WO2018171274A1 - 柔性检测定位装置和方法 - Google Patents

柔性检测定位装置和方法 Download PDF

Info

Publication number
WO2018171274A1
WO2018171274A1 PCT/CN2017/118189 CN2017118189W WO2018171274A1 WO 2018171274 A1 WO2018171274 A1 WO 2018171274A1 CN 2017118189 W CN2017118189 W CN 2017118189W WO 2018171274 A1 WO2018171274 A1 WO 2018171274A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis direction
flexible
xyz
module
xyz triaxial
Prior art date
Application number
PCT/CN2017/118189
Other languages
English (en)
French (fr)
Inventor
程迎潮
李波
田诚
Original Assignee
程迎潮
李波
田诚
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 程迎潮, 李波, 田诚 filed Critical 程迎潮
Priority to EP17902222.3A priority Critical patent/EP3603887A4/en
Publication of WO2018171274A1 publication Critical patent/WO2018171274A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/0002Arrangements for supporting, fixing or guiding the measuring instrument or the object to be measured
    • G01B5/0004Supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B11/00Work holders not covered by any preceding group in the subclass, e.g. magnetic work holders, vacuum work holders
    • B25B11/02Assembly jigs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/003Measuring of motor parts

Definitions

  • the present invention relates to a flexible detection positioning device and method.
  • An object of the present invention is to provide a flexible detection and positioning device which can solve the problems existing in the prior art detection and positioning device, realize flexible positioning, and is easy to adjust according to requirements.
  • a flexible detection and positioning device comprising:
  • At least one XYZ triaxial module capable of moving in an X-axis direction, a Y-axis direction, and a Z-axis direction, respectively, wherein the X-axis direction, the Y-axis direction, and the Z-axis direction are perpendicular to each other, Mounting fixtures are provided on the XYZ three-axis module to mount the product to be tested on the XYZ triaxial module;
  • a controller coupled to the XYZ triaxial module to enable the XYZ triaxial module to move to a desired position corresponding to a theoretical position of the product to be inspected.
  • the flexible detecting and positioning device of the present invention can achieve the following beneficial technical effects: achieving flexible positioning and being easily adjusted according to requirements.
  • the XYZ triaxial module includes a rack and pinion mechanism to be movable in the X-axis direction and the Y-axis direction.
  • the XYZ triaxial module includes a screw mechanism to be movable in the Z-axis direction.
  • the flexible detecting and positioning device is divided into a first region and a second region in the Y-axis direction, and the XYZ triaxial module can be independently controlled to move in the first region and the second region.
  • the first area and the second area are partially overlapping.
  • each XYZ triaxial module is further provided with an anti-collision sensor for preventing the XYZ triaxial modules from colliding with each other.
  • the flexible detection and positioning device further comprises a memory for storing the actual required position of the XYZ triaxial module for subsequently directly calling the actual required position.
  • the flexible detection and positioning device further comprises a real-time position detector for detecting the actual position of the XYZ triaxial module in real time.
  • the above object of the present invention is also achieved by a flexible detection and positioning method, and the flexible detection and positioning method includes:
  • the flexible detection and positioning method of the present invention can achieve the following beneficial technical effects: achieving flexible positioning, and being easy to adjust according to requirements.
  • the XYZ triaxial module includes a rack and pinion mechanism to be movable in the X-axis direction and the Y-axis direction.
  • the XYZ triaxial module includes a screw mechanism to be movable in the Z-axis direction.
  • the XYZ triaxial module is independently controllable in the first region and the second region divided along the Y-axis direction.
  • the first area and the second area are partially overlapping.
  • each XYZ triaxial module is further provided with an anti-collision sensor for preventing the XYZ triaxial modules from colliding with each other.
  • the flexible detection and positioning method further comprises storing an actual required position of the XYZ triaxial module, so as to directly invoke the actual required position.
  • the flexible detection and positioning method further comprises detecting the actual position of the XYZ triaxial module in real time.
  • FIG. 1 is a plan view of a flexible detecting and positioning device according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of a flexible detecting and positioning device according to an embodiment of the present invention.
  • 1 is a plan view of a flexible detecting and positioning device according to an embodiment of the present invention.
  • 2 is a perspective view of a flexible detecting and positioning device according to an embodiment of the present invention.
  • the flexible detection and positioning device comprises:
  • At least one XYZ three-axis module 1 (eight XYZ three-axis modules are shown in FIG. 1-2), and the XYZ three-axis module 1 can move along the X-axis direction, the Y-axis direction, and the Z-axis direction, respectively,
  • the X-axis direction, the Y-axis direction, and the Z-axis direction are perpendicular to each other, and each XYZ triaxial module 1 is provided with a mounting jig 2 for mounting the product to be inspected on the XYZ triaxial module 1;
  • the controller is connected to the XYZ triaxial module 1 so that the XYZ triaxial module 1 can be moved to a desired position corresponding to the theoretical position of the product to be inspected.
  • the flexible detecting and positioning device of the present invention can realize flexible positioning and is easy to adjust according to requirements.
  • the present invention adopts an XYZ three-axis module, and the XYZ three-axis module can automatically move to a preset required position according to the input of the controller, and can be finely adjusted according to requirements to achieve flexible positioning, all points (ie, The position of the mounting fixture of the XYZ triaxial module can be automatically adjusted and automatically reset.
  • the XYZ triaxial module includes a rack and pinion mechanism to be movable in the X-axis direction and the Y-axis direction.
  • rack and pinion mechanism to be movable in the X-axis direction and the Y-axis direction.
  • other mechanisms such as a screw, a linear motor, etc., may be employed, and such variations are also within the scope of the present invention.
  • the flexible detecting and positioning device of the present invention has a certain expandability, and the shared rack is combined with the independent gear to drive the X-axis and The movement in the Y-axis direction can directly increase or decrease the corresponding XYZ three-axis module when the number of positioning points increases or decreases, and the whole machine space is not affected.
  • the XYZ triaxial module includes a screw mechanism for movement in the Z-axis direction.
  • a screw mechanism for movement in the Z-axis direction.
  • other mechanisms such as a rack and pinion, a linear motor, etc.
  • the XYZ three-axis module includes the screw mechanism to be movable in the Z-axis direction, the accuracy of the movement in the Z-axis direction is effectively improved, and it is easy to prevent accidental dropping.
  • the flexible detecting and positioning device is divided into a first area and a second area in the Y-axis direction (for example, the A area and the B area shown in FIG. 1), and the XYZ triaxial module is in the first area and the second area.
  • the internal energy can be independently controlled to move.
  • the present invention can be divided into more regions based on the disclosure of the present invention, and such modifications are also within the scope of the present invention.
  • the first area and the second area are partially overlapping (e.g., the overlapping area shown in Figure 1).
  • the mounting fixture of the XYZ triaxial module covers the entire range of motion without blind spots.
  • each XYZ triaxial module is further provided with an anti-collision sensor for preventing the XYZ triaxial modules from colliding with each other.
  • the flexible detection and positioning device further comprises a memory for storing the actual required position of the XYZ triaxial module for subsequently directly calling the actual required position. That is to say, after the XYZ triaxial module 1 moves to the demand position corresponding to the theoretical position of the product to be detected, the demand position can be fine-tuned (optional action), and the fine-tuned demand position is the actual demand. Position, the actual demand position can be directly invoked to drive the XYZ triaxial module directly into position.
  • the flexible detection and positioning device further comprises a real-time position detector for detecting the actual position of the XYZ triaxial module in real time, for example, detecting the positioning point of the XYZ triaxial module in real time (ie, the XYZ triaxial mode)
  • the actual position of the set of mounting fixtures further improves positioning accuracy and prevents motion interference between the XYZ triaxial modules.
  • the servo motor is used to drive the movement of the XYZ triaxial module.
  • other motors such as stepping motors, etc., may be employed, and such variations are also within the scope of the present invention.
  • XYZ triaxial modules Preferably, eight XYZ triaxial modules are shown in Figures 1-2. Of course, it will be understood by those skilled in the art based on the present disclosure that a greater or lesser number of XYZ triaxial modules may be employed, and such variations are also within the scope of the present invention.
  • the correction curve can also be used to correct the uncontrollable error during the movement to improve the movement accuracy.
  • a flexible detection and positioning method includes:
  • the XYZ triaxial module 1 moving at least one XYZ triaxial module 1 to a required position corresponding to a theoretical position according to the theoretical position input in the controller, wherein the XYZ triaxial module 1 can be along the X-axis direction, the Y-axis direction, and The Z-axis direction moves, and the X-axis direction, the Y-axis direction, and the Z-axis direction are perpendicular to each other;
  • the product to be tested is mounted on the mounting jig 2 of the XYZ triaxial module 1.
  • the flexible detection and positioning method of the present invention can achieve flexible positioning and is easy to adjust according to requirements.
  • the flexible detection and positioning method further comprises storing the actual required position of the XYZ triaxial module for subsequent direct calling of the actual required position.
  • the inspection instrument can be used to check whether the product meets the requirements; the product that has been tested is removed; the XYZ triaxial module is returned to the origin; The actual demand position directly drives the XYZ triaxial module to move into position.
  • the flexible detection and positioning method further comprises detecting the actual position of the XYZ triaxial module in real time.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Position Or Direction (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

一种柔性检测定位装置,包括至少一个XYZ三轴模组(1),该XYZ三轴模组(1)能分别沿X轴方向、Y轴方向和Z轴方向移动,其中X轴方向、Y轴方向和Z轴方向彼此垂直,每个XYZ三轴模组(1)上设有安装夹具(2)以将待检测产品安装在XYZ三轴模组(1)上;还具有控制器,该控制器连接至XYZ三轴模组(1),以使XYZ三轴模组(1)能移动到与待检测产品的理论位置相对应的需求位置。还涉及一种柔性检测定位方法。该柔性检测定位装置和定位方法能够实现柔性定位,且易于根据需求进行调整。

Description

柔性检测定位装置和方法 技术领域
本发明涉及柔性检测定位装置和方法。
背景技术
当前大型钣金件、冲压件、焊接件的检验依赖于专用夹具对关键点进行定位与夹持,使用时调整困难,需要额外使用检测仪器检测其自身定位精度,同时无通用性,不同规格产品只能使用专用夹具,成本高昂。
发明内容
本发明的一个目的在于,提供一种柔性检测定位装置,其能解决现有技术检测定位装置所存在的问题,实现柔性定位,且易于根据需求进行调整。
本发明的以上目的通过一种柔性检测定位装置来实现,所述柔性检测定位装置包括:
至少一个XYZ三轴模组,所述XYZ三轴模组能分别沿X轴方向、Y轴方向和Z轴方向移动,其中,所述X轴方向、Y轴方向和Z轴方向彼此垂直,每个XYZ三轴模组上设有安装夹具以将待检测产品安装在XYZ三轴模组上;以及
控制器,所述控制器连接至所述XYZ三轴模组,以使XYZ三轴模组能移动到与待检测产品的理论位置相对应的需求位置。
根据上述技术方案,本发明的柔性检测定位装置能起到以下有益技术效果:实现柔性定位,且易于根据需求进行调整。
较佳的是,所述XYZ三轴模组包括齿轮齿条机构以能沿X轴方向、Y轴方向移动。
较佳的是,所述XYZ三轴模组包括丝杆机构以能沿Z轴方向移动。
较佳的是,所述柔性检测定位装置在Y轴方向分为第一区域和第二区域,XYZ三轴模组在第一区域和第二区域内能独立受控移动。
较佳的是,所述第一区域和第二区域是部分重叠的。
较佳的是,每个XYZ三轴模组上还设有防撞传感器,用于防止XYZ三轴模组相互碰撞。
较佳的是,所述柔性检测定位装置还包括存储器,用于存储XYZ三轴模组的实际需求位置,以便后续直接调用所述实际需求位置。
较佳的是,所述柔性检测定位装置还包括实时位置检测器,用于实时检测XYZ三轴模组的实际位置。
本发明的以上目的还通过一种柔性检测定位方法来实现,所述柔性检测定位方法包括:
将待检测产品的理论位置输入控制器;
根据控制器中输入的所述理论位置,使至少一个XYZ三轴模组运动到与所述理论位置相对应的需求位置,其中,所述XYZ三轴模组能分别沿X轴方向、Y轴方向和Z轴方向移动,所述X轴方向、Y轴方向和Z轴方向彼此垂直;
将待检测产品安装到XYZ三轴模组的安装夹具上。
根据上述技术方案,本发明的柔性检测定位方法能起到以下有益技术效果:实现柔性定位,且易于根据需求进行调整。
较佳的是,所述XYZ三轴模组包括齿轮齿条机构以能沿X轴方向、Y轴方向移动。
较佳的是,所述XYZ三轴模组包括丝杆机构以能沿Z轴方向移动。
较佳的是,XYZ三轴模组在沿Y轴方向划分的第一区域和第二区域内能独立受控移动。
较佳的是,所述第一区域和第二区域是部分重叠的。
较佳的是,每个XYZ三轴模组上还设有防撞传感器,用于防止XYZ三轴模组相互碰撞。
较佳的是,所述柔性检测定位方法还包括存储XYZ三轴模组的实际需求位置,以便后续直接调用所述实际需求位置。
较佳的是,所述柔性检测定位方法还包括实时检测XYZ三轴模组的实际位置。
附图说明
图1是本发明一实施例的柔性检测定位装置的俯视图。
图2是本发明一实施例的柔性检测定位装置的立体图。
附图标记列表
1、XYZ三轴模组
2、安装夹具
具体实施方式
以下将描述本发明的具体实施方式,需要指出的是,在这些实施方式的具体描述过程中,为了进行简明扼要的描述,本说明书不可能对实际的实施方式的所有特征均作详尽的描述。应当可以理解的是,在任意一种实施方式的实际实施过程中,正如在任意一个工程项目或者设计项目的过程中,为了实现开发者的具体目标,为了满足系统相关的或者商业相关的限制,常常会做出各种各样的具体决策,而这也会从一种实施方式到另一种实施方式之间发生改变。此外,还可以理解的是,虽然这种开发过程中所作出的努力可能是复杂并且冗长的,然而对于与本发明公开的内容相关的本领域的普通技术人员而言,在本公开揭露的技术内容的基础上进行的一些设计、制造或者生产等变更只是常规的技术手段,不应当理解为本公开的内容不充分。
除非另作定义,权利要求书和说明书中使用的技术术语或者科学术语应当为本发明所属技术领域内具有一般技能的人士所理解的通常意义。本发明专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类 似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“一个”或者“一”等类似词语并不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同元件,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,也不限于是直接的还是间接的连接。
图1是本发明一实施例的柔性检测定位装置的俯视图。图2是本发明一实施例的柔性检测定位装置的立体图。
如图1-2所示,根据本发明的一实施例,柔性检测定位装置包括:
至少一个XYZ三轴模组1(图1-2中示出了八个XYZ三轴模组),XYZ三轴模组1能分别沿X轴方向、Y轴方向和Z轴方向移动,其中,X轴方向、Y轴方向和Z轴方向彼此垂直,每个XYZ三轴模组1上设有安装夹具2以将待检测产品安装在XYZ三轴模组1上;以及
控制器,控制器连接至XYZ三轴模组1,以使XYZ三轴模组1能移动到与待检测产品的理论位置相对应的需求位置。
这样,本发明的柔性检测定位装置能实现柔性定位,且易于根据需求进行调整。
具体地说,本发明采用XYZ三轴模组,XYZ三轴模组能根据控制器的输入自动移动到预设的需求位置,且可根据需求进行微调,实现柔性定位,所有点位(即,XYZ三轴模组的安装夹具所在位置)均可实现自动调整、自动复位。
较佳的是,XYZ三轴模组包括齿轮齿条机构以能沿X轴方向、Y轴方向移动。当然,本领域技术人员在本发明公开内容的基础上可以理解,也可采用其他机构,如丝杆、直线电机等,这样的变型同样落入本发明的保护范围之内。在XYZ三轴模组包括齿轮齿条机构以能沿X轴方向、Y轴方向移动的情况下,本发明的柔性检测定位装置具有一定的拓展性,采用共用齿条结合独立齿轮驱动X轴与Y轴方向的移动,当定位点的数量增加或减 少时可直接增加或减少对应XYZ三轴模组即可,而整机空间不受影响。
较佳的是,XYZ三轴模组包括丝杆机构以能沿Z轴方向移动。当然,本领域技术人员在本发明公开内容的基础上可以理解,也可采用其他机构,如齿轮齿条、直线电机等,这样的变型同样落入本发明的保护范围之内。在XYZ三轴模组包括丝杆机构以能沿Z轴方向移动的情况下,有效提高了Z轴方向移动的精度,同时容易防止意外掉落。
较佳的是,柔性检测定位装置在Y轴方向分为第一区域和第二区域(例如,图1所示的A区和B区),XYZ三轴模组在第一区域和第二区域内能独立受控移动。当然,本领域技术人员在本发明公开内容的基础上可以理解,也可分为更多区域,这样的变型同样落入本发明的保护范围之内。
较佳的是,第一区域和第二区域是部分重叠的(例如,图1所示的重叠区域)。这样,XYZ三轴模组的安装夹具无盲区覆盖全部运动范围。
较佳的是,每个XYZ三轴模组上还设有防撞传感器,用于防止XYZ三轴模组相互碰撞。
较佳的是,所述柔性检测定位装置还包括存储器,用于存储XYZ三轴模组的实际需求位置,以便后续直接调用所述实际需求位置。也就是说,在XYZ三轴模组1移动到与待检测产品的理论位置相对应的需求位置之后,可对该需求位置进行微调(可选的动作),微调后的需求位置即为实际需求位置,后续可直接调用该实际需求位置,以将XYZ三轴模组直接驱动到位。
较佳的是,所述柔性检测定位装置还包括实时位置检测器,用于实时检测XYZ三轴模组的实际位置,例如,实时检测XYZ三轴模组的定位点(即,XYZ三轴模组的安装夹具所在位置)的实际位置,从而进一步提高定位精度并预防各XYZ三轴模组之间的运动干涉。
较佳的是,可采用伺服电机驱动XYZ三轴模组的移动。当然,本领域技术人员在本发明公开内容的基础上可以理解,也可采用其他马达,如步进马达等,这样的变型同样落入本发明的保护范围之内。
较佳的是,图1-2中示出了八个XYZ三轴模组。当然,本领域技术人 员在本发明公开内容的基础上可以理解,也可采用更多或更少数量的XYZ三轴模组,这样的变型同样落入本发明的保护范围之内。
较佳的是,还可采用修正曲线校正移动时的不可控误差,以提高移动精度。
如图1-2所示,根据本发明的一实施例,柔性检测定位方法包括:
将待检测产品的理论位置输入控制器;
根据控制器中输入的所述理论位置,使至少一个XYZ三轴模组1运动到与理论位置相对应的需求位置,其中,XYZ三轴模组1能分别沿X轴方向、Y轴方向和Z轴方向移动,X轴方向、Y轴方向和Z轴方向彼此垂直;
将待检测产品安装到XYZ三轴模组1的安装夹具2上。
这样,本发明的柔性检测定位方法能实现柔性定位,且易于根据需求进行调整。
较佳的是,柔性检测定位方法还包括存储XYZ三轴模组的实际需求位置,以便后续直接调用所述实际需求位置。
在将待检测产品安装到XYZ三轴模组1的安装夹具2上之后,可使用检测仪器检验产品是否符合要求;取下检测完成的产品;使XYZ三轴模组回归原点;再次使用时调用实际需求位置直接驱动XYZ三轴模组移动到位。
较佳的是,柔性检测定位方法还包括实时检测XYZ三轴模组的实际位置。
以上对本发明的具体实施方式进行了描述,但本领域技术人员将会理解,上述具体实施方式并不构成对本发明的限制,本领域技术人员可以在以上公开内容的基础上进行多种修改,而不超出本发明的范围。

Claims (16)

  1. 一种柔性检测定位装置,其特征在于,所述柔性检测定位装置包括:
    至少一个XYZ三轴模组,所述XYZ三轴模组能分别沿X轴方向、Y轴方向和Z轴方向移动,其中,所述X轴方向、Y轴方向和Z轴方向彼此垂直,每个XYZ三轴模组上设有安装夹具以将待检测产品安装在XYZ三轴模组上;以及
    控制器,所述控制器连接至所述XYZ三轴模组,以使XYZ三轴模组能移动到与待检测产品的理论位置相对应的需求位置。
  2. 如权利要求1所述的柔性检测定位装置,其特征在于,所述XYZ三轴模组包括齿轮齿条机构以能沿X轴方向、Y轴方向移动。
  3. 如权利要求1所述的柔性检测定位装置,其特征在于,所述XYZ三轴模组包括丝杆机构以能沿Z轴方向移动。
  4. 如权利要求1所述的柔性检测定位装置,其特征在于,所述柔性检测定位装置在Y轴方向分为第一区域和第二区域,XYZ三轴模组在第一区域和第二区域内能独立受控移动。
  5. 如权利要求4所述的柔性检测定位装置,其特征在于,所述第一区域和第二区域是部分重叠的。
  6. 如权利要求1所述的柔性检测定位装置,其特征在于,每个XYZ三轴模组上还设有防撞传感器,用于防止XYZ三轴模组相互碰撞。
  7. 如权利要求1所述的柔性检测定位装置,其特征在于,所述柔性检测定位装置还包括存储器,用于存储XYZ三轴模组的实际需求位置,以便后续直接调用所述实际需求位置。
  8. 如权利要求1所述的柔性检测定位装置,其特征在于,所述柔性检测定位装置还包括实时位置检测器,用于实时检测XYZ三轴模组的实际位置。
  9. 一种柔性检测定位方法,其特征在于,所述柔性检测定位方法包括:
    将待检测产品的理论位置输入控制器;
    根据控制器中输入的所述理论位置,使至少一个XYZ三轴模组运动到与所述理论位置相对应的需求位置,其中,所述XYZ三轴模组能分别沿X轴方向、Y轴方向和Z轴方向移动,所述X轴方向、Y轴方向和Z轴方向彼此垂直;
    将待检测产品安装到XYZ三轴模组的安装夹具上。
  10. 如权利要求9所述的柔性检测定位方法,其特征在于,所述XYZ三轴模组包括齿轮齿条机构以能沿X轴方向、Y轴方向移动。
  11. 如权利要求9所述的柔性检测定位方法,其特征在于,所述XYZ三轴模组包括丝杆机构以能沿Z轴方向移动。
  12. 如权利要求9所述的柔性检测定位方法,其特征在于,XYZ三轴模组在沿Y轴方向划分的第一区域和第二区域内能独立受控移动。
  13. 如权利要求12所述的柔性检测定位方法,其特征在于,所述第一区域和第二区域是部分重叠的。
  14. 如权利要求9所述的柔性检测定位方法,其特征在于,每个XYZ三轴模组上还设有防撞传感器,用于防止XYZ三轴模组相互碰撞。
  15. 如权利要求9所述的柔性检测定位方法,其特征在于,所述柔性检测定位方法还包括存储XYZ三轴模组的实际需求位置,以便后续直接调用所述实际需求位置。
  16. 如权利要求9所述的柔性检测定位方法,其特征在于,所述柔性检测定位方法还包括实时检测XYZ三轴模组的实际位置。
PCT/CN2017/118189 2017-03-23 2017-12-25 柔性检测定位装置和方法 WO2018171274A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17902222.3A EP3603887A4 (en) 2017-03-23 2017-12-25 METHOD AND DEVICE FOR FLEXIBLE DETECTION AND POSITIONING

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710177714.3 2017-03-23
CN201710177714.3A CN106944951B (zh) 2017-03-23 2017-03-23 柔性检测定位装置和方法

Publications (1)

Publication Number Publication Date
WO2018171274A1 true WO2018171274A1 (zh) 2018-09-27

Family

ID=59472412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118189 WO2018171274A1 (zh) 2017-03-23 2017-12-25 柔性检测定位装置和方法

Country Status (3)

Country Link
EP (1) EP3603887A4 (zh)
CN (1) CN106944951B (zh)
WO (1) WO2018171274A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114858464A (zh) * 2022-07-05 2022-08-05 中国航发四川燃气涡轮研究院 一种飞机附件机匣安装架

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114670131A (zh) * 2022-02-22 2022-06-28 广州明珞装备股份有限公司 零部件加工装置及其工装承料台

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001237299A (ja) * 2000-02-24 2001-08-31 Ricoh Co Ltd 位置決め装置
JP2006313840A (ja) * 2005-05-09 2006-11-16 Juki Corp 部品実装装置
CN103170859A (zh) * 2013-03-27 2013-06-26 东北大学 一种薄壁大部件柔性夹具
CN204321907U (zh) * 2014-11-19 2015-05-13 河海大学常州校区 一种模块式多点柔性工装系统
CN204479047U (zh) * 2015-01-21 2015-07-15 奇瑞汽车股份有限公司 一种定位台车夹具测量支撑装置
CN104816119A (zh) * 2015-04-30 2015-08-05 广州明珞汽车装备有限公司 一种直线式柔性定位装置
CN205120074U (zh) * 2015-11-06 2016-03-30 东风汽车公司 一种多功能白车身三坐标测量支架
CN106272130A (zh) * 2016-10-11 2017-01-04 上海翼锐汽车科技有限公司 前盖柔性夹具
CN206677835U (zh) * 2017-03-23 2017-11-28 程迎潮 柔性检测定位装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120378A (en) * 1990-12-05 1992-06-09 Porter Charles A Device and method for producing wood beam assemblies
CN100551609C (zh) * 2008-04-11 2009-10-21 清华大学 机器人化智能工装系统
EP2244052B1 (en) * 2009-04-24 2016-02-24 Mitutoyo Corporation Coordinate-measurement machine with precision stage
CN102490133A (zh) * 2011-12-01 2012-06-13 河海大学常州校区 模块化多点柔性夹具
CN102785077B (zh) * 2012-08-22 2014-09-03 清华大学 一种三自由度位置调整系统及方法
CN203636256U (zh) * 2013-12-02 2014-06-11 上海发那科机器人有限公司 一种白车身定位用柔性伺服定位装置
CN104359401A (zh) * 2014-11-13 2015-02-18 江南大学 硬盘磁头驱动器位置精度测量装置
CN105171642B (zh) * 2015-09-10 2016-11-09 山东大学 一种伺服控制的轿车顶盖组合柔性定位装置
CN106441033B (zh) * 2016-10-10 2019-05-07 吉林大学 大型型材三维弯曲件的检测装置及检测方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001237299A (ja) * 2000-02-24 2001-08-31 Ricoh Co Ltd 位置決め装置
JP2006313840A (ja) * 2005-05-09 2006-11-16 Juki Corp 部品実装装置
CN103170859A (zh) * 2013-03-27 2013-06-26 东北大学 一种薄壁大部件柔性夹具
CN204321907U (zh) * 2014-11-19 2015-05-13 河海大学常州校区 一种模块式多点柔性工装系统
CN204479047U (zh) * 2015-01-21 2015-07-15 奇瑞汽车股份有限公司 一种定位台车夹具测量支撑装置
CN104816119A (zh) * 2015-04-30 2015-08-05 广州明珞汽车装备有限公司 一种直线式柔性定位装置
CN205120074U (zh) * 2015-11-06 2016-03-30 东风汽车公司 一种多功能白车身三坐标测量支架
CN106272130A (zh) * 2016-10-11 2017-01-04 上海翼锐汽车科技有限公司 前盖柔性夹具
CN206677835U (zh) * 2017-03-23 2017-11-28 程迎潮 柔性检测定位装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3603887A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114858464A (zh) * 2022-07-05 2022-08-05 中国航发四川燃气涡轮研究院 一种飞机附件机匣安装架

Also Published As

Publication number Publication date
CN106944951A (zh) 2017-07-14
EP3603887A4 (en) 2021-01-06
CN106944951B (zh) 2018-09-25
EP3603887A1 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
Zhu et al. Measurement error analysis and accuracy enhancement of 2D vision system for robotic drilling
CN111452047B (zh) 机器人工具偏差的修正方法、机器人控制装置及系统
WO2018171274A1 (zh) 柔性检测定位装置和方法
US10173326B2 (en) Industrial robot teaching method with calculating a position
TW201429653A (zh) 振動控制的基板傳送機械臂、系統及方法
JP2006212765A (ja) 工作機械の熱変位補正方法
US10899013B2 (en) Eccentricity error correction method for angle detector and robot system
KR101381739B1 (ko) 유성감속기 시험장비
CN107202692B (zh) 一种滚珠丝杠副轴向静刚度测量装置及方法
JP2018094648A (ja) 制御装置、ロボットおよびロボットシステム
JP2008073813A (ja) マシニングセンタによる加工方法
CN103100865B (zh) 高精度箱体定位调节工装
CN104918475B (zh) 一种电子产品自动装配设备
CN110000806B (zh) 一种旋转驱动机构旋转中心的标定方法
JP2010125553A (ja) 自動ネジ締め装置
TW201927444A (zh) 治具校正裝置與方法
CN107765638A (zh) 一种铝合金组合式孔位补偿加工方法
CN209491778U (zh) 一体式机器人零位三维位姿校准系统
CN208938952U (zh) 晶元圆周视觉定位及旋转装置
Szipka et al. Identification of machine tool squareness errors via inertial measurements
CN207600515U (zh) 一种关节式机器人末端执行机构动态特性检测装置
US20160318144A1 (en) Locating a workpiece using a measurement of a workpiece feature
CN207326789U (zh) 一种手机背光源板贴膜通用定位治具
CN109732299A (zh) 位置调整机构及定位装置
KR102592792B1 (ko) 대상물 로딩 프로세스를 캘리브레이션하는 스테이지 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017902222

Country of ref document: EP

Effective date: 20191023