WO2018176980A1 - 一种阻燃封装包及其锂离子电池 - Google Patents

一种阻燃封装包及其锂离子电池 Download PDF

Info

Publication number
WO2018176980A1
WO2018176980A1 PCT/CN2018/071493 CN2018071493W WO2018176980A1 WO 2018176980 A1 WO2018176980 A1 WO 2018176980A1 CN 2018071493 W CN2018071493 W CN 2018071493W WO 2018176980 A1 WO2018176980 A1 WO 2018176980A1
Authority
WO
WIPO (PCT)
Prior art keywords
package
flame
retardant
sealing
wall
Prior art date
Application number
PCT/CN2018/071493
Other languages
English (en)
French (fr)
Inventor
黄荣刚
任建新
王圣
胡刚
何龙
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2018176980A1 publication Critical patent/WO2018176980A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular to a flame-retardant package and a lithium ion battery thereof. .
  • Lithium-ion batteries are increasingly used in new energy vehicles. However, reports of lithium-ion battery safety accidents have also increased significantly. The cause of safety accidents in lithium-ion batteries is generally caused by mechanical short-circuit caused by mechanical abuse, long-term in high-temperature environment or The battery is out of control caused by charging and discharging.
  • CN201310486020.X discloses a packaged capsule containing a phosphorus-containing flame retardant additive in a battery. When the lithium ion battery is thermally out of control, the capsule wall of the capsule is broken, so that the capsule core material of the capsule is a phosphorus system. The fuel additive is released to achieve flame retardancy and improve the safety of the lithium ion battery.
  • the encapsulated capsule containing the phosphorus-based flame retardant additive can not eliminate the risk of thermal runaway of the battery before the battery is out of control, and can only delay the process of thermal runaway, and some test cells containing the phosphorus-containing flame retardant additive encapsulated the battery.
  • the reason why the encapsulated capsule containing phosphorus-based flame retardant additive can not effectively organize thermal runaway is that the flame retardant mechanism of the phosphorus-based flame retardant additive is a free radical flame retardant mechanism, and the boiling point of the phosphorus-based flame retardant additive is generally 200 ° C, which means The battery has been thermally out of control and the flame retardant will only work.
  • the present disclosure provides a flame-retardant package comprising a package wall and a flame-retardant substance wrapped in a wall of the package, the package wall comprising an outer film and a closure having a seal and being insoluble in an electrolyte a sealing film strip of the sealing; the wall of the package can maintain structural stability at a temperature lower than 100 ° C to wrap the flame-retardant substance in the wall of the package, and the sealing film strip can be at 100 ⁇ Softening and cracking occurred at 170 ° C, causing the package wall to rupture and releasing the flame retardant substance within the wall of the package to the outside of the package wall.
  • the present disclosure also provides a method for preparing a flame-retardant package, the preparation method comprising the following steps:
  • the outer film of at least a part of the edge combined with the sealing film strip is folded in half, and then the corresponding edge is partially closed, and the unclosed sealing is reserved to form a pre-formed film bag; or the two pieces are sealed at least partially at the edge
  • the outer film of the film strip is adhered to each other, and then the corresponding edge is partially closed, and an unclosed seal is reserved to form a pre-formed film bag;
  • the unsealed seal (3) is provided with a sealing film strip (2) in a non-closed state
  • Part or all of the sealing film strip (2) in the non-closed state is only bonded to one side inner surface of the unsealed sealing (3), and not to the other of the unsealed sealing (3) Side inner surface bonding;
  • the package wall can maintain structural stability at a temperature below 100 ° C to wrap the flame retardant substance (4) in the package wall, and the sealing film strip (2) can be at 100 ⁇ 170° C. softens and ruptures, causing the package wall to rupture and releasing the flame retardant material within the package wall to the outside of the package wall.
  • the present disclosure also provides a flame-retardant package prepared by the preparation method as described above.
  • the present disclosure also provides a lithium ion battery comprising the above package.
  • the lithium ion battery may further include a casing and a battery core and a non-aqueous electrolyte contained in the casing, and the battery core includes a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode.
  • the sealing film strip of the package wall closes the sealing to prepare a package, and the wall of the package can be softened at 100-170 ° C, and the thermal runaway occurs when the battery reaches a high probability. Before the temperature, the package wall is broken to release the flame retardant substance in the core, thereby increasing the safety of the lithium ion battery and reducing the occurrence of safety accidents.
  • Figure 1 is a cross-sectional structural view of a package.
  • inside and outside refers to the inside and outside of the package, unless otherwise stated.
  • a first aspect of the present disclosure provides a flame-retardant package comprising a package wall and a flame-retardant substance 4 wrapped in a wall of the package, the package wall comprising an outer film 1 having a seal 3 and being insoluble in an electrolyte Sealing the sealing film strip 2 of the closure 3; the encapsulating wall can maintain structural stability at a temperature below 100 ° C to wrap the flame retardant substance 4 in the wall of the package, and the sealing film
  • the strip 2 can soften and rupture at 100 to 170 ° C, causing the package wall to rupture and releasing the flame retardant substance in the package out of the package.
  • the sealing film strip can seal the wall of the package on the inner side of the outer layer film by heat welding, so that the wall of the package can be melted at 100-170 ° C, and reaches the battery. Probability occurs when the thermal runaway temperature causes the package wall to rupture and release the flame retardant substance inside the core, thereby increasing the safety of the lithium ion battery and reducing the occurrence of safety accidents.
  • the tensile strength of the outer layer film may be higher than the tensile strength of the sealing film strip; the tensile strength of the outer layer film It may be 50 to 4000 MPa; the sealing film strip may have a softening temperature of 100 to 170 °C.
  • the tensile strength of the outer layer film was measured in accordance with the provisions of GBT13022-1991 "Test method for tensile properties of plastic film” at a humidity of 20%, a temperature of 25 ° C and a tensile speed of 25 mm / min.
  • the softening temperature of the sealing film strip was measured in accordance with GB/T 1633 "Measurement of Thermoplastic Softening Temperature (VST)", using a force of 10 N and a heating rate of 50 ° C / h.
  • the material of the outer layer film may be selected from at least one of polyethylene terephthalate, polyurethane, polyimide, and polypropylene.
  • the material of the sealing film strip may be selected from at least one of polyethylene, polyvinyl chloride and olefin copolymer; the tensile strength of the polymer composite film made of the above materials and the softening temperature of the sealing film strip are suitable for the production.
  • the outer layer film 1 is formed as a pre-formed film bag having a closure 3 and having a bag-like structure and filled with the flame-retardant substance 4, and the inner surfaces of both sides of the seal 3 are bonded On both outer surfaces of the sealing film strip 2;
  • the prefabricated film bag is a prefabricated film bag formed by folding a piece of the outer layer film and folding the corresponding edge while leaving the unsealed seal 3;
  • the pre-formed film bag is a pre-formed film bag formed by two sheets of the outer film adhered to each other and partially closed to the corresponding edge while leaving the unsealed seal 3;
  • the unsealed seal 3 is provided with a sealing film strip 2 in a non-closed state
  • Part or all of the sealing film strip 2 in the non-closed state is bonded only to one side inner surface of the unsealed closure 3 and not to the other side inner surface of the unsealed closure 3.
  • the flame retardant substance is preferably trimethyl phosphate, dimethyl methyl phosphate, tris-(2,2,2)-trifluoroethylphosphite.
  • the ester does not affect the safety of the lithium ion battery.
  • the flame retardant substance in order to enable the battery to be broken and failed before the thermal runaway, further contains a substance which can decompose to generate carbon dioxide at 100-130 ° C.
  • the weight fraction of the carbon dioxide-decomposable substance can be 10 to 50%, based on 100% by weight of the package.
  • the substance capable of decomposing to generate carbon dioxide may be at least one selected from the group consisting of acetic anhydride, ammonium carbonate, sodium hydrogencarbonate, malonic acid, and basic copper carbonate.
  • a second aspect of the present disclosure provides a method for preparing a flame-retardant package, the method comprising the steps of:
  • the outer film of at least a part of the edge combined with the sealing film strip is folded in half, and then the corresponding edge is partially closed, and the unclosed sealing is reserved to form a pre-formed film bag; or the two pieces are sealed at least partially at the edge
  • the outer film of the film strip is adhered to each other, and then the corresponding edge is partially closed, and an unclosed seal is reserved to form a pre-formed film bag;
  • the unsealed seal 3 is provided with a sealing film strip 2 in a non-closed state
  • Part or all of the sealing film strip 2 in the non-closed state is only bonded to one side inner surface of the unsealed sealing 3, and not to the other side inner surface of the unsealed sealing 3;
  • the package wall can maintain structural stability at a temperature lower than 100 ° C to wrap the flame retardant substance 4 in the package wall, and the sealing film strip 2 can occur at 100 to 170 ° C Softening and breaking, causing the package wall to rupture and releasing the flame retardant material within the wall of the package to the outside of the package wall.
  • the tensile strength of the outer layer film may be higher than the tensile strength of the sealing film strip; the tensile strength of the outer layer film It may be 50 to 4000 MPa; the sealing film strip may have a softening temperature of 100 to 170 °C.
  • the material of the outer layer film may be selected from at least one of polyethylene terephthalate, polyurethane, polyimide, and polypropylene.
  • the material of the sealing film strip may be selected from at least one of polyethylene, polyvinyl chloride and olefin copolymer; the tensile strength of the polymer composite film made of the above materials and the softening temperature of the sealing film strip are suitable for the production.
  • the flame retardant substance is preferably trimethyl phosphate, dimethyl methyl phosphate, tris-(2,2,2)-trifluoroethylphosphite.
  • the ester does not affect the safety of the lithium ion battery.
  • the flame retardant substance in order to enable the battery to be broken and failed before the thermal runaway, the flame retardant substance further contains a substance which can decompose to generate carbon dioxide at 100 to 130 ° C.
  • the weight fraction of the carbon dioxide-decomposable substance can be 10 to 50%, based on 100% by weight of the package.
  • the substance capable of decomposing to generate carbon dioxide may be at least one selected from the group consisting of acetic anhydride, ammonium carbonate, sodium hydrogencarbonate, malonic acid, and basic copper carbonate.
  • a third aspect of the present disclosure provides a flame-retardant package prepared by using the preparation method as described above.
  • a fourth aspect of the present disclosure provides a lithium ion battery comprising the above package.
  • the lithium ion battery may further include a casing and a battery core and a non-aqueous electrolyte contained in the casing, and the battery core includes a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode.
  • the preparation of the positive electrode sheet, the negative electrode sheet, and the separator of the lithium ion battery and the assembly of the lithium ion battery may employ various methods conventionally used by those skilled in the art, and the present disclosure is not particularly limited thereto.
  • the weight ratio of the package to the lithium ion battery electrolyte is 1: (4 ⁇ ) 99); Preferably, the weight ratio of the package to the lithium ion battery electrolyte is 1: (5-19).
  • a piece of polyethylene terephthalate film having a rectangular thickness of 50 ⁇ m and a tensile strength of 3000 MPa is used as an outer layer film, and is folded and then hot-pressed to form a pre-formed film bag having a seal on one side; the inside of the seal is preset with a thickness a polyethylene film strip having a softening temperature of 120 ° C at 30 ⁇ m; after injecting 1.2 g of tris-(2,2,2)-trifluoroethyl phosphite into the pre-formed film bag, heat-sealing the seal to prepare the seal The package of this embodiment.
  • LiCoO 2 was uniformly mixed with acetylene black and polyvinylidene fluoride in a weight ratio of 85:10:5, and a solvent was added to prepare a positive electrode slurry, which was uniformly coated on an aluminum foil, dried, and rolled to obtain a positive electrode sheet.
  • P15B graphite is mixed with styrene-butadiene rubber (SBR) and carboxymethyl cellulose (CMC) in a weight ratio of 100:3:2, and a solvent is added to prepare a negative electrode slurry, which is uniformly coated on copper foil, dried and The roll pressure is worth the negative electrode sheet.
  • SBR styrene-butadiene rubber
  • CMC carboxymethyl cellulose
  • FEC Fluorine ethylene carbonate
  • DEC diethyl carbonate
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • VC ethylene carbonate
  • Soft pack battery preparation The positive electrode sheet, the negative electrode sheet, the electrolyte solution prepared in the present embodiment and the Celgard 2300 type microporous membrane were assembled into a soft pack battery; and the argon gas glove box was added to the step (1) of the present example.
  • the package package is sealed to prepare a lithium ion battery containing the package of the present embodiment.
  • a piece of polyethylene terephthalate film having a rectangular thickness of 60 ⁇ m and a tensile strength of 4000 MPa is used as an outer layer film, and is folded into a pre-formed film bag having a seal on one side; the inside of the seal is preset with a thickness. It is a polyethylene film strip having a softening temperature of 120 ° C of 20 ⁇ m; after injecting 0.1 g of ammonium carbonate and 1.3 g of trimethyl phosphate into the pre-formed film bag, the sealing is prepared by heat sealing to obtain the package of the present embodiment.
  • a piece of polyethylene terephthalate film having a rectangular thickness of 80 ⁇ m and a tensile strength of 4000 MPa is used as an outer layer film, and is folded and then hot-pressed to form a pre-formed film bag having a seal on one side; the inside of the seal is preset with a thickness a polyethylene film strip having a softening temperature of 120 ° C of 20 ⁇ m; after injecting 0.3 g of acetic anhydride and 1.1 g of dimethyl methyl phosphate into the pre-formed film bag, the sealing is prepared by heat sealing to obtain the package of the embodiment. .
  • a piece of polyethylene terephthalate film having a rectangular thickness of 80 ⁇ m and a tensile strength of 4000 MPa is used as an outer layer film, and is folded and then hot-pressed to form a pre-formed film bag having a seal on one side; the inside of the seal is preset with a thickness It is a polyethylene film strip having a softening temperature of 120 ° C of 10 ⁇ m; after injecting 0.2 g of sodium hydrogencarbonate and 1.2 g of phosphazene into the pre-formed film bag, the sealing is prepared by heat sealing to obtain the package of the present embodiment.
  • a polyurethane film having a rectangular thickness of 70 ⁇ m and a tensile strength of 2000 MPa was used as an outer layer film, and a pre-formed film bag having a seal on one side was formed by folding and folding, and a softening temperature of 100 ° C was set on the inner side of the seal.
  • a polyvinyl chloride film strip after injecting 0.2 g of malonic acid and 1.3 g of tris-(2,2,2)-trifluoroethyl phosphite into the pre-formed film bag, heat-sealing the seal to prepare the preparation The package of the embodiment.
  • a polyimide film having a rectangular thickness of 60 ⁇ m and a tensile strength of 4000 MPa was used as an outer layer film, and a pre-formed film bag having a seal on one side was formed by folding and folding, and a softening temperature of 20 ⁇ m was preset inside the seal.
  • a polypropylene film having a rectangular thickness of 60 ⁇ m and a tensile strength of 500 MPa was used as an outer layer film, and a pre-formed film bag having a seal was formed by folding and hot-pressing; a thickness of 20 ⁇ m was preset inside the seal to a softening temperature of 120 ° C. a polyethylene film strip; after injecting 0.1 g of ammonium carbonate and 1.2 g of tris-(2,2,2)-trifluoroethyl phosphite into the pre-formed film bag, the seal is prepared by heat sealing to obtain the present embodiment.
  • the package of the example is
  • a polypropylene film having a rectangular thickness of 60 ⁇ m and a tensile strength of 500 MPa is used as an outer layer film, and is folded and then hot-pressed to form a pre-formed film bag having a seal on one side; the inside of the seal is preset to have a thickness of 20 ⁇ m and a softening temperature of 100 ° C. a polyvinyl chloride film strip; after injecting 0.1 g of ammonium carbonate and 1.2 g of tris-(2,2,2)-trifluoroethyl phosphite into the pre-formed film bag, heat-sealing the seal to prepare the preparation The package of the embodiment.
  • the preparation of the positive electrode sheet, the negative electrode sheet, the electrolytic solution, and the battery assembly were the same as in Example 1, and a lithium ion battery containing no package was prepared in the present comparative example.
  • a piece of polyethylene film having a rectangular thickness of 90 ⁇ m and a tensile strength of 6 MPa was folded in half, and a pre-formed film bag having a seal on one side was prepared by hot press molding; 0.2 g of sodium hydrogencarbonate and 1.2 g of tri-(2, 2, 2)- The trifluoroethyl phosphite was injected into the pre-formed film bag; the seal of the pre-formed film bag was sealed by heat sealing to prepare a package of the present comparative example.
  • a piece of polyethylene terephthalate film having a rectangular thickness of 90 ⁇ m and a tensile strength of 4000 MPa was folded in half, and then formed into a pre-formed film bag having a seal on one side by thermoforming; 0.2 g of sodium hydrogencarbonate and 1.2 g of tri-( 2,2,2)-trifluoroethyl phosphite was injected into the pre-formed film bag; the seal of the pre-formed film bag was sealed by heat sealing to prepare a package of the present comparative example.
  • test examples were used to determine the full charge internal resistance, battery capacity, and safety performance of the lithium ion batteries obtained in Examples 1-8 and Comparative Examples 1-3.
  • Full charge internal resistance test Lithium-ion battery is charged to 100% SOC at a constant current of 0.1C under conditions of 25 ⁇ 3°C. After charging is completed, it is allowed to stand for 4h, then the internal resistance meter is used to test the 1000Hz lithium-ion battery. The internal resistance is measured by the average value of the 1000 Hz internal resistance of all lithium-ion batteries tested to measure the full charge internal resistance of the lithium ion battery. The specific results are shown in Table 1.
  • Capacity test charge at a constant current of 0.5C for 2h at 25 ⁇ 3°C, then perform constant voltage charging until the current drops to 0.05C; then let stand for 5min, then discharge in a constant current mode (where the discharge current For 1 C, the discharge time was 1 h), the discharge capacity of the lithium ion battery was tested after discharge, and the average value of the 1 C discharge capacity of all the lithium ion batteries obtained by the test was taken to measure the capacity of the lithium ion battery. The specific results are shown in Table 1.
  • Safety tests are divided into acupuncture test, furnace temperature test and extrusion test.
  • Lithium-ion battery was charged to 100% SOC at a constant current of 0.1 C under conditions of 25 ⁇ 3 ° C, and a needle punch test was conducted through a lithium ion battery using a needle having a diameter of 8 mm;
  • Furnace temperature test Lithium-ion battery was charged to 100% SOC at a constant current of 0.1 C at 25 ⁇ 2 ° C, and the sample was placed in an oven at a rate of 5 ⁇ 2 ° C per minute to 170 ⁇ 2 °C is turned to constant temperature and kept for 60 minutes;
  • Extrusion test Lithium-ion battery was charged to 100% SOC at a constant current of 0.1 C at 25 ⁇ 3 ° C, and placed in an extrusion apparatus (pressure of 50 tons) for extrusion test;
  • the judgment standard for lithium-ion battery safety test is: no explosion, no fire is passed, and the number of lithium-ion batteries that pass the safety test can be used for analysis. The specific results are shown in Table 1.
  • the flame-retardant substance in the core of the capsule increases the safety of the lithium-ion battery and reduces the occurrence of safety accidents, especially the lithium-ion battery in which the capsule core is decomposed with carbon dioxide-decomposing substances, and the battery can be broken before the heat is out of control.
  • the obtained lithium ion battery has better safety performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本公开提供了一种阻燃封装包,包括封装包壁和包裹在封装包壁内的阻燃物质,所述封装包壁包括具有封口且不溶于电解质的外层膜和封闭所述封口的密封膜条;所述封装包壁能够在低于100℃的温度下保持结构稳定以将所述阻燃物质包裹在所述封装包壁内,且所述密封膜条能够在100~170℃发生软化并破裂,从而导致所述封装包壁破裂并使得所述封装包壁内的阻燃物质释放至所述封装包壁外。本公开还提供了一种所述阻燃封装包的制备方法和含有本公开提供的封装包的锂离子电池,所述锂离子电池能够在热失控前将阻燃物质释放入锂电池中,极大地减少安全事故的发生。

Description

一种阻燃封装包及其锂离子电池
本申请要求于2017年03月31日提交中国专利局、申请号为201710210733.1、发明名称为“一种阻燃封装包及其锂离子电池”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池技术领域,具体地,涉及一种阻燃封装包及其锂离子电池。。
背景技术
锂离子电池在新能源汽车领域的应用日趋广泛,然而锂离子电池安全事故的报道也明显增多,锂离子电池发生安全事故的起因一般为机械滥用导致的电池内部短路、长期在高温环境中或者过充过放导致的电池热失控等。CN201310486020.X中公开了一种通过在电池内置含磷系阻燃添加剂的封装胶囊,在锂离子电池发生热失控时,封装胶囊的囊壁发生破裂,使得封装胶囊的囊芯材料即磷系阻燃添加剂被释放出来,以实现阻燃并改善锂离子电池的安全性能。
但是含磷系阻燃添加剂的封装胶囊并不能在电池热失控前就消除电池热失控的危险,仅能延缓热失控的过程,依然有部分含磷系阻燃添加剂封装胶囊的测试电池发生起火。含磷系阻燃添加剂的封装胶囊不能有效组织热失控的原因在于,磷系阻燃添加剂的阻燃机制是自由基阻燃机理,磷系阻燃添加剂的沸点一般为200℃,这就意味着电池已经发生热失控了阻燃剂才会发生作用。
因此,亟需一种新的技术方案来消除锂离子电池热失控的危险。
发明内容
本公开的目的是提供一种锂电子电池,该锂电子电池发生热失控的概率极低。
为了实现上述目的,本公开提供一种阻燃封装包,包括封装包壁和包裹在封装包壁内的阻燃物质,所述封装包壁包括具有封口且不溶于电解质的外 层膜和封闭所述封口的密封膜条;所述封装包壁能够在低于100℃的温度下保持结构稳定以将所述阻燃物质包裹在所述封装包壁内,且所述密封膜条能够在100~170℃发生软化并破裂,从而导致所述封装包壁破裂并使得所述封装包壁内的阻燃物质释放至所述封装包壁外。
本公开还提供了一种阻燃封装包的制备方法,该制备方法包括如下步骤:
S1、将一片至少部分边缘结合有密封膜条的外层膜对折贴合,然后部分封闭对应边缘,同时预留未封闭的封口,形成预制膜袋;或者,将两片至少部分边缘结合有密封膜条的外层膜彼此贴合,然后部分封闭对应边缘,同时预留未封闭的封口,形成预制膜袋;
其中,未封闭的封口(3)上设置有处于非封闭状态的密封膜条(2);
所述处于非封闭状态的密封膜条(2)的部分或全部仅与所述未封闭的封口(3)的一侧内表面结合,而不与所述未封闭的封口(3)的另外一侧内表面结合;
S2、在所述预制膜袋中填入阻燃物质;
S3、通过热压封闭所述未封闭的封口(3),形成封装包壁;
其中,所述封装包壁能够在低于100℃的温度下保持结构稳定以将所述阻燃物质(4)包裹在所述封装包壁内,且所述密封膜条(2)能够在100~170℃发生软化并破裂,从而导致所述封装包壁破裂并使得所述封装包壁内的阻燃物质释放至所述封装包壁外。
本公开还提供了如上所述的制备方法制备得到的阻燃封装包。
本公开还提供了一种含有上述封装包的锂离子电池。所述锂离子电池除了内含有上述封装包外,还可以包括壳体和容纳于壳体内的电芯、非水电解液,电芯包括正极、负极和介于正极与负极之间的隔膜。
通过上述技术方案,本公开提供的封装包壁的密封膜条封闭所述封口制备得到封装包,所述封装包壁可以在100~170℃条件下发生软化,在到达电池大概率发生热失控的温度前使封装包壁发生破裂释放出囊芯内的阻燃物质,从而增加锂离子电池的安全性,减少安全事故的发生。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是封装包横截面结构图。
附图标记说明
1    外层膜                    2   密封膜条
3    封口                      4   阻燃物质
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
在本公开中,在未作相反说明的情况下,使用的方位词如“内、外”是指封装包的内外。
本公开第一方面提供了一种阻燃封装包,包括封装包壁和包裹在封装包壁内的阻燃物质4,所述封装包壁包括具有封口3且不溶于电解质的外层膜1和封闭所述封口3的密封膜条2;所述封装包壁能够在低于100℃的温度下保持结构稳定以将所述阻燃物质4包裹在所述封装包壁内,且所述密封膜条2能够在100~170℃发生软化并破裂,从而导致所述封装包壁破裂并使得所述封装包内的阻燃物质释放至所述封装包外。
通过上述技术方案,所述密封膜条可以通过热熔接在所述外层膜的内侧封闭所述封装包壁,使所述封装包壁可以在100~170℃条件下发生熔融,在到达电池大概率发生热失控的温度前使封装包壁发生破裂释放出囊芯内的阻 燃物质,从而增加锂离子电池的安全性,减少安全事故的发生。
根据本公开第一方面,为了保持封装包正常使用情况下的稳定性,所述外层膜的拉伸强度可以高于所述密封膜条的拉伸强度;所述外层膜的拉伸强度可以为50~4000MPa;所述密封膜条的软化温度可以为100~170℃。
所述外层膜的拉伸强度是按照GBT13022-1991《塑料薄膜拉伸性能试验方法》的规定,在湿度为20%、温度为25℃且拉伸速度为25mm/min的条件下测定的。所述密封膜条的软化温度是按照GB/T1633《热塑性塑料软化温度(VST)的测定》的规定,在使用10N的力、加热速率为50℃/h的条件下测定的。
根据本公开第一方面,为了保持所述封装包的性能,所述外层膜的材料可以选自聚对苯二甲酸乙二醇酯、聚氨酯、聚酰亚胺和聚丙烯中的至少一种;所述密封膜条的材料可以选自聚乙烯、聚氯乙烯和烯烃共聚物中的至少一种;选用上述材料制成的高分子复合膜的拉伸强度和密封膜条软化温度适合于制作封装包。
根据本公开的第一方面,所述外层膜1形成为具有封口3且为袋状结构的预制膜袋并装填有所述阻燃物质4,并且所述封口3的两侧内表面结合在所述密封膜条2的两侧外表面上;
优选情况下,所述预制膜袋为一片所述外层膜对折贴合并部分封闭对应边缘同时预留未封闭的封口3后形成的预制膜袋;
或者,所述预制膜袋为两片所述外层膜彼此贴合并部分封闭对应边缘同时预留未封闭的封口3后形成的预制膜袋;
其中,未封闭的封口3上设置有处于非封闭状态的密封膜条2;
所述处于非封闭状态的密封膜条2的部分或全部仅与所述未封闭的封口3的一侧内表面结合,而不与所述未封闭的封口3的另外一侧内表面结合。
根据本公开第一方面,为了防止电池中溶剂挥发闪燃,所述阻燃物质优选磷酸三甲酯、甲基磷酸二甲酯、三-(2,2,2)-三氟乙基亚磷酸酯、三-(2,2,2)-三氟乙基磷酸酯和膦腈中的至少一种;以所述封装包的重量为100%计,所述阻燃物质的重量占比为10-50%;该用量的三-(2,2,2)-三氟乙基亚磷酸酯可以达到较好的阻燃效果,并且三-(2,2,2)-三氟乙基亚磷酸酯不影响锂离子电池的 安全性。
根据本公开第一方面,作为本公开的另一种优选的技术方案,为了使电池在热失控前能够被涨破失效,所述阻燃物质还含有可在100-130℃分解产生二氧化碳的物质;优选地,所述以所述封装包的重量为100%计,所述能够分解产生二氧化碳物质的重量占比可以为10~50%。
根据本公开第一方面,所述能够分解产生二氧化碳的物质可以选自乙酸酐、碳酸铵、碳酸氢钠、丙二酸和碱式碳酸铜中的至少一种。
本公开第二方面提供了一种阻燃封装包的制备方法,该制备方法包括如下步骤:
S1、将一片至少部分边缘结合有密封膜条的外层膜对折贴合,然后部分封闭对应边缘,同时预留未封闭的封口,形成预制膜袋;或者,将两片至少部分边缘结合有密封膜条的外层膜彼此贴合,然后部分封闭对应边缘,同时预留未封闭的封口,形成预制膜袋;
其中,未封闭的封口3上设置有处于非封闭状态的密封膜条2;
所述处于非封闭状态的密封膜条2的部分或全部仅与所述未封闭的封口3的一侧内表面结合,而不与所述未封闭的封口3的另外一侧内表面结合;
S2、在所述预制膜袋中填入阻燃物质;
S3、通过热压封闭所述未封闭的封口3,形成封装包壁;
其中,所述封装包壁能够在低于100℃的温度下保持结构稳定以将所述阻燃物质4包裹在所述封装包壁内,且所述密封膜条2能够在100~170℃发生软化并破裂,从而导致所述封装包壁破裂并使得所述封装包壁内的阻燃物质释放至所述封装包壁外。
根据本公开第二方面,为了保持封装包正常使用情况下的稳定性,所述外层膜的拉伸强度可以高于所述密封膜条的拉伸强度;所述外层膜的拉伸强度可以为50~4000MPa;所述密封膜条的软化温度可以为100~170℃。
根据本公开第二方面,为了保持所述封装包的性能,所述外层膜的材料可以选自聚对苯二甲酸乙二醇酯、聚氨酯、聚酰亚胺和聚丙烯中的至少一种;所述密封膜条的材料可以选自聚乙烯、聚氯乙烯和烯烃共聚物中的至少一种;选用上述材料制成的高分子复合膜的拉伸强度和密封膜条软化温度适合于制 作封装包。
根据本公开第二方面,为了防止电池中溶剂挥发闪燃,所述阻燃物质优选磷酸三甲酯、甲基磷酸二甲酯、三-(2,2,2)-三氟乙基亚磷酸酯、三-(2,2,2)-三氟乙基磷酸酯和膦腈中的至少一种;以所述封装包的重量为100%计,所述阻燃物质的重量占比为10-50%;该用量的三-(2,2,2)-三氟乙基亚磷酸酯可以达到较好的阻燃效果,并且三-(2,2,2)-三氟乙基亚磷酸酯不影响锂离子电池的安全性。
根据本公开第二方面,作为本公开的另一种优选的技术方案,为了使电池在热失控前能够被涨破失效,所述阻燃物质还含有可在100~130℃分解产生二氧化碳的物质;优选地,所述以所述封装包的重量为100%计,所述能够分解产生二氧化碳物质的重量占比可以为10~50%。
根据本公开第二方面,所述能够分解产生二氧化碳的物质可以选自乙酸酐、碳酸铵、碳酸氢钠、丙二酸和碱式碳酸铜中的至少一种。
本公开第三方面提供了一种使用如上所述的制备方法制备得到的阻燃封装包。
本公开第四方面提供了一种含有上述封装包的锂离子电池。
所述锂离子电池除了内含有上述封装包外,还可以包括壳体和容纳于壳体内的电芯、非水电解液,电芯包括正极、负极和介于正极与负极之间的隔膜。其中锂离子电池的正极片、负极片和隔膜的制备以及锂离子电池的组装可以采用本领域技术人员常规使用的各种方法,本公开对此没有特别的限制。
根据本公开第四方面,为了使锂离子电池的安全性能提高,同时对锂离子电池的能量密度不产生大的影响,所述封装包与锂离子电池电解液的重量比为1:(4~99);优选地,所述封装包与锂离子电池电解液的重量比为1:(5~19)。
下面通过实施例进一步说明本公开,但是本公开并不因此受到任何限制。
实施例1
(1)封装包的制备:
将一片长方形厚度为50μm拉伸强度为3000MPa的聚对苯二甲酸乙二醇 酯膜作为外层膜,对折后热压成型制成一边具有封口的预制膜袋;所述封口内侧预置有厚度为30μm软化温度为120℃的聚乙烯膜条;向所述预制膜袋中注入1.2g三-(2,2,2)-三氟乙基亚磷酸酯后,热熔接封闭所述封口制备得到本实施例的封装包。
(2)正极片的制备:
将LiCoO 2与乙炔黑、聚偏氟乙烯按85:10:5的重量比混合均匀,加入溶剂,制成正极浆料,均匀涂布在铝箔上,干燥并辊轧制得正极片。
(3)负极片的制备:
将P15B石墨与丁苯橡胶(SBR)、羧甲基纤维素(CMC)以100:3:2的重量比混合均匀,加入溶剂,制成负极浆料,均匀涂布在铜箔上,干燥并辊压值得负极片。
(4)电解液的制备:
氟代碳酸乙烯酯(FEC)、碳酸二乙酯(DEC)、碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)、碳酸乙烯酯(VC)以5:45:25:23:2的质量比混合,在该混合溶剂中,加入溶质LiPF6制成1.0mol/L的电解液。
(5)电池的装配
软包电池制备:将本实施例中制备得到的正极片、负极片、电解液与Celgard2300型微孔隔膜组装成软包电池;在氩气手套箱中加入本实施例第(1)步骤中配制的封装包,密封后制备得到本实施例的含有封装包的锂离子电池。
实施例2
(1)封装包的制备:
将一片长方形厚度为60μm拉伸强度为4000MPa的聚对苯二甲酸乙二醇酯膜作为外层膜,对折后热压成型制成一边具有封口的预制膜袋;所述封口内侧预置有厚度为20μm软化温度为120℃的聚乙烯膜条;向所述预制膜袋中注入0.1g碳酸铵与1.3g磷酸三甲酯后,热熔接封闭所述封口制备得到本实施例的封装包。
(2)正极片、负极片、电解液的制备和电池装配与实施例1相同,制备 得到本实施例的含有封装包的锂离子电池。
实施例3
(1)封装包的制备:
将一片长方形厚度为80μm拉伸强度为4000MPa的聚对苯二甲酸乙二醇酯膜作为外层膜,对折后热压成型制成一边具有封口的预制膜袋;所述封口内侧预置有厚度为20μm软化温度为120℃的聚乙烯膜条;向所述预制膜袋中注入0.3g乙酸酐与1.1g甲基磷酸二甲酯后,热熔接封闭所述封口制备得到本实施例的封装包。
(2)正极片、负极片、电解液的制备和电池装配与实施例1相同,制备得到本实施例的含有封装包的锂离子电池。
实施例4
(1)封装包的制备:
将一片长方形厚度为80μm拉伸强度为4000MPa的聚对苯二甲酸乙二醇酯膜作为外层膜,对折后热压成型制成一边具有封口的预制膜袋;所述封口内侧预置有厚度为10μm软化温度为120℃的聚乙烯膜条;向所述预制膜袋中注入0.2g碳酸氢钠与1.2g膦腈后,热熔接封闭所述封口制备得到本实施例的封装包。
(2)正极片、负极片、电解液的制备和电池装配与实施例1相同,制备得到本实施例的含有封装包的锂离子电池。
实施例5
(1)封装包的制备:
将一片长方形厚度为70μm拉伸强度为2000MPa的聚氨酯膜作为外层膜,对折后热压成型制成一边具有封口的预制膜袋;所述封口内侧预置有厚度为20μm软化温度为100℃的聚氯乙烯膜条;向所述预制膜袋中注入0.2g丙二酸与1.3g三-(2,2,2)-三氟乙基亚磷酸酯后,热熔接封闭所述封口制备得到本实施例的封装包。
(2)正极片、负极片、电解液的制备和电池装配与实施例1相同,制备得到本对比例的含有封装包的锂离子电池。
实施例6
(1)封装包的制备:
将一片长方形厚度为60μm拉伸强度为4000MPa的聚酰亚胺膜作为外层膜,对折后热压成型制成一边具有封口的预制膜袋;所述封口内侧预置有厚度为20μm软化温度为120℃的聚乙烯膜条;向所述预制膜袋中注入0.1g碳酸铵与1.2g三-(2,2,2)-三氟乙基亚磷酸酯后,热熔接封闭所述封口制备得到本实施例的封装包。
(2)正极片、负极片、电解液的制备和电池装配与实施例1相同,制备得到本实施例的含有封装包的锂离子电池。
实施例7
(1)封装包的制备:
将一片长方形厚度为60μm拉伸强度为500MPa的聚丙烯膜作为外层膜,对折后热压成型制成一边具有封口的预制膜袋;所述封口内侧预置有厚度为20μm软化温度为120℃的聚乙烯膜条;向所述预制膜袋中注入0.1g碳酸铵与1.2g三-(2,2,2)-三氟乙基亚磷酸酯后,热熔接封闭所述封口制备得到本实施例的封装包。
(2)正极片、负极片、电解液的制备和电池装配与实施例1相同,制备得到本实施例的含有封装包的锂离子电池。
实施例8
(1)封装包的制备:
将一片长方形厚度为60μm拉伸强度为500MPa的聚丙烯膜作为外层膜,对折后热压成型制成一边具有封口的预制膜袋;所述封口内侧预置有厚度为20μm软化温度为100℃的聚氯乙烯膜条;向所述预制膜袋中注入0.1g碳酸铵与1.2g三-(2,2,2)-三氟乙基亚磷酸酯后,热熔接封闭所述封口制备得到本 实施例的封装包。
(2)正极片、负极片、电解液的制备和电池装配与实施例1相同,制备得到本实施例的含有封装包的锂离子电池。
对比例1
正极片、负极片、电解液的制备和电池装配与实施例1相同,制备得到本对比例的不含有封装包的锂离子电池。
对比例2
(1)封装包的制备:
将一片长方形厚度为90μm拉伸强度为6Mpa的聚乙烯膜对折后,热压成型制备成一侧具有封口的预制膜袋;将0.2g碳酸氢钠与1.2g三-(2,2,2)-三氟乙基亚磷酸酯注入预制膜袋中;热封封闭所述预制膜袋的封口,制备得到本对比例的封装包。
(2)正极片、负极片、电解液的制备和电池装配与实施例1相同,制备得到本对比例的含有封装包的锂离子电池。
对比例3
(1)封装包的制备:
将一片长方形厚度为90μm拉伸强度为4000Mpa的聚对苯二甲酸乙二醇酯膜对折后,热压成型制备成一侧具有封口的预制膜袋;将0.2g碳酸氢钠与1.2g三-(2,2,2)-三氟乙基亚磷酸酯注入预制膜袋中;热封封闭所述预制膜袋的封口,制备得到本对比例的封装包。
(2)正极片、负极片、电解液的制备和电池装配与实施例1相同,制备得到本对比例的含有封装包的锂离子电池。
测试实施例1
本测试实施例用于测定实施例1-8与对比例1-3中所获得的锂离子电池的满充内阻、电池容量和安全性能。
满充内阻测试:在25±3℃的条件下,以0.1C的恒流电流将锂离子电池充电至100%SOC,待充电完成后静置4h,然后采用内阻仪测试1000Hz锂离 子电池的内阻,取测试的所有锂离子电池的1000Hz内阻的平均值来衡量锂离子电池的满充内阻。具体结果见表1。
容量测试:在25±3℃的条件下,以0.5C恒流充电2h,然后再进行恒压充电至电流降为0.05C;接着静置5min,然后以恒流放电的方式(其中,放电电流为1C,放电时间为1h)进行放电后测试锂离子电池的放电容量,取测试得到的所有锂离子电池的1C放电容量的平均值来衡量锂离子电池的容量。具体结果见表1。
安全测试分为针刺测试、炉温测试和挤压测试。
针刺测试:在25±3℃的条件下,以0.1C的恒流电流将锂离子电池充电至100%SOC,采用直径为8mm的针贯穿锂离子电池进行针刺测试;
炉温测试:在25±2℃的条件下,以0.1C的恒流电流将锂离子电池充电至100%SOC,将样品放入烤箱中以5±2℃每分钟的速率升温至170±2℃转为恒温并保持60分钟;
挤压测试:在25±3℃的条件下,以0.1C的恒流电流将锂离子电池充电至100%SOC,将其置于挤压设备中(其压力为50吨)进行挤压测试;
锂离子电池安全测试的判断标准为:无爆炸、无起火即为通过,统计通过安全测试的锂离子电池的个数可以用于分析。具体结果见表1。
表1
Figure PCTCN2018071493-appb-000001
经表1中实施例1-8与对比例1-3比较可以看出本公开制备得到的带封装包的锂离子电池,在到达电池大概率发生热失控的温度前,使封装包发生破裂释放出囊芯内的阻燃物质,从而增加锂离子电池的安全性,减少安全事故的发生,尤其是囊芯添加有分解产生二氧化碳的物质的锂离子电池,可以在热失控之前将电池涨破,得到的锂离子电池安全性能更优。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。例如。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (27)

  1. 一种阻燃封装包,包括封装包壁和包裹在封装包壁内的阻燃物质(4),其特征在于,所述封装包壁包括具有封口(3)且不溶于电解质的外层膜(1)和封闭所述封口(3)的密封膜条(2);所述封装包壁能够在低于100℃的温度下保持结构稳定以将所述阻燃物质(4)包裹在所述封装包壁内,且所述密封膜条(2)能够在100~170℃发生软化并破裂,从而导致所述封装包壁破裂并使得所述封装包壁内的阻燃物质释放至所述封装包壁外。
  2. 根据权利要求1所述的阻燃封装包,其中,所述外层膜(1)的拉伸强度高于所述密封膜条(2)的拉伸强度;所述外层膜(1)的拉伸强度为50~4000MPa。
  3. 根据权利要求1所述的阻燃封装包,其中,所述密封膜条(2)的软化温度为100~170℃。
  4. 根据权利要求1所述的阻燃封装包,其中,所述外层膜(1)的材料选自聚对苯二甲酸乙二醇酯、聚氨酯、聚酰亚胺和聚丙烯中的至少一种。
  5. 根据权利要求4所述的阻燃封装包,其中,所述密封膜条(2)的材料选自聚乙烯、聚氯乙烯和烯烃共聚物中的至少一种。
  6. 根据权利要求1所述的阻燃封装包,其中,形成所述外层膜(1)包括:具有封口(3)且为袋状结构的预制膜袋并装填有所述阻燃物质(4),并且所述封口(3)的两侧内表面结合在所述密封膜条(2)的两侧外表面上。
  7. 根据权利要求6所述的阻燃封装包,其中,所述预制膜袋为一片所述外层膜对折贴合并部分封闭对应边缘同时预留未封闭的封口(3)后形成的预制膜袋;
    或者,所述预制膜袋为两片所述外层膜彼此贴合并部分封闭对应边缘同时预留未封闭的封口(3)后形成的预制膜袋;
    其中,未封闭的封口(3)上设置有处于非封闭状态的密封膜条(2);
    所述处于非封闭状态的密封膜条(2)的部分或全部仅与所述未封闭的封口(3)的一侧内表面结合,而不与所述未封闭的封口(3)的另外一侧内表面结合。
  8. 根据权利要求1所述的阻燃封装包,其中,所述阻燃物质含有磷酸三甲酯、甲基磷酸二甲酯、三-(2,2,2)-三氟乙基亚磷酸酯、三-(2,2,2)-三氟乙基磷酸酯和膦腈中的至少一种。
  9. 根据权利要求8所述的阻燃封装包,其中,以所述封装包的重量为100%计,所述阻燃物质的重量占比为10~90%。
  10. 根据权利要求1所述的阻燃封装包,其中,所述阻燃物质还含有能 够在100-130℃分解产生二氧化碳的物质。
  11. 根据权利要求10所述的阻燃封装包,其中,以所述封装包的重量为100%计,所述能够分解产生二氧化碳物质的重量占比为10~80%。
  12. 根据权利要求11所述的阻燃封装包,其中,所述能够分解产生二氧化碳的物质选自乙酸酐、碳酸铵、碳酸氢钠、丙二酸和碱式碳酸铜中的至少一种。
  13. 一种阻燃封装包的制备方法,其特征在于,该制备方法包括如下步骤:
    S1、将一片至少部分边缘结合有密封膜条的外层膜对折贴合,然后部分封闭对应边缘,同时预留未封闭的封口,形成预制膜袋;或者,将两片至少部分边缘结合有密封膜条的外层膜彼此贴合,然后部分封闭对应边缘,同时预留未封闭的封口,形成预制膜袋;
    其中,未封闭的封口(3)上设置有处于非封闭状态的密封膜条(2);
    所述处于非封闭状态的密封膜条(2)的部分或全部仅与所述未封闭的封口(3)的一侧内表面结合,而不与所述未封闭的封口(3)的另外一侧内表面结合;
    S2、在所述预制膜袋中填入阻燃物质;
    S3、通过热压封闭所述未封闭的封口(3),形成封装包壁;
    其中,所述封装包壁能够在低于100℃的温度下保持结构稳定以将所述 阻燃物质(4)包裹在所述封装包壁内,且所述密封膜条(2)能够在100~170℃发生软化并破裂,从而导致所述封装包壁破裂并使得所述封装包壁内的阻燃物质释放至所述封装包壁外。
  14. 根据权利要求13所述的制备方法,其中,所述外层膜(1)的拉伸强度高于所述密封膜条(2)的拉伸强度。
  15. 根据权利要求14所述的制备方法,其中,所述外层膜(1)的拉伸强度为50~4000MPa。
  16. 根据权利要求13所述的制备方法,其中,所述密封膜条(2)的软化温度为100~170℃。
  17. 根据权利要求13所述的制备方法,其中,所述外层膜(1)的材料选自聚对苯二甲酸乙二醇酯、聚氨酯、聚酰亚胺和聚丙烯中的至少一种。
  18. 根据权利要求13所述的制备方法,其中,所述密封膜条(2)的材料选自聚乙烯、聚氯乙烯和烯烃共聚物中的至少一种。
  19. 根据权利要求13所述的制备方法,其中,所述阻燃物质含有磷酸三甲酯、甲基磷酸二甲酯、三-(2,2,2)-三氟乙基亚磷酸酯、三-(2,2,2)-三氟乙基磷酸酯和膦腈中的至少一种。
  20. 根据权利要求13所述的制备方法,其中,以所述封装包的重量为100%计,所述阻燃物质的重量占比为10~90%。
  21. 根据权利要求13所述的制备方法,其中,所述阻燃物质还含有能够在100-130℃分解产生二氧化碳的物质。
  22. 根据权利要求21所述的制备方法,其中,以所述封装包的重量为100%计,所述能够分解产生二氧化碳物质的重量占比为10~80%。
  23. 根据权利要求22所述的制备方法,其中,所述能够分解产生二氧化碳的物质选自乙酸酐、碳酸铵、碳酸氢钠、丙二酸和碱式碳酸铜中的至少一种。
  24. 一种阻燃封装包,其特征在于,所述阻燃封装包由权利要求13-23中任意一项所述的制备方法制备得到。
  25. 一种锂离子电池,其特征在于,包括如权利要求1-12或权利要求24中任意一项所述的阻燃封装包。
  26. 根据权利要求25所述的锂离子电池,其中,所述阻燃封装包与锂离子电池电解液的重量比为1:(4~99)。
  27. 根据权利要求26所述的锂离子电池,其中,所述阻燃封装包与锂离子电池电解液的重量比为1:(5~19)。
PCT/CN2018/071493 2017-03-31 2018-01-05 一种阻燃封装包及其锂离子电池 WO2018176980A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710210733.1 2017-03-31
CN201710210733.1A CN108666465A (zh) 2017-03-31 2017-03-31 一种阻燃封装包及其锂离子电池

Publications (1)

Publication Number Publication Date
WO2018176980A1 true WO2018176980A1 (zh) 2018-10-04

Family

ID=63674255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071493 WO2018176980A1 (zh) 2017-03-31 2018-01-05 一种阻燃封装包及其锂离子电池

Country Status (2)

Country Link
CN (1) CN108666465A (zh)
WO (1) WO2018176980A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114552013A (zh) * 2022-02-25 2022-05-27 蜂巢能源科技股份有限公司 一种阻燃电解液及其制备方法和应用
CN115160689A (zh) * 2022-06-29 2022-10-11 国网浙江省电力有限公司湖州供电公司 锂离子电池封装用阻燃材料及其制备方法和应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110433419B (zh) * 2019-06-28 2021-09-07 浙江南都电源动力股份有限公司 锂电热失控火灾抑制胶囊及锂离子电池
CN111584926A (zh) * 2020-05-07 2020-08-25 珠海冠宇动力电池有限公司 一种锂离子电池及其制备方法
CN116918167A (zh) * 2021-10-29 2023-10-20 宁德时代新能源科技股份有限公司 用于电池的缓释装置、包含其的二次电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073595A (ja) * 2008-09-22 2010-04-02 Nec Tokin Corp 非水電解質二次電池
CN103500806A (zh) * 2013-10-17 2014-01-08 宁德新能源科技有限公司 胶囊以及锂离子电池
CN105742728A (zh) * 2014-12-09 2016-07-06 北京有色金属研究总院 一种锂离子二次电池
US9461333B2 (en) * 2013-01-16 2016-10-04 Samsung Sdi Co., Ltd. Electrolytes for rechargeable lithium battery and rechargeable lithium battery comprising same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6572948B1 (en) * 2000-10-31 2003-06-03 3M Innovative Properties Company Fire stop device with rupturable element
US20090031659A1 (en) * 2005-01-24 2009-02-05 Rami Abraham Kalfon Evacuated Thermal Insulation Panel
CN101369640B (zh) * 2007-08-15 2010-06-09 联想(北京)有限公司 阻燃电池
KR20120058676A (ko) * 2010-11-05 2012-06-08 주식회사 엘지화학 안전성이 향상된 리튬 이차전지 및 전지팩
CN204946962U (zh) * 2015-09-11 2016-01-06 广州力柏能源科技有限公司 一种带有阻燃装置的电池包
CN105810859B (zh) * 2016-05-24 2018-03-20 宁德时代新能源科技股份有限公司 一种二次电池顶盖及二次电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073595A (ja) * 2008-09-22 2010-04-02 Nec Tokin Corp 非水電解質二次電池
US9461333B2 (en) * 2013-01-16 2016-10-04 Samsung Sdi Co., Ltd. Electrolytes for rechargeable lithium battery and rechargeable lithium battery comprising same
CN103500806A (zh) * 2013-10-17 2014-01-08 宁德新能源科技有限公司 胶囊以及锂离子电池
CN105742728A (zh) * 2014-12-09 2016-07-06 北京有色金属研究总院 一种锂离子二次电池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114552013A (zh) * 2022-02-25 2022-05-27 蜂巢能源科技股份有限公司 一种阻燃电解液及其制备方法和应用
CN114552013B (zh) * 2022-02-25 2023-08-22 蜂巢能源科技股份有限公司 一种阻燃电解液及其制备方法和应用
CN115160689A (zh) * 2022-06-29 2022-10-11 国网浙江省电力有限公司湖州供电公司 锂离子电池封装用阻燃材料及其制备方法和应用
CN115160689B (zh) * 2022-06-29 2023-09-29 国网浙江省电力有限公司湖州供电公司 锂离子电池封装用阻燃材料及其制备方法和应用

Also Published As

Publication number Publication date
CN108666465A (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
WO2018176980A1 (zh) 一种阻燃封装包及其锂离子电池
US10008702B2 (en) Pouch cell
CN202549958U (zh) 一种双隔膜锂离子电池
JP4649502B2 (ja) リチウムイオン二次電池
US8343669B2 (en) Electrochemical device
CN106941192B (zh) 锂离子二次电池
JP2018006071A (ja) リチウムイオン二次電池用負極
CN204946962U (zh) 一种带有阻燃装置的电池包
CN104140502A (zh) 一种锂离子电池隔膜用粘结剂、制备方法及使用该粘结剂的隔膜
EP3249734A1 (en) Lithium ion secondary battery
CN105529500A (zh) 一种安全锂离子动力电池的制造方法
EP3333957A1 (en) Lithium-ion secondary cell
JP7200944B2 (ja) 仕切り部材及び組電池
JP2005011540A (ja) 非水電解液二次電池
CN110010830A (zh) 一种锂电池隔膜
CN113506935A (zh) 电池模组用热蔓延防护板、电池模组和电池包
CN111276665A (zh) 一种软包装锂离子电池
CN108666453B (zh) 一种阻燃封装包及包含封装包的锂离子电池
JP7036554B2 (ja) シート材、二次電池および二次電池の製造方法
CN210778688U (zh) 软包锂电池封装结构
JP6663178B2 (ja) リチウムイオン二次電池
WO2023246704A1 (zh) 一种锂离子电池极片及其制备方法
CN113346123A (zh) 一种锂离子电池及其制备方法
WO2017169417A1 (ja) リチウムイオン二次電池
JP7043813B2 (ja) 仕切り部材及び組電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18777764

Country of ref document: EP

Kind code of ref document: A1