 9.
  • Fig. 2 schematically illustrates, according to a particular embodiment of the present invention, a purification device 13.
  • a liquid stream L1 as described in the present application, is conveyed to the decanter 22 having a temperature of -25 ° C.
  • the stream Lia is extracted and recovered at 23 to be recycled to the reactor 3.
  • the stream Llb as described in the present application, is conveyed to the distillation column 25 via the conduit 24.
  • the Lie current as described in FIG. the present application, is discharged at the top of the distillation column and recovered at 27 via the conduit 26. This can be recovered for recycling to the reactor 3.
  • the Lld current can be delivered to the distillation column 29 via the conduit 28 to extract any heavy impurities present in the bottom of the distillation column and convey them to an incinerator 32 via line 31.
  • 2-chloro-3,3,3-trifluoropropene (1233xf ), E1-chloro-3,3,3-trifluoro-1-propene (1233zdE) and 1,1,1,3,3-pentafluoropropane (245fa) recovered at the top of the distillation column 29 are conveyed to a filtering device. purification 33 via line 30. From this purification device 33, 2-chloro-3,3,3-trifluoropropene (1233xf) can be extracted at 36 via line 34.
  • the purification device 33 can be an extractive distillation. E-1-Chloro-3,3,3-trifluoro-1-propene (1233zdE) and 1,1,1,3,3-pentafluoropropane (245fa) can be recovered at 37 via line 35 to be incinerated or purified. .
  • FIG. 3 schematically illustrates, according to a particular embodiment of the present invention, a purification device 7.
  • a storage tank 41 comprises 2,3,3,3-tetrafluoro-1-propene (1234yf), trans-1,3,3 3-tetrafluoro-1-propene (1234zeE), 1,1,1,2,2-pentafluoropropane (245cb), HF and impurities having a boiling point lower than that of 2,3,3,3-tetrafluoro- 1-propene (eg HCI).
  • This mixture is conveyed to distillation column 43 via line 42.
  • the impurities having a boiling point lower than that of 2,3,3,3-tetrafluoro-1-propene are discharged at 45 via line 44.
  • the device 50 allows contacting between the stream comprising 2,3,3,3-tetrafluoro-1-propene and small amounts of trans-1,3,3,3-tetrafluoro-1-propene (1234zeE), 1 , 1,1,2,2-pentafluoropropane (245cb), HF and a solution of hydrofluoric acid 51 or from the device 53 via line 67 having a concentration varying between 65 and 75% by weight.
  • the device 50 may for example be a hydrolaver.
  • the contacting generates the formation of a two-phase current which is routed to a storage device 53 via line 52.
  • the gas phase of said two-phase current is conveyed via line 54 to absorption column 55 comprising three stages of flow. absorption 56a, 56b and 56c.
  • the absorption column 55 is also supplied with an aqueous stream 57.
  • the aqueous stream 57 supplies the absorption column 55 at the top of the absorption column 55, that is to say above above the three absorption stages 56a-56c.
  • the aqueous stream 57 can feed the absorption column 55 above each of the absorption stages 56a-56c.
  • a gaseous stream comprising 2,3,3,3-tetrafluoro-1-propene is extracted at the top of absorption column 55 via line 59 to feed a neutralization device 60.
  • the gaseous stream corresponds to said current Glc "according to the present invention.
  • an aqueous solution of hydrofluoric acid corresponding to said current Glc '" is recycled to storage device 53 via line 58.
  • the current Glc" is neutralized in the device. neutralization 60 with an alkaline solution of 20% NaOH
  • the alkaline solution 66 supplies the neutralization device 60 through line 63.
  • the neutralized stream is discharged through line 61 to be dried at 62.
  • the neutralized and Dried corresponds to the current Glc "" according to the present process, which can optionally be compressed and liquefied at a pressure of at most 8 bara
  • a used alkaline solution 65 can be extracted from the device Neutralization 60 is either recycled via lines 64 and 63 or discharged via line 64 for further processing.
  • the liquid phase resulting from the mixing in the storage device 53 of the liquid phase of the two-phase current and of the current Glc '"coming from the absorption column 55 is conveyed to a distillation column 70 via the pump 68 and the pipe 69 to forming the stream G2c recovered at the top of the distillation column 71 and the stream G3c recovered at the bottom of the distillation column 72.
  • the pump 68 can also be configured to convey the liquid phase resulting from the mixing in the storage device 53 of the liquid phase two-phase current and the current Glc '"from the absorption column 55 to the device 50 via the line 67.
  • the current Glc""obtained at 62 is sent to an extractive distillation column 80 ( Figure 4).
  • the organic extractant 89 is mixed with the Glc "" stream prior to entering the extractive distillation column 80.
  • the stream comprising 2,3,3,3-tetrafluoropropene and 1,1,1,2,2- pentafluoropropane is recovered at the top of distillation column 80 to be conveyed to distillation column 82 via line 81.
  • the stream comprising 2,3,3,3-tetrafluoropropene and 1,1,1,2,2-pentafluoropropane is separated. by the distillation column 82 to form a stream 83 comprising 2,3,3,3-tetrafluoropropene at the top of the distillation column and a stream 84 comprising 1,1,1,2,2-pentafluoropropane at the bottom of the distillation column.
  • the stream comprising trans-1, 3,3,3-tetrafluoropropene and the organic extractant is recovered at the bottom of distillation column 80 to be routed to distillation column 87 via line 86.
  • a stream 85 comprising 1,1,3,3-tetrafluoropropene is recovered at the top of the distillation column.
  • the organic extraction agent is recovered in the bottom of the distillation column 87 and is recycled to the distillation column 80 via line 88.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

L'invention se réfère à un procédé de production du 2,3,3,3-tétrafluoropropène mis en œuvre à partir d'une composition de départ comprenant les étapes de mise en contact, en présence d'un catalyseur, de la composition de départ avec HF pour produire une composition A comprenant 2,3,3,3-tétrafluoropropène (1234yf), des produits intermédiaires B consistant en 2-chloro-3,3,3- trifluoropropène (1233xf), 1,1,1,2,2-pentafluoropropane (245cb), et des produits secondaires C consistant en E-l-chloro-3,3,3-trifluoro-l-propène (1233zdE), trans-l,3,3,3-tetrafluoro-l- propène (1234zeE) et 1,1,1,3,3-pentafluoropropane (245fa); récupération de ladite composition A et purification de celle-ci pour former et récupérer un premier courant gazeux Gl comprenant HCI, 2,3,3,3-tétrafluoropropène (1234yf), une partie du HF n'ayant pas réagi, une partie des produits intermédiaires B et une partie des produits secondaires C; et un courant, de préférence liquide, Ll comprenant une partie du HF n'ayant pas réagi, une partie des produits intermédiaires B et une partie des produits secondaires C.

Description

Procédé de production et de purification du 2,3,3,3-tétrafluoropropène
Domaine technique de l'invention
L'invention se rapporte à un procédé de purification du 2,3,3,3-tetrafluoro-l-propène. En outre, l'invention se rapporte également à un procédé de production et de purification du 2,3,3,3-tetrafluoro-l-propène.
Arrière-plan technologique de l'invention
Les hydrofluorocarbures (HFC) et en particulier les hydrofluorooléfines (HFOs), telles que le 2,3,3,3-tétrafluoro-l-propène (HFO-1234yf) sont des composés connus pour leurs propriétés de réfrigérants et fluides caloporteurs, extinctrices, propulseurs, agents moussants, agents gonflants, diélectriques gazeux, milieu de polymérisation ou monomère, fluides supports, agents pour abrasifs, agents de séchage et fluides pour unité de production d'énergie. Les HFO ont été identifiés comme des alternatives souhaitables au HCFC du fait de leurs faibles valeurs d'ODP (Ozone Depletion Potential ou potentiel d'appauvrissement de la couche d'ozone) et de GWP (Global Warming Potential ou potentiel de réchauffement climatique).
La plupart des procédés de fabrication des hydrofluorooléfines font appel à une réaction de fluoration et/ou de dehydrohalogénation. Ce type de réaction est effectué en phase gazeuse et génère des impuretés qu'il faut par conséquent éliminer pour obtenir le composé désiré dans un degré de pureté suffisant pour les applications visées.
Par exemple, dans le cadre de la production de 2,3,3,3-tétrafluoro-l-propène (HFO- 1234yf), la présence d'impuretés telles que le trans-l-chloro-3,3,3-trifluoro-l-propène (1233zd), trans-l,3,3,3-tetrafluoro-l-propène (1234ze) et le 1,1,1,3,3-pentafluoropropane (245fa) sont observées. Ces impuretés sont des isomères des composés principaux visant à être obtenues par le procédé de production du 2,3,3,3-tétrafluoro-l-propène outre ce dernier, i.e. 2-chloro- 3,3,3-trifluoro-l-propène (1233xf) et 1,1,1,2,2-pentafluoropropane (245cb). Compte tenu des points d'ébullition respectifs du trans-l-chloro-3,3,3-trifluoro-l-propène (1233zd), trans- 1,3,3,3-tetrafluoro-l-propène (1234ze) et le 1,1,1,3,3-pentafluoropropane (245fa), ceux-ci peuvent s'accumuler dans la boucle réactionnelle et ainsi empêcher la formation des produits d'intérêt.
La purification de ce type de mélange réactionnel peut être effectuée par différentes techniques connues de l'art antérieur, telles que par exemple la distillation. Cependant lorsque les composés à purifier ont des points d'ébullition trop proches ou lorsque ceux-ci forment des compositions azéotropes ou quasi-azéotropes, la distillation n'est pas un procédé efficace. Des procédés de distillation extractive ont ainsi été décrits.
On connaît par EP 0 864 554 un procédé de purification d'un mélange comprenant 1,1,1,3,3-pentafluoropropane (245fa) et l-chloro-3,3,3-trifluoro-trans-l-propène (1233zd) par distillation en présence d'un solvant ayant un point d'ébullition supérieur à celui de 1-chloro- 3,3,3-trifluoro-trans-l-propène.
On connaît par WO 03/068716 un procédé de récupération de pentafluoroéthane à partir d'un mélange comprenant du pentafluoroéthane et du chloropentafluoroéthane par distillation en présence d'hexafluoropropène.
On connaît aussi par WO 98/19982 un procédé de purification du 1,1-difluoroéthane par distillation extractive. Le procédé consiste à mettre en contact un agent d'extraction avec un mélange de 1,1-difluoroéthane et de chlorure de vinyle. L'agent d'extraction est choisi parmi les hydrocarbures, les alcools, les chlorocarbures ayant un point d'ébullition compris entre 10°C et 120°C. Comme mentionné par WO 98/19982, la sélection de l'agent d'extraction peut s'avérer complexe en fonction des produits à séparer.
On connaît par WO 2013/088195 un procédé de préparation de 2,3,3,3- tetrafluoropropène à partir de 1,1,1,2,3-pentachloropropane et/ou 1,1,2,2,3- pentachloropropane. Il existe donc toujours un besoin pour la mise en œuvre d'un procédé particulier de purification du 2,3,3,3-tetrafluoro-l-propène.
Résumé de l'invention
Dans un procédé de production du 2,3,3,3-tetrafluoro-l-propène, le choix de conditions opérationnelles particulières peut favoriser la présence de certaines impuretés ou d'isomères de celles-ci. La présence d'impuretés telles que 1,3,3,3-tetrafluoro-l-propène (1234ze) peut être observée tout comme celle de l-chloro-3,3,3-trifluoro-l-propène (1233zd) et 1,1,1,3,3- pentafluoropropane (245fa). Ces impuretés peuvent provenir de réactions secondaires induites par des composés produits intermédiairement pendant la production du 2,3,3,3-tetrafluoro-l- propène, et peuvent présenter des propriétés physiques telles que leur élimination peut s'avérer complexe. La présente invention permet notamment la production de 2,3,3,3- tetrafluoro-l-propène avec une pureté améliorée.
Selon un premier aspect, l'invention fournit un procédé de production et de purification du 2,3,3,3-tétrafluoropropène (1234yf) mis en œuvre à partir d'une composition de départ comprenant au moins un composé de formule (I) CH(n+2)(X)m-CHp(X)(n+i)-CX(3+p-m) où X représente indépendamment F ou Cl ; n, m, p sont indépendamment les uns des autres 0 ou 1 avec (n+m) = 0 ou 1, (n+p) = 0 ou 1 et (m-p) = 0 ou 1, au moins un X étant Cl,; ledit procédé comprenant les étapes de :
a) mise en contact, en présence d'un catalyseur, de la composition de départ avec HF pour produire une composition A comprenant HCI, une partie du HF n'ayant pas réagi, 2,3,3,3-tétrafluoropropène (1234yf), des produits intermédiaires B consistant en 2-chloro-3,3,3-trifluoropropène (1233xf), 1,1,1,2,2-pentafluoropropane (245cb), et des produits secondaires C consistant en E-l-chloro-3,3,3-trifluoro-l-propène (1233zdE), trans-l,3,3,3-tetrafluoro-l-propène (1234zeE) et 1,1,1,3,3- pentafluoropropane (245fa);
b) récupération de ladite composition A et purification, de préférence distillation, de celle-ci pour former et récupérer un premier courant gazeux Gl comprenant HCI, 2,3,3,3-tétrafluoropropène (1234yf), une partie du HF n'ayant pas réagi, une partie des produits intermédiaires B et une partie des produits secondaires C ; et un courant, de préférence liquide, Ll comprenant une partie du HF n'ayant pas réagi, une partie des produits intermédiaires B et une partie des produits secondaires C ; caractérisé en ce que ledit premier courant gazeux Gl purifié par les étapes suivantes : bl) distillation du courant gazeux Gl pour récupérer un courant Gla comprenant du HCI, avantageusement en tête de colonne de distillation, et un courant Glb comprenant 2,3,3,3- tétrafluoropropène (1234yf), une partie du HF n'ayant pas réagi, ladite une partie des produits intermédiaires B et ladite une partie des produits secondaires C, avantageusement en bas de colonne de distillation, de préférence le courant Glb est liquide ;
b2) distillation dudit courant Glb obtenu à l'étape bl) pour former un courant Glc comprenant 2,3,3,3-tétrafluoropropène (1234yf), une partie dudit HF n'ayant pas réagi, une portion de ladite partie des produits intermédiaires B et une portion de ladite partie des produits secondaires C, avantageusement en tête de colonne de distillation, et un courant Gld comprenant une portion de ladite partie des produits intermédiaires B et une portion de ladite partie des produits secondaires C, avantageusement en bas de colonne de distillation, de préférence le courant Gld est recyclé à l'étape a), en particulier le courant Gld est liquide ; b3) mise en contact du courant Glc avec une solution aqueuse d'acide fluorhydrique de concentration supérieure à 40% pour former un courant Glc' diphasique comprenant 2,3,3,3- tétrafluoropropène (1234yf), de l'acide fluorhydrique, une portion de ladite partie des produits intermédiaires B et une portion de ladite partie des produits secondaires C, b4) stockage dudit courant Glc' diphasique dans un réservoir tampon, ledit second courant diphasique étant constitué d'une phase liquide et d'une phase gazeuse,
b5) passage de ladite phase gazeuse dudit courant Glc' dans une colonne d'absorption alimenté à contre-courant par un flux aqueux pour former un courant Glc" comprenant 2,3,3,3- tétrafluoropropène (1234yf), une portion de ladite partie des produits intermédiaires B et une portion de ladite partie des produits secondaires C et un courant Glc'" comprenant HF, avantageusement le courant Glc'" est liquide.
Selon un mode de réalisation préféré le procédé comprend également les étapes : b6) neutralisation dudit courant Glc" obtenu à l'étape b5) par une solution aqueuse alcaline pour former un courant neutralisé, et
b7) séchage dudit courant neutralisé obtenu à l'étape b6), de préférence sur tamis moléculaire, pour former un courant neutralisé et séché Glc"".
Selon un mode de réalisation préféré, la solution aqueuse d'acide fluorhydrique utilisé à l'étape b3) est à une température comprise entre 0 à 30°C avant sa mise en contact avec le courant Glc.
Selon un mode de réalisation préféré, ledit courant diphasique consiste en une phase gazeuse comprenant 2,3,3,3-tétrafluoropropène (1234yf), une portion de ladite partie des produits intermédiaires B et une portion de ladite partie des produits secondaires C et une phase liquide comprenant de l'acide fluorhydrique et moins de 5% en poids de composés organiques sélectionnés parmi le groupe consistant en 2,3,3,3-tétrafluoropropène (1234yf), une portion de ladite partie des produits intermédiaires B et une portion de ladite partie des produits secondaires C sur base du poids total de ladite phase liquide.
Selon un mode de réalisation préféré, la phase liquide résultant du mélange de ladite phase liquide dudit courant Glc' et du courant Glc'" est distillée pour former un courant G2c, de préférence en tête de colonne de distillation, comprenant de l'acide fluorhydrique contenant moins de 500 ppm d'eau et un courant G3c, de préférence en pied de colonne de distillation, comprenant de l'acide fluorhydrique sous forme d'une solution aqueuse de concentration inférieure à 50% en poids.
Selon un mode de réalisation préféré, le courant Glc" ou le courant Glc"" comprend moins de 5% en poids d'acide fluorhydrique sur base du poids total dudit courant Glc" ou dudit courant Glc"".
Selon un mode de réalisation préféré, le procédé comprend une étape c), subséquente à l'étape b5) ou à l'étape b7), dans laquelle le courant Glc" obtenu à l'étape b5) ou le courant Glc"" obtenu à l'étape b7) comprend 2,3,3,3-tétrafluoropropène (1234yf), 1,1,1,2,2- pentafluoropropane (245cb) et trans-l,3,3,3-tetrafluoro-l-propène (1234zeE) ; et ledit courant Glc" ou Glc"" est distillé pour former un courant Gle comprenant 2,3,3,3-tétrafluoropropène (1234yf) et un courant Gif comprenant 1,1,1,2,2-pentafluoropropane (245cb) et trans-1,3,3,3- tetrafluoro-l-propène (1234zeE), avantageusement le courant Gif obtenu à l'étape c) est séparé par distillation extractive.
Selon un autre mode de réalisation préféré, le procédé comprend une étape c), subséquente à l'étape b5) ou à l'étape b7), dans laquelle le courant Glc" obtenu à l'étape b5) ou le courant Glc"" obtenu à l'étape b7) comprend 2,3,3,3-tétrafluoropropène (1234yf), 1,1,1,2,2-pentafluoropropane (245cb) et trans-l,3,3,3-tetrafluoro-l-propène (1234zeE) ; et ledit courant Glc" ou Glc"" est distillé pour former un courant Gle' comprenant 2,3,3,3- tétrafluoropropène (1234yf) et 1,1,1,2,2-pentafluoropropane (245cb) et un courant Gif comprenant trans-l,3,3,3-tetrafluoro-l-propène (1234zeE), avantageusement le courant Glc" ou Glc"" est distillé par distillation extractive.
De préférence, le courant Glc" ou Glc"" est distillé par distillation extractive suivant les étapes :
cl') mise en contact dudit courant Glc" ou Glc"" avec un agent d'extraction organique pour former un courant Glg', et
c2') distillation extractive du courant Glg' pour former le flux Gle' comprenant 2,3,3,3- tétrafluoropropène (1234yf) et 1,1,1,2,2-pentafluoropropane (245cb), avantageusement en tête de colonne de distillation, et le courant Glh' comprenant trans-l,3,3,3-tetrafluoro-l-propène (1234zeE) et ledit agent d'extraction organique, avantageusement en bas de colonne de distillation, de préférence le courant Glh' est liquide.
Selon un mode de réalisation préféré, ledit courant liquide Ll comprend une partie des produits intermédiaires B et tout ou partie des produits secondaires C, et une partie du courant liquide Ll est porté à basse température, avantageusement entre -50°C et 20°C, pour former une première phase Lia comprenant une partie du HF n'ayant pas réagi et une seconde phase Llb comprenant lesdits produits intermédiaires B et lesdits produits secondaires C ; optionnellement ou non, ledit courant Gld formé à l'étape b2) est mélangé au courant liquide Ll avant que ce dernier soit porté à basse température, avantageusement ladite première phase Lia est recyclée à l'étape a). Selon un mode de réalisation préféré, ladite seconde phase Llb est distillée pour récupérer un courant Lie comprenant 1,1,1,2,2-pentafluoropropane (245cb) et trans-1,3,3,3- tetrafluoro-l-propène (1234zeE), avantageusement en tête de colonne de distillation, et un courant Lld comprenant 2-chloro-3,3,3-trifluoro-l-propène (1233xf), E-l-chloro-3,3,3-trifluoro- 1-propène (1233zdE) et 1,1,1,3,3-pentafluoropropane (245fa) ; avantageusement en bas de colonne de distillation, avantageusement ledit courant Lie est recyclé à l'étape a).
Selon un mode de réalisation préféré, ledit courant Lld est séparé pour former un flux comprenant 2-chloro-3,3,3-trifluoro-l-propène (1233xf) et un courant comprenant E-l-chloro- 3,3,3-trifluoro-l-propène (1233zdE) et 1,1,1,3,3-pentafluoropropane (245fa), avantageusement la séparation dudit courant Lld est effectuée par distillation extractive.
Brève description des dessins
La figure 1 représente schématiquement un dispositif mettant en œuvre un procédé de production du 2,3,3,3-tetrafluoro-l-propène selon un mode de réalisation particulier de la présente invention.
Les figures 2 et 3 représentent schématiquement un dispositif mettant en œuvre la purification du 2,3,3,3-tetrafluoro-l-propène selon un autre mode de réalisation particulier de la présente invention.
La figure 4 représente schématiquement une partie du dispositif de purification du 2,3,3,3-tetrafluoro-l-propène selon un mode de réalisation particulier de la présente invention.
Description détaillée de l'invention
La présente invention permet la production et la purification du 2,3,3,3- tétrafluoropropène (1234yf). Selon un premier aspect de la présente invention, un procédé de production et de purification du 2,3,3,3-tétrafluoropropène (1234yf) est fourni. Ledit procédé est mis en œuvre à partir d'une composition de départ comprenant au moins un composé de formule CH(n+2)(X)m-CHp(X)(n+i)-CX(3+p-m) où X représente indépendamment F ou Cl ; n, m, p sont indépendamment les uns des autres 0 ou 1 avec (n+m) = 0 ou 1, (n+p) = 0 ou 1 et (m-p) = 0 ou 1, au moins un X étant Cl. Une double liaison carbone-carbone peut être présente pour compléter la valence de ceux-ci. Par exemple, lorsque p et m valent 0, les composés de formule (I) sont soit CH2=CX-CX3 (n = 0) soit CH3CX2CX3 (n = 1).
De préférence, ledit procédé comprend l'étape a) de mise en contact, en présence d'un catalyseur, de la composition de départ avec HF pour produire une composition A comprenant HCI, une partie du HF n'ayant pas réagi, 2,3,3,3-tétrafluoropropène (1234yf), des produits intermédiaires B consistant en 2-chloro-3,3,3-trifluoropropène (1233xf), 1,1,1,2,2- pentafluoropropane (245cb), et des produits secondaires C consistant en E-l-chloro-3,3,3- trifluoro-l-propène (1233zdE), trans-l,3,3,3-tetrafluoro-l-propène (1234zeE) et 1,1,1,3,3- pentafluoropropane (245fa);
De préférence, la purification de ladite composition A effectuée à l'étape b) comprend la distillation de ladite composition A pour récupérer en tête de colonne de distillation un courant gazeux Gl comprenant HCI et 2,3,3,3-tétrafluoropropène (1234yf); et en bas de colonne de distillation un courant liquide Ll comprenant ladite une partie du HF. Tout ou partie des produits intermédiaires B et tout ou partie des produits secondaires C peuvent être contenus dans ledit courant gazeux Gl et/ou dans ledit courant liquide Ll.
De préférence, tout ou partie du 1,1,1,2,2-pentafluoropropane (245cb) peut être contenu dans ledit courant gazeux Gl. Tout ou partie du 1,1,1,2,2-pentafluoropropane (245cb) peut aussi être contenu dans ledit courant liquide Ll.
De préférence, tout ou partie du trans-l,3,3,3-tetrafluoro-l-propène (1234zeE) peut être contenu dans ledit courant gazeux Gl. Tout ou partie du trans-l,3,3,3-tetrafluoro-l- propène (1234zeE) peut aussi être contenu dans ledit courant liquide Ll.
De préférence, tout ou partie du 2-chloro-3,3,3-trifluoropropène (1233xf) peut être contenu dans ledit courant gazeux Gl. Tout ou partie du 2-chloro-3,3,3-trifluoropropène (1233xf) peut aussi être contenu dans ledit courant liquide Ll. De manière privilégiée, le 2- chloro-3,3,3-trifluoropropène (1233xf) est contenu dans ledit courant liquide Ll, avantageusement au moins 50%, au moins 60%, au moins 70%, au moins 75%, au moins 80%, au moins 85% ou au moins 90% du 2-chloro-3,3,3-trifluoropropène (1233xf) est contenu dans ledit courant liquide Ll par rapport audit courant gazeux Gl.
De préférence, tout ou partie du E-l-chloro-3,3,3-trifluoro-l-propène (1233zdE) peut être contenu dans ledit courant gazeux Gl. Tout ou partie du E-l-chloro-3,3,3-trifluoro-l- propène (1233zdE) peut aussi être contenu dans ledit courant liquide Ll. De manière privilégiée, le E-l-chloro-3,3,3-trifluoro-l-propène (1233zdE) est contenu dans ledit courant liquide Ll, avantageusement au moins 50%, au moins 60%, au moins 70%, au moins 75%, au moins 80%, au moins 85%, au moins 90% ou au moins 95% du l-chloro-3,3,3-trifluoro-l-propène (1233zd) est contenu dans ledit courant liquide Ll par rapport audit courant gazeux Gl.
De préférence, tout ou partie du 1,1,1,3,3-pentafluoropropane (245fa) peut être contenu dans ledit courant gazeux Gl. Tout ou partie du 1,1,1,3,3-pentafluoropropane (245fa) peut aussi être contenu dans ledit courant liquide Ll. De manière privilégiée, le 1,1,1,3,3- pentafluoropropane (245fa) est contenu dans ledit courant liquide Ll, avantageusement au moins 50%, au moins 60%, au moins 70%, au moins 75%, au moins 80%, au moins 85%, au moins 90% ou au moins 95% du 1,1,1,3,3-pentafluoropropane (245fa) est contenu dans ledit courant liquide Ll par rapport audit courant gazeux Gl.
En particulier, la récupération de ladite composition A et sa purification, de préférence par distillation, permet de former et de récupérer un premier courant gazeux Gl comprenant HCI, 2,3,3,3-tétrafluoropropène (1234yf), une partie du HF n'ayant pas réagi, une partie des produits intermédiaires B et une partie des produits secondaires C ; et un courant, de préférence liquide, Ll comprenant une partie du HF n'ayant pas réagi, une partie des produits intermédiaires B et une partie des produits secondaires C.
Selon un mode de réalisation préféré, ledit premier courant est un courant gazeux Gl purifié par les étapes suivantes :
bl) distillation du courant gazeux Gl pour récupérer un courant Gla comprenant du HCI, avantageusement en tête de colonne de distillation, et un courant Glb comprenant 2,3,3,3- tétrafluoropropène (1234yf), une partie du HF n'ayant pas réagi, ladite une partie des produits intermédiaires B et ladite une partie des produits secondaires C, avantageusement en bas de colonne de distillation, de préférence le courant Glb est liquide ;
b2) distillation dudit courant Glb obtenu à l'étape bl) pour former un courant Glc comprenant 2,3,3,3-tétrafluoropropène (1234yf), une partie dudit HF n'ayant pas réagi, une portion de ladite partie des produits intermédiaires B et une portion de ladite partie des produits secondaires C, avantageusement en tête de colonne de distillation, et un courant Gld comprenant une portion de ladite partie des produits intermédiaires B et une portion de ladite partie des produits secondaires C, avantageusement en bas de colonne de distillation, de préférence le courant Gld est recyclé à l'étape a), de préférence le courant Gld est liquide ; b3) mise en contact du courant Glc avec une solution aqueuse d'acide fluorhydrique de concentration supérieure à 40% pour former un courant Glc' diphasique comprenant 2,3,3,3- tétrafluoropropène (1234yf), de l'acide fluorhydrique, une portion de ladite partie des produits intermédiaires B et une portion de ladite partie des produits secondaires C,
b4) stockage dudit courant Glc' diphasique dans un réservoir tampon, ledit second courant diphasique étant constitué d'une phase liquide et d'une phase gazeuse,
b5) passage de ladite phase gazeuse dudit courant Glc' dans une colonne d'absorption alimenté à contre-courant par un flux aqueux pour former un courant Glc" comprenant 2,3,3,3- tétrafluoropropène (1234yf), une portion de ladite partie des produits intermédiaires B et une portion de ladite partie des produits secondaires C et un courant Glc"' comprenant HF.
De préférence, le courant Glc formé à l'étape b2) peut comprendre 2,3,3,3- tétrafluoropropène (1234yf), 1,1,1,2,2-pentafluoropropane (245cb) et 1,3,3,3-tetrafluoro-l- propène (1234ze). De préférence, le courant Gld formé à l'étape b2) peut comprendre 1,1,1,2,2-pentafluoropropane (245cb), trans-l,3,3,3-tetrafluoro-l-propène (1234zeE), 2-chloro- 3,3,3-trifluoropropène (1233xf) et optionnellement ou non E-l-chloro-3,3,3-trifluoro-l-propène (1233zdE) et 1,1,1,3,3-pentafluoropropane (245fa). En particulier, la teneur en 1,1,1,2,2- pentafluoropropane (245cb) est plus importante dans le courant Gld que dans le courant Glc. Le courant Gld peut contenir 55%, 60%, 65%, 70%, 75%, 78% ou 80% du 1,1,1,2,2- pentafluoropropane (245cb) sur base de la teneur totale en 1,1,1,2,2-pentafluoropropane (245cb) dans le courant Gld et Glc.
Le courant Gld peut être recyclé à l'étape a) du présent procédé.
De préférence, la solution aqueuse d'acide fluorhydrique utilisée à l'étape b3) est de concentration supérieure à 40% en poids. En particulier, la solution aqueuse d'acide fluorhydrique est de concentration supérieure à 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94% ou 95% en poids. Plus particulièrement, la solution aqueuse d'acide fluorhydrique est de concentration supérieure ou égale à 50% en poids, ou supérieure ou égale 60% en poids ou supérieure ou égale à 70% en poids.
Plus particulièrement, la solution aqueuse d'acide fluorhydrique utilisée à l'étape b3) peut être comprise entre l'une quelconque des valeurs mentionnées ci-dessus. Ainsi, la solution aqueuse d'acide fluorhydrique peut être comprise entre 45% et 95% en poids, entre 50% et 90% en poids, entre 55% et 85% en poids, entre 60% en poids et 80% en poids ou entre 65% en poids et 75% en poids.
Selon un mode de réalisation préféré le procédé comprend également les étapes : b6) neutralisation dudit courant Glc" obtenu à l'étape b5) par une solution aqueuse alcaline pour former un courant neutralisé, et
b7) séchage dudit courant neutralisé obtenu à l'étape b6) sur tamis moléculaire pour former un courant neutralisé et séché Glc"". De préférence, la solution aqueuse d'acide fluorhydrique utilisé à l'étape b3) est à une température comprise entre -20°C à 80°C avant sa mise en contact avec le courant Glc, avantageusement entre -15°C et 70°C, de préférence entre -10°C et 60°C, plus préférentiellement entre -5°C et 50°C, en particulier entre -5°C et 40°C, plus particulièrement entre 0°C et 30°C. Ainsi, dans un mode de réalisation particulièrement préféré, la température de la solution aqueuse d'acide fluorhydrique utilisé à l'étape b3), avant sa mise en contact avec le courant Glc, peut être de 0°C, 1°C, 2°C, 3°C, 4°C, 5°C, 6°C, 7°C, 8°C, 9°C, 10°C, 11°C, 12°C, 13°C, 14°C, 15°C, 16°C, 17°C, 18°C, 19°C, 20°C, 21°C, 22°C, 23°C, 24°C, 25°C, 26°C, 27°C, 28°C, 29°C ou 30°C. La mise en œuvre de ladite solution aqueuse d'acide fluorhydrique aux températures mentionnées ci-dessus a pour but de contrôler l'exothermicité survenant lors de la mise en contact de celle-ci avec le courant Glc.
Selon un mode de réalisation préféré, ledit courant diphasique consiste en une phase gazeuse comprenant 2,3,3,3-tétrafluoropropène (1234yf), une portion de ladite partie des produits intermédiaires B et une portion de ladite partie des produits secondaires C. La phase gazeuse peut éventuellement comprendre des traces d'acide fluorhydrique. Dans ce cas, la teneur en acide fluorhydrique dans ladite phase gazeuse dudit courant diphasique est inférieure à 5% en poids sur base du poids total de ladite phase gazeuse, en particulier inférieure à 2% en poids sur base du poids total de ladite phase gazeuse, plus particulièrement inférieure à 1% en poids sur base du poids total de ladite phase gazeuse. La phase liquide dudit courant diphasique comprend de l'acide fluorhydrique. La phase liquide dudit courant diphasique peut également comprendre moins de 5% en poids sur base du poids total de ladite phase liquide de composés organiques sélectionnés parmi le groupe consistant en 2,3,3,3-tétrafluoropropène (1234yf), une portion de ladite partie des produits intermédiaires B et une portion de ladite partie des produits secondaires C ; de préférence moins de 1% en poids, en particulier moins de 5000 ppm, plus particulièrement moins de 1000 ppm, de manière privilégiée moins de 500 ppm, de manière particulièrement privilégiée inférieure à 100 ppm de composés organiques sélectionnés parmi le groupe consistant en 2,3,3,3-tétrafluoropropène (1234yf), une portion de ladite partie des produits intermédiaires B et une portion de ladite partie des produits secondaires C sur base du poids total de ladite phase liquide.
De préférence, la concentration en acide fluorhydrique dans ladite phase liquide dudit second courant diphasique est supérieure à la concentration de ladite solution aqueuse d'acide fluorhydrique utilisée à l'étape b3). Ladite phase liquide dudit second courant diphasique peut avoir une concentration en acide fluorhydrique supérieure à 41% en poids sur base du poids total de ladite phase liquide dudit second courant diphasique. Avantageusement, ladite phase liquide dudit second courant diphasique peut avoir une concentration en acide fluorhydrique supérieure à 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94% ou 95% en poids sur base du poids total de ladite phase liquide dudit second courant diphasique. De préférence, ladite phase liquide dudit second courant diphasique peut avoir une concentration en acide fluorhydrique comprise entre 45% et 95% en poids, entre 50% et 90% en poids, entre 55% et 85% en poids, entre 60% en poids et 80% en poids ou entre 65% en poids et 75% en poids tout en étant supérieure à la concentration de ladite solution aqueuse d'acide fluorhydrique utilisée à l'étape b3).
Comme mentionné ci-dessus, l'étape b4) du procédé selon la présente invention met en œuvre le stockage dudit second courant diphasique dans un réservoir tampon, ledit second courant diphasique étant constitué de ladite phase liquide et de ladite phase gazeuse telle que décrit ci-dessus.
Comme mentionné ci-dessus, l'étape b5) du procédé selon la présente invention met en œuvre, le passage de ladite phase gazeuse dudit second courant diphasique dans une colonne d'absorption alimenté à contre-courant par un flux aqueux pour former un courant Glc" comprenant le composé A et un courant Glc'" comprenant l'acide fluorhydrique.
De préférence, le débit du flux aqueux utilisé à l'étape b5) est déterminé en fonction de la quantité d'acide fluorhydrique contenue dans ledit courant Glc. Ainsi, le rapport entre le débit du flux aqueux exprimé en kg/h alimentant la colonne d'absorption à l'étape b5) et la quantité d'acide fluorhydrique dans ledit courant Glc exprimée en kg/h est compris entre 0,05 et 1,22. Avantageusement, le rapport entre le débit du flux aqueux alimentant la colonne d'absorption à l'étape b5) et la quantité d'acide fluorhydrique dans ledit courant Glc exprimée en kg/h peut être compris entre 0,11 et 1,00, de préférence entre 0,18 et 0,82, plus préférentiellement entre 0,25 et 0,67, en particulier entre 0,33 et 0,54. Ainsi le rapport entre le débit du flux aqueux alimentant la colonne d'absorption à l'étape b5) et la quantité d'acide fluorhydrique dans ledit courant Glc exprimée en kg/h peut être de 0,25, 0,26, 0,27, 0,28, 0,29, 0,30, 0,31, 0,32, 0,33, 0,34, 0,35, 0,36, 0,37, 0,38, 0,39, 0,40, 0,41, 0,42, 0,43, 0,44, 0,45, 0,46, 0,47, 0,48, 0,49, 0,50, 0,51, 0,52, 0,53, 0,54, 0,55, 0,56, 0,57, 0,58, 0,59, 0,60, 0,61, 0,62, 0,63, 0,64, 0,65, 0,66, 0,67, 0,68, 0,69 ou 0,70. Un courant aqueux supplémentaire correspondant à la fraction d'eau vaporisée en tête de ladite colonne d'absorption peut également alimenter ladite colonne. Le flux aqueux tel que décrit ci-dessus est différent dudit courant aqueux supplémentaire lié à la fraction d'eau vaporisée en tête de la colonne et ne l'englobe pas.
Selon un mode de réalisation préféré, ladite colonne d'absorption mise en œuvre à l'étape b5) comprend au moins un étage d'absorption. Avantageusement, ladite colonne d'absorption mise en œuvre à l'étape b5) comprend au moins deux étages d'absorption. De préférence, ladite colonne d'absorption mise en œuvre à l'étape b5) comprend au moins trois étages d'absorption. Ladite colonne d'absorption mise en œuvre à l'étape b5) peut ainsi comprendre deux, trois, quatre, cinq, six, sept, huit, neuf, dix, onze, douze, treize, quatorze ou quinze étages d'absorption.
La mise en œuvre d'une colonne d'absorption ayant au moins un étage d'absorption, avantageusement au moins deux étages d'absorption, de préférence au moins trois étages d'absorption, permet d'obtenir un courant Glc" ayant une faible teneur en acide fluorhydrique. Avantageusement, ledit courant Glc" comprend moins de 1000 ppm d'acide fluorhydrique en poids sur base du poids total dudit courant Glc", de préférence moins de 900 ppm d'acide fluorhydrique, plus préférentiellement moins de 800 ppm d'acide fluorhydrique, en particulier moins de 700 ppm d'acide fluorhydrique, plus particulièrement moins de 600 ppm d'acide fluorhydrique, de manière privilégiée moins de 500 ppm d'acide fluorhydrique, de manière encore plus privilégiée moins de 400 ppm d'acide fluorhydrique, de manière préférentiellement privilégiée moins de 300 ppm d'acide fluorhydrique, de manière particulièrement privilégiée moins de 200 ppm d'acide fluorhydrique, de manière plus particulièrement privilégiée moins de 100 ppm d'acide fluorhydrique. Ainsi, ledit courant Glc" peut avoir une teneur en acide fluorhydrique comprise entre 1 et 200 ppm, entre 5 et 190 ppm, entre 10 et 180 ppm, entre 15 et 170 ppm, entre 20 et 160 ppm, entre 25 et 150 ppm ou entre 30 et 140 ppm en poids sur base du poids total dudit courant Glc".
De préférence, au moins 80% en poids de l'acide fluorhydrique éventuellement présent dans ladite phase gazeuse dudit second courant diphasique est absorbé par le premier étage d'absorption de ladite colonne d'absorption, en particulier au moins 85% en poids de l'acide fluorhydrique éventuellement présent dans ladite phase gazeuse dudit second courant diphasique est absorbé par le premier étage d'absorption de ladite colonne d'absorption, plus particulièrement au moins 90% en poids de l'acide fluorhydrique éventuellement présent dans ladite phase gazeuse dudit second courant diphasique est absorbé par le premier étage d'absorption de ladite colonne d'absorption. De préférence, ledit flux aqueux peut être introduit au moins au niveau de la tête de la colonne d'absorption.
Selon un mode de réalisation préféré, ledit courant Glc'" est sous la forme d'une solution aqueuse d'acide fluorhydrique. Avantageusement, ledit courant Glc'" est une solution d'acide fluorhydrique de concentration inférieure à 30% en poids sur base du poids total dudit quatrième courant. De préférence, ledit courant Glc'" est une solution d'acide fluorhydrique de concentration inférieure à 25% en poids sur base du poids total dudit courant Glc'". En particulier, ledit courant Glc'" est une solution d'acide fluorhydrique de concentration comprise entre 5 et 25% en poids sur base du poids total dudit courant Glc'", plus particulièrement, entre 10 et 20% en poids sur base du poids total dudit courant Glc'". Selon un mode de réalisation préféré, ledit courant Glc'" est recyclé à l'étape b4). Ledit courant Glc'" est ainsi mélangé avec la phase liquide dudit second courant diphasique.
Selon un mode de réalisation préféré, ledit procédé comprend également les étapes de : b6) neutralisation dudit courant Glc" obtenu à l'étape b5) par une solution aqueuse alcaline pour former un courant neutralisé, et
b7) séchage dudit courant neutralisé obtenu à l'étape b6), de préférence, sur tamis moléculaire pour former un courant neutralisé et séché Glc"".
Selon un mode de réalisation préféré, ladite solution aqueuse alcaline peut être une solution aqueuse d'hydroxyde d'un métal alcalin ou alcalino-terreux. La solution aqueuse alcaline peut être une solution aqueuse d'hydroxyde de sodium, d'hydroxyde de potassium, d'hydroxyde de calcium ou d'hydroxyde de magnésium ou un mélange de ceux-ci. De préférence, ladite solution aqueuse alcaline présente une concentration comprise entre 5 et 50% en poids sur base du poids total de ladite solution aqueuse alcaline. Avantageusement, ladite solution aqueuse alcaline présente une concentration d'au moins 5%, d'au moins 6%, d'au moins 7%, d'au moins 8%, d'au moins 9%, d'au moins 10%, d'au moins 11%, d'au moins 12%, d'au moins 13%, d'au moins 14%, d'au moins 15%, d'au moins 16% ou d'au moins 17% en poids sur base du poids total de ladite solution aqueuse alcaline ; et d'au plus 50%, d'au plus 48%, d'au plus 46%, d'au plus 44%, d'au plus 42%, d'au plus 40%, d'au plus 38%, d'au plus 36%, d'au plus 34%, d'au plus 32%, d'au plus 30%, d'au plus 28%, d'au plus 26%, d'au plus 24%, d'au plus 22% en poids sur base du poids total de ladite solution aqueuse alcaline.
Ledit courant neutralisé formé à l'étape b6) comprend de préférence 2,3,3,3- tétrafluoropropène (1234yf), une portion de ladite partie des produits intermédiaires B et une portion de ladite partie des produits secondaires C. De préférence, ledit courant neutralisé formé à l'étape b6) comprend de préférence 2,3,3,3-tétrafluoropropène (1234yf), 1,1,1,2,2- pentafluoropropane (245cb) et trans-l,3,3,3-tetrafluoro-l-propène (1234zeE).
La teneur en acide fluorhydrique dans ledit courant neutralisé est inférieure à la teneur en acide fluorhydrique dudit courant Glc", avant sa neutralisation. Ledit courant neutralisé formé à l'étape b6) peut également contenir de l'eau.
Ledit courant neutralisé formé à l'étape b6) peut ainsi être séché à l'étape b7) du présent procédé. De préférence, ledit courant neutralisé formé à l'étape b6) est séché sur tamis moléculaire. Par exemple, ledit courant neutralisé formé à l'étape b6) est séché sur tamis moléculaire de 3A, tel que la siliporite.
L'étape b7) du présent procédé permet la formation d'un courant neutralisé et séché
Glc"" comprenant 2,3,3,3-tétrafluoropropène (1234yf), une portion de ladite partie des produits intermédiaires B et une portion de ladite partie des produits secondaires C. Ledit courant Glc"" peut éventuellement être comprimé et liquéfié à une pression d'au plus 8 bara pour former un courant comprimé dans lequel 2,3,3,3-tétrafluoropropène (1234yf), une portion de ladite partie des produits intermédiaires B et une portion de ladite partie des produits secondaires C sont sous forme liquide.
Selon un mode de réalisation préféré, la phase liquide résultant du mélange de ladite phase liquide dudit second courant diphasique avec ledit courant Glc'" est recyclée à l'étape b3). La phase liquide résultant du mélange de ladite phase liquide dudit second courant diphasique avec ledit courant Glc'" peut avoir une concentration en acide fluorhydrique supérieure à 41% en poids sur base du poids total de ladite phase liquide résultant du mélange de ladite phase liquide dudit second courant diphasique avec ledit courant Glc'". Avantageusement, la phase liquide résultant du mélange de ladite phase liquide dudit second courant diphasique avec ledit courant Glc'" peut avoir une concentration en acide fluorhydrique supérieure à 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94% ou 95% en poids sur base du poids total de ladite phase liquide résultant du mélange de ladite phase liquide dudit second courant diphasique avec ledit courant Glc'". De préférence, la phase liquide résultant du mélange de ladite phase liquide dudit second courant diphasique avec ledit courant Glc'" peut avoir une concentration en acide fluorhydrique comprise entre 45% et 95% en poids, entre 50% et 90% en poids, entre 55% et 85% en poids, entre 60% en poids et 80% en poids ou entre 65% en poids et 75% en poids sur base du poids total de la phase liquide résultant du mélange de ladite phase liquide dudit second courant diphasique avec ledit courant Glc'".
Selon un autre mode de réalisation préféré, la phase liquide résultant du mélange de ladite phase liquide dudit second courant diphasique avec ledit courant Glc'" est distillée pour former un courant G2c, de préférence en tête de colonne de distillation. Avantageusement, ledit courant G2c comprend de l'acide fluorhydrique contenant moins de 3000 ppm d'eau, de préférence moins de 2000 ppm d'eau, plus préférentiellement moins de 1000 ppm d'eau, en particulier moins de 500 ppm d'eau, plus particulièrement moins de 200 ppm d'eau, de manière privilégiée moins de 100 ppm d'eau, de manière plus privilégiée moins de 50 ppm d'eau sur base du poids total du courant G2c. Ledit courant G2c peut comprendre également moins de 50 ppm d'acide chlorhydrique, avantageusement moins de 45 ppm d'acide chlorhydrique, de préférence moins de 40 ppm d'acide chlorhydrique, plus préférentiellement moins de 35 ppm d'acide chlorhydrique, en particulier moins de 30 ppm d'acide chlorhydrique, plus particulièrement moins de 20 ppm d'acide chlorhydrique sur base du poids total du courant G2c. Ledit courant G2c peut comprendre également moins de 50 ppm de composés organiques, avantageusement moins de 45 ppm de composés organiques, de préférence moins de 40 ppm de composés organiques, plus préférentiellement moins de 35 ppm de composés organiques, en particulier moins de 30 ppm de composés organiques, plus particulièrement moins de 20 ppm de composés organiques sur base du poids total du courant G2c. Un composé organique est un composé comprenant au moins un atome de carbone.
En outre, la distillation de la phase liquide résultant du mélange de ladite phase liquide dudit second courant diphasique avec ledit courant Glc"'forme un courant G3c, de préférence en pied de colonne de distillation, comprenant de l'acide fluorhydrique sous forme d'une solution aqueuse de concentration inférieure à 50% en poids. Avantageusement, ledit courant G3c comprenant de l'acide fluorhydrique sous forme d'une solution aqueuse de concentration inférieure à 50% en poids, 49% en poids, 48% en poids, 47% en poids, 46% en poids, 45% en poids, 44% en poids, 43% en poids, 42% en poids sur base du poids total dudit courant G3c. De préférence, ledit courant G3c comprenant de l'acide fluorhydrique sous forme d'une solution aqueuse de concentration supérieure à 20% en poids sur base du poids total dudit courant G3c. En particulier, ledit courant G3c comprenant de l'acide fluorhydrique sous forme d'une solution aqueuse de concentration supérieure 21% en poids, 22% en poids, 23% en poids, 24% en poids, 25% en poids, 26% en poids, 27% en poids, 28% en poids, 29% en poids, 30% en poids, 31% en poids, 32% en poids, 33% en poids, 34% en poids, 35% en poids sur base du poids total dudit courant G3c. Ladite solution aqueuse obtenue dans le courant G3c peut être commercialisée ou détruite par neutralisation.
La phase liquide résultant du mélange de ladite phase liquide dudit second courant diphasique avec ledit courant Glc'" peut ainsi être soit distillée soit recyclée à l'étape b3). De préférence, une partie de la phase liquide résultant du mélange de ladite phase liquide dudit second courant diphasique avec ledit courant Glc'" est distillée tandis que l'autre partie de la phase liquide résultant du mélange de ladite phase liquide dudit second courant diphasique avec ledit courant Glc'" est recyclée à l'étape b3). De préférence, au moins 50%, plus préférentiellement au moins 60%, en particulier au moins 70%, plus particulièrement au moins 80%, de manière privilégiée au moins 90% en poids de la phase liquide résultant du mélange de ladite phase liquide dudit second courant diphasique avec ledit courant Glc'" est recyclée à l'étape b3) ; et moins de 50%, de préférence moins de 40%, plus préférentiellement moins de 30%, en particulier moins de 20%, plus particulièrement moins de 10% en poids est distillée.
Selon un mode de réalisation préféré, le procédé comprend une étape c), subséquente à l'étape b5) ou à l'étape b7), dans laquelle le courant Glc" obtenu à l'étape b5) ou le courant Glc"" obtenu à l'étape b7) comprend 2,3,3,3-tétrafluoropropène (1234yf), 1,1,1,2,2- pentafluoropropane (245cb) et trans-l,3,3,3-tetrafluoro-l-propène (1234zeE) ; et ledit courant Glc" ou Glc"" est distillé pour former un courant Gle comprenant 2,3,3,3-tétrafluoropropène (1234yf) et un courant Gif comprenant 1,1,1,2,2-pentafluoropropane (245cb) et trans-1,3,3,3- tetrafluoro-l-propène (1234zeE).
Le courant Gif obtenu à l'étape c) peut être séparé par distillation extractive.
Selon un mode de réalisation particulier, le courant Gif obtenu à l'étape c) est séparé par distillation extractive suivant les étapes :
cl) mise en contact dudit courant Gif obtenu à l'étape c) avec un agent d'extraction organique pour former un courant Glg, et
c2) distillation extractive du courant Glg pour former un flux Glh comprenant 1,1,1,2,2- pentafluoropropane (245cb), avantageusement en tête de colonne de distillation, et une composition Gli comprenant trans-l,3,3,3-tetrafluoro-l-propène (1234zeE) et ledit agent d'extraction organique, avantageusement en bas de colonne de distillation.
De préférence, le courant Gli comprenant trans-l,3,3,3-tetrafluoro-l-propène (1234zeE) et ledit agent d'extraction organique est séparé par distillation pour former un courant Glj comprenant ledit agent d'extraction organique et un courant Glk comprenant trans-l,3,3,3-tetrafluoro-l-propène (1234zeE). Le courant Glj comprenant ledit agent d'extraction organique peut être recyclé à l'étape cl). Le courant Glk comprenant trans-1,3,3,3- tetrafluoro-l-propène (1234zeE) peut être soit purifié ou détruit par incinération.
Selon un mode de réalisation préféré, ledit agent d'extraction organique est un solvant choisi parmi le groupe consistant en hydrohalocarbure, alcool, cétone, aminé, ester, éther, aldéhyde, nitrile, carbonate, thioalkyle, amide, hétérocycle. Avantageusement, ledit agent d'extraction organique est un solvant sélectionné parmi le groupe consistant en alcool, cétone, aminé, ester et hétérocycle. Selon un mode de réalisation préféré, ledit agent d'extraction organique a un point d'ébullition compris entre 10 et 150°C.
De préférence, ledit agent d'extraction peut avoir un facteur de séparation Si,2 supérieur ou égal à 1,1, ledit facteur de séparation étant calculé par la formule Si,2 = (yi,s* Pl)/(y2,s* P2) dans laquelle
yi,s représente le coefficient d'activité du 1,1,1,2,2-pentafluoropropane dans ledit agent d'extraction organique à dilution infinie,
PI représente la pression de vapeur saturante du 1,1, 1,2,2-pentafluoropropane,
Y2,s représente le coefficient d'activité dudit trans-l,3,3,3-tetrafluoro-l-propène (1234zeE) dans ledit agent d'extraction organique à dilution infinie,
P2 représente la pression de vapeur saturante dudit trans-l,3,3,3-tetrafluoro-l-propène (1234zeE) ;
avantageusement, le facteur de séparation est supérieur ou égal à 1,2, de préférence supérieur ou égal à 1,4, plus préférentiellement supérieur ou égal à 1,6, en particulier supérieur ou égal à 1,8, plus particulièrement supérieur ou égal à 2,0.
La pression de vapeur saturante est considérée pour une température de 25°C.
De préférence, ledit agent d'extraction organique peut avoir une capacité de séparation C2,s supérieure ou égale à 0,20, ladite capacité de séparation étant calculée par la formule C2,s = l/(Y2,s) dans laquelle y2,s représente le coefficient d'activité dudit trans-l,3,3,3-tetrafluoro-l- propène (1234zeE) dans ledit agent d'extraction organique à dilution infinie ;
avantageusement, la capacité de séparation C2,s est supérieure ou égale à 0,40, de préférence supérieure ou égale à 0,60, plus préférentiellement supérieure ou égale à 0,80, en particulier supérieure ou égale à 1,0.
De préférence, ledit agent d'extraction organique peut avoir un facteur de séparation Si,2 supérieur ou égal à 1,5 et une capacité d'absorption C2,s supérieure ou égale à 0,6 et être sélectionné parmi le groupe consistant en éthylamine, acetaldehyde, isopropylamine, methylformate, diethylether, 1,2-epoxypropane, ethylmethylamine, dimethoxymethane, 2- amino-2-methylpropane, methylcyclopropylether, n-propylamine, isopropylmethylamine, 2- ethoxy-propane, methyl-t-butylether, diethylamine, propanone, methylacetate, 4-methoxy-2- methyl-2-butanethiol, 2-butanamine, n-methylpropylamine, isobutanal, tetrahydrofurane, isopropylformate, diisopropylether, 2-ethoxy-2-methyl-propane, 1-butylamine, ethylacetate, butanone, n-propylformate, 2-ethoxy-butane, l-methoxy-2-methyl-butane, 2,2- dimethoxypropane, l-ethoxy-2-methylpropane, diisopropylamine, 1,2-dimethoxyethane, 3- methyl-2-butanamine, diethoxymethane, isopropylacetate, di-n-propylether, 3-pentylamine, n- methylbutylamine, 1-ethoxybutane, l-methoxy-2-propanamine, 2-methylbutanal, 2- methoxyethanamine, tert-butylacetate, propionitrile, 2-allyloxyethanol, 1-methoxy-pentane, ethylpropionate, 1,2-dimethoxypropane, 1,4-dioxane, 3-pentanone, 1,1-diethoxyethane, 2- pentanone, 2-methoxy-lpropanamine, trimethoxymethane, n-pentylamine, 3,3-dimethyl-2- butanone, 1,3-dioxane, piperidine, dipropylamine, 2-ethoxyethanamine, sec-butylacetate, n- methyl-l,2-ethanediamine, 2,2-diethoxypropane, pyridine, 4-methyl-2-pentanone, 1,2- diaminoethane, butyronitrile, sec-butyl-tert-butylether, l-methoxy2-propanol, 1,2- propanediamine, 2,6-dimethyl-5-heptenal, l-(dimethylamino)-2-propanol, 3-methyl-3- pentanol, 1,1-diethoxypropane, 2-ethylbutylamine, diethylcarbonate, n-butylacetate, 2- hexanone, n-ethylethylenediamine, 5-hexen-2-one, 2-methylpyridine, 2-methoxyl-propanol, hexanal, l-ethoxy-2-propanol, 4-methyl-2-hexanamine, hexylamine, methoxycyclohexane, 2- (dimethylamino)-ethanol, cyclohexylamine, n-ethyl-2-dimethylaminoethylamine, ethoxyethanol, 2-methylpyrazine, 2-ethoxy-l-propanol, 1-methylpiperazine, 1,3- propanediamine, di-n-butylether, valeronitrile, 2-heptanamine, 1-ethoxy-hexane, n,n- diethylethylenediamine, 2,6-dimethylpyridine, 4-methyl-2-hexanone, 1,1,1-triethoxyethane, 1- methoxy-2-acetoxypropane, 4-methylpyridine, n,n'-diethyl-l,2-ethanediamine, 2,6- dimethylmorpholine, methylhexanoate, 2-propoxyethanol, l-propoxy-2-propanol. Avantageusement, ledit agent d'extraction organique peut avoir un facteur de séparation Si,2 supérieur ou égal à 1,8 et/ou une capacité d'absorption C2,s supérieure ou égale à 0,8 ; et être sélectionné parmi le groupe consistant en éthylamine, isopropylamine, ethylmethylamine, 2- amino-2-methylpropane, n-propylamine, isopropylmethylamine, diethylamine, propanone, 2- butanamine, n-methylpropylamine, tetrahydrofurane, 1-butylamine, ethylacetate, butanone, 1,2-dimethoxyethane, 3-methyl-2-butanamine, 3-pentylamine, n-methylbutylamine, 1- methoxy-2-propanamine, 2-methoxyethanamine, ethylpropionate, 1,4-dioxane, 3-pentanone, 2-pentanone, 2-methoxy-lpropanamine, trimethoxymethane, n-pentylamine, 3,3-dimethyl-2- butanone, 1,3-dioxane, piperidine, 2-ethoxyethanamine, n-methyl-l,2-ethanediamine, 1,2- diaminoethane, butyronitrile, l-methoxy2-propanol, 1,2-propanediamine, l-(dimethylamino)- 2-propanol, 2-ethylbutylamine, diethylcarbonate, n-butylacetate, 2-hexanone, n- ethylethylenediamine, 2-methoxyl-propanol, 1, ethoxy-2-propanol, 4-methyl-2-hexanamine, hexylamine, methoxycyclohexane, 2-(dimethylamino)-ethanol, cyclohexylamine, n-ethyl-2- dimethylaminoethylamine, 2-ethoxy-l-propanol, 1-methylpiperazine, 1,3-propanediamine, valeronitrile, 2-heptanamine, η,η-diethylethylenediamine, 4-methyl-2-hexanone, l-methoxy-2- acetoxypropane, 4-methylpyridine, n,n'-diethyl-l,2-ethanediamine, 2,6-dimethylmorpholine, methylhexanoate, 2-propoxyethanol, l-propoxy-2-propanol. De préférence, ledit agent d'extraction organique peut avoir un facteur de séparation Si,2 supérieur ou égal à 1,9 et/ou une capacité d'absorption C2,s supérieure ou égale à 0,9 et être sélectionné parmi le groupe consistant en éthylamine, isopropylamine, ethylmethylamine, 2-amino-2-methylpropane, n- propylamine, isopropylmethylamine, diethylamine, propanone, 2-butanamine, n- methylpropylamine, tetrahydrofurane, 1-butylamine, ethylacetate, butanone, 1,2- dimethoxyethane, 3-methyl-2-butanamine, 3-pentylamine, n-methylbutylamine, l-methoxy-2- propanamine, 2-methoxyethanamine, ethylpropionate, 1,4-dioxane, 3-pentanone, 2- pentanone, 2-methoxy-lpropanamine, n-pentylamine, 3,3-dimethyl-2-butanone, 1,3-dioxane, piperidine, 2-ethoxyethanamine, n-methyl-l,2-ethanediamine, 1,2-diaminoethane, 1,2- propanediamine, l-(dimethylamino)-2-propanol, 2-ethylbutylamine, n-butylacetate, 2- hexanone, n-ethylethylenediamine, l-ethoxy-2-propanol, 4-methyl-2-hexanamine, hexylamine, 2-(dimethylamino)-ethanol, cyclohexylamine, n-ethyl-2-dimethylaminoethylamine, 2-ethoxy-l- propanol, 1-methylpiperazine, 1,3-propanediamine, 2-heptanamine, n,n- diethylethylenediamine, l-methoxy-2-acetoxypropane, 4-methylpyridine, n,n'-diethyl-l,2- ethanediamine, 2,6-dimethylmorpholine, methylhexanoate, l-propoxy-2-propanol. Plus particulièrement, ledit agent d'extraction organique est choisi parmi le groupe consistant en éthylamine, isopropylamine, n-propylamine, diethylamine, propanone, tetrahydrofurane, ethylacetate, butanone, 3-pentylamine, 2-methoxyethanamine, 1,4-dioxane, 3-pentanone, 2- pentanone, n-pentylamine, 1,3-dioxane, 1,2-diaminoethane, 1,2-propanediamine, 2- methoxyethanol, n-butylacetate, l-ethoxy-2-propanol.
Ledit flux Glh comprenant 1,1,1,2,2-pentafluoropropane (245cb) peut être recyclé à l'étape a) du présent procédé.
Comme expliqué ci-dessus, le courant Gli comprenant trans-l,3,3,3-tetrafluoro-l- propène (1234zeE) et ledit agent d'extraction organique est distillé pour séparer l'agent d'extraction organique du trans-l,3,3,3-tetrafluoro-l-propène (1234zeE), avantageusement ledit agent d'extraction organique ainsi séparé est recyclé à l'étape cl). Le trans-1,3,3,3- tetrafluoro-l-propène (1234zeE) peut être incinéré ou purifié pour être utilisé ultérieurement ou pour être vendu.
Le courant Gle peut être purifié, par exemple par distillation extractive, pour éliminer du trans-l,3,3,3-tetrafluoro-l-propène (1234ze-E) éventuellement présent. Dans ce cas, ledit agent d'extraction organique est un solvant choisi parmi le groupe consistant en hydrocarbure, hydrohalocarbure, alcool, cétone, aminé, ester, éther, aldéhyde, nitrile, carbonate, thioalkyle, amide et hétérocycle ; ou ledit agent d'extraction organique est difluorodiethylsilane, triethylfiuorosilane ou l'acide perfluorobutanoïque; de préférence parmi le groupe consistant en aminé, éther, cétone, ester, alcool, aldéhyde, hétérocycle. Le point d'ébullition dudit agent d'extraction organique peut être compris entre 10 et 150°C. Ledit agent d'extraction organique peut avoir un facteur de séparation Si,2 supérieur ou égal à 1,1, ledit facteur de séparation étant calculé par la formule Si,2 = (yi,s* Pl)/(y2,s* P2) dans laquelle yi,s représente le coefficient d'activité du 2,3,3,3-tétrafluoro-l-propène dans ledit agent d'extraction organique à dilution infinie, PI représente la pression de vapeur saturante du 2,3,3,3-tétrafluoro-l-propène, y2,s représente le coefficient d'activité du trans-l,3,3,3-tetrafluoro-l-propène (1234ze-E), dans ledit agent d'extraction organique à dilution infinie, P2 représente la pression de vapeur saturante de dudit au moins un des composés consistant en trans-l,3,3,3-tetrafluoro-l-propène (1234ze-E) ; avantageusement, le facteur de séparation est supérieur ou égal à 1,2, de préférence supérieur ou égal à 1,4, plus préférentiellement supérieur ou égal à 1,6, en particulier supérieur ou égal à 1,8, plus particulièrement supérieur ou égal à 2,0. Ledit agent d'extraction organique peut avoir une capacité d'absorption C2,s supérieure ou égale à 0,20, ladite capacité d'absorption étant calculé par la formule C2,s = l/(y2,s) dans laquelle y2,s représente le coefficient d'activité du trans- 1,3,3,3-tetrafluoro-l-propène (1234ze-E) dans ledit agent d'extraction organique à dilution infinie ; avantageusement, la capacité d'absorption C2,s est supérieure ou égale à 0,40, de préférence supérieure ou égale à 0,60, plus préférentiellement supérieure ou égale à 0,80, en particulier supérieure ou égale à 1,0. Avantageusement, ledit agent d'extraction organique peut être éthylamine, isopropylamine, diethylether, ethoxy-ethene, dimethoxymethane, n- propylamine, methyl-t-butylether, diethylamine, propanone, methylacetate, isobutanal, tetrahydrofurane, isopropylformate, diisopropylether, 2-ethoxy-2-methyl-propane, ethylacetate, butanone, diethoxymethane, isopropylacetate, 3-pentylamine, 2- methoxyethanamine, tert-butylacetate, 1,4-dioxane, 3-pentanone, 1, 1-diethoxyethane, 2- pentanone, trimethoxymethane, n-pentylamine, 1,3-dioxane, 3,3-dimethyl-2-butanone, sec- butylacetate, 4-methyl-2-pentanone, 1,2-diaminoethane, l-methoxy2-propanol, diethylcarbonate, n-butylacetate, l-ethoxy-2-propanol, hexanal ; avantageusement ledit agent d'extraction organique est choisi parmi le groupe consistant en éthylamine, isopropylamine, diethylether, dimethoxymethane, n-propylamine, , diethylamine, , diisopropylether, 2-ethoxy- 2-methyl-propane, butanone, diethoxymethane, isopropylacetate, 3-pentylamine, 2- methoxyethanamine, tert-butylacetate, 1,4-dioxane, trimethoxymethane, n-pentylamine, 1,3- dioxane, sec-butylacetate, 1,2-diaminoethane, l-methoxy2-propanol, n-butylacetate, 1-ethoxy- 2-propanol, hexanal ; de préférence ledit agent d'extraction organique est choisi parmi le groupe consistant en éthylamine, isopropylamine, diethylether, dimethoxymethane, n- propylamine, diethylamine, diisopropylether, 2-ethoxy-2-methyl-propane, diethoxymethane, isopropylacetate, 3-pentylamine, 2-methoxyethanamine, tert-butylacetate, 1,4-dioxane, trimethoxymethane, n-pentylamine, 1,3-dioxane, sec-butylacetate, 1,2-diaminoethane, 1- methoxy2-propanol, n-butylacetate, l-ethoxy-2-propanol, hexanal.
Alternativement, le procédé comprend une étape c), subséquente à l'étape b5) ou à l'étape b7), dans laquelle le courant Glc" obtenu à l'étape b5) ou le courant Glc"" obtenu à l'étape b7) comprend 2,3,3,3-tétrafluoropropène (1234yf), 1, 1, 1,2,2-pentafluoropropane (245cb) et trans-l,3,3,3-tetrafluoro-l-propène (1234zeE) ; et ledit courant Glc" ou Glc"" est distillé pour former un courant Gle' comprenant 2,3,3,3-tétrafluoropropène (1234yf) et 1, 1,1,2,2-pentafluoropropane (245cb) et un courant Gif comprenant trans-l,3,3,3-tetrafluoro- 1-propène (1234zeE), avantageusement le courant Glc" ou Glc"" est distillé par distillation extractive.
Selon un mode de réalisation préféré, le courant Glc" ou Glc"" est distillé par distillation extractive suivant les étapes :
cl') mise en contact dudit courant Glc" ou Glc"" avec un agent d'extraction organique pour former un courant Glg', et
c2') distillation extractive du courant Glg' pour former le flux Gle' comprenant 2,3,3,3- tétrafluoropropène (1234yf) et 1, 1, 1,2,2-pentafluoropropane (245cb), avantageusement en tête de colonne de distillation, et le courant Glh' comprenant trans-l,3,3,3-tetrafluoro-l- propène (1234zeE) et ledit agent d'extraction organique, avantageusement en bas de colonne de distillation.
Selon un mode de réalisation préféré, ledit agent d'extraction organique peut avoir un facteur de séparation Si supérieur ou égal à 1,1, ledit facteur de séparation étant calculé par la formule Si,2 = (yi,s*Pl)/(y2,s*P2) dans laquelle yi,s représente le coefficient d'activité du 2,3,3,3- tétrafluoro-l-propène dans ledit agent d'extraction organique à dilution infinie, PI représente la pression de vapeur saturante du 2,3,3,3-tétrafluoro-l-propène, y2,s représente le coefficient d'activité du trans-l,3,3,3-tetrafluoro-l-propène (1234ze-E) dans ledit agent d'extraction organique à dilution infinie, P2 représente la pression de vapeur saturante du trans-1,3,3,3- tetrafluoro-l-propène (1234ze-E) ; avantageusement, le facteur de séparation est supérieur ou égal à 1,2, de préférence supérieur ou égal à 1,4, plus préférentiellement supérieur ou égal à 1,6, en particulier supérieur ou égal à 1,8. Dans ce mode de réalisation, ledit agent d'extraction organique peut également avoir un facteur de séparation Si,2 supérieur ou égal à 1,1, ledit facteur de séparation étant calculé par la formule Si,2 = (yi,s*Pl)/(y2,s*P2) dans laquelle yi,s représente le coefficient d'activité du 1,1,1,2,2-pentafluoropropane (245cb) dans ledit agent d'extraction organique à dilution infinie, PI représente la pression de vapeur saturante du 1,1,1,2,2-pentafluoropropane (245cb), y2,s représente le coefficient d'activité du trans-1,3,3,3- tetrafluoro-l-propène (1234ze-E) dans ledit agent d'extraction organique à dilution infinie, P2 représente la pression de vapeur saturante du trans-l,3,3,3-tetrafluoro-l-propène (1234ze-E) ; avantageusement, le facteur de séparation est supérieur ou égal à 1,2, de préférence supérieur ou égal à 1,4, plus préférentiellement supérieur ou égal à 1,6, en particulier supérieur ou égal à 1,8, plus particulièrement supérieur ou égal à 2,0. Dans ce mode de réalisation préféré, ledit agent d'extraction organique peut avoir une capacité d'absorption C2,s supérieure ou égale à 0,20, ladite capacité d'absorption étant calculé par la formule C2,s = l/(y2,s) dans laquelle y2,s représente le coefficient d'activité dudit au moins un des composés consistant en trans-1,3,3,3- tetrafluoro-l-propène (1234ze-E) dans ledit agent d'extraction organique à dilution infinie, de préférence y2,s représente le coefficient d'activité dudit au moins un des composés consistant en trans-l,3,3,3-tetrafluoro-l-propène (1234ze-E), dans ledit agent d'extraction organique à dilution infinie ; avantageusement, la capacité d'absorption C2,s est supérieure ou égale à 0,40, de préférence supérieure ou égale à 0,60, plus préférentiellement supérieure ou égale à 0,80, en particulier supérieure ou égale à 1,0. Ainsi, dans ce mode de réalisation préféré, ledit agent d'extraction organique peut être éthylamine, isopropylamine, diethylether, ethylmethylamine, 2-amino-2-methylpropane, n-propylamine, isopropylmethylamine, 2-ethoxy-propane, methyl-t- butylether, diethylamine, propanone, methylacetate, 2-butanamine, n-methylpropylamine, isobutanal, tetrahydrofurane, 1-butylamine, ethylacetate, butanone, n-propylformate, 2,2- dimethoxypropane, l-ethoxy-2-methylpropane, 1,2-dimethoxyethane, 3-methyl-2- butanamine, diethoxymethane, isopropylacetate, 3-pentylamine, n-methylbutylamine, 1- ethoxybutane, l-methoxy-2-propanamine, 2-methylbutanal, 2-methoxyethanamine, tert- butylacetate, 1-methoxy-pentane, ethylpropionate, 1,2-dimethoxypropane, 1,4-dioxane, 3- pentanone, 1,1-diethoxyethane, 2-pentanone, 2-methoxy-lpropanamine, trimethoxymethane, n-pentylamine, 3,3-dimethyl-2-butanone, 1,3-dioxane, piperidine, 2-ethoxyethanamine, sec- butylacetate, n-methyl-l,2-ethanediamine, 2,2-diethoxypropane, 4-methyl-2-pentanone, 1,2- diaminoethane, butyronitrile, l-methoxy2-propanol, 1,2-propanediamine, 2,6-dimethyl-5- heptenal, l-(dimethylamino)-2-propanol, 1,1-diethoxypropane, 2-ethylbutylamine, diethylcarbonate, n-butylacetate, 2-hexanone, n-ethylethylenediamine, 5-hexen-2-one, 2- methylpyridine, 2-methoxyl-propanol, hexanal ; avantageusement, éthylamine, isopropylamine, diethylether, n-propylamine, diethylamine, propanone, methylacetate, butanone, diethoxymethane, isopropylacetate, 3-pentylamine, 2-methoxyethanamine, tert- butylacetate, 1,4-dioxane, 1,1-diethoxyethane, trimethoxymethane, n-pentylamine, 1,3- dioxane, sec-butylacetate, 1,2-diaminoethane, l-methoxy-2-propanol, 1,2-propanediamine, n- butylacetate, 2-methoxy-l-propanol, hexanal ; de préférence, éthylamine, isopropylamine, diethylether, n-propylamine, diethylamine, diethoxymethane, isopropylacetate, 3-pentylamine, 2-methoxyethanamine, tert-butylacetate, 1,4-dioxane, 1,1-diethoxyethane, trimethoxymethane, n-pentylamine, 1,3-dioxane, sec-butylacetate, 1,2-diaminoethane, 1- methoxy-2-propanol, 1,2-propanediamine, n-butylacetate, 2-methoxy-l-propanol, hexanal.
De préférence, le courant Gle' comprenant 2,3,3,3-tétrafluoropropène (1234yf) et 1,1,1,2,2-pentafluoropropane (245cb) peut être soumis à des étapes de purification ultérieures. Ainsi, le 2,3,3,3-tétrafluoropropène (1234yf) peut être séparé, de préférence par distillation du 1,1,1,2,2-pentafluoropropane (245cb) pour former un courant comprenant 2,3,3,3- tétrafluoropropène (1234yf) et un courant Gli' comprenant 1,1,1,2,2-pentafluoropropane (245cb), ledit courant Gli' étant recyclé à l'étape a). Le 2,3,3,3-tétrafluoropropène (1234yf) peut encore être soumis à des étapes de purification ultérieures afin d'obtenir un degré de pureté suffisant pour sa commercialisation. Par exemple, celui-ci peut être purifié, par exemple par distillation extractive, pour éliminer du trans-l,3,3,3-tetrafluoro-l-propène (1234ze-E) éventuellement présent.
De préférence, le courant Glh' comprenant trans-l,3,3,3-tetrafluoro-l-propène (1234zeE) et ledit agent d'extraction organique est séparé par distillation pour former un courant Glj' comprenant ledit agent d'extraction organique et un courant Glk' comprenant trans-l,3,3,3-tetrafluoro-l-propène (1234zeE). Le courant Glj' comprenant ledit agent d'extraction organique peut être recyclé à l'étape cl'). Le courant Glk' comprenant trans- 1,3,3,3-tetrafluoro-l-propène (1234zeE) peut être soit purifié ou détruit par incinération.
Optionnellement ou non, si le courant Glc comprend des impuretés ayant un point d'ébullition inférieur à celui du 2,3,3,3-tetrafluoro-l-propène, celles-ci peuvent être éliminées par distillation. Lesdites impuretés ayant un point d'ébullition inférieur à celui du 2,3,3,3- tetrafluoro-l-propène peuvent être trifluorométhane (F23), monofluorométhane (F41), difluorométhane (F32), pentafluoroéthane (F125), 1,1,1-trifluoroéthane (F143a), trifluoropropyne ou 1-chloro-pentafluoroéthane (F115) ; et celles-ci peuvent être récupérées en tête de colonne de distillation. Le courant récupéré en bas de colonne de distillation peut ensuite être utilisé comme décrit ci-dessus pour le courant Glc dans l'étape b) et les étapes subséquentes.
Selon un autre mode de réalisation préféré, ledit courant liquide Ll comprend tout ou partie des produits intermédiaires B et tout ou partie des produits secondaires C ; et tout ou partie de ce courant Ll est porté à basse température, avantageusement entre -50°C et 20°C, pour former une première phase Lia comprenant une partie du HF n'ayant pas réagi et une seconde phase Llb comprenant lesdits produits intermédiaires B et lesdits produits secondaires C. Ainsi, ledit courant liquide Ll peut comprendre une partie des produits intermédiaires B et une partie des produits secondaires C ; et tout ou partie de ce courant Ll est porté à basse température, avantageusement entre -50°C et 20°C, pour former une première phase Lia comprenant une partie du HF n'ayant pas réagi et une seconde phase Llb comprenant lesdits produits intermédiaires B et lesdits produits secondaires C. Avantageusement, ladite basse température est comprise entre - 50°C et 15°C, de préférence entre -40°C et 10°C, en particulier entre-30°C et 0°C. Cette étape peut être effectuée de façon continue ou discontinue.
Ladite première phase Lia peut être recyclée à l'étape a).
Optionnellement ou non, ledit courant Gld formé à l'étape b2) peut être mélangé au courant liquide Ll avant que tout ou partie de ce dernier soit porté à basse température.
Tout ou partie du 1,1,1,2,2-pentafluoropropane (245cb) peut aussi être contenu dans ledit courant liquide Ll puis dans ladite seconde phase Llb.
Tout ou partie du 1,3,3,3-tetrafluoro-l-propène (1234ze) peut aussi être contenu dans ledit courant liquide Ll puis dans ladite seconde phase Llb.
Tout ou partie du 2-chloro-3,3,3-trifluoropropène (1233xf) peut aussi être contenu dans ledit courant liquide Ll puis dans ladite seconde phase Llb. Tout ou partie du E-l-chloro-3,3,3-trifluoro-l-propène (1233zdE) peut aussi être contenu dans ledit courant liquide Ll puis dans ladite seconde phase Llb.
Tout ou partie du 1,1,1,3,3-pentafluoropropane (245fa) peut aussi être contenu dans ledit courant liquide Ll puis dans ladite seconde phase Llb.
De préférence, ladite seconde phase Llb peut comprendre 1,1,1,3,3- pentafluoropropane (245fa), E-l-chloro-3,3,3-trifluoro-l-propène (1233zdE), 2-chloro-3,3,3- trifluoropropène (1233xf), 1,3,3,3-tetrafluoro-l-propène (1234ze) et 1,1,1,2,2- pentafluoropropane (245cb).
Selon un mode de réalisation préféré, ladite seconde phase Llb est distillée pour récupérer un courant Lie comprenant 1,1,1,2,2-pentafluoropropane (245cb) et 1,3,3,3- tetrafluoro-l-propène (1234ze), avantageusement en tête de colonne de distillation, et un courant Lld comprenant 2-chloro-3,3,3-trifluoro-l-propène (1233xf), E-l-chloro-3,3,3-trifluoro- 1-propène (1233zdE) et 1,1,1,3,3-pentafluoropropane (245fa) ; avantageusement en bas de colonne de distillation. Ledit courant Lie peut être recyclé à l'étape a). Ledit courant Lie peut donc être un desdits un ou plusieurs flux recyclé à l'étape a) lors de l'étape c) du présent procédé. Optionnellement, ledit courant Lie peut être purifié pour séparer 1,1,1,2,2- pentafluoropropane (245cb) et 1,3,3,3-tetrafluoro-l-propène (1234ze). Ceci peut être effectué par distillation extractive tel qu'explicité ci-dessus en relation avec la séparation du courant Gif.
Selon un mode de réalisation préféré, ledit courant Lld peut être séparé pour former un flux comprenant 2-chloro-3,3,3-trifluoro-l-propène (1233xf) et un courant comprenant E-l- chloro-3,3,3-trifluoro-l-propène (1233zdE) et 1,1,1,3,3-pentafluoropropane (245fa). La séparation dudit courant Lld peut être effectuée par distillation extractive.
De préférence, ledit courant Lld peut être une composition azéotropique ou quasi- azéotropique comprenant 2-chloro-3,3,3-trifluoro-l-propène (1233xf), E-l-chloro-3,3,3- trifluoro-l-propène (1233zdE) et 1,1,1,3,3-pentafluoropropane (245fa).
De préférence, ladite séparation peut être effectuée par distillation extractive. Ladite distillation extractive dudit courant Lld comprend les étapes de :
- mise en contact dudit courant Lld avec un agent d'extraction organique pour former une composition Lie, et
- distillation extractive de la composition Lie pour former un flux Llf comprenant 2- chloro-3,3,3-trifluoro-l-propène (1233xf), avantageusement en tête de colonne de distillation, et un courant Llg comprenant E-l-chloro-3,3,3-trifluoro-l-propène (1233zdE) et 1, 1, 1,3,3-pentafluoropropane (245fa) et ledit agent d'extraction organique, avantageusement en bas de colonne de distillation.
De préférence, le courant Llg est ensuite séparé par distillation pour former un courant Llh comprenant ledit agent d'extraction organique et un courant Lli comprenant E-l-chloro- 3,3,3-trifluoro-l-propène (1233zd E) et 1, 1, 1,3,3-pentafluoropropane (245fa). Le courant Llh peut être recyclé pour être mis en contact avec un courant Lld pour former une composition Lie. Le courant Lli comprenant E-l-chloro-3,3,3-trifluoro-l-propène (1233zd E) et 1, 1, 1,3,3- pentafluoropropane (245fa) peut être soit purifié soit détruit par incinération.
Selon un mode de réalisation préféré, ledit agent d'extraction organique mis en contact avec le courant Lld est un solvant choisi parmi le groupe consistant en hydrocarbure, hydrohalocarbure, alcool, cétone, aminé, ester, éther, aldéhyde, nitrile, carbonate, sulfoxide, sulfate, thioalkyle, amide, hétérocycle et phosphate ou l'agent d'extraction organique est l'acide perfluorobutanoïque. Selon un mode de réalisation préféré, ledit agent d'extraction organique a un point d'ébullition compris entre 50 et 200°C. Selon un mode de réalisation préféré, ledit agent d'extraction organique a un facteur de séparation Si,2 supérieur ou égal à 1, 1, ledit facteur de séparation étant calculé par la formule Si,2 = (yi,s* Pl)/(y2,s* P2) dans laquelle
yi,s représente le coefficient d'activité du 2-chloro-3,3,3-trifluoropropène dans ledit agent d'extraction organique à dilution infinie,
PI représente la pression de vapeur saturante du 2-chloro-3,3,3-trifluoropropène, Y2,s représente le coefficient d'activité du 1, 1,1,3,3-pentafluoropropane (245fa) dans ledit agent d'extraction organique à dilution infinie,
P2 représente la pression de vapeur saturante du 1, 1, 1,3,3-pentafluoropropane (245fa); avantageusement, le facteur de séparation Si,2 est supérieur ou égal à 1,2, de préférence supérieur ou égal à 1,4, plus préférentiellement supérieur ou égal à 1,6, en particulier supérieur ou égal à 1,8, plus particulièrement supérieur ou égal à 2,0 ;
et
ledit agent d'extraction organique a une capacité d'absorption C2,s supérieure ou égale à 0,20, ladite capacité d'absorption étant calculé par la formule C2,s = l/(y2,s) dans laquelle y2,s représente le coefficient d'activité du 1, 1, 1,3,3-pentafluoropropane (245fa) dans ledit agent d'extraction organique à dilution infinie ; avantageusement, la capacité d'absorption C2,s est supérieure ou égale à 0,40, de préférence supérieure ou égale à 0,60, plus préférentiellement supérieure ou égale à 0,80, en particulier supérieure ou égale à 1,0. Ainsi, selon un mode de réalisation particulier, ledit agent d'extraction organique peut être choisi parmi le groupe consistant en éthanedial, propanone, methylacetate, methylgiyoxal, ethylacetate, butanone, propionitrile, 1,4-dioxane, trimethoxymethane, 1,3-dioxane, 1,3,5- trioxane, 1,2-diaminoethane, l-methoxy2-propanol, diethylcarbonate, 2-methoxyl-propanol, l-methoxy-2-acetoxypropane, dimethylformamide, 3-methoxy-l-butanol, diacetone alcohol, methylacetoacetate, η,η-dimethylpropanamide, dimethylmalonate, diethylsulfoxide, 2-(2- methoxyethoxy)ethanol, trimethylphosphate, diethylmalonate ; de préférence ledit agent d'extraction organique peut être choisi parmi le groupe consistant en propanone, methylacetate, ethylacetate, butanone, 1,4-dioxane, trimethoxymethane, 1,3-dioxane, 1,3,5- trioxane, 1,2-diaminoethane, l-methoxy-2-propanol. De préférence, ce mode de réalisation particulier peut permettre de séparer efficacement 2-chloro-3,3,3-trifluoropropène et 1,1,1,3,3- pentafluoropropane (245fa).
Selon un mode de réalisation particulier, ledit agent d'extraction organique mis en contact avec le courant Lld peut avoir un facteur de séparation Si,2 supérieur ou égal à 1,1, ledit facteur de séparation étant calculé par la formule Si,2 = (yi,s*Pl)/(y2,s*P2) dans laquelle
yi,s représente le coefficient d'activité du 2-chloro-3,3,3-trifluoropropène dans ledit agent d'extraction organique à dilution infinie,
PI représente la pression de vapeur saturante du 2-chloro-3,3,3-trifluoropropène,
Y2,s représente le coefficient d'activité du E-l-chloro-3,3,3-trifluoro-l-propène
(1233zdE) dans ledit agent d'extraction organique à dilution infinie,
P2 représente la pression de vapeur saturante du E-l-chloro-3,3,3-trifluoro-l-propène
(1233zdE);
avantageusement, le facteur de séparation Si,2 est supérieur ou égal à 1,2, de préférence supérieur ou égal à 1,4, plus préférentiellement supérieur ou égal à 1,6, en particulier supérieur ou égal à 1,8, plus particulièrement supérieur ou égal à 2,0 ;
et
ledit agent d'extraction organique peut avoir une capacité d'absorption C2,s supérieure ou égale à 0,20, ladite capacité d'absorption étant calculé par la formule C2,s = l/(y2,s) dans laquelle y2,s représente le coefficient d'activité du E-l-chloro-3,3,3-trifluoro-l- propène (1233zdE) dans ledit agent d'extraction organique à dilution infinie ; avantageusement, la capacité d'absorption C2,s est supérieure ou égale à 0,40, de préférence supérieure ou égale à 0,60, plus préférentiellement supérieure ou égale à 0,8, en particulier supérieur ou égale à 1,0. Ainsi, dans un mode de réalisation particulier, ledit agent d'extraction organique peut être choisi parmi le groupe consistant en isopropylmethylamine, methyl-t-butylether, diethylamine, propanone, methylacetate, 2-butanamine, n-methylpropylamine, tetrahydrofurane, 1-butylamine, ethylacetate, butanone, n-propylformate, -dimethoxypropane, diisopropylamine, 1,2-dimethoxyethane, 3-methyl-2-butanamine, diethoxymethane, isopropylacetate, 3-pentylamine, n-methylbutylamine, l-methoxy-2-propanamine, 2- methoxyethanamine, tert-butylacetate, ethylpropionate, 1,2-dimethoxypropane, 1,4-dioxane,
3- pentanone, 1,1-diethoxyethane, 2-pentanone, 2-methoxy-lpropanamine, trimethoxymethane, n-pentylamine, 3,3-dimethyl-2-butanone, 1,3-dioxane, piperidine, 2- ethoxyethanamine, sec-butylacetate, n-methyl-l,2-ethanediamine, 2,2-diethoxypropane, 1,2- diaminoethane, l-methoxy2-propanol, 1,2-propanediamine, 2,6-dimethyl-5-heptenal, 1- (dimethylamino)-2-propanol, 3-methyl-3-pentanol, 2-ethylbutylamine, diethylcarbonate, n- butylacetate, 2-hexanone, n-ethylethylenediamine, 2-methoxyl-propanol, l-ethoxy-2- propanol, 4-methyl-2-hexanamine, hexylamine, methoxycyclohexane, 2-(dimethylamino)- ethanol, cyclohexylamine, n-ethyl-2-dimethylaminoethylamine, ethoxyethanol, 2-ethoxy-l- propanol, 1-methylpiperazine, 1,3-propanediamine, 2-heptanamine, n,n- diethylethylenediamine, 4-methyl-2-hexanone, 1,1,1-triethoxyethane, l-methoxy-2- acetoxypropane, 4-methylpyridine, n,n'-diethyl-l,2-ethanediamine, 2,6-dimethylmorpholine, methylhexanoate, 2-propoxyethanol, l-propoxy-2-propanol, 2-heptanone, dimethylformamide, 2-isopropoxyethanol, 2-methylpiperazine, cyclohexanone, 1- heptanamine, 2-ethoxyethanolacetate, 1,4-butanediamine, 2,4-dimethylpyridine, 2-methoxy-3- methylpyrazine, 4-methoxy-4-methyl-pentan-2-one, 3-ethoxy-l-propanol, 3-methoxy-l- butanol, diglyme, 2-(diethylamino)-ethanol, 2,2-diethoxyethanamine, 2-methoxy-n-(2- methoxyethyl)ethanamine, 2-(ethylamino)ethanol, 3-octanone, diacetone alcohol, diethylaminopropylamine, 2-ethylhexylamine, l-butoxy-2-propanol, 2-butoxyethanol, 2- octanone, methylheptanoate, triethylenediamine, η,η-dimethylpropanamide, 2-propanol-l- methoxy-propanoate, 1,5-pentanediamine, cycloheptanone, 3,4-dimethylpyridine, 1- octanamine, benzylmethylamine, 1,1,3,3-tetramethoxypropane, dihexylphthalate, diethylpropanolamine, 2-butoxyethanolacetate, diethylsulfoxide, 2-(2-methoxyethoxy)ethanol,
4- methylbenzenemethanamine, diethyleneglycolmonoethylether, 2-propylcyclohexanone, trimethylphosphate, 2-methyl-2,4-pentanediol, methylbenzoate, diethylmalonate, 2- methoxypyrimidine ; de préférence ledit agent d'extraction organique est choisi parmi le groupe consistant en diethylamine, propanone, methylacetate, tetrahydrofurane, ethylacetate, butanone, diethoxymethane, isopropylacetate, tert-butylacetate, 1,4-dioxane, 3-pentanone, 1,1-diethoxyethane, 2-pentanone, n-pentylamine, 1,3-dioxane, sec-butylacetate, 1,2- diaminoethane, l-methoxy2-propanol, n-butylacetate, l-ethoxy-2-propanol. De préférence, ce mode de réalisation particulier peut permettre de séparer efficacement 2-chloro-3,3,3- trifluoropropène et E-l-chloro-3,3,3-trifluoro-l-propène (1233zdE).
Selon un mode de réalisation préféré, pour favoriser l'élimination simultanée de E-l- chloro-3,3,3-trifluoro-l-propène (1233zdE) et 1,1,1,3,3-pentafluoropropane (245fa) ; ledit agent d'extraction organique mis en contact avec le courant Lld peut être sélectionné parmi le groupe consistant en propanone, methylacetate, ethylacetate, butanone, 1,4-dioxane, trimethoxymethane, 1,3-dioxane, 1,2-diaminoethane, l-methoxy2-propanol, diethylcarbonate, 2-methoxyl-propanol, l-methoxy-2-acetoxypropane, dimethylformamide, 3-methoxy-l- butanol, diacetone alcohol, η,η-dimethylpropanamide, diethylsulfoxide, 2-(2- methoxyethoxy)ethanol, trimethylphosphate, diethylmalonate. En particulier, ledit agent d'extraction organique peut être sélectionné parmi le groupe consistant en propanone, methylacetate, ethylacetate, butanone, 1,4-dioxane, trimethoxymethane, 1,3-dioxane, 1,2- diaminoethane, l-methoxy2-propanol, 3-methoxy-l-butanol, diacetone alcohol.
Selon un mode de réalisation préféré, ledit courant Llg comprenant E-l-chloro-3,3,3- trifluoro-l-propène (1233zdE), 1,1,1,3,3-pentafluoropropane (245fa) et ledit agent d'extraction organique peut être distillé pour séparer d'une part ledit agent d'extraction organique et d'autre part le E-l-chloro-3,3,3-trifluoro-l-propène (1233zdE) et le 1,1,1,3,3-pentafluoropropane (245fa). De préférence, ledit agent d'extraction organique peut être recyclé.
Selon un mode de réalisation préféré, le flux Llf comprenant 2-chloro-3,3,3-trifluoro-l- propène (1233xf) est recyclé à l'étape a).
Si des impuretés lourdes sont présentes dans ledit courant Lld, celui-ci peut être distillé préalablement à sa séparation pour éliminer celles-ci. Le courant Lld tel que décrit ci-dessus peut être récupéré en tête de colonne de distillation, les impuretés lourdes étant récupérées en bas de colonne de distillation. Les impuretés lourdes peuvent contenir par exemple 1,2-dichloro- 3,3,3-trifluoropropène (1223xd), des dimères ou des trimères issus de l'un des composés présents dans la composition ou le courant considéré.
Plus particulièrement, la composition de départ peut comprendre 1,1,2,3- tetrachloropropène, le 2,3,3,3,-tetrachloropropène, le 1,1,1,2,3-pentachloropropane, le 1,1,1,2,2-pentachloropropane, le l,2-dichloro-3,3,3-trifluoropropane, le 2-chloro-2,3,3,3- tetrafluoropropane, le 1,1,1,2,2-pentafluoropropane et le l-chloro-l,3,3,3-tetrafluoropropane, de préférence 1,1,1,2,3-pentachloropropane, l,l,2,3,tetrachloropropène, du 1,1,1,2,2- pentafluoropropane et/ou du 2-chloro-3,3,3-trifluoro-l-propène, l,2-dichloro-3,3,3- trifluoropropane ; en particulier 1,1,1,2,3-pentachloropropane (240db).
Le catalyseur utilisé dans le présent procédé de production de 2,3,3,3- tétrafluoropropène peut être par exemple à base d'un métal comprenant un oxyde de métal de transition ou un dérivé ou un halogénure ou un oxyhalogénure d'un tel métal. On peut citer par exemple FeCU, l'oxyfluorure de chrome, les oxydes de chrome (éventuellement soumis à des traitements de fluoration), les fluorures de chrome et leurs mélanges. D'autres catalyseurs possibles sont les catalyseurs supportés sur du carbone, les catalyseurs à base d'antimoine, les catalyseurs à base d'aluminium (par exemple AIF3 et AI2O3, l'oxyfluorure d'alumine et le fluorure d'alumine).
On peut utiliser en général un oxyfluorure de chrome, un fluorure ou un oxyfluorure d'aluminium, ou un catalyseur supporté ou non contenant un métal tel que Cr, Ni, Fe, Zn, Ti, V, Zr, Mo, Ge, Sn, Pb, Mg, Sb.
On peut faire référence à cet égard au document WO 2007/079431 (en p.7, 1.1-5 et 28-
32), au document EP 939071 (paragraphe [0022]), au document WO 2008/054781 (en p.9 1.22- p.10 1.34), et au document WO 2008/040969 (revendication 1), auxquels il est fait expressément référence.
Le catalyseur est de manière plus particulièrement préférée à base de chrome et il s'agit plus particulièrement d'un catalyseur mixte comprenant du chrome.
Selon un mode de réalisation, on utilise un catalyseur mixte comprenant du chrome et du nickel. Le rapport molaire Cr / Ni (sur la base de l'élément métallique) est généralement de 0,5 à 5, par exemple de 0,7 à 2, par exemple d'environ 1. Le catalyseur peut contenir de 0,5 à 20 % en poids de nickel.
Le métal peut être présent sous forme métallique ou sous forme de dérivé, par exemple un oxyde, halogénure ou oxyhalogénure. Ces dérivés sont de préférence obtenus par activation du métal catalytique.
Le support est de préférence constitué avec de l'aluminium, par exemple de l'alumine, de l'alumine activée ou des dérivés d'aluminium, tels que les halogénures d'aluminium et les oxyhalogénures d'aluminium, par exemple décrits dans le document US 4,902,838, ou obtenus par le procédé d'activation décrit ci-dessus.
Le catalyseur peut comprendre du chrome et du nickel sous une forme activée ou non, sur un support qui a été soumis à une activation ou non. On peut se reporter au document WO 2009/118628 (notamment en p.4, l.30-p.7 1.16), auquel il est fait expressément référence ici.
Un autre mode de réalisation préféré repose sur un catalyseur mixte contenant du chrome et au moins un élément choisi parmi Mg et Zn. Le rapport atomique de Mg ou Zn/Cr est de préférence de 0,01 à 5.
Avant son utilisation, le catalyseur est de préférence soumis à une activation avec de l'air, de l'oxygène ou du chlore et/ou avec de l'HF.
Par exemple, le catalyseur est de préférence soumis à une activation avec de l'air ou de l'oxygène et du HF à une température de 100 à 500°C, de préférence de 250 à 500°C et plus particulièrement de 300 à 400°C. La durée d'activation est de préférence de 1 à 200 h et plus particulièrement de 1 à 50 h.
Cette activation peut être suivie d'une étape d'activation de fluoration finale en présence d'un agent d'oxydation, d'HF et de composés organiques.
Le rapport molaire HF / composés organiques est de préférence de 2 à 40 et le rapport molaire agent d'oxydation / composés organiques est de préférence de 0,04 à 25. La température de l'activation finale est de préférence de 300 à 400°C et sa durée de préférence de 6 à 100 h.
La réaction de fluoration en phase gazeuse peut être effectuée :
- avec un rapport molaire HF / composé de formule (I) et/ou (II) de 3:1 à 150:1, de préférence de 4:1 à 125:1 et de manière plus particulièrement préférée de 5:1 à
100:1 ;
- avec un temps de contact de 3 à 100 s, de préférence 4 à 75 s et plus particulièrement 5 à 50 s (volume de catalyseur divisé par le flux entrant total, ajusté à la température et à la pression de fonctionnement) ;
- à une pression allant de la pression atmosphérique à 20 bara, de préférence de 2 à
18 bara et plus particulièrement de 3 à 15 bara;
- à une température (température du lit de catalyseur) de 200 à 450°C, de préférence de 250 à 400°C, et plus particulièrement de 280 à 380°C.
La durée de l'étape de réaction est typiquement de 10 à 8000 heures, de préférence de 50 à 5000 heures et de manière plus particulièrement préférée de 70 à 1000 heures.
Un agent oxydant, de préférence l'oxygène, peut éventuellement être ajouté lors de la réaction de fluoration. Le rapport molaire oxygène / composés organiques peut être de 0,005 à 2, de préférence de 0,01 à 1,5. L'oxygène peut être introduit pur ou sous forme d'air ou de mélange oxygène / azote. On peut également remplacer l'oxygène par du chlore.
La Fig. 1 illustre schématiquement un dispositif mettant en œuvre un procédé de production du 2,3,3,3-tetrafluoropropène selon un mode de réalisation particulier de la présente invention. L'acide fluorhydrique 1 est mis en contact avec du 1,1,1,2,3- pentachloropropane (240db) 2 dans un ou plusieurs réacteurs 3. Le mélange obtenu et comprenant 2,3,3,3-tetrafluoro-l-propène, 1,1,1,2,2-pentafluoropropane (245cb), trans- 1,3,3,3-tetrafluoro-l-propène (1234zeE), 2-chloro-3,3,3-trifluoropropène (1233xf), E-l-chloro- 3,3,3-trifluoro-l-propène (1233zdE) et 1,1,1,3,3-pentafluoropropane (245fa) est récupéré en sortie de réacteur et acheminé vers une colonne de distillation 5 par le conduit 4. Le mélange peut aussi comprendre HCI, HF n'ayant pas réagi et des impuretés lourdes ou des impuretés ayant un point d'ébullition inférieur à celui du 2,3,3,3-tetrafluoro-l-propène. Tout ou partie du courant obtenu en pied de colonne de distillation est acheminé vers le dispositif de purification 13 via le conduit 17. De ce dispositif de purification 13 peuvent être extraits HF, 2-chloro-3,3,3- trifluoropropène (1233xf) et 1,1,1,2,2-pentafluoropropane (245cb), et optionnellement trans- 1,3,3,3-tetrafluoro-l-propène (1234zeE), qui sont recyclés dans le réacteur 3 via le conduit 15. E-l-chloro-3,3,3-trifluoro-l-propène (1233zdE) et 1,1,1,3,3-pentafluoropropane (245fa) peuvent également être extraits du dispositif 13 pour être évacués en 14 vers un incinérateur ou un dispositif de purification. Un courant est également récupéré en tête de la colonne de distillation 5 et acheminé vers un dispositif de purification 7 via le conduit 6. Du dispositif de purification 7, un courant comprenant 2,3,3,3-tetrafluoro-l-propène est récupéré en 11 via le conduit 8. Un flux comprenant 1,1,1,2,2-pentafluoropropane (245cb), et optionnellement trans- 1,3,3,3-tetrafluoro-l-propène (1234zeE), est obtenu également et recyclé vers le réacteur 3 par le conduit 10. Enfin, un courant comprenant trans-l,3,3,3-tetrafluoro-l-propène (1234zeE) peut être récupéré en 12 par l'intermédiaire du conduit 9.
La Fig. 2 illustre schématiquement selon un mode de réalisation particulier de la présente invention un dispositif de purification 13. Un courant liquide Ll, tel que décrit dans la présente demande, est acheminé vers le décanteur 22 ayant une température de -25°C. Le courant Lia est extrait et récupéré en 23 pour être recyclé vers le réacteur 3. Le courant Llb, tel que décrit dans la présente demande, est acheminé vers la colonne de distillation 25 via le conduit 24. Le courant Lie, tel que décrit dans la présente demande, est évacué en tête de colonne de distillation et récupérés en 27 via le conduit 26. Celui-ci peut être récupéré pour être recyclé vers le réacteur 3. Le courant Lld, tel que décrit dans la présente demande, peut être acheminé vers la colonne de distillation 29 via le conduit 28 pour extraire en bas de colonne de distillation des impuretés lourdes éventuellement présentes et les acheminer vers un incinérateur 32 via le conduit 31. Le 2-chloro-3,3,3-trifluoropropène (1233xf), E-l-chloro-3,3,3- trifluoro-l-propène (1233zdE) et 1,1,1,3,3-pentafluoropropane (245fa) récupérés en tête de la colonne de distillation 29 sont acheminés vers un dispositif de purification 33 via le conduit 30. De ce dispositif de purification 33, le 2-chloro-3,3,3-trifluoropropène (1233xf) peut être extrait en 36 via le conduit 34. Le dispositif de purification 33 peut être une distillation extractive. Le E- l-chloro-3,3,3-trifluoro-l-propène (1233zdE) et 1,1,1,3,3-pentafluoropropane (245fa) peuvent être récupérés en 37 via le conduit 35 pour être incinérés ou purifiés.
La Fig. 3 illustre schématiquement selon un mode de réalisation particulier de la présente invention un dispositif de purification 7. Une cuve de stockage 41 comprend 2,3,3,3- tetrafluoro-l-propène (1234yf), trans-l,3,3,3-tetrafluoro-l-propène (1234zeE), 1,1,1,2,2- pentafluoropropane (245cb), HF et des impuretés ayant un point d'ébullition inférieur à celui du 2,3,3,3-tetrafluoro-l-propène (par ex. HCI). Ce mélange est acheminé vers la colonne de distillation 43 via le conduit 42. Les impuretés ayant un point d'ébullition inférieur à celui du 2,3,3,3-tetrafluoro-l-propène sont évacuées en 45 via le conduit 44. Les autres constituants du mélange sont acheminés vers la colonne de distillation 47 via le conduit 46. Un courant comprenant 2,3,3,3-tetrafluoro-l-propène et de faibles quantités de trans-l,3,3,3-tetrafluoro- 1-propène (1234zeE), 1,1,1,2,2-pentafluoropropane (245cb), HF est récupéré en tête de colonne de distillation pour être acheminé vers le dispositif 50 via la conduite 48. Un courant comprenant la majorité du trans-l,3,3,3-tetrafluoro-l-propène (1234zeE), 1,1,1,2,2-pentafluoropropane (245cb), HF est récupéré en pied de colonne de distillation 47 pour être recyclé via la conduite 10 (Figure 1). Le dispositif 50 permet la mise en contact entre le courant comprenant 2,3,3,3- tetrafluoro-l-propène et de faibles quantités de trans-l,3,3,3-tetrafluoro-l-propène (1234zeE), 1,1,1,2,2-pentafluoropropane (245cb), HF et une solution d'acide fluorhydrique 51 ou issue du dispositif 53 via la conduite 67 ayant une concentration variant entre 65 et 75% en poids. Le dispositif 50 peut être par exemple un hydrolaveur. La mise en contact génère la formation d'un courant diphasique qui est acheminé vers un dispositif de stockage 53 par la conduite 52. La phase gazeuse dudit courant diphasique est acheminée par la conduite 54 vers la colonne d'absorption 55 comprenant 3 étages d'absorption 56a, 56b et 56c. La colonne d'absorption 55 est également alimentée par un flux aqueux 57. Dans ce mode de réalisation, le flux aqueux 57 alimente la colonne d'absorption 55 en tête de colonne d'absorption 55, c'est-à-dire au-dessus des trois étages d'absorption 56a-56c. Alternativement, le flux aqueux 57 peut alimenter la colonne d'absorption 55 au-dessus de chacun des étages d'absorption 56a-56c. Un courant gazeux comprenant 2,3,3,3-tetrafluoro-l-propène est extrait en tête de colonne d'absorption 55 par la conduite 59 pour alimenter un dispositif de neutralisation 60. Le courant gazeux correspond audit courant Glc" selon la présente invention. En outre, en pied de colonne d'absorption 55, une solution aqueuse d'acide fluorhydrique correspondant audit courant Glc'" est recyclée vers le dispositif de stockage 53 par la conduite 58. Le courant Glc"est neutralisé dans le dispositif de neutralisation 60 par une solution alcaline de NaOH à 20%. La solution alcaline 66 alimente le dispositif de neutralisation 60 par l'intermédiaire de la conduite 63. Le courant neutralisé est évacué par la conduite 61 pour être séché en 62. Le courant neutralisé et séché correspond au courant Glc"" selon le présent procédé. Celui-ci peut optionnellement être comprimé et liquéfié à une pression d'au plus 8 bara. Une solution alcaline usée 65 peut être extraite du dispositif de neutralisation 60 pour être soit recyclée via les conduites 64 et 63 ou évacuée via la conduite 64 pour traitement ultérieur. La phase liquide résultant du mélange dans le dispositif de stockage 53 de la phase liquide du courant diphasique et du courant Glc'" venant de la colonne d'absorption 55 est acheminée vers une colonne de distillation 70 via la pompe 68 et la conduite 69 pour former le courant G2c récupéré en tête de colonne de distillation 71 et le courant G3c récupéré en pied de colonne de distillation 72. La pompe 68 peut également être configurée pour acheminer la phase liquide résultant du mélange dans le dispositif de stockage 53 de la phase liquide du courant diphasique et du courant Glc'" venant de la colonne d'absorption 55 vers le dispositif 50 via la conduite 67. Le courant Glc"" obtenu en 62 est envoyé vers une colonne de distillation extractive 80 (Figure 4). L'agent d'extraction organique 89 est mélangé au courant Glc"" avant d'entrer dans la colonne de distillation extractive 80. Le courant comprenant 2,3,3,3-tetrafluoropropène et 1,1,1,2,2- pentafluoropropane est récupéré en tête de colonne de distillation 80 pour être acheminé vers la colonne de distillation 82 via la conduite 81. Le courant comprenant 2,3,3,3- tetrafluoropropène et 1,1,1,2,2-pentafluoropropane est séparé par la colonne de distillation 82 pour former un courant 83 comprenant 2,3,3,3-tetrafluoropropène en tête de colonne de distillation et un courant 84 comprenant 1,1,1,2,2-pentafluoropropane en pied de colonne de distillation. Le courant comprenant trans-l,3,3,3-tetrafluoropropène et l'agent d'extraction organique est récupéré en pied de colonne de distillation 80 pour être acheminé vers la colonne de distillation 87 via la conduite 86. Un courant 85 comprenant trans-l,3,3,3-tetrafluoropropène est récupéré en tête de colonne de distillation. L'agent d'extraction organique est récupéré en pied de la colonne de distillation 87 et est recyclé vers la colonne de distillation 80 via la conduite 88.

Claims

Revendications
1. Procédé de production et de purification du 2,3,3,3-tétrafluoropropène (1234yf) mis en œuvre à partir d'une composition de départ comprenant au moins un composé de formule (I) CH(n+2)(X)m-CHp(X)(n+i)-CX(3+p-m) où X représente indépendamment F ou Cl ; n, m, p sont indépendamment les uns des autres 0 ou 1 avec (n+m) = 0 ou 1, (n+p) = 0 ou 1 et (m-p) = 0 ou 1, au moins un X étant Cl,; ledit procédé comprenant les étapes de :
a) mise en contact, en présence d'un catalyseur, de la composition de départ avec HF pour produire une composition A comprenant HCI, une partie du HF n'ayant pas réagi, 2,3,3,3-tétrafluoropropène (1234yf), des produits intermédiaires B consistant en 2-chloro-3,3,3-trifluoropropène (1233xf), 1,1,1,2,2-pentafluoropropane (245cb), et des produits secondaires C consistant en E-l-chloro-3,3,3-trifluoro-l-propène (1233zdE), trans-l,3,3,3-tetrafluoro-l-propène (1234zeE) et 1,1,1,3,3- pentafluoropropane (245fa);
b) récupération de ladite composition A et purification, de préférence distillation, de celle-ci pour former et récupérer un premier courant gazeux Gl comprenant HCI, 2,3,3,3-tétrafluoropropène (1234yf), une partie du HF n'ayant pas réagi, une partie des produits intermédiaires B et une partie des produits secondaires C ; et un courant, de préférence liquide, Ll comprenant une partie du HF n'ayant pas réagi, une partie des produits intermédiaires B et une partie des produits secondaires C ; caractérisé en ce que ledit premier courant gazeux Gl purifié par les étapes suivantes : bl) distillation du courant gazeux Gl pour récupérer un courant Gla comprenant du HCI, avantageusement en tête de colonne de distillation, et un courant Glb comprenant 2,3,3,3- tétrafluoropropène (1234yf), une partie du HF n'ayant pas réagi, ladite une partie des produits intermédiaires B et ladite une partie des produits secondaires C, avantageusement en bas de colonne de distillation, de préférence le courant Glb est liquide ;
b2) distillation dudit courant Glb obtenu à l'étape bl) pour former un courant Glc comprenant 2,3,3,3-tétrafluoropropène (1234yf), une partie dudit HF n'ayant pas réagi, une portion de ladite partie des produits intermédiaires B et une portion de ladite partie des produits secondaires C, avantageusement en tête de colonne de distillation, et un courant Gld comprenant une portion de ladite partie des produits intermédiaires B et une portion de ladite partie des produits secondaires C, avantageusement en bas de colonne de distillation, de préférence le courant Gld est recyclé à l'étape a), en particulier le courant Gld est liquide ; b3) mise en contact du courant Glc avec une solution aqueuse d'acide fluorhydrique de concentration supérieure à 40% pour former un courant Glc' diphasique comprenant 2,3,3,3- tétrafluoropropène (1234yf), de l'acide fluorhydrique, une portion de ladite partie des produits intermédiaires B et une portion de ladite partie des produits secondaires C,
b4) stockage dudit courant Glc' diphasique dans un réservoir tampon, ledit second courant diphasique étant constitué d'une phase liquide et d'une phase gazeuse,
b5) passage de ladite phase gazeuse dudit courant Glc' dans une colonne d'absorption alimenté à contre-courant par un flux aqueux pour former un courant Glc" comprenant 2,3,3,3- tétrafluoropropène (1234yf), une portion de ladite partie des produits intermédiaires B et une portion de ladite partie des produits secondaires C et un courant Glc'" comprenant HF, de préférence le courant Glc'" est liquide .
2. Procédé selon la revendication 1 caractérisé en ce qu'il comprend les étapes :
b6) neutralisation dudit courant Glc" obtenu à l'étape b5) par une solution aqueuse alcaline pour former un courant neutralisé, et
b7) séchage dudit courant neutralisé obtenu à l'étape b6), de préférence sur tamis moléculaire, pour former un courant neutralisé et séché Glc"".
3. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que la solution aqueuse d'acide fluorhydrique utilisé à l'étape (b3) est à une température comprise entre 0 à 30°C avant sa mise en contact avec le courant Glc.
4. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que ledit courant diphasique consiste en une phase gazeuse comprenant 2,3,3,3-tétrafluoropropène (1234yf), une portion de ladite partie des produits intermédiaires B et une portion de ladite partie des produits secondaires C et une phase liquide comprenant de l'acide fluorhydrique et moins de 5% en poids de composés organiques sélectionnés parmi le groupe consistant en 2,3,3,3-tétrafluoropropène (1234yf), une portion de ladite partie des produits intermédiaires B et une portion de ladite partie des produits secondaires C sur base du poids total de ladite phase liquide.
5. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que la phase liquide résultant du mélange de ladite phase liquide dudit courant Glc' et du courant Glc'" est distillée pour former un courant G2c, de préférence en tête de colonne de distillation, comprenant de l'acide fluorhydrique contenant moins de 500 ppm d'eau et un courant G3c, de préférence en pied de colonne de distillation, comprenant de l'acide fluorhydrique sous forme d'une solution aqueuse de concentration inférieure à 50% en poids.
6. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que le courant Glc" ou le courant Glc"" comprend moins de 5% en poids d'acide fluorhydrique sur base du poids total dudit courant Glc" ou dudit courant Glc"".
7. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que le procédé comprend une étape c), subséquente à l'étape b5) ou à l'étape b7), dans laquelle le courant Glc" obtenu à l'étape b5) ou le courant Glc"" obtenu à l'étape b7) comprend 2,3,3,3- tétrafluoropropène (1234yf), 1,1,1,2,2-pentafluoropropane (245cb) et trans-l,3,3,3-tetrafluoro- 1-propène (1234zeE) ; et ledit courant Glc" ou Glc"" est distillé pour former un courant Gle comprenant 2,3,3,3-tétrafluoropropène (1234yf) et un courant Gif comprenant 1,1,1,2,2- pentafluoropropane (245cb) et trans-l,3,3,3-tetrafluoro-l-propène (1234zeE), avantageusement le courant Gif obtenu à l'étape c) est séparé par distillation extractive.
8. Procédé selon l'une quelconque des revendications précédentes 1 à 6 caractérisé en ce que le procédé comprend une étape c), subséquente à l'étape b5) ou à l'étape b7), dans laquelle le courant Glc" obtenu à l'étape b5) ou le courant Glc"" obtenu à l'étape b7) comprend 2,3,3,3- tétrafluoropropène (1234yf), 1,1,1,2,2-pentafluoropropane (245cb) et trans-l,3,3,3-tetrafluoro- 1-propène (1234zeE) ; et ledit courant Glc" ou Glc"" est distillé pour former un courant Gle' comprenant 2,3,3,3-tétrafluoropropène (1234yf) et 1,1,1,2,2-pentafluoropropane (245cb) et un courant Gif comprenant trans-l,3,3,3-tetrafluoro-l-propène (1234zeE), avantageusement le courant Glc" ou Glc"" est distillé par distillation extractive.
9. Procédé selon la revendication précédente caractérisé en ce que le courant Glc" ou Glc"" est distillé par distillation extractive suivant les étapes :
cl') mise en contact dudit courant Glc" ou Glc"" avec un agent d'extraction organique pour former un courant Glg', et
c2') distillation extractive du courant Glg' pour former le flux Gle' comprenant 2,3,3,3- tétrafluoropropène (1234yf) et 1,1,1,2,2-pentafluoropropane (245cb), avantageusement en tête de colonne de distillation, et le courant Glh' comprenant trans-l,3,3,3-tetrafluoro-l-propène (1234zeE) et ledit agent d'extraction organique, avantageusement en bas de colonne de distillation, de préférence le courant Glh' est liquide .
10. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que ledit courant liquide Ll comprend une partie des produits intermédiaires B et tout ou partie des produits secondaires C, et une partie du courant liquide Ll est porté à basse température, avantageusement entre -50°C et 20°C, pour former une première phase Lia comprenant une partie du HF n'ayant pas réagi et une seconde phase Llb comprenant lesdits produits intermédiaires B et lesdits produits secondaires C ; optionnellement ou non, ledit courant Gld formé à l'étape b2) est mélangé au courant liquide Ll avant que ce dernier soit porté à basse température, avantageusement ladite première phase Lia est recyclée à l'étape a).
11. Procédé selon la revendication précédente caractérisé en ce que ladite seconde phase Llb est distillée pour récupérer un courant Lie comprenant 1,1,1,2,2-pentafluoropropane (245cb) et trans-l,3,3,3-tetrafluoro-l-propène (1234zeE), avantageusement en tête de colonne de distillation, et un courant Lld comprenant 2-chloro-3,3,3-trifluoro-l-propène (1233xf), E-l- chloro-3,3,3-trifluoro-l-propène (1233zdE) et 1,1,1,3,3-pentafluoropropane (245fa) ; avantageusement en bas de colonne de distillation, avantageusement ledit courant Lie est recyclé à l'étape a).
12. Procédé selon la revendication précédente caractérisé en ce que ledit courant Lld est séparé pour former un flux comprenant 2-chloro-3,3,3-trifluoro-l-propène (1233xf) et un courant comprenant E-l-chloro-3,3,3-trifluoro-l-propène (1233zdE) et 1,1,1,3,3-pentafluoropropane (245fa), avantageusement la séparation dudit courant Lld est effectuée par distillation extractive.
PCT/FR2018/050734 2017-03-28 2018-03-27 Procede de production et de purification du 2,3,3,3-tetrafluoropropene. WO2018178554A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1752581A FR3064628B1 (fr) 2017-03-28 2017-03-28 Procede de production et de purification du 2,3,3,3-tetrafluoropropene
FR1752581 2017-03-28

Publications (1)

Publication Number Publication Date
WO2018178554A1 true WO2018178554A1 (fr) 2018-10-04

Family

ID=58739233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/050734 WO2018178554A1 (fr) 2017-03-28 2018-03-27 Procede de production et de purification du 2,3,3,3-tetrafluoropropene.

Country Status (2)

Country Link
FR (1) FR3064628B1 (fr)
WO (1) WO2018178554A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109384640A (zh) * 2018-12-30 2019-02-26 山东华安新材料有限公司 一种2,3,3,3-四氟丙烯的制备装置及制备方法
WO2021043989A1 (fr) * 2019-09-06 2021-03-11 Arkema France Procédé de purification d'hydrofluorocarbures
CN113527049A (zh) * 2020-04-22 2021-10-22 陕西中蓝化工科技新材料有限公司 一种反式/顺式-HFO-1234ze和HFO-1234yf的联产制备工艺

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4902838A (en) 1988-12-28 1990-02-20 E. I. Du Pont De Nemours And Company Isomerization of saturated fluorohydrocarbons
WO1998019982A1 (fr) 1996-11-01 1998-05-14 E.I. Du Pont De Nemours And Company Procede de purification de 1,1-difluoroethane
EP0864554A1 (fr) 1997-03-11 1998-09-16 Central Glass Company, Limited Procédé de purification de 1,1,1,3,3-pentafluoropropane brut
EP0939071A1 (fr) 1998-02-26 1999-09-01 Central Glass Company, Limited Procédé pour la préparation de propanes fluorées
WO2003068716A1 (fr) 2002-02-14 2003-08-21 Pcbu Services, Inc. Procedes de purification et de production de fluorohydrocarbures
WO2007079431A2 (fr) 2006-01-03 2007-07-12 Honeywell International Inc. Procédé de fabrication de composés organiques fluorés
WO2008040969A2 (fr) 2006-10-03 2008-04-10 Ineos Fluor Holdings Limited Procédé
WO2008054781A1 (fr) 2006-10-31 2008-05-08 E. I. Du Pont De Nemours And Company Procédés de production de fluoropropanes et d'halopropènes et compositions azéotropiques de 2-chloro-3,3,3-trifluoropropène avec du hf et de 1,1,1,2,2-pentafluoropropane avec du hf
WO2009118628A1 (fr) 2008-03-28 2009-10-01 Arkema France Procede pour la preparation du 1, 2, 3, 3, 3-pentafluoropropene-1
US20110160499A1 (en) * 2009-12-23 2011-06-30 Arkema France Catalytic Gas Phase Fluorination of 243db to 1234yf
WO2013088195A1 (fr) 2011-12-14 2013-06-20 Arkema France Procédé pour la préparation de 2,3,3,3-tétrafluoropropène

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4902838A (en) 1988-12-28 1990-02-20 E. I. Du Pont De Nemours And Company Isomerization of saturated fluorohydrocarbons
WO1998019982A1 (fr) 1996-11-01 1998-05-14 E.I. Du Pont De Nemours And Company Procede de purification de 1,1-difluoroethane
EP0864554A1 (fr) 1997-03-11 1998-09-16 Central Glass Company, Limited Procédé de purification de 1,1,1,3,3-pentafluoropropane brut
EP0939071A1 (fr) 1998-02-26 1999-09-01 Central Glass Company, Limited Procédé pour la préparation de propanes fluorées
WO2003068716A1 (fr) 2002-02-14 2003-08-21 Pcbu Services, Inc. Procedes de purification et de production de fluorohydrocarbures
WO2007079431A2 (fr) 2006-01-03 2007-07-12 Honeywell International Inc. Procédé de fabrication de composés organiques fluorés
WO2008040969A2 (fr) 2006-10-03 2008-04-10 Ineos Fluor Holdings Limited Procédé
WO2008054781A1 (fr) 2006-10-31 2008-05-08 E. I. Du Pont De Nemours And Company Procédés de production de fluoropropanes et d'halopropènes et compositions azéotropiques de 2-chloro-3,3,3-trifluoropropène avec du hf et de 1,1,1,2,2-pentafluoropropane avec du hf
WO2009118628A1 (fr) 2008-03-28 2009-10-01 Arkema France Procede pour la preparation du 1, 2, 3, 3, 3-pentafluoropropene-1
US20110160499A1 (en) * 2009-12-23 2011-06-30 Arkema France Catalytic Gas Phase Fluorination of 243db to 1234yf
WO2013088195A1 (fr) 2011-12-14 2013-06-20 Arkema France Procédé pour la préparation de 2,3,3,3-tétrafluoropropène

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109384640A (zh) * 2018-12-30 2019-02-26 山东华安新材料有限公司 一种2,3,3,3-四氟丙烯的制备装置及制备方法
CN109384640B (zh) * 2018-12-30 2022-02-15 山东华安新材料有限公司 一种2,3,3,3-四氟丙烯的制备装置及制备方法
WO2021043989A1 (fr) * 2019-09-06 2021-03-11 Arkema France Procédé de purification d'hydrofluorocarbures
FR3100461A1 (fr) * 2019-09-06 2021-03-12 Arkema France Procédé de purification d’hydrofluorocarbures
CN114340753A (zh) * 2019-09-06 2022-04-12 阿科玛法国公司 纯化氢氟烃的方法
CN114340753B (zh) * 2019-09-06 2023-10-20 阿科玛法国公司 纯化氢氟烃的方法
US11918939B2 (en) 2019-09-06 2024-03-05 Arkema France Method for purifying hydrofluorocarbons
CN113527049A (zh) * 2020-04-22 2021-10-22 陕西中蓝化工科技新材料有限公司 一种反式/顺式-HFO-1234ze和HFO-1234yf的联产制备工艺
CN113527049B (zh) * 2020-04-22 2024-08-23 陕西中蓝化工科技新材料有限公司 一种反式/顺式-HFO-1234ze和HFO-1234yf的联产制备工艺

Also Published As

Publication number Publication date
FR3064628B1 (fr) 2019-04-05
FR3064628A1 (fr) 2018-10-05

Similar Documents

Publication Publication Date Title
KR101702450B1 (ko) 1,1,3,3-테트라플루오로프로펜의 이성질체화
EP3394019B1 (fr) Procédé de production et de purification du 2,3,3,3-tétrafluoropropène
WO2018178554A1 (fr) Procede de production et de purification du 2,3,3,3-tetrafluoropropene.
EP3394015B1 (fr) Procede de production et de purification du 2,3,3,3-tetrafluoro-1-propene
EP3615500B1 (fr) Procede de production et de purification du 2,3,3,3-tetrafluoropropene
EP3394018B1 (fr) Procede de preparation du 2,3,3,3-tetrafluoropropene et recyclage du 1,1,1,2,2-pentafluoropropane exempt d'impuretes
EP3394016B1 (fr) Procede de production et de purification du 2,3,3,3-tetrafluoro-1-propene
EP3394017B1 (fr) Procédé de préparation du 2,3,3,3-tetrafluoro-1-propène et recyclage du 2-chloro-3,3,3-trifluoropropène exempt d'impuretés
WO2018178551A1 (fr) Procede de production du 2,3,3,3-tetrafluoropropene.
WO2017108522A1 (fr) Procede de production et de purification du 2,3,3,3-tetrafluoro-1-propene
EP3394014B1 (fr) Procede de production et de purification du 2,3,3,3-tetrafluoro-1-propene
WO2018178555A1 (fr) Procede de production et de purification du 2,3,3,3-tetrafluoro-1-propene.
WO2018178552A1 (fr) Procédé de production du 2,3,3,3-tetrafluoropropène

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18718881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18718881

Country of ref document: EP

Kind code of ref document: A1