WO2018171148A1 - 一种判别并记录硅片位置的检测装置及方法 - Google Patents

一种判别并记录硅片位置的检测装置及方法 Download PDF

Info

Publication number
WO2018171148A1
WO2018171148A1 PCT/CN2017/103077 CN2017103077W WO2018171148A1 WO 2018171148 A1 WO2018171148 A1 WO 2018171148A1 CN 2017103077 W CN2017103077 W CN 2017103077W WO 2018171148 A1 WO2018171148 A1 WO 2018171148A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon wafer
signal
sensor
silicon
infrared distance
Prior art date
Application number
PCT/CN2017/103077
Other languages
English (en)
French (fr)
Inventor
杨聪彬
陶文秀
刘志峰
王冰
文俊武
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工业大学 filed Critical 北京工业大学
Publication of WO2018171148A1 publication Critical patent/WO2018171148A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric

Definitions

  • the invention relates to a detecting device and a method for discriminating and recording the position of a silicon wafer, in particular to the technical field of semiconductor handling equipment.
  • Silicon wafers are widely used in semiconductor components. The degree of fineness represents the manufacturing level of semiconductors. Silicon wafers have strict requirements on the environment, processing and carrier devices in the manufacturing process. Silicon wafers are generally stored in silicon wafers. In the box, the robot grabs and transports the wafer from the wafer cassette for processing.
  • the wafer cassette is generally placed vertically, the front opening is used for the robot to grab and store the silicon wafer, the silicon wafer box is distributed with a layer of slots, each slot is placed with a silicon wafer, and the box usually has 25 insertions.
  • the slot is used to store the silicon wafer.
  • the distribution of the silicon wafers in the silicon wafer cassette is random. Usually, the silicon wafers are not sequentially placed in the order of the small grooves in the cartridge, so that the silicon wafers are randomly distributed in the silicon wafer cassettes.
  • the robot picks up and transports the silicon wafer in the silicon wafer cassette. The speed of the robot operation is high and the frequency is high. In order to shorten the operation time as much as possible, the silicon wafer in the silicon wafer box is generally used.
  • the storage location is scanned and recorded to facilitate the robot to operate, avoid unnecessary movements to the vacant position, and save operating time.
  • the traditional method of scanning the storage position of the silicon wafer is to install an infrared sensor at the end of the manipulator's claw joint.
  • the sensor Before the robot performs the picking action, the sensor is used to scan the wafer cassette from top to bottom to discriminate the storage of the silicon wafer. Position and transfer the data to the robot.
  • the infrared rays emitted by the traditional infrared sensor need to be emitted on the side of the silicon wafer and then reflected back to determine the position of the silicon wafer.
  • the silicon wafer becomes thinner and thinner, and the number of errors in the infrared emission on the side of the silicon wafer gradually increases.
  • the conventional method of scanning the position of the wafer from the top to the bottom in front of the wafer cassette using the infrared sensor is no longer applicable, and a new method needs to be sought.
  • the present invention provides a detecting device and method for discriminating and recording the position of the silicon wafer, and the technical solutions adopted are as follows:
  • the conventional wafer cassette was modified to become an improved wafer cassette.
  • the 25 slots in the silicon wafer cassette are arranged in the vertical direction to form a trapezoidal arrangement at a certain angle with the vertical direction.
  • An infrared distance sensor that moves in the horizontal direction is mounted above the silicon cassette, when silicon After the silicon wafer in the cassette is placed, the infrared distance sensor moves at a constant speed in the horizontal direction.
  • the infrared signal emitting diode continuously transmits a signal to the silicon wafer in the slot, and when the transmitted signal encounters the silicon wafer, the infrared The signal is reflected back and received by the receiving tube.
  • the infrared signals reflected from the silicon wafer in each slot are different, and different position information is obtained.
  • the information is collected by the acquisition card and transmitted to the industrial computer.
  • the industrial computer then performs the collected data. Analyze the classification, determine the position of the wafer, and then control the robot to pick up and transport the wafer.
  • the detecting device system for discriminating and recording the position of the silicon wafer comprises a mechanical structure module and a signal acquisition module.
  • the mechanical structural module of the device comprises a silicon wafer box, a silicon wafer, a horizontal bracket, a vertical bracket, a horizontal rail, a slider beam, a sensor connecting plate, and a cylinder.
  • the signal acquisition module of the device comprises an infrared distance sensor, an information acquisition card, and an industrial computer.
  • the apparatus and method for determining and recording the position of a silicon wafer is characterized in that: 25 slots in the silicon wafer box are arranged in a trapezoidal shape, and the distance between the centers of each adjacent two silicon wafers in the horizontal direction is It is 1mm so that it is easy to see the edge of each piece of silicon when viewed from above the wafer cassette.
  • a rectangular opening is provided in the middle of the upper cover of the silicon wafer cassette, and the opening is perpendicular to the back surface of the wafer cassette, so that the signal emitted by the infrared distance sensor is emitted from the opening onto the silicon wafer.
  • the vertical bracket is bolted to the rear of the wafer cassette placement position, parallel to the edge line on the back of the wafer cassette.
  • the horizontal bracket is bolted to the top of the vertical bracket in the direction of the opening of the upper cover of the wafer cassette, and the distance of the horizontal bracket from the slot in which the first wafer is placed is 10 cm.
  • the cylinder is mounted at the level of the vertical bracket The middle position of the segment.
  • the horizontal rails are bolted to the horizontal bracket.
  • a slider beam is installed between the two sliders of the horizontal rail.
  • the sensor connecting plate and the infrared distance sensor are mounted on one side of the slider beam, and the other side is connected with the cylinder piston, and the movement of the sensor is driven by the movement of the cylinder piston.
  • the infrared radiation sensor's infrared emitting diode and receiving diode face the silicon wafer, facilitating the transmission of signals to the silicon and receiving reflected signals.
  • the installation position is vertical and the projection light path is vertical.
  • a detecting device and method for discriminating and recording the position of a silicon wafer characterized in that: when the infrared distance sensor moves on the horizontal rail, the infrared emitting diode emits a signal to the silicon wafer, and the signal is reflected by the silicon wafer and is The receiving diode receives and the collected signal is transmitted to the industrial computer through the acquisition card.
  • the device and method for determining and recording the position of a silicon wafer according to the technical solution are characterized in that: the position of the silicon wafer is different, and the collected signal data is also different, and a data classification software is compiled by the industrial computer, and the software is used to collect the data.
  • the signal data is analyzed, and the position of the silicon wafer is discriminated and recorded according to the difference of the positions of the different signals representing the silicon wafer.
  • the present invention provides a detecting device and method for discriminating and recording the position of a silicon wafer, discriminating and recording the position of the thin silicon wafer in the silicon wafer cassette, and solving the problem that the position of the silicon wafer is large by the conventional robot.
  • the deviation problem provides a more accurate basis for the robot to pick up and transport the silicon wafer, and to ensure the quality of the silicon wafer.
  • the present invention scans and records the position of the silicon wafer for a short period of time, and uses the infrared distance sensor to move the scanning position in the horizontal direction to identify the position of the silicon wafer, and the top-down (or self-moving) Compared with the scanning operation of the present invention, the operation time of the present invention is shorter, and the movement of the robot arm is not affected, the zero position of the robot is maintained, and the time for zero position check is reduced.
  • the robot While discriminating and recording the position of the silicon wafer, the robot can adjust the posture by itself, and achieve the posture before the robot picks up and transports the silicon wafer, thereby greatly shortening the working period.
  • Figure 1 is a schematic diagram of a detecting device for discriminating and recording the position of a silicon wafer.
  • Figure 2-1 shows the isometric view of the wafer cassette.
  • Figure 2-2 is a front elevational view of the wafer cassette.
  • Figure 3 is a schematic diagram of the moving parts of the sensor.
  • Figure 3-1 is an isometric view of the slider beam.
  • Figure 3-2 shows the isometric view of the sensor connection plate.
  • Figure 3-3 shows the sensor isometric view.
  • Fig. 1 is a schematic diagram of a device for discriminating and recording a silicon wafer position.
  • the device is composed of a mechanical structure module and a signal acquisition module.
  • the mechanical structure module comprises a silicon wafer (1), a silicon wafer box (2), a vertical bracket (3), a horizontal bracket (9), a cylinder body (4), a cylinder piston (5), a horizontal rail (8), and a sensor. Connecting plate (12) and slider beam (6).
  • the signal acquisition module includes an infrared distance sensor (7), a capture card (10), and a computer (11).
  • the silicon wafer (1) is placed in the silicon wafer cassette (2) according to the slot position, the silicon wafer cassette (2) and the vertical support (3) are on the same working plane, and the vertical support (3) is mounted on the work plane by bolts.
  • Upper the horizontal bracket (9) is bolted to the vertical bracket, the cylinder block (4) is mounted at an intermediate position of the horizontal portion of the upper end of the vertical bracket, and the cylinder piston (5) is oriented along the horizontal bracket (9).
  • the horizontal rail (8) is mounted on the horizontal bracket (9), the slider beam (6) and the infrared distance sensor (7) are mounted on the slider, and the cylinder piston (5) drives the infrared distance sensor (7) to move during movement.
  • the signal emitting diode at the lower end emits a signal downward, and the signal is transmitted to the silicon wafer (1) through the opening at the upper end of the wafer cassette (2), and then reflected back to the infrared distance.
  • the signal receiving diode at the lower end of the sensor (7) is received, and the signal is transmitted to the industrial computer (11) through the acquisition card (10), and the industrial computer (11) analyzes and processes the signal.
  • FIGS. 2-1 and 2-2 are an isometric view of the wafer cassette and a full front view of the wafer cassette.
  • the silicon wafers (1) are placed in order according to the positions of the slots in the silicon wafer cassette (2).
  • Figure 3 is a schematic diagram of the moving parts of the sensor
  • Figure 3-1 is an isometric view of the slider beam
  • Figure 3-2 is an isometric view of the sensor connection plate
  • Figure 3-3 is an isometric view of the infrared distance sensor.
  • the slider beam (6) is mounted on the two sliders of the horizontal rail (8) by bolts
  • the sensor connection plate (12) is mounted on the slider beam (6) by bolts
  • the infrared distance measuring sensor (7) is mounted on the sensor
  • the cylinder piston (5) and the sliding beam (6) are screwed and connected, and when the cylinder piston (5) moves linearly in the cylinder block (4), the infrared distance sensor (7) is driven.
  • the linear guide (8) moves linearly
  • the transmitting and receiving diodes of the infrared distance sensor (7) are at the lower end, and transmit and receive signals while moving.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种判别并记录硅片(1)位置的检测装置及方法。硅片盒(2)的插槽排列方式为梯形排列,上端有开口,从上向下看可以观测到每层硅片(1)的边缘,红外线距离传感器(7)安装在硅片盒(2)的上方,信号发射路线沿竖直方向,气缸(4)推动传感器(7)进行直线运动,同时传感器(7)的信号发射二极管通过硅片盒(2)上端的开口向硅片(1)发射信号,信号经过每层硅片(1)边缘反射回来被接收二极管接收,位于不同层的硅片(1)反射的信号不同,反射回来的信号经过采集卡(10)传输给工控机(11),工控机(11)通过软件对采集到的信号进行分析归类,机械手再根据工控机(11)的数据进行工艺操作。

Description

一种判别并记录硅片位置的检测装置及方法 技术领域
本发明是一种判别并记录硅片位置的检测装置及方法,具体涉及半导体搬运设备技术领域。
背景技术
硅片被广泛应用于半导体元器件中,其精细程度代表了半导体的制造工艺水平,硅片在生产制造过程中对环境、加工及承载装置有严格的要求,硅片一般都是存放在硅片盒中,机械手会从硅片盒中抓取和搬运硅片进行工艺处理。
硅片盒一般是立式放置,前面开口用于机械手抓取和存放硅片,硅片盒中分布有一层层的插槽,每个插槽放置一张硅片,盒中通常有25个插槽用来存放硅片。硅片在硅片盒中的分布是随机的,通常不是按照盒中小槽的顺序来依次放置硅片,因而硅片在硅片盒中分布会出现随机的空缺现象。在硅片的工艺处理过程中,机械手会对硅片盒中的硅片进行拾取和搬运,机械手操作的速度高频率快,为了尽可能地缩短操作时间,一般会对硅片盒中的硅片存放位置进行扫描并记录下来,以此来方便机械手进行操作,避免对空缺位置进行不必要的动作,节省操作时间。
目前,扫描硅片存放位置的传统方法是在机械手的末端手爪关节处安装一个红外线传感器,在机械手进行拾取动作前先用传感器对硅片盒进行自上向下的扫描,判别硅片的存放位置并将数据传送给机械手。传统的红外线传感器发射的红外线需要发射在硅片的侧边然后经过反射回来才能判别硅片的位置,现如今的硅片变得越来越薄,红外线发射在硅片侧边出现误差的次数逐渐增加,很容易就会出现错误判别硅片位置的现象,由此会引起机械手与硅片的碰撞及损坏硅片的严重后果。因此,传统的利用红外线传感器在硅片盒前方自上向下扫描硅片位置的方法已经不再适用,需要寻求新的方法。
发明内容
为了解决传统红外线扫描识别薄硅片位置容易出现较大误差的问题,本发明提供了一种判别并记录硅片位置的检测装置及方法,采取的技术方案如下所述:
将传统硅片盒进行改进,成为一种改进的硅片盒。硅片盒中的25个插槽由原来的沿竖直方向排列变为沿与竖直方向有一定夹角的梯形排列,硅片盒上方安装有一个沿水平方向移动的红外线距离传感器,当硅片盒中的硅片放入完毕后,红外线距离传感器沿水平方向进行匀速移动,该过程中红外信号发射二极管不断向插槽中的硅片发射信号,当发射的信号遇到硅片时,红外信号反射回来被接收管接收,每层插槽中的硅片反射回来的红外信号都不同,获得不同的位置信息,信息经过采集卡采集后传输给工控机,工控机再对采集到的数据进行分析归类,确定硅片的位置,然后控制机械手进行硅片的拾取和搬运。
所述的判别并记录硅片位置的检测装置系统包括机械结构模块和信号采集模块。
该装置的机械结构模块包括硅片盒、硅片、水平支架、竖直支架、水平导轨、滑块横梁、传感器连接板、气缸。
该装置的信号采集模块包括红外线距离传感器、信息采集卡、工控机。
按照技术方案所述的判别并记录硅片位置的检测装置和方法,其特征在于:硅片盒里面的25个插槽成梯形排列,每相邻两张硅片的圆心在水平方向的距离都为1mm,这样便于从硅片盒上方往下看时可以看到每块硅片的部分边缘。硅片盒上盖中间位置设有一个长方形的开口,该开口的方向与硅片盒背面垂直,便于红外线距离传感器发射的信号从该开口发射到硅片上。竖直支架通过螺栓安装在硅片盒放置位置的后方,方向与硅片盒背面的边缘线平行。水平支架通过螺栓安装在竖直支架的顶部,方向沿硅片盒上盖的开口方向,水平支架距放置第一片硅片的插槽的距离为10cm。气缸安装在竖直支架的水平 段的中间位置。水平导轨通过螺栓安装在水平支架上。水平导轨的两个滑块之间安装有一个滑块横梁,滑块横梁一侧安装着传感器连接板及红外线距离传感器,另一侧与气缸活塞相连接,通过气缸活塞的运动带动传感器的运动,红外线距离传感器的红外线发射二极管和接收二极管面向硅片,便于向硅片发射信号并接收反射回来的信号。通过微调安装位置,保证安装位置竖直、投射光路竖直。
按照技术方案所述的判别并记录硅片位置的检测装置及方法,其特征在于:红外线距离传感器在水平导轨上移动时,同时红外线发射二极管发出信号到硅片上,信号经硅片反射并由接收二极管接收,采集到的信号通过采集卡传输给工控机。
按照技术方案所述的判别并记录硅片位置的检测装置及方法,其特征在于:硅片位置的不同,采集到的信号数据也不同,用工控机编制一个数据分类软件,用软件对采集到的信号数据进行分析,根据不同的信号代表硅片所在位置的不同来判别及记录硅片的位置。
本发明的优点在于:
(1)本发明提供了一种判别并记录硅片位置的检测装置和方法,对薄硅片在硅片盒中的位置进行了判别并记录下来,解决了传统机械手检测硅片位置出现大的偏差问题,为机械手拾取和搬运硅片提供了更准确的依据,保证硅片的质量。
(2)本发明扫描判别并记录硅片位置的时间短,借助红外线距离传感器在水平方向的移动扫描动作来识别硅片位置,与以往随着机械手臂上下移动来进行自上向下(或自下向上)的扫描动作相比,本发明的动作时间更短,且不影响机械手臂的动作,使机械手的零点位置得到保持,减少零点位置校核的时间。
(3)本发明在判别并记录硅片位置的同时,机械手臂可以自行调整位姿,达到机械手进行拾取和搬运硅片动作前的位姿,大大缩短工作周期。
附图说明
图1为判别并记录硅片位置的检测装置示意图。
图2-1为硅片盒轴测图。
图2-2为硅片盒的主视全剖图。
图3为传感器移动部件示意图。
图3-1为滑块横梁轴测图。
图3-2为传感器连接板轴测图。
图3-3为传感器轴测图。
图中,1——硅片,2——硅片盒,3——竖直支架,4——气缸缸体,5——气缸活塞,6——滑块横梁,7——红外线距离传感器,8——水平导轨,9——水平支架,10——采集卡,11——工控机,12——传感器连接板。
具体实施方式
以下结合附图对本发明做进一步说明:
图1为判别并记录硅片位置检测装置示意图。该装置由机械结构模块和信号采集模块两部分构成。其中机械结构模块包括硅片(1)、硅片盒(2)、竖直支架(3)、水平支架(9)、气缸本体(4)、气缸活塞(5)、水平导轨(8)、传感器连接板(12)和滑块横梁(6)。信号采集模块包括红外线距离传感器(7)、采集卡(10)和工控机(11)。
硅片(1)按照插槽位置放置在硅片盒(2)中,硅片盒(2)和竖直支架(3)在同一工作平面上,竖直支架(3)通过螺栓安装在工作平面上,水平支架(9)与竖直支架通过螺栓连接,气缸缸体(4)安装在竖直支架的上端水平部分的中间位置上,气缸活塞(5)方向沿着水平支架(9)方向,水平导轨(8)安装在水平支架(9)上,滑块横梁(6)和红外线距离传感器(7)安装在滑块上,气缸活塞(5)在运动时带动红外线距离传感器(7)运动。红外线距离传感器(7)在作直线运动时,其下端的信号发射二极管会向下发射信号,信号经过硅片盒(2)上端的开口发射到硅片(1)上,然后反射回来被红外线距离传感器(7)下端的信号接收二极管接收,通过采集卡(10)将信号传输给工控机(11),工控机(11)对信号进行分析处理。
硅片盒(2)里的25个插槽呈梯形排列,相邻两个插槽的中心在 水平方向上距离为1mm,硅片盒(2)上端面开有一个开口,图2-1和图2-2为硅片盒轴测图及主视全剖图。硅片(1)按照硅片盒(2)中插槽位置依次放置。
图3为传感器移动部件示意图,图3-1为滑块横梁轴测图,图3-2为传感器连接板轴测图,图3-3为红外线距离传感器轴测图。滑块横梁(6)通过螺栓安装在水平导轨(8)的两个滑块上,传感器连接板(12)通过螺栓安装在滑块横梁(6)上,红外线测距传感器(7)安装在传感器连接板(12)上,气缸活塞(5)与滑块横梁(6)通过螺纹配合连接,当气缸活塞(5)在气缸缸体(4)内作直线运动时,带动红外线距离传感器(7)沿着水平导轨(8)作直线运动,红外线距离传感器(7)的发射和接收二极管在下端,在其移动的同时会发射和接收信号。

Claims (3)

  1. 一种判别并记录硅片位置的检测装置,其特征在于:检测装置由机械结构模块和信号采集模块两部分构成;
    其中机械结构模块包括硅片(1)、硅片盒(2)、竖直支架(3)、水平支架(9)、气缸本体(4)、气缸活塞(5)、水平导轨(8)、传感器连接板(12)和滑块横梁(6);
    硅片(1)放置在硅片盒(2)的插槽中,硅片盒(2)和竖直支架(3)底部安装在同一工作平面上,竖直支架(3)通过螺栓安装在工作平面上,水平支架(9)与竖直支架通过螺栓连接,气缸缸体(4)安装在竖直支架的上端水平部分的中间位置上,气缸活塞(5)方向与水平支架(9)方向一致,水平导轨(8)安装在水平支架(9)上,水平导轨(8)的两个滑块上安装有滑块横梁(6),滑块横梁的一侧安装传感器连接板(12),另一侧与气缸活塞(5)相连接;
    所述的信号采集模块包括红外线距离传感器(7)、采集卡(10)和工控机(11);红外线距离传感器(7)通过螺栓安装在传感器连接板(12)上,传感器的信号发射二极管和接收二极管方向向下,信号发射路线沿竖直方向,气缸活塞(5)推动红外线距离传感器(7)沿水平方向运动,同时红外线距离传感器(7)向硅片(1)发射信号,反射回来的信号通过采集卡(10)传输给工控机(11),工控机(11)对采集到的信号进行分析处理。
  2. 根据权利要求1所述的一种判别并记录硅片位置的检测装置,其特征在于:硅片盒(2)各层插槽的排列方式变为梯形排列,每相邻两层插槽位置的中心在水平方向的距离都为1mm。
  3. 利用权利要求1所述装置进行的一种判别并记录硅片位置的检测方法,其特征在于:红外线距离传感器(7)安装位置距离硅片盒(2)的最上层插槽为10cm,气缸活塞(5)推动红外线距离传感器(7)沿水平方向移动,同时红外线距离传感器(7)的信号发射二极管向硅片发射信号,信号经过硅片反射后被接收二极管接收,通过采集卡(10)传输给工控机(11),不同位置的硅片反射回来的信号不同,工控机(11)通过软件对采集到的信号进行分析处理并归类,机械手便根据工控机(11)分析的数据进行工作。
PCT/CN2017/103077 2017-03-24 2017-09-25 一种判别并记录硅片位置的检测装置及方法 WO2018171148A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710181021.1 2017-03-24
CN201710181021.1A CN107131825B (zh) 2017-03-24 2017-03-24 一种判别并记录硅片位置的检测装置及方法

Publications (1)

Publication Number Publication Date
WO2018171148A1 true WO2018171148A1 (zh) 2018-09-27

Family

ID=59720716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103077 WO2018171148A1 (zh) 2017-03-24 2017-09-25 一种判别并记录硅片位置的检测装置及方法

Country Status (2)

Country Link
CN (1) CN107131825B (zh)
WO (1) WO2018171148A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115679295A (zh) * 2022-12-30 2023-02-03 南昌昂坤半导体设备有限公司 石墨盘旋转漂移修正方法、装置、存储介质及电子设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107131825B (zh) * 2017-03-24 2019-08-09 北京工业大学 一种判别并记录硅片位置的检测装置及方法
CN110315539B (zh) * 2019-07-12 2021-02-02 广汽乘用车(杭州)有限公司 精定位台车工件层数识别方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222622A (ja) * 1995-02-10 1996-08-30 Hitachi Electron Eng Co Ltd ウェハキャリア
CN1801471A (zh) * 2005-12-30 2006-07-12 清华大学 一种片盒中硅片状态检测及其圆心重定位方法
CN101533796A (zh) * 2009-03-26 2009-09-16 上海微电子装备有限公司 一种硅片传输控制系统及方法
CN102233311A (zh) * 2010-04-23 2011-11-09 芝浦机械电子装置股份有限公司 半导体装置制造装置
US8167521B2 (en) * 2006-05-09 2012-05-01 Tokyo Electron Limited Substrate transfer apparatus and vertical heat processing apparatus
CN103376197A (zh) * 2012-04-16 2013-10-30 苏州中导光电设备有限公司 太阳能电池片、硅片背面光学检测系统
CN103412347A (zh) * 2013-07-23 2013-11-27 合肥京东方光电科技有限公司 卡匣和卡匣的检测方法
CN203337546U (zh) * 2013-06-03 2013-12-11 上海柏凌电子科技有限公司 一种无接触式硅片电学型号检测系统
CN107131825A (zh) * 2017-03-24 2017-09-05 北京工业大学 一种判别并记录硅片位置的检测装置及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60157230A (ja) * 1984-01-11 1985-08-17 Telmec Co Ltd 半導体ウエハ搬送方法
TW319751B (zh) * 1995-05-18 1997-11-11 Toshiba Co Ltd
CN103972135B (zh) * 2013-01-25 2017-02-22 上海微电子装备有限公司 一种硅片精确定位传输装置及定位方法
CN105097617B (zh) * 2015-06-17 2018-01-26 北京七星华创电子股份有限公司 基于超声的硅片分布状态识别方法及装置
CN104979245B (zh) * 2015-06-17 2017-11-10 北京七星华创电子股份有限公司 半导体设备承载区域的硅片分布状态光电检测方法及装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222622A (ja) * 1995-02-10 1996-08-30 Hitachi Electron Eng Co Ltd ウェハキャリア
CN1801471A (zh) * 2005-12-30 2006-07-12 清华大学 一种片盒中硅片状态检测及其圆心重定位方法
US8167521B2 (en) * 2006-05-09 2012-05-01 Tokyo Electron Limited Substrate transfer apparatus and vertical heat processing apparatus
CN101533796A (zh) * 2009-03-26 2009-09-16 上海微电子装备有限公司 一种硅片传输控制系统及方法
CN102233311A (zh) * 2010-04-23 2011-11-09 芝浦机械电子装置股份有限公司 半导体装置制造装置
CN103376197A (zh) * 2012-04-16 2013-10-30 苏州中导光电设备有限公司 太阳能电池片、硅片背面光学检测系统
CN203337546U (zh) * 2013-06-03 2013-12-11 上海柏凌电子科技有限公司 一种无接触式硅片电学型号检测系统
CN103412347A (zh) * 2013-07-23 2013-11-27 合肥京东方光电科技有限公司 卡匣和卡匣的检测方法
CN107131825A (zh) * 2017-03-24 2017-09-05 北京工业大学 一种判别并记录硅片位置的检测装置及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115679295A (zh) * 2022-12-30 2023-02-03 南昌昂坤半导体设备有限公司 石墨盘旋转漂移修正方法、装置、存储介质及电子设备

Also Published As

Publication number Publication date
CN107131825A (zh) 2017-09-05
CN107131825B (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
WO2018171148A1 (zh) 一种判别并记录硅片位置的检测装置及方法
US10899002B2 (en) Article movement apparatus, article movement method, and article movement control program
JP2019519097A (ja) カセットハンドリングロボットマニピュレータ、及び自動カセット搬送装置
CN208478308U (zh) 晶圆抓取装置及半导体加工设备
US20180312343A1 (en) Device for separating piece goods to be stored in an automated storage facility
CN107132230A (zh) Pcb板胶面覆盖自动检测装置和检测方法
US7101138B2 (en) Extractor/buffer
CN105590888A (zh) 晶片传送机器人及其控制方法和制造半导体装置的方法
US10850923B2 (en) Transporter and transporting method
CN105510357A (zh) 芯片缺陷智能检查机
CN206343399U (zh) 一种x光检测设备
CN101540291A (zh) 半导体芯片自动分选机
CN107051907A (zh) 一种x光检测机
US20200161161A1 (en) Apparatus and methods for handling semiconductor part carriers
JP2001509643A (ja) 複数ポイント位置走査システム
EP3395731B1 (en) Device and method for grabbing and storing two-dimensional code card
US20190228226A1 (en) Automated warehouse
CN112146580A (zh) 一种晶圆厚度检测设备
US10926960B2 (en) Overhead conveyance vehicle
CN208028023U (zh) 一种多尺寸兼容的led厚度检测的自动化设备
CN219163376U (zh) 一种用于晶圆搬运的夹持装置
CN106643855A (zh) 检测托盘是否搭边的方法
CN114334763B (zh) 晶圆传送系统
US20220155180A1 (en) Method for monitoring transport vehicle and maintenance thereof
CN113188443A (zh) 一种多功能检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17901959

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17901959

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/02/2020)