WO2018173490A1 - ヒートポンプ - Google Patents

ヒートポンプ Download PDF

Info

Publication number
WO2018173490A1
WO2018173490A1 PCT/JP2018/003058 JP2018003058W WO2018173490A1 WO 2018173490 A1 WO2018173490 A1 WO 2018173490A1 JP 2018003058 W JP2018003058 W JP 2018003058W WO 2018173490 A1 WO2018173490 A1 WO 2018173490A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
compressor
refrigerant
pipe
electric compressor
Prior art date
Application number
PCT/JP2018/003058
Other languages
English (en)
French (fr)
Inventor
憲弘 奥田
秀喜 金井
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to KR1020197018354A priority Critical patent/KR20190086750A/ko
Publication of WO2018173490A1 publication Critical patent/WO2018173490A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/123Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • F24F1/30Refrigerant piping for use inside the separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/22Disposition of valves, e.g. of on-off valves or flow control valves between evaporator and compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2327/00Refrigeration system using an engine for driving a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/13Vibrations

Definitions

  • the present invention relates to a heat pump including an engine-driven compressor driven by an engine and an electric compressor driven by an electric motor.
  • Patent Document 1 describes a hybrid heat pump including an engine-driven compressor and an electric compressor. Patent Document 1 describes that an electric compressor and an oil separator are connected by a discharge pipe, and the discharge pipe and the engine drive compressor are connected by another discharge pipe.
  • Patent Document 2 describes an engine heat pump that includes an engine-driven compressor, a refrigerant suction pipe that sucks refrigerant into the engine-driven compressor, and a refrigerant discharge pipe that discharges refrigerant from the engine-driven compressor.
  • Patent Document 2 describes that a flexible tube is disposed in the middle of the refrigerant suction pipe and the refrigerant discharge pipe.
  • JP 2013-250004 A Japanese Patent Laid-Open No. 01-200130
  • the present invention has been made in view of the above circumstances, and a main object of the present invention is to provide a heat pump having a configuration in which vibration of the engine is difficult to be transmitted to an electric compressor or the like.
  • a heat pump having the following configuration. That is, this heat pump includes an engine-driven compressor, an electric compressor, an oil separator, an electric compressor discharge pipe, and an engine-driven compressor discharge pipe.
  • the engine driven compressor is driven by an engine.
  • the electric compressor is driven by an electric motor.
  • the oil separator separates lubricating oil contained in refrigerant discharged from the engine-driven compressor and the electric compressor.
  • the electric compressor discharge pipe extends from the electric compressor and discharges the refrigerant toward the oil separator.
  • the engine-driven compressor discharge pipe extends from the engine-driven compressor, discharges refrigerant toward the oil separator, and is located upstream of the merged portion with the electric compressor discharge pipe in the refrigerant discharge direction. At least a part is composed of a vibration reducing tube.
  • the vibration reduction pipes are arranged at the above positions in the engine-driven compressor discharge piping, so that vibration generated by the engine is difficult to be transmitted to the electric compressor discharge piping, the electric compressor, and the oil separator. it can.
  • the heat pump preferably has the following configuration. That is, a check valve is disposed in the electric compressor discharge pipe on the upstream side in the refrigerant discharge direction with respect to the junction with the engine-driven compressor discharge pipe. In the electric compressor discharge pipe, a portion where the check valve is disposed or the vicinity thereof is fixed by a vibration preventing member.
  • the part where the check valve is arranged is likely to be heavier than the other part, so that the vibration transmission can be reduced by fixing this part with the anti-vibration member.
  • At least a part of the electric compressor discharge pipe on the upstream side in the refrigerant discharge direction is composed of a vibration reducing pipe with respect to the joining portion with the engine-driven compressor discharge pipe.
  • the heat pump includes an engine-driven compressor, an electric compressor, an electric compressor suction pipe, and an engine-driven compressor suction pipe.
  • the engine driven compressor is driven by an engine.
  • the electric compressor is driven by an electric motor.
  • the electric compressor suction pipe is connected to the electric compressor, and the refrigerant sucked by the electric compressor flows.
  • the engine-driven compressor suction pipe is connected to the engine-driven compressor, the refrigerant sucked by the engine-driven compressor flows, and at least downstream of the branching portion with the electric compressor suction pipe in the refrigerant suction direction. Part of it consists of vibration-reducing tubes.
  • the vibration reducing pipe is arranged at the above position in the engine-driven compressor suction pipe, the vibration generated in the engine is difficult to be transmitted to the electric compressor suction pipe and the electric compressor, so that these vibrations can be suppressed.
  • At least a part of the electric compressor suction pipe on the downstream side in the refrigerant suction direction is constituted by a vibration reducing pipe with respect to a branch portion with the engine-driven compressor suction pipe.
  • the refrigerant circuit figure of the heat pump which concerns on 1st Embodiment.
  • the refrigerant circuit figure of the heat pump which concerns on 2nd Embodiment.
  • FIG. 1 is a refrigerant circuit diagram of the heat pump 1.
  • the heat pump 1 includes an outdoor unit 10 and an indoor unit 50.
  • the heat pump 1 exchanges heat between the outdoor heat exchanger 22 of the outdoor unit 10 and the indoor heat exchanger 51 of the indoor unit 50 via a refrigerant, so that the indoor air in which the indoor unit 50 is installed The temperature can be raised or lowered.
  • the outdoor unit 10 includes an engine 12 and a compressor motor 15 as power sources.
  • the engine 12 is a gas engine, and generates power by burning the supplied gas to drive the two engine-driven compressors 13.
  • the number of engine drive compressors 13 driven by the engine 12 may be one, or may be three or more.
  • the fuel of the engine 12 is not limited to gas, and may be, for example, gasoline or light oil.
  • the compressor motor (electric motor) 15 generates power using the supplied electric power and drives one electric compressor 16.
  • the compressor motor 15 may be configured to drive a plurality of electric compressors 16.
  • the heat pump 1 of this embodiment is a hybrid type heat pump which drives a compressor with an engine and an electric motor.
  • the heat pump 1 may be configured to include a plurality of engines 12 and / or a plurality of compressor motors 15.
  • the engine-driven compressor 13 and the electric compressor 16 suck in the gaseous refrigerant from the accumulator 11.
  • the accumulator 11 is a member for storing a gaseous refrigerant.
  • the refrigerant is in a low-temperature and low-pressure gas state.
  • the refrigerant in the accumulator 11 is compressed by the engine drive compressor 13 and the electric compressor 16 to be in a high temperature and high pressure gas state.
  • the engine drive compressor 13 discharges this refrigerant to the oil separator 20 via the first check valve 14.
  • the electric compressor 16 discharges the refrigerant to the oil separator 20 via the second check valve 17.
  • the oil separator 20 separates the lubricating oil for the engine driven compressor 13 and the electric compressor 16 from the gaseous refrigerant.
  • the separated lubricating oil is returned to the engine drive compressor 13 and the electric compressor 16 by a circuit (not shown).
  • the gaseous refrigerant from which the lubricating oil is separated by the oil separator 20 is supplied to the four-way valve 21.
  • the four-way valve 21 is formed with four ports, and the refrigerant supply destination is different between heating and cooling. First, the flow of the refrigerant during heating will be described.
  • the four-way valve 21 supplies gaseous refrigerant to the indoor heat exchanger 51 as shown by the solid line in FIG.
  • the indoor heat exchanger 51 heat exchange is performed to transfer heat from the refrigerant to indoor air. This heat exchange increases the temperature of the indoor air.
  • the refrigerant changes into a low-temperature and high-pressure liquid by this heat exchange.
  • the indoor heat exchanger 51 may be one and may be plural.
  • the refrigerant that has been liquefied by heat exchange in the indoor heat exchanger 51 is supplied to the receiver 23 via the third check valve 26.
  • the receiver 23 is a member for storing a liquid refrigerant.
  • the refrigerant supplied to the receiver 23 is supplied to the outdoor heat exchanger 22 via the first expansion valve 31 or the second expansion valve 32 after passing through the fourth check valve 27. Further, the liquid refrigerant passes through the first expansion valve 31 or the second expansion valve 32, and becomes a mist-like and low-pressure.
  • the number of the outdoor heat exchangers 22 may be one, and may be three or more. .
  • heat exchange is performed to transfer heat from the outside air to the refrigerant.
  • This heat exchange changes the refrigerant into a gaseous state.
  • This gaseous refrigerant is supplied to the accumulator 11 via the four-way valve 21.
  • a gaseous refrigerant is stored.
  • the four-way valve 21 supplies a gaseous refrigerant to the outdoor heat exchanger 22 as shown by a chain line in FIG.
  • the outdoor heat exchanger 22 heat exchange for transferring heat from the refrigerant to the outside air is performed.
  • the refrigerant changes to a low-temperature and high-pressure liquid.
  • the refrigerant that has been liquefied by heat exchange in the outdoor heat exchanger 22 is supplied to the receiver 23 via the third check valve 28.
  • the liquid refrigerant supplied to the receiver 23 is supplied to the indoor heat exchanger 51.
  • the indoor heat exchanger 51 heat exchange for transferring heat from indoor air to the refrigerant is performed. By this heat exchange, the temperature of the indoor air decreases. Further, the refrigerant changes into a low-temperature and low-pressure gaseous state by this heat exchange.
  • the refrigerant heat-exchanged by the indoor heat exchanger 51 is supplied to the accumulator 11 through the four-way valve 21. In the accumulator 11, a gaseous refrigerant is stored.
  • FIG. 2 is a perspective view showing the piping structure of the path through which the refrigerant is supplied from the accumulator 11 to the engine drive compressor 13 and the electric compressor 16.
  • the engine drive compressor 13 sucks the refrigerant from the accumulator 11.
  • a pipe that is connected to the engine-driven compressor 13 and through which the refrigerant sucked by the engine-driven compressor 13 flows is an engine-driven compressor suction pipe 71.
  • the engine-driven compressor suction pipe 71 has a plurality of bends.
  • the engine-driven compressor suction pipe 71 branches into two near the engine-driven compressor 13.
  • a plurality of pipe members are provided between the accumulator 11 and the engine-driven compressor 13, and a combination thereof corresponds to the engine-driven compressor intake pipe 71.
  • the electric compressor 16 sucks the refrigerant from the accumulator 11.
  • An electric compressor suction pipe 75 is connected to the electric compressor 16 and a pipe through which the refrigerant sucked by the electric compressor 16 flows.
  • the electric compressor suction pipe 75 is a pipe connecting the engine drive compressor suction pipe 71 and the electric compressor 16.
  • the electric compressor suction pipe 75 is provided so as to branch from the engine drive compressor suction pipe 71 (see the branch portion in FIG. 2).
  • an engine-driven compressor suction pipe 71 that connects the accumulator 11 and the engine-driven compressor 13, and an electric compressor suction pipe 75 is connected to the engine-driven compressor suction pipe 71.
  • the engine drive compressor suction pipe 71 is the main configuration.
  • an electric compressor suction pipe that connects the accumulator 11 and the electric compressor 16
  • an engine drive compressor suction pipe may be connected to the electric compressor suction pipe.
  • the electric compressor suction pipe 75 may be the main.
  • a configuration in which any of the engine-driven compressor suction pipe 71 and the electric compressor suction pipe 75 cannot be specified may be used.
  • the engine-driven compressor suction pipe 71 includes flexible pipes (vibration reducing pipes) 72 and 73.
  • the flexible pipes 72 and 73 are arranged on the downstream side of the refrigerant flow direction (refrigerant suction direction) of the engine-driven compressor suction pipe 71 with respect to the branch to the electric compressor suction pipe 75.
  • the flexible pipes 72 and 73 are disposed in a position farther from the accumulator 11 in the engine-driven compressor suction pipe 71 than a branch portion with the electric compressor suction pipe 75.
  • the upstream side in the refrigerant flow direction that is, the side close to the accumulator 11 is the flexible pipe 72
  • the upstream side in the refrigerant flow direction is the flexible pipe 73.
  • the engine drive compressor 13 Since the engine drive compressor 13 is connected to the engine 12, the engine drive compressor 13 vibrates with the vibration of the engine 12. When this vibration is transmitted to the electric compressor 16 and the accumulator 11, the performance may be deteriorated or the life may be shortened.
  • the flexible pipes 72 and 73 are bellows-like metal tubes and have flexibility. Therefore, even if the flex pipes 72 and 73 are bent in a direction perpendicular to the pipe axis direction, the flex pipes 72 and 73 can be bent to reduce the vibration. However, the flexible pipes 72 and 73 are poor in absorbability of vibration in a direction parallel to the pipe axis direction. Therefore, in the present embodiment, the flexible pipes 72 and 73 are provided in two portions of the engine-driven compressor suction pipe 71 that are perpendicular to each other.
  • the flexible pipe 72 is disposed in a portion extending in the substantially vertical direction of the engine-driven compressor suction pipe 71, and the flexible tube 73 is disposed in a portion extending in the substantially horizontal direction.
  • the pipe axis directions of the flexible pipes 72 and 73 are perpendicular to each other, if the pipe axis directions are different, a certain degree of effect can be exhibited. However, the pipe axis directions of the flexible pipes 72 and 73 may not be different from each other. Moreover, you may arrange
  • the number of flexible pipes included in the engine-driven compressor suction pipe 71 may be one, or three or more.
  • a pipe member other than a metal bellows shape may be used as long as vibration can be absorbed (for example, a rubber joint).
  • the engine driven compressor suction pipe 71 is fixed to the housing or the like of the outdoor unit 10 via a pipe fixing member 74 shown in FIG. More specifically, the upstream portion of the engine-driven compressor suction pipe 71 in the refrigerant flow direction with respect to the flexible pipe 72 is attached to the pipe fixing member 74. In addition, an engine-driven compressor discharge pipe 81 to be described later is also attached to the pipe fixing member 74.
  • FIG. 3 is a perspective view showing a piping structure of a path through which the refrigerant is supplied from the engine drive compressor 13 and the electric compressor 16 to the oil separator 20.
  • the engine-driven compressor 13 discharges the refrigerant to the oil separator 20.
  • a pipe that extends from the engine-driven compressor 13 and discharges the refrigerant toward the oil separator is an engine-driven compressor discharge pipe 81.
  • the pipe that connects the engine drive compressor 13 and the oil separator 20 is the engine drive compressor discharge pipe 81.
  • the engine-driven compressor discharge pipe 81 is formed with a plurality of bends.
  • the engine-driven compressor discharge pipe 81 merges from two to one in the vicinity of the engine-driven compressor 13.
  • a plurality of pipe members are provided between the engine-driven compressor 13 and the oil separator 20, and the combination thereof corresponds to the engine-driven compressor discharge pipe 81.
  • the electric compressor 16 discharges the refrigerant to the oil separator 20.
  • a pipe that extends from the electric compressor 16 and discharges the refrigerant toward the oil separator 20 is an electric compressor discharge pipe 85.
  • the electric compressor discharge pipe 85 is a pipe connecting the engine drive compressor discharge pipe 81 and the electric compressor 16.
  • the electric compressor discharge pipe 85 is provided so as to merge with the engine drive compressor discharge pipe 81 (see the merge portion in FIG. 3). Similar to the suction pipe, either the engine-driven compressor discharge pipe 81 or the electric compressor discharge pipe 85 may be main.
  • the engine drive compressor discharge pipe 81 includes flexible pipes (vibration reducing pipes) 82 and 83.
  • the flexible pipes 82 and 83 are disposed on the upstream side of the refrigerant flow direction (refrigerant discharge direction) of the engine-driven compressor discharge pipe 81 with respect to the location where the electric compressor discharge pipe 85 joins.
  • the flexible pipes 82 and 83 are arranged in a position farther from the oil separator 20 in the engine-driven compressor discharge pipe 81 than in a portion where the flexible pipes 82 and 83 join the electric compressor discharge pipe 85.
  • the flexible pipes 82 and 83 are disposed upstream of the first check valve 14 in the refrigerant flow direction. Further, the upstream side in the refrigerant flow direction, that is, the side close to the engine drive compressor 13 is the flexible pipe 82, and the downstream side in the refrigerant flow direction is the flexible pipe 83.
  • the flexible pipes 82 and 83 are configured such that their pipe axis directions are different from each other. With this configuration, vibrations in the triaxial direction can be effectively absorbed on the discharge pipe side. Therefore, the first check valve 14, the electric compressor 16, the accumulator 11, and the like can be made difficult to vibrate.
  • the flexible pipes 82 and 83 are configured such that their pipe axis directions are perpendicular to each other, like the flexible pipes 72 and 73 on the suction side.
  • the flexible pipe 82 is arranged in a part extending in the substantially horizontal direction of the engine-driven compressor discharge pipe 81
  • the flexible pipe 83 is arranged in a part extending in the substantially vertical direction. May be.
  • the pipe axis directions of the flexible pipes 82 and 83 may not be different from each other.
  • various modifications of the flexible pipes 72 and 73 have been described, but the same applies to the flexible pipes 82 and 83.
  • a vibration preventing member 76 is disposed in the electric compressor discharge pipe 85.
  • the anti-vibration member 76 is a member that holds the pipe while preventing vibration by supporting the pipe via an anti-vibration rubber or the like.
  • the anti-vibration member 76 is disposed in the vicinity of the inlet which is the upstream end of the second check valve 17 in the refrigerant flow direction in the electric compressor discharge pipe 85. Since the second check valve 17 is heavy in the piping, it is preferable to dispose the anti-vibration member 76 in the vicinity of the second check valve 17.
  • the anti-vibration member 76 is not in the vicinity of the inlet of the second check valve 17 in the electric compressor discharge pipe 85 but in the vicinity of the outlet which is the downstream end of the refrigerant flow direction of the second check valve 17. May be arranged. Alternatively, the anti-vibration member 76 may be configured to hold the second check valve 17 itself.
  • FIG. 4 is a refrigerant circuit diagram of the heat pump 1 according to the second embodiment.
  • FIG. 5 is a perspective view showing a piping structure of a path through which refrigerant is supplied from the accumulator 11 to the engine-driven compressor 13 and the electric compressor discharge piping 85 according to the second embodiment.
  • FIG. 6 is a perspective view showing a piping structure of a path through which refrigerant is supplied from the engine-driven compressor 13 and the electric compressor discharge piping 85 to the oil separator 20 according to the second embodiment.
  • the second embodiment differs from the first embodiment in that a flexible pipe is disposed not only on the engine 12 side but also on the electric compressor 16 side. That is, as shown in FIGS. 4 and 5, the electric compressor suction pipe 75 includes a flexible pipe 79. As shown in FIGS. 4 and 6, the electric compressor discharge pipe 85 includes a flexible pipe 89. In the second embodiment, the flexible pipe 89 is disposed upstream of the second check valve 17 in the refrigerant flow direction, but may be disposed downstream.
  • one flexible pipe is arranged on each of the suction pipe side and the discharge pipe side on the electric compressor 16 side, but a plurality of flexible pipes may be arranged on each side.
  • the heat pump 1 of the above embodiment includes the engine-driven compressor 13, the electric compressor 16, the oil separator 20, the electric compressor discharge pipe 85, and the engine-driven compressor discharge pipe 81.
  • the engine drive compressor 13 is driven by the engine 12.
  • the electric compressor 16 is driven by a compressor motor 15.
  • the oil separator 20 separates the lubricating oil contained in the refrigerant discharged from the engine drive compressor 13 and the electric compressor 16.
  • the electric compressor discharge pipe 85 extends from the electric compressor 16 and discharges the refrigerant toward the oil separator 20.
  • the engine-driven compressor discharge pipe 81 extends from the engine-driven compressor 13 and discharges the refrigerant toward the oil separator 20.
  • the engine-driven compressor discharge pipe 81 is upstream of the junction with the electric compressor discharge pipe 85 in the refrigerant discharge direction. At least a part is composed of flexible tubes 82 and 83.
  • the second check valve 17 is arranged in the electric compressor discharge pipe 85 on the upstream side in the refrigerant discharge direction from the junction with the engine-driven compressor discharge pipe 81. Yes.
  • the portion where the second check valve 17 is disposed or the vicinity thereof is fixed by a vibration preventing member 76.
  • the portion where the second check valve 17 is disposed is likely to be heavier than the other portions, so that vibration transmission can be reduced by fixing this portion with the anti-vibration member 76. .
  • the electric compressor discharge pipe 85 is configured by a flexible pipe 89 at least a part of the upstream side in the refrigerant discharge direction with respect to the joining portion with the engine drive compressor discharge pipe 81. Yes.
  • vibrations generated in the engine 12 are more difficult to be transmitted to the electric compressor 16 and the oil separator 20, so that these vibrations can be further suppressed.
  • the heat pump 1 further includes an electric compressor suction pipe 75 and an engine drive compressor suction pipe 71.
  • the electric compressor suction pipe 75 is connected to the electric compressor 16, and the refrigerant sucked by the electric compressor 16 flows therethrough.
  • the engine-driven compressor suction pipe 71 is connected to the engine-driven compressor 13, and the refrigerant sucked by the engine-driven compressor 13 flows, and is downstream of the branching portion with the engine-driven compressor discharge pipe 81 in the refrigerant suction direction. At least a part of which is composed of flexible tubes 72 and 73.
  • the electric compressor suction pipe 75 is configured by a flexible pipe 79 at least partly downstream in the refrigerant suction direction from the branch portion with the engine-driven compressor suction pipe 71. Yes.
  • the flexible pipes 72, 73, 82, and 83 may be arranged in portions that individually extend from the respective engine drive compressors 13. With this configuration, it is possible to shorten the portion of the engine drive compressor suction pipe 71 or the engine drive compressor discharge pipe 81 where vibration is transmitted. Further, the flexible pipes 82 and 83 may be disposed downstream of the first check valve 14 in the refrigerant flow direction.
  • the heat pump 1 is applied to an air conditioner, but it can also be applied to other configurations.
  • the heat pump 1 can be applied to a refrigerator or a hot water heater.
  • the flexible pipes 72 and 73 are provided in the engine-driven compressor suction pipe 71, and the flexible pipes 82 and 83 are provided in the engine-driven compressor discharge pipe 81.
  • a flexible pipe may be provided in only one of the engine-driven compressor suction pipe 71 and the engine-driven compressor discharge pipe 81.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

ヒートポンプ(1)は、エンジン駆動コンプレッサ(13)と、電動コンプレッサ(16)と、オイルセパレータ(20)と、電動コンプレッサ吐出配管(85)と、エンジン駆動コンプレッサ吐出配管(81)と、を備える。オイルセパレータ(20)は、エンジン駆動コンプレッサ(13)及び電動コンプレッサ(16)が吐出する冷媒に含まれる潤滑油を分離する。電動コンプレッサ吐出配管(85)は、電動コンプレッサ(16)から延びており、オイルセパレータ(20)に向けて冷媒を吐出する。エンジン駆動コンプレッサ吐出配管(81)は、エンジン駆動コンプレッサ(13)から延びており、オイルセパレータ(20)に向けて冷媒を吐出しており、電動コンプレッサ吐出配管(85)との合流部分よりも、冷媒の吐出方向の上流側の少なくとも一部がフレキ管(82,83)で構成されている。

Description

ヒートポンプ
 本発明は、エンジンにより駆動されるエンジン駆動コンプレッサと、電動モータにより駆動される電動コンプレッサと、を備えるヒートポンプに関する。
 特許文献1には、エンジン駆動コンプレッサと電動コンプレッサとを備えるハイブリッドタイプのヒートポンプが記載されている。特許文献1では、電動コンプレッサとオイルセパレータとを吐出管で接続し、この吐出管とエンジン駆動コンプレッサとを別の吐出管で接続することが記載されている。
 特許文献2には、エンジン駆動コンプレッサと、エンジン駆動コンプレッサに冷媒を吸入する冷媒吸入管と、エンジン駆動コンプレッサから冷媒を吐出する冷媒吐出管と、を備えるエンジンヒートポンプが記載されている。特許文献2では、冷媒吸入管及び冷媒吐出管の中途部に可撓管を配設することが記載されている。
特開2013-250004号公報 特開平01-200130号公報
 特許文献1のヒートポンプでは、電動コンプレッサ等にエンジンの振動が伝達することにより、電動コンプレッサ等が振動する可能性がある。また、特許文献2のエンジンヒートポンプでは、電動コンプレッサを配置することについて記載されていない。
 本発明は以上の事情に鑑みてされたものであり、その主要な目的は、電動コンプレッサ等にエンジンの振動が伝達しにくい構成のヒートポンプを提供することにある。
課題を解決するための手段及び効果
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段とその効果を説明する。
 本発明の第1の観点によれば、以下の構成のヒートポンプが提供される。即ち、このヒートポンプは、エンジン駆動コンプレッサと、電動コンプレッサと、オイルセパレータと、電動コンプレッサ吐出配管と、エンジン駆動コンプレッサ吐出配管と、を備える。前記エンジン駆動コンプレッサは、エンジンによって駆動される。前記電動コンプレッサは、電動モータによって駆動される。前記オイルセパレータは、前記エンジン駆動コンプレッサ及び前記電動コンプレッサが吐出する冷媒に含まれる潤滑油を分離する。前記電動コンプレッサ吐出配管は、前記電動コンプレッサから延びており、前記オイルセパレータに向けて冷媒を吐出する。前記エンジン駆動コンプレッサ吐出配管は、前記エンジン駆動コンプレッサから延びており、前記オイルセパレータに向けて冷媒を吐出しており、前記電動コンプレッサ吐出配管との合流部分よりも、冷媒の吐出方向の上流側の少なくとも一部が振動軽減管で構成されている。
 エンジン駆動コンプレッサ吐出配管において上記の位置に振動軽減管が配置されていることにより、エンジンで発生した振動が電動コンプレッサ吐出配管、電動コンプレッサ、及びオイルセパレータに伝達しにくくなるため、これらの振動を抑制できる。
 前記のヒートポンプにおいては、以下の構成とすることが好ましい。即ち、前記電動コンプレッサ吐出配管には、前記エンジン駆動コンプレッサ吐出配管との合流部分よりも、冷媒の吐出方向の上流側において、逆止弁が配置されている。前記電動コンプレッサ吐出配管のうち、前記逆止弁が配置されている部分又はその近傍は振止め部材により固定されている。
 電動コンプレッサ吐出配管のうち、逆止弁が配置されている部分は他の部分よりも重くなり易いため、この部分を振止め部材で固定することで、振動の伝達を軽減できる。
 前記のヒートポンプにおいては、前記電動コンプレッサ吐出配管は、前記エンジン駆動コンプレッサ吐出配管との合流部分よりも、冷媒の吐出方向の上流側の少なくとも一部が振動軽減管で構成されていることが好ましい。
 これにより、エンジンで発生した振動が電動コンプレッサ及びオイルセパレータに更に伝達しにくくなるため、これらの振動を一層抑制できる。
 本発明の第2の観点によれば、以下の構成のヒートポンプが提供される。即ち、このヒートポンプは、エンジン駆動コンプレッサと、電動コンプレッサと、電動コンプレッサ吸入配管と、エンジン駆動コンプレッサ吸入配管と、を備える。前記エンジン駆動コンプレッサは、エンジンによって駆動される。前記電動コンプレッサは、電動モータによって駆動される。前記電動コンプレッサ吸入配管は、前記電動コンプレッサに接続されており、当該電動コンプレッサが吸入する冷媒が流れる。前記エンジン駆動コンプレッサ吸入配管は、前記エンジン駆動コンプレッサに接続されており、当該エンジン駆動コンプレッサが吸入する冷媒が流れ、前記電動コンプレッサ吸入配管との分岐部分よりも、冷媒の吸入方向の下流側の少なくとも一部が振動軽減管で構成されている。
 エンジン駆動コンプレッサ吸入配管において上記の位置に振動軽減管が配置されていることにより、エンジンで発生した振動が電動コンプレッサ吸入配管及び電動コンプレッサに伝達しにくくなるため、これらの振動を抑制できる。
 前記のヒートポンプにおいては、前記電動コンプレッサ吸入配管は、前記エンジン駆動コンプレッサ吸入配管との分岐部分よりも、冷媒の吸入方向の下流側の少なくとも一部が振動軽減管で構成されていることが好ましい。
 これにより、エンジンで発生した振動が電動コンプレッサに更に伝達しにくくなるため、電動コンプレッサの振動を一層抑制できる。
第1実施形態に係るヒートポンプの冷媒回路図。 アキュムレータからエンジン駆動コンプレッサ及び電動コンプレッサへ冷媒が供給される経路の配管構造を示す斜視図。 エンジン駆動コンプレッサ及び電動コンプレッサからオイルセパレータへ冷媒が供給される経路の配管構造を示す斜視図。 第2実施形態に係るヒートポンプの冷媒回路図。 第2実施形態に係る、アキュムレータからエンジン駆動コンプレッサ及び電動コンプレッサへ冷媒が供給される経路の配管構造を示す斜視図。 第2実施形態に係る、エンジン駆動コンプレッサ及び電動コンプレッサからオイルセパレータへ冷媒が供給される経路の配管構造を示す斜視図。
 次に、図面を参照して本発明の実施形態を説明する。初めに、図1を参照して、第1実施形態に係るヒートポンプ1が組み込まれた建物用の空気調和器について説明する。図1は、ヒートポンプ1の冷媒回路図である。
 図1に示すように、ヒートポンプ1は、室外機10と、室内機50と、を備える。ヒートポンプ1は、室外機10の室外熱交換器22と、室内機50の室内熱交換器51と、の間で冷媒を介して熱交換を行うことで、室内機50が設置された室内の空気の温度を上昇させたり下降させたりすることができる。
 室外機10は、動力源として、エンジン12及びコンプレッサモータ15を備える。エンジン12は、ガスエンジンであり、供給されたガスを燃焼させることで動力を発生させて2つのエンジン駆動コンプレッサ13を駆動する。なお、エンジン12が駆動するエンジン駆動コンプレッサ13の数は1つであっても良いし、3つ以上であっても良い。また、エンジン12の燃料はガスに限られず、例えばガソリン又は軽油であっても良い。
 コンプレッサモータ(電動モータ)15は、供給された電力を用いて動力を発生させて1つの電動コンプレッサ16を駆動する。なお、コンプレッサモータ15は、複数の電動コンプレッサ16を駆動する構成であっても良い。このように、本実施形態のヒートポンプ1は、エンジン及び電動モータでコンプレッサを駆動するハイブリッドタイプのヒートポンプである。なお、ヒートポンプ1は、複数のエンジン12及び/又は複数のコンプレッサモータ15を備える構成であっても良い。
 エンジン駆動コンプレッサ13及び電動コンプレッサ16は、アキュムレータ11からガス状態の冷媒を吸入する。アキュムレータ11は、ガス状態の冷媒を貯留するための部材である。アキュムレータ11内では、冷媒は低温かつ低圧のガス状態である。アキュムレータ11内の冷媒は、エンジン駆動コンプレッサ13及び電動コンプレッサ16により圧縮されることで、高温かつ高圧のガス状態となる。エンジン駆動コンプレッサ13は、第1逆止弁14を介して、この冷媒をオイルセパレータ20へ吐出する。また、電動コンプレッサ16は、第2逆止弁17を介して、この冷媒をオイルセパレータ20へ吐出する。
 オイルセパレータ20は、ガス状の冷媒から、エンジン駆動コンプレッサ13及び電動コンプレッサ16用の潤滑油を分離する。この分離された潤滑油は、図略の回路によってエンジン駆動コンプレッサ13及び電動コンプレッサ16に戻される。また、オイルセパレータ20によって潤滑油が分離されたガス状の冷媒は、四方弁21へ供給される。
 四方弁21は、4つのポートが形成されており、暖房時と冷房時とで冷媒の供給先を異ならせる。初めに、暖房時の冷媒の流れについて説明する。
 暖房時において、四方弁21は、図1に実線に示すように室内熱交換器51へガス状の冷媒を供給する。室内熱交換器51では、冷媒から室内の空気へ熱を移動させる熱交換が行われる。この熱交換により、室内の空気の温度が上昇する。また、冷媒は、この熱交換により、低温かつ高圧の液状に変化する。なお、図1では、2つの室内熱交換器51を備える構成であるが、室内熱交換器51は、1つであっても良いし、複数であっても良い。室内熱交換器51で熱交換されて液状となった冷媒は、第3逆止弁26を経由してレシーバ23へ供給される。
 レシーバ23は、液状の冷媒を貯留するための部材である。レシーバ23へ供給された冷媒は、第4逆止弁27を経由した後に、第1膨張弁31又は第2膨張弁32を経由して、室外熱交換器22へ供給される。また、液状の冷媒は、第1膨張弁31又は第2膨張弁32を通過することにより、霧状かつ低圧となる。なお、本実施形態に係るヒートポンプ1では、2つの室外熱交換器22が設けられているが、室外熱交換器22の数は1つであっても良いし、3つ以上であってもよい。
 室外熱交換器22では、外気から冷媒へ熱を移動させる熱交換が行われる。この熱交換により、冷媒がガス状に変化する。このガス状の冷媒は、四方弁21を介してアキュムレータ11に供給される。アキュムレータ11では、ガス状の冷媒が貯留される。
 次に、冷房時の冷媒の流れについて説明する。冷房時において、四方弁21は、図1に鎖線に示すように室外熱交換器22へガス状の冷媒を供給する。室外熱交換器22では、冷媒から外気へ熱を移動させる熱交換が行われる。この熱交換により、冷媒は、低温かつ高圧の液状に変化する。室外熱交換器22で熱交換されて液状となった冷媒は、第3逆止弁28を経由してレシーバ23へ供給される。
 レシーバ23へ供給された液状の冷媒は、室内熱交換器51へ供給される。室内熱交換器51では、室内の空気から冷媒へ熱を移動させる熱交換が行われる。この熱交換により、室内の空気の温度が下降する。また、冷媒は、この熱交換により、低温かつ低圧のガス状に変化する。室内熱交換器51で熱交換された冷媒は、四方弁21を介してアキュムレータ11に供給される。アキュムレータ11では、ガス状の冷媒が貯留される。
 次に、図1及び図2を参照して、アキュムレータ11からエンジン駆動コンプレッサ13及び電動コンプレッサ16へ冷媒が供給される経路の配管構造について説明する。図2は、アキュムレータ11からエンジン駆動コンプレッサ13及び電動コンプレッサ16へ冷媒が供給される経路の配管構造を示す斜視図である。
 上述したように、エンジン駆動コンプレッサ13は、アキュムレータ11から冷媒を吸入している。エンジン駆動コンプレッサ13に接続されており、当該エンジン駆動コンプレッサ13が吸入する冷媒が流れる配管がエンジン駆動コンプレッサ吸入配管71である。エンジン駆動コンプレッサ吸入配管71には、複数の曲げが形成されている。また、本実施形態では、エンジン駆動コンプレッサ13が2つ設けられているため、エンジン駆動コンプレッサ吸入配管71は、エンジン駆動コンプレッサ13の近傍で2つに分岐している。このように、本実施形態において、アキュムレータ11とエンジン駆動コンプレッサ13の間には、複数の管部材が設けられているが、それらを合わせたものが、エンジン駆動コンプレッサ吸入配管71に相当する。
 上述したように、電動コンプレッサ16は、アキュムレータ11から冷媒を吸入している。電動コンプレッサ16に接続されており、電動コンプレッサ16が吸入する冷媒が流れる配管が電動コンプレッサ吸入配管75である。特に、本実施形態では、電動コンプレッサ吸入配管75は、エンジン駆動コンプレッサ吸入配管71と電動コンプレッサ16とを接続している配管である。言い換えれば、電動コンプレッサ吸入配管75は、エンジン駆動コンプレッサ吸入配管71から分岐するように設けられている(図2の分岐部分を参照)。
 なお、本実施形態では、アキュムレータ11とエンジン駆動コンプレッサ13とを接続するエンジン駆動コンプレッサ吸入配管71があり、このエンジン駆動コンプレッサ吸入配管71に電動コンプレッサ吸入配管75が接続されている。言い換えれば、エンジン駆動コンプレッサ吸入配管71がメインとなっている構成である。これに代えて、アキュムレータ11と電動コンプレッサ16とを接続する電動コンプレッサ吸入配管があり、この電動コンプレッサ吸入配管にエンジン駆動コンプレッサ吸入配管が接続されていても良い。言い換えれば、電動コンプレッサ吸入配管75がメインとなっていても良い。なお、三又配管等で接続されていることにより、エンジン駆動コンプレッサ吸入配管71と電動コンプレッサ吸入配管75の何れの配管がメインか特定できない構成であっても良い。
 図2に示すように、エンジン駆動コンプレッサ吸入配管71には、フレキ管(振動軽減管)72,73が含まれている。フレキ管72,73は、エンジン駆動コンプレッサ吸入配管71のうち、電動コンプレッサ吸入配管75に分岐する箇所よりも、冷媒流れ方向(冷媒の吸入方向)の下流側に配置されている。言い換えると、フレキ管72,73は、エンジン駆動コンプレッサ吸入配管71において、電動コンプレッサ吸入配管75との分岐部分よりも、アキュムレータ11から遠い位置に配置されている。また、冷媒流れ方向の上流側、即ちアキュムレータ11に近い側がフレキ管72であり、冷媒流れ方向の上流側がフレキ管73である。
 エンジン駆動コンプレッサ13は、エンジン12に接続されているため、エンジン12の振動に伴ってエンジン駆動コンプレッサ13も振動する。この振動が電動コンプレッサ16及びアキュムレータ11等に伝達された場合、これらの性能が劣化したり寿命が短くなったりする可能性がある。
 この点、本実施形態では、フレキ管72,73により防振を行っている。具体的に説明すると、フレキ管72,73は、蛇腹状の金属管であり、可撓性を有している。従って、フレキ管72,73は、配管軸方向に垂直な方向の振動が加わった場合でも、フレキ管72,73が折れ曲がることで、当該振動を軽減できる。しかし、フレキ管72,73は、配管軸方向に平行な方向の振動の吸収性に乏しい。従って、本実施形態では、エンジン駆動コンプレッサ吸入配管71のうち、互いに垂直な2つの部分に、それぞれフレキ管72,73が設けられている。より詳細には、エンジン駆動コンプレッサ吸入配管71のうち、略鉛直方向に延びる部分にフレキ管72が配置され、略水平方向に延びる部分にフレキ管73が配置されている。これにより、3軸方向の全ての振動を吸収することができる。従って、電動コンプレッサ16及びアキュムレータ11等を振動しにくくすることができる。
 なお、フレキ管72,73の配管軸方向は互いに垂直である方が好ましいが、配管軸方向が異なるのであれば、ある程度の効果を発揮させることができる。ただし、フレキ管72,73の配管軸方向は互いに異なっていなくてもよい。また、フレキ管72,73のうち少なくとも一方を曲げた状態で配置しても良い。エンジン駆動コンプレッサ吸入配管71に含まれるフレキ管は、1つであっても良いし、3つ以上であっても良い。更には、振動を吸収可能であれば、金属製の蛇腹状以外の管部材を用いても良い(例えばゴム継手)。
 エンジン駆動コンプレッサ吸入配管71は、図2に示す配管固定部材74を介して、室外機10のハウジング等に固定されている。より詳細には、エンジン駆動コンプレッサ吸入配管71のうち、フレキ管72よりも冷媒流れ方向の上流側の部分が配管固定部材74に取り付けられている。また、配管固定部材74には、後述のエンジン駆動コンプレッサ吐出配管81も取り付けられている。
 次に、図1及び図3を参照して、エンジン駆動コンプレッサ13及び電動コンプレッサ16からオイルセパレータ20へ冷媒が供給される経路の配管構造について説明する。図3は、エンジン駆動コンプレッサ13及び電動コンプレッサ16からオイルセパレータ20へ冷媒が供給される経路の配管構造を示す斜視図である。
 上述したように、エンジン駆動コンプレッサ13は、オイルセパレータ20へ冷媒を吐出している。エンジン駆動コンプレッサ13から延びており、オイルセパレータに向けて冷媒を吐出する配管がエンジン駆動コンプレッサ吐出配管81である。特に、本実施形態では、エンジン駆動コンプレッサ13とオイルセパレータ20を接続する配管がエンジン駆動コンプレッサ吐出配管81である。エンジン駆動コンプレッサ吐出配管81には、複数の曲げが形成されている。また、本実施形態では、エンジン駆動コンプレッサ13が2つ設けられているため、エンジン駆動コンプレッサ吐出配管81はエンジン駆動コンプレッサ13の近傍で2つから1つに合流している。このように、本実施形態において、エンジン駆動コンプレッサ13とオイルセパレータ20の間には、複数の管部材が設けられているが、それらを合わせたものが、エンジン駆動コンプレッサ吐出配管81に相当する。
 上述したように、電動コンプレッサ16は、オイルセパレータ20へ冷媒を吐出している。電動コンプレッサ16から延びており、オイルセパレータ20に向けて冷媒を吐出する配管が電動コンプレッサ吐出配管85である。特に、本実施形態では、電動コンプレッサ吐出配管85は、エンジン駆動コンプレッサ吐出配管81と電動コンプレッサ16とを接続している配管である。言い換えれば、電動コンプレッサ吐出配管85は、エンジン駆動コンプレッサ吐出配管81に合流するように設けられている(図3の合流部分を参照)。なお、吸入配管と同様に、エンジン駆動コンプレッサ吐出配管81と電動コンプレッサ吐出配管85の何れがメインであっても良い。
 上述したように、エンジン駆動コンプレッサ13はエンジン12とともに振動するため、吐出配管側においても、防振を行う必要がある。そのため、エンジン駆動コンプレッサ吐出配管81には、フレキ管(振動軽減管)82,83が含まれている。フレキ管82,83は、エンジン駆動コンプレッサ吐出配管81のうち、電動コンプレッサ吐出配管85が合流する箇所よりも、冷媒流れ方向(冷媒の吐出方向)の上流側に配置されている。言い換えると、フレキ管82,83は、エンジン駆動コンプレッサ吐出配管81において、電動コンプレッサ吐出配管85との合流部分よりも、オイルセパレータ20から遠い位置に配置されている。更に、フレキ管82,83は、第1逆止弁14よりも、冷媒流れ方向の上流側に配置されている。また、冷媒流れ方向の上流側、即ちエンジン駆動コンプレッサ13に近い側がフレキ管82であり、冷媒流れ方向の下流側がフレキ管83である。フレキ管82,83は、その配管軸方向が互いに異なるように構成されている。この構成により吐出配管側において、3軸方向の振動を効果的に吸収することができる。従って、第1逆止弁14、電動コンプレッサ16及びアキュムレータ11等を振動しにくくすることができる。
 より好ましくは、フレキ管82,83は、吸入側のフレキ管72,73と同様、その配管軸方向が互いに垂直となるように構成される。この場合、吸入側のフレキ管72,73と同様、例えばエンジン駆動コンプレッサ吐出配管81のうち、略水平方向に延びる部分にフレキ管82が配置され、略鉛直方向に延びる部分にフレキ管83が配置されていても良い。ただし、フレキ管82,83の配管軸方向は互いに異なっていなくてもよい。上記では、フレキ管72,73について様々な変形例を説明したが、それらはフレキ管82,83についても同様である。
 また、電動コンプレッサ吐出配管85には、振止め部材76が配置されている。振止め部材76は、防振ゴム等を介して配管を支持することで、防振しつつ配管を保持する部材である。振止め部材76は、電動コンプレッサ吐出配管85のうち、第2逆止弁17の冷媒流れ方向の上流側の端部である入口の近傍に配置されている。第2逆止弁17は配管の中では重量が大きいため、振止め部材76を第2逆止弁17の近傍に配置することが好ましい。なお、振止め部材76は、電動コンプレッサ吐出配管85のうち、第2逆止弁17の入口の近傍ではなく、第2逆止弁17の冷媒流れ方向の下流側の端部である出口の近傍に配置されていても良い。あるいは、振止め部材76は、第2逆止弁17自体を保持する構成であっても良い。
 次に、第2実施形態について説明する。図4は、第2実施形態に係るヒートポンプ1の冷媒回路図である。図5は、第2実施形態に係る、アキュムレータ11からエンジン駆動コンプレッサ13及び電動コンプレッサ吐出配管85へ冷媒が供給される経路の配管構造を示す斜視図である。図6は、第2実施形態に係る、エンジン駆動コンプレッサ13及び電動コンプレッサ吐出配管85からオイルセパレータ20へ冷媒が供給される経路の配管構造を示す斜視図である。
 第2実施形態では、エンジン12側だけでなく、電動コンプレッサ16側にもフレキ管を配置した点において、第1実施形態と異なる。即ち、図4及び図5に示すように、電動コンプレッサ吸入配管75がフレキ管79を含んで構成されている。また、図4及び図6に示すように、電動コンプレッサ吐出配管85はフレキ管89を含んで構成されている。なお、第2実施形態では、フレキ管89は、第2逆止弁17よりも、冷媒流れ方向の上流側に配置されているが、下流側に配置されていても良い。
 第2実施形態では、電動コンプレッサ16側には、フレキ管を吸入配管側と吐出配管側でそれぞれ1つずつ配置する構成であるが、それぞれ複数配置しても良い。この場合、第1実施形態のように、配管軸方向が異なる部分にそれぞれフレキ管を配置することが好ましく、配管軸方向が垂直な部分にそれぞれフレキ管を配置することが更に好ましい。
 以上に説明したように、上記実施形態のヒートポンプ1は、エンジン駆動コンプレッサ13と、電動コンプレッサ16と、オイルセパレータ20と、電動コンプレッサ吐出配管85と、エンジン駆動コンプレッサ吐出配管81と、を備える。エンジン駆動コンプレッサ13は、エンジン12によって駆動される。電動コンプレッサ16は、コンプレッサモータ15によって駆動される。オイルセパレータ20は、エンジン駆動コンプレッサ13及び電動コンプレッサ16が吐出する冷媒に含まれる潤滑油を分離する。電動コンプレッサ吐出配管85は、電動コンプレッサ16から延びており、オイルセパレータ20に向けて冷媒を吐出する。エンジン駆動コンプレッサ吐出配管81は、エンジン駆動コンプレッサ13から延びており、オイルセパレータ20に向けて冷媒を吐出しており、電動コンプレッサ吐出配管85との合流部分よりも、冷媒の吐出方向の上流側の少なくとも一部がフレキ管82,83で構成されている。
 エンジン駆動コンプレッサ吐出配管81において上記の位置にフレキ管82,83が配置されていることにより、エンジン12で発生した振動が電動コンプレッサ吐出配管85、電動コンプレッサ16、及びオイルセパレータ20に伝達しにくくなるため、これらの振動を抑制できる。
 また、上記実施形態のヒートポンプ1において、電動コンプレッサ吐出配管85には、エンジン駆動コンプレッサ吐出配管81との合流部分よりも、冷媒の吐出方向の上流側において、第2逆止弁17が配置されている。電動コンプレッサ吐出配管85のうち、第2逆止弁17が配置されている部分又はその近傍は振止め部材76により固定されている。
 電動コンプレッサ吐出配管85のうち、第2逆止弁17が配置されている部分は他の部分よりも重くなり易いため、この部分を振止め部材76で固定することで、振動の伝達を軽減できる。
 また、第2実施形態のヒートポンプ1において、電動コンプレッサ吐出配管85は、エンジン駆動コンプレッサ吐出配管81との合流部分よりも、冷媒の吐出方向の上流側の少なくとも一部がフレキ管89で構成されている。
 これにより、エンジン12で発生した振動が電動コンプレッサ16及びオイルセパレータ20に更に伝達しにくくなるため、これらの振動を一層抑制できる。
 また、上記実施形態のヒートポンプ1は、更に、電動コンプレッサ吸入配管75と、エンジン駆動コンプレッサ吸入配管71と、を備える。電動コンプレッサ吸入配管75は、電動コンプレッサ16に接続されており、当該電動コンプレッサ16が吸入する冷媒が流れる。エンジン駆動コンプレッサ吸入配管71は、エンジン駆動コンプレッサ13に接続されており、当該エンジン駆動コンプレッサ13が吸入する冷媒が流れ、エンジン駆動コンプレッサ吐出配管81との分岐部分よりも、冷媒の吸入方向の下流側の少なくとも一部がフレキ管72,73で構成されている。
 エンジン駆動コンプレッサ吸入配管71において上記の位置にフレキ管72,73が配置されていることにより、エンジン12で発生した振動が電動コンプレッサ吸入配管75及び電動コンプレッサ16に伝達しにくくなるため、これらの振動を抑制できる。
 また、第2実施形態のヒートポンプ1において、電動コンプレッサ吸入配管75は、エンジン駆動コンプレッサ吸入配管71との分岐部分よりも、冷媒の吸入方向の下流側の少なくとも一部がフレキ管79で構成されている。
 これにより、エンジン12で発生した振動が電動コンプレッサ16に更に伝達しにくくなるため、電動コンプレッサ16の振動を一層抑制できる。
 以上に本発明の好適な実施の形態を説明したが、上記の構成は例えば以下のように変更することができる。
 フレキ管72,73,82,83は、それぞれのエンジン駆動コンプレッサ13から個々に延びている部分に、それぞれ配置されていても良い。この構成により、エンジン駆動コンプレッサ吸入配管71又はエンジン駆動コンプレッサ吐出配管81のうち、振動が伝達する部分を短くできる。また、フレキ管82,83は、第1逆止弁14よりも冷媒流れ方向の下流側に配置されていても良い。
 上記実施形態では、ヒートポンプ1を空気調和器に適用する例について説明したが、別の構成に適用することもできる。例えば、ヒートポンプ1は、冷凍器又は給湯器等に適用することができる。
 上記実施形態では、エンジン駆動コンプレッサ吸入配管71にフレキ管72,73が設けられ、エンジン駆動コンプレッサ吐出配管81にフレキ管82,83が設けられている。しかしながら、エンジン駆動コンプレッサ吸入配管71及びエンジン駆動コンプレッサ吐出配管81の一方のみに、フレキ管を設けてもよい。
 1 ヒートポンプ
 10 室外機
 11 アキュムレータ
 12 エンジン
 13 エンジン駆動コンプレッサ
 14 第1逆止弁
 15 コンプレッサモータ
 16 電動コンプレッサ
 17 第2逆止弁
 20 オイルセパレータ
 71 エンジン駆動コンプレッサ吸入配管
 72,73 フレキ管
 75 電動コンプレッサ吸入配管
 76 振止め部材
 81 エンジン駆動コンプレッサ吐出配管
 82,83 フレキ管
 85 電動コンプレッサ吐出配管

Claims (6)

  1.  エンジンによって駆動されるエンジン駆動コンプレッサと、
     電動モータによって駆動される電動コンプレッサと、
     前記エンジン駆動コンプレッサ及び前記電動コンプレッサが吐出する冷媒に含まれる潤滑油を分離するオイルセパレータと、
     前記電動コンプレッサから延びており、前記オイルセパレータに向けて冷媒を吐出する電動コンプレッサ吐出配管と、
     前記エンジン駆動コンプレッサから延びており、前記オイルセパレータに向けて冷媒を吐出しており、前記電動コンプレッサ吐出配管との合流部分よりも、冷媒の吐出方向の上流側の少なくとも一部が振動軽減管で構成されているエンジン駆動コンプレッサ吐出配管と、
    を備えることを特徴とするヒートポンプ。
  2.  請求項1に記載のヒートポンプであって、
     前記電動コンプレッサ吐出配管には、前記エンジン駆動コンプレッサ吐出配管との合流部分よりも、冷媒の吐出方向の上流側において、逆止弁が配置されており、
     前記電動コンプレッサ吐出配管のうち、前記逆止弁が配置されている部分又はその近傍は振止め部材により固定されていることを特徴とするヒートポンプ。
  3.  請求項1に記載のヒートポンプであって、
     前記電動コンプレッサ吐出配管は、前記エンジン駆動コンプレッサ吐出配管との合流部分よりも、冷媒の吐出方向の上流側の少なくとも一部が振動軽減管で構成されていることを特徴とするヒートポンプ。
  4.  請求項2に記載のヒートポンプであって、
     前記電動コンプレッサ吐出配管は、前記エンジン駆動コンプレッサ吐出配管との合流部分よりも、冷媒の吐出方向の上流側の少なくとも一部が振動軽減管で構成されていることを特徴とするヒートポンプ。
  5.  エンジンによって駆動されるエンジン駆動コンプレッサと、
     電動モータによって駆動される電動コンプレッサと、
     前記電動コンプレッサに接続されており、当該電動コンプレッサが吸入する冷媒が流れる電動コンプレッサ吸入配管と、
     前記エンジン駆動コンプレッサに接続されており、当該エンジン駆動コンプレッサが吸入する冷媒が流れ、前記電動コンプレッサ吸入配管との分岐部分よりも、冷媒の吸入方向の下流側の少なくとも一部が振動軽減管で構成されているエンジン駆動コンプレッサ吸入配管と、
    を備えることを特徴とするヒートポンプ。
  6.  請求項5に記載のヒートポンプであって、
     前記電動コンプレッサ吸入配管は、前記エンジン駆動コンプレッサ吸入配管との分岐部分よりも、冷媒の吸入方向の下流側の少なくとも一部が振動軽減管で構成されていることを特徴とするヒートポンプ。
PCT/JP2018/003058 2017-03-23 2018-01-31 ヒートポンプ WO2018173490A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020197018354A KR20190086750A (ko) 2017-03-23 2018-01-31 히트 펌프

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-057986 2017-03-23
JP2017057986A JP2018159529A (ja) 2017-03-23 2017-03-23 ヒートポンプ

Publications (1)

Publication Number Publication Date
WO2018173490A1 true WO2018173490A1 (ja) 2018-09-27

Family

ID=63584399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003058 WO2018173490A1 (ja) 2017-03-23 2018-01-31 ヒートポンプ

Country Status (3)

Country Link
JP (1) JP2018159529A (ja)
KR (1) KR20190086750A (ja)
WO (1) WO2018173490A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7319510B2 (ja) * 2018-12-06 2023-08-02 ダイキン工業株式会社 配管構造及び空調機
JP2022074320A (ja) * 2020-11-04 2022-05-18 パナソニックIpマネジメント株式会社 空気調和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55116960U (ja) * 1979-02-14 1980-08-18
JP2006250435A (ja) * 2005-03-10 2006-09-21 Yanmar Co Ltd エンジン駆動式ヒートポンプ
JP2013250004A (ja) * 2012-05-31 2013-12-12 Panasonic Corp ハイブリッド空気調和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200130A (ja) * 1988-02-03 1989-08-11 Yanmar Diesel Engine Co Ltd エンジン・ヒートポンプ装置
JP2788650B2 (ja) * 1989-06-08 1998-08-20 ヤマハ発動機株式会社 エンジン駆動熱ポンプ装置
JP4178458B2 (ja) * 2003-03-07 2008-11-12 アイシン精機株式会社 ガスエンジン駆動式空調装置および空調装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55116960U (ja) * 1979-02-14 1980-08-18
JP2006250435A (ja) * 2005-03-10 2006-09-21 Yanmar Co Ltd エンジン駆動式ヒートポンプ
JP2013250004A (ja) * 2012-05-31 2013-12-12 Panasonic Corp ハイブリッド空気調和装置

Also Published As

Publication number Publication date
KR20190086750A (ko) 2019-07-23
JP2018159529A (ja) 2018-10-11

Similar Documents

Publication Publication Date Title
WO2018173490A1 (ja) ヒートポンプ
JP2005241236A (ja) 空調機の室外機の配管構造
US20080202157A1 (en) Internal heat exchanger for automotive air conditioner
JP2007303746A (ja) 冷凍サイクルおよび冷凍サイクル用部品組立体
JP6102200B2 (ja) 空気調和装置の室外機
CN104949228A (zh) 空调机组
JP2001277842A (ja) 自動車用空気調和装置
JP5934936B2 (ja) 冷凍サイクル装置
JP6064287B2 (ja) 冷凍サイクル装置
JP5160792B2 (ja) 空気調和機の熱交換器
JP2010236609A (ja) 空気調和装置およびフレキシブル配管
US11248856B2 (en) Refrigeration apparatus
JP2003232543A (ja) ガスヒートポンプ式空気調和機の防振構造
WO2012120554A1 (ja) 冷凍サイクル装置
CN114127491A (zh) 搭载于汽车的空气调节器用配管系统
JP5853203B2 (ja) 冷凍サイクル装置
CN213810892U (zh) 一种空调室外机
JP5820975B2 (ja) 冷凍サイクル装置
WO2022097673A1 (ja) 空気調和装置
CN214664853U (zh) 空调室外机及其应用的管组总成
CN213931205U (zh) 空调室外机及其应用的管组总成
CN213810893U (zh) 空调室外机及其应用的管组总成
CN214664852U (zh) 空调室外机及其应用的管组总成
WO2021192828A1 (ja) ヒートポンプ
CN214664854U (zh) 一种空调室外机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771271

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197018354

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18771271

Country of ref document: EP

Kind code of ref document: A1