WO2018173129A1 - 制御・監視信号伝送システム - Google Patents

制御・監視信号伝送システム Download PDF

Info

Publication number
WO2018173129A1
WO2018173129A1 PCT/JP2017/011320 JP2017011320W WO2018173129A1 WO 2018173129 A1 WO2018173129 A1 WO 2018173129A1 JP 2017011320 W JP2017011320 W JP 2017011320W WO 2018173129 A1 WO2018173129 A1 WO 2018173129A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
data
transmission
power supply
supply voltage
Prior art date
Application number
PCT/JP2017/011320
Other languages
English (en)
French (fr)
Inventor
井谷一夫
Original Assignee
株式会社エニイワイヤ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エニイワイヤ filed Critical 株式会社エニイワイヤ
Priority to PCT/JP2017/011320 priority Critical patent/WO2018173129A1/ja
Priority to JP2019506589A priority patent/JP6637635B2/ja
Publication of WO2018173129A1 publication Critical patent/WO2018173129A1/ja

Links

Images

Definitions

  • the present invention reduces the signal lines between a master station provided on the control side and a plurality of slave stations provided on the controlled side, connects them with a common transmission line, and synchronizes them with a transmission clock.
  • the present invention relates to a control / monitor signal transmission system that transmits data by a transmission synchronization method.
  • wiring saving which reduces the number of wires, is widely implemented.
  • a parallel signal and a serial signal are converted instead of a parallel connection in which each of a plurality of devices provided on the controlled side is directly connected to a control unit provided on the control side.
  • a transmission synchronization method such as synchronizing with a transmission clock is known as a method for transmitting and receiving data using a serial signal via a common transmission line.
  • data is transmitted by superimposing a power supply on a transmission signal.
  • Japanese Patent Laid-Open No. 2002-16621 discloses a serial pulsed voltage signal in which the second half of one cycle of a clock is a power supply voltage and the voltage level of the first half is different from the power supply voltage for each cycle of the clock.
  • a control / monitor signal transmission system that superimposes a signal having a frequency higher than that of a clock (hereinafter referred to as a frequency signal) has been proposed.
  • the transmission synchronization method there is a case where 1-bit display by voltage level (logical data “1” and “0” display by high and low with respect to a predetermined level) may be employed.
  • the power supply voltage area in the transmission signal (hereinafter referred to as the power supply voltage area) serves as the power supply for the slave station, it is necessary to maintain a constant voltage, and 1-bit display based on the voltage level is performed. I can't. Therefore, when data is transmitted using the power supply voltage area, 1-bit display is performed depending on the presence or absence of a current signal superimposed thereon.
  • the frequency of the frequency signal becomes a high frequency of about 1 MHz
  • the amplitude of the current change may decrease due to the inductance of the transmission line.
  • the frequency signal may become unstable in amplitude due to a transient phenomenon. For this reason, the presence or absence of a change in the current value due to the frequency signal becomes unknown, and it may not be possible to detect that the current signal is superimposed.
  • branch line when another transmission line (branch line) is branched from the transmission line (main line) to which the slave station that transmits data to the master station is connected, the branch line is used when there is no current change.
  • the charge accumulated in the line becomes a current source other than the master station for the slave station connected to the main line for a very short time when the current changes. For this reason, when the current change cycle is short, the current value detected by the master station may decrease, and it may not be possible to detect that the current signal is superimposed even though the current signal is superimposed. .
  • an object of the present invention is to provide a control / monitoring signal transmission system that can enhance the reliability of data transmission using a power supply voltage area in a transmission signal having a serial pulse shape.
  • a control / monitoring signal transmission system includes a master station that exchanges data with a control unit, and a plurality of slave stations that exchange data with the master station using a transmission synchronization method via a common transmission line. .
  • the slave station superimposes a single current signal maintained at a predetermined level for a predetermined period on a power supply voltage area in a transmission signal configured by a series of voltage pulse signals of a plurality of power supply voltage levels. Determines the presence / absence of the current signal with reference to the current value in the power supply voltage area in the non-address area not assigned for data transmission / reception in the transmission signal. The reference value is updated at every transmission timing that becomes the non-address area.
  • a single current signal that maintains a predetermined level for a predetermined period of time means a signal in which a current continuously flows, that is, a direct current signal, and the width of the power supply voltage area.
  • a frequency signal in which a state in which current flows (ON state) and a state in which no current flows (OFF state) is repeated in a shorter period is not included.
  • the current only needs to flow continuously, and may vary within an allowable range with respect to a predetermined level. Further, the period during which the current flows may be shorter than the width of the power supply voltage area.
  • the superposition of the current signal may be completed at a timing when a predetermined period is left before the timing when the power supply voltage area ends.
  • the determination may be based on an integrated value of the current value of the current signal.
  • a transmission line branch or the like is installed in order to use the current value in the power supply voltage area of the non-address area that is not allocated for data transmission / reception in the transmission signal as a reference value in the determination of the presence / absence of the current signal. Even when the current value changes depending on the state, the presence or absence of a current signal can be accurately determined. In addition, since the reference value is updated every transmission timing in which there is no address area, it is possible to accurately determine the presence or absence of a current signal even in an environment where the current value changes frequently. In addition, since it is possible to make a determination based on the current value, it is not necessary to use a frequency signal for changing the current value. Therefore, the reliability of data transmission using the power supply voltage area in the transmission signal having a serial pulse shape can be improved.
  • the power supply voltage is utilized by utilizing the influence of the transient state in which the current value fluctuates when the current signal changes.
  • the potential in a very narrow area can be changed.
  • a predetermined time is left from the change in potential at this time until the end of the power supply voltage area, it can be distinguished from a transient phenomenon caused by a change in the power supply voltage area (falling in this embodiment). .
  • the presence or absence of potential change due to the influence of the transient state it is possible to confirm whether or not the current signal is superimposed from the waveform of the transmission signal when the system malfunctions. That is, the reliability of data transmission including maintenance can be further improved.
  • FIG. 1 shows one cycle of a transmission signal in the control / monitoring signal transmission system according to the present invention, where (a) is a time chart diagram in which a current signal is superimposed over the entire period of the power supply voltage area, and (b) is a superimposed current signal. It is a time chart figure of the state which received the influence of the transient phenomenon when it was complete
  • This control / monitor signal transmission system is for centrally controlling a large number of apparatus devices arranged in a facility such as a factory in a control unit.
  • the master station 2 connected to the control unit 1 and the common data signal lines DP and DN (hereinafter referred to as transmission lines) and the controlled station are disposed in the facility and connected to the transmission lines.
  • each slave station is shown one by one, but there is no limitation on the type and number of slave stations connected to the transmission line.
  • the input unit 7 to which the input slave station 4 is connected, the output unit 8 to which the output slave station 5 is connected, and the input / output unit 9 to which the input / output slave station 6 is connected are arranged in the facility to be controlled. Device.
  • Examples of the input unit 7 include, but are not limited to, a reed switch, a micro switch, a push button switch, a photoelectric switch, and other various sensors.
  • Examples of the output unit 8 include, but are not limited to, actuators, (stepping) motors, solenoids, solenoid valves, relays, thyristors, and lamps.
  • the input / output unit 9 is a device having both functions of the input unit 7 and the output unit 8.
  • a device such as a temperature controller, a timer, a counter, or the like that has both a function of transmitting information to the master station 2 and a function of performing an output operation based on data transmitted from the master station 2 can be cited. it can.
  • the input unit 7 may be an input unit integrated slave station 70 integrated with the input slave station 4.
  • the output unit 8 may be an output unit integrated slave station 80 integrated with the output slave station 5.
  • the control unit 1 includes a management judgment unit 11 having an arithmetic processing function and an input / output unit 12.
  • the management judging means 11 receives data from the master station 2 via the input / output unit 12 and performs necessary arithmetic processing based on a program stored therein.
  • the master station 2 includes an output data unit 21, a management data unit 22, a timing generation unit 23, a master station output unit 24, a master station input unit 25, and an input data unit 26. Then, the control data connected to the transmission line is superimposed on the transmission line as a series of pulse signals, and the monitoring data extracted from the monitoring signal superimposed on the transmission line from the input slave station 4 and the input / output slave station 6 Is sent to the input / output unit 12 of the control unit 1.
  • the output data unit 21 delivers the data received from the control unit 1 to the master station output unit 24 as serial data.
  • the management data unit 22 includes storage means 29 having a nonvolatile function for storing the slave station information table. Then, based on the data received from the control unit 1 and the slave station information table, the data necessary for instructing the slave station in the management control data area described later is transferred to the master station output unit 24 as serial data.
  • the slave station information table includes management control address data for designating the input slave station 4, the output slave station 5 or the input / output slave station 6 that outputs the slave station side information not obtained as monitoring data to the transmission line. It is out.
  • data obtained by adding a type identifier to the head address number that is the address data of the input slave station 4, the output slave station 5, and the input / output slave station 6 is used as the management control address data.
  • the timing generation unit 23 includes an oscillation circuit (OSC) 31 and a timing generation unit 32.
  • the timing generation unit 32 generates a timing clock of the system based on the oscillation circuit (OSC) 31, and generates a master station output unit 24, Delivered to the station input unit 25.
  • OSC oscillation circuit
  • the master station output unit 24 includes control data generation means 33 and a line driver 34. Based on the data received from the output data unit 21 and the timing clock received from the timing generation unit 23, the control data generation unit 33 superimposes the transmission signal as a series of pulse signals on the transmission line via the line driver 34.
  • the transmission procedure is one frame cycle between the end signal END of the transmission signal and the next end signal END, followed by the control / monitoring data area and the management data area. It is composed of a series.
  • the pulse signal constituting the transmission signal is composed of a power supply voltage area having a power supply voltage level higher than the threshold value Vst and a low potential area having a potential level lower than the threshold value Vst.
  • the influence of the transient phenomenon is omitted.
  • the power supply voltage area corresponds to a transmission clock signal, and is + 24V in this embodiment.
  • the power supply voltage level is not limited and can be determined as appropriate according to the use environment and use state. It may be a negative power supply.
  • the power supply voltage area is the second half of one cycle and the low potential area is the first half of one cycle.
  • the order is not limited, and the order may be reversed. The same applies when the power supply voltage level is a negative power supply.
  • the low potential area in this embodiment is a higher potential area than the power supply voltage area in the case of a negative power supply.
  • the width of the low potential area represents the control signal data.
  • the width of the low potential area constitutes a control data area as control data, and the control data area corresponds to the upper stage of the control / monitor data area in FIG.
  • the pulse width (3/4) t0 of the pulse signal constituting the transmission signal represents the logical data “0”, and the pulse width (1 / 4) t0 represents logical data “1”.
  • the length is not limited and may be determined appropriately.
  • a current signal is superimposed on the power supply voltage area, and the data of the monitoring signal is represented by the presence or absence of this current signal.
  • the current superimposed on the power supply voltage area constitutes a monitoring data area as monitoring data, and the monitoring data area corresponds to the lower part of the control / monitoring data area in FIG.
  • the end signal END is longer than the time width of the pulse signal and has a potential level in the low potential area. Note that the length of the end signal END can be appropriately determined in consideration of usage conditions and the like. Further, after the end signal END, a power supply voltage area (hereinafter referred to as “no address area”) corresponding to the no address area of the present invention, which is not included in the control / monitor data area, is provided.
  • no address area a power supply voltage area corresponding to the no address area of the present invention, which is not included in the control / monitor data area
  • control / monitor data area is composed of a control data area (upper part of the control / monitor data area in FIG. 4) and a monitor data area (lower part of the control / monitor data area in FIG. 4). Yes.
  • the control data area is composed of output data
  • the monitoring data area is composed of input data.
  • a management data area is provided as shown in FIG.
  • the upper part is an area where data is output from the master station 2 (hereinafter referred to as a management control data area), and the lower part is an area where data is input to the master station 2 (hereinafter referred to as a management monitoring data area). )).
  • the first management control data ISTo that instructs the input slave station 4, the output slave station 5, and the input / output slave station 6 to request information and the slave station address are designated.
  • Two management control data IDXo are superimposed from the master station 2.
  • the second management monitoring data IDXi are superimposed.
  • the master station input unit 25 includes monitoring signal detection means 35 and monitoring data extraction means 36.
  • the monitoring signal detector 35 detects a monitoring signal superimposed on the transmission line from the input slave station 4, the output slave station 5, or the input / output slave station 6.
  • the monitoring signal detection means 35 uses the current value in the power supply voltage area in the non-address area appearing immediately after the end signal END as a reference value, and the difference between the obtained current value in the power supply voltage area of the slave station and the reference value is a predetermined value. When it becomes larger than the threshold value, a monitoring signal superimposed on the transmission line is detected from the input slave station 4, the output slave station 5, or the input / output slave station 6.
  • the reference value is set by the current value in the power supply voltage area obtained in the non-address area, stored in the monitoring signal detection means 35, and held for one frame period of the transmission signal. Then, it is updated every time the transmission timing becomes the non-address area. Therefore, it is possible to accurately detect the monitoring signal even in a situation where the current value fluctuates due to changes in the usage environment.
  • the detection of the monitoring signal (corresponding to the determination of the presence or absence of the current signal of the present invention) is performed by directly comparing the current value obtained in the power supply voltage area with the reference value.
  • an integrated current value may be used.
  • the present invention can also be applied to a case where a conventional type slave station that transmits a frequency signal coexists.
  • the monitoring data extraction unit 36 delivers the corresponding data value to the input data unit 26 based on the detection result of the monitoring signal in the monitoring signal detection unit 35.
  • the logical data “1” is delivered to the input data unit 26 when the monitoring signal is detected, and the logical data “0” is delivered to the input data unit 26 when the monitoring signal is not detected.
  • the input data unit 26 converts the serial input data received from the monitoring data extracting means 36 into parallel data, and sends it to the input / output unit 12 of the control unit 1 as monitoring data and management monitoring data.
  • the input slave station 4 includes a transmission receiving means 41, a management control data extracting means 42, an address extracting means 43, an address setting means 44, a management monitoring data transmitting means 45, an input means 46, and a monitoring data transmitting means.
  • a slave station input unit 40 having 47 is provided.
  • a slave station line receiver 48 and a slave station line driver 49 are provided between the slave station input unit 40 and the transmission line.
  • the input slave station 4 of this embodiment includes an MCU that is a microcomputer control unit as an internal circuit, and this MCU functions as the slave station input unit 40.
  • the transmission receiving means 41 receives the transmission signal transmitted to the transmission line via the slave station line receiver 48 and delivers it to the management control data extracting means 42, the address extracting means 43 and the management monitoring data transmitting means 45.
  • the management control data extracting means 42 transmits the management control signal data (management control data) for the address that matches the management control address obtained by adding the identifier of the own station type to the own station address set by the address setting means 44. Is extracted from the management data area of the pulse signal that constitutes. The extracted management control data is delivered to a processing means (not shown) that executes processing based on the data.
  • the pulse signal constituting the transmission signal is counted starting from the timing when the non-address area ends (falling in this embodiment).
  • the timing at which this count value matches the own station address data set by the address setting means 44 is the timing at which the data area assigned to the own station of the transmission signal starts (hereinafter referred to as “own station area start timing”). ).
  • the address extracting means 43 that has obtained the local station area start timing is predetermined from the local station area start timing (in this embodiment, the falling edge at which the power supply voltage area immediately before the local station area ends, which is the local station area start timing).
  • the monitoring data transmission means 45 is enabled for a period including the power supply voltage area from the start of the power supply voltage area.
  • the power supply voltage area is changed each time the power supply voltage area appears until the data area assigned to the local station ends.
  • the monitoring data transmission means 45 is validated during the period of inclusion.
  • the management monitoring data transmission means 45 After receiving the end signal END, the management monitoring data transmission means 45 counts the pulse signal constituting the transmission signal starting from the timing when the non-address area ends (falling in this embodiment), and the management data area Get the timing. Then, a management monitoring signal is output to the transmission line via the slave station line driver 49.
  • the input unit 46 delivers data based on the input from the input unit 7 to the monitoring data transmission unit 47.
  • the monitoring data transmission means 47 outputs the data delivered from the input means 46 as a monitoring signal to the transmission line via the slave station line driver 49 when it is validated by the address extraction means 43.
  • the monitoring signal is superimposed on the monitoring data area of the transmission procedure.
  • the slave station line driver 49 superimposes the current signal on the transmission signal as a monitoring signal when the data value delivered from the input means 46 corresponds to the logical data “1”. Since the monitoring data transmission unit 47 is enabled in a period including the power supply voltage area of the data area allocated to the own station, when the data corresponding to the logical data “1” is delivered from the monitoring data transmission unit 47 By superimposing the current signal only, the current signal indicating logical data “1” is superimposed on the power supply voltage area.
  • the timing for starting the superimposition of the current signal in the power supply voltage area is before the start timing of the power supply voltage area (rising in this embodiment).
  • the waveform has a small influence.
  • the current signal is superimposed over the entire period of the power supply voltage area, but the timing when the power supply voltage area ends (falling in this embodiment).
  • the superimposition of the current signal may be terminated at a timing when a predetermined period is left until the end.
  • FIG. 1B since the potential of the power supply voltage area changes from the standard potential in a very narrow range, the presence or absence of this change is used to transmit the transmission signal when the system malfunctions. From this waveform, it can be confirmed whether or not the current signal is superimposed. Since a predetermined time is left from the change in the potential at this time until the end of the power supply voltage area (falling in this embodiment), the change is caused by the change in the power supply voltage area (falling in this embodiment). It can be distinguished from transient phenomena.
  • the output slave station 5 includes a transmission receiving means 41, management control data extracting means 42, address extracting means 43, address setting means 44, management monitoring data transmitting means 45, control data extracting means 51, and output means.
  • a slave station output unit 50 having 52 is provided.
  • the output slave station 5 also includes an MCU which is a microcomputer control unit as an internal circuit, and this MCU functions as the slave station output unit 50. Similar to the MCU of the input slave station 4, calculations and storages necessary for processing of the output slave station 5 are executed using the CPU, RAM, and ROM provided in this MCU.
  • the address extracting means 43 of the output slave station 5 After receiving the end signal END, the address extracting means 43 of the output slave station 5 counts the pulse signal constituting the transmission signal starting from the timing when the non-address area ends (falling in this embodiment), A timing signal for extracting control data is delivered to the control data extracting unit 51 at a timing when the count value matches the own station address data set by the own station address setting unit 44.
  • the control data extraction unit 51 transmits the control data value transmitted to the local station address set in the local station address setting unit 44 from the timing signal delivered from the address extraction unit 43 and the transmission signal delivered from the transmission reception unit 41. Is extracted and handed over to the output means 52.
  • the output unit 52 outputs information based on the control data delivered from the address extracting unit 43 to the output unit 8 to operate or stop the output unit 8.
  • the input / output slave station 6 includes an MCU which is a microcomputer control unit as an internal circuit, and this MCU functions as a slave station input / output unit. ing. Similar to the MCU of the input slave station 4 and the MCU of the output slave station 5, operations and storages necessary for the processing of the input / output slave station 6 are executed using the CPU, RAM, and ROM provided in this MCU. Has become.
  • the slave station input / output unit 60 includes both the slave station input unit 40 and the slave station output unit 50. These components are substantially the same as the slave station input unit 40 and the slave station output unit 50. The illustration and the explanation thereof are omitted.

Landscapes

  • Selective Calling Equipment (AREA)
  • Dc Digital Transmission (AREA)

Abstract

本発明にかかる制御・監視信号伝送システムは、制御部とデータの授受を行う親局と、共通の伝送線を介して伝送同期方式により前記親局とデータの授受を行う子局の複数を備える。前記子局は、複数の電源電圧レベルの電圧パルス信号が連なって構成された伝送信号における電源電圧エリアに、所定期間、所定のレベルが維持される単一の電流信号を重畳し、前記親局は、前記伝送信号においてデータの授受のために割り当てられていない無アドレス領域の前記電源電圧エリアの電流値を基準値とし、前記電流信号の有無を判定する。前記基準値は、前記無アドレス領域となる伝送タイミングの都度、更新される。

Description

制御・監視信号伝送システム
 本発明は、制御側に設けられた親局と被制御側に設けられた複数の子局との間の信号線を省配線化し、共通の伝送線で接続し、伝送クロックで同期させるなどの伝送同期方式によりデータの伝送を行う制御・監視信号伝送システムに関する。
 施設内に配置された多数の装置を集中制御するシステムにおいて、配線の数を減らす、所謂省配線化が広く実施されている。そして、その省配線化の一般的な手法として、被制御側に設けられた複数の機器の各々を制御側に設けられた制御部に直接繋ぐパラレル接続に代えて、パラレル信号とシリアル信号の変換機能を備えた親局と複数の子局を、制御部と複数の装置にそれぞれ接続し、親局と複数の子局との間で共通の伝送線を介してシリアル信号によりデータ授受を行う方式が広く採用されている。
 また、共通の伝送線を介してシリアル信号によりデータ授受を行う方式として、伝送クロックで同期させるなどの伝送同期方式が知られているが、その伝送同期方式において、伝送信号に電源を重畳しデータ授受と電力供給を同時に行う手法が提案されている。
 例えば、特開2002-16621号公報には、クロックの1周期の後半が電源電圧とされ前半の電圧レベルが電源電圧と異なるものとされた直列のパルス状電圧信号に、クロックの1周期毎に、クロックより高い周波数の信号(以下、周波数信号という)を重畳する制御・監視信号伝送システムが提案されている。
特開2002-16621号公報
 伝送同期方式では、電圧レベルによる1ビット表示(所定のレベルに対する高低による論理データ“1”および“0”の表示)が採用される場合もある。しかしながら、伝送信号において電源電圧とされる領域(以下、電源電圧エリアとする)は、子局の電源となることから、一定の電圧を維持する必要があり、電圧レベルによる1ビット表示を行うことができない。そのため、電源電圧エリアを利用してデータの伝送を行う場合、そこに重畳される電流信号の有無による1ビット表示が行われている。
 ただし、電流値は、子局が接続される個数により変化するため、電流信号の有無を判断するための基準値の設定が難しい。
 そこで、電流値と所定の判断基準値との比較による判断手法に代えて、電流値の変化の有無により電流信号の重畳の有無を判断する手法が提案されている。すなわち、電流値を周期的に変化させる周波数信号を用いる手法である。
 ところが、周波数信号は、周波数が1MHz程度の高周波になると、伝送線のインダクタンスにより、電流変化の振幅が減少することがあった。更に、周波数信号は、過渡現象により振幅が不安定なものになることがあった。そのため、周波数信号による電流値の変化の有無が不明となり、電流信号が重畳されたことを検出できない場合があった。
 また、親局とデータの伝送を行う子局が接続されている伝送線(本線とする)から別の伝送線(分岐線とする)が分岐している場合、電流変化が無いときに分岐線に溜まった電荷は、電流が変化する極短い時間、本線に接続された子局に対する親局以外の電流源となってしまう。そのため、電流変化の周期が短い場合には、親局で検出される電流値が減少し、電流信号が重畳されているにも関わらず、電流信号が重畳されたことを検出できない場合があった。
 そこで、本発明は、直列のパルス状をなす伝送信号における電源電圧エリアを利用したデータ伝送の信頼性を高めることを可能とする制御・監視信号伝送システムを提供することを目的とする。
 本発明にかかる制御・監視信号伝送システムは、制御部とデータの授受を行う親局と、共通の伝送線を介して伝送同期方式により前記親局とデータの授受を行う子局の複数を備える。
 前記子局は、複数の電源電圧レベルの電圧パルス信号が連なって構成された伝送信号における電源電圧エリアに、所定期間、所定のレベルが維持される単一の電流信号を重畳し、前記親局は、前記伝送信号においてデータの授受のために割り当てられていない無アドレス領域の前記電源電圧エリアの電流値を基準値とし、前記電流信号の有無を判定する。前記基準値は、前記無アドレス領域となる伝送タイミングの都度、更新される。
 なお、本発明において、所定期間、所定のレベルが維持される単一の電流信号とは、電流が継続して流れる状態となる信号、すなわち、直流電流の信号を意味し、電源電圧エリアの幅よりも短い期間に電流の流れる状態(ON状態)と電流の流れない状態(OFF状態)が繰り返される周波数信号は含まれない。なお、電流は継続して流れればよく、所定のレベルに対し許容範囲内で変動してもよい。また、電流が流れる期間は、電源電圧エリアの幅より短い期間であってもよい。
 前記電源電圧エリアが終了するタイミングまでに所定の期間が残されるタイミングで、前記電流信号の重畳が終了されてもよい。
 前記判定が、前記電流信号の電流値の積算値に基づくものであってもよい。
 本発明によれば、伝送信号においてデータの授受のために割り当てられていない無アドレス領域の電源電圧エリアの電流値を、電流信号の有無の判定における基準値とするため、伝送線の分岐など設置状態により電流値が変化する場合でも、電流信号の有無を正確に判定することができる。しかも、基準値は無アドレス領域となる伝送タイミングの都度、更新されるため、電流値が頻繁に変化する環境でも、電流信号の有無を正確に判定することができる。また、電流値による判定が可能となることから、電流値に変化を与えるための周波数信号を用いる必要もない。従って、直列のパルス状をなす伝送信号における電源電圧エリアを利用したデータ伝送の信頼性を高めることができる。
 更に、電源電圧エリアが終了するタイミングまでに所定の期間が残されるタイミングで、電流信号の重畳を終了することにより、電流信号の変化時に電流値が変動する過渡状態の影響を利用し、電源電圧エリアの極めて狭い範囲の電位を変化させることができる。しかも、このときの電位の変化から、電源電圧エリアが終了するタイミングまでに、所定の時間が残されるため、電源電圧エリアの変化(この実施形態では立下り)による過渡現象と区別することができる。そして、過渡状態の影響による電位変化の有無を利用し、システム不具合時などに、伝送信号の波形から電流信号の重畳の有無を確認することができる。すなわち、維持保守も含めたデータ伝送の信頼性をより高めることができる。
 更にまた、電流信号の電流値の積算値に基づき電流信号の有無を判定することにより、電流値が極めて短い時間で大きく変化する場合にも、電流信号の有無の判定を正確に行うことができる。そのため、周波数信号を送信する従来の型式の子局が混在する場合にも、データ授受の高い信頼性を維持することができる。
本発明に係る制御・監視信号伝送システムにおける伝送信号1周期を示し、(a)は電源電圧エリアの全期間に電流信号が重畳された状態のタイムチャート図、(b)は電流信号の重畳が電源電圧エリアの途中で終了されたときに過渡現象の影響を受けた状態のタイムチャート図である。 同制御・監視信号伝送システムの構成図である。 親局の機能ブロック図である。 伝送信号の伝送手順を示す模式図である。 伝送信号のタイムチャート図である。 入力子局の機能ブロック図である。 出力子局の機能ブロック図である。
 本発明に係る制御・監視信号伝送システムの実施形態を説明する。
 この制御・監視信号伝送システムは、工場などの施設内に配置された多数の装置機器を制御部において集中制御するためのものである。図2に示すように、制御部1および共通データ信号線DP、DN(以下、伝送線とする)に接続された親局2と、被制御側となる施設内に配置され伝送線に接続された入力子局4、出力子局5および入出力子局6の複数で構成される。なお、図2においては、図示の便宜上、各々の子局が一つずつ示されているが、伝送線に接続される子局の種類や数に制限は無い。
 入力子局4が接続される入力部7、出力子局5が接続される出力部8および入出力子局6が接続される入出力部9は、被制御側となる施設内に配置された装置である。
 入力部7に相当するものとして、例えば、リードスイッチ、マイクロスイッチ、押釦スイッチ、光電スイッチ、その他各種センサを挙げることができるが、これらに限定されるものではない。
 出力部8に相当するものとして、例えば、アクチュエータ、(ステッピング)モータ、ソレノイド、電磁弁、リレー、サイリスタ、ランプを挙げることができるが、これらに限定されるものではない。
 入出力部9は、入力部7と出力部8の双方の機能を備える装置機器である。例えば、温調、タイマ、カウンタ等の装置機器で、親局2に対し情報を送信する機能と、親局2から送信されたデータに基づき出力動作を行う機能の双方を備えるものを挙げることができる。
 なお、入力部7は、入力子局4と一体化された入力部一体型子局70であってもよい。また、出力部8は、出力子局5と一体化された出力部一体型子局80であってもよい。
 制御部1は、演算処理機能を持つ管理判断手段11と入出力ユニット12を備える。管理判断手段11は、入出力ユニット12を介して親局2からデータを受け取り、内部に記憶されたプログラムに基づいて必要な演算処理を行う。
<親局の構成>
 親局2は、図3に示すように、出力データ部21、管理データ部22、タイミング発生部23、親局出力部24、親局入力部25、入力データ部26を備える。そして、伝送線に接続され、一連のパルス状信号である制御信号を伝送線に重畳するとともに、入力子局4および入出力子局6から伝送線に重畳された監視信号から抽出された監視データを制御部1の入出力ユニット12へ送出する。
 出力データ部21は、制御部1から受けたデータをシリアルデータとして親局出力部24へ引き渡す。
 管理データ部22は、子局情報テーブルを記憶する不揮発性機能を持つ記憶手段29を備える。そして、制御部1から受けたデータと子局情報テーブルに基づき、後述の管理制御データ領域において子局への指示に必要となるデータをシリアルデータとして親局出力部24へ引き渡す。
 子局情報テーブルは、監視データとして得られない子局側の情報を伝送線に出力させる、入力子局4、出力子局5または入出力子局6を指定するための管理制御アドレスデータを含んでいる。なお、この実施形態では、管理制御アドレスデータとして入力子局4、出力子局5および入出力子局6のアドレスデータである先頭アドレス番号に、種別の識別子を加えたデータが用いられている。
 タイミング発生部23は、発振回路(OSC)31とタイミング発生手段32からなり、発振回路(OSC)31を基にタイミング発生手段32が、このシステムのタイミングクロックを生成し親局出力部24、親局入力部25に引き渡す。
 親局出力部24は、制御データ発生手段33とラインドライバ34からなる。制御データ発生手段33が、出力データ部21から受けたデータと、タイミング発生部23から受けたタイミングクロックに基づき、ラインドライバ34を介して伝送線に一連のパルス状信号として伝送信号を重畳する。
 伝送手順は、図4に示すように、伝送信号のエンド信号ENDと次のエンド信号ENDの間の、制御・監視データ領域、そして管理データ領域と続く1フレームサイクルであり、複数のパルス信号が連なって構成される。
 伝送信号を構成するパルス信号は、図1および図5に示すように、閾値Vstより高い電源電圧レベルの電源電圧エリアと、閾値Vstよりも低い電位レベルの低電位エリアで構成される。なお、図5において、図示の便宜上、過渡現象による影響は省略されている。
 電源電圧エリアは伝送クロック信号に相当し、この実施形態では+24Vとされている。なお、電源電圧レベルに制限はなく、使用環境や使用状態に応じて適宜決めることができる。負電源であってもよい。
 また、この実施形態では、電源電圧エリアが1周期の後半と、低電位エリアが1周期の前半とされているが、その順番に制限はなく、これらの順番を逆にしてもよい。電源電圧レベルを負電源とする場合も同様である。なお、この実施形態での低電位エリアは、負電源の場合、電源電圧エリアに対し高電位のエリアとなる。
 低電位エリアの幅は、制御信号のデータを表すものとなっている。そして、低電位エリアの幅が制御データとして制御データ領域を構成し、その制御データ領域は、図5における制御・監視データ領域の上段に相当するものとなっている。
 この実施形態では、伝送信号を構成するパルス信号の1周期をt0とした時、伝送信号を構成するパルス信号のパルス幅(3/4)t0が論理データ“0”を表し、パルス幅(1/4)t0が論理データ“1”を表している。ただし、制御部1から入力される制御データの値に応じたものであれば、その長さに制限はなく適宜に決めればよい。
 電源電圧エリアには電流信号が重畳され、この電流信号の有無により監視信号のデータを表すものとなっている。そして、電源電圧エリアに重畳される電流が監視データとして監視データ領域を構成し、その監視データ領域は、図4における制御・監視データ領域の下段に相当するものとなっている。
 エンド信号ENDは、パルス信号の時間幅より長く、低電位エリアの電位レベルとなっている。なお、エンド信号ENDの長さは使用条件等を考慮し適宜決めることができる。また、エンド信号ENDの後には、制御・監視データ領域に含まれない、本発明の無アドレス領域に相当する電源電圧エリア(以下、「無アドレス領域」と称する)が設けられている。
 図4に示すように、制御・監視データ領域は、制御データ領域(図4における制御・監視データ領域の上段)と、監視データ領域(図4における制御・監視データ領域の下段)で構成されている。そして、制御データ領域は出力データで構成され、監視データ領域は入力データで構成されている。
 制御・監視データ領域の後には、図4に示すように、管理データ領域が設けられている。なお、図4において、上段は親局2からデータが出力される領域(以下、管理制御データ領域とする)を、下段は親局2へデータが入力される領域(以下、管理監視データ領域とする)を示すものとなっている。
 管理制御データ領域には、入力子局4、出力子局5、入出力子局6に対して情報を要求する等の指示をなす第一管理制御データISTo、および、子局アドレスを指定する第二管理制御データIDXoが、親局2から重畳される。また、管理監視データ領域には、第二管理制御データIDXoで指定された入力子局4、出力子局5、入出力子局6から第一管理制御データISToに対応する第一管理監視データSTi及び第二管理監視データIDXiが重畳される。
 親局入力部25は監視信号検出手段35と監視データ抽出手段36で構成される。監視信号検出手段35は、入力子局4、出力子局5または入出力子局6から伝送線に重畳された監視信号を検出する。
 監視信号検出手段35は、エンド信号END直後に出現する無アドレス領域における電源電圧エリアの電流値を基準値とし、得られた子局の電源電圧エリアの電流値と基準値との差が所定の閾値より大きくなる場合、入力子局4、出力子局5または入出力子局6から伝送線に重畳された監視信号を検出する。
 基準値は、無アドレス領域において得られる電源電圧エリアの電流値によって設定され、監視信号検出手段35に記憶され、伝送信号の1フレーム期間保持される。そして、無アドレス領域となる伝送タイミングの都度、更新される。そのため、使用環境の変化により電流値が変動する状況でも、監視信号を正確に検出することが可能となる。
 なお、この実施形態では、監視信号の検出(本発明の、電流信号の有無の判定に相当)は、電源電圧エリアで得られた電流値を、直接、基準値と比較することにより行われているが、電流値の積算値を利用してもよい。この場合、周波数信号を検出することもできるため、周波数信号を送信する従来の型式の子局が混在する場合にも適用できる。
 監視データ抽出手段36は、監視信号検出手段35における監視信号の検出結果に基づき、対応するデータ値を入力データ部26に引き渡す。この実施形態では、監視信号が検出された場合には論理データ“1”を、監視信号が検出されなかった場合には論理データ“0”を、入力データ部26に引き渡す。
 入力データ部26は、監視データ抽出手段36から受け取った直列の入力データを並列(パラレル)データに変換し、監視データおよび管理監視データとして制御部1の入出力ユニット12へ送出する。
<入力子局の構成>
 入力子局4は、図6に示すように、伝送受信手段41、管理制御データ抽出手段42、アドレス抽出手段43、アドレス設定手段44、管理監視データ送信手段45、入力手段46および監視データ送信手段47を有する子局入力部40を備える。また、子局入力部40と伝送線の間に配置される子局ラインレシーバ48および子局ラインドライバ49を備える。
 なお、この実施形態の入力子局4は、内部回路としてマイクロコンピュータ・コントロール・ユニットであるMCUを備えており、このMCUが子局入力部40として機能するものとなっている。
 処理において必要となる演算や記憶は、このMCUの備えるCPU、RAMおよびROMを使用して実行されるが、子局入力部40を構成する上記各手段のそれぞれの処理におけるCPU、RAMおよびROMとの関係は、説明の便宜上、図示を省略するものとする。
 伝送受信手段41は、伝送線に伝送される伝送信号を、子局ラインレシーバ48を介して受け、これを管理制御データ抽出手段42、アドレス抽出手段43および管理監視データ送信手段45に引き渡す。
 管理制御データ抽出手段42は、アドレス設定手段44で設定された自局アドレスに自局種別の識別子を付加した管理制御アドレスと一致するアドレスに対する管理制御信号のデータ(管理制御データ)を、伝送信号を構成するパルス信号の管理データ領域から抽出する。抽出された管理制御データは、そのデータに基づいた処理を実行する、図示しない処理手段に引き渡される。
 アドレス抽出手段43では、エンド信号ENDを受けた後、無アドレス領域が終了となるタイミング(この実施形態では立ち下がり)を起点として、伝送信号を構成するパルス信号のカウントが行われる。なお、このカウント値がアドレス設定手段44で設定された自局アドレスデータと一致するタイミングは、伝送信号の自局に割り当てられたデータ領域が開始するタイミング(以下、「自局領域開始タイミング」とする)となる。
 自局領域開始タイミングを得たアドレス抽出手段43は、その自局領域開始タイミング(この実施形態では、自局領域開始タイミングとなる、自局領域直前の電源電圧エリアが終了する立ち下がり)から所定の時間経過後、電源電圧エリアの開始前から、電源電圧エリアを含む期間、監視データ送信手段45を有効にする。なお、自局に割り当てられたデータ領域が、複数の伝送信号パルスで構成される場合は、自局に割り当てられたデータ領域が終了するまで、電源電圧エリアが出現する都度、その電源電圧エリアを含む期間、監視データ送信手段45を有効にする。
 管理監視データ送信手段45は、エンド信号ENDを受けた後、無アドレス領域が終了となるタイミング(この実施形態では立ち下がり)を起点として、伝送信号を構成するパルス信号をカウントし、管理データ領域のタイミングを得る。そして、子局ラインドライバ49を介して伝送線に管理監視信号を出力する。
 入力手段46は、入力部7からの入力に基づくデータを監視データ送信手段47に引き渡す。
 監視データ送信手段47は、アドレス抽出手段43により有効とされた場合に、入力手段46から引き渡されたデータを、子局ラインドライバ49を介して伝送線に監視信号として出力する。監視信号は、伝送手順の監視データ領域に重畳される。
 子局ラインドライバ49は、入力手段46から引き渡されたデータ値が論理データ“1”に相当するとき、電流信号を監視信号として伝送信号に重畳する。監視データ送信手段47は、自局に割り当てられたデータ領域の電源電圧エリアを含む期間で有効にされるため、監視データ送信手段47から論理データ“1”に相当するデータの引き渡しがあったときのみ電流信号を重畳することにより、電源電圧エリアに論理データ“1”を示す電流信号が重畳されることになる
 なお、この実施形態において、電源電圧エリアへの電流信号の重畳を開始するタイミングは、電源電圧エリアが開始するタイミング(この実施形態では立ち上がり)より前とされているため、電流変化による過渡現象の影響が小さい波形となっている。
 また、この実施形態では、図1(a)に示すように、電源電圧エリアの全期間に亘って電流信号が重畳されているが、電源電圧エリアが終了するタイミング(この実施形態では立ち下がり)までに所定の期間が残されるタイミングで、電流信号の重畳を終了してもよい。この場合、図1(b)に示すように、電源電圧エリアの電位は、極めて狭い範囲で標準電位から変化することになるため、この変化の有無を利用し、システム不具合時などに、伝送信号の波形から電流信号の重畳の有無を確認することができる。なお、このときの電位の変化から、電源電圧エリアが終了するタイミング(この実施形態では立ち下がり)までに、所定の時間が残されるため、電源電圧エリアの変化(この実施形態では立下り)による過渡現象と区別することができる。
 出力子局5は、図7に示すように、伝送受信手段41、管理制御データ抽出手段42、アドレス抽出手段43、アドレス設定手段44、管理監視データ送信手段45、制御データ抽出手段51および出力手段52を有する子局出力部50を備える。
 出力子局5も、また、前記入力子局4と同様、内部回路としてマイクロコンピュータ・コントロール・ユニットであるMCUを備えており、このMCUが子局出力部50として機能するものとなっている。そして、入力子局4のMCUと同様に、出力子局5の処理において必要となる演算や記憶は、このMCUの備えるCPU、RAMおよびROMを使用して実行されるものとなっている。
 処理において必要となる演算や記憶は、このMCUの備えるCPU、RAMおよびROMを使用して実行されるが、子局出力部50を構成する上記各手段のそれぞれの処理におけるCPU、RAMおよびROMとの関係は、説明の便宜上、図示を省略するものとする。また、図7において、入力子局4と実質的に同じ部分には同符号を付し、その説明を簡略化または省略する。
 出力子局5のアドレス抽出手段43は、エンド信号ENDを受けた後、無アドレス領域が終了となるタイミング(この実施形態では立ち下がり)を起点として、伝送信号を構成するパルス信号をカウントし、そのカウント値が自局アドレス設定手段44で設定された自局アドレスデータと一致するタイミングで、制御データを抽出するタイミング信号を制御データ抽出手段51に引き渡す。
 制御データ抽出手段51は、アドレス抽出手段43から引き渡されたタイミング信号と伝送受信手段41から引き渡された伝送信号から、自局アドレス設定手段44に設定された自局アドレスに送信された制御データ値を抽出し、これを出力手段52に引き渡す。
 出力手段52は、アドレス抽出手段43から引き渡された制御データに基づいた情報を出力部8に出力し、出力部8を動作させ、或いは停止させる。
<入出力子局の構成>
 入出力子局6には、対応関係にある入力部7と出力部8の双方が接続されている。入出力子局6も、入力子局4および出力子局5と同様、内部回路としてマイクロコンピュータ・コントロール・ユニットであるMCUを備えており、このMCUが子局入出力部として機能するものとなっている。そして、入力子局4のMCUおよび出力子局5のMCUと同様に、入出力子局6の処理において必要となる演算や記憶は、このMCUの備えるCPU、RAMおよびROMを使用して実行されるものとなっている。
 処理において必要となる演算や記憶は、このMCUの備えるCPU、RAMおよびROMを使用して実行されるが、子局入出力部を構成する上記各手段のそれぞれの処理におけるCPU、RAMおよびROMとの関係は、説明の便宜上、図示を省略するものとする。また、子局入出力部60は、子局入力部40および子局出力部50の双方の構成を備えるものであるが、これら各構成は子局入力部40および子局出力部50と実質的に同じものであるため、図示およびその説明は省略する。
1  制御部
2  親局
4  入力子局
5  出力子局
6  入出力子局
7  入力部
8  出力部
9  入出力部
11 管理判断手段
12 入出力ユニット
21 出力データ部
22 管理データ部
23 タイミング発生部
24 親局出力部
25 親局入力部
26 入力データ部
29 記憶手段
31 発振回路(OSC)
32 タイミング発生手段
33 制御データ発生手段
34 ラインドライバ
35 監視信号検出手段
36 監視データ抽出手段
40 子局入力部
41 伝送受信手段
42 管理制御データ抽出手段
43 アドレス抽出手段
44 アドレス設定手段
45 管理監視データ送信手段
46 入力手段
47 監視データ送信手段
48 子局ラインレシーバ
49 子局ラインドライバ
50 子局出力部
51 制御データ抽出手段
52 出力手段

Claims (3)

  1.  制御部とデータの授受を行う親局と、共通の伝送線を介して伝送同期方式により前記親局とデータの授受を行う子局の複数を備え、
     前記子局は、複数の電源電圧レベルのパルス信号が連なって構成された伝送信号における電源電圧エリアに、所定期間、所定のレベルが維持される単一の電流信号を重畳し、
     前記親局は、前記伝送信号においてデータの授受のために割り当てられていない無アドレス領域の前記電源電圧エリアの電流値を基準値とし、前記電流信号の有無を判定し、
     前記基準値は、前記無アドレス領域となる伝送タイミングの都度、更新されることを特徴とする制御・監視信号伝送システム。
  2.  前記電源電圧エリアが終了するタイミングまでに所定の期間が残されるタイミングで、前記電流信号の重畳が終了される請求項1に記載の制御・監視信号伝送システム。
  3.  前記判定が、前記電流信号の電流値の積算値に基づく請求項1または2に記載の制御・監視信号伝送システム。
     
PCT/JP2017/011320 2017-03-22 2017-03-22 制御・監視信号伝送システム WO2018173129A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/011320 WO2018173129A1 (ja) 2017-03-22 2017-03-22 制御・監視信号伝送システム
JP2019506589A JP6637635B2 (ja) 2017-03-22 2017-03-22 制御・監視信号伝送システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/011320 WO2018173129A1 (ja) 2017-03-22 2017-03-22 制御・監視信号伝送システム

Publications (1)

Publication Number Publication Date
WO2018173129A1 true WO2018173129A1 (ja) 2018-09-27

Family

ID=63586336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011320 WO2018173129A1 (ja) 2017-03-22 2017-03-22 制御・監視信号伝送システム

Country Status (2)

Country Link
JP (1) JP6637635B2 (ja)
WO (1) WO2018173129A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630053A (ja) * 1992-07-10 1994-02-04 Nippon Telegr & Teleph Corp <Ntt> 電流回路インターフェース
JP2012049638A (ja) * 2010-08-24 2012-03-08 Panasonic Electric Works Co Ltd 電流制御装置および通信システム
WO2014147705A1 (ja) * 2013-03-18 2014-09-25 株式会社エニイワイヤ 制御・監視信号伝送システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630053A (ja) * 1992-07-10 1994-02-04 Nippon Telegr & Teleph Corp <Ntt> 電流回路インターフェース
JP2012049638A (ja) * 2010-08-24 2012-03-08 Panasonic Electric Works Co Ltd 電流制御装置および通信システム
WO2014147705A1 (ja) * 2013-03-18 2014-09-25 株式会社エニイワイヤ 制御・監視信号伝送システム

Also Published As

Publication number Publication date
JPWO2018173129A1 (ja) 2020-01-16
JP6637635B2 (ja) 2020-01-29

Similar Documents

Publication Publication Date Title
US10061345B2 (en) Apparatus and method for controlling an automated installation
JP5562502B1 (ja) 制御・監視信号伝送システム
US9372744B2 (en) Method for detecting failure and slave station for use in same
CN108833056B (zh) 一种消防两总线优先通信的编码方法
WO2018173129A1 (ja) 制御・監視信号伝送システム
JP6655768B2 (ja) 制御・監視信号伝送システム
JP6115478B2 (ja) 通信システム
JP6853916B2 (ja) 制御・監視信号伝送システム
JP5599533B1 (ja) 制御・監視信号伝送システム
JP7171974B1 (ja) 制御・監視信号伝送システム
WO2013046296A1 (ja) 伝送ライン断線検出方式およびその方式に使用する子局ターミナル
WO2022264201A1 (ja) 制御・監視信号伝送システム
WO2019058412A1 (ja) 制御・監視信号伝送システム
WO2023242938A1 (ja) 制御・監視信号伝送システム
WO2013108392A1 (ja) 伝送クロック信号異常検出方式、およびその方式に使用する子局ターミナル
WO2014125573A1 (ja) 新品子局設定方式
JP4926234B2 (ja) 制御・監視信号伝送システムにおける信号伝送方式
JP2010141621A (ja) 出力ターミナル及び制御・監視信号伝送システム
WO2011108136A1 (ja) 制御・監視信号伝送システムにおける信号伝送方式
JP2012244469A (ja) 通信システムおよび重畳モジュール
JPWO2020240811A1 (ja) 短絡位置検出システム
JPWO2017109825A1 (ja) センサ接続断線検出方法
JP2011146855A (ja) 制御・監視信号伝送システムにおける信号伝送方式
WO2013161029A1 (ja) 寿命検出方式およびその方式に使用する子局ターミナル
WO2013124974A1 (ja) 故障検出方式およびその方式に使用する子局ターミナル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902433

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019506589

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902433

Country of ref document: EP

Kind code of ref document: A1