WO2018173421A1 - Substrate polishing device and substrate polishing method - Google Patents

Substrate polishing device and substrate polishing method Download PDF

Info

Publication number
WO2018173421A1
WO2018173421A1 PCT/JP2018/000233 JP2018000233W WO2018173421A1 WO 2018173421 A1 WO2018173421 A1 WO 2018173421A1 JP 2018000233 W JP2018000233 W JP 2018000233W WO 2018173421 A1 WO2018173421 A1 WO 2018173421A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
substrate
conditioning
polishing pad
partial
Prior art date
Application number
PCT/JP2018/000233
Other languages
French (fr)
Japanese (ja)
Inventor
安田 穂積
小畠 厳貴
高橋 信行
卓 作川
Original Assignee
株式会社 荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 荏原製作所 filed Critical 株式会社 荏原製作所
Priority to SG11201908381R priority Critical patent/SG11201908381RA/en
Priority to KR1020197028236A priority patent/KR102482181B1/en
Priority to CN201880018928.9A priority patent/CN110461542A/en
Priority to US16/495,010 priority patent/US20200269383A1/en
Publication of WO2018173421A1 publication Critical patent/WO2018173421A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/017Devices or means for dressing, cleaning or otherwise conditioning lapping tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/12Dressing tools; Holders therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B55/00Safety devices for grinding or polishing machines; Accessories fitted to grinding or polishing machines for keeping tools or parts of the machine in good working condition
    • B24B55/06Dust extraction equipment on grinding or polishing machines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a substrate polishing apparatus and a polishing method.
  • a processing apparatus has been used to perform various types of processing on a processing target (for example, a substrate such as a semiconductor substrate or various films formed on the surface of the substrate).
  • a processing target for example, a substrate such as a semiconductor substrate or various films formed on the surface of the substrate.
  • CMP Chemical Mechanical Polishing
  • the CMP apparatus includes a polishing unit for performing a polishing process on a processing target, a cleaning unit for performing a cleaning process and a drying process on the processing target, and a processing unit that delivers the processing target to the polishing unit and performs a cleaning process by the cleaning unit. And a load / unload unit that receives the dried processed object.
  • the CMP apparatus also includes a transport mechanism that transports the processing object in the polishing unit, the cleaning unit, and the load / unload unit. The CMP apparatus sequentially performs various processes such as polishing, cleaning, and drying while conveying a processing object by a conveyance mechanism.
  • the required accuracy of each process in the manufacture of semiconductor devices has already reached the order of several nanometers, and CMP is no exception.
  • the polishing and cleaning conditions are optimized in CMP.
  • the semiconductor substrate that is the object of processing also has variations, for example, there is a variation in the film thickness and device shape of the film formed on the object to be processed before CMP.
  • Such variation occurs in the form of crossing between chips or between chips within the substrate surface, and also occurs between substrates or lots.
  • the polishing conditions for the substrate being polished and the substrate before polishing are controlled so that these variations are within a certain threshold. And / or reworking (re-polishing) the substrate that has exceeded the threshold.
  • the effect of suppressing variation due to the polishing conditions as described above appears mainly in the radial direction of the substrate, it is difficult to adjust the variation in the circumferential direction of the substrate.
  • the local polishing amount distribution may vary within the substrate surface depending on the processing conditions during CMP and the state of the lower layer of the film polished by CMP.
  • the device region in the substrate surface has been expanded from the viewpoint of recent yield improvement, and it is necessary to adjust the polishing distribution to the edge portion of the substrate. ing.
  • polishing conditions and cleaning conditions and rework are basically performed by a polishing unit that performs CMP.
  • the polishing pad is almost entirely in contact with the substrate surface, and even when a part is in contact, from the viewpoint of maintaining the processing speed, the contact area between the polishing pad and the substrate is It must be taken big.
  • FIG. 15 is a diagram showing a schematic configuration of an example of a partial polishing apparatus 1000 for performing polishing using a polishing pad having a diameter smaller than that of the object to be processed.
  • a polishing pad 502 having a diameter smaller than that of the substrate Wf that is a processing target is used.
  • the partial polishing apparatus 1000 includes a stage 400 on which a substrate Wf is installed, a polishing head 500 to which a polishing pad 502 for performing processing on a processing surface of the substrate Wf is attached, and a polishing head 500.
  • a holding arm 600, a processing liquid supply system 700 for supplying a processing liquid, and a conditioning unit 800 for conditioning the polishing pad 502 are provided.
  • the overall operation of the partial polishing apparatus 1000 is controlled by the control device 900.
  • the partial polishing apparatus shown in FIG. 15 supplies DIW (pure water), cleaning chemical liquid, and polishing liquid such as slurry from the processing liquid supply system 700 to the substrate and presses the substrate while rotating the polishing pad 502. By doing so, the substrate can be partially polished.
  • DIW pure water
  • cleaning chemical liquid cleaning chemical liquid
  • polishing liquid such as slurry
  • the polishing pad 502 has a size smaller than that of the substrate Wf.
  • the diameter ⁇ of the polishing pad 502 is equal to or smaller than the variation area of the film thickness and shape to be processed.
  • the diameter ⁇ of the polishing pad 502 is 50 mm or less, or ⁇ 10-30 mm.
  • the accuracy of polishing for a desired processing region conversely, the accuracy improves as the diameter of the polishing pad decreases. This is because the unit processing area decreases as the diameter of the polishing pad decreases.
  • the polishing pad 502 when the substrate Wf is partially polished, the polishing pad 502 is pressed against the substrate Wf while rotating the polishing pad 502 about the rotation shaft 502A. At this time, the arm 600 may be swung in the radial direction of the substrate Wf. Further, the stage 400 may be rotated about the rotation axis 400A.
  • the conditioning unit 800 includes a dress stage 810 that holds a dresser 820. The dress stage 810 can rotate around the rotation shaft 810A. In the partial polishing apparatus 1000 of FIG. 15, the polishing pad 502 can be conditioned by pressing the polishing pad 502 against the dresser 820 and rotating the polishing pad 502 and the dresser 820.
  • the control apparatus 900 controls the rotation speed of the stage 400, the rotation speed of the polishing pad 502, the pressing force of the polishing pad 502, the swing speed of the arm 600, and the processing liquid supply system 700.
  • An arbitrary region on the substrate Wf can be partially polished by controlling the supply of the processing liquid, the processing time, and the like.
  • conditioning is performed as described above. Conditioning may be performed after the polishing of one substrate is completed and before the next substrate is polished.
  • One object of the present application is to provide a polishing apparatus capable of maintaining the state of the polishing member well during polishing.
  • a polishing apparatus for locally polishing a substrate conditions a polishing member having a processing surface smaller than the substrate in contact with the substrate, and the polishing member. And a first pressing mechanism for pressing the conditioning member against the polishing member during polishing of the substrate, and a control device for controlling the operation of the polishing apparatus. Is configured to control the first pressing mechanism when the substrate is locally polished by the polishing member. According to the polishing member of aspect 1, the polishing member can be conditioned at the same time when the substrate is being polished by the polishing member. Therefore, the state of the polishing member can be maintained well during polishing.
  • Mode 2 in the polishing apparatus according to mode 1, a pressing mechanism for pressing the polishing member against the substrate, and the polishing member is moved in a first movement direction parallel to the surface of the substrate.
  • a first drive mechanism in the polishing apparatus according to mode 1, a pressing mechanism for pressing the polishing member against the substrate, and the polishing member is moved in a first movement direction parallel to the surface of the substrate.
  • Mode 3 in the polishing apparatus of mode 2, the conditioning member is moved so as to have a component in a second movement direction that is perpendicular to the first movement direction and parallel to the surface of the substrate.
  • the second drive mechanism is configured to give a linear motion and / or a rotational motion to the conditioning member.
  • the controller presses the first press so as to execute conditioning at a predetermined cycle during polishing of the substrate. It is configured to control the mechanism.
  • the polishing apparatus according to any one of Embodiments 1 to 6 includes the recovery device for recovering the waste generated from the polishing member during conditioning.
  • the recovery device in the polishing apparatus of Embodiment 7, has a suction section for sucking and removing debris generated from the polishing member generated during conditioning.
  • the recovery device has a scraper or a wiper for collecting debris generated from the polishing member generated during conditioning.
  • the recovery device in the polishing apparatus according to any one of Embodiments 7 to 9, includes a liquid supply mechanism for cleaning the polishing member after conditioning, and the polishing member. A liquid recovery mechanism for recovering the liquid after washing.
  • the polishing member is (1) disc-shaped or cylindrical, and the disc-shaped or cylindrical
  • the central axis of the shape is parallel to the surface of the substrate
  • (2) is a disc shape, and the central axis of the disc shape is inclined from a direction perpendicular to the surface of the substrate, and (3) a conical shape or a cut A conical shape, the central axis 4 of the conical shape or the truncated conical shape being parallel to the surface of the substrate
  • It is a spherical shape or a shape having a part of a spherical shape, and (5) has a belt member.
  • Mode 12 there is provided a method for polishing a substrate, the step of pressing a polishing member having a processed surface that contacts the substrate smaller than the substrate against the substrate, and using the polishing member as a substrate.
  • the step of polishing the substrate by relatively moving the polishing member and the substrate while pressing, and while the substrate is being polished, the conditioning member is brought into contact with the polishing member to move the polishing member Conditioning.
  • the polishing member can be conditioned at the same time when the substrate is being polished with the polishing member. Therefore, the state of the polishing member can be maintained well during polishing.
  • the polishing method of embodiment 12 includes the step of applying a linear motion and / or a rotational motion to the conditioning member.
  • FIG. 6 is a schematic diagram illustrating a mechanism for holding a polishing 502 of a polishing head, according to one embodiment. It is a perspective view showing roughly an example of the 2nd conditioner which can be used for a partial polisher by one embodiment. It is a perspective view showing roughly an example of the 2nd conditioner which can be used for a partial polisher by one embodiment. It is a side view showing roughly an example of a polish head and the 2nd conditioner which can be used for a partial polish device by one embodiment. It is a side view showing roughly an example of a polish head and the 2nd conditioner which can be used for a partial polish device by one embodiment.
  • FIG. 3 is a side view schematically illustrating a collection device according to one embodiment.
  • FIG. 3 is a side view schematically illustrating a collection device according to one embodiment.
  • FIG. 3 is a side view schematically illustrating a collection device according to one embodiment.
  • FIG. 3 is a side view schematically illustrating a collection device according to one embodiment.
  • 3 illustrates an example of a control circuit for processing information related to a film thickness, unevenness, and height of a substrate according to an embodiment.
  • FIG. 1 is a schematic diagram illustrating a substrate processing system equipped with a partial polishing apparatus according to an embodiment. It is a figure which shows schematic structure of an example of the partial polishing apparatus for grind
  • FIG. 1 is a schematic diagram showing a configuration of a partial polishing apparatus 1000 according to an embodiment.
  • the partial polishing apparatus 1000 is configured on the base surface 1002.
  • the partial polishing apparatus 1000 may be configured as an independent apparatus, and a module of a part of the substrate processing system 1100 including the large diameter polishing apparatus 1200 that uses a large diameter polishing pad together with the partial polishing apparatus 1000. (See FIG. 14).
  • the partial polishing apparatus 1000 is installed in a housing (not shown).
  • the casing includes an exhaust mechanism (not shown) and is configured so that a polishing liquid or the like is not exposed to the outside of the casing during the polishing process.
  • the partial polishing apparatus 1000 includes a stage 400 that holds the substrate Wf upward.
  • the substrate Wf can be placed on the stage 400 by a transfer device (not shown).
  • the illustrated partial polishing apparatus 1000 includes four lift pins 402 that can move up and down around the stage 400. When the lift pins 402 are raised, the substrate Wf is transferred from the transfer device onto the four lift pins 402. Can receive. After the substrate Wf is placed on the lift pins 402, the lift pins 402 are lowered to the substrate delivery position to the stage 400, whereby the substrate Wf is temporarily placed on the stage. Therefore, it is possible to position the substrate Wf within a region limited to the inside of the four lift pins 402.
  • the substrate Wf may be positioned at a predetermined position on the stage 400 by the positioning mechanism 404 separately.
  • the substrate Wf can be positioned by positioning pins (not shown) and positioning pads 406.
  • the positioning mechanism 404 includes a positioning pad 406 that can move in a direction within the plane of the substrate Wf, and includes a plurality of positioning pins (not shown) on the opposite side of the positioning pad 406 across the stage 400. In a state where the substrate Wf is placed on the lift pins 402, the positioning pad 406 can be pressed against the substrate Wf, and the substrate Wf can be positioned by the positioning pad 406 and the positioning pins.
  • the partial polishing apparatus 1000 includes a detection unit 408.
  • the detection unit 408 is for detecting the position of the substrate Wf disposed on the stage 400. For example, it is possible to detect the position of the substrate Wf on the stage 400 by detecting notches, orientation flats and the outer periphery of the substrate formed in the substrate Wf. By using the position of the notch or the orientation flat as a reference, it is possible to specify an arbitrary point on the substrate Wf, thereby enabling partial polishing of a desired region.
  • the control device 900 moves the polishing pad 502 based on this information.
  • the position may be corrected.
  • the lift pin 402 is moved to the substrate receiving position from the stage 400, and then the vacuum suction of the stage 400 is released.
  • the transfer device (not shown) can receive the substrate Wf on the lift pins 402. The substrate Wf can then be transported to any location for subsequent processing by the transport device.
  • the stage 400 of the partial polishing apparatus 1000 includes a rotation drive mechanism 410 and is configured to be rotatable and / or rotatable about the rotation shaft 400A.
  • rotation means continuous rotation in a certain direction
  • angle rotation means movement in the circumferential direction within a predetermined angle range (including reciprocation). ) Means to do.
  • the stage 400 may include a moving mechanism that applies a linear motion to the held substrate Wf.
  • linear motion means movement in a predetermined linear direction, and includes linear reciprocation.
  • FIG. 1 includes a polishing head 500.
  • the polishing head 500 holds the polishing pad 502.
  • FIG. 2 is a schematic view showing a mechanism for holding the polishing pad 502 of the polishing head 500.
  • the polishing head 500 includes a first holding member 504 and a second holding member 506.
  • the polishing pad 502 is held between the first holding member 504 and the second holding member 506.
  • the first holding member 504, the polishing pad 502, and the second holding member 506 are all disk-shaped.
  • the diameters of the first holding member 504 and the second holding member 506 are smaller than the diameter of the polishing pad 502.
  • the polishing pad 502 is exposed from the edges of the first holding member 504 and the second holding member 506 in a state where the polishing pad 502 is held by the first holding member 504 and the second holding member 506.
  • the first holding member 504, the polishing pad 502, and the second holding member 506 all have an opening at the center, and the rotating shaft 510 is inserted into the opening.
  • One or more guide pins 508 projecting toward the polishing pad 502 are provided on the surface of the first holding member 504 on the polishing pad 502 side.
  • a through hole is provided at a position corresponding to the guide pin 508 in the polishing pad 502, and a recess for receiving the guide pin 508 is formed on the surface of the second holding member 506 on the polishing pad 502 side. Therefore, when the first holding member 504 and the second holding member 506 are rotated by the rotating shaft 510, the polishing pad 502 can rotate integrally with the holding members 504 and 506 without slipping.
  • the polishing pad 502 is made of a material such as a commercially available CMP pad.
  • a partial polishing apparatus 1000 shown in FIG. 1 includes a holding arm 600 that holds a polishing head 500.
  • the holding arm 600 includes a first drive mechanism for giving the polishing pad 502 movement in the first movement direction with respect to the substrate Wf.
  • the “first movement direction” here is the movement of the polishing pad 502 for polishing the substrate Wf, and is the rotational movement of the polishing pad 502 in the partial polishing apparatus 1000 of FIG.
  • the first drive mechanism can be composed of, for example, a general motor.
  • the polishing pad 502 moves in parallel to the surface of the substrate Wf (the tangential direction of the polishing pad 502; the y direction in FIG. 1). Even so, the “first motion direction” can be considered to be a constant linear direction.
  • the polishing pad 502 has a disk shape, and the rotation axis is perpendicular to the surface of the substrate Wf. Therefore, as described above, a linear velocity distribution is generated in the radial direction of the polishing pad 502, and a polishing velocity distribution is generated in the radial direction of the polishing pad 502. Therefore, in the partial polishing apparatus 1000 shown in FIG. 15, the variation of the unit processing trace shape corresponding to the contact area of the polishing pad 502 with the substrate Wf increases with respect to the predetermined shape. However, in the partial polishing apparatus 1000 shown in FIG.
  • the rotation axis of the polishing pad 502 is parallel to the surface of the substrate Wf, and the linear velocity is constant in the contact area of the polishing pad 502 with the substrate Wf. Therefore, in the partial polishing apparatus 1000 according to the embodiment of FIG. 1, the variation in the polishing speed resulting from the linear velocity distribution in the contact area of the polishing pad 502 with the substrate Wf is more than that of the partial polishing apparatus 1000 shown in FIG. Is also small. Therefore, in the partial polishing apparatus 1000 of FIG. 1, the variation of the unit processing trace shape with respect to the predetermined shape is reduced. Further, in the partial polishing apparatus 1000 shown in FIG.
  • the polishing pad 502 is different from the case of the partial polishing apparatus 1000 shown in FIG.
  • the contact area with the substrate Wf can be easily miniaturized. Since the contact area between the polishing pad 502 and the substrate Wf can be miniaturized, for example, by increasing the diameter of the polishing pad 502, the relative linear velocity between the polishing pad 502 and the substrate Wf can be increased. Therefore, it is possible to increase the polishing rate.
  • the contact area between the polishing pad 502 and the substrate Wf is determined by the diameter and thickness of the polishing pad 502.
  • the polishing pad 502 may have a diameter ⁇ of about 50 mm to about 300 mm, and the polishing pad 502 may have a thickness of about 1 mm to about 10 mm.
  • the first drive mechanism can change the rotational speed of the polishing pad 502 during polishing. By changing the rotation speed, the polishing speed can be adjusted. Therefore, even when the required polishing amount in the region to be processed on the substrate Wf is large, the polishing can be efficiently performed. Further, for example, even when the polishing pad 502 is greatly worn during polishing and the diameter of the polishing pad 502 changes, the polishing speed can be maintained by adjusting the rotation speed.
  • the first drive mechanism gives a rotational motion to the disc-shaped polishing pad 502, but in other embodiments, the shape of the polishing pad 502 is other than that. The shape can also be utilized, and the first drive mechanism can be configured to provide linear motion to the polishing pad 502.
  • the linear motion includes linear reciprocating motion.
  • the partial polishing apparatus 1000 shown in FIG. 1 includes a vertical drive mechanism 602 for moving the holding arm 600 in a direction perpendicular to the surface of the substrate Wf (z direction in FIG. 1).
  • the vertical drive mechanism 602 enables the polishing head 500 and the polishing pad 502 to move together with the holding arm 600 in a direction perpendicular to the surface of the substrate Wf.
  • the vertical drive mechanism 602 also functions as a pressing mechanism for pressing the polishing pad 502 against the substrate Wf when the substrate Wf is partially polished.
  • the vertical drive mechanism 602 is a mechanism using a motor and a ball screw.
  • a pneumatic or hydraulic drive mechanism or a drive mechanism using a spring may be used.
  • Examples include constant pressure control using a combination of air cylinder and precision regulator, constant pressure control using a combination of air cylinder and elastic body (spring, etc.), open loop control using a combination of air cylinder and electropneumatic regulator, and air cylinder and electropneumatic regulator. Closed loop control using pressure value from external pressure sensor for combination, closed loop control using load value from load cell for combination of air cylinder and electro-pneumatic regulator, load value from load cell for combination of servo motor and ball screw The closed loop control used, etc. are mentioned. In one embodiment, different drive mechanisms may be used for the coarse movement and the fine movement as the vertical drive mechanism 602 for the polishing head 500.
  • the driving mechanism for coarse movement may be a driving mechanism using a motor
  • the driving mechanism for fine movement for pressing the polishing pad 502 against the substrate Wf may be a driving mechanism using an air cylinder.
  • the pressing force of the polishing pad 502 against the substrate Wf can be controlled by adjusting the air pressure in the air cylinder while monitoring the pressing force of the polishing pad 502.
  • an air cylinder may be used as a drive mechanism for coarse movement
  • a motor may be used as a drive mechanism for fine movement.
  • the pressing force of the polishing pad 502 against the substrate Wf can be controlled by controlling the motor while monitoring the torque of the motor for fine movement.
  • a piezo element may be used as another driving mechanism, and the movement amount can be adjusted by a voltage applied to the piezo element.
  • the fine movement drive mechanism is provided at a position where the polishing pad 502 of the holding arm 600 is held, that is, at the tip of the arm 600 in the example of FIG. You may do it.
  • the partial polishing apparatus 1000 shown in FIG. 1 includes a lateral drive mechanism 620 for moving the holding arm 600 in the lateral direction (x direction in FIG. 1).
  • the lateral driving mechanism 620 can move the polishing head 500 and the polishing pad 502 in the lateral direction together with the arm 600.
  • the lateral direction (x direction) is a second movement direction that is perpendicular to the first movement direction described above and parallel to the surface of the substrate. Therefore, the partial polishing apparatus 1000 moves the polishing pad 502 in the first movement direction (y direction) to polish the substrate Wf and simultaneously moves the polishing pad 502 in the second movement direction (x direction) orthogonal to each other.
  • the linear velocity is constant in the contact region of the polishing pad 502 with the substrate Wf.
  • the processing trace shape of the substrate Wf particularly the substrate Wf of the polishing pad 502
  • the polishing speed varies in a direction perpendicular to the first movement direction on the contact surface.
  • the vertical drive mechanism 602 is a mechanism using a motor and a ball screw.
  • the lateral drive mechanism 620 is configured to move the holding arm 600 together with the vertical drive mechanism 602.
  • the effect of making the machining trace shape uniform can be exhibited. it can.
  • the partial polishing apparatus 1000 according to the embodiment shown in FIG. 1 includes a polishing liquid supply nozzle 702.
  • the polishing liquid supply nozzle 702 is fluidly connected to a supply source 710 (see FIG. 15) of polishing liquid, for example, slurry.
  • the polishing liquid supply nozzle 702 is held by the holding arm 600. Therefore, the polishing liquid can be efficiently supplied only to the polishing region on the substrate Wf through the polishing liquid supply nozzle 702.
  • the partial polishing apparatus 1000 includes a cleaning mechanism 200 for cleaning the substrate Wf.
  • the cleaning mechanism 200 includes a cleaning head 202, a cleaning member 204, a cleaning head holding arm 206, and a rinse nozzle 208.
  • the cleaning member 204 is a member for cleaning the substrate Wf after partial polishing by contacting the substrate Wf while rotating.
  • the cleaning member 204 can be formed from a PVA sponge in one embodiment.
  • the cleaning member 204 may include a cleaning nozzle for realizing megasonic cleaning, high-pressure water cleaning, and two-fluid cleaning instead of or in addition to the PVA sponge.
  • the cleaning member 204 is held by the cleaning head 202.
  • the cleaning head 202 is held by the cleaning head holding arm 206.
  • the cleaning head holding arm 206 includes a drive mechanism for rotating the cleaning head 202 and the cleaning member 204.
  • a drive mechanism can be composed of, for example, a motor.
  • the cleaning head holding arm 206 includes a swing mechanism for swinging in the plane of the substrate Wf.
  • the cleaning mechanism 200 includes a rinse nozzle 208.
  • the rinse nozzle 208 is connected to a cleaning liquid supply source (not shown).
  • the cleaning liquid can be, for example, pure water or chemical liquid.
  • the rinse nozzle 208 may be attached to the cleaning head holding arm 206.
  • the rinse nozzle 208 includes a swing mechanism for swinging in the plane of Wf.
  • the partial polishing apparatus 1000 includes a conditioning unit 800 for conditioning the polishing pad 502.
  • the conditioning unit 800 is disposed outside the stage 400.
  • the conditioning unit 800 includes a dress stage 810 that holds a dresser 820.
  • the dress stage 810 is rotatable about a rotation axis 810A.
  • the polishing pad 502 is conditioned by pressing the polishing surface of the polishing pad 502 (the surface in contact with the substrate Wf) against the dresser 820 and rotating the polishing pad 502 and the dresser 820.
  • the dress stage 810 may be configured to perform a linear motion (including a reciprocating motion) instead of a rotational motion.
  • the conditioning unit 800 mainly finishes the partial polishing at a certain point of the substrate Wf and conditions the polishing pad 502 before performing the next point or the partial polishing of the next substrate. Use for. Further, during the partial polishing of the substrate Wf, the polishing pad 502 may be temporarily retracted to the conditioning unit 800 to perform the conditioning.
  • the dresser 820 includes, for example, (1) a diamond dresser in which diamond particles are electrodeposited and fixed on the surface, and (2) a diamond dresser in which diamond abrasive grains are disposed on the entire contact surface with the polishing pad, And (3) a brush dresser in which resin brush bristles are arranged on the entire surface or a part of the contact surface with the polishing pad, (4) any one of these, or any combination thereof can be formed. .
  • the partial polishing apparatus 1000 according to the embodiment shown in FIG.
  • the second conditioner 850 is for conditioning the polishing surface of the polishing pad 502 (the surface in contact with the substrate Wf) while the substrate Wf is being polished by the polishing pad 502. Therefore, the second conditioner 850 can also be called an in-situ conditioner.
  • the second conditioner 850 is held by the holding arm 600 in the vicinity of the polishing pad 502.
  • the second conditioner 850 includes a moving mechanism 854 (see FIG. 3-9) for moving the conditioning member 852 in a direction in which the conditioning member 852 is pressed against the polishing pad 502.
  • the conditioning member 852 includes, for example, (1) a diamond dresser in which diamond particles are electrodeposited and fixed on the surface, and (2) a diamond dresser in which diamond abrasive grains are arranged on the entire contact surface with the polishing pad. And (3) a brush dresser in which resin brush bristles are disposed on the entire surface or a part of the contact surface with the polishing pad, and (4) any one of these or any combination thereof may be formed. it can.
  • the conditioning member 852 is held in the vicinity of the polishing pad 502 and separated from the polishing pad 502 in the y direction, and the conditioning member 852 can be moved in the y direction by the moving mechanism 854. ing.
  • the moving mechanism 854 has a function as a pressing mechanism that presses the conditioning member 852 against the polishing pad 502.
  • the moving mechanism 854 may be a mechanism using a motor and a ball screw, a pneumatic or hydraulic driving mechanism, a driving mechanism using a spring, or a combination thereof.
  • Examples include constant pressure control by combining air cylinders and precision regulators, constant pressure control by combining air cylinders and elastic bodies (springs, etc.), open loop control by combining air cylinders and electropneumatic regulators, air cylinders and electropneumatic regulators Closed loop control using pressure value from external pressure sensor for combination, closed loop control using load value from load cell for combination of air cylinder and electro-pneumatic regulator, load value from load cell for combination of servo motor and ball screw Closed-loop control using the.
  • the conditioning member 852 may be configured to be capable of rotational movement and / or linear movement by a driving mechanism (not shown).
  • the polishing pad 502 can be conditioned during the polishing of the substrate Wf by pressing the conditioning member 852 against the polishing pad 502 while rotating it. Details of the second conditioner 850 will be described later.
  • the partial polishing apparatus 1000 includes a control device 900.
  • Various drive mechanisms of the partial polishing apparatus 1000 are connected to the control device 900, and the control device 900 can control the operation of the partial polishing apparatus 1000.
  • the control device includes an arithmetic unit that calculates a target polishing amount in the region to be polished of the substrate Wf.
  • the control device 900 is configured to control the polishing device according to the target polishing amount calculated by the calculation unit.
  • the control device 900 can be configured by installing a predetermined program in a general computer including a storage device, a CPU, an input / output mechanism, and the like.
  • the partial polishing apparatus 1000 may include a state detection unit 420 (FIG. 13A, FIG. 13B, etc.) for detecting the state of the surface to be polished of the substrate Wf, although not shown in FIG. Good.
  • the state detection unit may be a Wet-ITM (In-line Thickness Monitor) 420 as an example.
  • Wet-ITM In-line Thickness Monitor
  • the detection head exists in a non-contact state on the substrate Wf, and the film thickness distribution (or information related to the film thickness) of the film formed on the substrate Wf by moving the entire surface of the substrate Wf. Can be detected (measured).
  • a detector other than the Wet-ITM can be used as the state detection unit 420.
  • a known non-contact detection method such as an eddy current method or an optical method can be employed, or a contact detection method may be employed.
  • a contact-type detection method for example, a detection head including a probe that can be energized is prepared, and the surface of the substrate Wf is scanned in a state where the probe is brought into contact with the substrate Wf and energized, whereby the distribution of film resistance can be determined. It is possible to employ electric resistance type detection.
  • step detection is performed by scanning the surface of the substrate Wf while the probe is in contact with the surface of the substrate Wf, and detecting the unevenness distribution of the surface by monitoring the vertical movement of the probe. A method can also be adopted.
  • the detected output is a film thickness or a signal corresponding to the film thickness.
  • the film thickness difference may be recognized based on the color tone difference on the surface of the substrate Wf.
  • the notch or orientation flat position detected by the detection unit 408 as a reference, it is possible to associate data such as film thickness with not only the radial position but also the circumferential position. As a result, it is possible to obtain the film thickness and level difference on the substrate Wf or the distribution of signals related to them. Further, when performing partial polishing, it is possible to control the operations of the stage 400 and the holding arm 600 based on the position data.
  • the state detection unit 420 described above is connected to the control device 900, and the signal detected by the state detection unit 420 is processed by the control device 900.
  • the control device 900 for the detector of the state detection unit 420 may use the same hardware as the control device 900 that controls the operation of the stage 400, the polishing head 500, and the holding arm 600. May be used.
  • the polishing process of the substrate Wf and the surface state of the substrate Wf Hardware resources used for detection and subsequent signal processing can be distributed, and the overall processing speed can be increased.
  • the detection timing by the state detection unit 420 can be before, during and / or after polishing the substrate Wf.
  • the state detection unit 420 is mounted independently, it does not interfere with the operation of the holding arm 600 as long as it is a polishing processing interval even before polishing, after polishing, or during polishing.
  • the film thickness in the processing of the substrate Wf or a signal related to the film thickness is not delayed as much as possible.
  • the state detection unit 420 is scanned.
  • the state detection unit 420 is mounted in the partial polishing apparatus 1000 for detecting the state of the surface of the substrate Wf.
  • this detection unit may be arranged outside the partial polishing apparatus 1000 as a detection unit.
  • Wet-ITM is effective for measurement during processing, but other than that, it is installed in the partial polishing apparatus 1000 for obtaining a film thickness before or after processing or a signal corresponding to the film thickness. It does not necessarily have to be.
  • An ITM may be mounted outside the partial polishing module, and measurement may be performed when the substrate Wf is taken in and out of the partial polishing apparatus 1000. Further, the polishing end point of each region to be polished of the substrate Wf may be determined based on the film thickness acquired by the state detection unit 420 or a signal related to the film thickness or unevenness / height.
  • FIG. 3 is a perspective view schematically showing an example of the second conditioner 850 that can be used in the partial polishing apparatus 1000 shown in FIG.
  • FIG. 3 shows the vicinity of the polishing head 500 at the tip of the holding arm 600.
  • the polishing head 500 holds a rotatable disc-shaped polishing pad 502.
  • the polishing pad 502 is movable in the y direction that is the first movement direction with respect to the substrate Wf by rotation.
  • the second conditioner 850 is attached to the holding arm 600.
  • the second conditioner 850 includes a conditioning member 852 for conditioning the polishing pad 502.
  • the conditioning member 852 is held by the moving mechanism 854 in the vicinity of the polishing pad 502 and separated from the polishing pad 502 in the y direction.
  • the conditioning mechanism 854 is configured to be able to move the conditioning member 852 in the y direction.
  • the moving mechanism 854 has a function as a pressing mechanism that presses the conditioning member 852 against the polishing pad 502. Therefore, the second conditioner 850 can condition the polishing pad 502 during polishing by pressing the conditioning member 852 against the polishing pad 502 during polishing.
  • the moving mechanism 854 can be constituted by a motor or the like, or a hydraulic or pneumatic moving mechanism may be employed.
  • FIG. 4 is a perspective view schematically showing an example of a second conditioner 850 that can be used in the partial polishing apparatus 1000 shown in FIG. FIG. 4 shows the vicinity of the polishing head 500 at the tip of the holding arm 600.
  • the second conditioner 850 shown in FIG. 4 has a swing mechanism 856 added to the second conditioner 850 shown in FIG.
  • the swing mechanism 856 is perpendicular to the first motion direction that is the motion direction of the polishing pad 502 and has a component in the second motion direction parallel to the surface of the substrate Wf.
  • Conditioning member 852 can be moved.
  • FIG. 4 is a perspective view schematically showing an example of a second conditioner 850 that can be used in the partial polishing apparatus 1000 shown in FIG. FIG. 4 shows the vicinity of the polishing head 500 at the tip of the holding arm 600.
  • the second conditioner 850 shown in FIG. 4 has a swing mechanism 856 added to the second conditioner 850 shown in FIG.
  • the swing mechanism 856 is perpendicular to the first motion direction that is the motion
  • the swing mechanism 856 moves the moving mechanism 854 and the conditioning member 852 in the x direction that is perpendicular to the first movement direction (y direction) of the polishing pad 502 and parallel to the substrate W. Can be moved. Therefore, the position where the conditioning member 852 contacts the polishing pad 502 can be changed during the conditioning of the polishing pad 502.
  • the swing mechanism 856 can be constituted by a motor or the like, or a hydraulic or pneumatic moving mechanism may be employed.
  • an example of a swing motion is described as a mechanism for providing the second motion direction component.
  • a rotational motion or a translational rotational motion (a motion combining a linear motion and a rotational motion) is used. It may be a motion mechanism having a second motion direction component, and this is the same in other embodiments described later.
  • the shape of the conditioning member 852 is a flat plate in this embodiment, but can be appropriately changed depending on the shape of the polishing pad 502 and the type of the second motion mechanism, and this is the same in other embodiments described later. .
  • the conditioning member 852 may have a disk shape.
  • the contact surface of the conditioning member 852 with the polishing pad 502 may have a curved surface shape that follows the surface. Efficient conditioning of the polishing pad 502 is possible. Further, the end portion of the conditioning member 852 may be chamfered to suppress load concentration during conditioning.
  • FIG. 5 is a side view schematically showing an example of a polishing head 500 and a second conditioner 850 that can be used in the partial polishing apparatus 1000 according to an embodiment.
  • the polishing pad 502 is disk-shaped.
  • a disc-shaped polishing pad 502 is held by a rotatable polishing head 500.
  • the rotating shaft 502A of the polishing head 500 is inclined from a direction perpendicular to the surface of the substrate Wf. In other words, the surface of the disc-shaped polishing pad 502 is non-parallel to the substrate Wf.
  • the second conditioner 850 of the partial polishing apparatus 1000 shown in Fig. 5 includes a conditioning member 852.
  • Conditioning member 852 is coupled to moving mechanism 854.
  • the moving mechanism 854 can move the conditioning member 852 in the direction of the polishing pad 502 and can also press the polishing pad 502.
  • the moving mechanism 854 is coupled to the swing mechanism 856.
  • the swing mechanism 856 can move the moving mechanism 854 and the conditioning member 852 in a direction having a component in a direction perpendicular to the rotation axis 502A of the polishing pad 502.
  • the moving mechanism 854 and the swinging mechanism 856 are held by the support member 858.
  • the support member 858 is fixed to the holding arm 600. As shown in FIG.
  • the edge portion in a certain direction of the polishing pad 502 can be pressed against the substrate Wf to polish the substrate Wf, and at the same time, the edge portion in the opposite direction of the polishing pad 502 is separated from the substrate Wf. ing. Therefore, the conditioning member 852 is pressed against the edge portion in the opposite direction, and the polishing pad 502 can be conditioned during the polishing of the substrate Wf.
  • the second conditioner 850 can include a rotation mechanism or a translational rotation motion mechanism that rotates the conditioning member 852 shown in FIG. 5 about the rotation shaft 852A. However, such a rotation mechanism may not be provided.
  • the moving mechanism 854 and the swing mechanism 856 can be configured by a motor or the like, or a hydraulic or pneumatic moving mechanism may be employed.
  • FIG. 6 is a side view schematically showing an example of a polishing head 500 and a second conditioner 850 that can be used in the partial polishing apparatus 1000 according to an embodiment.
  • the polishing pad 502 is frustoconical. Or you may employ
  • a frustoconical polishing pad 502 is held by a rotatable polishing head 500.
  • the rotation axis 502A of the polishing head 500 is parallel to the surface of the substrate Wf and coincides with the center of the truncated cone shape. In this state, only the edge portion of the polishing pad 502 is in contact with the substrate Wf, so that a minute region can be polished.
  • the second conditioner 850 of the partial polishing apparatus 1000 shown in Fig. 6 includes a conditioning member 852.
  • the conditioning member 852 is disposed so as to be in contact with the side surface of the frustoconical polishing pad 502.
  • Conditioning member 852 is coupled to moving mechanism 854.
  • the moving mechanism 854 can move the conditioning member 852 toward the side surface of the frustoconical polishing pad 502 and can press the conditioning member 852 against the side surface of the frustoconical polishing pad 502.
  • the moving mechanism 854 is coupled to the swing mechanism 856.
  • the swing mechanism 856 can move the moving mechanism 854 and the conditioning member 852 in a direction along the side surface of the frustoconical polishing pad 502. As shown in FIG.
  • the moving mechanism 854 and the swinging mechanism 856 are held by the support member 858.
  • the support member 858 is fixed to the holding arm 600.
  • the polishing pad 502 can be conditioned by the second conditioner 850 while the substrate Wf is being polished by the polishing pad 502.
  • the moving mechanism 854 and the swing mechanism 856 can be configured by a motor or the like, or a hydraulic or pneumatic moving mechanism may be employed.
  • FIG. 7 is a side view schematically showing an example of a polishing head 500 and a second conditioner 850 that can be used in the partial polishing apparatus 1000 according to an embodiment.
  • the polishing pad 502 has a shape having a spherical part. Or you may employ
  • the polishing pad 502 is held by a rotatable polishing head 500. As shown in FIG. 7, the rotation axis 502A of the polishing head 500 is parallel to the surface of the substrate Wf.
  • the seventh includes a conditioning member 852.
  • the conditioning member 852 has a disc shape, a square plate shape, or a curved shape along the spherical shape of the polishing pad 502, and is disposed so as to be in contact with the side surface of the polishing pad 502.
  • Conditioning member 852 is coupled to moving mechanism 854.
  • the moving mechanism 854 can move the conditioning member 852 toward the polishing pad 502 and can press the polishing pad 502.
  • the moving mechanism 854 is held by a support member 858.
  • the support member 858 includes a concave portion 860 that is curved. As shown in FIG.
  • the curved surface of the concave portion 860 can be a curved surface having the center of the spherical shape of the polishing pad 502.
  • the moving mechanism 854 is positioned on the curved surface of the concave portion 860 of the support member 858 and is disposed so as to be swingable along the curved surface.
  • the support member 858 is fixed to the holding arm 600.
  • the polishing pad 502 can be conditioned by the second conditioner 850 while the substrate Wf is being polished by the polishing pad 502.
  • the moving mechanism 854 and the swing mechanism 856 can be configured by a motor or the like, or a hydraulic or pneumatic moving mechanism may be employed.
  • FIG. 8 is a side view schematically illustrating an example of a polishing head 500 and a second conditioner 850 that can be used in the partial polishing apparatus 1000 according to an embodiment.
  • the abrasive member has an abrasive belt member 502B.
  • the polishing belt member 502B is supported by the support member 520, and can press the polishing belt member 502B against the substrate Wf.
  • the polishing belt member 502B is movable in the longitudinal direction by the rotation mechanism 522.
  • the polishing belt member 502B is made of a material such as a commercially available CMP pad.
  • the second conditioner 850 has a conditioning member 852.
  • the conditioning member 852 has a disc shape or a square plate shape, and is disposed so as to be in contact with the polishing surface of the polishing belt member 502B. Conditioning member 852 is coupled to moving mechanism 854. The moving mechanism 854 can move the conditioning member 852 toward the polishing belt member 502B. As shown in FIG. 8, the second conditioner 850 includes a belt back surface support member 862 at a position corresponding to the conditioning member 852 inside the polishing belt member 502B. In the embodiment shown in FIG. 8, while the polishing belt member 502B is supported by the belt back surface support member 862, the conditioning member 852 can be pressed against the polishing belt member 502B for conditioning.
  • FIG. 9 is a view as seen from the direction of the arrow 9 in FIG.
  • the second conditioner 850 includes a swing mechanism 856.
  • the swing mechanism 856 can move the moving mechanism 854 and the conditioning member 852 in the width direction of the polishing belt member 502B.
  • the moving mechanism 854 and the swing mechanism 856 can be configured by a motor or the like, or a hydraulic or pneumatic moving mechanism may be employed.
  • the partial polishing apparatus 1000 includes a recovery apparatus 300 for recovering debris generated from the polishing member generated during conditioning of the polishing pad 502.
  • FIG. 10 is a side view schematically illustrating the collection device 300 according to an embodiment. As shown in FIG. 10, the collection device 300 is attached to the holding arm 600.
  • a recovery apparatus 300 shown in FIG. 10 includes a suction unit 302.
  • the suction unit 302 is disposed so as to be close to the surface of the polishing pad 502 that contacts the substrate Wf.
  • the polishing pad 502 is a disc-shaped or cylindrical polishing pad 502, and the suction part 302 is disposed in the vicinity of the side surface of the disc-shaped or cylindrical polishing pad 502. .
  • a suction passage 304 is connected to the suction portion 302, and the suction passage 304 is connected to a vacuum source (not shown).
  • the suction unit 302 is disposed on the downstream side of the movement direction of the polishing pad 502 (the rotation direction in the embodiment of FIG. 10) from the position where the conditioning member 852 contacts the polishing pad 502.
  • the polishing pad 502 rotates clockwise, and the suction portion 302 is disposed on the downstream side from the position where the conditioning member 852 contacts the polishing pad 502.
  • the partial polishing apparatus 1000 can condition the polishing pad 502 with the second conditioner 850 while polishing the substrate Wf with the polishing pad 502. Due to the conditioning, debris is generated from the polishing pad 502.
  • the collection device 300 shown in FIG. 10 can suck and remove debris generated during conditioning. With this recovery device, it is possible to suppress the polishing pad debris generated during conditioning by the second conditioner 850 from reaching the surface of the substrate Wf, and the contamination of the surface of the substrate Wf by the polishing pad debris can be suppressed.
  • FIG. 11 is a side view schematically showing a collection device 300 according to an embodiment.
  • the collection device 300 is attached to the holding arm 600.
  • a recovery apparatus 300 shown in FIG. 11 includes a wiper 306 (or a scraper).
  • the wiper 306 is disposed so as to contact the surface of the polishing pad 502 that contacts the substrate Wf.
  • the polishing pad 502 is a disc-shaped or cylindrical polishing pad 502, and the wiper 306 is disposed so as to contact the side surface of the disc-shaped or cylindrical polishing pad 502. .
  • the wiper 306 is supported by a support member 308, and the support member 308 is connected to the holding arm 600. As shown in FIG.
  • the partial polishing apparatus 1000 can condition the polishing pad 502 with the second conditioner 850 while polishing the substrate Wf with the polishing pad 502. Due to the conditioning, debris is generated from the polishing pad 502.
  • the recovery device 300 shown in FIG. 11 can remove the waste generated during conditioning from the polishing pad 502 by the wiper 306. Although not shown, a recovery device 300 may be further provided for recovering waste generated from the polishing member shown in FIG.
  • FIG. 12 is a side view schematically showing the collection device 300 according to one embodiment.
  • the recovery apparatus 300 shown in FIG. 12 includes a liquid supply mechanism 310 for cleaning the polishing pad 502 after conditioning, and a liquid recovery mechanism 312 for recovering the liquid after cleaning the polishing pad 502.
  • the liquid supply mechanism 310 can be, for example, a nozzle that sprays pure water onto the polishing pad 502.
  • the liquid supply mechanism 310 can be a container that receives pure water sprayed on the polishing pad 502, and the liquid discharge unit 314 can be provided in the container.
  • the partial polishing apparatus 1000 can condition the polishing pad 502 with the second conditioner 850 while polishing the substrate Wf with the polishing pad 502. Due to the conditioning, debris is generated from the polishing pad 502.
  • the recovery apparatus 300 shown in FIG. 12 can remove debris generated during conditioning from the polishing pad 502 by spraying the liquid onto the polishing pad 502.
  • the recovery device 300 has been described with respect to the partial polishing apparatus 1000 including the disk-shaped or columnar polishing pad 502. However, the partial polishing including the polishing member 502 other than the disk-shaped or columnar shape is illustrated. A similar recovery device 300 can be provided in the device 1000. For example, the recovery device 300 can be applied to any polishing pad 502, polishing belt member 502B, or any other polishing member disclosed herein.
  • FIG. 13A shows an example of a control circuit for processing information related to the film thickness, unevenness, and height of the substrate Wf according to one embodiment.
  • the control unit for partial polishing determines a basic partial polishing processing recipe by combining parameters with a polishing processing recipe set by HMI (Human Machine Interface).
  • HMI Human Machine Interface
  • the partial polishing process recipe and parameters downloaded from the HOST to the partial polishing apparatus 1000 may be used.
  • the recipe server combines the basic partial polishing processing recipe and the polishing processing information of the process job, and generates a basic partial polishing processing recipe for each substrate Wf to be processed.
  • the partial polishing recipe server performs partial polishing processing recipes for each substrate Wf to be processed, substrate surface shape data stored in the database for partial polishing, and data such as substrate surface shape after past partial polishing related to similar substrates, and data in advance. Are combined with the polishing rate data for each parameter of the polishing conditions acquired in the above, and a partial polishing processing recipe for each substrate is generated.
  • the substrate surface shape data stored in the partial polishing database may use data of the corresponding substrate Wf measured in the partial polishing apparatus 1000, or may be downloaded in advance from the HOST to the partial polishing apparatus 1000. Data may be used.
  • the partial polishing recipe server transmits the partial polishing processing recipe to the partial polishing apparatus 1000 via the recipe server or directly.
  • the partial polishing apparatus 1000 partially polishes the substrate Wf according to the received partial polishing processing recipe.
  • FIG. 13B shows a circuit diagram when the state detection unit on the substrate surface is divided from the partial polishing control unit shown in FIG. 13A.
  • FIG. 14 is a schematic diagram showing a substrate processing system 1100 equipped with a partial polishing apparatus 1000 according to an embodiment.
  • the substrate processing system 1100 includes a partial polishing apparatus 1000, a large diameter polishing apparatus 1200, a cleaning apparatus 1300, a drying apparatus 1400, a control apparatus 900, and a transport mechanism 1500.
  • the partial polishing apparatus 1000 of the substrate processing system 1100 can be a partial polishing apparatus 1000 having any of the features described above.
  • the large-diameter polishing apparatus 1200 is a polishing apparatus that polishes a substrate using a polishing pad having a larger area than the substrate Wf to be polished.
  • a known CMP apparatus can be used as the large-diameter polishing apparatus 1200.
  • any known device can be adopted as the cleaning device 1300, the drying device 1400, and the transport mechanism 1500.
  • the control device 900 can control not only the partial polishing apparatus 1000 described above but also the overall operation of the substrate processing system 1100.
  • the partial polishing apparatus 1000 and the large diameter polishing apparatus 1200 are incorporated in one substrate processing system 1100. Therefore, various polishing processes can be performed by combining partial polishing by the partial polishing apparatus 1000, overall polishing of the substrate Wf by the large diameter polishing apparatus 1200, and detection of the surface state of the substrate Wf by the state detection unit.
  • the partial polishing by the partial polishing apparatus 1000 only a part of the surface of the substrate Wf can be polished, or the entire surface of the substrate Wf is being polished in the partial polishing apparatus 1000.
  • the polishing can be performed by changing the polishing conditions on a part of the surface of the substrate Wf.
  • the state of the surface of the substrate Wf that is an object to be polished is first detected.
  • the surface state is information (position, size, height, etc.) relating to the film thickness of the film formed on the substrate Wf and the surface roughness, and is detected by the state detection unit 420 described above.
  • a polishing recipe is created according to the detected surface state of the substrate Wf.
  • the polishing recipe is composed of a plurality of processing steps. As parameters in each step, for example, for the partial polishing apparatus 1000, the processing time, the dresser 820 arranged on the substrate Wf of the polishing pad 502 and the dress stage 810.
  • parameters for this determination include, for example, a target value corresponding to a desired film thickness and uneven state, and a polishing rate under the above polishing conditions.
  • the polishing rate may be stored in the control device 900 as a database and automatically calculated when the polishing conditions are set.
  • the polishing rate for each basic parameter may be acquired in advance and stored as a database.
  • the dwell time of the polishing head 500 in the substrate Wf plane can be calculated from these parameters and the acquired information on the film thickness and irregularities in the substrate Wf plane.
  • the transfer routes for these components may be set.
  • the film thickness in the surface of the substrate Wf and the conditions for obtaining the unevenness data may be set.
  • processing conditions such as the number of re-polishing repetitions
  • partial polishing and overall polishing are performed according to the prepared polishing recipe.
  • the cleaning of the substrate Wf can be performed at an arbitrary timing.
  • each of the partial polishing and the total polishing is performed to prevent this.
  • the substrate Wf may be cleaned after the processing.
  • the substrate Wf may be cleaned after performing both partial polishing and overall polishing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

The present invention addresses the problem of providing a polishing device capable of maintaining a polishing member in an excellent state while polishing is performed. Provided is a polishing device for locally polishing a substrate. The polishing device has: a polishing member having a machining surface that is smaller than the substrate, said machining surface being to be in contact with the substrate; a conditioning member for conditioning the polishing member; a first pressing mechanism for pressing the conditioning member to the polishing member while the substrate is being polished; and a control device for controlling the operations of the polishing device. The control device is configured to control the first pressing mechanism while the substrate is being locally polished by means of the polishing member.

Description

基板の研磨装置および研磨方法Substrate polishing apparatus and polishing method
 本発明は、基板の研磨装置および研磨方法に関する。 The present invention relates to a substrate polishing apparatus and a polishing method.
 近年、処理対象物(例えば半導体基板などの基板、又は基板の表面に形成された各種の膜)に対して各種処理を行うために処理装置が用いられている。処理装置の一例としては、処理対象物の研磨処理等を行うためのCMP(Chemical Mechanical Polishing)装置が挙げられる。 In recent years, a processing apparatus has been used to perform various types of processing on a processing target (for example, a substrate such as a semiconductor substrate or various films formed on the surface of the substrate). As an example of the processing apparatus, there is a CMP (Chemical Mechanical Polishing) apparatus for performing a polishing process or the like of a processing object.
 CMP装置は、処理対象物の研磨処理を行うための研磨ユニット、処理対象物の洗浄処理及び乾燥処理を行うための洗浄ユニット、及び、研磨ユニットへ処理対象物を受け渡すとともに洗浄ユニットによって洗浄処理及び乾燥処理された処理対象物を受け取るロード/アンロードユニット、などを備える。また、CMP装置は、研磨ユニット、洗浄ユニット、及びロード/アンロードユニット内で処理対象物の搬送を行う搬送機構を備えている。CMP装置は、搬送機構によって処理対象物を搬送しながら研磨、洗浄、及び乾燥の各種処理を順次行う。 The CMP apparatus includes a polishing unit for performing a polishing process on a processing target, a cleaning unit for performing a cleaning process and a drying process on the processing target, and a processing unit that delivers the processing target to the polishing unit and performs a cleaning process by the cleaning unit. And a load / unload unit that receives the dried processed object. The CMP apparatus also includes a transport mechanism that transports the processing object in the polishing unit, the cleaning unit, and the load / unload unit. The CMP apparatus sequentially performs various processes such as polishing, cleaning, and drying while conveying a processing object by a conveyance mechanism.
 昨今の半導体デバイスの製造における各工程への要求精度は既に数nmのオーダに達しており、CMPもその例外ではない。この要求を満たすべく、CMPでは研磨及び洗浄条件の最適化が行われる。しかし、最適条件が決定しても、構成要素の制御バラつきや消耗材の経時変化による研磨及び洗浄性能の変化は避けられない。また、処理対象である半導体基板自身にもバラつきが存在し、例えばCMP前において処理対象物に形成される膜の膜厚やデバイス形状のバラつきが存在する。これらのバラつきはCMP中及びCMP後においては残膜のバラつきや不完全な段差解消、更には本来完全に除去すべき膜の研磨においては膜残りといった形で顕在化する。このようなバラつきは基板面内ではチップ間やチップ間を横断した形で発生し、更には基板間やロット間でも発生する。現状は、これらのバラつきをある閾値以内となるように、研磨中の基板や研磨前の基板に対する研磨条件(たとえば研磨時に基板面内に与える圧力分布、基板保持ステージの回転数、スラリ)を制御すること、および/または閾値を超えた基板に対するリワーク(再研磨)を行うことで対処している。 The required accuracy of each process in the manufacture of semiconductor devices has already reached the order of several nanometers, and CMP is no exception. In order to satisfy this requirement, the polishing and cleaning conditions are optimized in CMP. However, even if the optimum conditions are determined, changes in the polishing and cleaning performance due to variations in control of components and changes over time of the consumables are inevitable. Further, the semiconductor substrate that is the object of processing also has variations, for example, there is a variation in the film thickness and device shape of the film formed on the object to be processed before CMP. These variations become apparent during and after CMP, such as variations in the remaining film, elimination of incomplete steps, and residual film when polishing a film that should be completely removed. Such variation occurs in the form of crossing between chips or between chips within the substrate surface, and also occurs between substrates or lots. At present, the polishing conditions for the substrate being polished and the substrate before polishing (for example, the pressure distribution applied to the substrate surface during polishing, the rotation speed of the substrate holding stage, and the slurry) are controlled so that these variations are within a certain threshold. And / or reworking (re-polishing) the substrate that has exceeded the threshold.
 しかし、上述のような研磨条件によるバラつきの抑制効果は、主に基板の半径方向に対して現れるために、基板の周方向に対するバラつきの調整は困難である。さらに、CMP時の処理条件やCMPにより研磨する膜の下層の状態により、基板面内において局所的な研磨量の分布のバラつきが生じることもある。また、CMP工程における基板の半径方向の研磨分布の制御に関して、昨今の歩留まり向上の観点から基板面内のデバイス領域が拡大してきており、より基板のエッジ部まで研磨分布を調整する必要がでてきている。基板のエッジ部では、研磨圧力分布や研磨材であるスラリの流入のバラつきの影響が基板の中心付近よりも大きくなる。研磨条件及び洗浄条件の制御やリワークは、基本的にはCMPを実施する研磨ユニットにて行っている。この場合、基板面に対して研磨パッドが全面接触していることがほとんどであり、一部が接触している場合でも、処理速度の維持の観点からは、研磨パッドと基板との接触面積は大きく取らざるを得ない。このような状況では、例えば基板面内の特定の領域にて閾値を超えるバラつきが発生したとしても、これをリワーク等で修正する際には、その接触面積の大きさが故にリワークが不要な部分に対しても研磨を施してしまうことになる。その結果として、本来求められる閾値の範囲に修正することが困難となる。そこで、より小領域の研磨及び洗浄状態の制御が可能な構成でかつ基板面内の任意の位置に対して、処理条件の制御やリワークといった再処理が施せる方法及び装置を提供することが求められている。 However, since the effect of suppressing variation due to the polishing conditions as described above appears mainly in the radial direction of the substrate, it is difficult to adjust the variation in the circumferential direction of the substrate. Further, the local polishing amount distribution may vary within the substrate surface depending on the processing conditions during CMP and the state of the lower layer of the film polished by CMP. In addition, regarding the control of the polishing distribution in the radial direction of the substrate in the CMP process, the device region in the substrate surface has been expanded from the viewpoint of recent yield improvement, and it is necessary to adjust the polishing distribution to the edge portion of the substrate. ing. At the edge portion of the substrate, the influence of the dispersion of the polishing pressure distribution and the inflow of the slurry as the abrasive becomes larger than the vicinity of the center of the substrate. Control of polishing conditions and cleaning conditions and rework are basically performed by a polishing unit that performs CMP. In this case, the polishing pad is almost entirely in contact with the substrate surface, and even when a part is in contact, from the viewpoint of maintaining the processing speed, the contact area between the polishing pad and the substrate is It must be taken big. In such a situation, for example, even if a variation exceeding a threshold value occurs in a specific area in the substrate surface, when this is corrected by rework or the like, a portion where rework is unnecessary due to the size of the contact area It will also grind | polish. As a result, it becomes difficult to correct the threshold value within the originally required range. Therefore, it is required to provide a method and an apparatus capable of performing reprocessing such as control of processing conditions and rework at an arbitrary position in the substrate surface with a configuration capable of controlling the polishing and cleaning state of a smaller area. ing.
 図15は、処理対象物よりも小径の研磨パッドを用いて研磨処理するための部分研磨装置1000の一例の概略構成を示す図である。図15に示される部分研磨装置1000においては、処理対象物である基板Wfよりも小径の研磨パッド502が使用される。図15に示すように、部分研磨装置1000は、基板Wfが設置されるステージ400と、基板Wfの処理面に処理を行うための研磨パッド502が取り付けられた研磨ヘッド500と、研磨ヘッド500を保持するアーム600と、処理液を供給するための処理液供給系統700と、研磨パッド502のコンディショニング(目立て)を行うためのコンディショニング部800と、を備える。部分研磨装置1000の全体の動作は、制御装置900により制御される。図15に示される部分研磨装置は、処理液供給系700からDIW(純水)、洗浄薬液、及びスラリのような研磨液などを基板に供給するとともに、研磨パッド502を回転させながら基板に押圧することで、基板を部分的に研磨することができる。 FIG. 15 is a diagram showing a schematic configuration of an example of a partial polishing apparatus 1000 for performing polishing using a polishing pad having a diameter smaller than that of the object to be processed. In the partial polishing apparatus 1000 shown in FIG. 15, a polishing pad 502 having a diameter smaller than that of the substrate Wf that is a processing target is used. As shown in FIG. 15, the partial polishing apparatus 1000 includes a stage 400 on which a substrate Wf is installed, a polishing head 500 to which a polishing pad 502 for performing processing on a processing surface of the substrate Wf is attached, and a polishing head 500. A holding arm 600, a processing liquid supply system 700 for supplying a processing liquid, and a conditioning unit 800 for conditioning the polishing pad 502 are provided. The overall operation of the partial polishing apparatus 1000 is controlled by the control device 900. The partial polishing apparatus shown in FIG. 15 supplies DIW (pure water), cleaning chemical liquid, and polishing liquid such as slurry from the processing liquid supply system 700 to the substrate and presses the substrate while rotating the polishing pad 502. By doing so, the substrate can be partially polished.
 図15に示すように、研磨パッド502は、基板Wfよりも小さな寸法である。ここで、研磨パッド502の直径Φは処理対象である膜厚・形状のバラつき領域と同等もしくはそれより小さい。たとえば、研磨パッド502の直径Φは、50mm以下、またはΦ10~30mmとされる。研磨パッド502の径が大きいほど基板との面積比が小さくなるため、基板の研磨速度は増加する。一方で、所望の処理領域に対する研磨の精度については、逆に研磨パッドの径が小さくなるほど、精度が向上する。これは、研磨パッドの径が小さくなるほど単位処理面積が小さくなるためである。 As shown in FIG. 15, the polishing pad 502 has a size smaller than that of the substrate Wf. Here, the diameter Φ of the polishing pad 502 is equal to or smaller than the variation area of the film thickness and shape to be processed. For example, the diameter Φ of the polishing pad 502 is 50 mm or less, or Φ10-30 mm. The larger the diameter of the polishing pad 502, the smaller the area ratio with respect to the substrate, so that the polishing rate of the substrate increases. On the other hand, regarding the accuracy of polishing for a desired processing region, conversely, the accuracy improves as the diameter of the polishing pad decreases. This is because the unit processing area decreases as the diameter of the polishing pad decreases.
 図15に示される部分研磨装置1000において、基板Wfを部分研磨する際は、研磨パッド502を回転軸502Aを中心に回転させながら、研磨パッド502を基板Wfに押圧する。この時、アーム600に基板Wfの半径方向に揺動させてもよい。また、回転軸400Aを中心にステージ400を回転させてもよい。また、コンディショニング部800は、ドレッサ820を保持するドレスステージ810を備える。ドレスステージ810は、回転軸810Aを中心に回転可能である。図15の部分研磨装置1000において、研磨パッド502をドレッサ820に押圧し、研磨パッド502およびドレッサ820を回転させることで、研磨パッド502のコンディショニングを行うことができる。図15に示される部分研磨装置1000において、制御装置900で、ステージ400の回転速度、研磨パッド502の回転速度、研磨パッド502の押圧力、アーム600の揺動速度、処理液供給系統700からの処理液の供給、および処理時間などを制御することで、基板Wf上の任意の領域を部分研磨することができる。 In the partial polishing apparatus 1000 shown in FIG. 15, when the substrate Wf is partially polished, the polishing pad 502 is pressed against the substrate Wf while rotating the polishing pad 502 about the rotation shaft 502A. At this time, the arm 600 may be swung in the radial direction of the substrate Wf. Further, the stage 400 may be rotated about the rotation axis 400A. In addition, the conditioning unit 800 includes a dress stage 810 that holds a dresser 820. The dress stage 810 can rotate around the rotation shaft 810A. In the partial polishing apparatus 1000 of FIG. 15, the polishing pad 502 can be conditioned by pressing the polishing pad 502 against the dresser 820 and rotating the polishing pad 502 and the dresser 820. In the partial polishing apparatus 1000 shown in FIG. 15, the control apparatus 900 controls the rotation speed of the stage 400, the rotation speed of the polishing pad 502, the pressing force of the polishing pad 502, the swing speed of the arm 600, and the processing liquid supply system 700. An arbitrary region on the substrate Wf can be partially polished by controlling the supply of the processing liquid, the processing time, and the like.
米国特許出願公開2015/0352686号明細書US Patent Application Publication No. 2015/0352686
 一般に、研磨パッドなどの研磨部材を基板に押圧して基板を研磨すると、研磨液中の微小粒子や、削られた基板の微小粒子などが研磨部材に付着して目詰まりする。研磨部材が目詰まりすると、研磨速度およびその基板Wf面内での分布が変化する。そこで、研磨部材の目詰まりを解消して研磨部材を最適な状態に保つために、上述したように、コンディショニングが行われる。コンディショニングは、1つの基板の研磨が終了してから次の基板を研磨する前に行われることがある。図15に示されるような部分研磨装置1000においては、研磨パッド502と基板Wfとの接触面積が小さいため、研磨中の研磨パッド502の目詰まりが、大きな研磨パッドを使用する研磨装置の場合よりも早くなる。そのため、小さな研磨部材を使用する研磨装置においては、大きな研磨部材を使用する研磨装置の場合よりも、研磨中における研磨速度およびその基板Wf面内での分布の変化が生じやすい。そのため、小さな研磨部材を使用する部分研磨装置においては、研磨中の研磨部材の状態を良好に維持することが望まれる。 Generally, when a substrate is polished by pressing a polishing member such as a polishing pad against the substrate, fine particles in the polishing liquid or fine particles on the cut substrate adhere to the polishing member and become clogged. When the polishing member is clogged, the polishing rate and its distribution in the surface of the substrate Wf change. Therefore, in order to eliminate clogging of the polishing member and keep the polishing member in an optimum state, conditioning is performed as described above. Conditioning may be performed after the polishing of one substrate is completed and before the next substrate is polished. In the partial polishing apparatus 1000 as shown in FIG. 15, since the contact area between the polishing pad 502 and the substrate Wf is small, the clogging of the polishing pad 502 during polishing is more than in the case of the polishing apparatus using a large polishing pad. Will also be faster. Therefore, in a polishing apparatus using a small polishing member, a change in the polishing rate during polishing and its distribution in the substrate Wf plane is more likely to occur than in a polishing apparatus using a large polishing member. Therefore, in a partial polishing apparatus that uses a small polishing member, it is desirable to maintain the state of the polishing member being polished well.
 本願においては、研磨中に研磨部材の状態を良好に維持することができる研磨装置を提供することを1つの目的としている。 One object of the present application is to provide a polishing apparatus capable of maintaining the state of the polishing member well during polishing.
 [形態1]形態1によれば、基板を局所的に研磨するための研磨装置が提供され、かかる研磨装置は、基板に接触する加工面が基板よりも小さい研磨部材と、前記研磨部材をコンディショニングするためのコンディショニング部材と、基板の研磨中に前記研磨部材に前記コンディショニング部材を押圧するための第1押圧機構と、研磨装置の動作を制御するための制御装置と、を有し、前記制御装置は、前記研磨部材で基板を局所的に研磨しているときに、前記第1押圧機構を制御するように構成される。形態1の研磨部材によれば、研磨部材で基板を研磨しているときに、同時に研磨部材をコンディショニングすることができる。そのため、研磨中に研磨部材の状態を良好に維持することができる。 [Embodiment 1] According to Embodiment 1, a polishing apparatus for locally polishing a substrate is provided, and the polishing apparatus conditions a polishing member having a processing surface smaller than the substrate in contact with the substrate, and the polishing member. And a first pressing mechanism for pressing the conditioning member against the polishing member during polishing of the substrate, and a control device for controlling the operation of the polishing apparatus. Is configured to control the first pressing mechanism when the substrate is locally polished by the polishing member. According to the polishing member of aspect 1, the polishing member can be conditioned at the same time when the substrate is being polished by the polishing member. Therefore, the state of the polishing member can be maintained well during polishing.
 [形態2]形態2によれば、形態1の研磨装置において、前記研磨部材を基板に押圧させるための押圧機構と、前記研磨部材に、基板の表面に平行な第1運動方向に運動を与えるための第1駆動機構と、を有する。 [Mode 2] According to mode 2, in the polishing apparatus according to mode 1, a pressing mechanism for pressing the polishing member against the substrate, and the polishing member is moved in a first movement direction parallel to the surface of the substrate. A first drive mechanism.
 [形態3]形態3によれば、形態2の研磨装置において、前記第1運動方向に垂直であり且つ基板の表面に平行な第2運動方向に成分を有するように、前記コンディショニング部材に運動を与えるための第2駆動機構を有する。 [Mode 3] According to mode 3, in the polishing apparatus of mode 2, the conditioning member is moved so as to have a component in a second movement direction that is perpendicular to the first movement direction and parallel to the surface of the substrate. A second drive mechanism for providing;
 [形態4]形態4によれば、形態3の研磨装置において、前記第2駆動機構は、前記コンディショニング部材に、直線運動および/または回転運動を与えるように構成される。 [Embodiment 4] According to embodiment 4, in the polishing apparatus of embodiment 3, the second drive mechanism is configured to give a linear motion and / or a rotational motion to the conditioning member.
 [形態5]形態5によれば、形態1から形態4のいずれか1つの形態の研磨装置において、前記制御装置は、基板の研磨中に所定の周期でコンディショニングを実行するように前記第1押圧機構を制御するように構成される。 [Embodiment 5] According to Embodiment 5, in the polishing apparatus according to any one of Embodiments 1 to 4, the controller presses the first press so as to execute conditioning at a predetermined cycle during polishing of the substrate. It is configured to control the mechanism.
 [形態6]形態6によれば、形態1から形態5のいずれか1つの形態の研磨装置において、前記研磨部材および前記コンディショニング部材は、保持アームに保持されている。 [Mode 6] According to mode 6, in the polishing apparatus according to any one of modes 1 to 5, the polishing member and the conditioning member are held by the holding arm.
 [形態7]形態7によれば、形態1から形態6のいずれか1つの形態の研磨装置において、コンディショニング時に研磨部材から発生する屑を回収するための回収装置を有する。 [Embodiment 7] According to Embodiment 7, the polishing apparatus according to any one of Embodiments 1 to 6 includes the recovery device for recovering the waste generated from the polishing member during conditioning.
 [形態8]形態8によれば、形態7の研磨装置において、前記回収装置は、コンディショニング時に発生する研磨部材から発生する屑を吸引除去する吸引部を有する。 [Embodiment 8] According to Embodiment 8, in the polishing apparatus of Embodiment 7, the recovery device has a suction section for sucking and removing debris generated from the polishing member generated during conditioning.
 [形態9]形態9によれば、形態7の研磨装置において、前記回収装置は、コンディショニング時に発生する研磨部材から発生する屑を収集するためのスクレイパまたはワイパを有する。 [Embodiment 9] According to embodiment 9, in the polishing apparatus of embodiment 7, the recovery device has a scraper or a wiper for collecting debris generated from the polishing member generated during conditioning.
 [形態10]形態10によれば、形態7から形態9のいずれか1つの形態の研磨装置において、前記回収装置は、コンディショニング後の前記研磨部材を洗浄するための液体供給機構と、前記研磨部材の洗浄後の液体を回収する液体回収機構と、を有する。 [Embodiment 10] According to Embodiment 10, in the polishing apparatus according to any one of Embodiments 7 to 9, the recovery device includes a liquid supply mechanism for cleaning the polishing member after conditioning, and the polishing member. A liquid recovery mechanism for recovering the liquid after washing.
 [形態11]形態11によれば、形態1から形態10のいずれか1つの形態の研磨装置において、前記研磨部材は、(1)円板形状または円筒形状であり、前記円板形状または前記円筒形状の中心軸は基板の表面に平行であり、(2)円板形状であり、前記円板形状の中心軸が基板の表面に垂直な方向から傾斜しており、(3)円錐形状または切頭円錐形状であり、前記円錐形状または前記切頭円錐形状の中心軸4は基板の表面に平行であり、
  (4)球形状または球形状の一部を備える形状である、および、(5)ベルト部材を有する、のいずれか1つに構成される。
[Embodiment 11] According to Embodiment 11, in the polishing apparatus according to any one of Embodiments 1 to 10, the polishing member is (1) disc-shaped or cylindrical, and the disc-shaped or cylindrical The central axis of the shape is parallel to the surface of the substrate, (2) is a disc shape, and the central axis of the disc shape is inclined from a direction perpendicular to the surface of the substrate, and (3) a conical shape or a cut A conical shape, the central axis 4 of the conical shape or the truncated conical shape being parallel to the surface of the substrate;
(4) It is a spherical shape or a shape having a part of a spherical shape, and (5) has a belt member.
 [形態12]形態12によれば、基板の研磨方法が提供され、かかる研磨方法は、基板に接触する加工面が基板よりも小さい研磨部材を基板に押圧させるステップと、前記研磨部材を基板に押圧させながら、前記研磨部材と前記基板とを相対的に運動させることで基板を研磨するステップと、基板を研磨している最中に、コンディショニング部材を前記研磨部材に接触させて前記研磨部材をコンディショニングするステップと、を有する。形態12の研磨方法によれば、研磨部材で基板を研磨しているときに、同時に研磨部材をコンディショニングすることができる。そのため、研磨中に研磨部材の状態を良好に維持することができる。 [Mode 12] According to mode 12, there is provided a method for polishing a substrate, the step of pressing a polishing member having a processed surface that contacts the substrate smaller than the substrate against the substrate, and using the polishing member as a substrate. The step of polishing the substrate by relatively moving the polishing member and the substrate while pressing, and while the substrate is being polished, the conditioning member is brought into contact with the polishing member to move the polishing member Conditioning. According to the polishing method of aspect 12, the polishing member can be conditioned at the same time when the substrate is being polished with the polishing member. Therefore, the state of the polishing member can be maintained well during polishing.
 [形態13]形態13によれば、形態12の研磨方法において、前記コンディショニング部材に直線運動および/または回転運動を与えるステップを有する。 [Embodiment 13] According to embodiment 13, the polishing method of embodiment 12 includes the step of applying a linear motion and / or a rotational motion to the conditioning member.
 [形態14]形態14によれば、形態12または形態13の研磨方法において、前記研磨部材のコンディショニング時に研磨部材から発生する屑を回収するステップを有する。 [Embodiment 14] According to embodiment 14, in the polishing method of embodiment 12 or embodiment 13, there is a step of collecting debris generated from the polishing member during conditioning of the polishing member.
一実施形態による部分研磨装置の構成を示す概略図である。It is the schematic which shows the structure of the partial polishing apparatus by one Embodiment. 一実施形態による、研磨ヘッドの研磨502を保持する機構を示す概略図である。FIG. 6 is a schematic diagram illustrating a mechanism for holding a polishing 502 of a polishing head, according to one embodiment. 一実施形態による、部分研磨装置に利用できる第2コンディショナの一例を概略的に示す斜視図である。It is a perspective view showing roughly an example of the 2nd conditioner which can be used for a partial polisher by one embodiment. 一実施形態による、部分研磨装置に利用できる第2コンディショナの一例を概略的に示す斜視図である。It is a perspective view showing roughly an example of the 2nd conditioner which can be used for a partial polisher by one embodiment. 一実施形態による、部分研磨装置に利用できる研磨ヘッドおよび第2コンディショナの一例を概略的に示す側面図である。It is a side view showing roughly an example of a polish head and the 2nd conditioner which can be used for a partial polish device by one embodiment. 一実施形態による、部分研磨装置に利用できる研磨ヘッドおよび第2コンディショナの一例を概略的に示す側面図である。It is a side view showing roughly an example of a polish head and the 2nd conditioner which can be used for a partial polish device by one embodiment. 一実施形態による、部分研磨装置に利用できる研磨ヘッドおよび第2コンディショナの一例を概略的に示す側面図である。It is a side view showing roughly an example of a polish head and the 2nd conditioner which can be used for a partial polish device by one embodiment. 一実施形態による、部分研磨装置に利用できる研磨ヘッドおよび第2コンディショナの一例を概略的に示す側面図である。It is a side view showing roughly an example of a polish head and the 2nd conditioner which can be used for a partial polish device by one embodiment. 図8中の矢印9の方向から見た図である。It is the figure seen from the direction of the arrow 9 in FIG. 一実施形態による、回収装置を概略的に示す側面図である。FIG. 3 is a side view schematically illustrating a collection device according to one embodiment. 一実施形態による、回収装置を概略的に示す側面図である。FIG. 3 is a side view schematically illustrating a collection device according to one embodiment. 一実施形態による、回収装置を概略的に示す側面図である。FIG. 3 is a side view schematically illustrating a collection device according to one embodiment. 一実施形態による、基板の膜厚や凹凸・高さに関連する情報を処理するための制御回路の例を示す。3 illustrates an example of a control circuit for processing information related to a film thickness, unevenness, and height of a substrate according to an embodiment. 図13Aで示した部分研磨用制御部から基板表面の状態検出部を分割したときの回路図を示す。The circuit diagram when dividing | segmenting the state detection part of a substrate surface from the control part for partial polishing shown in FIG. 13A is shown. 一実施形態による、部分研磨装置を搭載した基板処理システムを示す概略図である。1 is a schematic diagram illustrating a substrate processing system equipped with a partial polishing apparatus according to an embodiment. 処理対象物よりも小径の研磨パッドを用いて研磨処理するための部分研磨装置の一例の概略構成を示す図である。It is a figure which shows schematic structure of an example of the partial polishing apparatus for grind | polishing using the polishing pad smaller diameter than a process target object.
 以下に、本発明に係る部分研磨装置の実施形態を添付図面とともに説明する。添付図面において、同一または類似の要素には同一または類似の参照符号が付され、各実施形態の説明において同一または類似の要素に関する重複する説明は省略することがある。また、各実施形態で示される特徴は、互いに矛盾しない限り他の実施形態にも適用可能である。 Hereinafter, embodiments of a partial polishing apparatus according to the present invention will be described with reference to the accompanying drawings. In the accompanying drawings, the same or similar elements are denoted by the same or similar reference numerals, and redundant description of the same or similar elements may be omitted in the description of each embodiment. Further, the features shown in each embodiment can be applied to other embodiments as long as they do not contradict each other.
 図1は、一実施形態による部分研磨装置1000の構成を示す概略図である。図1に示されるように、部分研磨装置1000は、ベース面1002の上に構成されている。部分研磨装置1000は、独立した1つの装置としても構成してもよく、また、部分研磨装置1000とともに大径の研磨パッドを使用する大径研磨装置1200を含む基板処理システム1100の一部のモジュールとして構成してもよい(図14参照)。部分研磨装置1000は、図示しない筐体内に設置される。筐体は図示しない排気機構を備え、研磨処理中に研磨液などが筐体の外部に暴露しないように構成される。 FIG. 1 is a schematic diagram showing a configuration of a partial polishing apparatus 1000 according to an embodiment. As shown in FIG. 1, the partial polishing apparatus 1000 is configured on the base surface 1002. The partial polishing apparatus 1000 may be configured as an independent apparatus, and a module of a part of the substrate processing system 1100 including the large diameter polishing apparatus 1200 that uses a large diameter polishing pad together with the partial polishing apparatus 1000. (See FIG. 14). The partial polishing apparatus 1000 is installed in a housing (not shown). The casing includes an exhaust mechanism (not shown) and is configured so that a polishing liquid or the like is not exposed to the outside of the casing during the polishing process.
 図1に示されるように、部分研磨装置1000は、基板Wfを上向きに保持するステージ400を備える。一実施形態において、基板Wfは、図示しない搬送装置によりステージ400に配置することができる。図示の部分研磨装置1000は、ステージ400の周りに、上下動が可能な4個のリフトピン402を備えており、リフトピン402が上昇した状態において、搬送装置から4個のリフトピン402上で基板Wfを受け取ることができる。リフトピン402上に基板Wfが載せられた後、リフトピン402は、ステージ400への基板受け渡し位置まで下降することで、基板Wfがステージに仮置きされる。そのため、4個のリフトピン402の内側に制限された領域内に基板Wfを位置決めが可能である。しかし、さらに高精度の位置決めを要する場合は、別途、位置決め機構404により、ステージ400上の所定位置に基板Wfを位置決めしてもよい。図1に示される実施形態においては、位置決めピン(図示せず)と位置決めパッド406とにより基板Wfの位置決めが可能である。位置決め機構404は、基板Wfの平面内の方向に移動可能な位置決めパッド406を備え、ステージ400を挟んで、位置決めパッド406の反対側に複数の位置決めピン(図示せず)を備えている。リフトピン402上に基板Wfが載せられた状態において、位置決めパッド406を基板Wfに押し付け、位置決めパッド406と位置決めピンとにより基板Wfの位置決めを行うことができる。基板Wfの位置決めをしたら、基板Wfをステージ400上に固定し、その後、リフトピン402を下降させて基板Wfをステージ400の上に配置することができる。ステージ400は、たとえば真空吸着によりWfをステージ400上に固定するものとすることができる。部分研磨装置1000は、検出部408を備える。検出部408は、ステージ400上に配置された基板Wfの位置を検出するためのものである。たとえば、基板Wfに形成されたノッチ、オリエンテーションフラットや基板外周部を検出して、基板Wfのステージ400上での位置を検出することができる。ノッチやオリエンテーションフラットの位置を基準とすることで、基板Wfの任意の点を特定することが可能であり、それにより所望の領域の部分研磨が可能となる。また、基板外周部の位置情報より、基板Wfのステージ400上での位置情報(たとえば、理想位置に対するズレ量)が得られることから、本情報をもとに制御装置900で研磨パッド502の移動位置を補正してもよい。なお、基板Wfをステージ400から離脱させるときは、リフトピン402をステージ400からの基板受取位置に移動した後、ステージ400の真空吸着を解放する。そして、リフトピン402を上昇させて、基板Wfを搬送装置への基板受け渡し位置に移動させた後、リフトピン402上の基板Wfを図示しない搬送装置が受け取ることができる。基板Wfはその後、搬送装置により後続の処理のために任意の場所へ搬送することができる。 As shown in FIG. 1, the partial polishing apparatus 1000 includes a stage 400 that holds the substrate Wf upward. In one embodiment, the substrate Wf can be placed on the stage 400 by a transfer device (not shown). The illustrated partial polishing apparatus 1000 includes four lift pins 402 that can move up and down around the stage 400. When the lift pins 402 are raised, the substrate Wf is transferred from the transfer device onto the four lift pins 402. Can receive. After the substrate Wf is placed on the lift pins 402, the lift pins 402 are lowered to the substrate delivery position to the stage 400, whereby the substrate Wf is temporarily placed on the stage. Therefore, it is possible to position the substrate Wf within a region limited to the inside of the four lift pins 402. However, if higher-precision positioning is required, the substrate Wf may be positioned at a predetermined position on the stage 400 by the positioning mechanism 404 separately. In the embodiment shown in FIG. 1, the substrate Wf can be positioned by positioning pins (not shown) and positioning pads 406. The positioning mechanism 404 includes a positioning pad 406 that can move in a direction within the plane of the substrate Wf, and includes a plurality of positioning pins (not shown) on the opposite side of the positioning pad 406 across the stage 400. In a state where the substrate Wf is placed on the lift pins 402, the positioning pad 406 can be pressed against the substrate Wf, and the substrate Wf can be positioned by the positioning pad 406 and the positioning pins. Once the substrate Wf is positioned, the substrate Wf can be fixed on the stage 400, and then the lift pins 402 can be lowered to place the substrate Wf on the stage 400. The stage 400 can fix Wf on the stage 400 by, for example, vacuum suction. The partial polishing apparatus 1000 includes a detection unit 408. The detection unit 408 is for detecting the position of the substrate Wf disposed on the stage 400. For example, it is possible to detect the position of the substrate Wf on the stage 400 by detecting notches, orientation flats and the outer periphery of the substrate formed in the substrate Wf. By using the position of the notch or the orientation flat as a reference, it is possible to specify an arbitrary point on the substrate Wf, thereby enabling partial polishing of a desired region. Further, since the position information (for example, the amount of deviation from the ideal position) of the substrate Wf on the stage 400 can be obtained from the position information of the outer peripheral portion of the substrate, the control device 900 moves the polishing pad 502 based on this information. The position may be corrected. When the substrate Wf is detached from the stage 400, the lift pin 402 is moved to the substrate receiving position from the stage 400, and then the vacuum suction of the stage 400 is released. Then, after the lift pins 402 are raised and the substrate Wf is moved to the substrate delivery position to the transfer device, the transfer device (not shown) can receive the substrate Wf on the lift pins 402. The substrate Wf can then be transported to any location for subsequent processing by the transport device.
 部分研磨装置1000のステージ400は回転駆動機構410を備え、回転軸400Aを中心に回転可能および/または角度回転可能に構成される。なお、本明細書において「回転」とは、一定の方向に連続的に回転することを意味しており、「角度回転」とは、所定の角度範囲で円周方向に運動(往復運動も含む)することを意味している。なお、他の実施形態として、ステージ400は、保持された基板Wfに直線運動を与える移動機構を備えるものとしてもよい。本明細書において、「直線運動」は所定の直線方向に運動することを意味しており、直線的な往復運動も含む。 The stage 400 of the partial polishing apparatus 1000 includes a rotation drive mechanism 410 and is configured to be rotatable and / or rotatable about the rotation shaft 400A. In this specification, “rotation” means continuous rotation in a certain direction, and “angle rotation” means movement in the circumferential direction within a predetermined angle range (including reciprocation). ) Means to do. As another embodiment, the stage 400 may include a moving mechanism that applies a linear motion to the held substrate Wf. In this specification, “linear motion” means movement in a predetermined linear direction, and includes linear reciprocation.
 図1に示される部分研磨装置1000は、研磨ヘッド500を備える。研磨ヘッド500は、研磨パッド502を保持する。図2は、研磨ヘッド500の研磨パッド502を保持する機構を示す概略図である。図2に示されるように、研磨ヘッド500は、第1保持部材504および第2保持部材506を備える。研磨パッド502は、第1保持部材504と第2保持部材506との間に保持される。図示のように、第1保持部材504、研磨パッド502、および第2保持部材506は、いずれも円板形状である。第1保持部材504および第2保持部材506の直径は、研磨パッド502の直径よりも小さい。そのため、研磨パッド502が第1保持部材504および第2保持部材506に保持された状態で、研磨パッド502が第1保持部材504および第2保持部材506の縁から露出する。また、第1保持部材504、研磨パッド502、および第2保持部材506は、いずれも中心に開口部を備え、かかる開口部に回転シャフト510が挿入される。第1保持部材504の研磨パッド502側の面には、研磨パッド502側に突出する1つまたは複数のガイドピン508が設けられている。一方、研磨パッド502におけるガイドピン508に対応する位置には貫通孔が設けられ、また、第2保持部材506の研磨パッド502側の面には、ガイドピン508を受け入れる凹部が形成されている。そのため、回転シャフト510により第1保持部材504および第2保持部材506を回転させたときに、研磨パッド502が滑ることなく保持部材504、506と一体的に回転することができる。なお、研磨パッド502は、市販のCMPパッドのような材質からなる。 1 includes a polishing head 500. The partial polishing apparatus 1000 shown in FIG. The polishing head 500 holds the polishing pad 502. FIG. 2 is a schematic view showing a mechanism for holding the polishing pad 502 of the polishing head 500. As shown in FIG. 2, the polishing head 500 includes a first holding member 504 and a second holding member 506. The polishing pad 502 is held between the first holding member 504 and the second holding member 506. As illustrated, the first holding member 504, the polishing pad 502, and the second holding member 506 are all disk-shaped. The diameters of the first holding member 504 and the second holding member 506 are smaller than the diameter of the polishing pad 502. Therefore, the polishing pad 502 is exposed from the edges of the first holding member 504 and the second holding member 506 in a state where the polishing pad 502 is held by the first holding member 504 and the second holding member 506. The first holding member 504, the polishing pad 502, and the second holding member 506 all have an opening at the center, and the rotating shaft 510 is inserted into the opening. One or more guide pins 508 projecting toward the polishing pad 502 are provided on the surface of the first holding member 504 on the polishing pad 502 side. On the other hand, a through hole is provided at a position corresponding to the guide pin 508 in the polishing pad 502, and a recess for receiving the guide pin 508 is formed on the surface of the second holding member 506 on the polishing pad 502 side. Therefore, when the first holding member 504 and the second holding member 506 are rotated by the rotating shaft 510, the polishing pad 502 can rotate integrally with the holding members 504 and 506 without slipping. The polishing pad 502 is made of a material such as a commercially available CMP pad.
 図1に示される実施形態においては、研磨ヘッド500は、研磨パッド502の円板形状の側面が基板Wfに向くように研磨パッド502を保持する。なお、研磨パッド502の形状は円板形状に限られず、他の形状の研磨パッドを使用することもできる。図1に示される部分研磨装置1000は、研磨ヘッド500を保持する保持アーム600を備える。保持アーム600は、研磨パッド502に基板Wfに対して第1運動方向に運動を与えるための第1駆動機構を備える。ここでいう「第1運動方向」は、基板Wfを研磨するための研磨パッド502の運動であり、図1の部分研磨装置1000においては、研磨パッド502の回転運動である。そのため、第1駆動機構はたとえば一般的なモータから構成することができる。基板Wfと研磨パッド502との接触部分においては、研磨パッド502は、基板Wfの表面に平行(研磨パッド502の接線方向;図1においてはy方向)に移動するので、研磨パッド502の回転運動であっても、「第1運動方向」は、一定の直線方向であると考えることができる。 In the embodiment shown in FIG. 1, the polishing head 500 holds the polishing pad 502 such that the disk-shaped side surface of the polishing pad 502 faces the substrate Wf. Note that the shape of the polishing pad 502 is not limited to a disk shape, and polishing pads of other shapes can also be used. A partial polishing apparatus 1000 shown in FIG. 1 includes a holding arm 600 that holds a polishing head 500. The holding arm 600 includes a first drive mechanism for giving the polishing pad 502 movement in the first movement direction with respect to the substrate Wf. The “first movement direction” here is the movement of the polishing pad 502 for polishing the substrate Wf, and is the rotational movement of the polishing pad 502 in the partial polishing apparatus 1000 of FIG. Therefore, the first drive mechanism can be composed of, for example, a general motor. At the contact portion between the substrate Wf and the polishing pad 502, the polishing pad 502 moves in parallel to the surface of the substrate Wf (the tangential direction of the polishing pad 502; the y direction in FIG. 1). Even so, the “first motion direction” can be considered to be a constant linear direction.
 上述した図15に示される部分研磨装置1000においては、研磨パッド502は、円板形状であり、回転軸は基板Wfの表面に垂直である。そのため、上述したように研磨パッド502の半径方向に線速度分布が生じて、研磨パッド502の半径方向に研磨速度分布が生じることになる。そのため、図15に示される部分研磨装置1000においては、研磨パッド502の基板Wfとの接触面積に対応する単位加工痕形状の所定形状に対するバラつきが大きくなる。しかし、図1に示される部分研磨装置1000においては、研磨パッド502の回転軸は基板Wfの表面に平行であり、研磨パッド502の基板Wfとの接触領域において線速度は一定である。そのため、図1の実施形態による部分研磨装置1000においては、研磨パッド502の基板Wfとの接触領域において、線速度分布から生じる研磨速度のバラつきは、図15に示される部分研磨装置1000の場合よりも小さい。そのため、図1の部分研磨装置1000においては、単位加工痕形状の所定形状に対するバラつきが低減する。また、図1に示される部分研磨装置1000においては、研磨パッド502の回転軸が基板Wfの表面に平行であることから、図15に示される部分研磨装置1000の場合とは異なり、研磨パッド502の基板Wfとの接触領域の微小化が容易である。研磨パッド502と基板Wfとの接触領域の微小化が可能となることで、たとえば、研磨パッド502の直径を大きくすることで、研磨パッド502と基板Wfとの相対線速度を増加させることが可能であり、ひいては研磨速度を大きくすることが可能である。なお、研磨パッド502と基板Wfとの接触領域は、研磨パッド502の直径および厚さで決定される。一例として、研磨パッド502の直径Φは、約50mm~約300mm、研磨パッド502の厚さは約1mm~約10mm程度の範囲で組わせてもよい。 In the partial polishing apparatus 1000 shown in FIG. 15 described above, the polishing pad 502 has a disk shape, and the rotation axis is perpendicular to the surface of the substrate Wf. Therefore, as described above, a linear velocity distribution is generated in the radial direction of the polishing pad 502, and a polishing velocity distribution is generated in the radial direction of the polishing pad 502. Therefore, in the partial polishing apparatus 1000 shown in FIG. 15, the variation of the unit processing trace shape corresponding to the contact area of the polishing pad 502 with the substrate Wf increases with respect to the predetermined shape. However, in the partial polishing apparatus 1000 shown in FIG. 1, the rotation axis of the polishing pad 502 is parallel to the surface of the substrate Wf, and the linear velocity is constant in the contact area of the polishing pad 502 with the substrate Wf. Therefore, in the partial polishing apparatus 1000 according to the embodiment of FIG. 1, the variation in the polishing speed resulting from the linear velocity distribution in the contact area of the polishing pad 502 with the substrate Wf is more than that of the partial polishing apparatus 1000 shown in FIG. Is also small. Therefore, in the partial polishing apparatus 1000 of FIG. 1, the variation of the unit processing trace shape with respect to the predetermined shape is reduced. Further, in the partial polishing apparatus 1000 shown in FIG. 1, since the rotation axis of the polishing pad 502 is parallel to the surface of the substrate Wf, the polishing pad 502 is different from the case of the partial polishing apparatus 1000 shown in FIG. The contact area with the substrate Wf can be easily miniaturized. Since the contact area between the polishing pad 502 and the substrate Wf can be miniaturized, for example, by increasing the diameter of the polishing pad 502, the relative linear velocity between the polishing pad 502 and the substrate Wf can be increased. Therefore, it is possible to increase the polishing rate. Note that the contact area between the polishing pad 502 and the substrate Wf is determined by the diameter and thickness of the polishing pad 502. As an example, the polishing pad 502 may have a diameter Φ of about 50 mm to about 300 mm, and the polishing pad 502 may have a thickness of about 1 mm to about 10 mm.
 一実施形態として、第1駆動機構は、研磨中に研磨パッド502の回転速度を変更することができる。回転速度を変更することで、研磨速度の調整が可能であり、よって基板Wf上の被処理領域における必要研磨量が大きい場合においても、効率よく研磨が可能である。また、例えば研磨中において研磨パッド502の減耗が大きく、研磨パッド502の直径に変化が生じた場合でも、回転速度の調整を行うことで、研磨速度を維持することが可能である。なお、図1に示される実施形態においては、第1駆動機構は、円板形状の研磨パッド502に回転運動を与えるものであるが、他の実施形態においては、研磨パッド502の形状として他の形状を利用することもでき、また、第1駆動機構は研磨パッド502に直線運動を与えるものとして構成することもできる。なお、直線運動には直線的な往復運動も含むものとする。 As one embodiment, the first drive mechanism can change the rotational speed of the polishing pad 502 during polishing. By changing the rotation speed, the polishing speed can be adjusted. Therefore, even when the required polishing amount in the region to be processed on the substrate Wf is large, the polishing can be efficiently performed. Further, for example, even when the polishing pad 502 is greatly worn during polishing and the diameter of the polishing pad 502 changes, the polishing speed can be maintained by adjusting the rotation speed. In the embodiment shown in FIG. 1, the first drive mechanism gives a rotational motion to the disc-shaped polishing pad 502, but in other embodiments, the shape of the polishing pad 502 is other than that. The shape can also be utilized, and the first drive mechanism can be configured to provide linear motion to the polishing pad 502. The linear motion includes linear reciprocating motion.
 図1に示される部分研磨装置1000は、保持アーム600を基板Wfの表面に垂直な方向(図1においてはz方向)に移動させるための垂直駆動機構602を備える。垂直駆動機構602により、保持アーム600とともに研磨ヘッド500および研磨パッド502が基板Wfの表面に垂直な方向に移動可能となる。垂直駆動機構602は、基板Wfを部分研磨するときに基板Wfに研磨パッド502を押圧するための押圧機構としても機能する。図1に示される実施形態においては、垂直駆動機構602は、モータおよびボールネジを利用した機構であるが、他の実施形態として、空圧式または液圧式の駆動機構やバネを利用した駆動機構としてもよく、これらの組み合わせでもよい。例としては、エアシリンダおよび精密レギュレータの組み合わせによる定圧制御、エアシリンダおよび弾性体(バネ等)の組み合わせによる定圧制御、エアシリンダおよび電空レギュレータの組み合せによるオープンループ制御、エアシリンダおよび電空レギュレータの組み合せに外部圧力センサからの圧力値を用いたクローズドループ制御、エアシリンダおよび電空レギュレータの組み合せにロードセルからの荷重値を用いたクローズドループ制御、サーボモータおよびボールネジの組み合せにロードセルからの荷重値を用いたクローズドループ制御、等が挙げられる。また、一実施形態として、研磨ヘッド500のための垂直駆動機構602として、粗動用と微動用とで異なる駆動機構を用いてもよい。たとえば、粗動用の駆動機構はモータを利用した駆動機構とし、研磨パッド502の基板Wfへの押圧を行う微動用の駆動機構はエアシリンダを使用した駆動機構とすることができる。この場合、研磨パッド502の押圧力を監視しながら、エアシリンダ内の空気圧を調整することで研磨パッド502の基板Wfに対する押圧力を制御することができる。また、逆に、粗動用の駆動機構としてエアシリンダを利用し、微動用の駆動機構としてモータを利用してもよい。この場合、微動用のモータのトルクを監視しながらモータを制御することで、研磨パッド502の基板Wfへの押圧力を制御することができる。また、他の駆動機構としてピエゾ素子を用いてもよく、ピエゾ素子に印加する電圧で移動量を調整することができる。なお、垂直駆動機構602を微動用と粗動用とに分ける場合、微動用の駆動機構は、保持アーム600の研磨パッド502を保持している位置、すなわち図1の例ではアーム600の先端に設けるようにしてもよい。 The partial polishing apparatus 1000 shown in FIG. 1 includes a vertical drive mechanism 602 for moving the holding arm 600 in a direction perpendicular to the surface of the substrate Wf (z direction in FIG. 1). The vertical drive mechanism 602 enables the polishing head 500 and the polishing pad 502 to move together with the holding arm 600 in a direction perpendicular to the surface of the substrate Wf. The vertical drive mechanism 602 also functions as a pressing mechanism for pressing the polishing pad 502 against the substrate Wf when the substrate Wf is partially polished. In the embodiment shown in FIG. 1, the vertical drive mechanism 602 is a mechanism using a motor and a ball screw. However, as another embodiment, a pneumatic or hydraulic drive mechanism or a drive mechanism using a spring may be used. Well, a combination of these may be used. Examples include constant pressure control using a combination of air cylinder and precision regulator, constant pressure control using a combination of air cylinder and elastic body (spring, etc.), open loop control using a combination of air cylinder and electropneumatic regulator, and air cylinder and electropneumatic regulator. Closed loop control using pressure value from external pressure sensor for combination, closed loop control using load value from load cell for combination of air cylinder and electro-pneumatic regulator, load value from load cell for combination of servo motor and ball screw The closed loop control used, etc. are mentioned. In one embodiment, different drive mechanisms may be used for the coarse movement and the fine movement as the vertical drive mechanism 602 for the polishing head 500. For example, the driving mechanism for coarse movement may be a driving mechanism using a motor, and the driving mechanism for fine movement for pressing the polishing pad 502 against the substrate Wf may be a driving mechanism using an air cylinder. In this case, the pressing force of the polishing pad 502 against the substrate Wf can be controlled by adjusting the air pressure in the air cylinder while monitoring the pressing force of the polishing pad 502. Conversely, an air cylinder may be used as a drive mechanism for coarse movement, and a motor may be used as a drive mechanism for fine movement. In this case, the pressing force of the polishing pad 502 against the substrate Wf can be controlled by controlling the motor while monitoring the torque of the motor for fine movement. Further, a piezo element may be used as another driving mechanism, and the movement amount can be adjusted by a voltage applied to the piezo element. When the vertical drive mechanism 602 is divided into fine movement and coarse movement, the fine movement drive mechanism is provided at a position where the polishing pad 502 of the holding arm 600 is held, that is, at the tip of the arm 600 in the example of FIG. You may do it.
 図1に示される部分研磨装置1000においては、保持アーム600を横方向(図1においてはx方向)に移動させるための横駆動機構620を備える。横駆動機構620により、アーム600とともに研磨ヘッド500および研磨パッド502が横方向に移動可能である。なお、かかる横方向(x方向)は、上述した第1運動方向に垂直であり且つ基板の表面に平行な第2運動方向である。そのため、部分研磨装置1000は、第1運動方向(y方向)に研磨パッド502を移動させて基板Wfを研磨しながら、同時に直交する第2運動方向(x方向)に研磨パッド502を運動させることで、基板Wfの加工痕形状をより均一化させることが可能になる。上述したように、図1に示される部分研磨装置1000においては、研磨パッド502の基板Wfとの接触領域においては、線速度は一定である。しかし、研磨パッド502の形状や材質にムラがあったりすることで、研磨パッド502の基板との接触状態が不均一であったりすると、基板Wfの加工痕形状、特に研磨パッド502の基板Wfとの接触面において第1運動方向と垂直な方向に研磨速度のバラつきが生じる。しかし、研磨中に研磨パッド502を第1運動方向と垂直な方向に運動させることで、研磨バラつきを緩和することが可能であり、よって加工痕形状をより均一にすることができる。なお、図1に示される実施形態においては、垂直駆動機構602は、モータおよびボールネジを利用した機構である。また、図1に示される実施形態においては、横駆動機構620は保持アーム600を垂直駆動機構602ごと移動させる構成である。なお、第2運動方向は、第1運動方向に対して厳密に垂直でなくとも、第1運動方向に垂直な成分を有する方向であれば、加工痕形状を均一にする効果を発揮することができる。 The partial polishing apparatus 1000 shown in FIG. 1 includes a lateral drive mechanism 620 for moving the holding arm 600 in the lateral direction (x direction in FIG. 1). The lateral driving mechanism 620 can move the polishing head 500 and the polishing pad 502 in the lateral direction together with the arm 600. The lateral direction (x direction) is a second movement direction that is perpendicular to the first movement direction described above and parallel to the surface of the substrate. Therefore, the partial polishing apparatus 1000 moves the polishing pad 502 in the first movement direction (y direction) to polish the substrate Wf and simultaneously moves the polishing pad 502 in the second movement direction (x direction) orthogonal to each other. Thus, it is possible to make the processing trace shape of the substrate Wf more uniform. As described above, in the partial polishing apparatus 1000 shown in FIG. 1, the linear velocity is constant in the contact region of the polishing pad 502 with the substrate Wf. However, if there is unevenness in the shape or material of the polishing pad 502 and the contact state of the polishing pad 502 with the substrate is non-uniform, the processing trace shape of the substrate Wf, particularly the substrate Wf of the polishing pad 502, The polishing speed varies in a direction perpendicular to the first movement direction on the contact surface. However, by moving the polishing pad 502 in the direction perpendicular to the first movement direction during polishing, it is possible to reduce the polishing variation, and thus the processing trace shape can be made more uniform. In the embodiment shown in FIG. 1, the vertical drive mechanism 602 is a mechanism using a motor and a ball screw. In the embodiment shown in FIG. 1, the lateral drive mechanism 620 is configured to move the holding arm 600 together with the vertical drive mechanism 602. In addition, even if the second movement direction is not strictly perpendicular to the first movement direction, if the direction has a component perpendicular to the first movement direction, the effect of making the machining trace shape uniform can be exhibited. it can.
 図1に示される実施形態による部分研磨装置1000は、研磨液供給ノズル702を備える。研磨液供給ノズル702は、研磨液、たとえばスラリの供給源710(図15参照)に流体的に接続されている。また、図1に示される実施形態による部分研磨装置1000においては、研磨液供給ノズル702は、保持アーム600に保持されている。そのため、研磨液供給ノズル702を通じて、基板Wf上の研磨領域にのみ研磨液を効率的に供給することができる。 The partial polishing apparatus 1000 according to the embodiment shown in FIG. 1 includes a polishing liquid supply nozzle 702. The polishing liquid supply nozzle 702 is fluidly connected to a supply source 710 (see FIG. 15) of polishing liquid, for example, slurry. In the partial polishing apparatus 1000 according to the embodiment shown in FIG. 1, the polishing liquid supply nozzle 702 is held by the holding arm 600. Therefore, the polishing liquid can be efficiently supplied only to the polishing region on the substrate Wf through the polishing liquid supply nozzle 702.
 図1に示される実施形態による部分研磨装置1000は、基板Wfを洗浄するための洗浄機構200を備える。図1に示される実施形態において、洗浄機構200は、洗浄ヘッド202、洗浄部材204、洗浄ヘッド保持アーム206、およびリンスノズル208を備える。洗浄部材204は、基板Wfに回転させながら接触させて部分研磨後の基板Wfを洗浄するための部材である。洗浄部材204は、一実施形態としてPVAスポンジから形成することができる。しかし、洗浄部材204は、PVAスポンジに代えて、あるいは追加的にメガソニック洗浄、高圧水洗浄、二流体洗浄を実現するための洗浄ノズルを備えるものとすることもできる。洗浄部材204は、洗浄ヘッド202に保持される。また、洗浄ヘッド202は、洗浄ヘッド保持アーム206に保持される。洗浄ヘッド保持アーム206は、洗浄ヘッド202および洗浄部材204を回転させるための駆動機構を備える。かかる駆動機構は、たとえばモータなどから構成することができる。また、洗浄ヘッド保持アーム206は、基板Wfの面内を揺動するための揺動機構を備える。洗浄機構200は、リンスノズル208を備える。リンスノズル208には、図示しない洗浄液供給源に接続されている。洗浄液は、たとえば純水、薬液などとすることができる。一実施形態において、リンスノズル208は、洗浄ヘッド保持アーム206に取り付けてもよい。リンスノズル208は、Wfの面内で揺動するための揺動機構を備える。 The partial polishing apparatus 1000 according to the embodiment shown in FIG. 1 includes a cleaning mechanism 200 for cleaning the substrate Wf. In the embodiment shown in FIG. 1, the cleaning mechanism 200 includes a cleaning head 202, a cleaning member 204, a cleaning head holding arm 206, and a rinse nozzle 208. The cleaning member 204 is a member for cleaning the substrate Wf after partial polishing by contacting the substrate Wf while rotating. The cleaning member 204 can be formed from a PVA sponge in one embodiment. However, the cleaning member 204 may include a cleaning nozzle for realizing megasonic cleaning, high-pressure water cleaning, and two-fluid cleaning instead of or in addition to the PVA sponge. The cleaning member 204 is held by the cleaning head 202. The cleaning head 202 is held by the cleaning head holding arm 206. The cleaning head holding arm 206 includes a drive mechanism for rotating the cleaning head 202 and the cleaning member 204. Such a drive mechanism can be composed of, for example, a motor. Further, the cleaning head holding arm 206 includes a swing mechanism for swinging in the plane of the substrate Wf. The cleaning mechanism 200 includes a rinse nozzle 208. The rinse nozzle 208 is connected to a cleaning liquid supply source (not shown). The cleaning liquid can be, for example, pure water or chemical liquid. In one embodiment, the rinse nozzle 208 may be attached to the cleaning head holding arm 206. The rinse nozzle 208 includes a swing mechanism for swinging in the plane of Wf.
 図1に示される実施形態による部分研磨装置1000は、研磨パッド502のコンディショニングを行うためのコンディショニング部800を備える。コンディショニング部800は、ステージ400の外に配置されている。コンディショニング部800は、ドレッサ820を保持するドレスステージ810を備える。図1の実施形態において、ドレスステージ810は、回転軸810Aを中心に回転可能である。図1の部分研磨装置1000において、研磨パッド502の研磨面(基板Wfに接触させる面)をドレッサ820に押圧し、研磨パッド502およびドレッサ820を回転させることで、研磨パッド502のコンディショニングを行うことができる。なお、他の実施形態として、ドレスステージ810は、回転運動ではなく、直線運動(往復運動を含む)をするように構成してもよい。なお、図1の部分研磨装置1000において、コンディショニング部800は、主に基板Wfのある点における部分研磨を終了し、次の点あるいは次の基板の部分研磨を行う前に研磨パッド502をコンディショニングするために使用する。また、基板Wfを部分研磨している途中で、研磨パッド502を一時的にコンディショニング部800に退避させてコンディショニングを行うようにしてもよい。ここで、ドレッサ820は、たとえば(1)表面にダイヤモンドの粒子が電着固定されたダイヤドレッサ、(2)ダイヤモンド砥粒が研磨パッドとの接触面の全面もしくは一部に配置されたダイヤドレッサ、および(3)樹脂製のブラシ毛が研磨パッドとの接触面の全面もしくは一部に配置されたブラシドレッサ、(4)これらのいずれか1つ、またはこれらの任意の組み合わせで形成することができる。 The partial polishing apparatus 1000 according to the embodiment shown in FIG. 1 includes a conditioning unit 800 for conditioning the polishing pad 502. The conditioning unit 800 is disposed outside the stage 400. The conditioning unit 800 includes a dress stage 810 that holds a dresser 820. In the embodiment of FIG. 1, the dress stage 810 is rotatable about a rotation axis 810A. In the partial polishing apparatus 1000 of FIG. 1, the polishing pad 502 is conditioned by pressing the polishing surface of the polishing pad 502 (the surface in contact with the substrate Wf) against the dresser 820 and rotating the polishing pad 502 and the dresser 820. Can do. As another embodiment, the dress stage 810 may be configured to perform a linear motion (including a reciprocating motion) instead of a rotational motion. In the partial polishing apparatus 1000 of FIG. 1, the conditioning unit 800 mainly finishes the partial polishing at a certain point of the substrate Wf and conditions the polishing pad 502 before performing the next point or the partial polishing of the next substrate. Use for. Further, during the partial polishing of the substrate Wf, the polishing pad 502 may be temporarily retracted to the conditioning unit 800 to perform the conditioning. Here, the dresser 820 includes, for example, (1) a diamond dresser in which diamond particles are electrodeposited and fixed on the surface, and (2) a diamond dresser in which diamond abrasive grains are disposed on the entire contact surface with the polishing pad, And (3) a brush dresser in which resin brush bristles are arranged on the entire surface or a part of the contact surface with the polishing pad, (4) any one of these, or any combination thereof can be formed. .
 図1に示される実施形態による部分研磨装置1000は、第2コンディショナ850を備える。第2コンディショナ850は、研磨パッド502により基板Wfを研磨している最中に研磨パッド502の研磨面(基板Wfに接触させる面)をコンディショニングするためのものである。そのため、第2コンディショナ850は、in-situコンディショナということもできる。第2コンディショナ850は、研磨パッド502の近傍で保持アーム600に保持される。第2コンディショナ850は、研磨パッド502に対してコンディショニング部材852を押し当てる方向にコンディショニング部材852を移動させるための移動機構854(図3-9参照)を備える。ここで、コンディショニング部材852は、たとえば(1)表面にダイヤモンドの粒子が電着固定されたダイヤドレッサ、(2)ダイヤモンド砥粒が研磨パッドとの接触面の全面もしくは一部に配置されたダイヤドレッサ、および(3)樹脂製のブラシ毛が研磨パッドとの接触面の全面もしくは一部に配置されたブラシドレッサ、(4)これらのいずれか1つ、またはこれらの任意の組み合わせで形成することができる。図1の実施形態においては、コンディショニング部材852は、研磨パッド502の近傍で研磨パッド502からy方向に離間して保持されており、移動機構854によりコンディショニング部材852をy方向に移動可能に構成されている。移動機構854は、コンディショニング部材852を研磨パッド502に押圧する押圧機構としての機能を備える。ここで、移動機構854は、モータおよびボールネジを利用した機構や、空圧式または液圧式の駆動機構やバネを利用した駆動機構としてもよく、これらの組合せでもよい。例としては、エアシリンダおよび精密レギュレータの組み合せによる定圧制御、エアシリンダおよび弾性体(バネ等)との組み合せによる定圧制御、エアシリンダおよび電空レギュレータの組み合せによるオープンループ制御、エアシリンダおよび電空レギュレータの組み合せに外部圧力センサからの圧力値を用いたクローズドループ制御、エアシリンダおよび電空レギュレータの組み合せにロードセルからの荷重値を用いたクローズドループ制御、サーボモータおよびボールネジの組み合せにロードセルからの荷重値を用いたクローズドループ制御、等が挙げられる。また、一実施形態において、コンディショニング部材852は、図示しない駆動機構により、回転運動および/または直線運動が可能に構成されてもよい。そのため、研磨パッド502により基板Wfを研磨しているときに、コンディショニング部材852を回転運動等させながら研磨パッド502に押し当てることで、基板Wfの研磨中に研磨パッド502をコンディショニングすることができる。なお、第2コンディショナ850の詳細については後述する。 1 is provided with a second conditioner 850. The partial polishing apparatus 1000 according to the embodiment shown in FIG. The second conditioner 850 is for conditioning the polishing surface of the polishing pad 502 (the surface in contact with the substrate Wf) while the substrate Wf is being polished by the polishing pad 502. Therefore, the second conditioner 850 can also be called an in-situ conditioner. The second conditioner 850 is held by the holding arm 600 in the vicinity of the polishing pad 502. The second conditioner 850 includes a moving mechanism 854 (see FIG. 3-9) for moving the conditioning member 852 in a direction in which the conditioning member 852 is pressed against the polishing pad 502. Here, the conditioning member 852 includes, for example, (1) a diamond dresser in which diamond particles are electrodeposited and fixed on the surface, and (2) a diamond dresser in which diamond abrasive grains are arranged on the entire contact surface with the polishing pad. And (3) a brush dresser in which resin brush bristles are disposed on the entire surface or a part of the contact surface with the polishing pad, and (4) any one of these or any combination thereof may be formed. it can. In the embodiment of FIG. 1, the conditioning member 852 is held in the vicinity of the polishing pad 502 and separated from the polishing pad 502 in the y direction, and the conditioning member 852 can be moved in the y direction by the moving mechanism 854. ing. The moving mechanism 854 has a function as a pressing mechanism that presses the conditioning member 852 against the polishing pad 502. Here, the moving mechanism 854 may be a mechanism using a motor and a ball screw, a pneumatic or hydraulic driving mechanism, a driving mechanism using a spring, or a combination thereof. Examples include constant pressure control by combining air cylinders and precision regulators, constant pressure control by combining air cylinders and elastic bodies (springs, etc.), open loop control by combining air cylinders and electropneumatic regulators, air cylinders and electropneumatic regulators Closed loop control using pressure value from external pressure sensor for combination, closed loop control using load value from load cell for combination of air cylinder and electro-pneumatic regulator, load value from load cell for combination of servo motor and ball screw Closed-loop control using the. In one embodiment, the conditioning member 852 may be configured to be capable of rotational movement and / or linear movement by a driving mechanism (not shown). Therefore, when the substrate Wf is being polished by the polishing pad 502, the polishing pad 502 can be conditioned during the polishing of the substrate Wf by pressing the conditioning member 852 against the polishing pad 502 while rotating it. Details of the second conditioner 850 will be described later.
 図1に示される実施形態において、部分研磨装置1000は、制御装置900を備える。部分研磨装置1000の各種の駆動機構は制御装置900に接続されており、制御装置900は、部分研磨装置1000の動作を制御することができる。また、制御装置は、基板Wfの被研磨領域における目標研磨量を計算する演算部を備える。制御装置900は、演算部により計算された目標研磨量に従って、研磨装置を制御するように構成される。なお、制御装置900は、記憶装置、CPU、入出力機構など備える一般的なコンピュータに所定のプログラムをインストールすることで構成することができる。 In the embodiment shown in FIG. 1, the partial polishing apparatus 1000 includes a control device 900. Various drive mechanisms of the partial polishing apparatus 1000 are connected to the control device 900, and the control device 900 can control the operation of the partial polishing apparatus 1000. In addition, the control device includes an arithmetic unit that calculates a target polishing amount in the region to be polished of the substrate Wf. The control device 900 is configured to control the polishing device according to the target polishing amount calculated by the calculation unit. The control device 900 can be configured by installing a predetermined program in a general computer including a storage device, a CPU, an input / output mechanism, and the like.
 また、一実施形態において、部分研磨装置1000は、図1に図示はしないが、基板Wfの被研磨面の状態を検出するための状態検出部420(図13A、図13Bなど)を備えてもよい。状態検出部は、一例としてWet-ITM(In-line Thickness Monitor)420とすることができる。Wet-ITM420では、検出ヘッドが基板Wf上に非接触状態にて存在し、基板Wfの全面を移動することで、基板Wf上に形成された膜の膜厚分布(又は膜厚に関連する情報の分布)を検出(測定)することができる。なお、状態検出部420としてWet-ITM以外にも任意の方式の検出器を用いることができる。たとえば、利用可能な検出方式としては、公知の渦電流式や光学式のような非接触式の検出方式を採用することができ、また、接触式の検出方式を採用しても良い。接触式の検出方式としては、例えば通電可能なプローブを備えた検出ヘッドを用意し、基板Wfにプローブを接触させて通電させた状態で基板Wf面内を走査させることで、膜抵抗の分布を検出する電気抵抗式の検出を採用することができる。また、他の接触式の検出方式として、基板Wfの表面にプローブを接触させた状態で基板Wf面内を走査させ、プローブの上下動をモニタリングすることで表面の凹凸の分布を検出する段差検出方式を採用することもできる。接触式および非接触式のいずれの検出方式においても、検出される出力は膜厚もしくは膜厚に相当する信号である。光学式の検出においては、基板Wfの表面に投光した光の反射光量の他に、基板Wf表面の色調の差異より膜厚差異を認識しても良い。なお、基板Wf上の膜厚の検出に際しては、基板Wfを回転させながら、また、検出器は半径方向に搖動させながら膜厚を検出することが望ましい。これにより基板Wf全面における膜厚や段差等の表面状態の情報を得ることが可能となる。また、検出部408にて検出される検出するノッチやオリエンテーションフラット位置を基準とすることで、膜厚等のデータを半径方向の位置のみでなく、周方向の位置とも関連付けることが可能であり、これにより、基板Wf上の膜厚や段差又はそれらに関連する信号の分布を得ることが可能となる。また、部分研磨を行う際に、本位置データに基づいて、ステージ400、および保持アーム600の動作を制御することが可能である。 In one embodiment, the partial polishing apparatus 1000 may include a state detection unit 420 (FIG. 13A, FIG. 13B, etc.) for detecting the state of the surface to be polished of the substrate Wf, although not shown in FIG. Good. The state detection unit may be a Wet-ITM (In-line Thickness Monitor) 420 as an example. In the Wet-ITM 420, the detection head exists in a non-contact state on the substrate Wf, and the film thickness distribution (or information related to the film thickness) of the film formed on the substrate Wf by moving the entire surface of the substrate Wf. Can be detected (measured). Note that a detector other than the Wet-ITM can be used as the state detection unit 420. For example, as a usable detection method, a known non-contact detection method such as an eddy current method or an optical method can be employed, or a contact detection method may be employed. As a contact-type detection method, for example, a detection head including a probe that can be energized is prepared, and the surface of the substrate Wf is scanned in a state where the probe is brought into contact with the substrate Wf and energized, whereby the distribution of film resistance can be determined. It is possible to employ electric resistance type detection. In addition, as another contact type detection method, step detection is performed by scanning the surface of the substrate Wf while the probe is in contact with the surface of the substrate Wf, and detecting the unevenness distribution of the surface by monitoring the vertical movement of the probe. A method can also be adopted. In both contact and non-contact detection methods, the detected output is a film thickness or a signal corresponding to the film thickness. In the optical detection, in addition to the reflected light amount of the light projected on the surface of the substrate Wf, the film thickness difference may be recognized based on the color tone difference on the surface of the substrate Wf. In detecting the film thickness on the substrate Wf, it is desirable to detect the film thickness while rotating the substrate Wf and swinging the detector in the radial direction. As a result, it is possible to obtain information on the surface state such as the film thickness and level difference on the entire surface of the substrate Wf. In addition, by using the notch or orientation flat position detected by the detection unit 408 as a reference, it is possible to associate data such as film thickness with not only the radial position but also the circumferential position. As a result, it is possible to obtain the film thickness and level difference on the substrate Wf or the distribution of signals related to them. Further, when performing partial polishing, it is possible to control the operations of the stage 400 and the holding arm 600 based on the position data.
 上述の状態検出部420は制御装置900に接続されており、状態検出部420で検出した信号は制御装置900で処理される。状態検出部420の検出器のための制御装置900は、ステージ400、研磨ヘッド500、および保持アーム600の動作を制御する制御装置900と同一のハードウェアを使用してもよく、別のハードウェアを使用してもよい。ステージ400、研磨ヘッド500、および保持アーム600の動作を制御する制御装置900と、検出器のための制御装置900とで別々のハードウェアを用いる場合、基板Wfの研磨処理と基板Wfの表面状態の検出および後続の信号処理に使用するハードウェア資源を分散でき、全体として処理を高速化できる。 The state detection unit 420 described above is connected to the control device 900, and the signal detected by the state detection unit 420 is processed by the control device 900. The control device 900 for the detector of the state detection unit 420 may use the same hardware as the control device 900 that controls the operation of the stage 400, the polishing head 500, and the holding arm 600. May be used. When separate hardware is used for the control device 900 that controls the operations of the stage 400, the polishing head 500, and the holding arm 600, and the control device 900 for the detector, the polishing process of the substrate Wf and the surface state of the substrate Wf Hardware resources used for detection and subsequent signal processing can be distributed, and the overall processing speed can be increased.
 また、状態検出部420による検出タイミングとしては、基板Wfの研磨前、研磨中、および/または研磨後とすることができる。状態検出部420が独立に搭載されている場合、研磨前、研磨後、もしくは研磨中であっても研磨処理のインターバルであれば、保持アーム600の動作と干渉しない。ただし、基板Wfの処理における膜厚又は膜厚に関係する信号をなるべく時間遅れがないよう、基板Wfの処理中に、研磨ヘッド500による処理と同時に基板Wfの膜厚の検出を行う際は、保持アーム600の動作に応じて、状態検出部420を走査させるようにする。なお、基板Wf表面の状態検出について、本実施形態では、部分研磨装置1000内に状態検出部420を搭載しているが、たとえば部分研磨装置1000での研磨処理に時間がかかるといった場合は、生産性の観点から本検出部は、部分研磨装置1000外に検出ユニットとして配置されていてもよい。たとえば、ITMについては、処理実施中における計測においてはWet-ITMが有効であるが、それ以外処理前もしくは処理後における膜厚又は膜厚に相当する信号の取得においては、部分研磨装置1000に搭載されている必要は必ずしもない。部分研磨モジュール外にITMを搭載し、基板Wfを部分研磨装置1000に出し入れの際に測定を実施しても良い。また、本状態検出部420で取得した膜厚または膜厚や凹凸・高さに関連する信号を元に基板Wfの各被研磨領域の研磨終点を判定してもよい。 Also, the detection timing by the state detection unit 420 can be before, during and / or after polishing the substrate Wf. When the state detection unit 420 is mounted independently, it does not interfere with the operation of the holding arm 600 as long as it is a polishing processing interval even before polishing, after polishing, or during polishing. However, when detecting the film thickness of the substrate Wf at the same time as the processing by the polishing head 500 during the processing of the substrate Wf, the film thickness in the processing of the substrate Wf or a signal related to the film thickness is not delayed as much as possible. In accordance with the operation of the holding arm 600, the state detection unit 420 is scanned. In this embodiment, the state detection unit 420 is mounted in the partial polishing apparatus 1000 for detecting the state of the surface of the substrate Wf. However, for example, if the polishing process in the partial polishing apparatus 1000 takes time, the production is performed. From the viewpoint of safety, this detection unit may be arranged outside the partial polishing apparatus 1000 as a detection unit. For example, for ITM, Wet-ITM is effective for measurement during processing, but other than that, it is installed in the partial polishing apparatus 1000 for obtaining a film thickness before or after processing or a signal corresponding to the film thickness. It does not necessarily have to be. An ITM may be mounted outside the partial polishing module, and measurement may be performed when the substrate Wf is taken in and out of the partial polishing apparatus 1000. Further, the polishing end point of each region to be polished of the substrate Wf may be determined based on the film thickness acquired by the state detection unit 420 or a signal related to the film thickness or unevenness / height.
 図3は、図1に示される部分研磨装置1000に利用できる第2コンディショナ850の一例を概略的に示す斜視図である。図3は、保持アーム600の先端の研磨ヘッド500の近傍を示している。図3に示されるように、研磨ヘッド500は、回転可能な円板形状の研磨パッド502を保持している。図3に示される実施形態においては、研磨パッド502は、回転により基板Wfに対して第1運動方向であるy方向に運動可能である。図3に示されるように、第2コンディショナ850は、保持アーム600に取り付けられている。第2コンディショナ850は、研磨パッド502をコンディショニングするためのコンディショニング部材852を備える。コンディショニング部材852は、研磨パッド502の近傍で研磨パッド502からy方向に離間して移動機構854に保持されており、移動機構854によりコンディショニング部材852をy方向に移動可能に構成されている。移動機構854は、コンディショニング部材852を研磨パッド502に押圧する押圧機構としての機能を備える。そのため、第2コンディショナ850は、研磨中に研磨パッド502にコンディショニング部材852を押し当てることで、研磨パッド502を研磨中にコンディショニングすることができる。なお、移動機構854は、モータなどから構成することができ、あるいは液圧式または空圧式の移動機構を採用してもよい。 FIG. 3 is a perspective view schematically showing an example of the second conditioner 850 that can be used in the partial polishing apparatus 1000 shown in FIG. FIG. 3 shows the vicinity of the polishing head 500 at the tip of the holding arm 600. As shown in FIG. 3, the polishing head 500 holds a rotatable disc-shaped polishing pad 502. In the embodiment shown in FIG. 3, the polishing pad 502 is movable in the y direction that is the first movement direction with respect to the substrate Wf by rotation. As shown in FIG. 3, the second conditioner 850 is attached to the holding arm 600. The second conditioner 850 includes a conditioning member 852 for conditioning the polishing pad 502. The conditioning member 852 is held by the moving mechanism 854 in the vicinity of the polishing pad 502 and separated from the polishing pad 502 in the y direction. The conditioning mechanism 854 is configured to be able to move the conditioning member 852 in the y direction. The moving mechanism 854 has a function as a pressing mechanism that presses the conditioning member 852 against the polishing pad 502. Therefore, the second conditioner 850 can condition the polishing pad 502 during polishing by pressing the conditioning member 852 against the polishing pad 502 during polishing. The moving mechanism 854 can be constituted by a motor or the like, or a hydraulic or pneumatic moving mechanism may be employed.
 図4は、図1に示される部分研磨装置1000に利用できる第2コンディショナ850の一例を概略的に示す斜視図である。図4は、保持アーム600の先端の研磨ヘッド500の近傍を示している。図4に示される第2コンディショナ850は、図3に示される第2コンディショナ850に対して、揺動機構856が追加されている。揺動機構856は、研磨パッド502の運動方向である第1運動方向に垂直であり且つ基板Wfの表面に平行な第2運動方向に成分を有する方向に揺動機構856は、移動機構854およびコンディショニング部材852を移動させることができる。図4に示される実施形態において、揺動機構856は、移動機構854およびコンディショニング部材852を、研磨パッド502の第1運動方向(y方向)に垂直であり且つ基板Wに平行であるx方向に移動させることができる。そのため、研磨パッド502のコンディショニング中に、コンディショニング部材852が研磨パッド502に接触する位置を変更することができる。このように、研磨パッド502の運動方向である第1運動方向に垂直な方向である第2運動方向成分を加えることにより、研磨パッド502の基板Wfとの接触面をより均一にコンディショニングすることが可能となる。なお、揺動機構856は、モータなどから構成することができ、あるいは液圧式または空圧式の移動機構を採用してもよい。また、第2運動方向成分を与える機構として、本実施形態では揺動運動の例について説明しているが、例えば回転運動や並進回転運動(直線運動と回転運動とを組み合わせた運動)のような第2運動方向成分を有する運動機構であってもよく、これは後述のその他の実施形態でも同様である。なお、コンディショニング部材852の形状について、本実施形態では平板状であるが、研磨パッド502の形状や第2運動機構の形式により適宜変更可能であり、これは後述のその他の実施形態でも同様である。例えば第2運動機構が回転または並進回転の場合は、コンディショニング部材852は円板形状であってもよい。また、研磨パッド502が円板・円筒・球形状のような曲面を有する場合は、コンディショニング部材852の研磨パッド502との接触面はそれに倣うような曲面形状を有していてもよく、これにより効率的な研磨パッド502のコンディショニングが可能となる。また、コンディショニング部材852の端部については、コンディショニング時の荷重集中を抑制すべく、面取り等を実施してもよい。 FIG. 4 is a perspective view schematically showing an example of a second conditioner 850 that can be used in the partial polishing apparatus 1000 shown in FIG. FIG. 4 shows the vicinity of the polishing head 500 at the tip of the holding arm 600. The second conditioner 850 shown in FIG. 4 has a swing mechanism 856 added to the second conditioner 850 shown in FIG. The swing mechanism 856 is perpendicular to the first motion direction that is the motion direction of the polishing pad 502 and has a component in the second motion direction parallel to the surface of the substrate Wf. Conditioning member 852 can be moved. In the embodiment shown in FIG. 4, the swing mechanism 856 moves the moving mechanism 854 and the conditioning member 852 in the x direction that is perpendicular to the first movement direction (y direction) of the polishing pad 502 and parallel to the substrate W. Can be moved. Therefore, the position where the conditioning member 852 contacts the polishing pad 502 can be changed during the conditioning of the polishing pad 502. Thus, by adding the second movement direction component that is a direction perpendicular to the first movement direction that is the movement direction of the polishing pad 502, the contact surface of the polishing pad 502 with the substrate Wf can be more uniformly conditioned. It becomes possible. Note that the swing mechanism 856 can be constituted by a motor or the like, or a hydraulic or pneumatic moving mechanism may be employed. Further, in the present embodiment, an example of a swing motion is described as a mechanism for providing the second motion direction component. For example, a rotational motion or a translational rotational motion (a motion combining a linear motion and a rotational motion) is used. It may be a motion mechanism having a second motion direction component, and this is the same in other embodiments described later. The shape of the conditioning member 852 is a flat plate in this embodiment, but can be appropriately changed depending on the shape of the polishing pad 502 and the type of the second motion mechanism, and this is the same in other embodiments described later. . For example, when the second motion mechanism is rotating or translating, the conditioning member 852 may have a disk shape. In addition, when the polishing pad 502 has a curved surface such as a disk, cylinder, or sphere, the contact surface of the conditioning member 852 with the polishing pad 502 may have a curved surface shape that follows the surface. Efficient conditioning of the polishing pad 502 is possible. Further, the end portion of the conditioning member 852 may be chamfered to suppress load concentration during conditioning.
 図5は、一実施形態による部分研磨装置1000に利用できる研磨ヘッド500および第2コンディショナ850の一例を概略的に示す側面図である。図5に示される実施形態において、研磨パッド502は円板形状である。円板形状の研磨パッド502は、回転可能な研磨ヘッド500に保持されている。図5に示されるように、研磨ヘッド500の回転軸502Aは、基板Wfの表面に垂直な方向から傾いている。換言すれば、円板形状の研磨パッド502の表面は、基板Wfに対して非平行である。そのため、研磨ヘッド500を回転させながら基板Wfに研磨パッド502を押圧すると、円板形状の研磨パッド502の一定方向のエッジ部分のみが基板Wfに接触し、反対方向のエッジ部は基板Wfから離間している。この状態では研磨パッド502のエッジ部分のみが、基板Wfに接触するので、微小領域の研磨が可能である。 FIG. 5 is a side view schematically showing an example of a polishing head 500 and a second conditioner 850 that can be used in the partial polishing apparatus 1000 according to an embodiment. In the embodiment shown in FIG. 5, the polishing pad 502 is disk-shaped. A disc-shaped polishing pad 502 is held by a rotatable polishing head 500. As shown in FIG. 5, the rotating shaft 502A of the polishing head 500 is inclined from a direction perpendicular to the surface of the substrate Wf. In other words, the surface of the disc-shaped polishing pad 502 is non-parallel to the substrate Wf. Therefore, when the polishing pad 502 is pressed against the substrate Wf while rotating the polishing head 500, only the edge portion in a certain direction of the disc-shaped polishing pad 502 contacts the substrate Wf, and the edge portion in the opposite direction is separated from the substrate Wf. is doing. In this state, only the edge portion of the polishing pad 502 is in contact with the substrate Wf, so that a minute region can be polished.
 図5に示される部分研磨装置1000の第2コンディショナ850は、コンディショニング部材852を備える。コンディショニング部材852は移動機構854に連結されている。移動機構854は、コンディショニング部材852を研磨パッド502の方向に移動させることができ、また、研磨パッド502に押圧させることができる。一実施形態として、移動機構854は、揺動機構856に連結されている。揺動機構856は、移動機構854およびコンディショニング部材852を、研磨パッド502の回転軸502Aに垂直な方向に成分を有する方向に移動可能である。図5に示されるように、移動機構854および揺動機構856は、支持部材858に保持されている。支持部材858は、保持アーム600に固定されている。図5に示されるように、研磨パッド502の一定方向のエッジ部分が基板Wfに押圧されて基板Wfを研磨することができ、同時に、研磨パッド502の反対方向のエッジ部分は基板Wfから離間している。そのため、この反対方向のエッジ部分にコンディショニング部材852を押圧して、基板Wfの研磨中に研磨パッド502のコンディショニングをすることができる。なお、一実施形態として、第2コンディショナ850は、図5に示されるコンディショニング部材852を、回転軸852Aを中心に回転させる回転機構や並進回転運動機構を含むことができる。ただし、かかる回転機構は無くてもよい。移動機構854および揺動機構856は、モータなどから構成することができ、あるいは液圧式または空圧式の移動機構を採用してもよい。 The second conditioner 850 of the partial polishing apparatus 1000 shown in Fig. 5 includes a conditioning member 852. Conditioning member 852 is coupled to moving mechanism 854. The moving mechanism 854 can move the conditioning member 852 in the direction of the polishing pad 502 and can also press the polishing pad 502. In one embodiment, the moving mechanism 854 is coupled to the swing mechanism 856. The swing mechanism 856 can move the moving mechanism 854 and the conditioning member 852 in a direction having a component in a direction perpendicular to the rotation axis 502A of the polishing pad 502. As shown in FIG. 5, the moving mechanism 854 and the swinging mechanism 856 are held by the support member 858. The support member 858 is fixed to the holding arm 600. As shown in FIG. 5, the edge portion in a certain direction of the polishing pad 502 can be pressed against the substrate Wf to polish the substrate Wf, and at the same time, the edge portion in the opposite direction of the polishing pad 502 is separated from the substrate Wf. ing. Therefore, the conditioning member 852 is pressed against the edge portion in the opposite direction, and the polishing pad 502 can be conditioned during the polishing of the substrate Wf. As one embodiment, the second conditioner 850 can include a rotation mechanism or a translational rotation motion mechanism that rotates the conditioning member 852 shown in FIG. 5 about the rotation shaft 852A. However, such a rotation mechanism may not be provided. The moving mechanism 854 and the swing mechanism 856 can be configured by a motor or the like, or a hydraulic or pneumatic moving mechanism may be employed.
 図6は、一実施形態による部分研磨装置1000に利用できる研磨ヘッド500および第2コンディショナ850の一例を概略的に示す側面図である。図6に示される実施形態において、研磨パッド502は切頭円錐形状である。あるいは、切頭円錐形状のベースに研磨パッドを配置したものを採用してもよい。切頭円錐形状の研磨パッド502は、回転可能な研磨ヘッド500に保持されている。図6に示されるように、研磨ヘッド500の回転軸502Aは、基板Wfの表面に平行であり、切頭円錐形状の中心に一致している。この状態では研磨パッド502のエッジ部分のみが、基板Wfに接触するので、微小領域の研磨が可能である。 FIG. 6 is a side view schematically showing an example of a polishing head 500 and a second conditioner 850 that can be used in the partial polishing apparatus 1000 according to an embodiment. In the embodiment shown in FIG. 6, the polishing pad 502 is frustoconical. Or you may employ | adopt what arrange | positioned the polishing pad to the base of truncated cone shape. A frustoconical polishing pad 502 is held by a rotatable polishing head 500. As shown in FIG. 6, the rotation axis 502A of the polishing head 500 is parallel to the surface of the substrate Wf and coincides with the center of the truncated cone shape. In this state, only the edge portion of the polishing pad 502 is in contact with the substrate Wf, so that a minute region can be polished.
 図6に示される部分研磨装置1000の第2コンディショナ850は、コンディショニング部材852を備える。コンディショニング部材852は、切頭円錐形状の研磨パッド502の側面に接触可能に配置される。コンディショニング部材852は移動機構854に連結されている。移動機構854は、コンディショニング部材852を切頭円錐形状の研磨パッド502の側面に向かって移動させることができ、また、切頭円錐形状の研磨パッド502の側面に押圧させることができる。一実施形態として、移動機構854は、揺動機構856に連結されている。揺動機構856は、移動機構854およびコンディショニング部材852を、切頭円錐形状の研磨パッド502の側面に沿う方向に移動可能である。図6に示されるように、移動機構854および揺動機構856は、支持部材858に保持されている。支持部材858は、保持アーム600に固定されている。図6に示される実施形態において、基板Wfを研磨パッド502により研磨しながら、同時に、研磨パッド502を第2コンディショナ850によりコンディショニングすることができる。移動機構854および揺動機構856は、モータなどから構成することができ、あるいは液圧式または空圧式の移動機構を採用してもよい。 The second conditioner 850 of the partial polishing apparatus 1000 shown in Fig. 6 includes a conditioning member 852. The conditioning member 852 is disposed so as to be in contact with the side surface of the frustoconical polishing pad 502. Conditioning member 852 is coupled to moving mechanism 854. The moving mechanism 854 can move the conditioning member 852 toward the side surface of the frustoconical polishing pad 502 and can press the conditioning member 852 against the side surface of the frustoconical polishing pad 502. In one embodiment, the moving mechanism 854 is coupled to the swing mechanism 856. The swing mechanism 856 can move the moving mechanism 854 and the conditioning member 852 in a direction along the side surface of the frustoconical polishing pad 502. As shown in FIG. 6, the moving mechanism 854 and the swinging mechanism 856 are held by the support member 858. The support member 858 is fixed to the holding arm 600. In the embodiment shown in FIG. 6, the polishing pad 502 can be conditioned by the second conditioner 850 while the substrate Wf is being polished by the polishing pad 502. The moving mechanism 854 and the swing mechanism 856 can be configured by a motor or the like, or a hydraulic or pneumatic moving mechanism may be employed.
 図7は、一実施形態による部分研磨装置1000に利用できる研磨ヘッド500および第2コンディショナ850の一例を概略的に示す側面図である。図7に示される実施形態において、研磨パッド502は球形状の一部を有する形状である。あるいは、球形状の一部を有する形状のベースに研磨パッドを配置したものを採用してもよい。研磨パッド502は、回転可能な研磨ヘッド500に保持されている。図7に示されるように、研磨ヘッド500の回転軸502Aは、基板Wfの表面に平行である。 FIG. 7 is a side view schematically showing an example of a polishing head 500 and a second conditioner 850 that can be used in the partial polishing apparatus 1000 according to an embodiment. In the embodiment shown in FIG. 7, the polishing pad 502 has a shape having a spherical part. Or you may employ | adopt what arrange | positioned the polishing pad to the base of the shape which has a part of spherical shape. The polishing pad 502 is held by a rotatable polishing head 500. As shown in FIG. 7, the rotation axis 502A of the polishing head 500 is parallel to the surface of the substrate Wf.
 図7に示される部分研磨装置1000の第2コンディショナ850は、コンディショニング部材852を備える。コンディショニング部材852は、円板形状、角板状形状、または研磨パッド502の球形状に沿った曲面形状であり、研磨パッド502の側面に接触可能に配置される。コンディショニング部材852は移動機構854に連結されている。移動機構854は、コンディショニング部材852を研磨パッド502に向かって移動させることができ、また、研磨パッド502に押圧させることができる。図7に示される実施形態において、移動機構854は、支持部材858に保持されている。支持部材858は、湾曲する凹形状部860を備える。図7に示されるように、凹形状部860の湾曲面は、研磨パッド502の球形状の中心とする曲面とすることができる。移動機構854は、支持部材858の凹形状部860の湾曲面に位置し、且つ湾曲面に沿って揺動可能に配置される。支持部材858は、保持アーム600に固定されている。図7に示される実施形態において、基板Wfを研磨パッド502により研磨しながら、同時に、研磨パッド502を第2コンディショナ850によりコンディショニングすることができる。移動機構854および揺動機構856は、モータなどから構成することができ、あるいは液圧式または空圧式の移動機構を採用してもよい。 7 includes a conditioning member 852. The second conditioner 850 of the partial polishing apparatus 1000 shown in FIG. The conditioning member 852 has a disc shape, a square plate shape, or a curved shape along the spherical shape of the polishing pad 502, and is disposed so as to be in contact with the side surface of the polishing pad 502. Conditioning member 852 is coupled to moving mechanism 854. The moving mechanism 854 can move the conditioning member 852 toward the polishing pad 502 and can press the polishing pad 502. In the embodiment shown in FIG. 7, the moving mechanism 854 is held by a support member 858. The support member 858 includes a concave portion 860 that is curved. As shown in FIG. 7, the curved surface of the concave portion 860 can be a curved surface having the center of the spherical shape of the polishing pad 502. The moving mechanism 854 is positioned on the curved surface of the concave portion 860 of the support member 858 and is disposed so as to be swingable along the curved surface. The support member 858 is fixed to the holding arm 600. In the embodiment shown in FIG. 7, the polishing pad 502 can be conditioned by the second conditioner 850 while the substrate Wf is being polished by the polishing pad 502. The moving mechanism 854 and the swing mechanism 856 can be configured by a motor or the like, or a hydraulic or pneumatic moving mechanism may be employed.
 図8は、一実施形態による部分研磨装置1000に利用できる研磨ヘッド500および第2コンディショナ850の一例を概略的に示す側面図である。図8に示される実施形態において、研磨部材は研磨ベルト部材502Bを有する。研磨ベルト部材502Bは、支持部材520により支持され、研磨ベルト部材502Bを基板Wfに対して押圧することができる。研磨ベルト部材502Bは、回転機構522により長手方向に移動可能である。研磨ベルト部材502Bは、たとえば市販のCMPパッドのような材質からなる。図8の実施形態において、第2コンディショナ850は、コンディショニング部材852を有する。コンディショニング部材852は、円板形状または角板状形状であり、研磨ベルト部材502Bの研磨面に接触可能に配置される。コンディショニング部材852は移動機構854に連結されている。移動機構854は、コンディショニング部材852を研磨ベルト部材502Bに向かって移動させることができる。図8に示されるように、第2コンディショナ850は、研磨ベルト部材502Bの内側において、コンディショニング部材852に対応する位置にベルト背面支持部材862を備える。図8に示される実施形態において、ベルト背面支持部材862により研磨ベルト部材502Bを支持しながら、コンディショニング部材852を研磨ベルト部材502Bに押圧させてコンディショニングすることができる。 FIG. 8 is a side view schematically illustrating an example of a polishing head 500 and a second conditioner 850 that can be used in the partial polishing apparatus 1000 according to an embodiment. In the embodiment shown in FIG. 8, the abrasive member has an abrasive belt member 502B. The polishing belt member 502B is supported by the support member 520, and can press the polishing belt member 502B against the substrate Wf. The polishing belt member 502B is movable in the longitudinal direction by the rotation mechanism 522. The polishing belt member 502B is made of a material such as a commercially available CMP pad. In the embodiment of FIG. 8, the second conditioner 850 has a conditioning member 852. The conditioning member 852 has a disc shape or a square plate shape, and is disposed so as to be in contact with the polishing surface of the polishing belt member 502B. Conditioning member 852 is coupled to moving mechanism 854. The moving mechanism 854 can move the conditioning member 852 toward the polishing belt member 502B. As shown in FIG. 8, the second conditioner 850 includes a belt back surface support member 862 at a position corresponding to the conditioning member 852 inside the polishing belt member 502B. In the embodiment shown in FIG. 8, while the polishing belt member 502B is supported by the belt back surface support member 862, the conditioning member 852 can be pressed against the polishing belt member 502B for conditioning.
 図9は、図8中の矢印9の方向から見た図である。図9に示されるように、第2コンディショナ850は、揺動機構856を備える。揺動機構856は、移動機構854およびコンディショニング部材852を研磨ベルト部材502Bの幅方向に移動させることができる。移動機構854および揺動機構856は、モータなどから構成することができ、あるいは液圧式または空圧式の移動機構を採用してもよい。 FIG. 9 is a view as seen from the direction of the arrow 9 in FIG. As shown in FIG. 9, the second conditioner 850 includes a swing mechanism 856. The swing mechanism 856 can move the moving mechanism 854 and the conditioning member 852 in the width direction of the polishing belt member 502B. The moving mechanism 854 and the swing mechanism 856 can be configured by a motor or the like, or a hydraulic or pneumatic moving mechanism may be employed.
 一実施形態による部分研磨装置1000は、研磨パッド502のコンディショニング時に発生する研磨部材から発生する屑を回収するための回収装置300を有する。図10は、一実施形態による回収装置300を概略的に示す側面図である。図10に示されるように、回収装置300は、保持アーム600に取り付けられている。図10に示される回収装置300は、吸引部302を備える。吸引部302は、研磨パッド502の基板Wfに接触する面に近接するように配置される。図10の実施形態においては、研磨パッド502は、円板形状または円筒形状の研磨パッド502であり、円板形状または円筒形状の研磨パッド502の側面に近接して吸引部302が配置されている。吸引部302には吸引通路304が連結されており、吸引通路304は図示しない真空源に連結される。吸引部302は、コンディショニング部材852が研磨パッド502に接触する位置よりも、研磨パッド502の運動方向(図10の実施形態においては回転方向)の下流側に配置される。図10の実施形態においては、研磨パッド502は、時計回りに回転し、吸引部302は、コンディショニング部材852が研磨パッド502に接触する位置から下流側に配置されている。図10に示されるように、部分研磨装置1000は、研磨パッド502により基板Wfを研磨しながら、第2コンディショナ850により研磨パッド502をコンディショニングすることができる。コンディショニングにより、研磨パッド502から屑が発生する。図10に示される回収装置300は、コンディショニング時に発生した屑を吸引除去することができる。本回収装置により第2コンディショナ850でのコンディショニング時に発生する研磨パッド屑が基板Wf表面上に到達するのを抑制することが可能であり、基板Wf表面の研磨パッド屑による汚染を抑制できる。 The partial polishing apparatus 1000 according to an embodiment includes a recovery apparatus 300 for recovering debris generated from the polishing member generated during conditioning of the polishing pad 502. FIG. 10 is a side view schematically illustrating the collection device 300 according to an embodiment. As shown in FIG. 10, the collection device 300 is attached to the holding arm 600. A recovery apparatus 300 shown in FIG. 10 includes a suction unit 302. The suction unit 302 is disposed so as to be close to the surface of the polishing pad 502 that contacts the substrate Wf. In the embodiment of FIG. 10, the polishing pad 502 is a disc-shaped or cylindrical polishing pad 502, and the suction part 302 is disposed in the vicinity of the side surface of the disc-shaped or cylindrical polishing pad 502. . A suction passage 304 is connected to the suction portion 302, and the suction passage 304 is connected to a vacuum source (not shown). The suction unit 302 is disposed on the downstream side of the movement direction of the polishing pad 502 (the rotation direction in the embodiment of FIG. 10) from the position where the conditioning member 852 contacts the polishing pad 502. In the embodiment of FIG. 10, the polishing pad 502 rotates clockwise, and the suction portion 302 is disposed on the downstream side from the position where the conditioning member 852 contacts the polishing pad 502. As shown in FIG. 10, the partial polishing apparatus 1000 can condition the polishing pad 502 with the second conditioner 850 while polishing the substrate Wf with the polishing pad 502. Due to the conditioning, debris is generated from the polishing pad 502. The collection device 300 shown in FIG. 10 can suck and remove debris generated during conditioning. With this recovery device, it is possible to suppress the polishing pad debris generated during conditioning by the second conditioner 850 from reaching the surface of the substrate Wf, and the contamination of the surface of the substrate Wf by the polishing pad debris can be suppressed.
 図11は、一実施形態による回収装置300を概略的に示す側面図である。図11に示されるように、回収装置300は、保持アーム600に取り付けられている。図11に示される回収装置300は、ワイパ306(またはスクレイパ)を備える。ワイパ306は、研磨パッド502の基板Wfに接触する面に接触するように配置される。図11の実施形態においては、研磨パッド502は、円板形状または円筒形状の研磨パッド502であり、円板形状または円筒形状の研磨パッド502の側面に接触するようにワイパ306が配置されている。ワイパ306は支持部材308により支持されており、支持部材308は、保持アーム600に接続されている。図11に示されるように、部分研磨装置1000は、研磨パッド502により基板Wfを研磨しながら、第2コンディショナ850により研磨パッド502をコンディショニングすることができる。コンディショニングにより、研磨パッド502から屑が発生する。図11に示される回収装置300は、コンディショニング時に発生した屑をワイパ306により研磨パッド502から除去することができる。なお、図示はしないが、ワイパ306に対して研磨パッド502の回転下流部に図10で示した研磨部材から発生する屑を回収するための回収装置300を更に備えてもよい。 FIG. 11 is a side view schematically showing a collection device 300 according to an embodiment. As shown in FIG. 11, the collection device 300 is attached to the holding arm 600. A recovery apparatus 300 shown in FIG. 11 includes a wiper 306 (or a scraper). The wiper 306 is disposed so as to contact the surface of the polishing pad 502 that contacts the substrate Wf. In the embodiment of FIG. 11, the polishing pad 502 is a disc-shaped or cylindrical polishing pad 502, and the wiper 306 is disposed so as to contact the side surface of the disc-shaped or cylindrical polishing pad 502. . The wiper 306 is supported by a support member 308, and the support member 308 is connected to the holding arm 600. As shown in FIG. 11, the partial polishing apparatus 1000 can condition the polishing pad 502 with the second conditioner 850 while polishing the substrate Wf with the polishing pad 502. Due to the conditioning, debris is generated from the polishing pad 502. The recovery device 300 shown in FIG. 11 can remove the waste generated during conditioning from the polishing pad 502 by the wiper 306. Although not shown, a recovery device 300 may be further provided for recovering waste generated from the polishing member shown in FIG.
 図12は、一実施形態による回収装置300を概略的に示す側面図である。図12に示される回収装置300は、コンディショニング後の研磨パッド502を洗浄するための液体供給機構310と、研磨パッド502を洗浄後の液体を回収するための液体回収機構312と、を備える。液体供給機構310は、たとえば、純水を研磨パッド502に噴きつけるノズルとすることができる。液体供給機構310は、研磨パッド502に噴きつけられた純水を受ける容器とすることができ、かかる容器に液体排出部314を設けることができる。図12に示されるように、部分研磨装置1000は、研磨パッド502により基板Wfを研磨しながら、第2コンディショナ850により研磨パッド502をコンディショニングすることができる。コンディショニングにより、研磨パッド502から屑が発生する。図12に示される回収装置300は、液体を研磨パッド502に噴きつけることで、コンディショニング時に発生した屑を研磨パッド502から除去することができる。 FIG. 12 is a side view schematically showing the collection device 300 according to one embodiment. The recovery apparatus 300 shown in FIG. 12 includes a liquid supply mechanism 310 for cleaning the polishing pad 502 after conditioning, and a liquid recovery mechanism 312 for recovering the liquid after cleaning the polishing pad 502. The liquid supply mechanism 310 can be, for example, a nozzle that sprays pure water onto the polishing pad 502. The liquid supply mechanism 310 can be a container that receives pure water sprayed on the polishing pad 502, and the liquid discharge unit 314 can be provided in the container. As shown in FIG. 12, the partial polishing apparatus 1000 can condition the polishing pad 502 with the second conditioner 850 while polishing the substrate Wf with the polishing pad 502. Due to the conditioning, debris is generated from the polishing pad 502. The recovery apparatus 300 shown in FIG. 12 can remove debris generated during conditioning from the polishing pad 502 by spraying the liquid onto the polishing pad 502.
 図10から図12においては、円板形状または円柱形状の研磨パッド502を備える部分研磨装置1000に関して、回収装置300の説明をしたが、円板形状または円柱形状以外の研磨部材502を備える部分研磨装置1000に同様の回収装置300を設けることができる。例えば、本明細書で開示する任意の研磨パッド502、研磨ベルト部材502B、またはその他の任意の研磨部材に対して回収装置300を適用することができる。 10 to 12, the recovery device 300 has been described with respect to the partial polishing apparatus 1000 including the disk-shaped or columnar polishing pad 502. However, the partial polishing including the polishing member 502 other than the disk-shaped or columnar shape is illustrated. A similar recovery device 300 can be provided in the device 1000. For example, the recovery device 300 can be applied to any polishing pad 502, polishing belt member 502B, or any other polishing member disclosed herein.
 図13Aは、一実施形態による、基板Wfの膜厚や凹凸・高さに関連する情報を処理するための制御回路の例を示す。まずはじめに、部分研磨用制御部は、HMI(Human Machine Interface)で設定された研磨処理レシピとパラメータを結合し、基本的な部分研磨処理レシピを決定する。この時、部分研磨処理レシピとパラメータとはHOSTから部分研磨装置1000にダウンロードされたものを使用しても良い。次にレシピサーバーは基本的な部分研磨処理レシピとプロセスJobの研磨処理情報を結合し、処理する基板Wfごとの基本的な部分研磨処理レシピを生成する。部分研磨レシピサーバーは処理する基板Wfごとの部分研磨処理レシピと部分研磨用データベース内に格納されている基板表面形状データと、さらに類似基板に関する過去の部分研磨後の基板表面形状等のデータや事前に取得した研磨条件の各パラメータに対する研磨速度データとを結合し、基板ごとの部分研磨処理レシピを生成する。この時、部分研磨用データベースに格納されている基板表面形状データは部分研磨装置1000内で測定された該当基板Wfのデータを使用しても良いし、あらかじめHOSTから部分研磨装置1000にダウンロードされたデータを使用しても良い。部分研磨レシピサーバーはその部分研磨処理レシピをレシピサーバー経由、もしくはダイレクトに部分研磨装置1000に送信する。部分研磨装置1000は受け取った部分研磨処理レシピに従い基板Wfを部分研磨する。 FIG. 13A shows an example of a control circuit for processing information related to the film thickness, unevenness, and height of the substrate Wf according to one embodiment. First, the control unit for partial polishing determines a basic partial polishing processing recipe by combining parameters with a polishing processing recipe set by HMI (Human Machine Interface). At this time, the partial polishing process recipe and parameters downloaded from the HOST to the partial polishing apparatus 1000 may be used. Next, the recipe server combines the basic partial polishing processing recipe and the polishing processing information of the process job, and generates a basic partial polishing processing recipe for each substrate Wf to be processed. The partial polishing recipe server performs partial polishing processing recipes for each substrate Wf to be processed, substrate surface shape data stored in the database for partial polishing, and data such as substrate surface shape after past partial polishing related to similar substrates, and data in advance. Are combined with the polishing rate data for each parameter of the polishing conditions acquired in the above, and a partial polishing processing recipe for each substrate is generated. At this time, the substrate surface shape data stored in the partial polishing database may use data of the corresponding substrate Wf measured in the partial polishing apparatus 1000, or may be downloaded in advance from the HOST to the partial polishing apparatus 1000. Data may be used. The partial polishing recipe server transmits the partial polishing processing recipe to the partial polishing apparatus 1000 via the recipe server or directly. The partial polishing apparatus 1000 partially polishes the substrate Wf according to the received partial polishing processing recipe.
 図13Bは、図13Aで示した部分研磨用制御部から基板表面の状態検出部を分割したときの回路図を示す。大量のデータを扱う基板の表面状態検出用制御部を部分研磨用制御部と切り離すことで部分研磨用制御部のデータ処理の負荷が低減し、プロセスJobのクリエイト時間や部分研磨処理レシピの生成に要する処理時間を削減することが期待でき、部分研磨モジュール全体のスループット向上させることができる。  FIG. 13B shows a circuit diagram when the state detection unit on the substrate surface is divided from the partial polishing control unit shown in FIG. 13A. By separating the control unit for detecting the surface state of the substrate handling a large amount of data from the control unit for partial polishing, the data processing load of the control unit for partial polishing is reduced, and the creation time of the process job and the generation of the partial polishing processing recipe are reduced. It can be expected to reduce the processing time required, and the throughput of the entire partial polishing module can be improved. *
 図14は、一実施形態による、部分研磨装置1000を搭載した基板処理システム1100を示す概略図である。図14に示されるように、基板処理システム1100は、部分研磨装置1000、大径研磨装置1200、洗浄装置1300、乾燥装置1400、制御装置900、および搬送機構1500を備える。基板処理システム1100の部分研磨装置1000は、上述した任意の特徴を備える部分研磨装置1000とすることができる。大径研磨装置1200は、研磨対象となる基板Wfよりも大きな面積を備える研磨パッドを用いて基板を研磨する研磨装置である。大径研磨装置1200としては、公知のCMP装置を利用することができる。また、洗浄装置1300、乾燥装置1400、および搬送機構1500についても、任意の公知のものを採用することができる。制御装置900は、上述した部分研磨装置1000だけでなく、基板処理システム1100の全体の動作を制御するものとすることができる。図14に示される実施形態においては、部分研磨装置1000と大径研磨装置1200とは、1つの基板処理システム1100に組み込まれている。そのため、部分研磨装置1000による部分研磨、大径研磨装置1200による基板Wfの全体研磨、および状態検出部による基板Wfの表面状態の検出を組み合わせることで、様々な研磨処理を行うことができる。なお、部分研磨装置1000による部分研磨では、基板Wfの表面全体ではなく一部のみを研磨するものとすることができ、または、部分研磨装置1000において基板Wfの表面全体の研磨処理を行う中で、基板Wfの表面の一部において研磨条件を変更して研磨を行うものとすることができる。 FIG. 14 is a schematic diagram showing a substrate processing system 1100 equipped with a partial polishing apparatus 1000 according to an embodiment. As shown in FIG. 14, the substrate processing system 1100 includes a partial polishing apparatus 1000, a large diameter polishing apparatus 1200, a cleaning apparatus 1300, a drying apparatus 1400, a control apparatus 900, and a transport mechanism 1500. The partial polishing apparatus 1000 of the substrate processing system 1100 can be a partial polishing apparatus 1000 having any of the features described above. The large-diameter polishing apparatus 1200 is a polishing apparatus that polishes a substrate using a polishing pad having a larger area than the substrate Wf to be polished. As the large-diameter polishing apparatus 1200, a known CMP apparatus can be used. In addition, any known device can be adopted as the cleaning device 1300, the drying device 1400, and the transport mechanism 1500. The control device 900 can control not only the partial polishing apparatus 1000 described above but also the overall operation of the substrate processing system 1100. In the embodiment shown in FIG. 14, the partial polishing apparatus 1000 and the large diameter polishing apparatus 1200 are incorporated in one substrate processing system 1100. Therefore, various polishing processes can be performed by combining partial polishing by the partial polishing apparatus 1000, overall polishing of the substrate Wf by the large diameter polishing apparatus 1200, and detection of the surface state of the substrate Wf by the state detection unit. In the partial polishing by the partial polishing apparatus 1000, only a part of the surface of the substrate Wf can be polished, or the entire surface of the substrate Wf is being polished in the partial polishing apparatus 1000. The polishing can be performed by changing the polishing conditions on a part of the surface of the substrate Wf.
 ここで、本基板処理システム1100での部分研磨方法について説明する。まず、初めに研磨対象物である基板Wfの表面の状態を検出する。表面状態は、基板Wf上に形成される膜の膜厚や表面の凹凸に関する情報(位置、サイズ、高さなど)などであり、上述の状態検出部420で検出される。次に、検出された基板Wfの表面状態に応じて研磨レシピを作成する。ここで、研磨レシピは複数の処理ステップから構成されており、各ステップにおけるパラメータとしては、例えば部分研磨装置1000については、処理時間、研磨パッド502の基板Wfやドレスステージ810に配置されたドレッサ820に対する接触圧力もしくは荷重、運動速度、第2コンディショナ850のコンディショニング部材852が、研磨パッド502を押圧する荷重・移動機構854による移動パターンおよび移動速度・コンディショニング時間・コンディショニングの周期、研磨パッド502や基板Wfの回転数、研磨ヘッド500の移動パターン及び移動速度、研磨パッド処理液の選択及び流量、ドレスステージ810の回転数、研磨終点の検出条件、がある。また、部分研磨においては、上述の状態検出部420により取得した基板Wf面内の膜厚や凹凸に関する情報を元に基板Wf面内での研磨ヘッド500の動作を決定する必要がある。例えば基板Wfの面内の各被研磨領域における研磨ヘッド500の滞在時間については、本決定に対するパラメータとしては、例えば所望の膜厚や凹凸状態に相当するターゲット値や上記の研磨条件における研磨速度が挙げられる。ここで研磨速度については、研磨条件によって異なることから、データベースとして制御装置900内に格納され、研磨条件を設定すると自動的に算出されても良い。ここで基礎となる各パラメータに対する研磨速度は事前に取得しておき、データベースとして格納しておいても良い。これらのパラメータと取得した基板Wf面内の膜厚や凹凸に関する情報から基板Wf面内における研磨ヘッド500の滞在時間が算出可能である。また、後述のように、前測定、部分研磨、全体研磨、洗浄のルートは基板Wfの状態や使用する処理液によって異なることから、これらの構成要素の搬送ルートの設定を行っても良い。また、基板Wf面内の膜厚や凹凸データの取得条件の設定も行って良い。また、後述のように処理後のWf状態が許容レベルに達していない場合、再研磨を実施する必要があるが、その場合の処理条件(再研磨の繰り返し回数等)を設定しても良い。その後、作成された研磨レシピに従って、部分研磨および全体研磨を行う。なお、本例および以下で説明する他の例において、基板Wfの洗浄は任意のタイミングで行うことができる。たとえば、部分研磨と全体研磨において使用する処理液が異なり、部分研磨の処理液の全体研磨へのコンタミネーションが無視できない場合においては、これを防止する目的で、部分研磨および全体研磨のそれぞれの研磨処理の後に基板Wfの洗浄を行ってもよい。また、逆に処理液が同一である場合や処理液のコンタミネーションが無視できるような処理液の場合、部分研磨および全体研磨の両方を行った後に基板Wfの洗浄を行ってもよい。 Here, a partial polishing method in the substrate processing system 1100 will be described. First, the state of the surface of the substrate Wf that is an object to be polished is first detected. The surface state is information (position, size, height, etc.) relating to the film thickness of the film formed on the substrate Wf and the surface roughness, and is detected by the state detection unit 420 described above. Next, a polishing recipe is created according to the detected surface state of the substrate Wf. Here, the polishing recipe is composed of a plurality of processing steps. As parameters in each step, for example, for the partial polishing apparatus 1000, the processing time, the dresser 820 arranged on the substrate Wf of the polishing pad 502 and the dress stage 810. Contact pressure or load, movement speed, conditioning pattern 852 of the second conditioner 850 presses the polishing pad 502, movement pattern by the movement mechanism 854, movement speed, conditioning time, conditioning cycle, polishing pad 502 and substrate There are the rotation speed of Wf, the movement pattern and movement speed of the polishing head 500, the selection and flow rate of the polishing pad processing liquid, the rotation speed of the dress stage 810, and the detection condition of the polishing end point. Further, in the partial polishing, it is necessary to determine the operation of the polishing head 500 in the substrate Wf plane based on the information on the film thickness and unevenness in the substrate Wf plane acquired by the state detection unit 420 described above. For example, regarding the staying time of the polishing head 500 in each region to be polished within the surface of the substrate Wf, parameters for this determination include, for example, a target value corresponding to a desired film thickness and uneven state, and a polishing rate under the above polishing conditions. Can be mentioned. Here, since the polishing rate differs depending on the polishing conditions, it may be stored in the control device 900 as a database and automatically calculated when the polishing conditions are set. Here, the polishing rate for each basic parameter may be acquired in advance and stored as a database. The dwell time of the polishing head 500 in the substrate Wf plane can be calculated from these parameters and the acquired information on the film thickness and irregularities in the substrate Wf plane. Further, as will be described later, since the routes for pre-measurement, partial polishing, overall polishing, and cleaning vary depending on the state of the substrate Wf and the processing liquid used, the transfer routes for these components may be set. In addition, the film thickness in the surface of the substrate Wf and the conditions for obtaining the unevenness data may be set. Further, as described later, when the Wf state after processing does not reach an allowable level, it is necessary to perform re-polishing. However, processing conditions (such as the number of re-polishing repetitions) in that case may be set. Thereafter, partial polishing and overall polishing are performed according to the prepared polishing recipe. In this example and other examples described below, the cleaning of the substrate Wf can be performed at an arbitrary timing. For example, if the processing liquid used for partial polishing and total polishing is different, and contamination of the partial polishing processing liquid to the total polishing is not negligible, each of the partial polishing and the total polishing is performed to prevent this. The substrate Wf may be cleaned after the processing. On the contrary, when the processing liquid is the same or when the processing liquid can be ignored, the substrate Wf may be cleaned after performing both partial polishing and overall polishing.
 以上、いくつかの例に基づいて本発明の実施形態について説明してきたが、上記した発明の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明には、その均等物が含まれることはもちろんである。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、特許請求の範囲および明細書に記載された各構成要素の任意の組み合わせ、または、省略が可能である。 The embodiments of the present invention have been described above based on some examples. However, the above-described embodiments of the present invention are for facilitating understanding of the present invention and do not limit the present invention. . The present invention can be changed and improved without departing from the gist thereof, and the present invention naturally includes equivalents thereof. In addition, any combination or omission of each constituent element described in the claims and the specification is possible within a range where at least a part of the above-described problems can be solved or a range where at least a part of the effect is achieved. It is.
  300…回収装置
  302…吸引部
  306…ワイパ
  310…液体供給機構
  312…液体回収機構
  314…液体排出部
  500…研磨ヘッド
  502…研磨パッド
  600…保持アーム
  602…垂直駆動機構
  620…横駆動機構
  800…コンディショニング部
  850…第2コンディショナ
  852…コンディショニング部材
  854…移動機構
  856…揺動機構
  900…制御装置
  1000…部分研磨装置
  1100…基板処理システム
  Wf…基板
 
DESCRIPTION OF SYMBOLS 300 ... Recovery apparatus 302 ... Suction part 306 ... Wiper 310 ... Liquid supply mechanism 312 ... Liquid recovery mechanism 314 ... Liquid discharge part 500 ... Polishing head 502 ... Polishing pad 600 ... Holding arm 602 ... Vertical drive mechanism 620 ... Lateral drive mechanism 800 ... Conditioning unit 850 ... second conditioner 852 ... conditioning member 854 ... moving mechanism 856 ... oscillating mechanism 900 ... control device 1000 ... partial polishing apparatus 1100 ... substrate processing system Wf ... substrate

Claims (14)

  1.  基板を局所的に研磨するための研磨装置であって、
     基板に接触する加工面が基板よりも小さい研磨部材と、
     前記研磨部材をコンディショニングするためのコンディショニング部材と、
     基板の研磨中に前記研磨部材に前記コンディショニング部材を押圧するための第1押圧機構と、
     研磨装置の動作を制御するための制御装置と、を有し、
     前記制御装置は、前記研磨部材で基板を局所的に研磨しているときに、前記第1押圧機構を制御するように構成される、
    研磨装置。
    A polishing apparatus for locally polishing a substrate,
    A polishing member having a processing surface in contact with the substrate smaller than the substrate;
    A conditioning member for conditioning the abrasive member;
    A first pressing mechanism for pressing the conditioning member against the polishing member during polishing of the substrate;
    A control device for controlling the operation of the polishing device,
    The control device is configured to control the first pressing mechanism when the polishing member is locally polishing the substrate.
    Polishing equipment.
  2.  請求項1に記載の研磨装置であって、
     前記研磨部材を基板に押圧させるための押圧機構と
     前記研磨部材に、基板の表面に平行な第1運動方向に運動を与えるための第1駆動機構と、を有する、
    研磨装置。
    The polishing apparatus according to claim 1,
    A pressing mechanism for pressing the polishing member against the substrate; and a first drive mechanism for giving the polishing member movement in a first movement direction parallel to the surface of the substrate.
    Polishing equipment.
  3.  請求項2に記載の研磨装置であって、
     前記第1運動方向に垂直であり且つ基板の表面に平行な第2運動方向に成分を有するように、前記コンディショニング部材に運動を与えるための第2駆動機構を有する、
    研磨装置。
    The polishing apparatus according to claim 2,
    A second drive mechanism for imparting motion to the conditioning member to have a component in a second motion direction that is perpendicular to the first motion direction and parallel to the surface of the substrate;
    Polishing equipment.
  4.  請求項3に記載の研磨装置であって、
     前記第2駆動機構は、前記コンディショニング部材に、直線運動および/または回転運動を与えるように構成される、
    研磨装置。
    The polishing apparatus according to claim 3, wherein
    The second drive mechanism is configured to provide linear and / or rotational motion to the conditioning member;
    Polishing equipment.
  5.  請求項1乃至4のいずれか一項に記載の研磨装置であって、
     前記制御装置は、基板の研磨中に所定の周期でコンディショニングを実行するように前記第1押圧機構を制御するように構成される、
    研磨装置。
    A polishing apparatus according to any one of claims 1 to 4, wherein
    The controller is configured to control the first pressing mechanism to perform conditioning at a predetermined period during substrate polishing.
    Polishing equipment.
  6.  請求項1乃至5のいずれか一項に記載の研磨装置であって、
     前記研磨部材および前記コンディショニング部材は、保持アームに保持されている、
    研磨装置。
    A polishing apparatus according to any one of claims 1 to 5,
    The polishing member and the conditioning member are held by a holding arm,
    Polishing equipment.
  7.  請求項1乃至6のいずれか一項に記載の研磨装置であって、
     コンディショニング時に研磨部材から発生する屑を回収するための回収装置を有する、
    研磨装置。
    The polishing apparatus according to any one of claims 1 to 6,
    Having a recovery device for recovering debris generated from the polishing member during conditioning;
    Polishing equipment.
  8.  請求項7に記載の研磨装置であって、
     前記回収装置は、コンディショニング時に発生する研磨部材から発生する屑を吸引除去する吸引部を有する、
    研磨装置。
    The polishing apparatus according to claim 7, wherein
    The recovery device has a suction part for sucking and removing debris generated from the polishing member generated during conditioning,
    Polishing equipment.
  9.  請求項7に記載の研磨装置であって、
     前記回収装置は、コンディショニング時に発生する研磨部材から発生する屑を収集するためのスクレイパまたはワイパを有する、
    研磨装置。
    The polishing apparatus according to claim 7, wherein
    The recovery device has a scraper or a wiper for collecting debris generated from a polishing member generated during conditioning.
    Polishing equipment.
  10.  請求項7乃至9のいずれか一項に記載の研磨装置であって、
     前記回収装置は、コンディショニング後の前記研磨部材を洗浄するための液体供給機構と、
     前記研磨部材の洗浄後の液体を回収する液体回収機構と、を有する、
    研磨装置。
    A polishing apparatus according to any one of claims 7 to 9,
    The recovery device includes a liquid supply mechanism for cleaning the polishing member after conditioning;
    A liquid recovery mechanism for recovering the liquid after cleaning the polishing member,
    Polishing equipment.
  11.  請求項1乃至10のいずれか一項に記載の研磨装置であって、
     前記研磨部材は、
      (1)円板形状または円筒形状であり、前記円板形状または前記円筒形状の中心軸は基板の表面に平行であり、
      (2)円板形状であり、前記円板形状の中心軸が基板の表面に垂直な方向から傾斜しており、
      (3)円錐形状または切頭円錐形状であり、前記円錐形状または前記切頭円錐形状の中心軸4は基板の表面に平行であり、
      (4)球形状または球形状の一部を備える形状である、および
      (5)ベルト部材を有する、
     のいずれか1つに構成される、
    研磨装置。
    A polishing apparatus according to any one of claims 1 to 10,
    The polishing member is
    (1) It is a disc shape or a cylindrical shape, and the central axis of the disc shape or the cylindrical shape is parallel to the surface of the substrate,
    (2) It has a disk shape, and the central axis of the disk shape is inclined from a direction perpendicular to the surface of the substrate,
    (3) A conical shape or a truncated conical shape, and the central axis 4 of the conical shape or the truncated conical shape is parallel to the surface of the substrate,
    (4) A shape having a spherical shape or a part of a spherical shape, and (5) having a belt member,
    Configured as one of
    Polishing equipment.
  12.  基板の研磨方法であって、
     基板に接触する加工面が基板よりも小さい研磨部材を基板に押圧させるステップと、
     前記研磨部材を基板に押圧させながら、前記研磨部材と前記基板とを相対的に運動させることで基板を研磨するステップと、
     基板を研磨している最中に、コンディショニング部材を前記研磨部材に接触させて前記研磨部材をコンディショニングするステップと、を有する、
    研磨方法。
    A method for polishing a substrate,
    Pressing a polishing member having a processing surface in contact with the substrate smaller than the substrate against the substrate;
    Polishing the substrate by relatively moving the polishing member and the substrate while pressing the polishing member against the substrate;
    Conditioning the polishing member by bringing a conditioning member into contact with the polishing member while the substrate is being polished.
    Polishing method.
  13.  請求項12に記載の研磨方法であって、
     前記コンディショニング部材に直線運動および/または回転運動を与えるステップを有する、
    研磨方法。
    The polishing method according to claim 12, wherein
    Providing the conditioning member with a linear motion and / or a rotational motion;
    Polishing method.
  14.  請求項12または13に記載の研磨方法であって、
     前記研磨部材のコンディショニング時に研磨部材から発生する屑を回収するステップを有する、
    研磨方法。
     
     
     
    The polishing method according to claim 12 or 13,
    Collecting the waste generated from the polishing member during conditioning of the polishing member;
    Polishing method.


PCT/JP2018/000233 2017-03-22 2018-01-10 Substrate polishing device and substrate polishing method WO2018173421A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG11201908381R SG11201908381RA (en) 2017-03-22 2018-01-10 Substrate polishing device and substrate polishing method
KR1020197028236A KR102482181B1 (en) 2017-03-22 2018-01-10 Substrate polishing device and polishing method
CN201880018928.9A CN110461542A (en) 2017-03-22 2018-01-10 The grinding device and grinding method of substrate
US16/495,010 US20200269383A1 (en) 2017-03-22 2018-01-10 Substrate polishing device and substrate polishing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017055976A JP6884015B2 (en) 2017-03-22 2017-03-22 Substrate polishing equipment and polishing method
JP2017-055976 2017-03-22

Publications (1)

Publication Number Publication Date
WO2018173421A1 true WO2018173421A1 (en) 2018-09-27

Family

ID=63584243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000233 WO2018173421A1 (en) 2017-03-22 2018-01-10 Substrate polishing device and substrate polishing method

Country Status (7)

Country Link
US (1) US20200269383A1 (en)
JP (1) JP6884015B2 (en)
KR (1) KR102482181B1 (en)
CN (1) CN110461542A (en)
SG (1) SG11201908381RA (en)
TW (1) TWI763765B (en)
WO (1) WO2018173421A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7170748B2 (en) * 2018-12-19 2022-11-14 東京エレクトロン株式会社 SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
JP7517832B2 (en) * 2020-01-17 2024-07-17 株式会社荏原製作所 Polishing head system and polishing apparatus
JP7387471B2 (en) * 2020-02-05 2023-11-28 株式会社荏原製作所 Substrate processing equipment and substrate processing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63232954A (en) * 1987-03-19 1988-09-28 Canon Inc Manufacture of polishing tool
JPH11179648A (en) * 1997-12-19 1999-07-06 Nec Corp Semiconductor substrate polishing device
JPH11320384A (en) * 1998-05-13 1999-11-24 Sony Corp Chemical machine polishing method and chemical machine polishing device using same
JP2010076080A (en) * 2008-09-29 2010-04-08 Nikon Corp Grinding apparatus and grinding method
JP2011177842A (en) * 2010-03-02 2011-09-15 Ebara Corp Polishing apparatus and method
WO2015050185A1 (en) * 2013-10-04 2015-04-09 株式会社 フジミインコーポレーテッド Polishing device, processing method of polishing member, modification method of polishing member, shape processing cutting tool, and surface modification tool

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4974368A (en) * 1987-03-19 1990-12-04 Canon Kabushiki Kaisha Polishing apparatus
US5938504A (en) * 1993-11-16 1999-08-17 Applied Materials, Inc. Substrate polishing apparatus
US6478977B1 (en) * 1995-09-13 2002-11-12 Hitachi, Ltd. Polishing method and apparatus
US6191038B1 (en) * 1997-09-02 2001-02-20 Matsushita Electronics Corporation Apparatus and method for chemical/mechanical polishing
US6135868A (en) * 1998-02-11 2000-10-24 Applied Materials, Inc. Groove cleaning device for chemical-mechanical polishing
JP2001054864A (en) 1999-08-11 2001-02-27 Ishikawajima Harima Heavy Ind Co Ltd Grinding method and grinding wheel using it
US6227956B1 (en) * 1999-10-28 2001-05-08 Strasbaugh Pad quick release device for chemical mechanical polishing
JP2001170856A (en) * 1999-12-14 2001-06-26 Kawasaki Heavy Ind Ltd Curved surface finishing device
JP2002018662A (en) * 2000-06-30 2002-01-22 Toshiba Mach Co Ltd Polishing tool
JP3762248B2 (en) 2001-04-24 2006-04-05 キヤノン株式会社 Die processing method for diffractive optical element
US6561880B1 (en) * 2002-01-29 2003-05-13 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus and method for cleaning the polishing pad of a linear polisher
JP2009246240A (en) * 2008-03-31 2009-10-22 Tokyo Seimitsu Co Ltd Grinding method for grinding back-surface of semiconductor wafer and grinding apparatus for grinding back-surface of semiconductor wafer used in same
US8915768B2 (en) * 2008-07-31 2014-12-23 Mitsubishi Heavy Industries, Ltd. Method of phasing threaded grinding stone, as well as device therefor
JP5390807B2 (en) * 2008-08-21 2014-01-15 株式会社荏原製作所 Polishing method and apparatus
JP5589427B2 (en) 2010-02-19 2014-09-17 株式会社ジェイテクト Cup type dresser and truing dressing method
US10065288B2 (en) 2012-02-14 2018-09-04 Taiwan Semiconductor Manufacturing Co., Ltd. Chemical mechanical polishing (CMP) platform for local profile control
US10160092B2 (en) * 2013-03-14 2018-12-25 Cabot Microelectronics Corporation Polishing pad having polishing surface with continuous protrusions having tapered sidewalls
CN111584354B (en) * 2014-04-18 2021-09-03 株式会社荏原制作所 Etching method
JP2015205359A (en) * 2014-04-18 2015-11-19 株式会社荏原製作所 Substrate treatment device
JP6307428B2 (en) * 2014-12-26 2018-04-04 株式会社荏原製作所 Polishing apparatus and control method thereof
CN205363593U (en) * 2016-02-22 2016-07-06 中芯国际集成电路制造(北京)有限公司 Polishing pad adjuster
KR102363829B1 (en) * 2016-03-24 2022-02-16 어플라이드 머티어리얼스, 인코포레이티드 Organized compact pads for chemical mechanical polishing
JP2018134710A (en) * 2017-02-22 2018-08-30 株式会社荏原製作所 Polishing device and polishing method of substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63232954A (en) * 1987-03-19 1988-09-28 Canon Inc Manufacture of polishing tool
JPH11179648A (en) * 1997-12-19 1999-07-06 Nec Corp Semiconductor substrate polishing device
JPH11320384A (en) * 1998-05-13 1999-11-24 Sony Corp Chemical machine polishing method and chemical machine polishing device using same
JP2010076080A (en) * 2008-09-29 2010-04-08 Nikon Corp Grinding apparatus and grinding method
JP2011177842A (en) * 2010-03-02 2011-09-15 Ebara Corp Polishing apparatus and method
WO2015050185A1 (en) * 2013-10-04 2015-04-09 株式会社 フジミインコーポレーテッド Polishing device, processing method of polishing member, modification method of polishing member, shape processing cutting tool, and surface modification tool

Also Published As

Publication number Publication date
TWI763765B (en) 2022-05-11
SG11201908381RA (en) 2019-10-30
TW201834786A (en) 2018-10-01
CN110461542A (en) 2019-11-15
KR20190131501A (en) 2019-11-26
KR102482181B1 (en) 2022-12-29
JP2018158399A (en) 2018-10-11
JP6884015B2 (en) 2021-06-09
US20200269383A1 (en) 2020-08-27

Similar Documents

Publication Publication Date Title
US20180236630A1 (en) Substrate polisher and polishing method
JP2018134710A5 (en)
KR102688405B1 (en) Monitoring of consumable parts in chemical mechanical polishers
TWI707395B (en) Method for polishing a substrate, polishing device, program for controlling the operation of the polishing device, computer readable recording medium, and polishing module
JP5964262B2 (en) Method for adjusting profile of polishing member used in polishing apparatus, and polishing apparatus
WO2018173421A1 (en) Substrate polishing device and substrate polishing method
US11396082B2 (en) Substrate holding device and substrate processing apparatus including the same
CN109382707B (en) Dressing device and dressing method for substrate back grinding member
TWI821480B (en) Substrate processing apparatus, and method for specifying area to be partially polished by substrate processing apparatus
JP6869842B2 (en) Substrate processing equipment and methods for detecting notches formed in the substrate
US7699972B2 (en) Method and apparatus for evaluating polishing pad conditioning
JP5257752B2 (en) Polishing pad dressing method
JP5218892B2 (en) Consumable evaluation method
JP2013144359A (en) Method of dressing polishing pad
JP2021126739A (en) Substrate processing method and substrate processing device
KR20230127998A (en) Substrate processing apparatus and substrate processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197028236

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18771490

Country of ref document: EP

Kind code of ref document: A1