WO2018126782A1 - 信道检测方法及装置、存储介质 - Google Patents

信道检测方法及装置、存储介质 Download PDF

Info

Publication number
WO2018126782A1
WO2018126782A1 PCT/CN2017/109791 CN2017109791W WO2018126782A1 WO 2018126782 A1 WO2018126782 A1 WO 2018126782A1 CN 2017109791 W CN2017109791 W CN 2017109791W WO 2018126782 A1 WO2018126782 A1 WO 2018126782A1
Authority
WO
WIPO (PCT)
Prior art keywords
search space
correspondence
blind detection
terminal
search
Prior art date
Application number
PCT/CN2017/109791
Other languages
English (en)
French (fr)
Inventor
张晨晨
郝鹏
左志松
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018126782A1 publication Critical patent/WO2018126782A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0238Channel estimation using blind estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2676Blind, i.e. without using known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel

Definitions

  • the present invention relates to the field of communications, and in particular to a channel detection method and apparatus, and a storage medium.
  • 5G fifth generation mobile communication
  • high-frequency communication can provide high-speed data communication by using the large bandwidth of high-frequency communication to meet the demand for large data in 5G communication.
  • the loss on the high frequency propagation is larger, and the coverage radius is relatively smaller under the same power, which also determines the beamforming technology used in the high frequency communication system networking to increase the coverage radius.
  • both the control channel and the traffic channel need to be transmitted based on the beamforming technology, and limited by the number of radio link, the transmission power, the beam gain, etc., if multiple different directional beam coverage is to be achieved, it may be necessary to The time division mode is completed, that is, different Orthogonal Frequency Division Multiplexing (OFDM) symbols or symbol groups are used to implement different beam direction transmissions, and then, for the downlink control channel, if a scheduling time unit is to be sent for multiple User control signaling, and these users are in different beam directions, which may cause the terminal to check Measuring multiple downlink control channels results in higher blind detection complexity.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the embodiment of the present invention provides a channel detection method and device, and a storage medium, to at least solve the problem that the blind detection complexity caused by users in different beam directions or different user groups in the related art needs to detect multiple downlink control channel resources.
  • the problem is to at least solve the problem that the blind detection complexity caused by users in different beam directions or different user groups in the related art needs to detect multiple downlink control channel resources. The problem.
  • a channel detection method including: transmitting, to a terminal, indication information for instructing the terminal to perform blind detection on a channel, where the indication information includes one of: In the predetermined time unit, the base station sends a first correspondence between the beam of the downlink control channel and the search space; in the second predetermined time unit, the second correspondence between the user group information and the search space; at the third predetermined time Within the unit, a search space and a candidate search space indicating blind detection by the terminal.
  • the indication information for instructing the terminal to perform blind detection on a channel is sent to the terminal by using at least one of the following manners: a manner of dynamically notifying by physical layer signaling; The way static notifications are made.
  • the search space includes: a first search space or a second search space, where the first search space is one or more orthogonal frequency division multiplexing OFDM symbols in the time domain, in frequency The domain is one or more physical resource blocks PRB; the second search space is a time-frequency resource corresponding to one or more consecutive control channel elements CCE.
  • the first correspondence includes: transmitting a correspondence between a beam of the downlink control channel and a first search space or a second search space; and transmitting at least two beams of the downlink control channel and a first a correspondence between a search space or a second search space;
  • the second correspondence includes: a user group information and a first search space or a second A correspondence between search spaces; a correspondence between at least two user group information and a first search or a second search space.
  • a channel detection method including: receiving indication information sent by a base station, where the indication information includes one of: in a first predetermined time unit, the base station sends a downlink control channel. a first correspondence between the beam and the search space; a second correspondence between the user group information and the search space in the second predetermined time unit; and in the third predetermined time unit, instructing the terminal to perform blind detection Search space and candidate search space; blindly detecting the channel according to the indication information.
  • the search space includes: a first search space or a second search space, where the first search space is one or more orthogonal frequency division multiplexing OFDM symbols in the time domain, in frequency The domain is one or more physical resource blocks PRB; the second search space is a time-frequency resource corresponding to one or more consecutive control channel elements CCE.
  • the blind detection of the channel according to the indication information includes: when the indication information is the first correspondence, searching for a search space corresponding to the current beam according to the first correspondence, Blind detection of the search space corresponding to the beam;
  • the search space corresponding to the current user group information is searched according to the second correspondence, and the search space corresponding to the current user group information is blindly detected;
  • the search space and the candidate search space for blind detection are instructed, the intersection between the search space and the candidate search space for which the terminal performs blind detection is acquired, and the search space corresponding to the intersection is blindly detected.
  • blind detection is performed in the one search space in the third predetermined time unit. If the intersection between the search space and the candidate search space for which the terminal performs blind detection includes a plurality of search spaces, acquiring a search space of the highest priority according to the priority of the plurality of search spaces, and in the Within the predetermined time unit, at the highest The priority search space is blindly detected, wherein the search spaces included in the candidate search space are arranged in a priority manner.
  • a channel detecting apparatus including: a sending module, configured to send, to a terminal, indication information for instructing the terminal to perform blind detection on a channel, where the indication information includes the following One of: in the first predetermined time unit, the base station sends a first correspondence between the beam of the downlink control channel and the search space; and in the second predetermined time unit, the second correspondence between the user group information and the search space And a search space and a candidate search space indicating that the terminal performs blind detection in the third predetermined time unit.
  • the sending module is further configured to send the indication information in a manner of dynamic notification by physical layer signaling and a semi-static notification by high layer signaling.
  • the search space includes: a first search space or a second search space, where the first search space is one or more orthogonal frequency division multiplexing OFDM symbols in the time domain, in frequency The domain is one or more physical resource blocks PRB; the second search space is a time-frequency resource corresponding to one or more consecutive control channel elements CCE.
  • the first correspondence includes: transmitting a correspondence between a beam of the downlink control channel and a first search space or a second search space; and transmitting at least two beams of the downlink control channel and a first a correspondence between a search space or a second search space;
  • the second correspondence includes: a correspondence between a user group information and a first search space or a second search space; correspondence between at least two user group information and a first search or a second search space relationship.
  • a channel detecting apparatus including: a receiving module, configured to receive indication information sent by a base station, where the indication information includes one of: in a first predetermined time unit, The first correspondence between the beam of the downlink control channel and the search space is sent by the base station; in the second predetermined time unit, the first between the user group information and the search space a second correspondence relationship; a search space and a candidate search space indicating the blind detection by the terminal in the third predetermined time unit; and a processing module, configured to perform blind detection on the channel according to the indication information.
  • the search space includes: a first search space or a second search space, where the first search space is one or more orthogonal frequency division multiplexing OFDM symbols in the time domain, in frequency The domain is one or more physical resource blocks PRB; the second search space is a time-frequency resource corresponding to one or more consecutive control channel elements CCE.
  • the processing module includes: a first processing unit, configured to: when the indication information is the first correspondence, search for a search space corresponding to the current beam according to the first correspondence, The search space corresponding to the current beam is blindly detected; the second processing unit is configured to: when the indication information is the second correspondence, search for a search space corresponding to the current user group information according to the second correspondence, The search space corresponding to the current user group information is blindly detected; and the third processing unit is configured to: when the indication information is a search space and a candidate search space indicating that the terminal performs blind detection, obtain a search for blind detection by the terminal. The intersection between the space and the candidate search space is blindly detected in the search space corresponding to the intersection.
  • the processing module further includes: a fourth processing unit, configured to: when the intersection between the search space for blind detection by the terminal and the candidate search space includes only one search space, in the third Performing blind detection in the one search space in a predetermined time unit; a fifth processing unit, configured to: when the intersection between the search space for blind detection of the terminal and the candidate search space includes multiple search spaces, according to the Priority of a plurality of search spaces, obtaining a search space of the highest priority, and performing blind detection on the highest priority search space in the third predetermined time unit, wherein the candidate search space is included
  • the search space is arranged in a priority manner.
  • a storage medium is also provided.
  • the storage medium is arranged to store program code for performing the following steps:
  • the indication information includes one of: in a first predetermined time unit, the base station sends a first correspondence between a beam of the downlink control channel and a search space; and in the second predetermined time unit, the user group information and the search space a second correspondence between the two; in the third predetermined time unit, a search space and a candidate search space indicating that the terminal performs blind detection.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the indication information includes one of: in a first predetermined time unit, the base station sends a first correspondence between a beam of the downlink control channel and the search space; and in the second predetermined time unit a second correspondence between the user group information and the search space; in the third predetermined time unit, a search space and a candidate search space indicating the blind detection by the terminal; and blind detection of the channel according to the indication information.
  • the indication information for indicating that the terminal performs blind detection on the channel is sent to the terminal, where the indication information includes one of the following: in the first predetermined time unit, the base station sends the downlink control channel. a first correspondence between the beam and the search space; a second correspondence between the user group information and the search space in the second predetermined time unit; and a search indicating that the terminal performs blind detection in the third predetermined time unit Space and candidate search space. That is, the present invention transmits the indication information for blind detection to the terminal, so that the terminal performs blind detection in the corresponding search space according to the indication information, instead of blindly detecting in multiple search spaces, thereby solving the related art.
  • the problem that the users in different beam directions or different user groups need to detect multiple downlink control channel resources have high blind detection complexity, and the technical effect of improving the blind detection efficiency is achieved.
  • FIG. 1 is a flowchart of a channel detecting method according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of downlink control channel resources according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of another downlink control channel resource according to an embodiment of the present invention.
  • FIG. 4 is a block diagram showing the structure of a channel detecting apparatus according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of another channel detecting method according to an embodiment of the present invention.
  • FIG. 6 is a structural block diagram (1) of a channel detecting apparatus according to an embodiment of the present invention.
  • FIG. 7 is a structural block diagram (2) of a channel detecting apparatus according to an embodiment of the present invention.
  • FIG. 8 is a structural block diagram (3) of a channel detecting apparatus according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a channel detection method according to an embodiment of the present invention. As shown in FIG. 1, the process includes the following steps:
  • Step S102 sending, to the terminal, indication information for instructing the terminal to perform blind detection on the channel
  • the indication information includes one of the following: in the first predetermined time unit, the base station sends a first correspondence between the beam of the downlink control channel and the search space; in the second predetermined time unit, the user group information and the search space a second correspondence relationship between the search space and the candidate search space indicating the blind detection by the terminal in the third predetermined time unit.
  • the first predetermined time unit, the second predetermined time unit, and the third predetermined time unit include, but are not limited to, one or more scheduling time units, where, if multiple scheduling The time unit may be a plurality of scheduling time units that are continuous or discrete.
  • the downlink control channel may be a broadcast control channel, which may be received by all users of the cell, or may be a multicast control channel, and may be received by a group of users in the cell.
  • the application scenario of the channel detection method includes, but is not limited to, blind detection by users in different beam directions in the fifth generation mobile communication (5th generation, 5G) technology.
  • the indication information for indicating that the terminal performs blind detection on the channel is sent to the terminal, where the indication information includes one of the following: in the first predetermined time unit, the base station sends a beam and a search of the downlink control channel. a first correspondence between the spaces; a second correspondence between the user group information and the search space in the second predetermined time unit; and a search space and a candidate indicating the terminal to perform blind detection in the third predetermined time unit Search space.
  • the indication information for blind detection is sent to the terminal, so that the terminal performs blind detection in the corresponding search space according to the indication information, instead of blindly detecting in multiple search spaces, thereby solving the related technology.
  • the problem of high blind detection complexity is high, and the technical effect of improving blind detection efficiency is achieved.
  • the indication information for indicating that the terminal performs blind detection on the channel may be sent to the terminal by using at least one of the following manner: a manner of dynamically notifying by using physical layer signaling; The way semi-static notifications.
  • the search space includes: a first search space or a second search space, where the first search space is one or more orthogonal frequency division multiplexing OFDM symbols in the time domain, in the frequency domain.
  • One or more physical resource blocks PRB; the second search space is a time-frequency resource corresponding to one or more consecutive control channel elements CCE.
  • the first search space may be one OFDM symbol in the time domain, or one OFDM symbol group, or 1/n of one OFDM symbol, n is a positive integer; in the frequency domain, it may be a PRB Set.
  • the time domain resources of these consecutive CCE mappings may be one OFDM symbol, or one OFDM symbol group, or 1/n of one OFDM symbol, n is a positive integer; the frequency domain resource may be a physical resource block.
  • the foregoing first correspondence includes: transmitting a correspondence between a beam of the downlink control channel and a first search space or a second search space; and transmitting at least a downlink control channel a correspondence between two beams and a first search space or a second search space;
  • the foregoing second correspondence includes: a correspondence between a user group information and a first search space or a second search space; a correspondence between at least two user group information and a first search or a second search space space .
  • This embodiment provides a channel detection method, which is mainly through a dynamic indication mode.
  • the base station indicates, in the downlink control channel, a correspondence between the beam of the downlink control channel and the first search space in the first time unit.
  • the base station indicates, in the downlink control channel, a correspondence between the beam of the downlink control channel and the second search space in the first time unit.
  • the corresponding relationship may be a one-to-one correspondence, that is, one beam corresponds to one first search space, or may be one-to-one correspondence, that is, multiple beams correspond to the same first search space. .
  • the corresponding relationship may be a one-to-one correspondence, that is, one beam corresponds to one second search space, or may be one-to-one correspondence, that is, multiple beams correspond to the same second search space.
  • the downlink control channel may be a broadcast control channel, which may be received by all users of the cell, or may be a multicast control channel, and may be received by a group of users in the cell.
  • the first time unit may be one or more scheduling time units, if multiple adjustments
  • the time unit can be a continuous or discrete plurality of scheduling time units.
  • the foregoing first search space in this embodiment may be an OFDM symbol, or an OFDM symbol group, or 1/n of an OFDM symbol, n is a positive integer; and may be a PRB Set in the frequency domain.
  • the foregoing second search space corresponds to a plurality of consecutive CCEs, and the time domain resources of the consecutive CCE mappings may be one OFDM symbol, or one OFDM symbol group, or 1/n of one OFDM symbol, n is a positive integer; frequency domain resources It can be a physical resource block (Physical Resource Block, PRB for short) Set or a subset of a PRB Set.
  • PRB Physical Resource Block
  • the terminal After receiving the dynamic indication, the terminal blindly detects the downlink control channel according to the current beam information of the first beam, or after receiving the dynamic indication, the terminal obtains the current beam information according to its current beam information.
  • the second search space corresponding to the corresponding beam is used to blindly detect the downlink control channel.
  • This embodiment provides a channel detection method, which mainly adopts a dynamic indication mode.
  • the base station indicates, in the downlink control channel, a correspondence between the user group information and the first search space in the first time unit.
  • the base station indicates, in the downlink control channel, a correspondence between the user group information and the second search space in the first time unit.
  • the corresponding relationship may be a one-to-one correspondence, that is, one user group corresponds to one first search space, or may be one-to-one correspondence, that is, multiple user groups correspond to the same first search space.
  • the corresponding relationship may be a one-to-one correspondence, that is, one user group corresponds to one second search space, or may be one-to-one correspondence, that is, multiple user groups correspond to the same second search space.
  • the user group information may be a group ID information, such as a radio network temporary identifier (Radio Network Tempory Identity, RNTI for short), and users with the same group ID information belong to the same user group, and different group ID information is different.
  • group ID information such as a radio network temporary identifier (Radio Network Tempory Identity, RNTI for short)
  • RNTI Radio Network Tempory Identity
  • the terminal After receiving the dynamic indication, the terminal blindly detects the downlink control channel according to the current user group information to the first search space corresponding to the corresponding user group. Or, the terminal receives this After the dynamic indication, the downlink control channel is blindly detected according to the current user group information to the second search space corresponding to the corresponding user group.
  • the downlink control channel includes multiple PRB Sets in the frequency domain, where PRB Set0 is used to send common control information, which is called a common control domain, and other one or more PRB Sets are used to send non-public control information, which may include group control. Information or UE-specific control information, as shown in Figure 2.
  • the common control information sent by the PRB Set0 includes a "non-common control channel indication" field, which indicates in which beam direction the base station slot transmits the downlink control channel, and the OFDM symbols corresponding to the beam directions. For example, Beam0 is transmitted on OFDM Symbol0 and Beam 2 is transmitted on OFDM Symbol 1.
  • the terminal After the terminal decodes the common control information and reads the "non-common control channel indication" field, it knows that the current slot slot transmits the beam of the non-common control information and the specific OFDM symbol, and the terminal confirms whether it needs to receive according to the current beam ID of the current slot.
  • the non-public control channel specifically, if the current non-common control channel indication field indicates that the current slot of the terminal transmits the beam direction of the terminal, further detecting the non-public control on the corresponding OFDM symbol according to the indication of the domain channel.
  • the terminal considers that the current slot slot does not need to receive the non-common control channel itself, so that no blind detection operation is required. For example, if the beam direction of the current slot of the terminal is Beam1, the terminal considers that the current slot does not need to receive the non-common control channel, and does not perform blind detection.
  • the terminal learns that the current slot base station sends a non-common control channel to itself by reading the "non-common control channel indication" field, and the search space is time domain OFDM Symbol 1
  • the frequency domain is PRB Set1 or a subset thereof.
  • the common control information sent in the PRB Set0 includes a "non-common control channel indication" field, which indicates which user groups the current slot base station transmits the downlink control channel, and the downlink control channel search space of these user groups.
  • the downlink control channel is sent to the user group 0 and the user group 2
  • the downlink control channel search space of the user group 0 is the search space
  • the downlink control channel search space of the user group 2 is the search space 1, as shown in FIG.
  • CCE0-CCE7 is the search space 0, corresponding to the left part of FIG. 3
  • CCE8-CCE15 is the search space 1, corresponding to the right part of FIG.
  • the terminal After the terminal decodes the common control information and reads the "non-common control channel indication" field, it knows which user groups of the current slot base station have sent the downlink control channel, and the search space index corresponding to each user group, and the terminal corresponds to the current slot according to the current slot.
  • the user group ID is used to confirm whether the non-public control channel needs to be received.
  • non-common control channel indication indicates that the current slot transmits a non-public control channel to the user group where the terminal is located, further according to the indication of the domain If the non-common control channel indicates that the current slot does not transmit a non-public control channel to the user group where the terminal is located, the terminal considers that the current slot does not need to receive the non-local control channel.
  • the common control channel eliminates the need for blind detection operations. For example, if the user group in which the current slot of the terminal is located is user group 1, the terminal considers that the current slot does not need to receive a non-public control channel, and does not perform blind detection.
  • the terminal learns that the current slot base station sends a non-common control channel to its own user group, and the search space is search space 0, by reading the "non-common control channel indication" field. Then the terminal blindly detects the non-common control channel on the search space 0.
  • the base station semi-statically configures a candidate search space set A for the terminal 1 through radio resource control (Radio Resource Control, RRC for short), and A is ⁇ search space 1, search space 2, search space 3 ⁇ , and is RRC signaling.
  • RRC Radio Resource Control
  • the terminal 2 semi-statically configures a candidate search space set B, and B is ⁇ search space 1, search space 4 ⁇ .
  • the common control information sent by the base station in the PRB Set0 includes a "non-common control channel indication" field indicating that the current slot user performs blind detection in the search space group C, and C is ⁇ search space 2, search space 4 ⁇ .
  • the terminal After the terminal decodes the common control information and reads the "non-common control channel indication" field, it knows that the PDCCH sent by the current slot base station to different users is within the search space 2 and the search space 4, and the user checks the RRC half that it has received recently.
  • the candidate search space set is statically configured. For the terminal 1, by selecting the intersection of the candidate search space set A and the search space group C, it is determined that the search space in the current slot is the search space 2, and for the terminal 2, by selecting the candidate The search space set B and the search space group C take the intersection, and determine that the search space in the current slot is the search space 4.
  • the terminal 1 performs blind detection on the non-common control channel in the search space 2 of the current slot, and the terminal 2 performs blind detection on the non-common control channel in the search space 4 of the current slot.
  • the embodiments of the present invention solve the problem that the blind detection complexity caused by the users in different beam directions or different user groups needs to detect multiple downlink control channel resources in the related art, and the technical effect of improving the blind detection efficiency is achieved. .
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • a channel detecting device is also provided, which is used to implement the above implementation.
  • the examples and preferred embodiments have not been described again.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 4 is a structural block diagram of a channel detecting apparatus according to an embodiment of the present invention. As shown in FIG. 4, the apparatus includes:
  • a sending module 42 configured to send, to the terminal, indication information used to indicate that the terminal performs blind detection on the channel
  • the indication information includes one of the following: in the first predetermined time unit, the base station sends a first correspondence between the beam of the downlink control channel and the search space; in the second predetermined time unit, the user group information and the search space a second correspondence relationship between the search space and the candidate search space indicating the blind detection by the terminal in the third predetermined time unit.
  • the first predetermined time unit, the second predetermined time unit, and the third predetermined time unit include, but are not limited to, one or more scheduling time units, where, if multiple scheduling The time unit may be a plurality of scheduling time units that are continuous or discrete.
  • the downlink control channel may be a broadcast control channel, which may be received by all users of the cell, or may be a multicast control channel, and may be received by a group of users in the cell.
  • the application scenario of the channel detecting device includes, but is not limited to, blind detection by users in different beam directions in the fifth generation mobile communication (5th generation, 5G) technology.
  • the indication information for indicating that the terminal performs blind detection on the channel is sent to the terminal, where the indication information includes one of the following: in the first predetermined time unit, the base station sends a beam and a search of the downlink control channel. a first correspondence between the spaces; a second correspondence between the user group information and the search space in the second predetermined time unit; and a search space and a candidate indicating the terminal to perform blind detection in the third predetermined time unit Search space. That is, the embodiment transmits an indication for performing blind detection to the terminal.
  • the information is such that the terminal performs blind detection in the corresponding search space according to the indication information, instead of blindly detecting in multiple search spaces, thereby solving the related art, in which users in different beam directions or different user groups need to detect multiple
  • the problem of high blind detection complexity caused by downlink control channel resources achieves the technical effect of improving blind detection efficiency.
  • the foregoing sending module is further configured to send the indication information in a manner of dynamic notification by physical layer signaling, and a semi-static notification manner by high layer signaling.
  • the search space includes: a first search space or a second search space, where the first search space is one or more orthogonal frequency division multiplexing OFDM symbols in the time domain, in the frequency domain.
  • the upper one is one or more physical resource blocks PRB;
  • the second search space is a time-frequency resource corresponding to one or more consecutive control channel elements CCE.
  • the first search space may be one OFDM symbol in the time domain, or one OFDM symbol group, or 1/n of one OFDM symbol, n is a positive integer; in the frequency domain, it may be a PRB Set.
  • the second search space corresponds to a plurality of consecutive CCEs, and the time domain resources of the consecutive CCE mappings may be one OFDM symbol, or one OFDM symbol group, or 1/n of one OFDM symbol, n is a positive integer; the frequency domain resource may Is a physical resource block (Physical Resource Block, PRB for short) Set or a subset of a PRB Set.
  • PRB Physical Resource Block
  • the foregoing first correspondence includes: transmitting a correspondence between a beam of the downlink control channel and a first search space or a second search space; and transmitting at least two beams of the downlink control channel and a first search space or a second search Correspondence between spaces;
  • the foregoing second correspondence includes: a correspondence between a user group information and a first search space or a second search space; a correspondence between at least two user group information and a first search or a second search space space .
  • each of the above modules can be implemented by software or hardware.
  • the latter can be implemented in the following manner, but is not limited thereto: the above modules are all located in the same processor; or, the above modules are respectively located in different processors in any combination.
  • FIG. 5 is a flowchart of another channel detection method according to an embodiment of the present invention. As shown in FIG. 5, the process includes the following steps:
  • Step S502 Receive indication information sent by the base station, where the indication information includes one of: in a first predetermined time unit, the base station sends a first correspondence between a beam of the downlink control channel and the search space; a second correspondence between the user group information and the search space in the time unit; in the third predetermined time unit, the search space and the candidate search space indicating the blind detection by the terminal;
  • Step S504 performing blind detection on the channel according to the indication information.
  • the first predetermined time unit, the second predetermined time unit, and the third predetermined time unit include, but are not limited to, one or more scheduling time units, where, if multiple scheduling The time unit may be a plurality of scheduling time units that are continuous or discrete.
  • the downlink control channel may be a broadcast control channel, which may be received by all users of the cell, or may be a multicast control channel, and may be received by a group of users in the cell.
  • the application scenario of the foregoing channel detection method includes, but is not limited to, blind detection by users in different beam directions in the fifth generation mobile communication (5th generation, 5G for short) technology.
  • the indication information sent by the base station is received, where the indication information includes one of: in a first predetermined time unit, the first correspondence between the beam of the downlink control channel and the search space is sent by the base station; a second correspondence between the user group information and the search space in the second predetermined time unit; in the third predetermined time unit, a search space and a candidate search space indicating the blind detection by the terminal; and performing channel on the channel according to the indication information Blind detection.
  • blind detection is performed in the corresponding search space, instead of being blindly detected in multiple search spaces.
  • the problem that the users in different beam directions or different user groups need to detect multiple downlink control channel resources have high blind detection complexity, and the technical effect of improving the blind detection efficiency is achieved.
  • the foregoing search space includes: a first search space or a second search space, where the first search space is one or more orthogonal frequency division multiplexing OFDM symbols in the time domain, One or more physical resource blocks PRB in the frequency domain; the second search space is a time-frequency resource corresponding to one or more consecutive control channel elements CCE.
  • the first search space may be one OFDM symbol in the time domain, or one OFDM symbol group, or 1/n of one OFDM symbol, n is a positive integer; in the frequency domain, it may be a PRB Set.
  • the second search space corresponds to a plurality of consecutive CCEs, and the time domain resources of the consecutive CCE mappings may be one OFDM symbol, or one OFDM symbol group, or 1/n of one OFDM symbol, n is a positive integer; the frequency domain resource may Is a physical resource block (Physical Resource Block, PRB for short) Set or a subset of a PRB Set.
  • PRB Physical Resource Block
  • performing blind detection on the channel according to the indication information includes the following steps:
  • step S11 when the indication information is the first correspondence, the search space corresponding to the current beam is searched according to the first correspondence, and the search space corresponding to the current beam is blindly detected.
  • Step S12 When the indication information is the second correspondence, the search space corresponding to the current user group information is searched according to the second correspondence, and the search space corresponding to the current user group information is blindly detected.
  • Step S13 When the indication information is a search space and a candidate search space indicating that the terminal performs blind detection, obtain an intersection between the search space and the candidate search space for blind detection by the terminal, and perform blindness in the search space corresponding to the intersection. Detection.
  • the terminal performs blind detection of the search space and the candidate search space
  • the intersection between the two includes only one search space, and then blind detection is performed in the one search space in the third predetermined time unit; if the intersection between the search space and the candidate search space where the terminal performs blind detection includes multiple search spaces And acquiring the highest priority search space according to the priority of the plurality of search spaces, and performing blind detection on the highest priority search space in the third predetermined time unit.
  • search spaces included in the candidate search space are arranged in a priority manner.
  • the user can perform blind detection in a specific search space indicated by dynamic signaling or dynamic signaling combined with semi-static signaling, thereby greatly reducing the number and complexity of blind detection.
  • This embodiment provides a channel detection method, which is mainly an indication manner by combining dynamic and semi-static.
  • the base station semi-statically configures the candidate first search space/second search space group of the user by using high layer signaling, and the group may include one or more first search spaces/second search spaces.
  • the base station indicates, in the downlink control channel, that the terminal performs blind detection in the first search space/second search space group in the first time unit, where the first search space/second search space group may include one or more First search space / second search space.
  • the terminal After receiving the semi-statically configured candidate first search space/second search space group and the dynamically configured first search space/second search space group, the terminal inputs two first search spaces/second search spaces
  • the group index takes the intersection, and if the first search space/the second search space index is obtained after the intersection is obtained, the user performs blind detection in the search space indicated by the first search space/second search space index in the first time unit. If a plurality of first search spaces/second search space indexes are obtained after the intersection is obtained, the priorities are determined according to their order in the candidate first search space/second search space group, and the first search with the highest priority is taken.
  • a space/second search space index in which the first search space/second search space corresponding to the index is blindly detected in the first time unit If the first search space/second search space index is not obtained after the intersection is taken, the user does not perform blind detection in any of the first search space/second search space in the first time unit.
  • the user can perform blind detection in a specific search space indicated by dynamic signaling or dynamic signaling combined with semi-static signaling, thereby greatly reducing the number and complexity of blind detection.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • a channel detecting device is also provided, which is used to implement the above-mentioned embodiments and preferred embodiments, and has not been described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 6 is a structural block diagram (1) of a channel detecting apparatus according to an embodiment of the present invention. As shown in FIG. 6, the apparatus includes:
  • the receiving module 62 is configured to receive the indication information sent by the base station, where the indication information includes one of the following: in the first predetermined time unit, the first correspondence between the beam of the downlink control channel and the search space is sent by the base station. a second correspondence between the user group information and the search space in the second predetermined time unit; in the third predetermined time unit, instructing the terminal to perform a blind check Measured search space and candidate search space;
  • the processing module 64 is configured to perform blind detection on the channel according to the indication information.
  • the first predetermined time unit, the second predetermined time unit, and the third predetermined time unit include, but are not limited to, one or more scheduling time units, where, if multiple scheduling The time unit may be a plurality of scheduling time units that are continuous or discrete.
  • the downlink control channel may be a broadcast control channel, which may be received by all users of the cell, or may be a multicast control channel, and may be received by a group of users in the cell.
  • the application scenario of the channel detecting device includes, but is not limited to, blind detection by users in different beam directions in the fifth generation mobile communication (5th generation, 5G) technology.
  • the indication information sent by the base station is received, where the indication information includes one of: in a first predetermined time unit, the first correspondence between the beam of the downlink control channel and the search space is sent by the base station; a second correspondence between the user group information and the search space in the second predetermined time unit; in the third predetermined time unit, a search space and a candidate search space indicating the blind detection by the terminal; and performing channel on the channel according to the indication information Blind detection.
  • the foregoing apparatus provides blind detection in the corresponding search space by receiving the indication information for performing blind detection sent by the base station, instead of blindly detecting in multiple search spaces, thereby solving the related art.
  • Users in different beam directions or different user groups need to detect multiple downlink control channel resources, which has a high complexity of blind detection, and achieves the technical effect of improving blind detection efficiency.
  • the foregoing search space includes: a first search space and/or a second search space, where the first search space is one or more orthogonal frequency division multiplexing OFDM symbols in the time domain.
  • the first search space is one or more orthogonal frequency division multiplexing OFDM symbols in the time domain.
  • the second search space is a time-frequency resource corresponding to one or more consecutive control channel elements CCE.
  • FIG. 7 is a structural block diagram (2) of a channel detecting apparatus according to an embodiment of the present invention.
  • the processing module 64 includes:
  • the first processing unit 72 is configured to: when the indication information is the first correspondence, search for a search space corresponding to the current beam according to the first correspondence, and perform blind detection on the search space corresponding to the current beam;
  • the second processing unit 74 is configured to: when the indication information is the second correspondence, search for a search space corresponding to the current user group information according to the second correspondence, and perform blindness in the search space corresponding to the current user group information. Detection
  • the third processing unit 76 is configured to: when the indication information is a search space and a candidate search space indicating that the terminal performs blind detection, obtain an intersection between the search space and the candidate search space where the terminal performs blind detection, where The search space corresponding to the intersection is blindly detected.
  • FIG. 8 is a structural block diagram (3) of a channel detecting apparatus according to an embodiment of the present invention. As shown in FIG. 8, the processing module 64 further includes:
  • the fourth processing unit 82 is configured to: when the intersection between the search space for blind detection by the terminal and the candidate search space includes only one search space, in the third predetermined time unit, perform blindness in the one search space. Detection
  • the fifth processing unit 84 is configured to: when the intersection between the search space and the candidate search space where the terminal performs blind detection includes multiple search spaces, obtain the highest priority search according to the priority of the multiple search spaces. Space, and in the third predetermined time unit, blind detection is performed in the highest priority search space.
  • search spaces included in the candidate search space are arranged in a priority manner.
  • the user can perform blind detection in a specific search space indicated by dynamic signaling or dynamic signaling combined with semi-static signaling, thereby greatly reducing the number and complexity of blind detection.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • S1 sending, to the terminal, indication information for instructing the terminal to perform blind detection on the channel, where the indication information includes one of: in a first predetermined time unit, the base station sends a beam of the downlink control channel and a search space. a first correspondence between the two; a second correspondence between the user group information and the search space in the second predetermined time unit; a search space and a candidate search indicating the terminal to perform blind detection in the third predetermined time unit space.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the indication information sent by the base station is received, where the indication information includes one of: in a first predetermined time unit, the base station sends a first correspondence between a beam of the downlink control channel and a search space; a second correspondence between the user group information and the search space in the time unit; in the third predetermined time unit, the search space and the candidate search space indicating the blind detection by the terminal;
  • S3 Perform blind detection on the channel according to the indication information.
  • the foregoing storage medium may include, but not limited to, a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), and a mobile hard disk.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • the processor executes the above step S1 according to the stored program code in the storage medium.
  • the processor executes the above steps S2, S3 according to the stored program code in the storage medium.
  • modules or steps of the present invention described above can be implemented with a general purpose computing device, which can be centralized on a single computing device, or Distributed over a network of computing devices, optionally, they may be implemented in program code executable by the computing device, such that they may be stored in the storage device for execution by the computing device, and in some cases
  • the steps shown or described may be performed in a different order than that herein, or they may be separately fabricated into individual integrated circuit modules, or a plurality of the modules or steps may be implemented as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the technical solution of the embodiment of the present invention sends, to the terminal, indication information for indicating that the terminal performs blind detection on the channel, where the indication information includes one of the following: in the first predetermined time unit, the base station sends the beam of the downlink control channel. a first correspondence relationship with the search space; a second correspondence between the user group information and the search space in the second predetermined time unit; and a search space indicating the terminal for blind detection in the third predetermined time unit And candidate search spaces. That is, the present invention transmits the indication information for blind detection to the terminal, so that the terminal performs blind detection in the corresponding search space according to the indication information, instead of blindly detecting in multiple search spaces, thereby solving the related art.
  • the problem that the users in different beam directions or different user groups need to detect multiple downlink control channel resources have high blind detection complexity, and the technical effect of improving the blind detection efficiency is achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种信道检测方法及装置、存储介质。其中,该方法包括:向终端发送用于指示该终端进行盲检测的指示信息,其中,该指示信息包括以下之一:在第一预定时间单元内,基站发送下行控制信道的波束与搜索空间之间的第一对应关系;在第二预定时间单元内,用户组信息与搜索空间之间的第二对应关系;在第三预定时间单元内,指示该终端进行盲检测的搜索空间和候选搜索空间。通过本发明,解决了相关技术中,处于不同波束方向或不同用户组的用户需要检测多个下行控制信道资源所导致的盲检复杂度较高的问题,达到了提高盲检测效率的技术效果。

Description

信道检测方法及装置、存储介质
相关申请的交叉引用
本申请基于申请号为201710002200.4、申请日为2017年01月03日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及通信领域,具体而言,涉及一种信道检测方法及装置、存储介质。
背景技术
随着无线通信技术的发展和用户对通信需求的日益增加,为了满足更高、更快和更新的通信需要,第五代移动通信(5th Generation,简称为5G)技术已成为未来网络发展的趋势。
高频通信作为未来5G技术的重要通信手段之一,利用高频通信的大带宽可以提供高速数据通信,以满足5G通信中对大数据量的需求。高频传播上损耗更大,同样的功率下覆盖半径相对更小,这也决定了高频通信系统组网中,需要采用波束赋型技术用于提高覆盖半径。因此无论是控制信道还是业务信道,都需要基于波束赋型技术来传输,而受限于射频链路数量、发射功率、波束增益等因素,如果要实现多个不同方向波束的覆盖,可能需要以时分方式完成,即不同的正交频分复用(Orthogonal Frequency Division Multiplexing,简称为OFDM)符号或符号组实现不同的波束方向传输,那么对于下行控制信道,如果一个调度时间单元里要发送针对多个用户的控制信令,且这些用户处于不同的波束方向,可能导致终端需要检 测多个下行控制信道,导致盲检复杂度较高。
针对相关技术中,处于不同波束方向或不同用户组的用户需要检测多个下行控制信道资源所导致的盲检复杂度较高的问题,尚未提出有效的解决方案。
发明内容
本发明实施例提供了一种信道检测方法及装置、存储介质,以至少解决相关技术中处于不同波束方向或不同用户组的用户需要检测多个下行控制信道资源所导致的盲检复杂度较高的问题。
根据本发明的一个实施例,提供了一种信道检测方法,包括:向终端发送用于指示所述终端对信道进行盲检测的指示信息,其中,所述指示信息包括以下之一:在第一预定时间单元内,基站发送下行控制信道的波束与搜索空间之间的第一对应关系;在第二预定时间单元内,用户组信息与搜索空间之间的第二对应关系;在第三预定时间单元内,指示所述终端进行盲检测的搜索空间和候选搜索空间。
在一实施方式中,通过以下方式至少之一,向所述终端发送用于指示所述终端对信道进行盲检测的所述指示信息:通过物理层信令动态通知的方式;通过高层信令半静态通知的方式。
在一实施方式中,所述搜索空间包括:第一搜索空间或第二搜索空间,其中,所述第一搜索空间在时域上为一个或多个正交频分复用OFDM符号,在频域上为一个或多个物理资源块PRB;所述第二搜索空间为一个或多个连续的控制信道单元CCE对应的时频资源。
在一实施方式中,所述第一对应关系包括:发送下行控制信道的一个波束与一个第一搜索空间或第二搜索空间之间的对应关系;发送下行控制信道的至少两个波束与一个第一搜索空间或第二搜索空间之间的对应关系;所述第二对应关系包括:一个用户组信息与一个第一搜索空间或第二 搜索空间之间的对应关系;至少两个用户组信息与一个第一搜索或第二搜索空间空间之间的对应关系。
根据本发明的另一个实施例,提供了一种信道检测方法,包括:接收基站发送的指示信息,其中,所述指示信息包括以下之一:在第一预定时间单元内,基站发送下行控制信道的波束与搜索空间之间的第一对应关系;在第二预定时间单元内,用户组信息与搜索空间之间的第二对应关系;在第三预定时间单元内,指示所述终端进行盲检测的搜索空间和候选搜索空间;根据所述指示信息对信道进行盲检测。
在一实施方式中,所述搜索空间包括:第一搜索空间或第二搜索空间,其中,所述第一搜索空间在时域上为一个或多个正交频分复用OFDM符号,在频域上为一个或多个物理资源块PRB;所述第二搜索空间为一个或多个连续的控制信道单元CCE对应的时频资源。
在一实施方式中,根据所述指示信息对信道进行盲检测包括:在所述指示信息为所述第一对应关系时,根据所述第一对应关系,查找当前波束对应的搜索空间,在当前波束对应的搜索空间进行盲检测;
在所述指示信息为所述第二对应关系时,根据所述第二对应关系,查找当前用户组信息对应的搜索空间,在当前用户组信息对应的搜索空间进行盲检测;在所述指示信息为指示所述终端进行盲检测的搜索空间和候选搜索空间时,获取所述终端进行盲检测的搜索空间和候选搜索空间之间的交集,在所述交集对应的搜索空间进行盲检测。
在一实施方式中,若所述终端进行盲检测的搜索空间和候选搜索空间之间的交集只包括一个搜索空间,则在所述第三预定时间单元内,在所述一个搜索空间进行盲检测;若所述终端进行盲检测的搜索空间和候选搜索空间之间的交集包括多个搜索空间,则根据所述多个搜索空间的优先级,获取最高优先级的搜索空间,并在所述第三预定时间单元内,在所述最高 优先级的搜索空间进行盲检测,其中,所述候选搜索空间中所包括的搜索空间按照优先级的方式排列。
根据本发明的另一个实施例,提供了一种信道检测装置,包括:发送模块,用于向终端发送用于指示所述终端对信道进行盲检测的指示信息,其中,所述指示信息包括以下之一:在第一预定时间单元内,基站发送下行控制信道的波束与搜索空间之间的第一对应关系;在第二预定时间单元内,用户组信息与搜索空间之间的第二对应关系;在第三预定时间单元内,指示所述终端进行盲检测的搜索空间和候选搜索空间。
在一实施方式中,所述发送模块还用于通过以下方式发送所述指示信息:通过物理层信令动态通知的方式;通过高层信令半静态通知的方式。
在一实施方式中,所述搜索空间包括:第一搜索空间或第二搜索空间,其中,所述第一搜索空间在时域上为一个或多个正交频分复用OFDM符号,在频域上为一个或多个物理资源块PRB;所述第二搜索空间为一个或多个连续的控制信道单元CCE对应的时频资源。
在一实施方式中,所述第一对应关系包括:发送下行控制信道的一个波束与一个第一搜索空间或第二搜索空间之间的对应关系;发送下行控制信道的至少两个波束与一个第一搜索空间或第二搜索空间之间的对应关系;
所述第二对应关系包括:一个用户组信息与一个第一搜索空间或第二搜索空间之间的对应关系;至少两个用户组信息与一个第一搜索或第二搜索空间空间之间的对应关系。
根据本发明的另一个实施例,提供了一种信道检测装置,包括:接收模块,用于接收基站发送的指示信息,其中,所述指示信息包括以下之一:在第一预定时间单元内,基站发送下行控制信道的波束与搜索空间之间的第一对应关系;在第二预定时间单元内,用户组信息与搜索空间之间的第 二对应关系;在第三预定时间单元内,指示所述终端进行盲检测的搜索空间和候选搜索空间;处理模块,用于根据所述指示信息对信道进行盲检测。
在一实施方式中,所述搜索空间包括:第一搜索空间或第二搜索空间,其中,所述第一搜索空间在时域上为一个或多个正交频分复用OFDM符号,在频域上为一个或多个物理资源块PRB;所述第二搜索空间为一个或多个连续的控制信道单元CCE对应的时频资源。
在一实施方式中,所述处理模块包括:第一处理单元,用于在所述指示信息为所述第一对应关系时,根据所述第一对应关系,查找当前波束对应的搜索空间,在当前波束对应的搜索空间进行盲检测;第二处理单元,用于在所述指示信息为所述第二对应关系时,根据所述第二对应关系,查找当前用户组信息对应的搜索空间,在当前用户组信息对应的搜索空间进行盲检测;第三处理单元,用于在所述指示信息为指示所述终端进行盲检测的搜索空间和候选搜索空间时,获取所述终端进行盲检测的搜索空间和候选搜索空间之间的交集,在所述交集对应的搜索空间进行盲检测。
在一实施方式中,所述处理模块还包括:第四处理单元,用于在所述终端进行盲检测的搜索空间和候选搜索空间之间的交集只包括一个搜索空间时,在所述第三预定时间单元内,在所述一个搜索空间进行盲检测;第五处理单元,用于在所述终端进行盲检测的搜索空间和候选搜索空间之间的交集包括多个搜索空间时,根据所述多个搜索空间的优先级,获取最高优先级的搜索空间,并在所述第三预定时间单元内,在所述最高优先级的搜索空间进行盲检测,其中,所述候选搜索空间中所包括的搜索空间按照优先级的方式排列。
根据本发明的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:
向终端发送用于指示所述终端对信道进行盲检测的指示信息,其中, 所述指示信息包括以下之一:在第一预定时间单元内,基站发送下行控制信道的波束与搜索空间之间的第一对应关系;在第二预定时间单元内,用户组信息与搜索空间之间的第二对应关系;在第三预定时间单元内,指示所述终端进行盲检测的搜索空间和候选搜索空间。
在一实施方式中,存储介质还设置为存储用于执行以下步骤的程序代码:
接收基站发送的指示信息,其中,所述指示信息包括以下之一:在第一预定时间单元内,基站发送下行控制信道的波束与搜索空间之间的第一对应关系;在第二预定时间单元内,用户组信息与搜索空间之间的第二对应关系;在第三预定时间单元内,指示所述终端进行盲检测的搜索空间和候选搜索空间;根据所述指示信息对信道进行盲检测。
本发明实施例的技术方案中,向终端发送用于指示该终端对信道进行盲检测的指示信息,其中,该指示信息包括以下之一:在第一预定时间单元内,基站发送下行控制信道的波束与搜索空间之间的第一对应关系;在第二预定时间单元内,用户组信息与搜索空间之间的第二对应关系;在第三预定时间单元内,指示该终端进行盲检测的搜索空间和候选搜索空间。也就是说,本发明通过向终端发送进行盲检测的指示信息,以使终端根据该指示信息在对应的搜索空间进行盲检测,而不是在多个搜索空间依次盲检测,进而解决了相关技术中,处于不同波束方向或不同用户组的用户需要检测多个下行控制信道资源所导致的盲检复杂度较高的问题,达到了提高盲检测效率的技术效果。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的信道检测方法流程图;
图2是根据本发明实施例的下行控制信道资源示意图;
图3是根据本发明实施例的另一下行控制信道资源示意图;
图4是根据本发明实施例的信道检测装置的结构框图;
图5是根据本发明实施例的另一信道检测方法流程图;
图6是根据本发明实施例的信道检测装置的结构框图(一);
图7是根据本发明实施例的信道检测装置的结构框图(二);
图8是根据本发明实施例的信道检测装置的结构框图(三)。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
在本实施例中提供了一种信道检测方法,图1是根据本发明实施例的信道检测方法流程图,如图1所示,该流程包括如下步骤:
步骤S102,向终端发送用于指示该终端对信道进行盲检测的指示信息,
其中,该指示信息包括以下之一:在第一预定时间单元内,基站发送下行控制信道的波束与搜索空间之间的第一对应关系;在第二预定时间单元内,用户组信息与搜索空间之间的第二对应关系;在第三预定时间单元内,指示该终端进行盲检测的搜索空间和候选搜索空间。
需要说明的是,在本实施例中,上述第一预定时间单元、第二预定时间单元、第三预定时间单元包括但并不限于:一个或多个调度时间单元,其中,如果是多个调度时间单元,可以是连续或离散的多个调度时间单元。
上述下行控制信道,可以是一种广播控制信道,小区所有用户都可以接收,也可以是一种组播控制信道,小区内某组用户可以接收。
在一实施方式中,在本实施例中,上述信道检测方法的应用场景包括但并不限于:在第五代移动通信(5th Generation,简称为5G)技术中处于不同波束方向的用户进行盲检测。在该应用场景下,向终端发送用于指示该终端对信道进行盲检测的指示信息,其中,该指示信息包括以下之一:在第一预定时间单元内,基站发送下行控制信道的波束与搜索空间之间的第一对应关系;在第二预定时间单元内,用户组信息与搜索空间之间的第二对应关系;在第三预定时间单元内,指示该终端进行盲检测的搜索空间和候选搜索空间。也就是说,本实施例通过向终端发送进行盲检测的指示信息,以使终端根据该指示信息在对应的搜索空间进行盲检测,而不是在多个搜索空间依次盲检测,进而解决了相关技术中,处于不同波束方向或不同用户组的用户需要检测多个下行控制信道资源所导致的盲检复杂度较高的问题,达到了提高盲检测效率的技术效果。
在一个可选地实施方式中,可以通过以下方式至少之一,向该终端发送用于指示该终端对信道进行盲检测的该指示信息:通过物理层信令动态通知的方式;通过高层信令半静态通知的方式。
在一实施方式中,上述搜索空间包括:第一搜索空间或第二搜索空间,其中,该第一搜索空间在时域上为一个或多个正交频分复用OFDM符号,在频域上为一个或多个物理资源块PRB;该第二搜索空间为一个或多个连续的控制信道单元CCE对应的时频资源。
例如,第一搜索空间在时域上可以为一个OFDM符号,或一个OFDM符号组,或一个OFDM符号的1/n,n为正整数;在频域上可以是一个PRB Set。
第二搜索空间,对应多个连续的控制信道单元(Control Channel  Element,简称为CCE),这些连续CCE映射的时域资源可以是一个OFDM符号,或一个OFDM符号组,或一个OFDM符号的1/n,n为正整数;频域资源可以是一个物理资源块集合(Physical Resource Block,简称为PRB)Set或一个PRB Set的子集。
在一实施方式中,在本发明实施例中,上述第一对应关系包括:发送下行控制信道的一个波束与一个第一搜索空间或第二搜索空间之间的对应关系;发送下行控制信道的至少两个波束与一个第一搜索空间或第二搜索空间之间的对应关系;
上述第二对应关系包括:一个用户组信息与一个第一搜索空间或第二搜索空间之间的对应关系;至少两个用户组信息与一个第一搜索或第二搜索空间空间之间的对应关系。
下面结合可选实施例,对本实施例进行举例说明。
可选实施例一
本实施例提供了一种信道检测方法,其主要是通过动态指示方式。具体地,基站在下行控制信道中指示在第一时间单元内,发送下行控制信道的波束与第一搜索空间的对应关系。基站在下行控制信道中指示在第一时间单元内,发送下行控制信道的波束与第二搜索空间的对应关系。
在一实施方式中,在本实施例中,上述对应关系,可以是一一对应,即一个波束对应一个第一搜索空间,也可以是多一对应,即多个波束对应同一个第一搜索空间。
上述对应关系,可以是一一对应,即一个波束对应一个第二搜索空间,也可以是多一对应,即多个波束对应同一个第二搜索空间。
上述下行控制信道,可以是一种广播控制信道,小区所有用户都可以接收,也可以是一种组播控制信道,小区内某组用户可以接收。
上述第一时间单元,可以是一个或多个调度时间单元,如果是多个调 度时间单元,可以是连续或离散的多个调度时间单元。
本实施例中的上述第一搜索空间,时域上可以是一个OFDM符号,或一个OFDM符号组,或一个OFDM符号的1/n,n为正整数;频域上可以是一个PRB Set。上述第二搜索空间,对应多个连续的CCE,这些连续CCE映射的时域资源可以是一个OFDM符号,或一个OFDM符号组,或一个OFDM符号的1/n,n为正整数;频域资源可以是一个物理资源块集合(Physical Resource Block,简称为PRB)Set或一个PRB Set的子集。
终端接收到上述动态指示后,根据自己当前的波束信息,到相应波束对应的第一搜索空间去盲检测下行控制信道,或者,终端接收到这种动态指示后,根据自己当前的波束信息,到相应波束对应的第二搜索空间去盲检测下行控制信道。
可选实施例二
本实施例提供了一种信道检测方法,主要通过动态指示方式的方式。具体地,基站在下行控制信道中指示在第一时间单元内,用户组信息与第一搜索空间的对应关系。基站在下行控制信道中指示在第一时间单元内,用户组信息与第二搜索空间的对应关系。
上述对应关系,可以是一一对应,即一个用户组对应一个第一搜索空间,也可以是多一对应,即多个用户组对应同一个第一搜索空间。
上述对应关系,可以是一一对应,即一个用户组对应一个第二搜索空间,也可以是多一对应,即多个用户组对应同一个第二搜索空间。
上述用户组信息,可以是一种组ID信息,如组无线网络临时标识(Radio Network Tempory Identity,简称为RNTI),具有相同组ID信息的用户属于同一个用户组,不同的组ID信息对应不同的用户组。
终端接收到这种动态指示后,根据自己当前的用户组信息,到相应用户组对应的第一搜索空间去盲检测下行控制信道。或者,终端接收到这种 动态指示后,根据自己当前的用户组信息,到相应用户组对应的第二搜索空间去盲检测下行控制信道。
在一实施方式中,在本实施例中将结合下述具体示例,对本实施例的上述内容进行详细举例说明。
示例一
下行控制信道在频域上包含多个PRB Sets,其中PRB Set0用来发送公共控制信息,称其为公共控制域,其他的一个或多个PRB Sets用来发送非公共控制信息,可以包含组控制信息或UE-specific控制信息,如图2所示。
PRB Set0中发送的公共控制信息中,包含“非公共控制信道指示”域,该域指示当前时隙slot基站在哪些波束方向发送了下行控制信道,以及这些波束方向分别对应的OFDM符号。例如,在OFDM Symbol0上发送Beam0,在OFDM Symbol 1上发送Beam 2。
终端解码公共控制信息,读取“非公共控制信道指示”域后,知道当前时隙slot发送非公共控制信息的波束以及具体OFDM符号,终端根据当前slot自己对应的波束ID,确认当前是否需要接收非公共控制信道,具体为,如果“非公共控制信道指示”域中指示当前时隙slot传输了终端的波束方向,则进一步根据该域的指示,在相应OFDM符号上盲检测自己的非公共控制信道。如果“非公共控制信道指示”域中指示当前时隙slot没有传输终端的波束方向,则终端认为当前时隙slot自己不需要接收非公共控制信道,从而无需进行盲检测操作。例如,终端当前slot的波束方向为Beam1,则终端认为当前slot无需接收非公共控制信道,不进行盲检测。另一个例子,终端当前slot的波束方向为Beam 2,则通过读取“非公共控制信道指示”域,终端获知当前slot基站对自己发送了非公共控制信道,并且搜索空间为时域OFDM Symbol 1,频域为PRB Set1或其子集。
示例二
在PRB Set0中发送的公共控制信息中,包含“非公共控制信道指示”域,该域指示当前slot基站对哪些用户组发送了下行控制信道,以及这些用户组的下行控制信道搜索空间。例如,对用户组0和用户组2发送了下行控制信道,用户组0的下行控制信道搜索空间为搜索空间0,用户组2的下行控制信道搜索空间为搜索空间1,如图3所示,其中,CCE0-CCE7为搜索空间0,对应图3中左侧部分,CCE8—CCE15为搜索空间1,对应图3中右侧部分。
终端解码公共控制信息,读取“非公共控制信道指示”域后,知道当前slot基站对哪些用户组发送了下行控制信道,以及对应每个用户组的搜索空间索引,终端根据当前slot自己对应的用户组ID,确认当前是否需要接收非公共控制信道,具体为,如果“非公共控制信道指示”域中指示当前slot对终端所在的用户组传输了非公共控制信道,则进一步根据该域的指示,在相应搜索空间上盲检测自己的非公共控制信道;如果“非公共控制信道指示”域中指示当前slot没有对终端所在用户组传输非公共控制信道,则终端认为当前slot自己不需要接收非公共控制信道,从而无需进行盲检测操作。例如,终端当前slot所在用户组为用户组1,则终端认为当前slot无需接收非公共控制信道,不进行盲检测。终端当前slot所在的用户组为用户组0,则通过读取“非公共控制信道指示”域,终端获知当前slot基站对自己所在用户组发送了非公共控制信道,并且搜索空间为搜索空间0,则终端在搜索空间0上盲检测非公共控制信道。
示例三
基站通过无线资源控制(Radio Resource Control,简称为RRC)信令为终端1半静态配置一个候选搜索空间集合A,A为{搜索空间1,搜索空间2,搜索空间3},通过RRC信令为终端2半静态配置一个候选搜索空间集合B,B为{搜索空间1,搜索空间4}。
基站在PRB Set0中发送的公共控制信息中,包含“非公共控制信道指示”域,该域指示当前slot用户在搜索空间组C中进行盲检测,C为{搜索空间2,搜索空间4}。
终端解码公共控制信息,读取“非公共控制信道指示”域后,知道当前slot基站对不同用户发送的PDCCH在搜索空间2、搜索空间4范围内,同时用户检查自己最近一次收到的RRC半静态配置候选搜索空间集合,对于终端1来说,通过把候选搜索空间集合A与搜索空间组C取交集,确定自己在当前slot的搜索空间为搜索空间2,对于终端2来说,通过把候选搜索空间集合B与搜索空间组C取交集,确定自己在当前slot的搜索空间为搜索空间4。
终端1在当前slot的搜索空间2对非公共控制信道进行盲检测,终端2在当前slot的搜索空间4对非公共控制信道进行盲检测。
通过本发明实施例,解决了相关技术中处于不同波束方向或不同用户组的用户需要检测多个下行控制信道资源所导致的盲检复杂度较高的问题,达到了提高盲检测效率的技术效果。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
实施例2
在本实施例中还提供了一种信道检测装置,该装置用于实现上述实施 例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图4是根据本发明实施例的信道检测装置的结构框图,如图4所示,该装置包括:
1)发送模块42,用于向终端发送用于指示该终端对信道进行盲检测的指示信息,
其中,该指示信息包括以下之一:在第一预定时间单元内,基站发送下行控制信道的波束与搜索空间之间的第一对应关系;在第二预定时间单元内,用户组信息与搜索空间之间的第二对应关系;在第三预定时间单元内,指示该终端进行盲检测的搜索空间和候选搜索空间。
需要说明的是,在本实施例中,上述第一预定时间单元、第二预定时间单元、第三预定时间单元包括但并不限于:一个或多个调度时间单元,其中,如果是多个调度时间单元,可以是连续或离散的多个调度时间单元。
上述下行控制信道,可以是一种广播控制信道,小区所有用户都可以接收,也可以是一种组播控制信道,小区内某组用户可以接收。
在一实施方式中,在本实施例中,上述信道检测装置的应用场景包括但并不限于:在第五代移动通信(5th Generation,简称为5G)技术中处于不同波束方向的用户进行盲检测。在该应用场景下,向终端发送用于指示该终端对信道进行盲检测的指示信息,其中,该指示信息包括以下之一:在第一预定时间单元内,基站发送下行控制信道的波束与搜索空间之间的第一对应关系;在第二预定时间单元内,用户组信息与搜索空间之间的第二对应关系;在第三预定时间单元内,指示该终端进行盲检测的搜索空间和候选搜索空间。也就是说,本实施例通过向终端发送进行盲检测的指示 信息,以使终端根据该指示信息在对应的搜索空间进行盲检测,而不是在多个搜索空间依次盲检测,进而解决了相关技术中,处于不同波束方向或不同用户组的用户需要检测多个下行控制信道资源所导致的盲检复杂度较高的问题,达到了提高盲检测效率的技术效果。
在一个可选地实施方式中,上述发送模块还用于通过以下方式发送该指示信息:通过物理层信令动态通知的方式;通过高层信令半静态通知的方式。
在一实施方式中,上述搜索空间包括:第一搜索空间或第二搜索空间,,其中,该第一搜索空间在时域上为一个或多个正交频分复用OFDM符号,在频域上为一个或多个物理资源块PRB;该第二搜索空间为一个或多个连续的控制信道单元CCE对应的时频资源。
例如,第一搜索空间在时域上可以为一个OFDM符号,或一个OFDM符号组,或一个OFDM符号的1/n,n为正整数;在频域上可以是一个PRB Set。
第二搜索空间,对应多个连续的CCE,这些连续CCE映射的时域资源可以是一个OFDM符号,或一个OFDM符号组,或一个OFDM符号的1/n,n为正整数;频域资源可以是一个物理资源块(Physical Resource Block,简称为PRB)Set或一个PRB Set的子集。
上述第一对应关系包括:发送下行控制信道的一个波束与一个第一搜索空间或第二搜索空间之间的对应关系;发送下行控制信道的至少两个波束与一个第一搜索空间或第二搜索空间之间的对应关系;
上述第二对应关系包括:一个用户组信息与一个第一搜索空间或第二搜索空间之间的对应关系;至少两个用户组信息与一个第一搜索或第二搜索空间空间之间的对应关系。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于 后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例3
在本实施例中提供了一种信道检测方法,图5是根据本发明实施例的另一信道检测方法流程图,如图5所示,该流程包括如下步骤:
步骤S502,接收基站发送的指示信息,其中,该指示信息包括以下之一:在第一预定时间单元内,基站发送下行控制信道的波束与搜索空间之间的第一对应关系;在第二预定时间单元内,用户组信息与搜索空间之间的第二对应关系;在第三预定时间单元内,指示该终端进行盲检测的搜索空间和候选搜索空间;
步骤S504,根据该指示信息对信道进行盲检测。
需要说明的是,在本实施例中,上述第一预定时间单元、第二预定时间单元、第三预定时间单元包括但并不限于:一个或多个调度时间单元,其中,如果是多个调度时间单元,可以是连续或离散的多个调度时间单元。
上述下行控制信道,可以是一种广播控制信道,小区所有用户都可以接收,也可以是一种组播控制信道,小区内某组用户可以接收。
在一实施方式中,上述信道检测方法的应用场景包括但并不限于:在第五代移动通信(5th Generation,简称为5G)技术中处于不同波束方向的用户进行盲检测。在该应用场景下,接收基站发送的指示信息,其中,该指示信息包括以下之一:在第一预定时间单元内,基站发送下行控制信道的波束与搜索空间之间的第一对应关系;在第二预定时间单元内,用户组信息与搜索空间之间的第二对应关系;在第三预定时间单元内,指示该终端进行盲检测的搜索空间和候选搜索空间;根据该指示信息对信道进行盲检测。也就是说,本实施例通过接收基站发送的进行盲检测的指示信息,在对应的搜索空间进行盲检测,而不是在多个搜索空间依次盲检测,进而 解决了相关技术中,处于不同波束方向或不同用户组的用户需要检测多个下行控制信道资源所导致的盲检复杂度较高的问题,达到了提高盲检测效率的技术效果。
在一个可选地实施方式中,上述搜索空间包括:第一搜索空间或第二搜索空间,其中,该第一搜索空间在时域上为一个或多个正交频分复用OFDM符号,在频域上为一个或多个物理资源块PRB;该第二搜索空间为一个或多个连续的控制信道单元CCE对应的时频资源。
例如,第一搜索空间在时域上可以为一个OFDM符号,或一个OFDM符号组,或一个OFDM符号的1/n,n为正整数;在频域上可以是一个PRB Set。
第二搜索空间,对应多个连续的CCE,这些连续CCE映射的时域资源可以是一个OFDM符号,或一个OFDM符号组,或一个OFDM符号的1/n,n为正整数;频域资源可以是一个物理资源块(Physical Resource Block,简称为PRB)Set或一个PRB Set的子集。
在一个可选地实施方式中,上述根据该指示信息对信道进行盲检测包括以下步骤:
步骤S11,在该指示信息为该第一对应关系时,根据该第一对应关系,查找当前波束对应的搜索空间,在当前波束对应的搜索空间进行盲检测;
步骤S12,在该指示信息为该第二对应关系时,根据该第二对应关系,查找当前用户组信息对应的搜索空间,在当前用户组信息对应的搜索空间进行盲检测;
步骤S13,在该指示信息为指示该终端进行盲检测的搜索空间和候选搜索空间时,获取该终端进行盲检测的搜索空间和候选搜索空间之间的交集,在该交集对应的搜索空间进行盲检测。
在一实施方式中,若该终端进行盲检测的搜索空间和候选搜索空间之 间的交集只包括一个搜索空间,则在该第三预定时间单元内,在该一个搜索空间进行盲检测;若该终端进行盲检测的搜索空间和候选搜索空间之间的交集包括多个搜索空间,则根据该多个搜索空间的优先级,获取最高优先级的搜索空间,并在该第三预定时间单元内,在该最高优先级的搜索空间进行盲检测。
需要说明的是,上述候选搜索空间中所包括的搜索空间按照优先级的方式排列。
通过本发明,用户可以在动态信令或动态信令结合半静态信令指示的具体搜索空间内进行盲检测,从而大大降低盲检测次数与复杂度。
下面结合可选实施例,对本实施例进行举例说明。
本实施例提供了一种信道检测方法,其中主要是通过动态与半静态结合的指示方式。具体地,基站通过高层信令半静态配置用户的候选第一搜索空间/第二搜索空间组,该组中可以包含一个或多个第一搜索空间/第二搜索空间。
基站在下行控制信道中指示在第一时间单元内,终端在第一搜索空间/第二搜索空间组中进行盲检测,所述第一搜索空间/第二搜索空间组,可以包含一个或多个第一搜索空间/第二搜索空间。
终端接收到半静态配置的所述候选第一搜索空间/第二搜索空间组和动态配置的所述第一搜索空间/第二搜索空间组后,把两个第一搜索空间/第二搜索空间组索引取交集,如果取交集后得到一个第一搜索空间/第二搜索空间索引,则用户在所述第一时间单元内在该第一搜索空间/第二搜索空间索引指示的搜索空间进行盲检测;如果取交集后得到多个第一搜索空间/第二搜索空间索引,则根据他们在候选第一搜索空间/第二搜索空间组中的先后顺序确定优先级,取最高优先级的第一搜索空间/第二搜索空间索引,在所述第一时间单元内在对应该索引的第一搜索空间/第二搜索空间进行盲检 测;如果取交集后没有得到任何第一搜索空间/第二搜索空间索引,则用户在所述第一时间单元内,不在任何第一搜索空间/第二搜索空间进行盲检测。
通过本发明上述实施例,用户可以在动态信令或动态信令结合半静态信令指示的具体搜索空间内进行盲检测,从而大大降低盲检测次数与复杂度。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
实施例4
在本实施例中还提供了一种信道检测装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图6是根据本发明实施例的信道检测装置的结构框图(一),如图6所示,该装置包括:
1)接收模块62,用于接收基站发送的指示信息,其中,该指示信息包括以下之一:在第一预定时间单元内,基站发送下行控制信道的波束与搜索空间之间的第一对应关系;在第二预定时间单元内,用户组信息与搜索空间之间的第二对应关系;在第三预定时间单元内,指示该终端进行盲检 测的搜索空间和候选搜索空间;
2)处理模块64,用于根据该指示信息对信道进行盲检测。
需要说明的是,在本实施例中,上述第一预定时间单元、第二预定时间单元、第三预定时间单元包括但并不限于:一个或多个调度时间单元,其中,如果是多个调度时间单元,可以是连续或离散的多个调度时间单元。
上述下行控制信道,可以是一种广播控制信道,小区所有用户都可以接收,也可以是一种组播控制信道,小区内某组用户可以接收。
在一实施方式中,在本实施例中,上述信道检测装置的应用场景包括但并不限于:在第五代移动通信(5th Generation,简称为5G)技术中处于不同波束方向的用户进行盲检测。在该应用场景下,接收基站发送的指示信息,其中,该指示信息包括以下之一:在第一预定时间单元内,基站发送下行控制信道的波束与搜索空间之间的第一对应关系;在第二预定时间单元内,用户组信息与搜索空间之间的第二对应关系;在第三预定时间单元内,指示该终端进行盲检测的搜索空间和候选搜索空间;根据该指示信息对信道进行盲检测。也就是说,本实施例提供的上述装置通过接收基站发送的进行盲检测的指示信息,在对应的搜索空间进行盲检测,而不是在多个搜索空间依次盲检测,进而解决了相关技术中,处于不同波束方向或不同用户组的用户需要检测多个下行控制信道资源所导致的盲检复杂度较高的问题,达到了提高盲检测效率的技术效果。
在一个可选地实施方式中,上述搜索空间包括:第一搜索空间和/或第二搜索空间,其中,该第一搜索空间在时域上为一个或多个正交频分复用OFDM符号,在频域上为一个或多个物理资源块PRB;该第二搜索空间为一个或多个连续的控制信道单元CCE对应的时频资源。
图7是根据本发明实施例的信道检测装置的结构框图(二),如图7所示,处理模块64包括:
1)第一处理单元72,用于在该指示信息为该第一对应关系时,根据该第一对应关系,查找当前波束对应的搜索空间,在当前波束对应的搜索空间进行盲检测;
2)第二处理单元74,用于在该指示信息为该第二对应关系时,根据该第二对应关系,查找当前用户组信息对应的搜索空间,在当前用户组信息对应的搜索空间进行盲检测;
3)第三处理单元76,用于在该指示信息为指示该终端进行盲检测的搜索空间和候选搜索空间时,获取该终端进行盲检测的搜索空间和候选搜索空间之间的交集,在该交集对应的搜索空间进行盲检测。
图8是根据本发明实施例的信道检测装置的结构框图(三),如图8所示,处理模块64还包括:
1)第四处理单元82,用于在该终端进行盲检测的搜索空间和候选搜索空间之间的交集只包括一个搜索空间时,在该第三预定时间单元内,在该一个搜索空间进行盲检测;
2)第五处理单元84,用于在该终端进行盲检测的搜索空间和候选搜索空间之间的交集包括多个搜索空间时,根据该多个搜索空间的优先级,获取最高优先级的搜索空间,并在该第三预定时间单元内,在该最高优先级的搜索空间进行盲检测。
需要说明的是,上述候选搜索空间中所包括的搜索空间按照优先级的方式排列。
通过本发明实施例,用户可以在动态信令或动态信令结合半静态信令指示的具体搜索空间内进行盲检测,从而大大降低盲检测次数与复杂度。
实施例5
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,向终端发送用于指示所述终端对信道进行盲检测的指示信息,其中,所述指示信息包括以下之一:在第一预定时间单元内,基站发送下行控制信道的波束与搜索空间之间的第一对应关系;在第二预定时间单元内,用户组信息与搜索空间之间的第二对应关系;在第三预定时间单元内,指示所述终端进行盲检测的搜索空间和候选搜索空间。
在一实施方式中,存储介质还被设置为存储用于执行以下步骤的程序代码:
S2,接收基站发送的指示信息,其中,所述指示信息包括以下之一:在第一预定时间单元内,基站发送下行控制信道的波束与搜索空间之间的第一对应关系;在第二预定时间单元内,用户组信息与搜索空间之间的第二对应关系;在第三预定时间单元内,指示所述终端进行盲检测的搜索空间和候选搜索空间;
S3,根据所述指示信息对信道进行盲检测。
在一实施方式中,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
在一实施方式中,在本实施例中,处理器根据存储介质中已存储的程序代码执行上述步骤S1。
在一实施方式中,在本实施例中,处理器根据存储介质中已存储的程序代码执行上述步骤S2、S3。
在一实施方式中,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者 分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明实施例的技术方案,向终端发送用于指示该终端对信道进行盲检测的指示信息,其中,该指示信息包括以下之一:在第一预定时间单元内,基站发送下行控制信道的波束与搜索空间之间的第一对应关系;在第二预定时间单元内,用户组信息与搜索空间之间的第二对应关系;在第三预定时间单元内,指示该终端进行盲检测的搜索空间和候选搜索空间。也就是说,本发明通过向终端发送进行盲检测的指示信息,以使终端根据该指示信息在对应的搜索空间进行盲检测,而不是在多个搜索空间依次盲检测,进而解决了相关技术中,处于不同波束方向或不同用户组的用户需要检测多个下行控制信道资源所导致的盲检复杂度较高的问题,达到了提高盲检测效率的技术效果。

Claims (17)

  1. 一种信道检测方法,包括:
    向终端发送用于指示所述终端对信道进行盲检测的指示信息;
    其中,所述指示信息包括以下之一:在第一预定时间单元内,基站发送下行控制信道的波束与搜索空间之间的第一对应关系;在第二预定时间单元内,用户组信息与搜索空间之间的第二对应关系;在第三预定时间单元内,指示所述终端进行盲检测的搜索空间和候选搜索空间。
  2. 根据权利要求1所述的方法,其中,通过以下方式至少之一,向所述终端发送用于指示所述终端对信道进行盲检测的所述指示信息:
    通过物理层信令动态通知的方式;
    通过高层信令半静态通知的方式。
  3. 根据权利要求1所述的方法,其中,
    所述搜索空间包括:第一搜索空间或第二搜索空间,
    其中,所述第一搜索空间在时域上为一个或多个正交频分复用OFDM符号,在频域上为一个或多个物理资源块PRB;所述第二搜索空间为一个或多个连续的控制信道单元CCE对应的时频资源。
  4. 根据权利要求3所述的方法,其中,
    所述第一对应关系包括:发送下行控制信道的一个波束与一个第一搜索空间或第二搜索空间之间的对应关系;发送下行控制信道的至少两个波束与一个第一搜索空间或第二搜索空间之间的对应关系;
    所述第二对应关系包括:一个用户组信息与一个第一搜索空间或第二搜索空间之间的对应关系;至少两个用户组信息与一个第一搜索或第二搜索空间空间之间的对应关系。
  5. 一种信道检测方法,包括:
    接收基站发送的指示信息,其中,所述指示信息包括以下之一:在 第一预定时间单元内,基站发送下行控制信道的波束与搜索空间之间的第一对应关系;在第二预定时间单元内,用户组信息与搜索空间之间的第二对应关系;在第三预定时间单元内,指示终端进行盲检测的搜索空间和候选搜索空间;
    根据所述指示信息对信道进行盲检测。
  6. 根据权利要求5所述的方法,其中,
    所述搜索空间包括:第一搜索空间或第二搜索空间,
    其中,所述第一搜索空间在时域上为一个或多个正交频分复用OFDM符号,在频域上为一个或多个物理资源块PRB;所述第二搜索空间为一个或多个连续的控制信道单元CCE对应的时频资源。
  7. 根据权利要求6所述的方法,其中,根据所述指示信息对信道进行盲检测包括:
    在所述指示信息为所述第一对应关系时,根据所述第一对应关系,查找当前波束对应的搜索空间,在当前波束对应的搜索空间进行盲检测;
    在所述指示信息为所述第二对应关系时,根据所述第二对应关系,查找当前用户组信息对应的搜索空间,在当前用户组信息对应的搜索空间进行盲检测;
    在所述指示信息为指示所述终端进行盲检测的搜索空间和候选搜索空间时,获取所述终端进行盲检测的搜索空间和候选搜索空间之间的交集,在所述交集对应的搜索空间进行盲检测。
  8. 根据权利要求7所述的方法,其中,
    若所述终端进行盲检测的搜索空间和候选搜索空间之间的交集只包括一个搜索空间,则在所述第三预定时间单元内,在所述一个搜索空间进行盲检测;
    若所述终端进行盲检测的搜索空间和候选搜索空间之间的交集包括 多个搜索空间,则根据所述多个搜索空间的优先级,获取最高优先级的搜索空间,并在所述第三预定时间单元内,在所述最高优先级的搜索空间进行盲检测,其中,所述候选搜索空间中所包括的搜索空间按照优先级的方式排列。
  9. 一种信道检测装置,应用于基站,包括:
    发送模块,用于向终端发送用于指示所述终端对信道进行盲检测的指示信息,
    其中,所述指示信息包括以下之一:在第一预定时间单元内,基站发送下行控制信道的波束与搜索空间之间的第一对应关系;在第二预定时间单元内,用户组信息与搜索空间之间的第二对应关系;在第三预定时间单元内,指示所述终端进行盲检测的搜索空间和候选搜索空间。
  10. 根据权利要求9所述的装置,其中,所述发送模块还用于通过以下方式发送所述指示信息:通过物理层信令动态通知的方式;通过高层信令半静态通知的方式。
  11. 根据权利要求9所述的装置,其中,所述搜索空间包括:第一搜索空间或第二搜索空间,其中,所述第一搜索空间在时域上为一个或多个正交频分复用OFDM符号,在频域上为一个或多个物理资源块PRB;所述第二搜索空间为一个或多个连续的控制信道单元CCE对应的时频资源。
  12. 根据权利要求11所述的装置,其中,
    所述第一对应关系包括:发送下行控制信道的一个波束与一个第一搜索空间或第二搜索空间之间的对应关系;发送下行控制信道的至少两个波束与一个第一搜索空间或第二搜索空间之间的对应关系;
    所述第二对应关系包括:一个用户组信息与一个第一搜索空间或第二搜索空间之间的对应关系;至少两个用户组信息与一个第一搜索或第 二搜索空间空间之间的对应关系。
  13. 一种信道检测装置,应用于终端,包括:
    接收模块,用于接收基站发送的指示信息,其中,所述指示信息包括以下之一:在第一预定时间单元内,基站发送下行控制信道的波束与搜索空间之间的第一对应关系;在第二预定时间单元内,用户组信息与搜索空间之间的第二对应关系;在第三预定时间单元内,指示所述终端进行盲检测的搜索空间和候选搜索空间;
    处理模块,用于根据所述指示信息对信道进行盲检测。
  14. 根据权利要求13所述的装置,其中,
    所述搜索空间包括:第一搜索空间或第二搜索空间,其中,所述第一搜索空间在时域上为一个或多个正交频分复用OFDM符号,在频域上为一个或多个物理资源块PRB;所述第二搜索空间为一个或多个连续的控制信道单元CCE对应的时频资源。
  15. 根据权利要求13所述的装置,其中,所述处理模块包括:
    第一处理单元,用于在所述指示信息为所述第一对应关系时,根据所述第一对应关系,查找当前波束对应的搜索空间,在当前波束对应的搜索空间进行盲检测;
    第二处理单元,用于在所述指示信息为所述第二对应关系时,根据所述第二对应关系,查找当前用户组信息对应的搜索空间,在当前用户组信息对应的搜索空间进行盲检测;
    第三处理单元,用于在所述指示信息为指示所述终端进行盲检测的搜索空间和候选搜索空间时,获取所述终端进行盲检测的搜索空间和候选搜索空间之间的交集,在所述交集对应的搜索空间进行盲检测。
  16. 根据权利要求15所述的装置,其中,所述处理模块还包括:
    第四处理单元,用于在所述终端进行盲检测的搜索空间和候选搜索 空间之间的交集只包括一个搜索空间时,在所述第三预定时间单元内,在所述一个搜索空间进行盲检测;
    第五处理单元,用于在所述终端进行盲检测的搜索空间和候选搜索空间之间的交集包括多个搜索空间时,根据所述多个搜索空间的优先级,获取最高优先级的搜索空间,并在所述第三预定时间单元内,在所述最高优先级的搜索空间进行盲检测,其中,所述候选搜索空间中所包括的搜索空间按照优先级的方式排列。
  17. 一种存储介质,所述存储介质中存储有计算机可执行指令,该计算机可执行指令配置为执行权利要求1-4任一项所述的信道检测方法,或者权利要求5-8任一项所述的信道检测方法。
PCT/CN2017/109791 2017-01-03 2017-11-07 信道检测方法及装置、存储介质 WO2018126782A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710002200.4 2017-01-03
CN201710002200.4A CN108270535B (zh) 2017-01-03 2017-01-03 信道检测方法及装置

Publications (1)

Publication Number Publication Date
WO2018126782A1 true WO2018126782A1 (zh) 2018-07-12

Family

ID=62771458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109791 WO2018126782A1 (zh) 2017-01-03 2017-11-07 信道检测方法及装置、存储介质

Country Status (2)

Country Link
CN (1) CN108270535B (zh)
WO (1) WO2018126782A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020029996A1 (zh) * 2018-08-10 2020-02-13 华为技术有限公司 检测dci的方法、配置pdcch的方法和通信装置
WO2020030085A1 (zh) * 2018-08-10 2020-02-13 华为技术有限公司 一种通信方法及设备

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110912662B (zh) * 2018-09-14 2021-09-21 华为技术有限公司 一种信息检测方法及装置
CN111132279A (zh) * 2018-10-31 2020-05-08 华为技术有限公司 一种通信方法及设备
CN109412984B (zh) * 2018-11-15 2021-01-01 中国电子科技集团公司第三十八研究所 一种基于Aitken加速法的多天线场景下盲信噪比估算方法
EP3908067A4 (en) * 2019-01-11 2022-03-09 Lg Electronics Inc. METHOD FOR SIGNAL TRANSMISSION AND RECEPTION IN A WIRELESS COMMUNICATION SYSTEM, AND APPARATUS FOR SUPPORTING THE SAME
CN111614434B (zh) 2019-02-25 2021-08-31 华为技术有限公司 搜索空间的盲检方法及通信装置
CN113557778B (zh) * 2019-08-08 2023-10-20 Oppo广东移动通信有限公司 用于检测、发送物理下行控制信道的方法及设备
CN113922922A (zh) * 2020-07-10 2022-01-11 华为技术有限公司 通信方法、装置及系统
CN114826504A (zh) * 2021-01-18 2022-07-29 大唐移动通信设备有限公司 目标小区搜索空间集组的切换及其控制方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102415038A (zh) * 2009-04-30 2012-04-11 高通股份有限公司 用于lte-a多载波操作的pdcch搜索空间设计
CN102884752A (zh) * 2010-05-05 2013-01-16 高通股份有限公司 Lte-a 中用于r-pdcch 的扩展搜索空间
CN104038963A (zh) * 2013-03-06 2014-09-10 株式会社Ntt都科摩 无线通信系统中控制信息的传输方法和装置
CN104144502A (zh) * 2013-05-10 2014-11-12 中国电信股份有限公司 物理下行控制信息获取方法、装置、终端和系统
US20150103800A1 (en) * 2012-02-21 2015-04-16 Lg Electronics Inc. Initial access method and device in wireless communication system
CN104885377A (zh) * 2012-12-21 2015-09-02 三星电子株式会社 在无线通信系统中通过波束成形发送和接收控制信道的方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102415038A (zh) * 2009-04-30 2012-04-11 高通股份有限公司 用于lte-a多载波操作的pdcch搜索空间设计
CN102884752A (zh) * 2010-05-05 2013-01-16 高通股份有限公司 Lte-a 中用于r-pdcch 的扩展搜索空间
US20150103800A1 (en) * 2012-02-21 2015-04-16 Lg Electronics Inc. Initial access method and device in wireless communication system
CN104885377A (zh) * 2012-12-21 2015-09-02 三星电子株式会社 在无线通信系统中通过波束成形发送和接收控制信道的方法和装置
CN104038963A (zh) * 2013-03-06 2014-09-10 株式会社Ntt都科摩 无线通信系统中控制信息的传输方法和装置
CN104144502A (zh) * 2013-05-10 2014-11-12 中国电信股份有限公司 物理下行控制信息获取方法、装置、终端和系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020029996A1 (zh) * 2018-08-10 2020-02-13 华为技术有限公司 检测dci的方法、配置pdcch的方法和通信装置
WO2020030085A1 (zh) * 2018-08-10 2020-02-13 华为技术有限公司 一种通信方法及设备
US11540267B2 (en) 2018-08-10 2022-12-27 Huawei Technologies Co., Ltd. DCI detection method, PDCCH configuration method, and communications apparatus

Also Published As

Publication number Publication date
CN108270535B (zh) 2022-09-27
CN108270535A (zh) 2018-07-10

Similar Documents

Publication Publication Date Title
WO2018126782A1 (zh) 信道检测方法及装置、存储介质
US11564205B2 (en) Method and apparatus for configuring DMRS information in V2X system
WO2019196750A1 (en) Methods and related devices for performing cross-carrier scheduling with beam operations
JP6313321B2 (ja) 共通サーチスペース及びue固有サーチスペースをブラインド検出するための方法及び装置
US8761109B2 (en) Method and apparatus for receiving a control channel
EP3592088B1 (en) Channel transmission method and network device
CN102395206B (zh) 下行控制信息的传输方法和设备
KR101636761B1 (ko) 제어 채널을 위한 탐색 공간 배열
EP2874426B1 (en) Blind detection mode determination method, blind detection method and device
WO2016146073A1 (zh) 一种支持多用户叠加的ue、基站中的方法和设备
EP3942883B1 (en) Method and apparatus for sharing frequency resources between mobile communication providers in wireless communication system
EP2800432A1 (en) Mapping method and device for search space of downlink control channel
EP2712254B1 (en) Control channel transmission method and device
CN109495966B (zh) 用于传输下行数据的资源的确定和配置方法、终端和基站
WO2021063227A1 (zh) 多点协作传输的参数确定方法及装置
US10887905B2 (en) Method and apparatus for receiving a common signaling in a wireless communication system
JP2017525237A (ja) データ伝送方法及び装置
US11785601B2 (en) Method and apparatus for decoding control information in wireless communication system
US20140293922A1 (en) Method and apparatus for resource mapping of a physical downlink control channel
US9313006B2 (en) Methods and apparatus for resource element mapping
CN108282308B (zh) 参考信号的处理方法及装置、设备
KR20200003048A (ko) 다운링크 채널의 전송 방법 및 장치
JP7110276B2 (ja) 信号伝送方法、ネットワーク装置および端末装置
WO2018028385A1 (zh) 信道资源确定、资源映射方法及装置
RU2638544C2 (ru) Способ и устройство для отображения ресурсов физического канала управления нисходящей линии связи

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890546

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17890546

Country of ref document: EP

Kind code of ref document: A1