WO2018171614A1 - 一种参考信号发送方法、接收方法和装置 - Google Patents

一种参考信号发送方法、接收方法和装置 Download PDF

Info

Publication number
WO2018171614A1
WO2018171614A1 PCT/CN2018/079748 CN2018079748W WO2018171614A1 WO 2018171614 A1 WO2018171614 A1 WO 2018171614A1 CN 2018079748 W CN2018079748 W CN 2018079748W WO 2018171614 A1 WO2018171614 A1 WO 2018171614A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
precoding matrix
information
signaling
network device
Prior art date
Application number
PCT/CN2018/079748
Other languages
English (en)
French (fr)
Inventor
刘建琴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18772433.1A priority Critical patent/EP3588830B1/en
Priority to BR112019019885A priority patent/BR112019019885A2/pt
Priority to US16/493,735 priority patent/US11323161B2/en
Priority to KR1020197028251A priority patent/KR102287733B1/ko
Priority to EP21154666.8A priority patent/EP3905578A1/en
Priority to JP2019552107A priority patent/JP6967604B2/ja
Priority to CN201880018945.2A priority patent/CN110603771B/zh
Priority to CA3055797A priority patent/CA3055797C/en
Publication of WO2018171614A1 publication Critical patent/WO2018171614A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a reference signal transmitting method, a receiving method, and a device.
  • the downlink multiple access method is usually positive.
  • An orthogonal frequency division multiple access (OFDMA) method is usually positive.
  • the downlink resources of the system are divided into multiple orthogonal frequency division multiple (OFDM) symbols in terms of time, and are divided into several subcarriers in frequency.
  • a normal uplink or downlink subframe includes two slots, each slot includes 7 OFDM symbols, so a normal uplink or downlink subframe contains a total of 14 OFDM symbols, and the system
  • the size of the physical resource block (PRB) is also defined.
  • One RB includes 12 subcarriers in the frequency domain and half of the subframe duration (one time slot) in the time domain, that is, contains 7 OFDM symbols ( Symbol), wherein a normal cyclic prefix (CP) is 7 OFDM symbols in length, and the extended cyclic prefix length is 6 OFDM symbols.
  • a certain subcarrier within a certain OFDM symbol is called a resource element (RE), so one RB contains 84 or 72 REs.
  • RE resource element
  • a pair of RBs of two slots is called a RB pair.
  • the fourth OFDM symbol of the 7 OFDM symbols of one slot is an uplink demodulation pilot, and other symbols can be used to carry data, as shown in FIG.
  • the number of uplink transmission antennas supported by the UE becomes more, for example, supporting 6 or even 8 uplink transmission antennas.
  • the number of PAs actually supported by the UE is usually less than or equal to the number of transmit antennas of the UE.
  • the uplink transmission of the UE also supports different panels, and the multiple antennas in the same panel have strong correlation, and the channel transmission characteristics and the occlusion probability of the antennas of different panels are different.
  • the prior art cannot dynamically perform packet switching of the antenna ports according to different transmission requirements, and thus cannot perform fast and effective channel quality measurement on the whole system bandwidth.
  • TDD time division duplexing
  • the present application provides a reference signal sending method, a receiving method, and a device, so that the UE traverses the bandwidth of the entire system as soon as possible on all antennas, thereby improving the accuracy of uplink reference signal transmission.
  • the present application provides a reference signal sending method, where the method includes: a second network device receives, from a first network device, first group information of a reference signal port, where the first group information includes N sets of reference signals The information of the port, N is a positive integer, and N ⁇ 1; the second network device determines a kth group of reference signal antenna ports from the N sets of reference signal ports, k is a positive integer, and N ⁇ k ⁇ 1; The second network device transmits a reference signal on the kth group of reference signal antenna ports.
  • the second network device determines the antenna port group k for transmitting the reference signal from the N sets of reference signal ports according to the received grouping information of the reference signal port from the first network device, and then passes the kth
  • the group antenna port sends a reference signal to implement fast switching of the reference signal antenna port of the second network device, and sends a reference signal through the switched port. Since the switched reference signal port takes into account the channel transmission characteristics and occlusion probability corresponding to different antenna panel structures, and the transmission requirements of the current transmission mechanism, efficient, adaptive uplink data transmission can be performed, and the transmitted reference signal can be transmitted as soon as possible. The entire measurement bandwidth is traversed, thereby improving the accuracy of channel measurement and the efficiency of uplink data transmission.
  • the second network device determines, according to the information of the N sets of reference signal ports, the kth group of reference signal antenna ports from the N sets of reference signal ports, including: The second network device determines the kth group of reference signal antenna ports according to at least one of a transmission time of the reference signal, a number N of the reference signal ports, and a number K of transmissions of the reference signals.
  • determining the kth group of reference signal antenna ports includes: according to the following relationship:
  • n the timing at which the reference signal is transmitted
  • k(n) the antenna port group number k of the reference signal determined at time n
  • K the number of transmissions of the reference signal
  • the method before the second network device receives the first group information of the reference signal port from the first network device, the method further includes: the second network device reporting the second information to the first network device Packet information, the second packet information including at least one of antenna panel information, reference signal port information, and reference signal port grouping information of the second network device.
  • the second network device when reporting the second group information to the first network device, enables the first network device to configure the reference group information according to the requirements of the second network device, such as a transmission mechanism and a reference signal.
  • the number of ports, the port number, and the like are grouped, and the adaptive uplink antenna port grouping and corresponding data transmission are realized, and the switching of the reference signals of the Q antenna port groups is not supported by the P antennas of the second network device.
  • the first network device cannot obtain the channel between all the transmitting and receiving antennas, thereby causing a large performance loss.
  • the second network device receives the first packet information of the reference signal port from the first network device, where the second network device receives the signaling from the first network device, where The signaling is used to indicate first group information of the reference signal port; the signaling includes at least one of high layer signaling, layer one signaling, and layer two signaling.
  • the present application further provides a reference signal receiving method, which is applied to a first network device, such as a base station, where the method includes: the first network device sends the first group information of the reference signal port to the second network device, The first group information includes information of N sets of reference signal ports, N is a positive integer, and N ⁇ 1; the first network device receives a reference signal from the second network device, and the reference signal is the N The reference signal corresponding to the kth reference signal port in the group reference signal port, k is a positive integer, and N ⁇ k ⁇ 1.
  • the first network device receives, by the second network device, a reference signal corresponding to the kth group reference signal port determined by the N sets of reference signal ports, including: Receiving, by the first network device, the k-th group reference determined by the second network device according to a sending moment of the reference signal, the number N of the reference signal ports, and the number of transmission times K of the reference signals The reference signal corresponding to the signal port.
  • the first network device receives the reference signal corresponding to the kth group reference signal port, including: according to the first relationship:
  • n the timing at which the reference signal is transmitted
  • k(n) the antenna port group number k of the reference signal determined at time n
  • K the number of transmissions of the reference signal
  • the method further includes: the first network device receiving the second group information from the second network device
  • the second group information includes at least one of antenna panel information, reference signal port information, and reference signal port grouping information of the second network device; the first network device determines, according to the second group information, the The first grouping information of the reference signal port.
  • the first network device sends the first group information of the reference signal port to the second network device, where the first network device sends the information to the second network device by using signaling
  • the first group information includes: at least one of high layer signaling, layer one signaling, and layer two signaling.
  • the first network device base station can configure corresponding reference signal port grouping information according to the transmission requirement of the second network device UE, so that the second network device UE can switch the antenna according to the indication of the port grouping information.
  • the UE adaptively adapts the uplink reference signal antenna port grouping and corresponding data transmission, so that all antennas of the UE can quickly traverse the entire bandwidth, thereby improving the accuracy and accuracy of channel measurement.
  • the present application provides a signaling method, where the method includes: receiving, by a terminal device, a precoding matrix index determined by a base station from a first index set, where the precoding matrix index is used to determine that the terminal device sends a precoding matrix used in the data, each index of the first index set corresponds to one precoding matrix in the first precoding matrix set, and the first precoding matrix set is a true sub of the second precoding matrix set a set, the precoding matrix index value of the first index set is less than or equal to the number of precoding matrices included in the first precoding matrix set; and the terminal device performs data according to the precoding matrix index.
  • Send receives, by a terminal device, a precoding matrix index determined by a base station from a first index set, where the precoding matrix index is used to determine that the terminal device sends a precoding matrix used in the data, each index of the first index set corresponds to one precoding matrix in the first precoding matrix set, and the first precoding matrix set is a true sub
  • the method before the terminal device receives the precoding matrix index determined by the base station from the first index set, the method further includes: the terminal device receiving the first precoding matrix set information from the base station, where The first precoding matrix set information is used to indicate a subset of the second precoding matrix set.
  • the method before the terminal device receives the precoding matrix index determined by the base station from the first index set, the method further includes: the terminal device sending the first precoding matrix set information to the The base station, the first precoding matrix set information is used to indicate a subset of the second precoding matrix set.
  • the receiving, by the terminal device, the first precoding matrix set information and the precoding matrix index includes: the terminal device receiving signaling from the base station, The signaling carries at least one of the first precoding matrix set information and the precoding matrix index, where the signaling includes: at least one of high layer signaling, layer one signaling, and layer two signaling. .
  • the base station sends the configured precoding matrix index to the terminal device UE, so that the UE can determine the precoding matrix used when transmitting the data according to the precoding matrix index. Since the matrix index is selected in the first precoding matrix set, and the first precoding matrix set is a true subset in the second precoding matrix set, it is not only able to quickly indicate which precoding matrix the UE uses to transmit data. And because the value of the index is limited to a subset of the second precoding matrix set of the UE, the required DCI indication signaling overhead is reduced.
  • the UE reports the first precoding matrix set information to the base station, so that the base station can select a suitable precoding matrix index for the UE according to the precoding matrix set recommended by the UE, so that the precoding matrix corresponding to the precoding matrix index is obtained. It is capable of adapting multiple possible antenna panel structures on the UE side, and realizes an optimal precoding matrix configuration under different antenna panel patterns, thereby improving data transmission performance.
  • the UE may recommend the first precoding matrix set information to the base station according to the adaptive transmission requirement, for example, different transmission mechanisms, the number of ports of the UE, and the port number.
  • the embodiment of the present application further provides a signal receiving method, where the method includes: determining, by a base station, a precoding matrix index from a first index set, where the precoding matrix index is used to determine when a terminal device sends data a precoding matrix, where each index of the first index set corresponds to one precoding matrix in the first precoding matrix set, and the first precoding matrix set is a true subset of the second precoding matrix set, Any one of the first index sets has a precoding matrix index value that is less than or equal to a number of precoding matrices included in the first precoding matrix set; and the base station sends the precoding matrix index to the terminal The base station receives data that is sent by the terminal device according to the precoding matrix index.
  • the method before determining, by the base station, the precoding matrix index from the first index set, the method further includes: configuring, by the base station, first precoding matrix set information, where the first precoding matrix set information is used by And indicating a subset of the second precoding matrix set; the base station sends the first precoding matrix set information to the terminal device.
  • the determining, by the base station, the precoding matrix index from the first index set includes: receiving, by the base station, first precoding matrix set information sent by the terminal device; The first precoding matrix set information determines a subset of the second precoding matrix set; the base station determines the precoding matrix index according to a subset of the second precoding matrix set.
  • the receiving, by the device, the first precoding matrix set information and the precoding matrix index includes: receiving, by the terminal device, receiving signaling from the base station, The signaling carries at least one of the first precoding matrix set information and the precoding matrix index, and the signaling includes at least one of higher layer signaling, layer one signaling, and layer two signaling.
  • the present application provides a reference signal transmitting apparatus, which may be disposed in a second network device, such as a terminal device, the apparatus including the foregoing implementations of the first aspect and the first aspect.
  • the unit of the step may be disposed in a second network device, such as a terminal device, the apparatus including the foregoing implementations of the first aspect and the first aspect.
  • the present application provides a reference signal receiving apparatus, which may be arranged in a first network device, such as a base station, the apparatus comprising the steps in the implementation of the foregoing second and second aspects. Unit.
  • the present application provides a signal transmitting apparatus, which may be arranged in a second network device, such as a terminal device, the device comprising the steps in the implementation of the foregoing third and third aspects. Unit.
  • the present application provides a signal receiving apparatus, which may be arranged in a first network device, such as a base station, the apparatus comprising steps for performing the foregoing steps of the fourth aspect and the implementation of the fourth aspect. unit.
  • the present application provides a system including a first network device and a second network device, the first network device may be a base station, and the second network device may be a terminal device, such as a UE.
  • the first network device includes a transceiver, a processor, and a memory, where the first network device is used to implement the first aspect and the reference signal sending method in each implementation of the first aspect; The signal receiving method in each of the three aspects and the third aspect.
  • the second network device includes a transceiver, a processor, and a memory, and the second network device is configured to implement the reference signal receiving method in the second aspect and the implementation of the second aspect; and to implement the foregoing fourth aspect and A signal receiving method in each implementation of the fourth aspect.
  • the present application further provides a computer storage medium, where the computer storage medium can store a program, and when the program is executed, the reference signal sending method, the receiving method, and the signal receiving method and the sending method provided by the present application can be implemented. Some or all of the steps in the various embodiments.
  • FIG. 1 is a schematic diagram of a subframe structure of an uplink PUSCH according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a method for sending a reference signal according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a grouping information indication of a reference signal port according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of another grouping information indication of a reference signal port according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of determining a number K of transmissions of a reference signal according to an embodiment of the present application
  • FIG. 6 is a schematic structural diagram of a reference signal sending apparatus according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a reference signal receiving apparatus according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a structure of different antenna panel patterns according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart diagram of a signal sending method according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an antenna panel pattern corresponding to different codeword structures according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a signal sending apparatus according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a signal receiving apparatus according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a system for transmitting a reference signal according to an embodiment of the present disclosure.
  • Embodiments of the present application are applied to a communication system composed of at least one first network device as a transmitting device and at least one second network device as a receiving device.
  • the transmitting device and the receiving device may be any one of a transmitting end device and a receiving end device that perform data transmission in a wireless manner.
  • the transmitting device and the receiving device may be any device with wireless transceiver function, including but not limited to: a base station (NodeB), an evolved base station (eNodeB), a base station in a fifth generation (5G) communication system, A base station or a network device in a future communication system, an access node in a WiFi system, a wireless relay node, a wireless backhaul node, and a user equipment (UE).
  • NodeB nodeB
  • eNodeB evolved base station
  • 5G fifth generation
  • a base station or a network device in a future communication system an access node in a WiFi system, a wireless relay node, a wireless backhaul no
  • the UE may also be referred to as a terminal terminal, a mobile station (MS), a mobile terminal (MT), a remote terminal (RT), an access terminal (AT), and a user.
  • User agent (UA), etc. The UE may communicate with one or more core networks via a radio access network (RAN), or may access the distributed network in an ad hoc or unlicensed manner, and the UE may also access the wireless network through other means.
  • RAN radio access network
  • the UE can also directly perform wireless communication with other UEs, which is not limited in this embodiment of the present application.
  • the reference signal or the Sounding Reference Signal (SRS) transmission method provided by the embodiments of the present application may be applicable to downlink data transmission or uplink data transmission.
  • the transmitting device is a base station, and the corresponding receiving device is a UE.
  • the transmitting device is a UE, and the corresponding receiving device is a base station.
  • the transmitting device is a UE, and the corresponding receiving device is also a UE.
  • the embodiment of the present application does not limit this.
  • the SRS port group switching method provided in the embodiments of the present application can be applied to various communication systems, such as an LTE system, a WCDMA, a 4G, a 4.5G, and a 5G system, and the application scenario is not limited.
  • Embodiments of the present application provide an adaptive antenna packet and a method for performing dynamic antenna switching based on the packet.
  • different transmission mechanisms have different reference signal transmission and measurement requirements.
  • the SRS port can be grouped. It is possible to group a plurality of antennas located in different panels into one group, thereby overcoming the interruption of the user's uplink signal transmission caused by random occlusion in the uplink signal transmission.
  • For closed-loop transmission higher channel quality measurement accuracy is required.
  • SRS ports are grouped, multiple antennas located on the same panel can be grouped as much as possible, so that accurate channel quality between multiple antennas in the same panel can be achieved. Measurement, especially for tracking of some fast-changing channel quality information, such as tracking of phase rotation information between two polarization directions, etc., it is necessary to perform measurements based on multiple antennas in the same antenna panel to obtain faster and more accurate Measurement results.
  • the embodiment includes a first network device and a second network device, where the first network device is a base station, the second network device is a UE, and the reference signal sending method is used. Including the following steps:
  • FIG. 2 a flow chart of a method for transmitting a reference signal is shown.
  • Step 201 The base station sends first packet information of the reference signal port to the UE, where the first packet information includes information of N sets of reference signal ports, where N is a positive integer and N ⁇ 1. That is, the UE receives the first packet information of the reference signal port from the base station.
  • N represents the number of port groups included in the UE.
  • N When N is equal to 1, it indicates that the first group information includes information of a group of reference channel ports; when N is greater than 1, it indicates that the first group information includes two groups or Grouping information of two or more reference signal ports.
  • Each set of reference signal port information includes at least one of a reference signal port number and a reference signal port number corresponding to the port group.
  • the reference signal port number of each group of reference signal ports is greater than or equal to 1, and the number of reference signal ports included in different port groups may be the same or different.
  • all reference signal ports of the UE are divided into three groups, the first group and the first group. 2 groups and 3 groups.
  • At least one antenna port is included in each group.
  • the first group includes two reference signal port numbers
  • the second group and the third group each include three port numbers, and the base station configuration reference signal port group information.
  • the number of ports in the second group and the third group is the same.
  • the port numbers included in any two groups in the next group may be different, and are not limited herein.
  • the receiving, by the UE, the first group information of the reference signal port from the base station includes: receiving, by the UE, signaling from the base station, where the signaling is used to indicate the first group information of the reference signal port.
  • the signaling includes at least one of high layer signaling, layer one signaling, and layer two signaling.
  • the high layer signaling may be Radio Resource Control (RRC) signaling or Radio Link Control (RLC) signaling
  • the layer 1 signaling may be physical layer signaling (see below).
  • the line control information DCI), the layer 2 signaling may be MAC CE signaling or the like.
  • the specific base station uses the above-mentioned signaling to transmit the packet information of the reference signal, which can be determined according to requirements and application scenarios, which is not limited in this embodiment.
  • Step 202 The UE determines a kth group reference signal antenna port from the N sets of reference signal ports, where k is a positive integer, and N ⁇ k ⁇ 1.
  • Step 203 The UE sends a reference signal on the kth group reference signal antenna port.
  • the UE determines an antenna port of the first group reference signal according to the first group information, and sends a reference signal to the base station by using an antenna port of the first group reference signal.
  • the UE selects an antenna port group number k for transmitting the reference signal from the port information of the N group reference signals, and N ⁇ k>1, and sends a reference signal to the base station by using the kth group antenna port.
  • the base station receives a reference signal from the UE, and the reference signal is a reference signal corresponding to the kth group reference signal port of the N sets of reference signal ports.
  • the corresponding reference signal refers to the reference signal that the UE sends through the kth group reference signal antenna port.
  • the UE first determines and switches to the reference signal antenna port of the kth group, and then transmits the reference signal.
  • step 202 the determining, by the UE, the kth group of reference signal antenna ports from the N sets of reference signal ports according to the information of the N sets of reference signal ports, including: the sending time n of the reference signal according to the reference signal, and the reference signal port
  • the k-th reference signal antenna port is determined by at least one of the group number N and the number of transmission times K of the reference signals.
  • determining, by the UE, the k-th reference signal antenna port according to the sending moment of the reference signal, the number N of reference signal ports, and the number of transmission times K of the reference signal includes:
  • the antenna port selection or switching function of the UE transmitting an uplink signal can adaptively configure two states of "enable” or “not enabled".
  • the user can perform antenna port selection for uplink signal transmission, and the port number for transmitting the reference signal at a certain time can be determined according to whether the frequency hopping of the reference signal is allowed to be transmitted.
  • n represents the time at which the reference signal is transmitted
  • k(n) represents the antenna port group number k of the reference signal determined at time n
  • K represents the number of transmissions of the reference signal
  • K ⁇ 1, mod indicates modulo Operation or remainder operation.
  • the antenna port group number k of the reference signal is determined.
  • n denotes the timing at which the reference signal is transmitted
  • k(n) denotes the antenna port group number k of the reference signal determined at the time n
  • K denotes the number of transmissions of the reference signal. Specifically, where K represents the number of reference signal transmissions required by the UE to traverse the entire bandwidth to be measured during one channel measurement. Where K is a positive integer greater than or equal to 1.
  • the time at which the reference signal is sent may be any one of a subframe, a time slot, a minimum time slot, and an OFDM symbol, that is, the time n may be a subframe n, or a time slot n, or a minimum time slot. n, or OFDM symbol n. Further, the time may be any other time unit other than the above definition. There is no limit here.
  • n represents one subframe
  • k(n) can be expressed as a corresponding transmit antenna port number when a reference signal is transmitted in subframe n.
  • the UE transmits the K-th reference signal by using different reference signal transmitting antenna ports, thereby traversing the entire bandwidth to be measured, thereby improving the channel measurement accuracy.
  • n denotes the timing at which the reference signal is transmitted
  • k(n) denotes the antenna port group number k of the reference signal determined at the time n
  • K denotes the number of transmissions of the reference signal. Specifically, where K represents the number of reference signal transmissions required by the UE to traverse the entire bandwidth to be measured during one channel measurement. Where K is a positive integer greater than or equal to 1.
  • the reference signal transmission antenna port group number k of the UE at the time n may be determined by using other relationships or a predefined manner, which is not limited in this embodiment.
  • the method before the UE receives the first packet information of the reference signal sent by the base station, the method further includes: the UE reporting the second packet information to the base station, so that the base station can determine the first according to the second group information.
  • Group information includes at least one of the UE's own antenna panel information, reference signal port information, and reference signal port group information.
  • the antenna panel information includes at least one of a distribution structure of all antennas of the UE, a panel pattern, and the like; the panel pattern information further includes a number of panels, a distribution pattern of P (P ⁇ 1) panels, and the like. At least one of the information.
  • the distribution pattern information of the panel may be a plurality of panel distribution patterns predefined by the base station and the user side.
  • FIG. 8 shows a schematic structural diagram of four antenna panel patterns, wherein x represents a pair of reference signal antenna ports in two polarization directions, and different reference signal antenna ports are distributed in different positions in the terminal device, which may generate Different antenna port panel patterns.
  • the reference signal port information includes information of a number of reference signal ports of the UE, a port number of each reference signal port, and the like; the reference signal port group information includes group information that is recommended by the UE to group all reference signal antenna ports. For example, all antenna ports are divided into two groups to generate packet information according to the number of parity. Or all the antenna ports are divided into P groups according to P antenna panels, wherein the antenna ports located in one panel belong to one group.
  • the reference signal port group information in the second group information may be the same as the first group information of the reference signal port sent by the base station in step 201, or may be different.
  • the base station may determine whether to adopt the same antenna port grouping information as the second packet information according to an uplink transmission mechanism configured by the base station for the UE.
  • the second group information reported by the UE to the base station may further include the transmission mechanism information of the UE or the channel quality result previously measured by the UE, and the channel quality result includes: uplink channel quality measurement information such as CQI.
  • the base station receives and determines the grouping information of the reference signal port sent to the UE according to the transmission mechanism according to different transmission mechanisms required by the UE, such as uplink transmit diversity, open loop transmission mode, and closed loop transmission mode.
  • the user equipment UE determines the antenna port group k for transmitting the reference signal from the N sets of reference signal ports according to the received grouping information of the reference signal port from the base station, and then passes the kth group antenna port.
  • the reference signal is sent to implement fast switching of the reference signal antenna port of the UE, and the reference signal is sent through the switched port. Since the switched reference signal port considers channel transmission characteristics and occlusion probability corresponding to different antenna panel structures, and current
  • the transmission mechanism needs to transmit, so that effective and adaptive uplink data transmission can be performed, so that the transmitted reference signal traverses the entire measurement bandwidth as soon as possible, thereby improving the accuracy of channel measurement and the efficiency of uplink data transmission.
  • the base station receives the second packet information reported by the UE, where the second packet information includes the number of ports and port numbers used when the uplink signal of the UE is sent.
  • the UE has a total of 8 antenna ports, and the 8 antenna ports are numbered from 0 to 7, respectively.
  • the base station groups the eight ports according to the number of ports and the port number of the UE, and the current transmission mechanism, and generates the first packet information and sends the information to the UE.
  • the UE receives the first packet information, and determines an antenna port group number k for transmitting the reference signal according to the indication of the first packet information.
  • the indication manner of the first group information includes: the first group information grouping the port numbers of the UEs into 0, 1, 4, and 5, and the port numbers are 2, 3, 6, and 7 Divided into a group.
  • the UE After receiving the port grouping information, the UE determines the antenna port group number k at which the reference signal is transmitted at time n according to the indication of the port grouping information. Further, according to the indication of the reference signal port grouping information, the UE determines a port group number k used for transmitting the reference signal each time, and each port group includes at least one antenna port.
  • each reference signal transmission is performed, and the four reference signal transmissions are respectively grouped by the following four reference signal ports, and the port number corresponding to each group of reference signal ports is: ⁇ 0, 1,4,5 ⁇ , ⁇ 2,3,6,7 ⁇ , ⁇ 2,3,6,7 ⁇ and ⁇ 0,1,2,3 ⁇ .
  • FIG. 4 another implementation manner of the indication of the first packet information is shown, which specifically includes: the UE sends the reference signal in six times according to the received reference signal port grouping information, and is composed of two ports at a time.
  • the reference signal is transmitted on the port group. Further, the UE determines that each of the six times uses a port number of ⁇ 0, 1 ⁇ , ⁇ 1, 2 ⁇ , ⁇ 2, 3 ⁇ , ⁇ 3, respectively. , 4 ⁇ , ⁇ 4, 5 ⁇ , and ⁇ 5, 6 ⁇ , and then sequentially switch and transmit the reference signal according to the antenna port number of the packet.
  • the antenna port packet information sent by the base station to the UE may be sent by using signaling, and further, the signaling includes high layer signaling, such as RRC signaling or RLC signaling, or physical layer signaling, such as DCI, or MAC. CE and so on.
  • high layer signaling such as RRC signaling or RLC signaling
  • physical layer signaling such as DCI, or MAC. CE and so on.
  • the number K of transmissions of the UE side reference signal is the number of reference signal transmissions required by the UE to traverse a complete bandwidth to be measured during one channel measurement.
  • the number of reference signal transmissions required by the UE to measure and traverse the entire bandwidth to be measured may be determined based on user cell specific and/or user specific reference signal bandwidth configuration parameters.
  • the bandwidth configuration parameters of a reference signal are shown in Tables 1 to 4 below.
  • the reference signal may be an uplink sounding reference signal SRS or the like.
  • Tables 1 to 4 above show the values of m SRS, b and N b in different SRS bandwidth configurations in the case of different uplink bandwidths, where m SRS,b represents the frequency domain bandwidth of one SRS transmission.
  • hopping of the SRS is required. It is generally stipulated that the frequency hopping of the SRS can be configured by the SRS hopping bandwidth of the upper layer. The value of the parameter is usually b hop ⁇ ⁇ 0, 1, 2, 3 ⁇ .
  • b hop ⁇ B SRS the UE needs to perform frequency hopping of the SRS, that is, the frequency hopping is performed only when the SRS transmission bandwidth of the UE is less than the hopping bandwidth.
  • the tree structure node corresponding to the specific SRS bandwidth of the UE has a parent node with a bandwidth of frequency hopping bandwidth on the tree, and when the parent node includes multiple child nodes, the UE performs frequency hopping of the SRS.
  • the first network device base station can configure the corresponding reference signal port grouping information according to the transmission requirement of the second network device UE, so that the second network device UE can group the information according to the port.
  • the indication is to switch the sending port of the uplink reference signal, and implements the flexible and adaptive uplink reference signal antenna port grouping and corresponding data transmission of the UE, so that all antennas of the UE can quickly traverse the entire bandwidth, thereby improving channel measurement accuracy. Sex and precision.
  • a device for transmitting a reference signal for implementing the reference signal transmitting method in the foregoing embodiment, the device is disposed in the second network device, and the second network is further provided.
  • the device includes a terminal device.
  • the reference signal transmitting device includes: a receiving unit 601, a processing unit 602, and a transmitting unit 603.
  • the device may also include other functional units or modules such as storage units.
  • the receiving unit 601 is configured to receive first group information of the reference signal port from the first network device, where the first group information includes information of N sets of reference signal ports, N is a positive integer, and N ⁇ 1.
  • the processing unit 602 is configured to determine, from the N sets of reference signal ports, a kth group of reference signal antenna ports, where k is a positive integer, and N ⁇ k ⁇ 1.
  • the sending unit 603 is configured to send a reference signal on the kth group of reference signal antenna ports.
  • the processing unit 602 is configured to determine, according to the sending moment of the reference signal, the group number N of the reference signal port, and the number of transmission times K of the reference signal, the kth group reference signal antenna port. .
  • processing unit 602 is further configured to use the following relationship:
  • n the timing at which the reference signal is transmitted
  • k(n) the antenna port group number k of the reference signal determined at time n
  • K the number of transmissions of the reference signal
  • the antenna port group number k of the reference signal is determined.
  • the antenna port group number k of the reference signal is determined.
  • the sending unit 603 is further configured to report the second group information to the first network device, where the second group information includes antenna panel information, reference signal port information, and reference signal port of the second network device. At least one of the grouping information.
  • the receiving unit 601 is further configured to receive signaling from the first network device, where the signaling is used to indicate first group information of the reference signal port, where the signaling includes: high layer signaling, At least one of layer-one signaling and layer two signaling.
  • the embodiment further provides a reference signal receiving apparatus for implementing the reference signal receiving method in the above embodiment, the apparatus being arranged in the first network device, such as a base station.
  • the reference signal receiving apparatus includes a receiving unit 701, a processing unit 702, and a transmitting unit 703.
  • the device may also include other functional units or modules such as storage units.
  • the sending unit 701 is configured to send, to the second network device, first group information of the reference signal port, where the first group information includes information of N sets of reference signal ports, where N is a positive integer, and N ⁇ 1;
  • the receiving unit 703 is configured to receive, by the second network device, a reference signal, where the reference signal is a reference signal corresponding to a kth group reference signal port of the N groups of reference signal ports, where k is a positive integer, and N ⁇ K ⁇ 1.
  • the receiving unit 703 is further configured to receive, by the second network device, the kth group determined according to at least one of a sending moment of the reference signal, a number N of reference signal ports, and a number of transmission times K of the reference signals.
  • the reference signal corresponding to the reference signal port.
  • the receiving unit 703 is further configured to use the following relationship:
  • n the timing at which the reference signal is transmitted
  • k(n) the antenna port group number k of the reference signal determined at time n
  • K the number of transmissions of the reference signal
  • the receiving unit 701 is further configured to receive second group information from the second network device, where the second group information includes antenna panel information, reference signal port information, and a reference signal of the second network device. At least one of the port grouping information.
  • the processing unit 702 is configured to determine, according to the second group information, first group information of the reference signal port.
  • the sending unit 703 is further configured to send, by using the signaling, the first group information to the second network device, where the signaling includes: high layer signaling, layer 1 signaling, and layer 2 signaling. At least one.
  • the second network device determines, according to the received grouping information of the reference signal port from the first network device, the antenna port group k for transmitting the reference signal from the N sets of reference signal ports, and then passes the kth
  • the group antenna port sends a reference signal to implement fast switching of the reference signal antenna port of the second network device, and sends a reference signal through the switched port. Since the switched reference signal port takes into account the channel transmission characteristics and occlusion probability corresponding to different antenna panel structures, and the transmission requirements of the current transmission mechanism, efficient, adaptive uplink data transmission can be performed, and the transmitted reference signal can be transmitted as soon as possible. The entire measurement bandwidth is traversed, thereby improving the accuracy of channel measurement and the efficiency of uplink data transmission.
  • a signaling method for reducing signaling overhead of indication information.
  • the reference signal antenna ports may be different in the case of the same reference signal antenna port number and port number.
  • the panel pattern so that it may correspond to a different codebook configuration.
  • the distance between the port number 1 and the port number 2 in the antenna port panel pattern 2 (pattern 2) on the UE side is a large antenna pitch (a codebook configuration suitable for a large antenna pitch), and the panel pattern 3
  • the distance between port number 1 and port number 2 in (pattern3) is a small antenna pitch (a codebook configuration suitable for a small antenna pitch), so the code pattern configuration corresponding to the panel pattern 2 and the panel pattern 3 of the antenna port is different.
  • the method provided in this embodiment is used to configure a better codebook when transmitting an uplink signal for an antenna port under each panel pattern, so as to improve the transmission performance of the uplink data.
  • a large precoding matrix set that is, a codebook
  • the precoding matrix set or the codebook includes the same antenna port number of the UE. Codewords under all different panel patterns.
  • the base station selects a suitable codebook subset or a precoding matrix subset from a predefined large codebook or precoding matrix set according to related information of the transmit antenna port of the UE, and uses a precoding matrix index corresponding to the codebook subset.
  • the UE determines the weighting coefficient on the transmitting antenna port according to the precoding matrix index, and performs corresponding data transmission, so as to prevent the UE from receiving the corresponding sending signal or sending signal because some antenna ports are blocked. Poor performance.
  • the method provided in this embodiment includes the following steps:
  • Step 901 The base station determines a precoding matrix index from the first index set, where the precoding matrix index is used to determine a precoding matrix used when the UE sends data, and each index of the first index set corresponds to the first a precoding matrix in a set of precoding matrices, the first precoding matrix set is a true subset of the second precoding matrix set, and any one of the first index sets has a precoding matrix index value less than or equal to The number of precoding matrices included in the first precoding matrix set.
  • Step 902 The base station sends the precoding matrix index to the UE, and at the same time, the UE receives a precoding matrix index determined by the base station from the first index set.
  • the UE receives the signaling sent by the base station, where the signaling carries the precoding matrix index, where the signaling includes: high layer signaling (such as RRC signaling or RLC signaling), layer one letter At least one of (eg, physical layer signaling, DCI) or layer 2 signaling (eg, MAC CE signaling).
  • the base station sends the precoding matrix index to the UE by using DCI indication signaling.
  • Step 903 The UE performs data transmission according to the precoding matrix index. For example, an uplink service data channel, or an uplink control channel, or an uplink reference signal, such as an SRS, is transmitted.
  • an uplink service data channel or an uplink control channel, or an uplink reference signal, such as an SRS, is transmitted.
  • an uplink reference signal such as an SRS
  • the process of determining the precoding matrix by the UE according to the precoding matrix index sent by the base station specifically includes:
  • the UE receives first precoding matrix set information from the base station, where the first precoding matrix set information is used to indicate a subset of the second precoding matrix set. A codeword index is then determined based on a subset of the second set of precoding matrices.
  • the base station may determine the first precoding matrix set information according to a statistical result measured between the UE and the UE.
  • the second precoding matrix set shown in Table 5 below includes a precoding matrix set consisting of a precoding matrix corresponding to a total of 24 indexes corresponding to the index from 0 to 23, or a codebook. It is assumed that the precoding matrix set can be divided into three subsets (that is, the first precoding matrix set having three candidates), corresponding to three index sets, and the corresponding index sets are assumed to be 0-7, 8-15, and 16-, respectively. twenty three. One index in each index set corresponds to one precoding matrix. For example, the precoding matrix corresponding to the precoding matrix index “0” is It is assumed that the first index set consists of precoding matrix indices 0-7.
  • the UE and the base station both predefine the precoding matrix set consisting of the foregoing 24 precoding matrices. Therefore, the first precoding matrix set information sent by the base station to the UE only needs to include the set number of the candidate index set, and The signaling is sent to the UE through the DCI indication signaling, thereby saving the overhead of the DCI indication signaling.
  • the UE receives, by using signaling, first precoding matrix set information configured by the base station, where the signaling includes: high layer signaling (eg, RRC signaling or RLC signaling), and layer 1 signaling (eg, physical layer At least one of signaling) or layer 2 signaling (eg, MAC CE signaling).
  • the base station sends the configured first precoding matrix set information to the UE by using RRC signaling or RLC signaling.
  • the UE reports the first precoding matrix set information to the base station, where the first precoding matrix set information is used to recommend the second precoding matrix set to the base station. Which subset is selected in .
  • the second precoding matrix is a complete set of all precoding matrices of the UE in a certain antenna port number configuration. For example, it may be a set of precoding matrices under all antenna panel structures or a set of precoding matrices at all antenna spacings for a certain number of antenna ports.
  • the base station After receiving the first precoding matrix set information, the base station determines the precoding matrix index, and sends the precoding matrix index to the UE, so that the UE can send the uplink by using a better precoding matrix according to the precoding matrix index. data.
  • the precoding matrix index is an index of a precoding matrix that is renumbered in the first precoding matrix set, the base station is prevented from transmitting the precoding matrix index corresponding to the second precoding matrix set through the DCI.
  • the UE may be saved, ie, compared to a method indicating a corresponding index in the second precoding matrix set, DCI indication signaling may be saved.
  • the base station sends the configured precoding matrix index to the UE, so that the UE can determine the precoding matrix used when transmitting the data according to the precoding matrix index. Since the matrix index is selected in the first precoding matrix set, and the first precoding matrix set is one true subset in the second precoding matrix set, it can quickly indicate which precoding matrix index the UE adopts, Because the precoding matrix index is an index of a precoding matrix that is renumbered in the first precoding matrix set, and therefore, compared to a method of indicating a corresponding index in the second precoding matrix set, The DCI signaling overhead.
  • the UE reports the first precoding matrix set information to the base station, so that the base station can select a suitable precoding matrix index for the UE according to the precoding matrix set recommended by the UE, so that the precoding matrix corresponding to the precoding matrix index is obtained. It is capable of adapting multiple possible antenna panel structures on the UE side, and realizes an optimal precoding matrix configuration under different antenna panel patterns, thereby improving data transmission performance.
  • the system pre-defines M (M>1) precoding matrix sets, each precoding matrix set corresponds to a panel pattern of an antenna port, and each The codeword indicated by the precoding matrix index corresponds to one precoding matrix in a precoding matrix set. That is, each of the precoding matrix indices is an index of a precoding matrix renumbered in a precoding matrix set.
  • the codeword structure in the system pre-defined M precoding matrix sets is related to the distribution of multiple antenna ports of the UE and the antenna spacing between multiple antenna ports.
  • the antenna spacing between the four antenna ports in the same polarization direction in the panel pattern 1 (pattern 1) and the panel pattern 4 (pattern 4) is relatively large. Therefore, when the base station configures the precoding matrix set, the panel pattern 1 (pattern 1) and the panel are used.
  • the codewords in the precoding matrix set corresponding to pattern 4 are set to some codewords suitable for large antenna spacing.
  • the codewords applicable to the large antenna spacing may be those suitable for the large antenna spacing in the dual codebook configuration of the 4-antenna port in the LTE-A system.
  • the codewords in the precoding matrix set corresponding to the panel pattern 2 (pattern 2) and the panel pattern 3 (pattern 3) are some codewords suitable for small antenna pitch.
  • the codewords suitable for small antenna spacing may be those suitable for small antenna spacing in a dual codebook configuration of 4 antenna ports in an LTE-A system.
  • the panel pattern 1 and the panel pattern 4 may be respectively configured with different pre-configurations.
  • the coding matrix set is not specifically limited in this embodiment.
  • the base station receives the UE in order to prevent the UE's transmit antenna port from being blocked. The signal quality is degraded.
  • the base station configures the precoding matrix set, the base station configures different precoding matrix sets for different antenna panel structures.
  • the precoding matrix in the precoding matrix set may be composed of a column selection vector and a phase rotation.
  • Table 5 a set of precoding matrices with an uplink 4 antenna rank of 1 is shown, wherein the codeword index consisting of the column selection vector plus the phase rotation in the precoding matrix set includes the table 5 in Table 5. Index 16-23.
  • the precoding matrix configuration of the base station configuration has different non-zero entries.
  • the precoding matrix with the index of 16-23 is the precoding matrix used by the base station for the antenna occlusion scenario.
  • the set of precoding matrices configured by the base station for the UE is the index corresponding to the index 16-23 in the above table.
  • the precoding matrix index of the base station configuration received by the UE is 16-23, and the UE determines, according to the precoding matrix index, a precoding matrix used when transmitting data.
  • the UE includes two sets of antenna ports for transmitting reference signals, wherein one set of antenna ports is occluded, resulting in degradation of the quality of signals received by the base station from the set of antenna ports.
  • the embodiment further provides a signal sending device, where the device is disposed in a terminal device, as shown in FIG. 11 , specifically, the device includes: a receiving unit 1101, processing unit 1102 and transmitting unit 1103.
  • the receiving unit 1101 is configured to receive a precoding matrix index determined by the base station from the first index set, where the precoding matrix index is used to determine a precoding matrix used when transmitting data, and each of the first index sets The index corresponds to one precoding matrix in the first precoding matrix set, the first precoding matrix set is a true subset of the second precoding matrix set, and any one of the first index sets is precoding matrix index value Less than or equal to the number of precoding matrices included in the first precoding matrix set.
  • the sending unit 1103 is configured to send data according to the precoding matrix index. For example, an uplink service data channel, or an uplink control channel, or an uplink reference signal, such as an SRS, is transmitted.
  • an uplink service data channel or an uplink control channel
  • an uplink reference signal such as an SRS
  • the receiving unit 1101 is further configured to receive first precoding matrix set information from the base station, where the first precoding matrix set information is used to indicate a subset of the second precoding matrix set.
  • the sending unit 1103 is further configured to send the first precoding matrix set information to the base station, where the first precoding matrix set information is used to indicate a subset of the second precoding matrix set.
  • the receiving unit 1101 is configured to receive the signaling sent by the base station, where the signaling carries at least one of the first precoding matrix set information and the precoding matrix index,
  • the signaling includes at least one of high layer signaling, layer one signaling, and layer two signaling.
  • the first precoding matrix set information is sent by using RRC signaling or RLC signaling; the precoding matrix index is sent by DCI indication signaling.
  • the present embodiment further provides a signal receiving apparatus.
  • the apparatus is disposed in a base station. Further, the apparatus includes: a receiving unit 1201, a processing unit 1202, and a transmitting unit 1203.
  • the processing unit 1202 is configured to determine a precoding matrix index from the first index set, where the precoding matrix index is used to determine a precoding matrix used by the terminal device to send data, and each of the first index sets The index corresponds to one precoding matrix in the first precoding matrix set, the first precoding matrix set is a true subset of the second precoding matrix set, and any one of the first index sets has an index value less than or equal to the The number of precoding matrices included in the first precoding matrix set.
  • the sending unit 1203 is configured to send the precoding matrix index to the terminal device.
  • the receiving unit 1201 is configured to receive data that is sent by the terminal device according to the precoding matrix index.
  • the processing unit 1202 is further configured to configure the first precoding matrix set information, where the first precoding matrix set information is used to indicate a subset of the second precoding matrix set.
  • the sending unit 1203 is further configured to send the first precoding matrix set information to the terminal device.
  • the receiving unit 1201 is further configured to receive the first precoding matrix set information sent by the terminal device.
  • the processing unit 1202 is further configured to determine, according to the first precoding matrix set information, a subset of the second precoding matrix set, and determine, according to the subset of the second precoding matrix set, Precoding matrix index.
  • the sending unit 1203 is configured to send signaling to the terminal device, where the signaling carries the first precoding matrix set information, where the signaling includes high layer signaling, layer 1 signaling, or layer 2 At least one of signaling.
  • the sending unit 1203 sends the first precoding matrix set information to the terminal device by using RCC signaling or RLC signaling.
  • the sending unit 1203 is specifically configured to send signaling to the terminal device, where the signaling carries an index of the precoding matrix, where the signaling includes high layer signaling, layer 1 signaling, or layer 2 At least one of signaling.
  • the sending unit 1203 sends the precoding matrix index to the terminal device by using DCI signaling.
  • the present application further provides a terminal device, such as a UE, for implementing the method steps in the foregoing embodiments.
  • the terminal device may be composed of a transceiver 1301, a processor 1302, a memory 1303, and the like.
  • the processor 1302 is a control center of the terminal device, and connects various parts of the entire network device by using various interfaces and lines, by running or executing software programs and/or modules stored in the memory, and calling data stored in the memory, Perform various functions and/or process data of the network side device.
  • the processor 1302 may be a central processing unit (CPU), a network processor (NP), or a combination of a CPU and an NP.
  • the processor may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • the memory 1303 may include a volatile memory, such as a random access memory (RAM), and may also include a non-volatile memory, such as a flash memory.
  • RAM random access memory
  • non-volatile memory such as a flash memory.
  • a hard disk drive (HDD) or a solid state drive (SSD); the memory may also include a combination of the above types of memories.
  • the transceiver 1301 can be configured to receive or transmit data, and the transceiver can transmit data to various nodes or other devices in the video network system under the control of the processor, and receive each node or under the control of the processor. Data sent by other devices.
  • the transceiver 1301 may be configured to implement port grouping information for receiving a reference signal sent by the first network device in the foregoing embodiment, and send a reference signal or the like to the first network device.
  • the functions to be implemented by the receiving unit 601 in FIG. 6 of the foregoing apparatus embodiment may be implemented by the transceiver 1301 of the terminal device or by the processor 1302 controlling the transceiver 1301.
  • the functions to be implemented by the processing unit 602 in FIG. 6 can also be implemented by the processor 1302 of the terminal device.
  • the embodiment further provides a schematic structural diagram of a network device, which is used to implement the reference signal sending method in the foregoing embodiment.
  • the network device may be the first network device in any of the foregoing embodiments, such as a base station.
  • the base station may be composed of a transceiver 1401, a processor 1402, a memory 1403, and the like.
  • the processor 1402 is a control center of the network device (base station), and connects various parts of the entire network side device by using various interfaces and lines, by running or executing software programs and/or modules stored in the memory, and calling and storing in the memory. Data to perform various functions of the network side device and/or process data.
  • the processor may be a central processing unit (CPU), a network processor (NP) or a combination of a CPU and an NP.
  • the processor may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • the memory 1403 may include a volatile memory, such as a random access memory (RAM), and may also include a non-volatile memory, such as a flash memory.
  • RAM random access memory
  • non-volatile memory such as a flash memory.
  • HDD hard disk drive
  • SSD solid state drive
  • a program or code may be stored in the memory, and the processor in the network element may implement the function of the network element by executing the program or code.
  • the transceiver 1401 can be configured to receive or transmit data, and the transceiver can transmit data to the terminal device or other network side device under the control of the processor; the transceiver receives the terminal device under the control of the processor Or data sent by other network side devices.
  • the transceiver 1401 can be used to implement the method steps for receiving the reference signal in FIG. 2 of the foregoing embodiment, and the functions of the apparatus embodiment FIG.
  • the function to be implemented by the receiving unit 701 in FIG. 7 may be implemented by the transceiver 1401 of the base station or by the transceiver 1401 controlled by the processor 1402; the function to be implemented by the sending unit 703 may also be implemented by The transceiver 1401 of the base station is implemented, or can also be implemented by the transceiver 1401 controlled by the processor 1402; the functions to be implemented by the processing unit 702 can be implemented by the processor 1402.
  • the terminal device 1300 and the base station 1400 in this embodiment are also used to implement the foregoing method implementation, for example, all the method flows shown in FIG.
  • the terminal device 1300 is configured to implement all or part of the functions of the foregoing apparatus, such as the signal transmitting apparatus shown in FIG. 11, and the base station 1400 is configured to implement all or part of the functions of the apparatus, such as the signal receiving apparatus shown in FIG.
  • the functions of the various units may be implemented by corresponding transceivers and processors.
  • the present application further provides a computer storage medium, wherein the computer storage medium may store a program, where the program may include a reference signal sending method, a receiving method, a signal sending method, and a receiving method provided by the present application. Some or all of the steps in the various embodiments.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).
  • the technology in the embodiments of the present application can be implemented by means of software plus a necessary general hardware platform.
  • the technical solution in the embodiments of the present application may be embodied in the form of a software product in essence or in the form of a software product, and the computer software product may be stored in a storage medium such as a ROM/RAM. , a diskette, an optical disk, etc., including instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods described in various embodiments of the present application or portions of the embodiments.
  • a computer device which may be a personal computer, server, or network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请公开了一种参考信号发送方法、接收方法和装置,所述发送方法包括:第二网络设备从第一网络设备接收参考信号端口的第一分组信息,所述第一分组信息包括N组参考信号端口的信息,N为正整数,且N≥1;从所述N组参考信号端口中确定第k组参考信号天线端口,k为正整数,且N≥k≥1;在所述第k组参考信号天线端口上发送参考信号。实现了第二网络设备的参考信号天线端口的快速切换,且能够进行自适应的上行数据传输,使发送的参考信号尽快遍历整个测量带宽,从而提高了信道测量的准确性和上行数据传输的效率。

Description

一种参考信号发送方法、接收方法和装置
本申请要求在2017年3月24日提交中国国家知识产权局、申请号为201710186498.9、发明名称为“一种参考信号发送方法、接收方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通讯技术领域,尤其涉及一种参考信号发送方法、接收方法和装置。
背景技术
在第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)的长期演进(long term evolution,LTE)/LTE高级演进(LTE-advanced,LTE-A)系统中,下行多址接入方式通常采用正交频分复用多址接入(orthogonal frequency division multiple access,OFDMA)方式。系统的下行资源从时间上看被划分成了多个正交频分复用多址(orthogonal frequency division multiple,OFDM)符号,从频率上看被划分成了若干个子载波。
一般地,一个正常上行或下行子帧,包含有两个时隙(slot),每个时隙包括7个OFDM符号,所以,一个正常上行或下行子帧共含有14个OFDM符号,并且,系统中还定义了物理资源块(physical resource block,PRB)的大小,一个RB在频域上包含12个子载波,在时域上为半个子帧时长(一个时隙),即包含7个OFDM符号(symbol),其中,正常的循环前缀(cyclic prefix,CP)长度为7个OFDM符号,扩展的循环前缀长度为6个OFDM符号。在某个OFDM符号内的某个子载波称为资源元素(resource element,RE),因此一个RB包含84个或72个RE。在一个子帧上,两个时隙的一对RB称之为资源块对(RB pair)。在发送上行数据时,一个时隙的7个OFDM符号中的第4个OFDM符号为上行解调导频,其它符号上可用于承载数据,如图1所示。
在目前的3GPP协议中,虽然定义了上行4发天线,并支持用4个功率放大器(Power Amplifier,PA)来同时发送探测参考信号(sounding reference signal,SRS),但是在实际中,没有两个或两个以上PA的终端商用。相比LTE中的上行数据传输,在新一代传输协议中,UE支持的上行发送天线数变得更多,例如支持6发甚至8发的上行发送天线。但由于成本受限,UE实际支持的PA数通常小于等于UE的发送天线数。
此外,UE的上行发送还会支持不同的面板(panel),同一面板内的多个天线之间具有较强的相关性,而不同面板的天线间对应的信道传输特性和被遮挡概率不同。
当UE有多个天线且这些天线位于不同的面板时,现有技术无法根据不同的传输需求动态地进行天线端口的分组切换,进而不能在全系统带宽上进行快速,有效的信道质量测量。例如在时分双工(time division duplexing,TDD)系统中,通过UE向基站发送SRS信号来获得上行和或下行的信道质量信息,如果UE中有P(P>=1)个发送天线,但只有Q(Q<P)个PA,由于UE不支持P个天线基于Q个天线端口组的轮流切换来发送SRS,导致基站不能快速、有效的获得所有的收发天线之间的信道,因此,性能的损失较大。
发明内容
本申请提供了一种参考信号发送方法、接收方法和装置,以使UE在所有天线上尽快遍历整个系统的带宽,从而提高上行参考信号传输的准确性。
第一方面,本申请提供了一种参考信号发送方法,所述方法包括:第二网络设备从第一网络设备接收参考信号端口的第一分组信息,所述第一分组信息包括N组参考信号端口的信息,N为正整数,且N≥1;所述第二网络设备从所述N组参考信号端口中确定第k组参考信号天线端口,k为正整数,且N≥k≥1;所述第二网络设备在所述第k组参考信号天线端口上发送参考信号。
本方面提供的方法,第二网络设备根据接收到的来自第一网络设备的参考信号端口的分组信息,从N组参考信号端口中确定用于发送参考信号的天线端口组k,再通过第k组天线端口发送参考信号,实现了第二网络设备的参考信号天线端口的快速切换,并通过切换后的端口发送参考信号。由于切换后的参考信号端口考虑了不同天线面板结构对应的信道传输特性和遮挡概率,以及当前传输机制的发射需求,所以,能够进行有效,自适应的上行数据传输,并使发送的参考信号尽快遍历整个测量带宽,从而提高了信道测量的准确性和上行数据传输的效率。
结合第一方面,在一种实现中,所述第二网络设备根据所述N组参考信号端口的信息从所述N组参考信号端口中确定第k组参考信号天线端口,包括:所述第二网络设备根据参考信号的发送时刻,所述参考信号端口的组数N,所述参考信号的发送次数K中的至少一个确定所述第k组参考信号天线端口。
结合第一方面,在一种实现中,确定所述第k组参考信号天线端口,包括:按照如下关系式:
Figure PCTCN2018079748-appb-000001
确定所述参考信号的天线端口组号k:其中,
Figure PCTCN2018079748-appb-000002
n表示发送所述参考信号的时刻,k(n)表示在时刻n确定的所述参考信号的天线端口组号k,K表示所述参考信号的发送次数,且K≥1。
结合第一方面,在一种实现中,第二网络设备从第一网络设备接收参考信号端口的第一分组信息之前,还包括:所述第二网络设备向所述第一网络设备上报第二分组信息,所述第二分组信息包括所述第二网络设备的天线面板信息、参考信号端口信息和参考信号端口分组信息中的至少一个。
本实现方式中,第二网络设备通过向第一网络设备上报第二分组信息,使得第一网络设备在配置参考信号的分组信息时,能够根据第二网络设备的需求,例如传输机制、参考信号的端口数、端口号等进行分组,实现了自适应的上行天线端口的分组和对应数据的传输,避免了由于第二网络设备的P个天线不支持Q个天线端口组的参考信号的切换发送,导致第一网络设备不能得到所有收发天线之间的信道,进而导致性能损失较大。
结合第一方面,在一种实现中,第二网络设备从第一网络设备接收参考信号端口的第 一分组信息,包括:所述第二网络设备从所述第一网络设备接收信令,所述信令用于指示所述参考信号端口的第一分组信息;所述信令包括:高层信令,层一信令和层二信令中的至少一种。
第二方面,本申请还提供了一种参考信号接收方法,应用于第一网络设备,例如基站,所述方法包括:第一网络设备向第二网络设备发送参考信号端口的第一分组信息,所述第一分组信息包括N组参考信号端口的信息,N为正整数,且N≥1;所述第一网络设备从所述第二网络设备接收参考信号,所述参考信号是所述N组参考信号端口中的第k组参考信号端口对应的参考信号,k为正整数,且N≥k≥1。
结合第二方面,在一种实现中,所述第一网络设备接收所述第二网络设备发送的从所述N组参考信号端口中确定的第k组参考信号端口对应的参考信号,包括:所述第一网络设备接收所述第二网络设备根据参考信号的发送时刻,所述参考信号端口的组数N,所述参考信号的发送次数K中的至少一个确定的所述第k组参考信号端口对应的参考信号。
结合第二方面,在一种实现中,所述第一网络设备接收所述第k组参考信号端口对应的参考信号,包括:按照第一关系式:
Figure PCTCN2018079748-appb-000003
接收所述确定的所述第k组参考信号端口对应的参考信号:其中,
Figure PCTCN2018079748-appb-000004
n表示发送所述参考信号的时刻,k(n)表示在时刻n确定的所述参考信号的天线端口组号k,K表示所述参考信号的发送次数,且K≥1。
结合第二方面,在一种实现中,第一网络设备向第二网络设备发送参考信号端口的第一分组信息之前,还包括:第一网络设备从所述第二网络设备接收第二分组信息,所述第二分组信息包括所述第二网络设备的天线面板信息、参考信号端口信息和参考信号端口分组信息中的至少一个;所述第一网络设备根据所述第二分组信息确定所述参考信号端口的第一分组信息。
结合第二方面,在一种实现中,第一网络设备向第二网络设备发送参考信号端口的第一分组信息,包括:所述第一网络设备通过信令向所述第二网络设备发送所述第一分组信息,所述信令包括:高层信令,层一信令和层二信令中的至少一种。
本方面提供的方法,第一网络设备基站能够根据第二网络设备UE的传输需求配置相应的参考信号端口分组信息,从而使得第二网络设备UE能够根据所述端口分组信息的指示对天线进行切换,实现了UE灵活自适应的上行参考信号天线端口的分组和对应的数据传输,使得UE的所有天线能够快速地遍历整个带宽,提高了信道测量的准确性和精确度。
第三方面,本申请提供了一种信号发送方法,所述方法包括:终端设备接收基站从第一索引集合中确定的预编码矩阵索引,其中,所述预编码矩阵索引用于确定终端设备发送数据时所采用的预编码矩阵,所述第一索引集合的每个索引对应第一预编码矩阵集合中的一个预编码矩阵,所述第一预编码矩阵集合为第二预编码矩阵集合的真子集,所述第一索引集合中的任意一个预编码矩阵索引值小于等于所述第一预编码矩阵集合中包含的预编码矩阵的个数;所述终端设备根据所述预编码矩阵索引进行数据的发送。
结合第三方面,在一种实现中,终端设备接收基站从第一索引集合中确定的预编码矩阵索引之前,还包括:所述终端设备从所述基站接收第一预编码矩阵集合信息,所述第一预编码矩阵集合信息用于指示所述第二预编码矩阵集合的一个子集。
结合第三方面,在一种实现中,终端设备接收基站从第一索引集合中确定的预编码矩阵索引之前,还包括:所述终端设备将所述第一预编码矩阵集合信息发送给所述基站,所述第一预编码矩阵集合信息用于指示所述第二预编码矩阵集合的一个子集。
结合第三方面,在一种实现中,所述终端设备接收所述第一预编码矩阵集合信息和或所述预编码矩阵索引,包括:所述终端设备从所述基站接收信令,所述信令中携带所述第一预编码矩阵集合信息和所述预编码矩阵索引中的至少一种,所述信令包括:高层信令,层一信令和层二信令中的至少一种。
本方面提供的方法,基站将配置的预编码矩阵索引发送给终端设备UE,使UE能够根据该预编码矩阵索引确定发送数据时所采用的预编码矩阵。由于在第一预编码矩阵集合中选择矩阵索引,并且所述第一预编码矩阵集合为第二预编码矩阵集合中的一个真子集,所以不仅能够快速地指示UE采用哪种预编码矩阵发送数据,而且由于所述索引的取值限定在了UE的第二预编码矩阵集合的一个子集中,因此降低了所需的DCI指示信令开销。
此外,UE通过向基站上报第一预编码矩阵集合信息,使得基站能够根据UE推荐的预编码矩阵集合,为UE选择适合的预编码矩阵索引,使得与所述预编码矩阵索引对应的预编码矩阵能够自适应UE侧多种可能的天线面板结构,实现了不同天线面板图案下最优的预编码矩阵配置,提高了数据传输的性能。可选的,UE可根据自适应的传输需求,例如不同的传输机制、UE的端口数和端口号等向基站推荐第一预编码矩阵集合信息。
第四方面,本申请实施例还提供一种信号接收方法,所述方法包括:基站从第一索引集合中确定预编码矩阵索引,其中,所述预编码矩阵索引用于确定终端设备发送数据时所采用的预编码矩阵,所述第一索引集合的每个索引对应第一预编码矩阵集合中的一个预编码矩阵,所述第一预编码矩阵集合为第二预编码矩阵集合的真子集,所述第一索引集合中的任意一个预编码矩阵索引值小于等于所述第一预编码矩阵集合中包含的预编码矩阵的个数;所述基站将所述预编码矩阵索引发送给所述终端设备;所述基站接收所述终端设备根据所述预编码矩阵索引发送的数据。
结合第四方面,在一种实现中,基站从第一索引集合中确定预编码矩阵索引之前,还包括:所述基站配置第一预编码矩阵集合信息,所述第一预编码矩阵集合信息用于指示所述第二预编码矩阵集合的一个子集;所述基站将所述第一预编码矩阵集合信息发送给所述终端设备。
结合第四方面,在一种实现中,基站从第一索引集合中确定预编码矩阵索引,包括:所述基站接收所述终端设备发送的第一预编码矩阵集合信息;所述基站根据所述第一预编码矩阵集合信息确定所述第二预编码矩阵集合的一个子集;所述基站根据所述第二预编码矩阵集合的一个子集确定所述预编码矩阵索引。
结合第四方面,在一种实现中,所述设备接收所述第一预编码矩阵集合信息和或所述预编码矩阵索引,包括:所述终端设备接收从所述基站接收信令,所述信令中携带所述第一预编码矩阵集合信息和所述预编码矩阵索引中的至少一种,所述信令包括高层信令,层一信令和层二信令中的至少一种。
第五方面,本申请提供了一种参考信号发送装置,所述装置可以布置在第二网络设备中,例如终端设备,该装置包括用于执行前述第一方面及第一方面各实现方式的中步骤的单元。
第六方面,本申请提供了一种参考信号接收装置,所述装置可以布置在第一网络设备中,例如基站,该装置包括用于执行前述第二方面及第二方面各实现方式的中步骤的单元。
第七方面,本申请提供了一种信号发送装置,所述装置可以布置在第二网络设备中,例如终端设备,该装置包括用于执行前述第三方面及第三方面各实现方式的中步骤的单元。
第八方面,本申请提供了一种信号接收装置,所述装置可以布置在第一网络设备中,例如基站,该装置包括用于执行前述第四方面及第四方面各实现方式的中步骤的单元。
第九方面,本申请提供了一种系统,该系统包括第一网络设备和第二网络设备,所述第一网络设备可以是基站,所述第二网络设备可以是终端设备,例如UE。具体地,所述第一网络设备包括收发器、处理器和存储器,所述第一网络设备用于实现上述第一方面以及第一方面各实现中的参考信号发送方法;以及用于实现前述第三方面以及第三方面各实现中的信号接收方法。所述第二网络设备包括收发器、处理器和存储器,所述第二网络设备用于实现上述第二方面以及第二方面各实现中的参考信号接收方法;以及用于实现前述第四方面以及第四方面各实现中的信号接收方法。
第十方面,本申请还提供了一种计算机存储介质,该计算机存储介质可存储有程序,该程序执行时可实现包括本申请提供的参考信号发送方法、接收方法,以及信号接收方法和发送方法各实施例中的部分或全部步骤。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种上行PUSCH的子帧结构的示意图;
图2为本申请实施例提供的一种参考信号发送方法的流程图;
图3为本申请实施例提供的一种参考信号端口的分组信息指示的示意图;
图4为本申请实施例提供的另一种参考信号端口的分组信息指示的示意图;
图5为本申请实施例提供的一种确定参考信号的发送次数K的示意图;
图6为本申请实施例提供的一种参考信号发送装置的结构示意图;
图7为本申请实施例提供的一种参考信号接收装置的结构示意图;
图8为本申请实施例提供的不同天线面板图案的结构的示意图;
图9为本申请实施例提供的一种信号发送方法的流程示意图;
图10为本申请实施例提供的不同码字结构所对应的天线面板图案的示意图;
图11为本申请实施例提供的一种信号发送装置的结构示意图;
图12为本申请实施例提供的一种信号接收装置的结构示意图;
图13为本申请实施例提供的一种发送参考信号的系统的结构示意图。
具体实施方式
下面结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描 述。
本申请各实施例应用于至少一个作为发送设备的第一网络设备和至少一个作为接收设备的第二网络设备所组成的通信系统。所述发送设备和接收设备可以为以无线方式进行数据传输的任意一种发送端的设备和接收端的设备。发送设备和接收设备可以是任意一种具有无线收发功能的设备,包括但不限于:基站(NodeB)、演进型基站(eNodeB)、第五代(the fifth generation,5G)通信系统中的基站、未来通信系统中的基站或网络设备、WiFi系统中的接入节点、无线中继节点、无线回传节点以及用户设备(user equipment,UE)等。
其中,UE也可以称之为终端Terminal、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、远端设备(remote terminal,RT)、接入终端(access terminal,AT)、用户代理(user agent,UA)等。UE可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信,或者可以通过自组织或免授权的方式接入分布式网络,UE还可以通过其它方式接入无线网络进行通信,UE也可以与其它UE直接进行无线通信,本申请实施例对此不作限定。
本申请各实施例所提供的参考信号或者探测参考信号(Sounding Reference Signal,SRS)发送方法可以适用于下行数据传输,也可以适用于上行数据传输。对于下行数据传输,发送设备是基站,对应的接收设备是UE。对于上行数据传输,发送设备是UE,对应的接收设备是基站。对于D2D的数据传输,发送设备是UE,对应的接收设备也是UE。本申请的实施例对此不做限定。
本申请各实施例中所提供的SRS端口组切换方法可以应用于各种通信系统,例如LTE系统、WCDMA、4G、4.5G以及5G系统等,本申请对应用场景不做限定。
本申请实施例提供了一种自适应的天线分组及基于所述分组进行动态天线切换的方法。考虑到不同面板对应的信道传输特性和遮挡概率不同,而不同传输机制有不同的参考信号发送和测量需求,例如,对于发射分集的传输机制,要求高的可靠性,所以SRS端口分组时可以尽可能将位于不同面板的多个天线分为一组,从而可克服了上行信号传输中的随机遮挡导致的用户上行信号传输的中断。对于闭环传输方式,要求更高的信道质量测量精度,SRS端口分组时可尽可能将位于同一面板上的多个天线分为一组,从而可实现同一面板内的多个天线间的精确信道质量测量,尤其是对于一些快变的信道质量信息的跟踪,如两个极化方向间的相位旋转信息的跟踪等,需要基于同一天线面板内的多个天线进行测量才能获得更快,更准确的测量结果。
具体地,以上行参考信号的发送为例,本实施例包括第一网络设备和第二网络设备,所述第一网络设备为基站,所述第二网络设备为UE,所述参考信号发送方法包括如下步骤:
参见图2,示出了一种参考信号发送方法的流程示意图。
步骤201:基站向UE发送参考信号端口的第一分组信息,所述第一分组信息包括N组参考信号端口的信息,N为正整数,且N≥1。即UE从该基站接收参考信号端口的第一分组信息。
其中,N表示UE所包含的端口组数,当N等于1时,表示第一分组信息中包括一组参考信道端口的信息;当N大于1时,表示第一分组信息中包括对两组或两组以上的参考信号端口的分组信息。
每组参考信号端口信息中包括该端口组对应的参考信号端口数和参考信号端口号等信息中的至少一个。其中,每组参考信号端口包括的参考信号端口数大于等于1,不同端口组包括的参考信号端口数可以相同或不同,例如,将UE的所有参考信号端口分为三组,第1组、第2组和第3组。其中,每组中包括至少一个天线端口,例如,第1组中包括两个参考信号端口号,第2组和第3组中各包括三个端口号,本次基站配置的参考信号端口分组信息中,第2组和第3组中的端口数相同,可选的,下一次划分的任意两组所包含的端口号可以都不相同,这里不做限定。
其中,UE接收来自基站的参考信号端口的第一分组信息具体包括:UE接收来自基站的信令,所述信令用于指示所述参考信号端口的第一分组信息。进一步地,所述信令包括:高层信令,层一信令和层二信令中的至少一种。其中,所述高层信令可以是无线资源控制(Radio Resource Control,RRC)信令或无线链路控制(Radio Link Control,RLC)信令,所述层一信令可以是物理层信令(如下行控制信息DCI),所述层二信令可以是MAC CE信令等。具体基站采用上述哪种信令发送参考信号的分组信息,可以根据需求和应用场景确定,本实施例不做限定。
步骤202:UE从所述N组参考信号端口中确定第k组参考信号天线端口,k为正整数,且N≥k≥1。
步骤203:UE在所述第k组参考信号天线端口上发送参考信号。
其中,当N=1时,UE根据第一分组信息确定第1组参考信号的天线端口,并使用第1组参考信号的天线端口发送参考信号给基站。此时,k=N,UE采用基站配置的这一组参考信号端口发送参考信号。当N>1时,UE从N组参考信号的端口信息中选择用于发送参考信号的天线端口组号k,且N≥k>1,并使用第k组天线端口发送参考信号给基站。
相应地,基站从UE接收参考信号,所述参考信号是所述N组参考信号端口中的第k组参考信号端口对应的参考信号。所述相对应的参考信号是指UE通过第k组参考信号天线端口发送的所述参考信号。
此外,如果UE确定的第k组天线端口与当前UE发送参考信号的端口不同,则在时刻n,UE先确定并切换到第k组的参考信号天线端口,再发送所述参考信号。
可选的,在步骤202中,UE根据N组参考信号端口的信息从所述N组参考信号端口中确定第k组参考信号天线端口包括:UE根据参考信号的发送时刻n,参考信号端口的组数N,参考信号的发送次数K中的至少一个确定所述第k组参考信号天线端口。
具体地,UE根据参考信号的发送时刻,参考信号端口的组数N和参考信号的发送次数K确定所述第k组参考信号天线端口包括:
根据不同的场景和需求,UE发送上行信号的天线端口选择或切换功能可自适应配置“使能”或“不使能”两种状态。
当UE的天线端口选择处于使能状态时,用户可以进行上行信号发送的天线端口选择,某一时刻发送参考信号的端口号可以根据是否允许参考信号的频率跳频(hopping)发送来确定。
具体地,可以按照如下关系式:
Figure PCTCN2018079748-appb-000005
接收所述确定的所述第k组参考信号端口对应的参考信号:
其中,
Figure PCTCN2018079748-appb-000006
n表示发送所述参考信号的时刻,k(n)表示在时刻n确定的所述参考信号的天线端口组号k,K表示所述参考信号的发送次数,且K≥1,mod表示取模运算或求余运算。
以下给出两种确定UE在时刻n的参考信号发送天线端口组号k的方式。
一种确定n时刻的上行信号发送采用的端口组号k的方式包括:当UE处于频率跳频状态,且N=2,即UE通过两组端口发送参考信号时,按照如下第一关系式:
Figure PCTCN2018079748-appb-000007
确定所述参考信号的天线端口组号k。
其中,
Figure PCTCN2018079748-appb-000008
n表示发送所述参考信号的时刻,k(n)表示在时刻n确定的所述参考信号的天线端口组号k,K表示所述参考信号的发送次数。具体地,这里K表示在一次信道测量过程中UE遍历完整个待测量的带宽所需要的参考信号发送次数。其中,K为大于等于1的正整数。
可选的,所述发送所述参考信号的时刻可以为子帧,时隙,最小时隙,OFDM符号中的任意一个,即时刻n可以为子帧n,或时隙n,或最小时隙n,或OFDM符号n。此外,所述时刻也可以为除上述定义外的其他任意一种时间单元。这里不做限定。
例如,n表示一个子帧,那么k(n)可以表示为在子帧n发送一个参考信号时对应的发送天线端口号。在一次信道测量过程中UE利用不同的参考信号发送天线端口发送K次参考信号,进而能够遍历整个待测量的带宽,进而提高信道测量的精度。
另一种确定k的方式包括:同样,当UE的天线端口选择处于使能状态时,用户进行天线端口组的选择,在某一时刻n发送参考信号的天线端口组的索引可以表示为k(n),此外,假定UE的频率跳频状态使能,则如果将UE的所有参考信号发送天线端口划分为四组(N=4),通过这四组天线端口发送参考信号时,可以按照如下第二关系式:
Figure PCTCN2018079748-appb-000009
确定所述参考信号的天线端口组号k:
其中,
Figure PCTCN2018079748-appb-000010
n表示发送所述参考信号的时刻,k(n)表示在时刻n确定的所述参考信号的天线端口组号k,K表示所述参考信号的发送次数。具体地,这里K表示在一次信道测量过程中UE遍历完整个待测量的带宽所需要的参考信号发送次数。其中,K为大于等于1的正整数。
需要说明的是,本申请还可以利用其它关系式或预定义的方式确定UE在时刻n的参 考信号发送天线端口组号k,本实施例对此不做限制。
可选的,在上述步骤201,UE接收基站发送的参考信号第一分组信息之前,方法还包括:UE向基站上报第二分组信息,以使基站能够根据该第二分组信息确定所述第一分组信息。其中,所述第二分组信息包括UE自身的天线面板信息、参考信号端口信息和参考信号端口分组信息中的至少一个。
所述天线面板信息包括UE的所有天线的分布结构,面板图案(panel pattern)等信息中的至少一个;这里面板图案信息进一步包括面板的个数,P(P≥1)个面板的分布图样等信息中的至少一个。其中,所述面板的分布图样信息可以为基站和用户侧预定义的多个面板分布图样。例如图8示出了4种天线面板图案的结构示意图,其中,×表示两个极化方向上的一对参考信号天线端口,不同的参考信号天线端口在终端设备中分布的位置不同,会产生不同的天线端口面板图案。
所述参考信号端口信息包括UE的参考信号端口的数量,每个参考信号端口的端口号等信息;所述参考信号端口分组信息包括UE推荐的对所有参考信号天线端口进行分组后生成的分组信息,例如,将所有天线端口按照编号奇偶数划分为两组生成分组信息。或将所有天线端口根据P个天线面板划分为P组,其中,位于一个面板内的天线端口属于一组。
可选的,所述第二分组信息中的参考信号端口分组信息可以与步骤201中基站发送的参考信号端口的第一分组信息相同,也可以不同。基站在接收到UE的第二分组信息之后可根据基站为UE配置的上行传输机制确定是否采用与所述第二分组信息相同的天线端口分组信息。
此外,UE向基站上报的第二分组信息中还可以包括UE的传输机制信息或UE之前测量的信道质量结果,该信道质量结果包括:CQI等上行信道质量测量信息。根据所述UE需要的不同的传输机制,例如上行发射分集、开环传输方式、闭环传输方式等,基站接收并根据所述传输机制确定下发给UE的参考信号端口的分组信息。
本实施例提供的方法,用户设备UE根据接收到的来自基站的参考信号端口的分组信息,从N组参考信号端口中确定用于发送参考信号的天线端口组k,再通过第k组天线端口发送参考信号,实现了UE的参考信号天线端口的快速切换,并通过切换后的端口发送参考信号,由于切换后的参考信号端口考虑了不同天线面板结构对应的信道传输特性和遮挡概率,以及当前传输机制的发射需求,所以,能够进行有效,自适应的上行数据传输,使发送的参考信号尽快遍历整个测量带宽,从而提高了信道测量的准确性和上行数据传输的效率。
在一个具体的实施例中,基站接收UE上报的第二分组信息,所述第二分组信息中包括所述UE上行信号发送时采用的端口数和端口号。例如,UE一共有8个天线端口,这8个天线端口分别从0至7进行了编号。基站在接收到UE上报的第二分组信息后,根据UE的端口数和端口号,以及当前传输机制将这8个端口进行分组,并生成第一分组信息下发给UE。UE接收该第一分组信息,并按照第一分组信息的指示确定用于发送参考信号的天线端口组号k。
如图3所示,一种第一分组信息的指示方式包括:第一分组信息将UE的端口号为0,1,4和5归为一组,将端口号为2,3,6和7分为一组。UE接收到该端口分组信息之后,按照此端口分组信息的指示,确定时刻n发送参考信号的天线端口组号k。进一步地,根 据参考信号端口分组信息的指示,UE确定每次发送参考信号采用的端口组号k,每个端口组中包括至少一个天线端口。例如,在一次信道测量过程中,进行了4次参考信号的传输,这4次参考信号的发送分别采用下面的4个参考信号端口分组,每组参考信号端口对应的端口号为:{0,1,4,5}、{2,3,6,7}、{2,3,6,7}和{0,1,2,3}。
如图4所示,示出了另一种第一分组信息的指示的实现方式,具体包括:UE根据接收的参考信号端口分组信息,分6次发送参考信号,每次在由两个端口组成的端口组上发送参考信号,进一步地,UE确定6次中的每次发送参考信号时所采用的端口号分别是{0,1}、{1,2}、{2,3}、{3,4}、{4,5}和{5,6},然后按照所述分组的天线端口号依次切换和发送所述参考信号。
其中,基站下发给UE的天线端口分组信息可以通过信令发送,进一步地,所述信令包括高层信令,例如RRC信令或RLC信令,或者物理层信令,例如DCI,或者MAC CE等。
进一步地,在上述实施例中,UE侧参考信号的发送次数K为一次信道测量过程中UE遍历完整个待测量的带宽所需要的参考信号发送次数。假定参考信号的跳频功能被使能,而UE测量并遍历完整个待测量带宽所需要的参考信号发送次数可以根据用户小区特定和/或用户特定的参考信号带宽配置参数来确定。具体地,一种参考信号的带宽配置参数参见下面的表1至表4。例如,所述参考信号可以是上行探测参考信号SRS等。
表1:上行带宽
Figure PCTCN2018079748-appb-000011
m SRS,b和N b的值(b=0,1,2,3)
Figure PCTCN2018079748-appb-000012
表2:上行带宽
Figure PCTCN2018079748-appb-000013
m SRS,b和N b的值(b=0,1,2,3)
Figure PCTCN2018079748-appb-000014
Figure PCTCN2018079748-appb-000015
表3:上行带宽
Figure PCTCN2018079748-appb-000016
m SRS,b和N b的值(b=0,1,2,3)
Figure PCTCN2018079748-appb-000017
表4:上行带宽
Figure PCTCN2018079748-appb-000018
m SRS,b和N b的值(b=0,1,2,3)
Figure PCTCN2018079748-appb-000019
上述表1至表4示出了在不同上行带宽的情况,不同的SRS带宽配置下,m SRS,b和N b的值,其中,m SRS,b表示的是一次SRS发送的频域带宽。每次当UE发送SRS的带宽小于待测量的带宽时,需要进行SRS的跳频(hopping)。一般规定SRS的跳频可以由高层参数SRS跳频带宽(SRS hopping Bandwidth)来配置的,参数取值通常为b hop∈{0,1,2,3}。当b hop<B SRS时,UE需要进行SRS的跳频,即只有在UE的SRS发送带宽是小于跳频带宽的情况下,才会进行跳频。相当于UE的特定(specific)SRS带宽所表示的树形结构节点在树上存在一个带宽为跳频带宽的父节点,并且这个父节点包含多个子节点时,UE才进行SRS的跳频。
例如,参见图5,在表1中,假设C SRS=0,假设b hop=0,则需要测量的带宽为36个 PRB,如果B SRS=2,即每次SRS发送的带宽是4个PRB,一共需要9次发送,可以遍历整个待测量的带宽。在表1至表3中,N b表示的是一级节点的个数。以表1中C SRS=0为例,N 0=1表示在这一级有一个节点,N 1=3表示这一级有3个节点,N 2,N 3依次类推。图1中给出了N 0=1,N 1=3,N 2=3的树状结构图。当b hop=0,B SRS=2时,需要9次发送SRS才可以遍历b hop=0对应的测量带宽。
本实施例提供的基于天线端口分组的方法,第一网络设备基站能够根据第二网络设备UE的传输需求配置相应的参考信号端口分组信息,从而使得第二网络设备UE能够根据所述端口分组信息的指示对上行参考信号的发送端口进行切换,实现了UE灵活自适应的上行参考信号天线端口的分组和对应的数据传输,使得UE的所有天线能够快速地遍历整个带宽,提高了信道测量的准确性和精确度。
在本申请的另一个实施例中,还提供了一种参考信号的发送装置,用于实现上述实施例中的参考信号发送方法,所述装置布置在第二网络设备中,所述第二网络设备包括终端设备,如图6所示,所述参考信号发送装置包括:接收单元601,处理单元602和发送单元603。此外,该装置还可以包括存储单元等其它功能单元或模块。
接收单元601,用于从第一网络设备接收参考信号端口的第一分组信息,所述第一分组信息包括N组参考信号端口的信息,N为正整数,且N≥1。
处理单元602,用于从所述N组参考信号端口中确定第k组参考信号天线端口,k为正整数,且N≥k≥1。
发送单元603,用于在所述第k组参考信号天线端口上发送参考信号。
可选的,处理单元602,具体用于根据参考信号的发送时刻,所述参考信号端口的组数N,所述参考信号的发送次数K中的至少一个确定所述第k组参考信号天线端口。
可选的,处理单元602,还用于按照如下关系式:
Figure PCTCN2018079748-appb-000020
确定所述参考信号的天线端口组号k:
其中,
Figure PCTCN2018079748-appb-000021
n表示发送所述参考信号的时刻,k(n)表示在时刻n确定的所述参考信号的天线端口组号k,K表示所述参考信号的发送次数,且K≥1。
当N=2时,根据如下第一关系式:
Figure PCTCN2018079748-appb-000022
确定所述参考信号的天线端口组号k。
可选的,当N=4时,根据如下第二关系式:
Figure PCTCN2018079748-appb-000023
确定所述参考信号的天线端口组号k。
可选的,发送单元603,还用于向所述第一网络设备上报第二分组信息,所述第二分组信息包括所述第二网络设备的天线面板信息、参考信号端口信息和参考信号端口分组信息中的至少一个。
可选的,接收单元601,还用于从所述第一网络设备接收信令,所述信令用于指示所述参考信号端口的第一分组信息,所述信令包括:高层信令,层一信令和层二信令中的至少一种。
此外,本实施例还提供了一种参考信号接收装置,用于实现上述实施例中的参考信号接收方法,所述装置布置在第一网络设备中,例如基站。如图7所示,该参考信号接收装置包括:接收单元701、处理单元702和发送单元703。此外,该装置还可以包括存储单元等其它功能单元或模块。
发送单元701,用于向第二网络设备发送参考信号端口的第一分组信息,所述第一分组信息包括N组参考信号端口的信息,N为正整数,且N≥1;
接收单元703,用于从所述第二网络设备接收参考信号,所述参考信号是所述N组参考信号端口中的第k组参考信号端口对应的参考信号,k为正整数,且N≥k≥1。
可选的,接收单元703,还用于接收所述第二网络设备根据参考信号的发送时刻,参考信号端口的组数N,参考信号的发送次数K中的至少一个确定的所述第k组参考信号端口对应的参考信号。
可选的,接收单元703,还用于按照如下关系式:
Figure PCTCN2018079748-appb-000024
接收所述确定的所述第k组参考信号端口对应的参考信号:
其中,
Figure PCTCN2018079748-appb-000025
n表示发送所述参考信号的时刻,k(n)表示在时刻n确定的所述参考信号的天线端口组号k,K表示所述参考信号的发送次数,且K≥1。
可选的,接收单元701,还用于接收来自所述第二网络设备的第二分组信息,所述第二分组信息包括所述第二网络设备的天线面板信息、参考信号端口信息和参考信号端口分组信息中的至少一个。
处理单元702,用于根据所述第二分组信息确定所述参考信号端口的第一分组信息。
可选的,发送单元703,还用于通过信令向所述第二网络设备发送所述第一分组信息,所述信令包括:高层信令,层一信令和层二信令中的至少一种。
在本实施例中,第二网络设备根据接收到的来自第一网络设备的参考信号端口的分组信息,从N组参考信号端口中确定用于发送参考信号的天线端口组k,再通过第k组天线端口发送参考信号,实现了第二网络设备的参考信号天线端口的快速切换,并通过切换后的端口发送参考信号。由于切换后的参考信号端口考虑了不同天线面板结构对应的信道传输特性和遮挡概率,以及当前传输机制的发射需求,所以,能够进行有效,自适应的上行数据传输,并使发送的参考信号尽快遍历整个测量带宽,从而提高了信道测量的准确性和上行数据传输的效率。
在本申请的又一个实施例中,提供了一种信号发送方法,用于减少指示信息的信令开销。具体的,当UE具有多个不同的天线面板结构时,由于不同天线端口位于天线面板的位置不同,因此,在相同的参考信号天线端口数和端口号情况下,由于参考信号天线端口可能位于不同的面板图案(panel pattern),从而其可能对应不同的码本配置。
如图8所示,UE侧的天线端口面板图案2(pattern2)中的端口号1和端口号2之间的距离为大天线间距(适用于大天线间距的码本配置),而面板图案3(pattern3)中的端口号1和端口号2之间的距离为小天线间距(适用于小天线间距的码本配置),所以天线端口的面板图案2和面板图案3所对应的码本配置不同。本实施例提供的方法用于为每种面板图案下的天线端口发送上行信号时配置较优的码本,以能够提高上行数据的传输性能。
为实现UE侧面板图案的码本优化配置,具体地,在基站和UE侧预先定义一个大预编码矩阵集合,即码本,该预编码矩阵集合或码本中包括UE的同一天线端口数下的所有不同面板图案下的码字。基站根据UE的发送天线端口的相关信息从预定义的大码本或预编码矩阵集合中选择适合的码本子集或预编码矩阵子集,并将该码本子集对应的预编码矩阵索引发送给UE,使得UE根据该预编码矩阵索引确定发送天线端口上的加权系数,并进行相应数据的发送,从而避免UE由于某些天线端口被遮挡导致基站不能接收到对应的发送信号或发送信号性能较差。
进一步地,如图9所示,本实施例提供的方法包括如下步骤:
步骤901:基站从第一索引集合中确定预编码矩阵索引,其中,所述预编码矩阵索引用于确定UE发送数据时所采用的预编码矩阵,所述第一索引集合的每个索引对应第一预编码矩阵集合中的一个预编码矩阵,所述第一预编码矩阵集合为第二预编码矩阵集合的真子集,所述第一索引集合中的任意一个预编码矩阵索引值小于等于所述第一预编码矩阵集合中包含的预编码矩阵的个数。
步骤902:基站将所述预编码矩阵索引发送给所述UE,同时,UE接收基站从第一索引集合中确定的预编码矩阵索引。
可选的,UE接收所述基站发送的信令,所述信令中携带所述预编码矩阵索引,所述信令包括:高层信令(例如RRC信令或RLC信令),层一信令(例如物理层信令,DCI)或层二信令(例如MAC CE信令)中的至少一种。一种实现方式是,所述基站将所述预编码矩阵索引通过DCI指示信令发送给UE。
步骤903:UE根据所述预编码矩阵索引进行数据的发送。例如,发送上行业务数据信道,或上行控制信道,或上行参考信号,如SRS等。
其中,UE根据基站发送的预编码矩阵索引确定所述预编码矩阵的过程具体包括:
UE从基站接收第一预编码矩阵集合信息,所述第一预编码矩阵集合信息用于指示所述第二预编码矩阵集合的一个子集。然后根据该第二预编码矩阵集合的一个子集确定码字索引。可选的,基站可以根据之前与UE之间测量的统计结果确定所述第一预编码矩阵集合信息。
具体地,如下表5所示第二预编码矩阵集合包括预编码矩阵索引从0到23共24个索引对应的预编码矩阵组成的预编码矩阵集合,或码本。假设该预编码矩阵集合可划分为3个子集(即有3个候选的第一预编码矩阵集合),对应3个索引集合,假定对应的索引集合分别是0-7、8-15和16-23。每个索引集合中的一个索引对应一个预编码矩阵。例如, 预编码矩阵索引“0”对应的预编码矩阵为
Figure PCTCN2018079748-appb-000026
假设第一索引集合由预编码矩阵索引0-7组成。
而UE和基站都预先定义了由上述24个预编码矩阵组成的预编码矩阵集合,所以,基站向UE发送的第一预编码矩阵集合信息中仅需包含候选索引集合的集合号即可,并通过DCI指示信令下发给UE,从而节约了DCI指示信令的开销。
可选的,UE通过信令接收所述基站配置的第一预编码矩阵集合信息,所述信令包括:高层信令(例如RRC信令或RLC信令),层一信令(例如物理层信令)或层二信令(例如MAC CE信令)中的至少一种。一种实现方式是,所述基站将配置的第一预编码矩阵集合信息通过RRC信令或RLC信令发送给UE。
另一种可选的实现方式是,在步骤901之前,UE向基站上报第一预编码矩阵集合信息,所述第一预编码矩阵集合信息用于向基站推荐在所述第二预编码矩阵集合中选择哪个子集。其中,第二预编码矩阵为UE在某个天线端口数配置下的所有预编码矩阵的全集。如,其可以为某个天线端口数配置下,由所有天线面板结构下的预编码矩阵组成的一个集合,或由所有天线间距下的预编码矩阵组成的一个集合。
基站接收该第一预编码矩阵集合信息后确定所述预编码矩阵索引,以及将该预编码矩阵索引下发给UE,以使UE根据该预编码矩阵索引能够采用较优的预编码矩阵发送上行数据。此外,由于所述预编码矩阵索引为限定在第一预编码矩阵集合中重新编号后的预编码矩阵的索引,因此,避免基站将第二预编码矩阵集合所对应的预编码矩阵索引通过DCI发送给UE,即相比指示一个在第二预编码矩阵集合中的对应索引的方法,可节约DCI指示信令。
在本实施例中,基站将配置的预编码矩阵索引发送给UE,使UE能够根据该预编码矩阵索引确定发送数据时所采用的预编码矩阵。由于在第一预编码矩阵集合中选择矩阵索引,并且所述第一预编码矩阵集合为第二预编码矩阵集合中的一个真子集,所以能够快速地指示UE采用哪种预编码矩阵索引,此外,由于所述预编码矩阵索引为限定在第一预编码矩阵集合中重新编号后的预编码矩阵的索引,因此,相比于指示一个在第二预编码矩阵集合中的对应索引的方法,降低了DCI信令开销。
此外,UE通过向基站上报第一预编码矩阵集合信息,使得基站能够根据UE推荐的预编码矩阵集合,为UE选择适合的预编码矩阵索引,使得与所述预编码矩阵索引对应的预编码矩阵能够自适应UE侧多种可能的天线面板结构,实现了不同天线面板图案下最优的预编码矩阵配置,提高了数据传输的性能。
在一个具体的实施例中,基站在配置预编码矩阵索引时,系统预定义M(M>1)种预编码矩阵集合,每种预编码矩阵集合对应于一种天线端口的面板图案,并且每个所述预编码矩阵索引所指示的码字对应一种预编码矩阵集合中的一个预编码矩阵。即,每个所述预编码矩阵索引为在一种预编码矩阵集合中重新编号后的预编码矩阵的索引。
如图10所示,系统预定义的M种预编码矩阵集合中的码字结构与UE的多个天线端口的分布及多个天线端口间的天线间距有关。面板图案1(pattern1)和面板图案4(pattern4) 中同极化方向的4个天线端口间的天线间距比较大,因此,基站在配置预编码矩阵集合时,将面板图案1(pattern1)和面板图案4(pattern4)所对应的预编码矩阵集合中的码字设置为适用于大天线间距的一些码字。可选的,所述适用于大天线间距的码字可以为LTE-A系统中,4天线端口的双码本配置中适用于大天线间距的那些码字。
如图10所示,面板图案2(pattern2)和面板图案3(pattern3)对应的预编码矩阵集合中的码字为适用于小天线间距的一些码字。例如,可选的,所述适用于小天线间距的码字可以为LTE-A系统中,4天线端口的双码本配置中适用于小天线间距的那些码字。进一步地,由于面板图案1(pattern1)和面板图案4(pattern4)中同极化方向的4个天线端口间的天线间距又有不同,因此面板图案1和面板图案4也可以分别配置不同的预编码矩阵集合,此处本实施例不做具体限定。
此外,由于UE侧不同的面板图案对应不同的天线端口结构,而不同的天线端口结构所对应的端口被遮挡的概率不同,因此,为了避免UE的发送天线端口被遮挡而导致的基站接收UE的信号质量变差,基站在配置预编码矩阵集合时,为不同的天线面板结构配置不同的预编码矩阵集合。
可选的,所述预编码矩阵集合中的预编码矩阵可以由列选择向量加相位旋转构成。例如,参见下表5所示,表示一种上行4天线秩为1的预编码矩阵的集合,其中,所述预编码矩阵集合中由列选择向量加相位旋转构成的码字索引包括表5中的索引16-23。根据UE侧不同的天线面板结构,基站配置的预编码矩阵构成中具有不同的非零项。
表5
Figure PCTCN2018079748-appb-000027
假定上行数据发送的4个天线端口为{40,41,42,43}。
其中,索引为16-23的预编码矩阵为基站确定的用于天线遮挡场景的预编码矩阵,即 此场景时,基站为UE配置的预编码矩阵的集合为上表中索引16-23对应的预编码矩阵的集合。UE接收的基站配置的预编码矩阵索引为16-23,UE根据该预编码矩阵索引确定发送数据时采用的预编码矩阵。例如,UE包含两组天线端口用于发送参考信号,其中一组天线端口被遮挡,会导致基站从这一组天线端口接收的信号质量下降。
对应于本申请实施例提供的一种信号发送方法,本实施例还提供了一种信号发送装置,所述装置布置在终端设备中,如图11所示,具体地,该装置包括:接收单元1101、处理单元1102和发送单元1103。
接收单元1101,用于接收基站从第一索引集合中确定的预编码矩阵索引,其中,所述预编码矩阵索引用于确定发送数据时所采用的预编码矩阵,所述第一索引集合的每个索引对应第一预编码矩阵集合中的一个预编码矩阵,所述第一预编码矩阵集合为第二预编码矩阵集合的真子集,所述第一索引集合中的任意一个预编码矩阵索引值小于等于所述第一预编码矩阵集合中包含的预编码矩阵的个数。
发送单元1103,用于根据所述预编码矩阵索引进行数据的发送。例如,发送上行业务数据信道,或上行控制信道,或上行参考信号,如SRS等。
可选的,接收单元1101,还用于从所述基站接收第一预编码矩阵集合信息,所述第一预编码矩阵集合信息用于指示所述第二预编码矩阵集合的一个子集。
可选的,发送单元1103,还用于将第一预编码矩阵集合信息发送给所述基站,所述第一预编码矩阵集合信息用于指示所述第二预编码矩阵集合的一个子集。
可选的,接收单元1101,具体用于接收所述基站发送的信令,所述信令中携带所述第一预编码矩阵集合信息和所述预编码矩阵索引中的至少一种,所述信令包括:高层信令,层一信令和层二信令中的至少一种。
其中,所述第一预编码矩阵集合信息通过RRC信令或RLC信令发送;所述预编码矩阵索引通过DCI指示信令发送。
对应于上述信号发送装置,本实施例还提供一种信号接收装置,如图12所示,该装置布置在基站中,进一步地,该装置包括:接收单元1201、处理单元1202和发送单元1203。
处理单元1202,用于从第一索引集合中确定预编码矩阵索引,其中,所述预编码矩阵索引用于确定终端设备发送数据时所采用的预编码矩阵,所述第一索引集合的每个索引对应第一预编码矩阵集合中的一个预编码矩阵,所述第一预编码矩阵集合为第二预编码矩阵集合的真子集,所述第一索引集合中的任意一个索引值小于等于所述第一预编码矩阵集合中包含的预编码矩阵的个数。
发送单元1203,用于将所述预编码矩阵索引发送给所述终端设备。
接收单元1201,用于接收所述终端设备根据所述预编码矩阵索引发送的数据。
可选的,处理单元1202,还用于配置所述第一预编码矩阵集合信息,所述第一预编码矩阵集合信息用于指示所述第二预编码矩阵集合的一个子集。
发送单元1203,还用于将所述第一预编码矩阵集合信息发送给所述终端设备。
可选的,接收单元1201,还用于接收所述终端设备发送的第一预编码矩阵集合信息。
处理单元1202,还用于根据所述第一预编码矩阵集合信息确定所述第二预编码矩阵集合中的一个子集,以及,根据所述第二预编码矩阵集合中的一个子集确定所述预编码矩阵索引。
可选的,发送单元1203,具体向所述终端设备发送信令,所述信令中携带所述第一预编码矩阵集合信息,所述信令包括高层信令,层一信令或层二信令中的至少一种。其中,发送单元1203将所述第一预编码矩阵集合信息通过RCC信令或RLC信令发送给所述终端设备。
可选的,发送单元1203,具体用于向所述终端设备发送信令,所述信令中携带所述预编码矩阵的索引,所述信令包括高层信令,层一信令或层二信令中的至少一种。其中,发送单元1203将所述预编码矩阵索引通过DCI信令发送给所述终端设备。
在具体硬件实现层面,本申请还提供了一种终端设备,例如UE,用于实现前述实施例中的方法步骤。
参见图13,所述终端设备可以由收发器1301、处理器1302及存储器1303等组成。
处理器1302为终端设备的控制中心,利用各种接口和线路连接整个网络设备的各个部分,通过运行或执行存储在存储器内的软件程序和/或模块,以及调用存储在存储器内的数据,以执行网络侧设备的各种功能和/或处理数据。
处理器1302可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
存储器1303可以包括易失性存储器(volatile memory),例如随机存取内存(random access memory,RAM);还可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。
收发器1301可以用于接收或发送数据,所述收发器可以在所述处理器的控制下向视频网络系统中的各个节点或其他设备发送数据,以及所述处理器的控制下接收各个节点或其他设备发送的数据。
在本申请实施例中,收发器1301可以用于实现前述实施例中的接收第一网络设备发送的参考信号的端口分组信息,以及向第一网络设备发送参考信号等。前述装置实施例图6中的接收单元601所要实现的功能可以由所述终端设备的收发器1301实现,或者由处理器1302控制收发器1301实现。图6中的处理单元602所要实现的功能也可以由终端设备的处理器1302实现。
如图13所示,本实施例还提供了一种网络设备的结构示意图,用于实现前述实施例中的参考信号发送方法。其中,所述网络设备可以是前述任意实施例中的第一网络设备,例如基站。
其中,所述基站可以由收发器1401、处理器1402和存储器1403等组成。
处理器1402为网络设备(基站)的控制中心,利用各种接口和线路连接整个网络侧设备的各个部分,通过运行或执行存储在存储器内的软件程序和/或模块,以及调用存储在存储器内的数据,以执行网络侧设备的各种功能和/或处理数据。所述处理器可以是中 央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
存储器1403可以包括易失性存储器(volatile memory),例如随机存取内存(random access memory,RAM);还可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。所述存储器中可以存储有程序或代码,网元中的处理器通过执行所述程序或代码可以实现所述网元的功能。
收发器1401可以用于接收或发送数据,所述收发器可以在所述处理器的控制下向终端设备或其他网络侧设备发送数据;所述收发器在所述处理器的控制下接收终端设备或其他网络侧设备发送的数据。
在本申请实施例中,收发器1401可以用于实现前述实施例图2中用于接收参考信号的方法步骤,以及装置实施例图7所具有的功能。其中,图7所述的接收单元701所要实现的功能可以由所述基站的收发器1401实现,或者由处理器1402控制的收发器1401实现;所述发送单元703所要实现的功能也可以由所述基站的收发器1401实现,或者也可以由处理器1402控制的收发器1401实现;所述处理单元702所要实现的功能则可以由所述处理器1402实现。
此外,本实施例所述的终端设备1300和基站1400还用于实现前述方法实施例如图9所示的全部方法流程。进一步地,终端设备1300用于实现前述装置实施例如图11所示的信号发送装置的全部或部分功能,基站1400用于实现前述装置实施例如图12所示的信号接收装置的全部或部分功能。具体的,各个单元的功能可由对应的收发器和处理器来实现。
具体实现中,本申请还提供一种计算机存储介质,其中,该计算机存储介质可存储有程序,该程序执行时可包括本申请提供的参考信号发送方法、接收方法、信号发送方法和接收方法的各实施例中的部分或全部步骤。所述的存储介质可为磁碟、光盘、只读存储记忆体(read-only memory,ROM)或随机存储记忆体(random access memory,RAM)等。
本领域的技术人员可以清楚地了解到本申请实施例中的技术可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,本申请实施例中的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例或者实施例的某些部分所述的方法。
本说明书中各个实施例之间相同相似的部分互相参见即可。尤其,对于上述实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例中的说明即可。
以上所述的本申请实施方式并不构成对本申请保护范围的限定。

Claims (39)

  1. 一种参考信号发送方法,其特征在于,所述方法包括:
    第二网络设备从第一网络设备接收参考信号端口的第一分组信息,所述第一分组信息包括N组参考信号端口的信息,N为正整数,且N≥1;
    所述第二网络设备从所述N组参考信号端口中确定第k组参考信号天线端口,k为正整数,且N≥k≥1;
    所述第二网络设备在所述第k组参考信号天线端口上发送参考信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第二网络设备从所述N组参考信号端口中确定第k组参考信号天线端口,包括:
    所述第二网络设备根据所述参考信号的发送时刻,所述参考信号端口的组数N,所述参考信号的发送次数K中的至少一个确定所述第k组参考信号天线端口。
  3. 根据权利要求1或2所述的方法,其特征在于,确定所述第k组参考信号天线端口,包括:
    按照如下关系式:
    Figure PCTCN2018079748-appb-100001
    确定所述参考信号的天线端口组号k:
    其中,
    Figure PCTCN2018079748-appb-100002
    n表示发送所述参考信号的时刻,k(n)表示在时刻n确定的所述参考信号的天线端口组号k,K表示所述参考信号的发送次数,且K≥1。
  4. 根据权利要求1所述的方法,其特征在于,第二网络设备从第一网络设备接收参考信号端口的第一分组信息之前,还包括:
    所述第二网络设备向所述第一网络设备上报第二分组信息,所述第二分组信息包括所述第二网络设备的天线面板信息、参考信号端口信息和参考信号端口分组信息中的至少一个。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,第二网络设备从第一网络设备接收参考信号端口的第一分组信息,包括:
    所述第二网络设备从所述第一网络设备接收信令,所述信令用于指示所述参考信号端口的第一分组信息;
    所述信令包括:高层信令,层一信令和层二信令中的至少一种。
  6. 一种参考信号接收方法,其特征在于,所述方法包括:
    第一网络设备向第二网络设备发送参考信号端口的第一分组信息,所述第一分组信息包括N组参考信号端口的信息,N为正整数,且N≥1;
    所述第一网络设备从所述第二网络设备接收参考信号,所述参考信号是所述N组参考信号端口中的第k组参考信号端口对应的参考信号,k为正整数,且N≥k≥1。
  7. 根据权利要求6所述的方法,其特征在于,所述第一网络设备接收所述第二网 络设备发送的从所述N组参考信号端口中确定的第k组参考信号端口对应的参考信号,包括:
    所述第一网络设备接收所述第二网络设备根据所述参考信号的发送时刻,所述参考信号端口的组数N,所述参考信号的发送次数K中的至少一个确定的所述第k组参考信号端口对应的参考信号。
  8. 根据权利要求7所述的方法,其特征在于,所述第一网络设备接收所述第k组参考信号端口对应的参考信号,包括:
    按照如下关系式:
    Figure PCTCN2018079748-appb-100003
    接收所述确定的所述第k组参考信号端口对应的参考信号:
    其中,
    Figure PCTCN2018079748-appb-100004
    n表示发送所述参考信号的时刻,k(n)表示在时刻n确定的所述参考信号的天线端口组号k,K表示所述参考信号的发送次数,且K≥1。
  9. 根据权利要求6所述的方法,其特征在于,第一网络设备向第二网络设备发送参考信号端口的第一分组信息之前,还包括:
    第一网络设备从所述第二网络设备接收第二分组信息,所述第二分组信息包括所述第二网络设备的天线面板信息、参考信号端口信息和参考信号端口分组信息中的至少一个;
    所述第一网络设备根据所述第二分组信息确定所述参考信号端口的第一分组信息。
  10. 根据权利要求6至9任一项所述的方法,其特征在于,第一网络设备向第二网络设备发送参考信号端口的第一分组信息,包括:
    所述第一网络设备通过信令向所述第二网络设备发送所述第一分组信息,所述信令包括:高层信令,层一信令和层二信令中的至少一种。
  11. 一种信号发送方法,其特征在于,所述方法包括:
    终端设备接收基站从第一索引集合中确定的预编码矩阵索引,其中,所述预编码矩阵索引用于确定终端设备发送数据时所采用的预编码矩阵,所述第一索引集合的每个索引对应第一预编码矩阵集合中的一个预编码矩阵,所述第一预编码矩阵集合为第二预编码矩阵集合的真子集,所述第一索引集合中的任意一个预编码矩阵索引值小于等于所述第一预编码矩阵集合中包含的预编码矩阵的个数;
    所述终端设备根据所述预编码矩阵索引进行数据的发送。
  12. 根据权利要求11所述的方法,其特征在于,终端设备接收基站从第一索引集合中确定的预编码矩阵索引之前,还包括:
    所述终端设备从所述基站接收第一预编码矩阵集合信息,所述第一预编码矩阵集合信息用于指示所述第二预编码矩阵集合的一个子集。
  13. 根据权利要求11所述的方法,其特征在于,终端设备接收基站从第一索引集合中确定的预编码矩阵索引之前,还包括:
    所述终端设备将第一预编码矩阵集合信息发送给所述基站,所述第一预编码矩阵集合信息用于指示所述第二预编码矩阵集合的一个子集。
  14. 根据权利要求12所述的方法,其特征在于,所述终端设备接收所述第一预编码矩阵集合信息和或所述预编码矩阵索引,包括:
    所述终端设备接收所述基站发送的信令,所述信令中携带所述第一预编码矩阵集合信息和所述预编码矩阵索引中的至少一种,所述信令包括:高层信令,层一信令和层二信令中的至少一种。
  15. 一种信号接收方法,其特征在于,所述方法包括:
    基站从第一索引集合中确定预编码矩阵索引,其中,所述预编码矩阵索引用于确定终端设备发送数据时所采用的预编码矩阵,所述第一索引集合的每个索引对应第一预编码矩阵集合中的一个预编码矩阵,所述第一预编码矩阵集合为第二预编码矩阵集合的真子集,所述第一索引集合中的任意一个预编码矩阵索引值小于等于所述第一预编码矩阵集合中包含的预编码矩阵的个数;
    所述基站将所述预编码矩阵索引发送给所述终端设备;
    所述基站接收所述终端设备根据所述预编码矩阵索引发送的数据。
  16. 根据权利要求15所述的方法,其特征在于,基站从第一索引集合中确定预编码矩阵索引之前,还包括:
    所述基站配置所述第一预编码矩阵集合信息,所述第一预编码矩阵集合信息用于指示所述第二预编码矩阵集合的一个子集;
    所述基站将所述第一预编码矩阵集合信息发送给所述终端设备。
  17. 根据权利要求15所述的方法,其特征在于,基站从第一索引集合中确定预编码矩阵索引,包括:
    所述基站接收所述终端设备发送的第一预编码矩阵集合信息;
    所述基站根据所述第一预编码矩阵集合信息确定所述第二预编码矩阵集合的一个子集;
    所述基站根据所述第二预编码矩阵集合的一个子集确定所述预编码矩阵索引。
  18. 根据权利要求16所述的方法,其特征在于,所述基站将所述第一预编码矩阵集合信息和或所述预编码矩阵索引发送给所述终端设备,包括:
    所述基站发送信令,所述信令中携带所述第一预编码矩阵集合信息和所述预编码矩阵索引中的至少一种,所述信令包括:高层信令,层一信令和层二信令中的至少一种。
  19. 一种参考信号发送装置,其特征在于,所述装置布置在第二网络设备中,包括:
    接收单元,用于从第一网络设备接收参考信号端口的第一分组信息,所述第一分组信息包括N组参考信号端口的信息,N为正整数,且N≥1;
    处理单元,用于从所述N组参考信号端口中确定第k组参考信号天线端口,k为正整数,且N≥k≥1;
    发送单元,用于在所述第k组参考信号天线端口上发送参考信号。
  20. 根据权利要求19所述的装置,其特征在于,
    所述处理单元,具体用于根据所述参考信号的发送时刻,所述参考信号端口的组数N,参考信号的发送次数K中的至少一个确定所述第k组参考信号天线端口。
  21. 根据权利要求19或20所述的装置,其特征在于,所述处理单元,还用于
    按照如下关系式:
    Figure PCTCN2018079748-appb-100005
    确定所述参考信号的天线端口组号k:
    其中,
    Figure PCTCN2018079748-appb-100006
    n表示发送所述参考信号的时刻,k(n)表示在时刻n确定的所述参考信号的天线端口组号k,K表示所述参考信号的发送次数,且K≥1。
  22. 根据权利要求19所述的装置,其特征在于,
    所述发送单元,还用于向所述第一网络设备上报第二分组信息,所述第二分组信息包括所述第二网络设备的天线面板信息、参考信号端口信息和参考信号端口分组信息中的至少一个。
  23. 根据权利要求19至22任一项所述的装置,其特征在于,
    所述接收单元,还用于从所述第一网络设备接收信令,所述信令用于指示所述参考信号端口的第一分组信息,所述信令包括:高层信令,层一信令和层二信令中的至少一种。
  24. 一种参考信号接收装置,其特征在于,所述装置布置在第一网络设备中,包括:
    发送单元,用于向第二网络设备发送参考信号端口的第一分组信息,所述第一分组信息包括N组参考信号端口的信息,N为正整数,且N≥1;
    接收单元,用于从所述第二网络设备接收参考信号,所述参考信号是所述N组参考信号端口中的第k组参考信号端口对应的参考信号,k为正整数,且N≥k≥1。
  25. 根据权利要求24所述的装置,其特征在于,
    所述接收单元,还用于接收所述第二网络设备根据所述参考信号的发送时刻,所述参考信号端口的组数N,所述参考信号的发送次数K中的至少一个确定的所述第k组参考信号端口对应的参考信号。
  26. 根据权利要求24或25所述的装置,其特征在于,所述接收单元,还用于
    按照如下关系式:
    Figure PCTCN2018079748-appb-100007
    接收所述确定的所述第k组参考信号端口对应的参考信号:
    其中,
    Figure PCTCN2018079748-appb-100008
    n表示发送所述参考信号的时刻,k(n)表示在时刻n确定的所述参考信号的天线端口组号k,K表示所述参考信号的发送次数,且K≥1。
  27. 根据权利要求24所述的装置,其特征在于,还包括处理单元,
    所述接收单元,还用于从所述第二网络设备接收第二分组信息,所述第二分组信息包括所述第二网络设备的天线面板信息、参考信号端口信息和参考信号端口分组信息中的至少一个;
    所述处理单元,用于根据所述第二分组信息确定所述参考信号端口的第一分组信息。
  28. 根据权利要求24至27任一项所述的装置,其特征在于,
    所述发送单元,还用于通过信令向所述第二网络设备发送所述第一分组信息,所述信令包括:高层信令,层一信令和层二信令中的至少一种。
  29. 一种信号发送装置,其特征在于,所述装置布置在终端设备中,包括:
    接收单元,用于接收基站从第一索引集合中确定的预编码矩阵索引,其中,所述预编码矩阵索引用于确定发送数据时所采用的预编码矩阵,所述第一索引集合的每个索引对应第一预编码矩阵集合中的一个预编码矩阵,所述第一预编码矩阵集合为第二预编码矩阵集合的真子集,所述第一索引集合中的任意一个预编码矩阵索引值小于等于所述第一预编码矩阵集合中包含的预编码矩阵的个数;
    发送单元,用于根据所述预编码矩阵索引进行数据的发送。
  30. 根据权利要求29所述的装置,其特征在于,
    所述接收单元,还用于从所述基站接收第一预编码矩阵集合信息,所述第一预编码矩阵集合信息用于指示所述第二预编码矩阵集合的一个子集。
  31. 根据权利要求29所述的装置,其特征在于,
    所述发送单元,还用于将第一预编码矩阵集合信息发送给所述基站,所述第一预编码集合信息用于指示所述第二预编码矩阵集合的一个子集。
  32. 根据权利要求29或30所述的装置,其特征在于,
    所述接收单元,具体用于接收所述基站发送的信令,所述信令中携带所述第一预编码矩阵集合信息和所述预编码矩阵索引中的至少一种,所述信令包括:高层信令,层一信令和层二信令中的至少一种。
  33. 一种信号接收装置,其特征在于,所述装置布置在基站中,包括:
    处理单元,用于从第一索引集合中确定预编码矩阵索引,其中,所述预编码矩阵索引用于确定终端设备发送数据时所采用的预编码矩阵,所述第一索引集合的每个索引对应第一预编码矩阵集合中的一个预编码矩阵,所述第一预编码矩阵集合为第二预编码矩阵集合的真子集,所述第一索引集合中的任意一个预编码矩阵索引值小于等于所述第一预编码矩阵集合中包含的预编码矩阵的个数;
    发送单元,用于将所述预编码矩阵索引发送给所述终端设备;
    接收单元,用于接收所述终端设备根据所述预编码矩阵索引发送的数据。
  34. 根据权利要求33所述的装置,其特征在于,
    所述处理单元,还用于配置所述第一预编码矩阵集合信息,所述第一预编码矩阵集合信息用于指示所述第二预编码矩阵集合的一个子集;
    所述发送单元,还用于将所述第一预编码集合信息发送给所述终端设备。
  35. 根据权利要求33所述的装置,其特征在于,
    所述接收单元,还用于接收所述终端设备发送的第一预编码矩阵集合信息;
    所述处理单元,还用于根据所述第一预编码矩阵集合信息确定所述第二预编码矩阵集合的一个子集,以及,根据所述第二预编码矩阵集合的一个子集确定所述预编码矩阵索引。
  36. 根据权利要求33或34所述的装置,其特征在于,
    所述发送单元,具体用于发送信令,所述信令中携带所述第一预编码矩阵集合信息和所述预编码矩阵索引中的至少一种,所述信令包括高层信令,层一信令和层二信令中的至少一种。
  37. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1至18中任一项所述的方法。
  38. 一种计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行如权利要求1至18中任一项所述的方法。
  39. 一种装置,其特征在于,所述装置包括处理器,所述处理器用于与存储器耦合,并读取存储器中的指令并根据所述指令执行如权利要求1至18中任一项所述的方法。
PCT/CN2018/079748 2017-03-24 2018-03-21 一种参考信号发送方法、接收方法和装置 WO2018171614A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP18772433.1A EP3588830B1 (en) 2017-03-24 2018-03-21 Reference signal transmitting method, receiving method and device
BR112019019885A BR112019019885A2 (pt) 2017-03-24 2018-03-21 método e aparelho para transmissão de sinal de referência, e método e aparelho para recepção de sinal de referência
US16/493,735 US11323161B2 (en) 2017-03-24 2018-03-21 Signal transmission based on downlink control information
KR1020197028251A KR102287733B1 (ko) 2017-03-24 2018-03-21 기준 신호를 전송하기 위한 방법과 장치, 및 기준 신호를 수신하기 위한 방법과 장치
EP21154666.8A EP3905578A1 (en) 2017-03-24 2018-03-21 Method and apparatus for transmitting reference signal, and method and apparatus for receiving reference signal
JP2019552107A JP6967604B2 (ja) 2017-03-24 2018-03-21 基準信号を送信する方法および装置、ならびに基準信号を受信する方法および装置
CN201880018945.2A CN110603771B (zh) 2017-03-24 2018-03-21 一种参考信号发送方法、接收方法和装置
CA3055797A CA3055797C (en) 2017-03-24 2018-03-21 Method and apparatus for transmitting reference signal, and method and apparatus for receiving reference signal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710186498.9 2017-03-24
CN201710186498.9A CN108632001A (zh) 2017-03-24 2017-03-24 一种参考信号发送方法、接收方法和装置

Publications (1)

Publication Number Publication Date
WO2018171614A1 true WO2018171614A1 (zh) 2018-09-27

Family

ID=63584174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079748 WO2018171614A1 (zh) 2017-03-24 2018-03-21 一种参考信号发送方法、接收方法和装置

Country Status (8)

Country Link
US (1) US11323161B2 (zh)
EP (2) EP3588830B1 (zh)
JP (1) JP6967604B2 (zh)
KR (1) KR102287733B1 (zh)
CN (4) CN108964866B (zh)
BR (1) BR112019019885A2 (zh)
CA (1) CA3055797C (zh)
WO (1) WO2018171614A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022530777A (ja) * 2019-04-29 2022-07-01 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 端末装置からの参照信号の送信

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6972136B2 (ja) * 2017-01-09 2021-11-24 テレフオンアクチーボラゲット エルエム エリクソン(パブル) ハイブリッドsrs組合せシグナリング
CN110505695A (zh) * 2018-05-18 2019-11-26 维沃移动通信有限公司 上行数据传输指示方法、终端和网络侧设备
WO2020056642A1 (zh) * 2018-09-19 2020-03-26 Oppo广东移动通信有限公司 一种数据传输方法、设备及存储介质
US11251919B2 (en) * 2019-05-17 2022-02-15 Qualcomm Incorporated Panel selection for user equipment with multiple panels
WO2021035389A1 (en) * 2019-08-23 2021-03-04 Qualcomm Incorporated Dynamic modification of sounding procedure configuration
US11570809B2 (en) * 2020-03-06 2023-01-31 Qualcomm Incorporated Compact downlink control information for a two-step random access channel procedure
CN117527173A (zh) * 2020-11-16 2024-02-06 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103096346A (zh) * 2011-11-03 2013-05-08 华为技术有限公司 测量参考信号srs发送和信道检测的方法、装置及终端
CN103746779A (zh) * 2013-12-31 2014-04-23 上海华为技术有限公司 一种信道状态信息测量、参考信号的发送方法和装置
WO2014161166A1 (zh) * 2013-04-03 2014-10-09 华为技术有限公司 信道状态信息上报方法、接收方法及设备
WO2017031672A1 (zh) * 2015-08-24 2017-03-02 华为技术有限公司 一种预编码信息发送、反馈方法及装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2033335B1 (en) * 2006-06-20 2009-12-30 Huawei Technologies Co., Ltd. Method for reducing feedback information overhead in precoded mimo-ofdm systems
CN101547066B (zh) * 2008-03-25 2013-03-27 中兴通讯股份有限公司 基于mu-mimo方式的下行预编码信息指示方法
CN101272364B (zh) * 2008-05-05 2012-09-05 中兴通讯股份有限公司 基于mu-mimo的预编码指示方法及装置、控制方法
CN101340228B (zh) * 2008-08-07 2014-05-28 中兴通讯股份有限公司南京分公司 一种参考信号的传输方法
CN101686110B (zh) * 2008-09-26 2012-10-03 电信科学技术研究院 一种多输入多输出系统、及其数据传输的方法及装置
CN101777945B (zh) * 2009-01-12 2013-05-08 电信科学技术研究院 多天线通信系统中参考信号的发送方法和基站
JP5723365B2 (ja) * 2009-08-14 2015-05-27 エルジー エレクトロニクス インコーポレイティド 多重アンテナを支援する無線通信システムにおいてダウンリンク参照信号を伝送する方法及び装置
CN102035615B (zh) * 2009-09-27 2013-06-05 电信科学技术研究院 一种基于mimo的下行数据传输方法、装置及系统
CN102056220B (zh) * 2009-10-28 2014-02-19 华为技术有限公司 实现信道测量的方法及装置
US9253784B2 (en) * 2010-01-11 2016-02-02 Samsung Electronics Co., Ltd. Method and system for enabling resource block bundling in LTE-A systems
CN101789848B (zh) * 2010-01-11 2016-01-20 中兴通讯股份有限公司 Lte-a系统的上行链路预编码矩阵的信令指示方法
CN102237951B (zh) * 2010-04-30 2014-03-05 中国移动通信集团公司 小区八天线端口的信道状态信息参考信号传输方法和设备
CN103546241B (zh) * 2010-05-04 2017-12-29 华为技术有限公司 发送预编码矩阵索引及进行预编码的方法和装置
CN101924606B (zh) * 2010-08-16 2015-06-03 中兴通讯股份有限公司 基于pusch传输的上行控制信息的发送方法及系统
US9252930B2 (en) 2011-01-07 2016-02-02 Futurewei Technologies, Inc. Reference signal transmission and reception method and equipment
CN102595514B (zh) * 2011-01-12 2015-03-18 上海贝尔股份有限公司 非周期性探测参考信号的配置方法
US10178605B2 (en) 2011-04-01 2019-01-08 Intel Corporation Enhanced node B and method of transmitting physical-downlink control channels (PDCCHs) in a LTE-A system
CN102255643B (zh) * 2011-06-30 2013-12-11 电信科学技术研究院 上行预编码矩阵指示及信号传输方法、系统和设备
WO2013015606A2 (en) 2011-07-25 2013-01-31 Lg Electronics Inc. Method and apparatus for transmitting control information in wireless communication system
CN102938687B (zh) * 2011-08-15 2015-08-26 华为技术有限公司 上行预编码信息发送方法、预编码方法、基站及终端
KR20130032707A (ko) * 2011-09-23 2013-04-02 주식회사 팬택 기준 신호 송수신 방법 및 장치
WO2013147476A1 (ko) 2012-03-24 2013-10-03 엘지전자 주식회사 무선 통신 시스템에서 참조신호 송수신 방법 및 장치
EP2858402B1 (en) * 2012-06-04 2019-08-07 Huawei Technologies Co., Ltd. Signal received power measurement method, terminal, base station and system
US9438451B2 (en) * 2013-09-27 2016-09-06 Intel Corporation CSI-RS antenna ports extension and 3D codebook design
WO2017020201A1 (en) * 2015-07-31 2017-02-09 Nec Corporation Methods and apparatuses for transmitting and receiving dmrs indication
US10631159B2 (en) * 2016-09-01 2020-04-21 Qualcomm Incorporated UE capability reporting for dual-polarization wireless communication
US11038566B2 (en) * 2017-01-06 2021-06-15 Telefonaktiebolaget Lm Ericsson (Publ) Precoding a transmission from a multi-panel antenna array

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103096346A (zh) * 2011-11-03 2013-05-08 华为技术有限公司 测量参考信号srs发送和信道检测的方法、装置及终端
WO2014161166A1 (zh) * 2013-04-03 2014-10-09 华为技术有限公司 信道状态信息上报方法、接收方法及设备
CN103746779A (zh) * 2013-12-31 2014-04-23 上海华为技术有限公司 一种信道状态信息测量、参考信号的发送方法和装置
WO2017031672A1 (zh) * 2015-08-24 2017-03-02 华为技术有限公司 一种预编码信息发送、反馈方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3588830A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022530777A (ja) * 2019-04-29 2022-07-01 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 端末装置からの参照信号の送信
JP7341251B2 (ja) 2019-04-29 2023-09-08 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 端末装置からの参照信号の送信
US11855921B2 (en) 2019-04-29 2023-12-26 Telefonaktiebolaget Lm Ericsson (Publ) Transmission of reference signals from a terminal device

Also Published As

Publication number Publication date
EP3905578A1 (en) 2021-11-03
CN110603771B (zh) 2021-04-20
JP6967604B2 (ja) 2021-11-17
CN109257153A (zh) 2019-01-22
EP3588830A4 (en) 2020-03-04
JP2020516124A (ja) 2020-05-28
CA3055797C (en) 2023-03-28
CN108632001A (zh) 2018-10-09
CN108964866A (zh) 2018-12-07
CA3055797A1 (en) 2018-09-27
BR112019019885A2 (pt) 2020-04-22
EP3588830A1 (en) 2020-01-01
US11323161B2 (en) 2022-05-03
CN110603771A (zh) 2019-12-20
CN108964866B (zh) 2020-03-20
CN109257153B (zh) 2020-03-20
EP3588830B1 (en) 2021-03-03
KR20190117750A (ko) 2019-10-16
US20200007201A1 (en) 2020-01-02
KR102287733B1 (ko) 2021-08-06

Similar Documents

Publication Publication Date Title
US12010707B2 (en) Methods and apparatuses for transmitting and receiving control signaling, and method for determining information
WO2018171614A1 (zh) 一种参考信号发送方法、接收方法和装置
US9991942B2 (en) Method and apparatus for channel state information reference signal (CSI-RS)
JP6372724B2 (ja) ユーザ機器および進化型ノードb
KR102290920B1 (ko) Dmrs 송신 방법 및 통신 기기
WO2018202096A1 (zh) 传输数据的方法、终端设备和网络设备
US10320539B2 (en) Methods and apparatuses for reference signal adaptation based on incoming user mobility information
US9419693B2 (en) Method for determining rank indication RI bit number, base station, and terminal
JP6771582B2 (ja) 低複雑性マルチ設定csiレポート
CN110352572B (zh) 一种在用户设备ue中的方法以及用户设备ue
US12021795B2 (en) Communication method and network device
US11223453B2 (en) Data transmission method and apparatus
KR20210108475A (ko) 무선 통신에서의 레이트 매칭 자원 매핑
WO2022028578A1 (zh) 信号传输方法、终端和网络设备
CN117015010A (zh) 一种信息处理方法、装置、网络设备及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18772433

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 3055797

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019552107

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197028251

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018772433

Country of ref document: EP

Effective date: 20190925

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019019885

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112019019885

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190924