WO2018171347A1 - 一种解调导频的处理方法、装置及存储介质 - Google Patents

一种解调导频的处理方法、装置及存储介质 Download PDF

Info

Publication number
WO2018171347A1
WO2018171347A1 PCT/CN2018/075318 CN2018075318W WO2018171347A1 WO 2018171347 A1 WO2018171347 A1 WO 2018171347A1 CN 2018075318 W CN2018075318 W CN 2018075318W WO 2018171347 A1 WO2018171347 A1 WO 2018171347A1
Authority
WO
WIPO (PCT)
Prior art keywords
subset
demodulation pilot
control resource
resource set
resource
Prior art date
Application number
PCT/CN2018/075318
Other languages
English (en)
French (fr)
Inventor
张晨晨
毕峰
郝鹏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP18771428.2A priority Critical patent/EP3605922B1/en
Publication of WO2018171347A1 publication Critical patent/WO2018171347A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of mobile communications, and in particular, to a method, an apparatus, and a storage medium for processing a demodulation pilot.
  • the fifth generation mobile communication (5G, 5th Generation) technology has become the trend of future network development.
  • high-frequency communication can provide high-speed data communication by using the large bandwidth of high-frequency communication to meet the demand for large data in 5G communication.
  • the loss on the high frequency propagation is larger, and the coverage radius is relatively smaller under the same power, which also determines the beamforming technology to improve the coverage radius in the networking of the high frequency communication system. Then, whether it is a traffic channel or a control channel, it is necessary to consider transmission based on beamforming technology.
  • control resource set is mainly to distinguish In the LTE (Long Term Evolution) Physical Downlink Control Channel (PDCCH) full-bandwidth transmission mode, the PDCCH in the 5G will not be transmitted in full bandwidth, but will be corresponding to the control resource set.
  • the base station may configure multiple control resource sets for it, and different control resource sets may carry different types of PDCCHs.
  • For a control resource set there are several physical resource blocks (PRBs) in the frequency domain, and one or several orthogonal frequency division multiplexing (OFDM) symbols are corresponding in the time domain.
  • PRBs physical resource blocks
  • OFDM orthogonal frequency division multiplexing
  • the number of OFDM symbols included in the time domain may be referred to as the duration of the control resource set, the frequency domain corresponding to which PRBs may be semi-statically configured, and the time domain duration may be semi-static or dynamically configured.
  • a downlink control channel resource allocation unit such as a candidate resource (Candidate), a resource element group (REG, Resource Element Group), and a Control Channel Element (CCE) is defined, where the REG is a downlink control channel basic.
  • the resource allocation unit, one downlink control channel Candidate will correspond to one or more CCEs, and one CCE contains 9 REGs.
  • the definition of REG and CCE has also been adopted.
  • the REG is still the basic resource allocation unit of the downlink control channel, but the definition of the REG is different from that in the LTE.
  • the REG time domain corresponds to one OFDM symbol, and the frequency domain Corresponding to 12 subcarriers, equivalent to the frequency domain range of one PRB.
  • the downlink control channel demodulation is performed based on the cell reference signal (CRS, Cell Reference Signal), and the new feature of the 5G downlink control channel is no longer suitable for demodulating the downlink control channel by using the CRS, and demodulation can be adopted.
  • the reference signal (DMRS, Demodulation Reference Signal) is used to demodulate the downlink control channel.
  • DMRS Demodulation Reference Signal
  • an embodiment of the present invention provides a method, an apparatus, and a storage medium for processing a demodulation pilot.
  • Generating unit configured to generate a demodulation pilot sequence based on at least a time domain range of the control resource set
  • a resource mapping unit configured to perform resource mapping on the demodulation pilot based on at least the control resource set and the time-frequency resource configuration of the subset of the control resource set;
  • a sending unit configured to send the intercepted demodulation pilot sequence based on the resource mapping result.
  • the processing device for demodulating pilots includes: a processor and a memory storing the processor-executable instructions, when the instructions are executed by the processor, performing the following operations:
  • the embodiment of the present invention further provides a storage medium, where the computer-executable instructions are stored in the storage medium, and the computer-executable instructions are used to execute the processing method of the demodulation pilot described above.
  • the demodulation pilot sequence is generated based on at least the time domain range of the control resource set; and the solution is based on at least the control resource set and the time-frequency resource configuration of the subset of the control resource set.
  • the pilot frequency is used for resource mapping, and the intercepted demodulation pilot sequence is transmitted based on the resource mapping result.
  • FIG. 1 is a schematic flowchart of a method for processing a demodulation pilot according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram 1 of a frequency domain of a control resource set according to an embodiment of the present invention
  • FIG. 3 is a second schematic diagram of a frequency domain of a control resource set according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram 1 of a control resource set 1 according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram 1 of a mapping demodulation pilot according to an embodiment of the present invention.
  • FIG. 6 is a second schematic diagram of a control resource set 1 according to an embodiment of the present invention.
  • FIG. 7 is a second schematic diagram of mapping demodulation pilots according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a processing apparatus for demodulating a pilot according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing the hardware structure of a processing apparatus for demodulating pilots according to an embodiment of the present invention.
  • An embodiment of the present invention provides a method for processing a demodulation pilot.
  • the method specifically includes the following two parts: a first part, a method for generating a demodulation pilot sequence, and a second part, a resource mapping method for demodulating a pilot.
  • the implementation of the technical solution of the embodiment of the present invention can solve the problem of how the downlink control channel demodulation pilot sequence is generated, and how to perform resource mapping of the demodulation pilot on the downlink control channel.
  • an independent demodulation pilot sequence may be generated for each control resource set, or a unified demodulation pilot sequence may be generated for multiple control resource sets.
  • the multiple control resource sets may be It is all or part of the control resource set configured by one base station for all users, or it may be all or part of the control resource set configured by one base station for one user. Therefore, the correspondence between the demodulation pilot sequence and the control resource set may be one-to-one correspondence or one-to-many correspondence.
  • the length of the demodulation pilot sequence can be determined according to the following formula:
  • d indicates the time domain range of the control resource set, which may be the number of specific symbols.
  • the number of symbols may be the number of symbols included in the maximum duration of the control resource set, or the number of real-time symbols of the control resource set on a certain scheduling time unit. The number can be changed semi-statically or dynamically;
  • r denotes the number of specific demodulation pilot REs in a unit resource block within the REG or frequency domain direction including the demodulation pilot.
  • the time-frequency resource corresponding to a control resource set is divided into one or more subsets, and the time-frequency resources between different subsets are orthogonal.
  • Each subset consists of one or more REGs, and different subsets correspond to different REG(s).
  • the demodulation pilot is inserted in units of REG. For each subset, it is necessary to determine which REGs in the subset are to be inserted into the demodulation pilot. According to the rule, the demodulation may be inserted on all REGs corresponding to the subset. Frequency, it is also possible to insert a demodulation pilot on a part of the REG.
  • the rules are:
  • the demodulation pilot needs to be inserted on each REG in the time-frequency resource of the subset.
  • Case 1 If the resource mapping rule on the subset adopts time domain priority mapping, demodulation pilots are inserted on all REGs corresponding to the first symbol of the subset. And in this case, the control channel corresponding to a certain user must be mapped from the first symbol of the subset in which it is located.
  • a part of the pilot sequence is intercepted from the corresponding pilot sequence of the control resource set, and mapped to the REG.
  • the specific mapping can take two steps:
  • a partial pilot sequence corresponding to the control resource set frequency domain PRB is intercepted from the complete pilot sequence corresponding to the system bandwidth, to obtain a partial sequence 1;
  • a partial pilot sequence corresponding to the REG in which the pilot is inserted on the control resource set is intercepted from the partial sequence 1 to obtain a partial sequence 2.
  • part of the sequence 2 is the pilot sequence to be finally mapped to the pilot REG to be inserted.
  • the resource mapping rules for the subset may be determined based on the number of symbols included in the subset.
  • the frequency domain first mapping rule is adopted by default; when the subset includes an even number of symbols, a time domain priority mapping rule or a frequency domain priority mapping rule may be adopted, or the base station notifies the terminal in whole or in part.
  • the subset time-frequency resource information is semi-static or dynamically indicating which resource mapping rule is used.
  • the resource mapping rule may be a mapping from a candidate to a CCE, and/or a mapping from a CCE to an REG.
  • the unit that needs to insert the demodulation pilot is an REG.
  • the unit that needs to insert the demodulation pilot may also be a unit resource block in the frequency domain direction.
  • the resource block is similar to the REG and can be inserted based on the above scheme.
  • FIG. 1 is a schematic flowchart of a method for processing a demodulation pilot according to an embodiment of the present invention. As shown in FIG. 1, the method for processing a demodulation pilot includes the following steps:
  • Step 101 Generate a demodulation pilot sequence based on at least a time domain range of the control resource set.
  • the time domain range of the control resource set refers to: the number of OFDM symbols included in the control resource set, where the number of OFDM symbols included in the control resource set is a semi-static configuration or a dynamic configuration.
  • the time domain range of the control resource set refers to: the number of OFDM symbols that the control resource set can include at most in the time domain, where the control resource set can include at most the number of OFDM symbols in the time domain. one or more.
  • the length of the demodulation pilot sequence is determined by the following formula:
  • the base station configures one or more demodulation pilot sequences for multiple control resource sets, where:
  • the base station configures one demodulation pilot sequence for multiple control resource sets, it indicates that multiple control resource sets share one demodulation pilot sequence
  • the base station configures multiple demodulation pilot sequences for multiple control resource sets, it indicates that each control resource set corresponds to a respective demodulation pilot sequence.
  • the multiple control resource sets refer to all or part of the control resource set configured by one base station for all users.
  • the plurality of control resource sets refers to: all or part of the control resource set configured by one base station for one user.
  • Step 102 Perform resource mapping on the demodulation pilot based on at least the control resource set and the time-frequency resource configuration of the subset of the control resource set, and send the intercepted demodulation pilot sequence based on the resource mapping result.
  • the subset of the control resource set is obtained by dividing the control resource set into one or more subsets, and time-frequency resources between different subsets are orthogonal;
  • the subset of each of the control resource sets is required to transmit a demodulation pilot corresponding to the subset.
  • control resource set is divided into one or more subsets by a dynamic mode or a semi-static mode, where:
  • the partitioning strategy is indicated in the common downlink control channel
  • the partitioning strategy is indicated in one of the following: radio resource control (RRC) signaling, system information block (SIB message, System Information Blocks), Master Information Block (MIB Message).
  • RRC radio resource control
  • SIB message system information block
  • MIB Message Master Information Block
  • the performing resource mapping on the demodulation pilot includes: the base station inserting a solution into the demodulation pilot resource unit by using a REG or a unit resource block in a frequency domain direction on all subsets included in the control resource set. Adjust the pilot frequency.
  • the base station determines, according to the following rules, a REG or a unit resource block in a frequency domain direction on which a demodulation pilot needs to be inserted in a subset:
  • demodulation pilots are inserted on each REG in the time-frequency resource of the subset or on the unit resource block in the frequency domain direction.
  • the demodulation pilot is inserted according to the resource mapping rule of the subset, which specifically includes:
  • demodulation pilots are inserted on all REGs corresponding to the first symbol of the subset or unit resource blocks in the frequency domain direction, and the control is performed for the user.
  • the channel needs to be inserted from the first symbol of the subset in which the control channel is located;
  • demodulation pilots are inserted on each REG in the time-frequency resource of the subset or on the unit resource block in the frequency domain direction.
  • the resource mapping rule on the subset is at least one of the following: mapping of candidate resources to CCEs, mapping of CCEs to REGs.
  • the REG of the demodulation pilot or the unit resource block in the frequency domain direction needs to be inserted on the determined subset, all the REGs in the control resource set need to be inserted into the REG or the frequency domain direction of the demodulation pilot.
  • a partial demodulation pilot sequence is transmitted on the unit resource block, and the partial demodulation pilot sequence is obtained by intercepting the generated demodulation pilot sequence.
  • the part of the pilot sequence is obtained by: the base station intercepting a partial demodulation corresponding to the PRB range from the generated demodulation pilot sequence according to the PRB range corresponding to the control resource set. Pilot sequence.
  • the part of the pilot sequence is obtained by: the base station dividing the control resource set into multiple REGs; and inserting a time-frequency position of the REG of the demodulation pilot in the control resource set according to the requirement, Obtaining a final demodulation pilot sequence from a partial pilot sequence corresponding to the control resource set, where the final demodulation pilot sequence is a partial pilot sequence to be transmitted.
  • the resource mapping rule of the subset is determined according to the number of OFDM symbols included in the subset.
  • the resource mapping rule of the subset adopts a frequency domain priority mapping by default.
  • the odd number is preferably 1.
  • the resource mapping rule of the subset adopts a time domain priority mapping by default; or the base station notifies the time-frequency resource of all or part of the subset of the terminal.
  • the resource mapping rule of all or part of the subset is simultaneously notified whether the time domain priority mapping or the frequency domain priority mapping is used.
  • the even number is preferably 2.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the base station configures two control resource sets on the system bandwidth W (including n PRBs), which are control resource set 1 and control resource set 2, where control resource set 1 corresponds to the frequency domain range W1, including n1 PRBs, and control resource Set 2 corresponds to the frequency domain range W2 and contains n2 PRBs, as shown in Figure 2.
  • control resource set 1 and control resource set 2 For the time domain ranges of control resource set 1 and control resource set 2, it is specified that no more than x OFDM symbols, and x may be any of 2, 3, and 4.
  • the demodulation pilot uses REG as a resource mapping unit, and contains r demodulation pilot REs in one REG.
  • the base station generates a unified demodulation pilot sequence for the control resource set 1 and the control resource set 2, specifically:
  • the sequence length m is equal to the number of PRBs included in the system bandwidth, the maximum time domain range x, and the product of the number of pilot resource units (RE, Resource Element) r in a single REG.
  • the base station Based on the pilot initial sequence and the sequence generation mode, the base station generates a complete demodulation pilot sequence r(m). For a slot that needs to send a downlink control channel, based on the complete sequence, the base station intercepts the corresponding control from r(m) according to the position of n1 PRBs corresponding to the frequency domain range W1 in the n PRBs corresponding to the system bandwidth W.
  • the partial pilot sequence r1(m) of resource set 1 has a ratio of the length of r1(m) to the length of r(m) of n1/n.
  • the base station intercepts a part of the pilot sequence r2(m) corresponding to the control resource set 2 from r(m) according to the position of the n2 PRBs corresponding to the frequency domain range W2 in the n PRBs corresponding to the system bandwidth W, r2
  • the ratio of the length of (m) to the length of r (m) is n2/n. Since there is an overlapping PRB between W1 and W2, r1(m) is identical to some of the sequence elements in r2(m).
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the base station configures two control resource sets on the system bandwidth W (including n PRBs), which are control resource set 1 and control resource set 2, where control resource set 1 corresponds to the frequency domain range W1, including n1 PRBs, and control resource Set 2 corresponds to the frequency domain range W2 and contains n2 PRBs, as shown in FIG.
  • the system semi-statically configures the time domain range of control resource set 1 and control resource set 2, and notifies in RRC signaling.
  • the control resource set 1 is semi-statically configured as x1 OFDM symbols
  • the control resource set 2 is semi-statically configured as x2 OFDM symbols.
  • the demodulation pilot uses REG as a resource mapping unit, and contains r demodulation pilot REs in one REG.
  • the base station separately generates a demodulation pilot sequence for the control resource set 1 and the control resource set 2, and the demodulation pilot sequence generated for the control resource set 1 is:
  • the sequence length m is equal to the number of PRBs included in the system bandwidth, the product of the semi-statically configured control resource set 1 time domain range x1, and the number of pilot REs in a single REG.
  • the base station semi-static generates a complete demodulation pilot sequence r(m) for the control resource set 1. Based on the complete sequence, the base station intercepts part of the pilot sequence r1 (m) corresponding to the control resource set 1 from r(m) according to the position of the n1 PRBs corresponding to the frequency domain range W1 in the n PRBs corresponding to the system bandwidth W.
  • the ratio of the length of r1(m) to the length of r(m) is n1/n.
  • the demodulation pilot sequence generated by the base station for control resource set 2 is:
  • the sequence length m is equal to the number of PRBs included in the system bandwidth, the semi-statically configured control resource set 2 time domain range x2, and the product of the number of pilot REs in a single REG.
  • the base station semi-static generates a complete demodulation pilot sequence r(m) for the control resource set 2. Based on the complete sequence, the base station intercepts part of the pilot sequence r2 corresponding to the control resource set 2 from r(m) according to the position of the n2 PRBs corresponding to the frequency domain range W2 in the n PRBs corresponding to the system bandwidth W.
  • the ratio of the length of r2(m) to the length of r(m) is n2/n.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the base station configures two control resource sets on the system bandwidth W (including n PRBs), which are control resource set 1 and control resource set 2, where control resource set 1 corresponds to the frequency domain range W1, including n1 PRBs, and control resource Set 2 corresponds to the frequency domain range W2 and contains n2 PRBs.
  • the control resource set 1 time domain is fixed to 1 OFDM symbol length, and the control resource set 2 time domain length is a dynamic or semi-static configuration of x2 OFDM symbol lengths. If it is dynamically configured x2, it is carried in control resource set 1.
  • the PDCCH signaling will indicate the x2 specific value; if it is the semi-static configuration x2, the x2 specific value is indicated in the RRC signaling.
  • the value of x2 ranges from one of the values 1, 2, and 3.
  • the base station generates a unified demodulation pilot sequence for the control resource set 1 and the control resource set 2, specifically:
  • the sequence length m is equal to the product of the number of PRBs included in the system bandwidth, the maximum time domain Duration value of 3, and the number of pilot REs r within a single REG.
  • the base station uniformly generates a complete demodulation pilot sequence r(m) for the control resource set 1 and the control resource set 2.
  • the time domain corresponding to the first symbol is intercepted from the complete demodulation pilot sequence r(m).
  • the domain corresponds to the partial pilot sequence r1(m) of W1, and the ratio of the lengths of r1(m) to r(m) is n1/3n.
  • the time domain duration is semi-static or dynamically changed. You need to use control resource set 2 to send a slot of the downlink control channel. If the semi-static or dynamically configured control resource set 2 is in the domain, the duration is x2.
  • the base station intercepts the time domain corresponding to the first x2 symbols from the complete demodulation pilot sequence r(m)
  • the frequency domain corresponds to the partial sequence r2(m), r2(m) and r of W2.
  • the ratio of the length of (m) is (x2 ⁇ n2) / 3n.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the base station is a control resource set, which is recorded as control resource set1, and needs to be further determined after obtaining a partial demodulation pilot sequence r1(m) corresponding to the control resource set by sequence truncation. Specific resource mapping for the r1(m) sequence.
  • control resource set 1 In a slot that needs to send downlink control signaling on control resource set1, the base station divides control resource set 1 into two subsets, as shown in FIG. Since both subsets contain only 1 OFDM symbol, for both subset 1 and subset 2, it is necessary to map demodulation pilots on all REGs included in the subset, from the perspective of the entire control resource set 1, each REG Both need to insert the demodulation pilot, so there is no need to intercept r1(m), and the corresponding elements in the sequence r1(m) can be mapped according to the location of the time-frequency resource of each REG. As shown in Fig. 5, the shadow part is mapped. Understand the time-frequency resources of the pilot frequency.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the base station is a control resource set, which is recorded as control resource set1, and needs to be further determined after obtaining a partial demodulation pilot sequence r1(m) corresponding to the control resource set by sequence truncation. Specific resource mapping for the r1(m) sequence.
  • the entire control resource set corresponds to only one subset, the subset contains 2 OFDM symbols, and the CCE mapping of Control resource set1 uses time domain priority mapping rules, one
  • the CCE contains 4 REGs, as shown in Figure 6.
  • the demodulation pilot mapping rule as long as the demodulation pilot is mapped on the REG of the first OFDM symbol, all REGs on the first OFDM symbol need to be mapped and demodulated pilots, from the r1(m) sequence.
  • the partial sequence r1_1(m) corresponding to the REGs is intercepted, and the elements in r1_1(m) are mapped to the corresponding REG time-frequency resource positions, as shown in FIG. 7, and the shaded portion is the time-frequency at which the demodulation pilot is mapped. Resources.
  • FIG. 8 is a schematic structural diagram of a processing apparatus for demodulating a pilot according to an embodiment of the present invention. As shown in FIG. 8, the apparatus includes:
  • the generating unit 81 is configured to generate a demodulation pilot sequence based on at least a time domain range of the control resource set;
  • the resource mapping unit 82 is configured to perform resource mapping on the demodulation pilot based on at least the control resource set and the time-frequency resource configuration of the subset of the control resource set;
  • the transmitting unit 83 is configured to send the intercepted demodulation pilot sequence based on the resource mapping result.
  • the time domain range of the control resource set refers to: the number of OFDM symbols included in the control resource set, where the number of OFDM symbols included in the control resource set is a semi-static configuration or a dynamic configuration.
  • the time domain range of the control resource set refers to: the number of OFDM symbols that the control resource set can include at most in the time domain, where the control resource set can include at most the number of OFDM symbols in the time domain. one or more.
  • the subset of the control resource set is obtained by dividing the control resource set into one or more subsets, and time-frequency resources between different subsets are orthogonal;
  • the subset of each of the control resource sets is required to transmit a demodulation pilot corresponding to the subset.
  • control resource set is divided into one or more subsets by a dynamic mode or a semi-static mode, where:
  • the partitioning strategy is indicated in the common downlink control channel
  • the partitioning strategy is indicated in one of the following: RRC signaling, SIB message, MIB message.
  • the length of the demodulation pilot sequence is determined by the following formula:
  • the base station configures one or more demodulation pilot sequences for multiple control resource sets, where:
  • the base station configures one demodulation pilot sequence for multiple control resource sets, it indicates that multiple control resource sets share one demodulation pilot sequence
  • the base station configures multiple demodulation pilot sequences for multiple control resource sets, it indicates that each control resource set corresponds to a respective demodulation pilot sequence.
  • the multiple control resource sets refer to all or part of the control resource set configured by one base station for all users.
  • the multiple control resource sets refer to all or part of the control resource set configured by one base station for one user.
  • the resource mapping unit 82 is configured to insert a demodulation pilot by using a REG or a unit resource block in a frequency domain direction as a demodulation pilot resource unit on all subsets included in the control resource set.
  • the base station determines, according to the following rules, a REG or a unit resource block in a frequency domain direction on which a demodulation pilot needs to be inserted in a subset:
  • demodulation pilots are inserted on each REG in the time-frequency resource of the subset or on the unit resource block in the frequency domain direction.
  • the demodulation pilot is inserted according to the resource mapping rule of the subset, which specifically includes:
  • demodulation pilots are inserted on all REGs corresponding to the first symbol of the subset or unit resource blocks in the frequency domain direction, and the control is performed for the user.
  • the channel needs to be inserted from the first symbol of the subset in which the control channel is located;
  • demodulation pilots are inserted on each REG in the time-frequency resource of the subset or on the unit resource block in the frequency domain direction.
  • the resource mapping rule on the subset is at least one of the following: mapping of candidate resources to CCEs, mapping of CCEs to REGs.
  • the REG of the demodulation pilot or the unit resource block in the frequency domain direction needs to be inserted on the determined subset, all the REGs in the control resource set need to be inserted into the REG or the frequency domain direction of the demodulation pilot.
  • a partial demodulation pilot sequence is transmitted on the unit resource block, and the partial demodulation pilot sequence is obtained by intercepting the generated demodulation pilot sequence.
  • the part of the pilot sequence is obtained by: the base station intercepting a partial demodulation corresponding to the PRB range from the generated demodulation pilot sequence according to the PRB range corresponding to the control resource set. Pilot sequence.
  • the part of the pilot sequence is obtained by: the base station dividing the control resource set into multiple REGs; and inserting a time-frequency position of the REG of the demodulation pilot in the control resource set according to the requirement, Obtaining a final demodulation pilot sequence from a partial pilot sequence corresponding to the control resource set, where the final demodulation pilot sequence is a partial pilot sequence to be transmitted.
  • the resource mapping rule of the subset is determined according to the number of OFDM symbols included in the subset.
  • the resource mapping rule of the subset adopts a frequency domain priority mapping by default.
  • the odd number is preferably 1.
  • the resource mapping rule of the subset adopts a time domain priority mapping by default; or the base station notifies the time-frequency resource of all or part of the subset of the terminal.
  • the resource mapping rule of all or part of the subset is simultaneously notified whether the time domain priority mapping or the frequency domain priority mapping is used.
  • the even number is preferably 2.
  • each unit in the processing apparatus for demodulation pilot shown in FIG. 8 can be understood by referring to the related description of the processing method of the demodulation pilot described above.
  • the functions of the respective units in the processing apparatus for demodulating pilots shown in FIG. 8 can be realized by a program running on a processor, or can be realized by a specific logic circuit.
  • the embodiment of the invention further provides a parameter configuration device, the hardware component structure of the parameter configuration device, comprising: a memory configured to store an executable program;
  • a processor configured to execute an executable program stored in the memory, executes:
  • the time domain range of the control resource set refers to: the number of OFDM symbols included in the control resource set, where the number of OFDM symbols included in the control resource set is a semi-static configuration or a dynamic configuration.
  • the time domain range of the control resource set refers to: the number of OFDM symbols that the control resource set can include at most in the time domain, where the control resource set can include at most the number of OFDM symbols in the time domain. one or more.
  • control resource set into one or more subsets, and time-frequency resources between different subsets are orthogonal;
  • the subset of each of the control resource sets is required to transmit a demodulation pilot corresponding to the subset.
  • the processor divides the control resource set into one or more subsets by using a dynamic mode or a semi-static mode, where:
  • the partitioning strategy is indicated in the common downlink control channel
  • the partitioning strategy is indicated in one of the following: RRC signaling, SIB message, MIB message.
  • the base station configures one or more demodulation pilot sequences for multiple control resource sets, where:
  • the base station configures one demodulation pilot sequence for multiple control resource sets, it indicates that multiple control resource sets share one demodulation pilot sequence
  • the base station configures multiple demodulation pilot sequences for multiple control resource sets, it indicates that each control resource set corresponds to a respective demodulation pilot sequence.
  • the multiple control resource sets refer to all or part of the control resource set configured by one base station for all users.
  • the multiple control resource sets refer to all or part of the control resource set configured by one base station for one user.
  • a demodulation pilot is inserted as a demodulation pilot resource unit in a REG or a unit resource block in the frequency domain direction.
  • demodulation pilots are inserted on each REG in the time-frequency resource of the subset or on the unit resource block in the frequency domain direction.
  • the demodulation pilot is inserted according to the resource mapping rule of the subset, which specifically includes:
  • demodulation pilots are inserted on all REGs corresponding to the first symbol of the subset or unit resource blocks in the frequency domain direction, and the control is performed for the user.
  • the channel needs to be inserted from the first symbol of the subset in which the control channel is located;
  • demodulation pilots are inserted on each REG in the time-frequency resource of the subset or on the unit resource block in the frequency domain direction.
  • the resource mapping rule on the subset is at least one of the following: mapping of candidate resources to CCEs, mapping of CCEs to REGs.
  • the processor when the processor is configured to run the computer program, perform: transmitting a partial demodulation on a unit resource block of the control resource set that needs to insert a demodulation pilot or a frequency resource direction.
  • the frequency sequence, the partial demodulation pilot sequence is obtained by truncating the generated demodulation pilot sequence.
  • a resource mapping rule of the subset is determined according to the number of OFDM symbols included in the subset.
  • the resource mapping rule of the subset adopts a frequency domain priority mapping by default.
  • the resource mapping rule of the subset adopts a time domain priority mapping by default; or the base station notifies the time-frequency resource of all or part of the subset of the terminal.
  • the resource mapping rule of all or part of the subset is simultaneously notified whether the time domain priority mapping or the frequency domain priority mapping is used.
  • the processing apparatus 700 for demodulating pilots includes: at least one processor 7010, a memory 7020, and at least one network interface 7040.
  • the various components in the processing device 700 that demodulate the pilot are coupled together by a bus system 7050.
  • the bus system 7050 is used to implement connection communication between these components.
  • the bus system 7050 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses are labeled as bus system 7050 in FIG.
  • memory 7020 can be either volatile memory or nonvolatile memory, and can include both volatile and nonvolatile memory.
  • the non-volatile memory may be a Read Only Memory (ROM), a Programmable Read-Only Memory (PROM), or an Erasable Programmable Read (EPROM). Only Memory), Electrically Erasable Programmable Read-Only Memory (EEPROM), Ferromagnetic Random Access Memory (FRAM), Flash Memory, Magnetic Surface Memory , CD-ROM, or Compact Disc Read-Only Memory (CD-ROM); the magnetic surface memory can be a disk storage or a tape storage.
  • the volatile memory can be a random access memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • SRAM Static Random Access Memory
  • SSRAM Synchronous Static Random Access Memory
  • SSRAM Dynamic Random Access
  • DRAM Dynamic Random Access Memory
  • SDRAM Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM enhancement Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Dynamic Random Access Memory
  • DRRAM Direct Memory Bus Random Access Memory
  • the memory 7020 in the embodiment of the present invention is used to store various types of data to support the operation of the processing device 700 that implements demodulation pilots.
  • Examples of such data include any computer program for operating on the processing device 700 that demodulates the pilot, such as operating system 7021 and application 7022; contact data; phone book data; messages; pictures;
  • the operating system 7021 includes various system programs, such as a framework layer, a core library layer, a driver layer, and the like, for implementing various basic services and processing hardware-based tasks.
  • the application 7022 can include various applications, such as a Media Player, a Browser, etc., for implementing various application services.
  • a program implementing the method of the embodiment of the present invention may be included in the application 7022.
  • the method disclosed in the foregoing embodiments of the present invention may be applied to the processor 7010 or implemented by the processor 7010.
  • the processor 7010 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 7010 or an instruction in a form of software.
  • the processor 7010 described above may be a general purpose processor, a digital signal processor (DSP), or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, or the like.
  • DSP digital signal processor
  • the processor 7010 can implement or perform the various methods, steps, and logic blocks disclosed in the embodiments of the present invention.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiment of the present invention may be directly implemented as a hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can reside in a storage medium located in memory 7020, and processor 7010 reads the information in memory 7020 in conjunction with its hardware to perform the steps of the foregoing method.
  • the processing device 700 for demodulating pilots may be implemented by one or more Application Specific Integrated Circuits (ASICs), DSPs, Programmable Logic Devices (PLDs), and complex Programmable Logic Device (CPLD), Field-Programmable Gate Array (FPGA), General Purpose Processor, Controller, Micro Controller Unit (MCU), Microprocessor ), or other electronic component implementations, for performing the aforementioned methods.
  • ASICs Application Specific Integrated Circuits
  • DSPs Programmable Logic Devices
  • CPLD complex Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • MCU Micro Controller Unit
  • Microprocessor Microprocessor
  • the embodiment of the invention further provides a storage medium storing an executable program, when the executable program is executed by the processor, implementing:
  • the time domain range of the control resource set refers to: the number of OFDM symbols included in the control resource set, where the number of OFDM symbols included in the control resource set is a semi-static configuration or a dynamic configuration.
  • the time domain range of the control resource set refers to: the number of OFDM symbols that the control resource set can include at most in the time domain, where the control resource set can include at most the number of OFDM symbols in the time domain. one or more.
  • the subset of the control resource set is obtained by dividing the control resource set into one or more subsets, and time-frequency resources between different subsets are orthogonal;
  • the subset of each of the control resource sets is required to transmit a demodulation pilot corresponding to the subset.
  • control resource set is divided into one or more subsets in a dynamic manner or a semi-static manner, wherein:
  • the partitioning strategy is indicated in the common downlink control channel
  • the partitioning strategy is indicated in one of the following: RRC signaling, SIB message, MIB message.
  • the length of the demodulation pilot sequence is determined by the following formula:
  • the base station configures one or more demodulation pilot sequences for multiple control resource sets, where:
  • the base station configures one demodulation pilot sequence for multiple control resource sets, it indicates that multiple control resource sets share one demodulation pilot sequence
  • the base station configures multiple demodulation pilot sequences for multiple control resource sets, it indicates that each control resource set corresponds to a respective demodulation pilot sequence.
  • the multiple control resource sets refer to all or part of the control resource set configured by one base station for all users.
  • the multiple control resource sets refer to all or part of the control resource set configured by one base station for one user.
  • a demodulation pilot is inserted as a demodulation pilot resource unit in a REG or a unit resource block in the frequency domain direction.
  • demodulation pilots are inserted on each REG in the time-frequency resource of the subset or on the unit resource block in the frequency domain direction.
  • the demodulation pilot is inserted according to the resource mapping rule of the subset, which specifically includes:
  • demodulation pilots are inserted on all REGs corresponding to the first symbol of the subset or unit resource blocks in the frequency domain direction, and the control is performed for the user.
  • the channel needs to be inserted from the first symbol of the subset in which the control channel is located;
  • demodulation pilots are inserted on each REG in the time-frequency resource of the subset or on the unit resource block in the frequency domain direction.
  • the resource mapping rule on the subset is at least one of the following: mapping of candidate resources to CCEs, mapping of CCEs to REGs.
  • the partially demodulated pilot sequence is truncated from the generated demodulation pilot sequence.
  • the resource mapping rule of the subset is determined according to the number of OFDM symbols included in the subset.
  • the resource mapping rule of the subset adopts a frequency domain priority mapping by default.
  • the resource mapping rule of the subset adopts a time domain priority mapping by default; or the base station notifies the time-frequency resource of all or part of the subset of the terminal.
  • the resource mapping rule of all or part of the subset is simultaneously notified whether the time domain priority mapping or the frequency domain priority mapping is used.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention can take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • the demodulation pilot sequence is generated based on at least the time domain range of the control resource set; and the demodulation pilot is configured based on at least the control resource set and the time-frequency resource configuration of the subset of the control resource set.
  • a resource mapping is performed, and the intercepted demodulation pilot sequence is transmitted based on the resource mapping result.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Channel Selection Circuits, Automatic Tuning Circuits (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Stereo-Broadcasting Methods (AREA)

Abstract

本发明公开了一种解调导频的处理方法、装置及存储介质,所述方法包括:至少基于控制资源集的时域范围,生成解调导频序列;至少基于所述控制资源集以及所述控制资源集的子集的时频资源配置,对解调导频进行资源映射,并基于资源映射结果发送截取的解调导频序列。

Description

一种解调导频的处理方法、装置及存储介质
相关申请的交叉引用
本申请基于申请号为201710182794.1、申请日为2017年03月24日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及移动通信领域,尤其涉及一种解调导频的处理方法、装置及存储介质。
背景技术
随着无线通信技术的发展和用户对通信需求的日益增加,为了满足更高、更快和更新的通信需要,第五代移动通信(5G,5th Generation)技术已成为未来网络发展的趋势。
高频通信作为未来5G技术的重要通信手段之一,利用高频通信的大带宽可以提供高速数据通信,以满足5G通信中对大数据量的需求。高频传播上损耗更大,同样的功率下覆盖半径相对更小,这也决定了高频通信系统组网中,需要采用波束赋型技术来提高覆盖半径。那么无论是业务信道还是控制信道,都需要考虑基于波束赋型技术的传输。
在第三代合作伙伴计划(3GPP,3rd Generation Partnership Project)会议对5G下行控制信道的讨论中,已经通过了控制资源集(control resource set)的概念,对于control resource set的定义,主要是为了区别于长期演进(LTE,Long Term Evolution)物理下行控制信道(PDCCH,Physical Downlink Control Channel)全带宽发送的方式,5G中的PDCCH不会再采用全带宽发送的方式,而是会在control resource set对应的频域子带范围内发送,而对于一个用户,基 站可能为其配置多个control resource set,不同的control resource set可能承载不同类型的PDCCH。对于一个control resource set,在频域上会对应若干个物理资源块(PRB,Physical Resource Block),在时域上会对应一个或若干个正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)符号,时域上包含的OFDM符号数目可以称为control resource set的持续时间(Duration),频域对应哪些PRB可以半静态配置,时域Duration可以半静态或动态配置。
在LTE PDCCH中,定义了候选资源(Candidate)、资源单元组(REG,Resource Element Group)、控制信道单元(CCE,Control Channel Element)这样的下行控制信道资源分配单元,其中REG是下行控制信道基本资源分配单元,一个下行控制信道Candidate会对应一个或多个CCE,一个CCE包含9个REG。在5G的下行控制信道讨论中,也已经通过了对于REG、CCE的定义,REG仍然是下行控制信道基本资源分配单元,但REG的定义与LTE中不同,REG时域对应一个OFDM符号,频域对应12个子载波,相当于一个PRB的频域范围。
在LTE PDCCH中,会基于小区参考信号(CRS,Cell Reference Signal)来进行下行控制信道解调,而5G下行控制信道新的特点,不再适合采用CRS来解调下行控制信道,可以采用解调参考信号(DMRS,Demodulation Reference Signal)来解调下行控制信道,但基于control resource set的概念以及新的REG定义,如何设计5G下行控制信道解调导频的序列以及资源映射方法,是需要进一步研究的问题。
发明内容
为解决上述技术问题,本发明实施例提供了一种解调导频的处理方法、装置及存储介质。
本发明实施例提供的解调导频的处理方法,包括:
至少基于控制资源集的时域范围,生成解调导频序列;
至少基于所述控制资源集以及所述控制资源集的子集的时频资源配置,对 解调导频进行资源映射,并基于资源映射结果发送截取的解调导频序列。
本发明实施例提供的解调导频的处理装置,包括:
生成单元,配置为至少基于控制资源集的时域范围,生成解调导频序列;
资源映射单元,配置为至少基于所述控制资源集以及所述控制资源集的子集的时频资源配置,对解调导频进行资源映射;
发送单元,配置为基于资源映射结果发送截取的解调导频序列。
本发明实施例提供的解调导频的处理装置,包括:处理器以及存储有所述处理器可执行指令的存储器,当所述指令被处理器执行时,执行如下操作:
至少基于控制资源集的时域范围,生成解调导频序列;
至少基于所述控制资源集以及所述控制资源集的子集的时频资源配置,对解调导频进行资源映射,并基于资源映射结果发送截取的解调导频序列。
本发明实施例还提供一种存储介质,所述存储介质中存储有计算机可执行指令,该计算机可执行指令用于执行上述的解调导频的处理方法。
本发明实施例的技术方案中,至少基于控制资源集的时域范围,生成解调导频序列;至少基于所述控制资源集以及所述控制资源集的子集的时频资源配置,对解调导频进行资源映射,并基于资源映射结果发送截取的解调导频序列。采用本发明实施例的技术方案,解决了下行控制信道解调导频序列如何生成的问题,以及如何在下行控制信道进行解调导频的资源映射的问题。
附图说明
附图以示例而非限制的方式大体示出了本文中所讨论的各个实施例。
图1为本发明实施例的解调导频的处理方法的流程示意图;
图2为本发明实施例的control resource set频域示意图一;
图3为本发明实施例的control resource set频域示意图二;
图4为本发明实施例的control resource set1的示意图一;
图5为本发明实施例的映射解调导频后的示意图一;
图6为本发明实施例的control resource set1的示意图二;
图7为本发明实施例的映射解调导频后的示意图二;
图8为本发明实施例的解调导频的处理装置的结构组成示意图;
图9为本发明实施例的解调导频的处理装置的硬件结构组成示意图。
具体实施方式
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
本发明实施例提供了一种解调导频的处理方法,该方法具体包括如下两部分内容:第一部分,解调导频序列的生成方法;第二部分,解调导频的资源映射方法。通过对本发明实施例技术方案的实施,可以解决下行控制信道解调导频序列如何生成的问题,以及如何在下行控制信道进行解调导频的资源映射。
本发明实施例中,可以针对每一个control resource set生成独立的解调导频序列,也可以针对多个control resource set生成统一的解调导频序列,这里,所述多个control resource set,可以是一个基站针对所有用户配置的全部或部分control resource set,也可以是一个基站针对一个用户配置的全部或部分control resource set。因此,解调导频序列和control resource set的对应关系,可以是一一对应,也可以是一对多对应。
上述方案中,解调导频序列的长度,可以根据如下公式确定:
Figure PCTCN2018075318-appb-000001
其中,
Figure PCTCN2018075318-appb-000002
表示控制信道所在载波的系统带宽,或下行系统带宽;或者,
Figure PCTCN2018075318-appb-000003
表示控制资源集的频域范围包括的PRB数目或其他频域资源单元数目;
d表示control resource set的时域范围,可以是具体符号数目,该符号数目可以是control resource set最大duration包含的符号数目,也可以是某个调度时间单元上control resource set实时符号数目,该实时符号数目可以半静态改变,也可以动态改变;
r表示包含解调导频的REG内或频域方向的单位资源块内具体的解调导频RE数目。
把一个control resource set对应的时频资源,划分为一个或多个子集,不同子集之间的时频资源正交。每一个子集由一个或多个REG组成,不同子集对应不同的REG(s)。
以REG为单位来插入解调导频,对于每一个子集,需要确定该子集上哪些REG要插入解调导频,根据规则,可以是该子集对应的所有REG上都插入解调导频,也可以在部分REG上插入解调导频。所述规则为:
(1)如果所述子集在时域仅对应一个符号,在频域对应若干个PRB,那么所述子集的时频资源内,每个REG上都需要插入解调导频。
(2)如果所述子集在时域上对应多个符号,在频域对应若干个PRB,那么根据所述子集上资源映射规则,分为以下两种情况:
情况一:如果所述子集上资源映射规则采用时域优先映射,那么所述子集的第一个符号对应的所有REG上都插入解调导频。并且在该情况下,对应某个用户的控制信道,必须从所在子集的第一个符号开始映射。
情况二:如果所述子集上资源映射规则采用频域优先映射,那么所述子集的时频资源内,每个REG上都插入解调导频。
根据上述规则确定了一个control resource set的每个子集上需要插入解调导频的REG后,从该control resource set对应导频序列中截取部分导频序列,映射到所述REG的上。具体映射可以采用两步:
第一步,从对应系统带宽的完整导频序列中截取对应control resource set频域PRB的部分导频序列,得到部分序列1;
第二步,从部分序列1中截取对应该control resource set上插入导频的REG的部分导频序列,得到部分序列2。
上述方案中,部分序列2即为最终要映射到需要插入导频REG上的导频序列。
对于所述子集的资源映射规则,可以根据所述子集包含符号数目来确定。 当子集包含奇数个符号时,默认采用频域优先映射规则;当子集包含偶数个符号时,可以采用时域优先映射规则,或者频域优先映射规则,或者由基站在通知终端全部或部分子集时频资源信息时半静态或动态指示具体采用哪种资源映射规则。
上述方案中,属于同一个control resource set的多个子集,可以采用相同的资源映射规则,或者采用不同的资源映射规则。所述资源映射规则,可以是candidate到CCE的映射,和/或CCE到REG的映射。
上述方案是以需要插入解调导频的单元是REG为例,当然,需要插入解调导频的单元还可以是频域方向的单位资源块,本领域技术人员应当理解,频域方向的单位资源块与REG同理,可以基于上述方案进行插入。
图1为本发明实施例的解调导频的处理方法的流程示意图,如图1所示,所述解调导频的处理方法包括以下步骤:
步骤101:至少基于控制资源集的时域范围,生成解调导频序列。
本发明实施例中,所述控制资源集的时域范围是指:控制资源集包括的OFDM符号数目,其中,所述控制资源集包括的OFDM符号数目为半静态配置或动态配置。
本发明实施例中,所述控制资源集的时域范围是指:控制资源集在时域最多能够包括的OFDM符号数目,其中,所述控制资源集在时域最多能够包括的OFDM符号数目为一个或多个。
本发明实施例中,所述解调导频序列的长度由以下公式确定:
Figure PCTCN2018075318-appb-000004
其中,
Figure PCTCN2018075318-appb-000005
表示控制信道所在载波的系统带宽或下行系统带宽或控制资源集的频域范围包括的PRB数目或频域资源单元数目;d表示控制资源集的时域范围包括的OFDM符号数目;r表示包括解调导频的单位REG内或频域方向的单位资源块内包括的解调导频RE数目;c和j为常数。
本发明实施例中,基站为多个控制资源集配置一个或多个解调导频序列, 其中:
如果基站为多个控制资源集配置一个解调导频序列,则表示多个控制资源集共享一个解调导频序列;
如果基站为多个控制资源集配置多个解调导频序列,则表示各个控制资源集对应各自的解调导频序列。
本发明实施例中,所述多个控制资源集是指:一个基站针对所有用户配置的全部或部分控制资源集。所述多个控制资源集是指:一个基站针对一个用户配置的全部或部分控制资源集。
步骤102:至少基于所述控制资源集以及所述控制资源集的子集的时频资源配置,对解调导频进行资源映射,并基于资源映射结果发送截取的解调导频序列。
本发明实施例中,所述控制资源集的子集通过以下方式得到:将所述控制资源集划分为一个或多个子集,不同子集之间的时频资源正交;
其中,针对每个所述控制资源集的子集均需要发送所述子集对应的解调导频。
本发明实施例中,通过动态方式或半静态方式,将所述控制资源集划分为一个或多个子集,其中:
如果通过动态方式将所述控制资源集划分为一个或多个子集,则在公共下行控制信道中指示划分策略;
如果通过半静态方式将所述控制资源集划分为一个或多个子集,则在以下内容之一中指示划分策略:无线资源控制(RRC,Radio Resource Control)信令、系统信息块(SIB消息,System Information Blocks)、主信息块(MIB消息Master Information Block)。
本发明实施例中,所述对解调导频进行资源映射,包括:基站在控制资源集包括的所有子集上,以REG或频域方向的单位资源块作为解调导频资源单元插入解调导频。
本发明实施例中,基站根据以下规则确定子集上需要插入解调导频的REG 或频域方向的单位资源块:
如果所述子集在时域仅对应一个符号,在频域对应多个PRB,则所述子集的时频资源内的每个REG或频域方向的单位资源块上都插入解调导频;
如果所述子集在时域上对应多个符号,在频域对应多个PRB,则根据所述子集的资源映射规则插入解调导频,具体包括:
如果所述子集上资源映射规则采用时域优先映射,则所述子集的第一个符号对应的所有REG或频域方向的单位资源块上都插入解调导频,且针对用户的控制信道需从所述控制信道所在子集的第一个符号开始插入;
如果所述子集上资源映射规则采用频域优先映射,则所述子集的时频资源内的每个REG或频域方向的单位资源块上都插入解调导频。
本发明实施例中,所述子集上的资源映射规则为以下至少之一:候选资源到CCE的映射、CCE到REG的映射。
本发明实施例中,在确定子集上需要插入解调导频的REG或频域方向的单位资源块后,在所述控制资源集的所有需要插入解调导频的REG或频域方向的单位资源块上发送部分解调导频序列,所述部分解调导频序列是对所生成的解调导频序列截取得到。
本发明实施例中,所述部分导频序列通过以下方式获得:基站根据所述控制资源集对应的PRB范围,从所生成的解调导频序列中截取与所述PRB范围对应的部分解调导频序列。
本发明实施例中,所述部分导频序列通过以下方式获得:基站将所述控制资源集划分为多个REG;根据需要插入解调导频的REG在所述控制资源集中的时频位置,从所述控制资源集对应的部分导频序列中截取最终的解调导频序列,其中,所述最终的解调导频序列为待发送的部分导频序列。
本发明实施例中,所述子集的资源映射规则,根据所述子集包括的OFDM符号数目确定。
本发明实施例中,当所述子集包括的OFDM符号数目为奇数时,所述子集的资源映射规则默认采用频域优先映射。这里,奇数优选为1。
本发明实施例中,当所述子集包括的OFDM符号数目为偶数时,所述子集的资源映射规则默认采用时域优先映射;或者,基站在通知终端全部或部分子集的时频资源信息时,同时通知全部或部分子集的资源映射规则采用的是时域优先映射还是频域优先映射。这里,偶数优选为2。
下面结合具体应用场景对本发明实施例的技术方案作进一步详细描述。
实施例一:
基站在系统带宽W(包含n个PRB)上配置了2个control resource set,分别为control resource set 1和control resource set 2,其中control resource set 1对应频域范围W1,包含n1个PRB,control resource set 2对应频域范围W2,包含n2个PRB,如图2所示。
对于control resource set 1和control resource set 2的时域范围,规定最多不超过x个OFDM符号,x可以为2、3、4中的任一值。
解调导频以REG作为资源映射单元,在一个REG内,包含r个解调导频RE。
基站为control resource set 1和control resource set 2生成统一的解调导频序列,具体为:
Figure PCTCN2018075318-appb-000006
其中,序列长度m等于系统带宽包含的PRB数目n,最大时域范围x,单个REG内的导频资源单元(RE,Resource Element)数目r的乘积。
根据导频初始序列,以及序列生成方式,基站生成完整的解调导频序列r(m)。对于某个需要发送下行控制信道的slot,基于该完整序列,基站根据频域范围W1对应的n1个PRB在系统带宽W对应的n个PRB中的位置,从r(m)中截取出对应control resource set 1的部分导频序列r1(m),r1(m)长度与r(m)长度之比为n1/n。
同理,基站根据频域范围W2对应的n2个PRB在系统带宽W对应的n个 PRB中的位置,从r(m)中截取对应control resource set 2的部分导频序列r2(m),r2(m)长度与r(m)长度之比为n2/n。因为W1与W2之间有重叠的PRB,因此r1(m)与r2(m)中有部分序列元素相同。
实施例二:
基站在系统带宽W(包含n个PRB)上配置了2个control resource set,分别为control resource set 1和control resource set 2,其中control resource set 1对应频域范围W1,包含n1个PRB,control resource set 2对应频域范围W2,包含n2个PRB,如图3所示。
系统半静态配置control resource set 1和control resource set 2的时域范围,并在RRC信令中通知。对control resource set 1半静态配置为x1个OFDM符号,对control resource set 2半静态配置为x2个OFDM符号。
解调导频以REG作为资源映射单元,在一个REG内,包含r个解调导频RE。
基站为control resource set 1和control resource set 2分别独立生成解调导频序列,为control resource set 1生成的解调导频序列为:
Figure PCTCN2018075318-appb-000007
其中,序列长度m等于系统带宽包含的PRB数目n,半静态配置的control resource set 1时域范围x1,单个REG内的导频RE数目r的乘积。
根据导频初始序列,以及序列生成方式,基站半静态为control resource set 1生成完整的解调导频序列r(m)。基于该完整序列,基站根据频域范围W1对应的n1个PRB在系统带宽W对应的n个PRB中的位置,从r(m)中截取出对应control resource set 1的部分导频序列r1(m),r1(m)长度与r(m)长度之比为n1/n。
基站为control resource set 2生成的解调导频序列为:
Figure PCTCN2018075318-appb-000008
其中,序列长度m等于系统带宽包含的PRB数目n,半静态配置的control  resource set 2时域范围x2,单个REG内的导频RE数目r的乘积。
根据导频初始序列,以及序列生成方式,基站半静态为control resource set 2生成完整的解调导频序列r(m)。基于该完整序列,基站根据频域范围W2对应的n2个PRB在系统带宽W对应的n个PRB中的位置,从r(m)中截取出对应control resource set 2的部分导频序列r2(m),r2(m)长度与r(m)长度之比为n2/n。
实施例三:
基站在系统带宽W(包含n个PRB)上配置了2个control resource set,分别为control resource set 1和control resource set 2,其中control resource set 1对应频域范围W1,包含n1个PRB,control resource set 2对应频域范围W2,包含n2个PRB。
其中control resource set 1时域固定为1个OFDM符号长度,control resource set 2时域长度为动态或半静态配置的x2个OFDM符号长度,如果是动态配置x2,则在control resource set 1中承载的PDCCH信令会指示x2具体值;如果是半静态配置x2,则在RRC信令中指示x2具体值。x2取值范围为1、2、3中的某个值。
基站为control resource set 1和control resource set 2生成统一的解调导频序列,具体为:
Figure PCTCN2018075318-appb-000009
其中,序列长度m等于系统带宽包含的PRB数目n,最大时域Duration值3,单个REG内的导频RE数目r的乘积。
根据导频初始序列,以及序列生成方式,基站为control resource set 1和control resource set 2统一生成完整的解调导频序列r(m)。
对于control resource set 1,因为其时域Duration固定为1个符号,频域为对应W1的n1个PRB,因此从完整解调导频序列r(m)中截取时域对应第一个符号,频域对应W1的部分导频序列r1(m),r1(m)与r(m)的长度之比为n1/3n。
对于control resource set 2,其时域Duration为半静态或动态变化的,在需要用control resource set 2发送下行控制信道的某个slot,如果半静态或动态配置的control resource set 2时域Duration为x2个符号(x2小于等于3),则基站从完整解调导频序列r(m)中截取时域对应前x2个符号,频域对应W2的部分序列r2(m),r2(m)与r(m)的长度之比为(x2×n2)/3n。
实施例四:
基于实施例一或二或三的方法,基站为某个control resource set,记为control resource set1,通过序列截取得到对应该control resource set的部分解调导频序列r1(m)后,需要进一步确定r1(m)序列的具体资源映射。
在某个需要在control resource set1上发送下行控制信令的slot,基站把control resource set 1分为2个子集,如图4所示。因为2个子集均只包含1个OFDM符号,因此对于子集1和子集2,都需要在子集包含的所有REG上映射解调导频,从整个control resource set 1的角度看,每个REG都需要插入解调导频,因此无需再截取r1(m),根据每个REG的时频资源位置,来映射序列r1(m)中相应元素即可,如图5所示,阴影部分为映射了解调导频的时频资源。
实施例五:
基于实施例一或二或三的方法,基站为某个control resource set,记为control resource set1,通过序列截取得到对应该control resource set的部分解调导频序列r1(m)后,需要进一步确定r1(m)序列的具体资源映射。
在某个需要在control resource set1上发送下行控制信令的slot,整个control resource set仅对应1个子集,该子集包含2个OFDM符号,Control resource set1的CCE映射采用时域优先映射规则,一个CCE包含4个REG,如图6所示。按照解调导频映射规则,只要在第1个OFDM符号的REG上映射解调导频就好,因此第1个OFDM符号上的所有REG均需要映射解调导频,从r1(m)序列中截取对应这些REG的部分序列r1_1(m),把r1_1(m)中的元素映射到相应的 REG时频资源位置即可,如图7所示,阴影部分为映射了解调导频的时频资源。
图8为本发明实施例的解调导频的处理装置的结构组成示意图,如图8所示,所述装置包括:
生成单元81,配置为至少基于控制资源集的时域范围,生成解调导频序列;
资源映射单元82,配置为至少基于所述控制资源集以及所述控制资源集的子集的时频资源配置,对解调导频进行资源映射;
发送单元83,配置为基于资源映射结果发送截取的解调导频序列。
本发明实施例中,所述控制资源集的时域范围是指:控制资源集包括的OFDM符号数目,其中,所述控制资源集包括的OFDM符号数目为半静态配置或动态配置。
本发明实施例中,所述控制资源集的时域范围是指:控制资源集在时域最多能够包括的OFDM符号数目,其中,所述控制资源集在时域最多能够包括的OFDM符号数目为一个或多个。
本发明实施例中,所述控制资源集的子集通过以下方式得到:将所述控制资源集划分为一个或多个子集,不同子集之间的时频资源正交;
其中,针对每个所述控制资源集的子集均需要发送所述子集对应的解调导频。
本发明实施例中,通过动态方式或半静态方式,将所述控制资源集划分为一个或多个子集,其中:
如果通过动态方式将所述控制资源集划分为一个或多个子集,则在公共下行控制信道中指示划分策略;
如果通过半静态方式将所述控制资源集划分为一个或多个子集,则在以下内容之一中指示划分策略:RRC信令、SIB消息、MIB消息。
本发明实施例中,所述解调导频序列的长度由以下公式确定:
Figure PCTCN2018075318-appb-000010
其中,
Figure PCTCN2018075318-appb-000011
表示控制信道所在载波的系统带宽或下行系统带宽或控制资源集的频域范围包括的PRB数目或频域资源单元数目;d表示控制资源集的时域范围包括的OFDM符号数目;r表示包括解调导频的单位REG内或频域方向的单位资源块内包括的解调导频RE数目;c和j为常数。
本发明实施例中,基站为多个控制资源集配置一个或多个解调导频序列,其中:
如果基站为多个控制资源集配置一个解调导频序列,则表示多个控制资源集共享一个解调导频序列;
如果基站为多个控制资源集配置多个解调导频序列,则表示各个控制资源集对应各自的解调导频序列。
本发明实施例中,所述多个控制资源集是指:一个基站针对所有用户配置的全部或部分控制资源集。
本发明实施例中,所述多个控制资源集是指:一个基站针对一个用户配置的全部或部分控制资源集。
本发明实施例中,所述资源映射单元82,配置为:在控制资源集包括的所有子集上,以REG或频域方向的单位资源块作为解调导频资源单元插入解调导频。
本发明实施例中,基站根据以下规则确定子集上需要插入解调导频的REG或频域方向的单位资源块:
如果所述子集在时域仅对应一个符号,在频域对应多个PRB,则所述子集的时频资源内的每个REG或频域方向的单位资源块上都插入解调导频;
如果所述子集在时域上对应多个符号,在频域对应多个PRB,则根据所述子集的资源映射规则插入解调导频,具体包括:
如果所述子集上资源映射规则采用时域优先映射,则所述子集的第一个符号对应的所有REG或频域方向的单位资源块上都插入解调导频,且针对用户的控制信道需从所述控制信道所在子集的第一个符号开始插入;
如果所述子集上资源映射规则采用频域优先映射,则所述子集的时频资源内的每个REG或频域方向的单位资源块上都插入解调导频。
本发明实施例中,所述子集上的资源映射规则为以下至少之一:候选资源到CCE的映射、CCE到REG的映射。
本发明实施例中,在确定子集上需要插入解调导频的REG或频域方向的单位资源块后,在所述控制资源集的所有需要插入解调导频的REG或频域方向的单位资源块上发送部分解调导频序列,所述部分解调导频序列是对所生成的解调导频序列截取得到。
本发明实施例中,所述部分导频序列通过以下方式获得:基站根据所述控制资源集对应的PRB范围,从所生成的解调导频序列中截取与所述PRB范围对应的部分解调导频序列。
本发明实施例中,所述部分导频序列通过以下方式获得:基站将所述控制资源集划分为多个REG;根据需要插入解调导频的REG在所述控制资源集中的时频位置,从所述控制资源集对应的部分导频序列中截取最终的解调导频序列,其中,所述最终的解调导频序列为待发送的部分导频序列。
本发明实施例中,所述子集的资源映射规则,根据所述子集包括的OFDM符号数目确定。
本发明实施例中,当所述子集包括的OFDM符号数目为奇数时,所述子集的资源映射规则默认采用频域优先映射。这里,奇数优选为1。
本发明实施例中,当所述子集包括的OFDM符号数目为偶数时,所述子集的资源映射规则默认采用时域优先映射;或者,基站在通知终端全部或部分子集的时频资源信息时,同时通知全部或部分子集的资源映射规则采用的是时域优先映射还是频域优先映射。这里,偶数优选为2。
本领域技术人员应当理解,图8所示的解调导频的处理装置中的各单元的实现功能可参照前述解调导频的处理方法的相关描述而理解。图8所示的解调导频的处理装置中的各单元的功能可通过运行于处理器上的程序而实现,也可通过具体的逻辑电路而实现。
本发明实施例还提供一种参数配置装置,所述参数配置装置的硬件组成结构,包括:存储器,配置为存储可执行程序;
处理器,配置为运行所述存储器中存储的可执行程序时,执行:
至少基于控制资源集的时域范围,生成解调导频序列;
至少基于所述控制资源集以及所述控制资源集的子集的时频资源配置,对解调导频进行资源映射,并基于资源映射结果发送截取的解调导频序列。
本发明实施例中,所述控制资源集的时域范围是指:控制资源集包括的OFDM符号数目,其中,所述控制资源集包括的OFDM符号数目为半静态配置或动态配置。
本发明实施例中,所述控制资源集的时域范围是指:控制资源集在时域最多能够包括的OFDM符号数目,其中,所述控制资源集在时域最多能够包括的OFDM符号数目为一个或多个。
本发明实施例中所述处理器用于运行所述计算机程序时,执行:
将所述控制资源集划分为一个或多个子集,不同子集之间的时频资源正交;
其中,针对每个所述控制资源集的子集均需要发送所述子集对应的解调导频。
本发明实施例中,所述处理器通过动态方式或半静态方式,将所述控制资源集划分为一个或多个子集,其中:
如果通过动态方式将所述控制资源集划分为一个或多个子集,则在公共下行控制信道中指示划分策略;
如果通过半静态方式将所述控制资源集划分为一个或多个子集,则在以下内容之一中指示划分策略:RRC信令、SIB消息、MIB消息。
本发明实施例中,所述处理器用于运行所述计算机程序时,执行由以下公式确定所述解调导频序列的长度:
Figure PCTCN2018075318-appb-000012
其中,
Figure PCTCN2018075318-appb-000013
表示控制信道所在载波的系统带宽或下行系统带宽或控制资源集的频域范围包括的PRB数目或频域资源单元数目;d表示控制资源集的时域范围包括的OFDM符号数目;r表示包括解调导频的单位资源单元组REG内或频域方向的单位资源块内包括的解调导频资源单元RE数目;c和j为常数。
本发明实施例中,基站为多个控制资源集配置一个或多个解调导频序列,其中:
如果基站为多个控制资源集配置一个解调导频序列,则表示多个控制资源集共享一个解调导频序列;
如果基站为多个控制资源集配置多个解调导频序列,则表示各个控制资源集对应各自的解调导频序列。
本发明实施例中,所述多个控制资源集是指:一个基站针对所有用户配置的全部或部分控制资源集。
本发明实施例中,所述多个控制资源集是指:一个基站针对一个用户配置的全部或部分控制资源集。
本发明实施例中,所述处理器用于运行所述计算机程序时,执行:
在控制资源集包括的所有子集上,以REG或频域方向的单位资源块作为解调导频资源单元插入解调导频。
本发明实施例中,所述处理器用于运行所述计算机程序时,执行:
如果所述子集在时域仅对应一个符号,在频域对应多个PRB,则所述子集的时频资源内的每个REG或频域方向的单位资源块上都插入解调导频;
如果所述子集在时域上对应多个符号,在频域对应多个PRB,则根据所述子集的资源映射规则插入解调导频,具体包括:
如果所述子集上资源映射规则采用时域优先映射,则所述子集的第一个符号对应的所有REG或频域方向的单位资源块上都插入解调导频,且针对用户的控制信道需从所述控制信道所在子集的第一个符号开始插入;
如果所述子集上资源映射规则采用频域优先映射,则所述子集的时频资源内的每个REG或频域方向的单位资源块上都插入解调导频。
本发明实施例中,所述子集上的资源映射规则为以下至少之一:候选资源到CCE的映射、CCE到REG的映射。
本发明实施例中,所述处理器用于运行所述计算机程序时,执行:在所述控制资源集的所有需要插入解调导频的REG或频域方向的单位资源块上发送部分解调导频序列,所述部分解调导频序列是对所生成的解调导频序列截取得到。
本发明实施例中,所述处理器用于运行所述计算机程序时,执行:
根据所述控制资源集对应的PRB范围,从所生成的解调导频序列中截取与所述PRB范围对应的部分解调导频序列。
本发明实施例中,所述处理器用于运行所述计算机程序时,执行:
将所述控制资源集划分为多个REG;根据需要插入解调导频的REG在所述控制资源集中的时频位置,从所述控制资源集对应的部分导频序列中截取最终的解调导频序列,其中,所述最终的解调导频序列为待发送的部分导频序列。
本发明实施例中,所述处理器用于运行所述计算机程序时,执行:
根据所述子集包括的OFDM符号数目确定所述子集的资源映射规则。
本发明实施例中,当所述子集包括的OFDM符号数目为奇数时,所述子集的资源映射规则默认采用频域优先映射。
本发明实施例中,当所述子集包括的OFDM符号数目为偶数时,所述子集的资源映射规则默认采用时域优先映射;或者,基站在通知终端全部或部分子集的时频资源信息时,同时通知全部或部分子集的资源映射规则采用的是时域优先映射还是频域优先映射。
本发明实施例提供的解调导频的处理装置的硬件结构示意图,如图9所示,解调导频的处理装置700包括:至少一个处理器7010、存储器7020和至少一个网络接口7040。解调导频的处理装置700中的各个组件通过总线系统7050 耦合在一起。可理解,总线系统7050用于实现这些组件之间的连接通信。总线系统7050除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图8中将各种总线都标为总线系统7050。
可以理解,存储器7020可以是易失性存储器或非易失性存储器,也可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(ROM,Read Only Memory)、可编程只读存储器(PROM,Programmable Read-Only Memory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)、电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read-Only Memory)、磁性随机存取存储器(FRAM,ferromagnetic random access memory)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(CD-ROM,Compact Disc Read-Only Memory);磁表面存储器可以是磁盘存储器或磁带存储器。易失性存储器可以是随机存取存储器(RAM,Random Access Memory),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(SRAM,Static Random Access Memory)、同步静态随机存取存储器(SSRAM,Synchronous Static Random Access Memory)、动态随机存取存储器(DRAM,Dynamic Random Access Memory)、同步动态随机存取存储器(SDRAM,Synchronous Dynamic Random Access Memory)、双倍数据速率同步动态随机存取存储器(DDRSDRAM,Double Data Rate Synchronous Dynamic Random Access Memory)、增强型同步动态随机存取存储器(ESDRAM,Enhanced Synchronous Dynamic Random Access Memory)、同步连接动态随机存取存储器(SLDRAM,SyncLink Dynamic Random Access Memory)、直接内存总线随机存取存储器(DRRAM,Direct Rambus Random Access Memory)。本发明实施例描述的存储器7020旨在包括但不限于这些和任意其它适合类型的存储器。
本发明实施例中的存储器7020用于存储各种类型的数据以支持实现解调导频的处理装置700的操作。这些数据的示例包括:用于在解调导频的处理装置700上操作的任何计算机程序,如操作系统7021和应用程序7022;联系人 数据;电话簿数据;消息;图片;视频等。其中,操作系统7021包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序7022可以包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本发明实施例方法的程序可以包含在应用程序7022中。
上述本发明实施例揭示的方法可以应用于处理器7010中,或者由处理器7010实现。处理器7010可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器7010中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器7010可以是通用处理器、数字信号处理器(DSP,Digital Signal Processor),或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。处理器7010可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于存储器7020,处理器7010读取存储器7020中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,解调导频的处理装置700可以被一个或多个应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)、通用处理器、控制器、微控制器(MCU,Micro Controller Unit)、微处理器(Microprocessor)、或其他电子元件实现,用于执行前述方法。
本发明实施例还提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现:
至少基于控制资源集的时域范围,生成解调导频序列;
至少基于所述控制资源集以及所述控制资源集的子集的时频资源配置,对解调导频进行资源映射,并基于资源映射结果发送截取的解调导频序列。
本发明实施例中,所述控制资源集的时域范围是指:控制资源集包括的OFDM符号数目,其中,所述控制资源集包括的OFDM符号数目为半静态配置或动态配置。
本发明实施例中,所述控制资源集的时域范围是指:控制资源集在时域最多能够包括的OFDM符号数目,其中,所述控制资源集在时域最多能够包括的OFDM符号数目为一个或多个。
本发明实施例中,所述控制资源集的子集通过以下方式得到:将所述控制资源集划分为一个或多个子集,不同子集之间的时频资源正交;
其中,针对每个所述控制资源集的子集均需要发送所述子集对应的解调导频。
本发明实施例中,所述计算机程序被处理器运行时,执行:
通过动态方式或半静态方式,将所述控制资源集划分为一个或多个子集,其中:
如果通过动态方式将所述控制资源集划分为一个或多个子集,则在公共下行控制信道中指示划分策略;
如果通过半静态方式将所述控制资源集划分为一个或多个子集,则在以下内容之一中指示划分策略:RRC信令、SIB消息、MIB消息。
本发明实施例中,所述解调导频序列的长度由以下公式确定:
Figure PCTCN2018075318-appb-000014
其中,
Figure PCTCN2018075318-appb-000015
表示控制信道所在载波的系统带宽或下行系统带宽或控制资源集的频域范围包括的PRB数目或频域资源单元数目;d表示控制资源集的时域范围包括的OFDM符号数目;r表示包括解调导频的单位REG内或频域方向的单位资源块内包括的解调导频资源单元RE数目;c和j为常数。
本发明实施例中,基站为多个控制资源集配置一个或多个解调导频序列,其中:
如果基站为多个控制资源集配置一个解调导频序列,则表示多个控制资 源集共享一个解调导频序列;
如果基站为多个控制资源集配置多个解调导频序列,则表示各个控制资源集对应各自的解调导频序列。
本发明实施例中,所述多个控制资源集是指:一个基站针对所有用户配置的全部或部分控制资源集。
本发明实施例中,所述多个控制资源集是指:一个基站针对一个用户配置的全部或部分控制资源集。
本发明实施例中,所述计算机程序被处理器运行时,执行:
在控制资源集包括的所有子集上,以REG或频域方向的单位资源块作为解调导频资源单元插入解调导频。
本发明实施例中,所述计算机程序被处理器运行时,执行:
如果所述子集在时域仅对应一个符号,在频域对应多个PRB,则所述子集的时频资源内的每个REG或频域方向的单位资源块上都插入解调导频;
如果所述子集在时域上对应多个符号,在频域对应多个PRB,则根据所述子集的资源映射规则插入解调导频,具体包括:
如果所述子集上资源映射规则采用时域优先映射,则所述子集的第一个符号对应的所有REG或频域方向的单位资源块上都插入解调导频,且针对用户的控制信道需从所述控制信道所在子集的第一个符号开始插入;
如果所述子集上资源映射规则采用频域优先映射,则所述子集的时频资源内的每个REG或频域方向的单位资源块上都插入解调导频。
本发明实施例中,所述子集上的资源映射规则为以下至少之一:候选资源到CCE的映射、CCE到REG的映射。
本发明实施例中,所述计算机程序被处理器运行时,执行:
在确定子集上需要插入解调导频的REG或频域方向的单位资源块后,在所述控制资源集的所有需要插入解调导频的REG或频域方向的单位资源块上发送部分解调导频序列,所述部分解调导频序列是对所生成的解调导频序列截取得到。
本发明实施例中,所述计算机程序被处理器运行时,执行:
根据所述控制资源集对应的PRB范围,从所生成的解调导频序列中截取与所述PRB范围对应的部分解调导频序列。
本发明实施例中,所述计算机程序被处理器运行时,执行:
将所述控制资源集划分为多个REG;根据需要插入解调导频的REG在所述控制资源集中的时频位置,从所述控制资源集对应的部分导频序列中截取最终的解调导频序列,其中,所述最终的解调导频序列为待发送的部分导频序列。
本发明实施例中,所述子集的资源映射规则,根据所述子集包括的OFDM符号数目确定。
本发明实施例中,当所述子集包括的OFDM符号数目为奇数时,所述子集的资源映射规则默认采用频域优先映射。
本发明实施例中,当所述子集包括的OFDM符号数目为偶数时,所述子集的资源映射规则默认采用时域优先映射;或者,基站在通知终端全部或部分子集的时频资源信息时,同时通知全部或部分子集的资源映射规则采用的是时域优先映射还是频域优先映射。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或 其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。
工业实用性
本发明实施例中,至少基于控制资源集的时域范围,生成解调导频序列;至少基于所述控制资源集以及所述控制资源集的子集的时频资源配置,对解调导频进行资源映射,并基于资源映射结果发送截取的解调导频序列。如此,解决了下行控制信道解调导频序列如何生成的问题,以及如何在下行控制信道进行解调导频的资源映射的问题。

Claims (38)

  1. 一种解调导频的处理方法,所述方法包括:
    至少基于控制资源集的时域范围,生成解调导频序列;
    至少基于所述控制资源集以及所述控制资源集的子集的时频资源配置,对解调导频进行资源映射,并基于资源映射结果发送截取的解调导频序列。
  2. 根据权利要求1所述的方法,其中,所述控制资源集的时域范围是指:控制资源集包括的正交频分复用OFDM符号数目,其中,所述控制资源集包括的OFDM符号数目为半静态配置或动态配置。
  3. 根据权利要求1所述的方法,其中,所述控制资源集的时域范围是指:控制资源集在时域最多能够包括的OFDM符号数目,其中,所述控制资源集在时域最多能够包括的OFDM符号数目为一个或多个。
  4. 根据权利要求1所述的方法,其中,所述控制资源集的子集通过以下方式得到:将所述控制资源集划分为一个或多个子集,不同子集之间的时频资源正交;
    其中,针对每个所述控制资源集的子集均需要发送所述子集对应的解调导频。
  5. 根据权利要求4所述的方法,其中,通过动态方式或半静态方式,将所述控制资源集划分为一个或多个子集,其中:
    如果通过动态方式将所述控制资源集划分为一个或多个子集,则在公共下行控制信道中指示划分策略;
    如果通过半静态方式将所述控制资源集划分为一个或多个子集,则在以下内容之一中指示划分策略:无线资源控制RRC信令、系统信息块SIB消息、主信息块MIB消息。
  6. 根据权利要求1所述的方法,其中,所述解调导频序列的长度由以下公式确定:
    Figure PCTCN2018075318-appb-100001
    其中,
    Figure PCTCN2018075318-appb-100002
    表示控制信道所在载波的系统带宽或下行系统带宽或控制资源集的频域范围包括的物理资源块PRB数目或频域资源单元数目;d表示控制资源集的时域范围包括的OFDM符号数目;r表示包括解调导频的单位资源单元组REG内或频域方向的单位资源块内包括的解调导频资源单元RE数目;c和j为常数。
  7. 根据权利要求1所述的方法,其中,基站为多个控制资源集配置一个或多个解调导频序列,其中:
    如果基站为多个控制资源集配置一个解调导频序列,则表示多个控制资源集共享一个解调导频序列;
    如果基站为多个控制资源集配置多个解调导频序列,则表示各个控制资源集对应各自的解调导频序列。
  8. 根据权利要求7所述的方法,其中,所述多个控制资源集是指:一个基站针对所有用户配置的全部或部分控制资源集。
  9. 根据权利要求7所述的方法,其中,所述多个控制资源集是指:一个基站针对一个用户配置的全部或部分控制资源集。
  10. 根据权利要求1所述的方法,其中,所述对解调导频进行资源映射,包括:基站在控制资源集包括的所有子集上,以REG或频域方向的单位资源块作为解调导频资源单元插入解调导频。
  11. 根据权利要求10所述的方法,其中,基站根据以下规则确定子集上需要插入解调导频的REG或频域方向的单位资源块:
    如果所述子集在时域仅对应一个符号,在频域对应多个PRB,则所述子集的时频资源内的每个REG或频域方向的单位资源块上都插入解调导频;
    如果所述子集在时域上对应多个符号,在频域对应多个PRB,则根据所述子集的资源映射规则插入解调导频,具体包括:
    如果所述子集上资源映射规则采用时域优先映射,则所述子集的第一个 符号对应的所有REG或频域方向的单位资源块上都插入解调导频,且针对用户的控制信道需从所述控制信道所在子集的第一个符号开始插入;
    如果所述子集上资源映射规则采用频域优先映射,则所述子集的时频资源内的每个REG或频域方向的单位资源块上都插入解调导频。
  12. 根据权利要求11所述的方法,其中,所述子集上的资源映射规则为以下至少之一:候选资源到控制信道单元CCE的映射、CCE到REG的映射。
  13. 根据权利要求11所述的方法,其中,在确定子集上需要插入解调导频的REG或频域方向的单位资源块后,在所述控制资源集的所有需要插入解调导频的REG或频域方向的单位资源块上发送部分解调导频序列,所述部分解调导频序列是对所生成的解调导频序列截取得到。
  14. 根据权利要求13所述的方法,其中,所述部分导频序列通过以下方式获得:基站根据所述控制资源集对应的PRB范围,从所生成的解调导频序列中截取与所述PRB范围对应的部分解调导频序列。
  15. 根据权利要求13所述的方法,其中,所述部分导频序列通过以下方式获得:基站将所述控制资源集划分为多个REG;根据需要插入解调导频的REG在所述控制资源集中的时频位置,从所述控制资源集对应的部分导频序列中截取最终的解调导频序列,其中,所述最终的解调导频序列为待发送的部分导频序列。
  16. 根据权利要求11所述的方法,其中,所述子集的资源映射规则,根据所述子集包括的OFDM符号数目确定。
  17. 根据权利要求11所述的方法,其中,当所述子集包括的OFDM符号数目为奇数时,所述子集的资源映射规则默认采用频域优先映射。
  18. 根据权利要求11所述的方法,其中,当所述子集包括的OFDM符号数目为偶数时,所述子集的资源映射规则默认采用时域优先映射;或者,基站在通知终端全部或部分子集的时频资源信息时,同时通知全部或部分子集的资源映射规则采用的是时域优先映射还是频域优先映射。
  19. 一种解调导频的处理装置,所述装置包括:
    生成单元,配置为至少基于控制资源集的时域范围,生成解调导频序列;
    资源映射单元,配置为至少基于所述控制资源集以及所述控制资源集的子集的时频资源配置,对解调导频进行资源映射;
    发送单元,配置为基于资源映射结果发送截取的解调导频序列。
  20. 根据权利要求19所述的装置,其中,所述控制资源集的时域范围是指:控制资源集包括的正交频分复用OFDM符号数目,其中,所述控制资源集包括的OFDM符号数目为半静态配置或动态配置。
  21. 根据权利要求19所述的装置,其中,所述控制资源集的时域范围是指:控制资源集在时域最多能够包括的OFDM符号数目,其中,所述控制资源集在时域最多能够包括的OFDM符号数目为一个或多个。
  22. 根据权利要求19所述的装置,其中,所述控制资源集的子集通过以下方式得到:将所述控制资源集划分为一个或多个子集,不同子集之间的时频资源正交;
    其中,针对每个所述控制资源集的子集均需要发送所述子集对应的解调导频。
  23. 根据权利要求22所述的装置,其中,通过动态方式或半静态方式,将所述控制资源集划分为一个或多个子集,其中:
    如果通过动态方式将所述控制资源集划分为一个或多个子集,则在公共下行控制信道中指示划分策略;
    如果通过半静态方式将所述控制资源集划分为一个或多个子集,则在以下内容之一中指示划分策略:无线资源控制RRC信令、系统信息块SIB消息、主信息块MIB消息。
  24. 根据权利要求19所述的装置,其中,所述解调导频序列的长度由以下公式确定:
    Figure PCTCN2018075318-appb-100003
    其中,
    Figure PCTCN2018075318-appb-100004
    表示控制信道所在载波的系统带宽或下行系统带宽或控制资 源集的频域范围包括的物理资源块PRB数目或频域资源单元数目;d表示控制资源集的时域范围包括的OFDM符号数目;r表示包括解调导频的单位单位资源单元组REG内或频域方向的单位资源块内包括的解调导频资源单元RE数目;c和j为常数。
  25. 根据权利要求19所述的装置,其中,基站为多个控制资源集配置一个或多个解调导频序列,其中:
    如果基站为多个控制资源集配置一个解调导频序列,则表示多个控制资源集共享一个解调导频序列;
    如果基站为多个控制资源集配置多个解调导频序列,则表示各个控制资源集对应各自的解调导频序列。
  26. 根据权利要求25所述的装置,其中,所述多个控制资源集是指:一个基站针对所有用户配置的全部或部分控制资源集。
  27. 根据权利要求25所述的装置,其中,所述多个控制资源集是指:一个基站针对一个用户配置的全部或部分控制资源集。
  28. 根据权利要求19所述的装置,其中,所述资源映射单元,配置为:在控制资源集包括的所有子集上,以REG或频域方向的单位资源块作为解调导频资源单元插入解调导频。
  29. 根据权利要求28所述的装置,其中,基站根据以下规则确定子集上需要插入解调导频的REG或频域方向的单位资源块:
    如果所述子集在时域仅对应一个符号,在频域对应多个PRB,则所述子集的时频资源内的每个REG或频域方向的单位资源块上都插入解调导频;
    如果所述子集在时域上对应多个符号,在频域对应多个PRB,则根据所述子集的资源映射规则插入解调导频,具体包括:
    如果所述子集上资源映射规则采用时域优先映射,则所述子集的第一个符号对应的所有REG或频域方向的单位资源块上都插入解调导频,且针对用户的控制信道需从所述控制信道所在子集的第一个符号开始插入;
    如果所述子集上资源映射规则采用频域优先映射,则所述子集的时频资源内的每个REG或频域方向的单位资源块上都插入解调导频。
  30. 根据权利要求29所述的装置,其中,所述子集上的资源映射规则为以下至少之一:候选资源到控制信道单元CCE的映射、CCE到REG的映射。
  31. 根据权利要求29所述的装置,其中,在确定子集上需要插入解调导频的REG或频域方向的单位资源块后,在所述控制资源集的所有需要插入解调导频的REG或频域方向的单位资源块上发送部分解调导频序列,所述部分解调导频序列是对所生成的解调导频序列截取得到。
  32. 根据权利要求31所述的装置,其中,所述部分导频序列通过以下方式获得:基站根据所述控制资源集对应的PRB范围,从所生成的解调导频序列中截取与所述PRB范围对应的部分解调导频序列。
  33. 根据权利要求31所述的装置,其中,所述部分导频序列通过以下方式获得:基站将所述控制资源集划分为多个REG;根据需要插入解调导频的REG在所述控制资源集中的时频位置,从所述控制资源集对应的部分导频序列中截取最终的解调导频序列,其中,所述最终的解调导频序列为待发送的部分导频序列。
  34. 根据权利要求29所述的装置,其中,所述子集的资源映射规则,根据所述子集包括的OFDM符号数目确定。
  35. 根据权利要求29所述的装置,其中,当所述子集包括的OFDM符号数目为奇数时,所述子集的资源映射规则默认采用频域优先映射。
  36. 根据权利要求29所述的装置,其中,当所述子集包括的OFDM符号数目为偶数时,所述子集的资源映射规则默认采用时域优先映射;或者,基站在通知终端全部或部分子集的时频资源信息时,同时通知全部或部分子集的资源映射规则采用的是时域优先映射还是频域优先映射。
  37. 一种解调导频的处理装置,包括:处理器以及存储有所述处理器可执行指令的存储器,当所述指令被处理器执行时,执行如下操作:
    至少基于控制资源集的时域范围,生成解调导频序列;
    至少基于所述控制资源集以及所述控制资源集的子集的时频资源配置,对解调导频进行资源映射,并基于资源映射结果发送截取的解调导频序列。
  38. 一种存储介质,所述存储介质中存储有计算机可执行指令,该计算机可执行指令用于执行权利要求1至18任一项所述的解调导频的处理方法。
PCT/CN2018/075318 2017-03-24 2018-02-05 一种解调导频的处理方法、装置及存储介质 WO2018171347A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18771428.2A EP3605922B1 (en) 2017-03-24 2018-02-05 Method and device for processing demodulation pilot frequency and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710182794.1 2017-03-24
CN201710182794.1A CN108631979B (zh) 2017-03-24 2017-03-24 一种解调导频的处理方法及装置

Publications (1)

Publication Number Publication Date
WO2018171347A1 true WO2018171347A1 (zh) 2018-09-27

Family

ID=63584838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075318 WO2018171347A1 (zh) 2017-03-24 2018-02-05 一种解调导频的处理方法、装置及存储介质

Country Status (3)

Country Link
EP (1) EP3605922B1 (zh)
CN (1) CN108631979B (zh)
WO (1) WO2018171347A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101764627A (zh) * 2008-12-26 2010-06-30 株式会社Ntt都科摩 确定上行链路的解调导频序列的方法、终端以及上行链路系统
CN102055519A (zh) * 2009-11-05 2011-05-11 中兴通讯股份有限公司 解调数据参考符号序列的方法及装置
CN104541471A (zh) * 2012-09-27 2015-04-22 华为技术有限公司 无线通信系统中的方法和节点
WO2017172857A1 (en) * 2016-03-30 2017-10-05 Qualcomm Incorporated Techniques for configuring uplink control channel transmissions in a shared radio frequency spectrum band

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101376233B1 (ko) * 2007-10-02 2014-03-21 삼성전자주식회사 주파수 분할 다중 접속 방식의 시스템에서 제어 채널의자원 할당 장치 및 방법
US9820273B2 (en) * 2010-03-02 2017-11-14 Xiaoxia Zhang Uplink coordinated multipoint communications in a wireless network
EP2378703A1 (en) * 2010-04-13 2011-10-19 Panasonic Corporation Mapping of control information to control channel elements
CN103200684B (zh) * 2012-01-09 2016-01-13 华为技术有限公司 一种控制信道传输、接收方法及基站、用户设备
CN103248469B (zh) * 2012-02-03 2018-05-11 中兴通讯股份有限公司 一种控制信令和解调导频的发送、检测方法、系统和基站
CN103249087B (zh) * 2012-02-10 2016-08-10 华为技术有限公司 一种控制信道资源传输方法、基站及用户设备
CN104702387B (zh) * 2013-12-05 2018-04-10 华为技术有限公司 导频信号发送、接收方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101764627A (zh) * 2008-12-26 2010-06-30 株式会社Ntt都科摩 确定上行链路的解调导频序列的方法、终端以及上行链路系统
CN102055519A (zh) * 2009-11-05 2011-05-11 中兴通讯股份有限公司 解调数据参考符号序列的方法及装置
CN104541471A (zh) * 2012-09-27 2015-04-22 华为技术有限公司 无线通信系统中的方法和节点
WO2017172857A1 (en) * 2016-03-30 2017-10-05 Qualcomm Incorporated Techniques for configuring uplink control channel transmissions in a shared radio frequency spectrum band

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NOKIA ET AL.: "On the DL control channel DM-RS and transmission scheme for NR", 3GPP TSG RAN WG1#88, R1-1703310, 6 February 2017 (2017-02-06), Athens, Greece, XP051220462 *
NTT DOCOMO: "Monitoring of DL control channel for NR", 3GPP TSG RAN WG1 AH_NR MEETING R1-1700620, 10 January 2017 (2017-01-10), Spokane, USA, XP051203001 *
See also references of EP3605922A4 *

Also Published As

Publication number Publication date
EP3605922A4 (en) 2020-12-30
CN108631979A (zh) 2018-10-09
EP3605922B1 (en) 2023-03-22
CN108631979B (zh) 2022-09-06
EP3605922A1 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
US10644850B2 (en) Method and apparatus for uplink signal transmission
WO2021031927A1 (zh) 无线通信资源指示方法、装置和系统
WO2018233524A1 (zh) 盲检能力上报方法、盲检配置、盲检方法、终端及基站
JP2021517757A (ja) 物理ダウンリンク制御チャネルのブラインド検出のための方法及び端末機器
WO2017031625A1 (zh) 解调参考信号的传输方法、装置以及通信系统
WO2018126782A1 (zh) 信道检测方法及装置、存储介质
WO2018141180A1 (zh) 控制信息的传输方法、接收方法、装置、基站及终端
EP3840447A1 (en) Data transmission method and apparatus
CN113382479A (zh) 服务小区调度方法、终端设备和网络设备
WO2019047974A1 (zh) 资源指示方法、装置及存储介质
WO2019184565A1 (zh) 物理下行共享信道接收及其时域资源指示方法、装置、存储介质、基站、终端
WO2019047632A1 (zh) 用于传输下行数据的资源的确定和配置方法、终端和基站
WO2017041706A1 (zh) 一种支持低延迟无线通信的ue、基站中的方法和设备
WO2019024052A1 (en) METHODS AND APPARATUS FOR MAPPING CONTROL RESOURCES
JP7448567B2 (ja) サウンディング信号リソースをアクティブ化または非アクティブ化するための方法、および装置
TW201826747A (zh) 資源映射的方法和通訊設備
JP2021503210A (ja) リソース構成方法、端末装置及びネットワーク装置
KR20220072806A (ko) 사이드링크 전송 리소스의 확정 방법과 장치
US11343806B2 (en) Uplink control channel transmission method and device
CN108306706A (zh) 一种数据接收、发送方法和接收、发送设备
WO2018228497A1 (zh) 一种指示方法、处理方法及装置
WO2018228496A1 (zh) 一种指示方法、处理方法及装置
WO2019041671A1 (zh) 下行控制信道配置方法、装置和存储介质
WO2017167252A1 (zh) 一种信息传输方法、终端及基站
WO2018126965A1 (zh) 参考信号的资源确定方法及装置、设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771428

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018771428

Country of ref document: EP

Effective date: 20191024