WO2018176797A1 - 显示面板、显示装置及显示面板的制作方法 - Google Patents

显示面板、显示装置及显示面板的制作方法 Download PDF

Info

Publication number
WO2018176797A1
WO2018176797A1 PCT/CN2017/105841 CN2017105841W WO2018176797A1 WO 2018176797 A1 WO2018176797 A1 WO 2018176797A1 CN 2017105841 W CN2017105841 W CN 2017105841W WO 2018176797 A1 WO2018176797 A1 WO 2018176797A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent electrode
transparent
substrate
electrode layer
liquid crystal
Prior art date
Application number
PCT/CN2017/105841
Other languages
English (en)
French (fr)
Inventor
雎长城
王龙
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/775,284 priority Critical patent/US10901274B2/en
Publication of WO2018176797A1 publication Critical patent/WO2018176797A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134336Matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials

Definitions

  • the present disclosure relates to a display panel, a display device, and a method of fabricating the display panel.
  • a transparent display device generally refers to a display device that can form a transparent display state so that a viewer can see a display image in the display device and a scene behind the display device.
  • One or more embodiments of the present disclosure provide a display panel, a display device, and a method of fabricating the display panel.
  • One or more embodiments of the present disclosure provide a display panel including a first substrate and a second substrate disposed opposite to each other, and a liquid crystal layer between the first substrate and the second substrate, wherein:
  • the first substrate includes a first transparent substrate, and a first transparent electrode layer disposed on a side of the first transparent substrate adjacent to the liquid crystal layer, the first transparent electrode layer including the first transparent electrode layer extending in a first direction a set of first transparent electrode lines, each of the first transparent electrode lines comprising a plurality of first transparent electrode portions, and a first transparent connection portion connecting adjacent first transparent electrode portions;
  • the second substrate includes a second transparent substrate, and a second transparent electrode layer disposed on a side of the second transparent substrate adjacent to the liquid crystal layer, the second transparent electrode layer including the second transparent electrode layer extending in the second direction a set of second transparent electrode lines, each of the second transparent electrode lines comprising a plurality of second transparent electrode portions, and a second transparent connection portion connecting adjacent second transparent electrode portions, the set of second transparent electrode lines
  • the second transparent electrode portion and the first transparent electrode portion of the set of first transparent electrode lines are disposed opposite to each other.
  • the first transparent substrate, the first transparent electrode layer, the second transparent substrate, and the second transparent electrode layer are all made of a transparent material, compared to conventional techniques.
  • the display panel does not need to provide an opaque structural layer such as a gate line, a data line, and a thin film transistor, thereby improving the light of the display device.
  • the transmittance improves the effect of the transparent display; compared with the conventional technology, the back side of the display panel does not need to be provided with a light guide plate, the thickness is small, and the light utilization rate is high; in addition, the structure of the first substrate is simplified, thereby making the manufacturing process It is simpler and has lower production costs.
  • the refractive indices of the first transparent substrate and the second transparent substrate are smaller than the refractive index of the liquid crystal layer.
  • the light source incident on the display panel can be totally reflected back and forth between the first transparent substrate and the second transparent substrate, thereby reducing light loss and improving light utilization.
  • the first transparent electrode layer has a refractive index of 1.34 to 2.06, and the second transparent electrode layer has a refractive index of 1.34 to 2.06.
  • the driving voltages of the set of first transparent electrode lines are the same, and the difference between the driving voltage of the set of second transparent electrode lines and the driving voltage of the set of first transparent electrode lines is sequentially decreased. Or increase in turn.
  • the electric field between the first transparent electrode portion and the second transparent electrode portion gradually increases in a direction away from the light source, so that the light transmittance of the liquid crystal layer gradually increases in a direction away from the light source, so that Compensation for the loss of light makes the brightness of the display panel more uniform.
  • the driving voltages of the set of second transparent electrode lines are in an arithmetic progression.
  • the first transparent electrode layer has a thickness of 40 to 300 nm
  • the second transparent electrode layer has a thickness of 40 to 300 nm.
  • the first transparent electrode layer and the second transparent electrode layer having the thickness have a good light transmittance and a moderate thickness, and the transparent display effect of the display panel is better.
  • the first transparent substrate has a thickness of 0.2 to 1.0 mm
  • the second transparent substrate has a thickness of 0.2 to 1.0 mm.
  • the first transparent substrate and the second transparent substrate having the thickness have a good light transmittance and a moderate thickness, and the transparent display of the display panel is better.
  • the liquid crystal layer includes a mesh body and liquid crystal molecules distributed in a mesh of the mesh body.
  • the liquid crystal molecules are distributed in the mesh of the mesh body, and when an electric field is generated between the first transparent electrode portion and the second transparent electrode portion, the liquid crystal molecules are deflected, which is limited by the mesh of the mesh body.
  • the deflection orientation of the liquid crystal molecules is disordered, so that the scattering of light by the liquid crystal molecules can be improved, thereby improving the light transmittance of the liquid crystal layer.
  • One or more embodiments of the present disclosure further provide a display device including the display panel of any of the foregoing aspects, and a light source disposed at one side of the display panel.
  • the display panel does not need to be provided with an opaque structure layer such as a gate line, a data line, and a thin film transistor, and the light transmittance of the display device is improved compared with the conventional technology, and the transparent display effect is improved. ; this In addition, the display device has a simplified structure, a small thickness, and a high light utilization rate.
  • One or more embodiments of the present disclosure also provide a method for fabricating a display panel, including:
  • Forming the first substrate comprising: sequentially forming a first transparent electrode layer on the first transparent substrate, the first transparent electrode layer comprising a set of first transparent electrode lines extending in the first direction, each first transparent
  • the electrode wire includes a plurality of first transparent electrode portions, and a first transparent connection portion connecting adjacent first transparent electrode portions;
  • Forming the second substrate comprising: sequentially forming a second transparent electrode layer on the second transparent substrate, the second transparent electrode layer comprising a set of second transparent electrode lines extending in the second direction, each second transparent
  • the electrode line includes a plurality of second transparent electrode portions, and a second transparent connection portion connecting adjacent second transparent electrode portions, the second transparent electrode portion of the set of second transparent electrode lines and the first transparent group
  • the first transparent electrode portions of the electrode lines are respectively disposed correspondingly;
  • the first substrate, the second substrate, and the liquid crystal are fabricated into a liquid crystal cell.
  • the display panel produced by the method of one or more embodiments of the present disclosure has improved light transmittance and a transparent display effect. Since it is not necessary to fabricate opaque structural layers such as gate lines, data lines, and thin film transistors, the fabrication process is relatively simple.
  • the forming the first substrate, the second substrate, and the liquid crystal into a liquid crystal cell comprises:
  • the heated mesh body, liquid crystal molecules, photosensitizer, and the first substrate and the second substrate are fabricated into a liquid crystal cell.
  • liquid crystal molecules are distributed in the mesh of the mesh body, and when an electric field is generated between the first transparent electrode portion and the second transparent electrode portion, the liquid crystal molecules are deflected due to the mesh of the mesh body.
  • the lattice function of the lattice is more confusing, so that the scattering of light by the liquid crystal molecules can be improved, thereby improving the light transmittance of the liquid crystal layer.
  • the manufacturing method further includes:
  • the refractive index of the second transparent electrode layer is adjusted.
  • the refractive indices of the first transparent electrode layer and the second transparent electrode layer By adjusting the refractive indices of the first transparent electrode layer and the second transparent electrode layer, scattering of light at the interface between the transparent substrate and the transparent electrode layer, the interface between the liquid crystal layer and the transparent electrode layer can be reduced, thereby improving the transparency of the display panel. display effect.
  • the adjusting the refractive index of the first transparent electrode layer comprises annealing the first transparent electrode layer
  • the adjusting the refractive index of the second transparent electrode layer comprises annealing the second transparent electrode layer.
  • the first transparent layer and the second transparent electrode layer which have been annealed have a good refractive index and can improve the light transmittance of the display panel.
  • the annealing treatment has a temperature of 200 to 400 ° C for a period of 15 to 120 minutes.
  • FIG. 1 is a schematic view of a display panel according to an embodiment of the present disclosure
  • FIG. 2 is a schematic view of a display panel according to another embodiment of the present disclosure.
  • FIG. 3 is a schematic view of a first transparent electrode layer according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic view of a second transparent electrode layer according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a liquid crystal layer of a display panel according to one or more embodiments of the present disclosure
  • FIG. 6 is another schematic diagram of a liquid crystal layer of a display panel according to one or more embodiments of the present disclosure.
  • FIG. 7 is a schematic flow chart of a method of fabricating a display panel according to one or more embodiments of the present disclosure.
  • a basic structure of a conventional transparent display device includes a transparent display panel, a light guide plate on the back side of the transparent display panel, and a light source on the light incident side of the light guide plate.
  • the transparent display panel includes a first substrate and a second substrate disposed opposite to each other, and a liquid crystal layer between the first substrate and the second substrate.
  • the first substrate includes a first transparent substrate, and a gate line, a data line, a Thin Film Transistor (TFT), and a pixel electrode on a side of the first transparent substrate adjacent to the liquid crystal layer; and the second substrate includes And a transparent substrate, and a common electrode on a side of the second transparent substrate adjacent to the liquid crystal layer.
  • TFT Thin Film Transistor
  • a transparent display device works by: light emitted from a light source is guided by a light guide plate and then incident on a transparent display panel, and an electric field generated between a pixel electrode of the first substrate and a common electrode of the second substrate causes a spatial re-occurrence of liquid crystal molecules. Arranged to change the direction of propagation of incident light so that an image can be displayed.
  • the above-mentioned technology has a defect in that an opaque structure layer such as a gate line, a data line, and a thin film transistor needs to be disposed on the first substrate, and for the self-luminous display device, a metal electrode or the like needs to be disposed for charge injection, thereby causing a transparent display device.
  • the light transmittance is low, and the transparent display effect is poor; in addition, the traces on the first substrate are more designed.
  • the structure is complicated and the production process is cumbersome.
  • One or more embodiments of the present disclosure provide a display panel, a display device, and a method of fabricating the display panel to improve the light transmittance of the display device and improve the effect of the transparent display.
  • One or more embodiments of the present disclosure are described in further detail below in conjunction with the exemplary embodiments.
  • a liquid crystal cell is an essential component of a display panel that includes a substrate and a liquid crystal layer between the substrates. After the liquid crystal cell is formed, a process such as bonding is required, and then a circuit board is added to form the liquid crystal cell as a display panel.
  • the terms "liquid crystal cell” and “display panel” are used interchangeably.
  • one or more embodiments of the present disclosure provide a display panel including a first substrate 1 and a second substrate 2 disposed opposite to each other, and located on the first substrate 1 and the second substrate 2 Between the liquid crystal layer 3.
  • the first substrate 1 includes a first transparent substrate 11 and a first transparent electrode layer 12 disposed on a side of the first transparent substrate 11 adjacent to the liquid crystal layer 3.
  • the first transparent electrode layer 12 includes a first transparent electrode layer 12 extending in a first direction.
  • a set of first transparent electrode lines 121 each including a plurality of first transparent electrode portions 122 and a first transparent connecting portion 123 connecting adjacent first transparent electrode portions 122.
  • the second substrate 2 includes a second transparent substrate 21, and a second transparent electrode layer 22 disposed on a side of the second transparent substrate 21 adjacent to the liquid crystal layer 3.
  • the second transparent electrode layer 22 includes a second transparent electrode layer 22 extending in the second direction.
  • a set of second transparent electrode lines 221 each of the second transparent electrode lines 221 includes a plurality of second transparent electrode portions 222, and a second transparent connecting portion 223 connecting adjacent second transparent electrode portions 222, the aforementioned group of second
  • the second transparent electrode portion 222 of the transparent electrode line 221 and the first transparent electrode portion 122 of the set of first transparent electrode lines 121 are disposed opposite to each other.
  • the first transparent substrate 11, the first transparent electrode layer 12, the second transparent substrate 21, and the second transparent electrode layer 22 are all made of a transparent material.
  • the display panel does not need to provide an opaque structure layer such as a gate line, a data line, and a thin film transistor, thereby improving the light transmittance of the display device and improving the effect of transparent display;
  • the back side of the panel does not need to be provided with a light guide plate, the thickness is small, and the light utilization rate is high; in addition, the structure of the first substrate 1 is simplified, so that the manufacturing process is simple and the production cost is low.
  • a set of first transparent electrode lines 121 of the first transparent electrode layer 12 extends in a first direction
  • a second transparent electrode layer 22 includes a set of second transparent electrode lines 221 along a second direction perpendicular to the first direction extends
  • the second transparent electrode portion 222 and the corresponding first transparent electrode portion 122 are respectively disposed opposite to each other, thereby avoiding electrical signals of the first transparent electrode layer 12 and the second transparent electrode layer 22 Crossing improves the display.
  • the specific types of the first transparent electrode layer 12 and the second transparent electrode layer 22 are not limited, and may be, for example, a first transparent electrode layer. 12 is a pixel electrode, and the second transparent electrode layer 22 is a common electrode; or, the first transparent electrode layer 12 is a common electrode, and the second transparent electrode layer 22 is a pixel electrode.
  • the refractive indices of the first transparent substrate 11 and the second transparent substrate 21 are smaller than the refractive index of the liquid crystal layer 3.
  • the refractive index of the first transparent electrode layer 12 may be 1.34 to 2.06, and the refractive index of the second transparent electrode layer 22 may be 1.34 to 2.06.
  • the first transparent electrode layer 12 and the second transparent electrode layer 22 having the refractive index have better light extraction efficiency, thereby improving light utilization efficiency.
  • the first transparent electrode layer 12 and the second transparent electrode layer 22 having a refractive index of 1.66 are used.
  • the driving voltages of the first transparent electrode lines 121 are the same, and the driving voltages of the second transparent electrode lines 221 and the driving voltages of the first transparent electrode lines 121 The difference is sequentially decreased or increased sequentially.
  • a set of first transparent electrode lines 121 on the first transparent substrate 11 is input with a pulse signal having a voltage range of 0 to 18 V as shown in FIG.
  • a set of second transparent electrode lines 221 sequentially input pulse signals having peak voltages of 0 V, -0.1 V, -0.3 V, -0.5 V, -0.7 V, and -0.9 V as shown in FIG.
  • the light source 4 is disposed at one end of the display panel that is close to the voltage difference between the first transparent electrode portion 122 and the second transparent electrode portion 222, that is, one end of the second transparent electrode line 221 whose display panel is close to the input driving voltage and whose peak value is 0V.
  • the electric field between the first transparent electrode portion 122 and the second transparent electrode portion 222 gradually increases in a direction away from the light source 4, so that the light transmittance of the liquid crystal layer 3 gradually increases in a direction away from the light source 4.
  • the driving voltages of the set of second transparent electrode lines 221 are in an arithmetic progression.
  • the driving voltage of the set of second transparent electrode lines 221 is a data driving voltage
  • the input voltage of the set of first transparent electrode lines 121 is a gate driving voltage.
  • the first transparent electrode layer 12 and the second transparent electrode increase as the thicknesses of the first transparent electrode layer 12 and the second transparent electrode layer 22 increase due to the effect of carrier concentration and lattice optimization.
  • the refractive index of the layer 22 gradually decreases, however, the thickness of the first transparent electrode layer 12 and the second transparent electrode layer 22 is too thick to increase the extinction coefficient and lower the transmittance.
  • the first transparent electrode layer 12 has a thickness of 40 to 300 nm
  • the second transparent electrode layer 22 has a thickness of 40 to 300 nm.
  • the layer 22 Adopting the first transparent electrode layer 12 and the second transparent electrode of the thickness
  • the layer 22 has a good light transmittance and a moderate thickness, and the transparent display of the display panel has a better effect.
  • the thickness of the first transparent electrode layer 12 and the second transparent electrode layer 22 is selected to be 200 nm.
  • the specific type of the material of the first transparent electrode layer 12 and the second transparent electrode layer 22 is not limited, and may be, for example, indium tin oxide, graphene, nano silver or nano carbon.
  • the first transparent substrate 11 has a thickness of 0.2 to 1.0 mm
  • the second transparent substrate 21 has a thickness of 0.2 to 1.0 mm.
  • the first transparent substrate 11 and the second transparent substrate 21 having the thickness have a good light transmittance and a moderate thickness, and the effect of transparent display of the display panel is better.
  • the specific type of the material of the first transparent substrate 11 and the second transparent substrate 21 is not limited, and may be, for example, glass, polyimide, polyethylene or polyethylene terephthalate.
  • the liquid crystal layer 3 includes a mesh body 31 and liquid crystal molecules 32 distributed in the mesh 311 of the mesh body 31.
  • the liquid crystal molecules 32 are deflected, and the liquid crystal molecules 32 are distributed in the mesh of the mesh main body 31, and are meshed.
  • the defining action of the mesh 311 of the main body 31 makes the deflection orientation of the liquid crystal molecules 32 more confusing, so that the scattering of the light by the liquid crystal molecules 32 can be improved, thereby improving the light transmittance of the liquid crystal layer 3.
  • the specific type of the mesh body 31 is not limited, and may be, for example, a polymer mesh body, which may be a polyphenylene ester mesh body, a polyurethane mesh body, a polyether network. Shaped body or epoxy mesh body.
  • the display panel further includes a first alignment layer between the first transparent substrate 11 and the liquid crystal layer 3, and between the second transparent substrate 21 and the liquid crystal layer 3.
  • the first alignment layer and the second alignment layer can guide the liquid crystal molecules 32 in the liquid crystal layer 3 to return to the original alignment state.
  • the display panel is a passively driven waveguide display panel;
  • the first transparent electrode layer 12 and the second transparent electrode layer 22 are made of indium tin oxide material and have a refractive index of 1.66.
  • the thickness is 200 nm, wherein the first transparent electrode layer 12 is a pixel electrode, and the second transparent electrode layer 22 is a common electrode;
  • the liquid crystal layer 3 is a polymer-stabilized liquid crystal, including a polymer network body and a polymer mesh body. Liquid crystal molecules 32 in the grid 311.
  • the thickness of the display panel is small, the light utilization rate is high, and the light transmittance is good.
  • the structure of the display panel is simplified, the manufacturing process is simple, and the production cost is low.
  • One or more embodiments of the present disclosure further provide a display device including the display panel of any of the foregoing aspects, and a light source disposed at one side of the display panel.
  • the display device further includes a condensing mirror disposed on a light emitting side of the light source.
  • the light emitted by the light source is adjusted by the condensing mirror to the angle of the display panel, so that the light is concentrated and injected into the display panel, thereby improving the utilization of light.
  • a display device In a display device provided by one or more embodiments of the present disclosure, light is incident on the display panel and totally reflected between the first transparent substrate and the second transparent substrate, when the first transparent electrode of the display panel After the driving voltage is input to the layer and the second transparent electrode layer, the liquid crystal molecules in the liquid crystal layer are deflected by the electric field between the first transparent electrode layer and the second transparent electrode layer, thereby changing the direction of light propagation and illuminating the light. The display panel is scattered out to display an image.
  • the display panel does not need to be provided with an opaque structure layer such as a gate line, a data line, and a thin film transistor, and the light transmittance of the display device is improved compared with the conventional technology, and the transparent display effect is improved.
  • the display device has a simplified structure and a small thickness, so that the light utilization efficiency is high.
  • the specific type of the display device is not limited, and may be, for example, a transparent display, a transparent display window, a transparent sign, or the like.
  • one or more embodiments of the present disclosure further provide a method for manufacturing a display panel, including:
  • Step 101 The first substrate is formed, including: sequentially forming a first transparent electrode layer on the first transparent substrate, the first transparent electrode layer including a set of first transparent electrode lines extending in the first direction, each first The transparent electrode line includes a plurality of first transparent electrode portions, and a first transparent connection portion connecting adjacent first transparent electrode portions;
  • Step 102 The second substrate is formed to: sequentially form a second transparent electrode layer on the second transparent substrate, and the second transparent electrode layer includes a set of second transparent electrode lines extending in the second direction, each second The transparent electrode line includes a plurality of second transparent electrode portions, and a second transparent connection portion connecting adjacent second transparent electrode portions, a second transparent electrode portion of the second transparent electrode line and a group of first transparent electrode lines The first transparent electrode portions are respectively disposed correspondingly;
  • Step 103 The first substrate, the second substrate, and the liquid crystal are fabricated into a liquid crystal cell.
  • the display panel produced by the method of one or more embodiments of the present disclosure has improved light transmittance and a transparent display effect. Since it is not necessary to fabricate opaque structural layers such as gate lines, data lines, and thin film transistors, the fabrication process is relatively simple.
  • the step 101 includes: forming a first transparent electrode layer by sputtering on the first substrate; forming a driving circuit pattern on the first transparent electrode layer by photolithography, etching, or the like In the first Forming a first alignment layer on the bright electrode layer; rubbing the first alignment layer; applying a sealant around the first transparent electrode portion, and spraying the spacer.
  • the step 102 includes: forming a second transparent electrode layer by sputtering on the second substrate; forming a driving circuit pattern on the second transparent electrode layer by photolithography, etching, or the like Forming a second alignment layer on the second transparent electrode layer; rubbing the second alignment layer; applying a sealant around the second transparent electrode portion, and spraying the spacer.
  • a specific method of forming the first alignment layer on the first transparent electrode layer and forming the second alignment layer on the second transparent electrode layer is not limited, and may be, for example, a spin coating method.
  • the spin coating method includes: coating an alignment agent on the first transparent electrode layer and the second transparent electrode layer, and placing it in a liquid crystal substrate spin coater for spin coating, and setting the rotation speed to 2000. ⁇ 3000 rpm, time is 100-150 s; the first substrate and the first substrate after spin coating are placed in an oven, preheated for 20 to 50 minutes, 50 to 100 ° C, baked for several hours, and the temperature is set to 100 ⁇ 300 ° C.
  • step 103 includes:
  • Step 201 mixing a mesh body, a liquid crystal molecule, and a photosensitizer
  • Step 202 heating the mixed mesh body, the liquid crystal molecules and the photosensitizer
  • Step 203 The heated mesh body, the liquid crystal molecules, the photosensitizer, the first substrate, and the second substrate are fabricated into a liquid crystal cell.
  • step 103 further includes curing the liquid crystal cell, for example, the liquid crystal cell can be cured under ultraviolet light.
  • the liquid crystal molecules when an electric field is generated between the first transparent electrode portion and the second transparent electrode portion, the liquid crystal molecules are deflected, and the liquid crystal molecules are distributed in the mesh of the mesh body, and are subjected to the mesh of the mesh body.
  • the limiting effect of the lattice makes the deflection orientation of the liquid crystal molecules more confusing, so that the scattering of light by the liquid crystal molecules can be improved, thereby improving the light transmittance of the liquid crystal layer.
  • the specific type of the photosensitizer is not limited, and may be, for example, a cationic photosensitizer, and the cationic photosensitizer may be a diazonium salt, a diaryliodonium salt, a triarylsulfonium salt, an alkylsulfonium salt, Iron aromatic salt, sulfonyloxy ketone or triaryl siloxane.
  • the method of manufacturing the display panel further includes: adjusting a refractive index of the first transparent electrode layer after forming the first transparent electrode layer on the first transparent substrate; on the second transparent substrate After the second transparent electrode layer is formed, the refractive index of the second transparent electrode layer is adjusted.
  • the refractive index of the first transparent electrode layer and the second transparent electrode layer By adjusting the refractive indices of the first transparent electrode layer and the second transparent electrode layer, the interface between the transparent substrate and the transparent electrode layer, the liquid crystal layer and the transparent electrode can be reduced. The scattering of the interface of the layer reduces the loss of light and improves the utilization of light.
  • a specific method of adjusting the refractive indices of the first transparent electrode layer and the second transparent electrode layer is not limited, and may be, for example, an annealing treatment.
  • the relationship between the annealing temperature and the refractive index is nonlinear. As the temperature is high, the refractive indices of the first transparent electrode layer and the second transparent electrode layer are first decreased and then increased; annealing treatment is performed for a certain period of time. The lattice arrangement of the first transparent electrode layer and the second transparent electrode layer is ordered, thereby increasing carrier mobility and lowering the refractive index, whereas an excessively long annealing time increases the extinction coefficient.
  • the annealing treatment has a temperature of 200 to 400 ° C and a time of 15 to 120 min.
  • the first transparent layer and the second transparent electrode layer which have been annealed have a good refractive index and can improve the light transmittance of the display panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示面板、显示装置及显示面板的制作方法。显示面板包括相对设置的第一基板(1)和第二基板(2),以及位于第一基板(1)和第二基板(2)之间的液晶层(3),其中:第一基板(1)包括第一透明衬底基板(11),以及设置于第一透明衬底基板(11)靠近液晶层(3)一侧的第一透明电极层(12),第一透明电极层(12)包括沿第一方向延伸的一组第一透明电极线(121);第二基板(2)包括第二透明衬底基板(21),以及设置于第二透明衬底基板(21)靠近液晶层(3)一侧的第二透明电极层(22),第二透明电极层(22)包括沿第二方向延伸的一组第二透明电极线(221)。

Description

显示面板、显示装置及显示面板的制作方法
相关申请的交叉引用
本申请要求于2017年3月29日递交的中国专利申请201710198368.7的优先权,该申请的内容通过引用的方式全部并入本文用于所有目的。
技术领域
本公开涉及显示面板、显示装置及显示面板的制作方法。
背景技术
随着显示技术的日益发展,各种新型技术不断涌现,其中,透明显示技术越来越受到人们的关注。透明显示装置一般是指可形成透明显示状态以使观看者可以看到显示装置中的显示影像及显示装置背后的景象的显示装置。
发明内容
本公开的一个或多个实施例提供一种显示面板、显示装置及显示面板的制作方法。
本公开的一个或多个实施例提供了一种显示面板,包括相对设置的第一基板和第二基板,以及位于所述第一基板和第二基板之间的液晶层,其中:
所述第一基板包括第一透明衬底基板,以及设置于第一透明衬底基板靠近所述液晶层一侧的第一透明电极层,所述第一透明电极层包括沿第一方向延伸的一组第一透明电极线,每个第一透明电极线包括多个第一透明电极部,以及连接相邻第一透明电极部的第一透明连接部;
所述第二基板包括第二透明衬底基板,以及设置于第二透明衬底基板靠近所述液晶层一侧的第二透明电极层,所述第二透明电极层包括沿第二方向延伸的一组第二透明电极线,每个第二透明电极线包括多个第二透明电极部,以及连接相邻第二透明电极部的第二透明连接部,所述一组第二透明电极线的第二透明电极部与所述一组第一透明电极线的第一透明电极部分别相对设置。
本公开的一个或多个实施例提供的显示面板中,第一透明衬底基板、第一透明电极层、第二透明衬底基板以及第二透明电极层均采用透明材质,相比常规技术,该显示面板不需要设置栅线、数据线和薄膜晶体管等不透光结构层,因此,提高了显示装置的光 透过率,提高了透明显示的效果;相比常规技术,显示面板的背侧不需要设置导光板,厚度较小,光线利用率较高;此外,第一基板的结构简化,从而使制作工艺较为简便,生产成本较低。
在一个或多个实施例中,所述第一透明衬底基板和第二透明衬底基板的折射率小于所述液晶层的折射率。采用该方案可以使光源射入显示面板的光线在第一透明衬底基板和第二透明衬底基板之间来回全反射,从而减少了光线的损失,提高了光线的利用率。
在一个或多个实施例中,所述第一透明电极层的折射率为1.34~2.06,所述第二透明电极层的折射率为1.34~2.06。
可选的,所述一组第一透明电极线的驱动电压相同,且所述一组第二透明电极线的驱动电压与所述一组第一透明电极线的驱动电压的差值依次减小或依次增大。在本实施例中,第一透明电极部和第二透明电极部之间的电场沿远离光源的方向逐渐增大,从而使液晶层的光透过率沿远离光源的方向逐渐增大,这样可以补偿光线的损失,使显示面板的亮度较为均匀。
在一个或多个实施例中,所述一组第二透明电极线的驱动电压为等差数列。
在一个或多个实施例中,所述第一透明电极层的厚度为40~300nm,第二透明电极层的厚度为40~300nm。采用该厚度的第一透明电极层和第二透明电极层,其光透过率较好,且厚度适中,显示面板的透明显示的效果较佳。
在一个或多个实施例中,所述第一透明衬底基板的厚度为0.2~1.0mm,第二透明衬底基板的厚度为0.2~1.0mm。采用该厚度的第一透明衬底基板和第二透明衬底基板,其光透过率较好,且厚度适中,显示面板的透明显示的效果较佳。
在一个或多个实施例中,所述液晶层包括网状主体以及分布于所述网状主体的网格中的液晶分子。采用该结构设计,液晶分子分布于网状主体的网格中,当第一透明电极部和第二透明电极部之间产生电场时,液晶分子发生偏转,由于受到网状主体的网格的限定作用,液晶分子的偏转取向较为混乱,这样,可以提高液晶分子对光线的散射,从而提高了液晶层的光透过率。
本公开的一个或多个实施例还提供一种显示装置,包括前述任一技术方案的显示面板,以及设置于所述显示面板的一侧的光源。
本实施例提供的显示装置,其显示面板不需要设置栅线、数据线和薄膜晶体管等不透光结构层,相比常规技术,提高了显示装置的光透过率,提高了透明显示的效果;此 外,该显示装置的结构简化,厚度较小,光线利用率较高。
本公开的一个或多个实施例还提供一种显示面板的制作方法,包括:
形成第一基板,包括:在第一透明衬底基板上依次形成第一透明电极层,所述第一透明电极层包括沿第一方向延伸的一组第一透明电极线,每个第一透明电极线包括多个第一透明电极部,以及连接相邻第一透明电极部的第一透明连接部;
形成第二基板,包括:在第二透明衬底基板上依次形成第二透明电极层,所述第二透明电极层包括沿第二方向延伸的一组第二透明电极线,每个第二透明电极线包括多个第二透明电极部,以及连接相邻第二透明电极部的第二透明连接部,所述一组第二透明电极线的第二透明电极部与所述一组第一透明电极线的第一透明电极部分别对应设置;
将第一基板、第二基板和液晶制作为液晶盒。
采用本公开的一个或多个实施例方法制作的显示面板,光透过率提高,透明显示的效果较佳。由于不需要制作栅线、数据线和薄膜晶体管等不透光结构层,因此制作工艺也比较简单。
可选的,所述将第一基板、第二基板和液晶制作为液晶盒,包括:
将网状主体、液晶分子与光敏剂混合;
对混合后的网状主体、液晶分子与光敏剂进行加热;
将加热后的网状主体、液晶分子、光敏剂与第一基板、第二基板制作为液晶盒。采用该方法制作的液晶盒,液晶分子分布于网状主体的网格中,当第一透明电极部和第二透明电极部之间产生电场时,液晶分子发生偏转,由于受到网状主体的网格的限定作用,液晶分子的偏转取向较为混乱,这样,可以提高液晶分子对光线的散射,从而提高了液晶层的光透过率。
在一个或多个实施例中,所述制作方法还包括:
在第一透明衬底基板上形成第一透明电极层之后,调节所述第一透明电极层的折射率;
在第二透明衬底基板上形成第二透明电极层之后,调节所述第二透明电极层的折射率。
通过调节第一透明电极层和第二透明电极层的折射率,可以减少光线在透明衬底基板和透明电极层的界面、液晶层和透明电极层的界面的散射,从而提高了显示面板的透明显示效果。
可选的,所述调节第一透明电极层的折射率,包括对所述第一透明电极层进行退火处理;
所述调节第二透明电极层的折射率,包括对所述第二透明电极层进行退火处理。经过退火处理后的第一透明层和第二透明电极层,折射率较佳,可以提高显示面板的光透过率。
在一个或多个实施例中,所述退火处理的温度为200~400℃,时间为15~120min。
附图说明
图1为本公开一实施例显示面板的示意图;
图2为本公开另一实施例显示面板的示意图;
图3为本公开一实施例第一透明电极层的示意图;
图4为本公开一实施例第二透明电极层的示意图;
图5为本公开的一个或多个实施例显示面板的液晶层的一示意图;
图6为本公开的一个或多个实施例显示面板的液晶层的另一示意图;
图7为本公开的一个或多个实施例显示面板的制作方法的流程示意图。
具体实施方式
一种常见的透明显示装置的基本结构包括透明显示面板、位于透明显示面板背侧的导光板,以及位于导光板的入光侧的光源。透明显示面板包括相对设置的第一基板和第二基板,以及位于第一基板和第二基板之间的液晶层。第一基板包括第一透明衬底基板,以及位于第一透明衬底基板靠近液晶层一侧的栅线、数据线、薄膜晶体管(Thin Film Transistor,简称TFT)和像素电极;第二基板包括第二透明衬底基板,以及位于第二透明衬底基板靠近液晶层一侧的公共电极。
一种透明显示装置的工作原理为:光源射出的光线经导光板导光后射入透明显示面板,第一基板的像素电极与第二基板的公共电极之间产生的电场使液晶分子发生空间重新排布,从而改变入射光的传播方向,从而可以显示图像。
上述技术存在的缺陷在于,第一基板上需要设置栅线、数据线和薄膜晶体管等不透光结构层,而对于自发光显示器件来说电荷注入需要设置金属电极等部件,从而导致透明显示装置的光透过率较低,透明显示效果欠佳;此外,第一基板上的走线设计较多, 结构复杂,制作工艺较为繁琐。
本公开的一个或多个实施例提供了一种显示面板、显示装置及显示面板的制作方法,以提高显示装置的光透过率,提高透明显示的效果。以下结合示例性的实施例对本公开的一个或多个实施例作进一步详细说明。
液晶盒是显示面板的基本部件,其包括基板以及基板之间的液晶层。在形成液晶盒之后,需要进行键合等工序,然后加上电路板以将液晶盒形成为显示面板。在本说明书中,术语“液晶盒”和“显示面板”可以互换使用。
如图1和图2所示,本公开的一个或多个实施例提供了一种显示面板,包括相对设置的第一基板1和第二基板2,以及位于第一基板1和第二基板2之间的液晶层3。
第一基板1包括第一透明衬底基板11,以及设置于第一透明衬底基板11靠近液晶层3一侧的第一透明电极层12,第一透明电极层12包括沿第一方向延伸的一组第一透明电极线121,每个第一透明电极线121包括多个第一透明电极部122,以及连接相邻第一透明电极部122的第一透明连接部123。
第二基板2包括第二透明衬底基板21,以及设置于第二透明衬底基板21靠近液晶层3一侧的第二透明电极层22,第二透明电极层22包括沿第二方向延伸的一组第二透明电极线221,每个第二透明电极线221包括多个第二透明电极部222,以及连接相邻第二透明电极部222的第二透明连接部223,前述一组第二透明电极线221的第二透明电极部222与前述一组第一透明电极线121的第一透明电极部122分别相对设置。
本公开的一个或多个实施例提供的显示面板中,第一透明衬底基板11、第一透明电极层12、第二透明衬底基板21以及第二透明电极层22均采用透明材质,相比常规技术,该显示面板不需要设置栅线、数据线和薄膜晶体管等不透光结构层,因此,提高了显示装置的光透过率,提高了透明显示的效果;相比常规技术,显示面板的背侧不需要设置导光板,厚度较小,光线利用率较高;此外,第一基板1的结构简化,从而使制作工艺较为简便,生产成本较低。
如图2所示,在本实施例中,第一透明电极层12的一组第一透明电极线121沿第一方向延伸,第二透明电极层22的包括一组第二透明电极线221沿与第一方向垂直的第二方向延伸,且第二透明电极部222与对应的第一透明电极部122分别相对设置,从而避免了第一透明电极层12与第二透明电极层22的电信号交叉,提高了显示效果。第一透明电极层12和第二透明电极层22的具体类型不限,例如可以为:第一透明电极层 12为像素电极,第二透明电极层22为公共电极;或者,第一透明电极层12为公共电极第二透明电极层22为像素电极。
在本公开的一个或多个实施例中,第一透明衬底基板11和第二透明衬底基板21的折射率小于液晶层3的折射率。采用该方案,可以使光源射入显示面板的光线在第一透明衬底基板11和第二透明衬底基板21之间来回全反射,从而减少了光线的损失,提高了光线的利用率。
在本实施例中,第一透明电极层12的折射率可以为1.34~2.06,第二透明电极层22的折射率可以为1.34~2.06。采用该折射率的第一透明电极层12和第二透明电极层22,光取出效率较佳,从而提高了光的利用率。在本公开的一实施例中,采用折射率均为1.66的第一透明电极层12和第二透明电极层22。
光源射入显示面板的光线会沿远离光源的方向逐渐减少,从而导致显示面板亮度的均匀性欠佳。在本公开的一个或多个实施例中,一组第一透明电极线121的驱动电压相同,且一组第二透明电极线221的驱动电压与前述一组第一透明电极线121的驱动电压的差值依次减小或依次增大。在本公开的一实施例中,第一透明衬底基板11上的一组第一透明电极线121输入电压范围为0~18V的脉冲信号如图3所示,第二透明衬底基板21上的一组第二透明电极线221依次输入峰值电压为0V、-0.1V、-0.3V、-0.5V、-0.7V和-0.9V的脉冲信号如图4所示。光源4设置于显示面板中靠近第一透明电极部122和第二透明电极部222之间的电压差最小的一端,即显示面板靠近输入驱动电压的峰值为0V的第二透明电极线221的一端,这样,第一透明电极部122和第二透明电极部222之间的电场沿远离光源4的方向逐渐增大,从而使液晶层3的光透过率沿远离光源4的方向逐渐增大,由此可以补偿光线的损失,使显示面板的亮度较为均匀。在一个或多个实施例中,一组第二透明电极线221的驱动电压为等差数列。在本公开的一实施例中,一组第二透明电极线221的驱动电压为数据驱动电压,一组第一透明电极线121输入电压为栅极驱动电压。
在本公开的实施例中,由于载流子浓度和晶格优化的作用,随着第一透明电极层12和第二透明电极层22的厚度增加,第一透明电极层12和第二透明电极层22的折射率逐渐减小,然而第一透明电极层12和第二透明电极层22的厚度过厚会增大消光系数,降低透过率。在一个或多个实施例中,第一透明电极层12的厚度为40~300nm,第二透明电极层22的厚度为40~300nm。采用该厚度的第一透明电极层12和第二透明电极 层22,其光透过率较好,且厚度适中,显示面板的透明显示的效果较佳。例如在本公开的一实施例中,第一透明电极层12和第二透明电极层22的厚度选用200nm。
第一透明电极层12和第二透明电极层22的材质的具体类型不限,例如可以为铟锡氧化物、石墨烯、纳米银或纳米碳。
此外,在本公开的一个或多个实施例中,第一透明衬底基板11的厚度为0.2~1.0mm,第二透明衬底基板21的厚度为0.2~1.0mm。采用该厚度的第一透明衬底基板11和第二透明衬底基板21,其光透过率较好,且厚度适中,显示面板的透明显示的效果较佳。
第一透明衬底基板11和第二透明衬底基板21的材质的具体类型不限,例如可以为玻璃、聚酰亚胺、聚乙烯或聚对苯二甲酸乙二醇酯。
如图5所示,在本公开的可选实施例中,液晶层3包括网状主体31以及分布于网状主体31的网格311中的液晶分子32。如图6所示,当第一透明电极部122和第二透明电极部222之间产生电场时,液晶分子32发生偏转,由于液晶分子32分布于网状主体31的网格中,受到网状主体31的网格311的限定作用,使液晶分子32的偏转取向较为混乱,这样,可以提高液晶分子32对光线的散射,从而提高了液晶层3的光透过率。
在本实施例中,网状主体31的具体类型不限,例如可以为聚合物网状主体,该聚合物网状主体可以为聚苯烯酸酯网状主体、聚氨酯网状主体、聚醚网状主体或环氧树脂网状主体。
在本公开的可选实施例中,显示面板还包括位于第一透明衬底基板11和液晶层3之间的第一取向层,以及位于第二透明衬底基板21和液晶层3之间的第二取向层,在第一透明电极部122和第二透明电极部222之间没有电场时,第一取向层和第二取向层可以引导液晶层3中的液晶分子32恢复原始的排列状态。
在本公开的一个或多个实施例中,具体的,显示面板为被动式驱动方式的波导显示面板;第一透明电极层12和第二透明电极层22采用铟锡氧化物材料,折射率为1.66,厚度为200nm,其中,第一透明电极层12为像素电极,第二透明电极层22为公共电极;液晶层3为聚合物稳定液晶,包括聚合物网状主体以及分布于聚合物网状主体的网格311中的液晶分子32。该显示面板的厚度较小,光线利用率较高,光透过率较好;此外,该显示面板的结构简化,制作工艺较为简便,生产成本较低。
本公开的一个或多个实施例还提供一种显示装置,包括前述任一技术方案的显示面板,以及设置于显示面板的一侧的光源。
在本公开的可选实施例中,显示装置还包括设置于光源出光一侧的聚光镜。光源射出的光线通过聚光镜调节射入显示面板的角度,这样使光线聚集并射入显示面板,从而提高了光的利用率。
在本公开的一个或多个实施例提供的显示装置中,光线射入显示面板后在第一透明衬底基板和第二透明衬底基板之间进行全反射,当显示面板的第一透明电极层和第二透明电极层输入驱动电压后,液晶层中的液晶分子在第一透明电极层和第二透明电极层之间的电场的作用下发生偏转,从而改变光线的传播方向,并将光线散射出显示面板以显示图像。
本实施例提供的显示装置,其显示面板不需要设置栅线、数据线和薄膜晶体管等不透光结构层,相比常规技术,提高了显示装置的光透过率,提高了透明显示的效果;此外,该显示装置的结构简化,厚度较小,从而使光线利用率较高。
在本实施例中,显示装置的具体类型不限,例如可以为透明显示器、透明展示橱窗、透明指示牌等。
如图7所示,本公开的一个或多个实施例还提供一种显示面板的制作方法,包括:
步骤101、制作第一基板,包括:在第一透明衬底基板上依次形成第一透明电极层,第一透明电极层包括沿第一方向延伸的一组第一透明电极线,每个第一透明电极线包括多个第一透明电极部,以及连接相邻第一透明电极部的第一透明连接部;
步骤102、制作第二基板,包括:在第二透明衬底基板上依次形成第二透明电极层,第二透明电极层包括沿第二方向延伸的一组第二透明电极线,每个第二透明电极线包括多个第二透明电极部,以及连接相邻第二透明电极部的第二透明连接部,一组第二透明电极线的第二透明电极部与一组第一透明电极线的第一透明电极部分别对应设置;
步骤103、将第一基板、第二基板和液晶制作为液晶盒。
采用本公开的一个或多个实施例方法制作的显示面板,光透过率提高,透明显示的效果较佳。由于不需要制作栅线、数据线和薄膜晶体管等不透光结构层,因此制作工艺也比较简单。
在本公开的可选实施例中,步骤101包括:在第一基板上通过溅射的方法形成第一透明电极层;在第一透明电极层上通过光刻、刻蚀等工艺形成驱动电路图案;在第一透 明电极层上形成第一取向层;对第一取向层进行摩擦取向;在第一透明电极部周围涂布封框胶,喷洒间隔子。
在本公开的可选实施例中,步骤102包括:在第二基板上通过溅射的方法形成第二透明电极层;在第二透明电极层上通过光刻、刻蚀等工艺形成驱动电路图案;在第二透明电极层上形成第二取向层;对第二取向层进行摩擦取向;在第二透明电极部周围涂布封框胶,喷洒间隔子。
在第一透明电极层上形成第一取向层和在第二透明电极层上形成第二取向层的具体方法不限,例如可以为旋涂方法。在本公开的可选实施例中,旋涂方法包括:在第一透明电极层和第二透明电极层上涂覆取向剂,并放入液晶基片旋涂机进行旋涂,转速设为2000~3000转,时间为100~150s;将旋涂后的第一基板和第一基板放入烘箱,烘干预热20~50min,50~100℃,再烘烤数小时,温度设为100~300℃。
在本公开的可选实施例中,步骤103包括:
步骤201、将网状主体、液晶分子与光敏剂混合;
步骤202、对混合后的网状主体、液晶分子与光敏剂进行加热;
步骤203、将加热后的网状主体、液晶分子、光敏剂与第一基板、第二基板制作为液晶盒。
在本公开的可选实施例中,在完成步骤203后,步骤103还包括将液晶盒进行固化,例如,可以将液晶盒置于紫外光下固化。
采用该方法制作的液晶盒,当第一透明电极部和第二透明电极部之间产生电场时,液晶分子发生偏转,由于液晶分子分布于网状主体的网格中,受到网状主体的网格的限定作用,使液晶分子的偏转取向较为混乱,这样,可以提高液晶分子对光线的散射,从而提高了液晶层的光透过率。
在本实施例中,光敏剂的具体类型不限,例如可以为阳离子光敏剂,该阳离子光敏剂可以为重氮盐、二芳基碘鎓盐、三芳基硫鎓盐、烷基硫鎓盐、铁芳烃盐、磺酰氧基酮或三芳基硅氧醚。
在本公开的实施例中,显示面板的制作方法还包括:在第一透明衬底基板上形成第一透明电极层之后,调节第一透明电极层的折射率;在第二透明衬底基板上形成第二透明电极层之后,调节第二透明电极层的折射率。通过调节第一透明电极层和第二透明电极层的折射率,可以减少光线在透明衬底基板和透明电极层的界面、液晶层和透明电极 层的界面的散射,从而减少了光线的损失,提高了光线的利用率。
在本实施例中,调节第一透明电极层和第二透明电极层的折射率的具体方法不限,例如,可以为退火处理。退火处理的温度与折射率的关系为非线性,随着温度的射高,第一透明电极层和第二透明电极层的折射率先减小后增大;在一定的时间内进行退火处理,可以使第一透明电极层和第二透明电极层的晶格排列有序,从而提高载流子迁移率,并降低折射率,然而过长的退火时间会增大消光系数。在本公开的一个或多个实施例中,退火处理的温度为200~400℃,时间为15~120min。经过退火处理后的第一透明层和第二透明电极层,折射率较佳,可以提高显示面板的光透过率。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (14)

  1. 一种显示面板,包括:
    相对设置的第一基板和第二基板;以及
    位于所述第一基板和第二基板之间的液晶层其中;
    其中,所述第一基板包括第一透明衬底基板,以及设置于第一透明衬底基板靠近所述液晶层一侧的第一透明电极层,所述第一透明电极层包括沿第一方向延伸的一组第一透明电极线,每个第一透明电极线包括多个第一透明电极部,以及连接相邻第一透明电极部的第一透明连接部;并且
    其中,所述第二基板包括第二透明衬底基板,以及设置于第二透明衬底基板靠近所述液晶层一侧的第二透明电极层,所述第二透明电极层包括沿第二方向延伸的一组第二透明电极线,每个第二透明电极线包括多个第二透明电极部,以及连接相邻第二透明电极部的第二透明连接部,所述一组第二透明电极线的第二透明电极部与所述一组第一透明电极线的第一透明电极部分别相对设置。
  2. 如权利要求1所述的显示面板,其中,所述第一透明衬底基板和第二透明衬底基板的折射率小于所述液晶层的折射率。
  3. 如权利要求1所述的显示面板,其中,所述第一透明电极层的折射率为1.34~2.06,所述第二透明电极层的折射率为1.34~2.06。
  4. 如权利要求1所述的显示面板,其中,所述一组第一透明电极线的驱动电压相同,且所述一组第二透明电极线的驱动电压与所述一组第一透明电极线的驱动电压的差值依次减小或依次增大。
  5. 如权利要求4所述的显示面板,其中,所述一组第二透明电极线的驱动电压为等差数列。
  6. 如权利要求1~5任一项所述的显示面板,其中,所述第一透明电极层的厚度为40~300nm,第二透明电极层的厚度为40~300nm。
  7. 如权利要求1~5任一项所述的显示面板,其中,所述第一透明衬底基板的厚度为0.2~1.0mm,第二透明衬底基板的厚度为0.2~1.0mm。
  8. 如权利要求1~5任一项所述的显示面板,其中,所述液晶层包括网状主体以及分布于所述网状主体的网格中的液晶分子。
  9. 一种显示装置,包括:
    如权利要求1~8任一项所述的显示面板;以及
    设置于所述显示面板的一侧的光源。
  10. 一种显示面板的制作方法,包括:
    形成第一基板,包括:
    在第一透明衬底基板上依次形成第一透明电极层,所述第一透明电极层包括沿第一方向延伸的一组第一透明电极线,每个第一透明电极线包括多个第一透明电极部,以及连接相邻第一透明电极部的第一透明连接部;
    形成第二基板,包括:
    在第二透明衬底基板上依次形成第二透明电极层,所述第二透明电极层包括沿第二方向延伸的一组第二透明电极线,每个第二透明电极线包括多个第二透明电极部,以及连接相邻第二透明电极部的第二透明连接部,所述一组第二透明电极线的第二透明电极部与所述一组第一透明电极线的第一透明电极部分别对应设置;以及
    将第一基板、第二基板和液晶制作为液晶盒。
  11. 如权利要求10所述的制作方法,其中,所述将第一基板、第二基板和液晶制作为液晶盒,包括:
    将网状主体、液晶分子与光敏剂混合;
    对混合后的网状主体、液晶分子与光敏剂进行加热;以及
    将加热后的网状主体、液晶分子、光敏剂与第一基板、第二基板制作为液晶盒。
  12. 如权利要求10或11所述的制作方法,其中,所述制作方法还包括:
    在第一透明衬底基板上形成第一透明电极层之后,调节所述第一透明电极层的折射率;以及
    在第二透明衬底基板上形成第二透明电极层之后,调节所述第二透明电极层的折射率。
  13. 如权利要求12所述的制作方法,其中,所述调节第一透明电极层的折射率,包括对所述第一透明电极层进行退火处理;以及
    所述调节第二透明电极层的折射率,包括对所述第二透明电极层进行退火处理。
  14. 如权利要求13所述的制作方法,其中,所述退火处理的温度为200~400℃,时间为15~120min。
PCT/CN2017/105841 2017-03-29 2017-10-12 显示面板、显示装置及显示面板的制作方法 WO2018176797A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/775,284 US10901274B2 (en) 2017-03-29 2017-10-12 Display panel, display device and method of manufacturing display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710198368.7A CN106950759A (zh) 2017-03-29 2017-03-29 显示面板、显示装置及显示面板的制作方法
CN201710198368.7 2017-03-29

Publications (1)

Publication Number Publication Date
WO2018176797A1 true WO2018176797A1 (zh) 2018-10-04

Family

ID=59475348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/105841 WO2018176797A1 (zh) 2017-03-29 2017-10-12 显示面板、显示装置及显示面板的制作方法

Country Status (3)

Country Link
US (1) US10901274B2 (zh)
CN (1) CN106950759A (zh)
WO (1) WO2018176797A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106950759A (zh) * 2017-03-29 2017-07-14 京东方科技集团股份有限公司 显示面板、显示装置及显示面板的制作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101398553A (zh) * 2007-09-27 2009-04-01 北京京东方光电科技有限公司 液晶显示装置及其驱动方法
US8159635B2 (en) * 2009-06-26 2012-04-17 Fujifilm Corporation Liquid crystal display device
CN103293738A (zh) * 2012-10-19 2013-09-11 上海天马微电子有限公司 液晶显示装置及其控制方法
CN105869598A (zh) * 2016-06-07 2016-08-17 武汉华星光电技术有限公司 液晶显示器的驱动方法以及液晶显示器
CN105954933A (zh) * 2016-07-21 2016-09-21 京东方科技集团股份有限公司 显示装置及其制作方法
CN106154661A (zh) * 2016-09-21 2016-11-23 京东方科技集团股份有限公司 一种透明显示面板及其制作方法、透明显示装置
CN106950759A (zh) * 2017-03-29 2017-07-14 京东方科技集团股份有限公司 显示面板、显示装置及显示面板的制作方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW527848B (en) * 2000-10-25 2003-04-11 Matsushita Electric Ind Co Ltd Light-emitting element and display device and lighting device utilizing thereof
CN102830526B (zh) * 2012-09-07 2015-04-01 京东方科技集团股份有限公司 一种显示面板及显示设备
CN103273738A (zh) 2013-05-24 2013-09-04 青岛海刚烫印设备制造有限公司 机械转盘式全自动烫金机
CN103345016B (zh) * 2013-06-26 2016-08-10 京东方科技集团股份有限公司 导光板及其制作方法、背光源及透明显示装置
CN106226961B (zh) * 2016-09-29 2019-09-13 深圳市华星光电技术有限公司 一种coa阵列基板及显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101398553A (zh) * 2007-09-27 2009-04-01 北京京东方光电科技有限公司 液晶显示装置及其驱动方法
US8159635B2 (en) * 2009-06-26 2012-04-17 Fujifilm Corporation Liquid crystal display device
CN103293738A (zh) * 2012-10-19 2013-09-11 上海天马微电子有限公司 液晶显示装置及其控制方法
CN105869598A (zh) * 2016-06-07 2016-08-17 武汉华星光电技术有限公司 液晶显示器的驱动方法以及液晶显示器
CN105954933A (zh) * 2016-07-21 2016-09-21 京东方科技集团股份有限公司 显示装置及其制作方法
CN106154661A (zh) * 2016-09-21 2016-11-23 京东方科技集团股份有限公司 一种透明显示面板及其制作方法、透明显示装置
CN106950759A (zh) * 2017-03-29 2017-07-14 京东方科技集团股份有限公司 显示面板、显示装置及显示面板的制作方法

Also Published As

Publication number Publication date
US20200233253A1 (en) 2020-07-23
US10901274B2 (en) 2021-01-26
CN106950759A (zh) 2017-07-14

Similar Documents

Publication Publication Date Title
CN104880847B (zh) IPS型On Cell触控显示面板及其制作方法
US20140085574A1 (en) Flexible Transparent Liquid Crystal Display And Method For Preparing Same
US9823520B2 (en) Liquid crystal display apparatus and method for manufacturing the same
WO2015085641A1 (zh) 阵列基板及其制作方法及应用该阵列基板的液晶显示面板
CN104122701A (zh) 液晶显示面板及其制造方法、阵列基板
TW201137473A (en) Blue phase liquid crystal display and method for fabricating the same
WO2017000333A1 (zh) IPS型In Cell触控显示面板及其制作方法
US20210311346A1 (en) A flexible bistable light modulating device
JP2010139573A (ja) 液晶表示パネル
CN104297997B (zh) 一种液晶显示面板及其显示方法、显示装置
CN102629028A (zh) 一种面内开关液晶显示器及其制造方法
WO2014205904A1 (zh) 阵列基板及其制造方法和显示装置
JP2011221400A (ja) 液晶表示装置、液晶表示装置の製造方法
US9448438B2 (en) Liquid crystal display panel comprising alignment molecules having a core portion, a polarity portion, and a tail portion
WO2018176797A1 (zh) 显示面板、显示装置及显示面板的制作方法
WO2016098268A1 (ja) 電極付きカラーフィルタ基板、該基板を含む表示装置、ならびに該基板の製造方法
US20160062168A1 (en) Display device and thin-film transistor substrate and method for producing same
WO2018082318A1 (zh) 一种显示面板及显示装置
KR101941445B1 (ko) 저반사 고경도 코팅막 및 이를 이용한 표시 장치
US20140240649A1 (en) Display device
US20180356690A1 (en) Method for manufacturing display panel and display panel obtained thereby
CN105223735B (zh) 液晶显示面板及包含其的液晶显示设备
CN106547138B (zh) 显示器及其显示面板
US9041880B2 (en) Optical compensated bending mode liquid crystal display panel and method for manufacturing the same
TWI395031B (zh) 畫素結構、液晶顯示裝置及其操作方式

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902986

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902986

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.03.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17902986

Country of ref document: EP

Kind code of ref document: A1